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Essential norm resolvent estimates
and essential numerical range

Nicolas Hefti and Christiane Tretter

Abstract. The main result of this paper are novel two-sided estimates of the essential resolvent
norm for closed linear operators T'. We prove that the growth of ||(7 — A)™!||. is governed by
the distance of a point A € p(T') \ We(T') to the essential numerical range W.(T'). We extend
these bounds even to points A € C \ W(T') outside the resolvent set p(T") with (T — A)~!
replaced by the Moore—Penrose resolvent (T — A)T. We use similar ideas to prove essen-
tial growth bounds in terms of the real part of the essential numerical range of generators of
Co-semigroups. Further, we study the essential approximate point spectrum 0cqp(7") and the
essential minimum modulus y.(7"), in particular, their relations to the various essential spectra
and the essential norm of the Moore—Penrose inverse, respectively. An important consequence
of our results are new perturbation results for the spectra and essential spectra (of type 2) for
accretive and sectorial 7. Applications e.g. to Schrodinger operators with purely imaginary
rapidly oscillating potentials in R¢ illustrate our results.

1. Introduction

Resolvent estimates are crucial tools not only in the theory of linear operators and
semigroups, but also for perturbation theory and numerical approximations e.g. of
eigenvalues or other types of spectra, see e.g. [2,4, 16]. This is even more true for
unbounded non-self-adjoint or, more generally, non-normal operators, for which small
perturbations may cause large deviations of eigenvalues or spectra. The reason for
this is that in the normal case the resolvent norm ||(T — A)~|| = (dist(X, o(T)))™"
is controlled by the distance to the spectrum o (7"), whereas in the non-normal case it
is merely controlled by the distance to the numerical range W(T') := {(Tx,x) € C |
x € D(T), ||x|| = 1}, more precisely, in the resolvent set p(T) := C \ o(T)

Aep(M\W(T). (LD
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This classical resolvent estimate applies only outside of the closure of the numerical
range, which may be much larger than the convex hull of the spectrum. Moreover, it
does not distinguish between the very different parts of the spectrum such as isolated
eigenvalues of finite algebraic multiplicity and essential spectrum.

The first aim, and the motivation, of this work is to establish an estimate of the
so-called essential norm ||(T — A)~1||. of the resolvent which focuses on the non-
discrete parts of the spectrum such as essential spectra of various types. Our main
result shows that in this case, the role of the numerical range is taken over by the
so-called essential numerical range, more precisely,

)= (T =)~ Aep(T)\We(T): (1.2)

1 . 1
- < -
dist(A, 0ea(T) e = dist(A, Wo(T))’

we also prove that this two-sided estimate extends to all points A € C \ W, (T) if we
replace the resolvent (T — 1) ™! by the so-called Moore—Penrose resolvent (T — A)T.
In (1.2) the essential numerical range of an unbounded linear operator T is the set

We(T) :={A € C |3 (xn)nen C O(T), ||xn]l =1,
Xn — 0, (T = X)Xn, Xn) — O}, (1.3)

introduced and studied only recently in [5]; there it was also proved that W.(T) is
the smallest set capturing spectral pollution for any projection method. Further, the
essential spectrum 0. (7) of type 2 is defined correspondingly, replacing the last
condition in (1.3) by [|(T — A)x,|| — 0, see (2.1), and the essential norm | - || of
a bounded linear operator B introduced by Calkin in [7] as the distance of B to the
closed ideal of compact operators K (H), i.e.

| Bl :=dist(B, K(H)) = _inf ||B—K]|,
K compact

also plays a role in PDEs e.g. when studying double-layer potential operators, see [8].

As in the case of the essential numerical range itself, there are good reasons why it
took so long to move forward from the essential resolvent norm estimates for bounded
operators first derived by Stampfli and Williams in 1968 in the context of Banach
algebras, see [36, Lemma 1 and Theorem 9]. While in the bounded case the essential
numerical range can be lifted to a numerical range in the Calkin algebra, we show that
this is no longer possible in the unbounded case and so we had to develop completely
new techniques to derive (1.2).

The impact of our new essential resolvent estimates may be seen both from the
results we obtain in establishing it and from the results we derive from it. The former
include, firstly, a detailed study of the essential approximate point spectrum

eap(T) 1= [\ owp(T + K),

K compact
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first introduced by Rakocevic in [30] for bounded operators, see also [25]. Here the
approximate point spectrum is defined as in (2.3) below. Secondly, we generalise and
investigate the essential minimum modulus

Ye(T) 1= inf 02(|T|) € [0, oq] (1.4)

first introduced by Bouldin, see [6], to unbounded closed linear operators, in particu-
lar, we prove that, if 7 has closed range and T'T is its Moore—Penrose inverse,

yve(T) =TT (1.5)

Thirdly, we show that, unlike the bounded case, the so-called essential numerical
range lifting problem does not have a solution for unbounded 7. This means that, in
the alternative characterisation

We(T) = (\W(T +K)

K compact

of the essential numerical range, there need not exist a compact Ky € K (H) with
We(T) = W(T + Kp). Finally, our essential resolvent norm bounds inspired us to
prove an estimate for the essential growth rate of a Cp-semigroup (z(¢));>0 with
generator —7" which, if T is quasi-m-sectorial, takes the form

—t infRe W (T) .
e — ’ - ’ .
It <e 120 (1.6)

in the accretive case, an analogous result is derived.

The results we derive from the essential norm resolvent (1.2) split into two groups.
The first group are perturbation results for the essential approximate point spectrum
Ocap(T + A) and the essential spectrum o (T + A) for accretive and sectorial T’
when the perturbation A4 is T-bounded with T-bound < 1, e.g. we prove that

aez(T+A)c{/\ecC)ReAz_

a
=— S
—» "

a b
l—b_l—bum/\'}

1.7

Z tarctan 725
if ||[Ax| < allx|| + b Tx|, x € D(T), with b < 1 and an essential norm bound for
the Moore—Penrose resolvent of T + A,

1
e = (1 —=b)|ReA| — (a + b|ImA|)’

P |

1—b %-l—arctan %

(T +A4—2)T

p— f14 b .
Here S% tarctan 125 1= {Z eC | |arg z| < 7 + arctan ﬁ} denotes the sector with
b

semi-angle 7 + arctan ;25 and vertex 0.
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Wes(T) ----- Wer(T) C We(T) ----- W(T)
U U U
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o2(T) -------- Ocap(T) =-------- oap(T)
RN - C
0ua(T) === ===+ o(T)

Figure 1. Connections of the essential approximate point spectrum with essential numerical
ranges and essential spectra.

The second group of results we obtain employing the essential norm resolvent
(1.2) are applications to concrete differential operators, including an advection-dif-
fusion type operator, see e.g. [5], and Schrodinger operators with purely imaginary
rapidly oscillating potentials in R, see [29, 33, 38]. While for the latter the classical
resolvent estimate (1.1) is not applicable/useful due to the lack of good enclosures of
the numerical range, our new essential norm resolvent bound holds for all A € p(T).

The paper is organised as follows. In Section 2, we study the essential approxim-
ate point spectrum of closed linear operators 7 and its relation to the various other,
in general different types of essential spectra o.; (T') and essential numerical ranges
Wei(T), i =1,...,5, see Figure 1 for a schematic overview and Section 2 for all
definitions. In particular, we show that

0e2(T) C Ueap(T) C 0ea(T), oeap(T) C We(T),

and that 0, (T') consists of 02 (T') plus possibly some ‘holes’ of 0c2(7"), which are
the (bounded and unbounded) components of C \ o.»(T), see Proposition 2.6. Fur-
ther, in the chain of inclusions Ws(T) C W1 (T) C Wei (T) = We(T),i = 1,...,4,
see [5, 14, 15] we prove Oeyp(T) C Wei(T), but, in general, Oeap(T) & Wes(T),
see Theorem 2.13 and Example 2.14. Note that e.g. for singular non-symmetric
perturbations of self-adjoint operators W1 (T') = R, but W,(T) = C may occur, see [5,
Example 3.5].

In Section 3 we introduce the essential minimum modulus y.(7') by means of the
formula (1.4). We relate it to the essential spectrum of type 2 by showing that

0e2(T) = {1 € C [ ye(T — 1) = 0}

and we prove two alternative characterisations of the essential minimum modulus, the
first one in terms of compact operators under the assumption that 0 ¢ ocap (7)),

Ye(T) = sup y(T + K),

K compact



Essential norm resolvent estimates and essential numerical range 1547

and the second one by means of weakly null-sequences, see Proposition 3.3. The latter
is our main tool to establish the identity (1.5) for the essential norm of the Moore—
Penrose inverse.

In Section 4 we employ the results of Section 3 to establish the essential resolvent
norm estimate (1.2), see Theorem 4.1 and Corollary 4.4. We illustrate this novel bound
by applying it to Schrédinger operators —A + ig in L2(R¢) with rapidly oscillating
purely imaginary potential ig such as ig(x) = i(1 + |x|?)~'eP/sin(el*), x € R?, see
Example 4.8. For the corresponding m-sectorial operator 7" with g.,(7) = [0, 00),
see [29], we prove that

Tma ReA=0
W(T) = [0,00), (T =)o = { HmA A e p(T).
m, Rel<0,

We also show that, unlike the bounded case, the essential numerical range of an un-
bounded closed linear operator is not the minimal closed convex set W C C so that
the essential resolvent norm has at most linear growth ||(T — )T || < (dist(A, W))~1,
A ¢ W, see Example 4.10.

In Section 5 we prove a series of perturbation results for m-accretive and m-sec-
torial operators 7" with T-bounded perturbations A having 7-bound < 1. The first
group of results is for the perturbed approximate point spectrum o,,(7 + A) and for
the norm || (T 4 A)T|| of the perturbed Moore—Penrose inverse, see Theorem 5.1, the
second group of results is for the perturbed essential spectrum e (T 4+ A) of type 2
and for the essential norm || (7 + A)T||. of the perturbed Moore—Penrose inverse, see
Theorem 5.11. All our enclosures for the perturbed spectra o, (T + A), 0e2 (T + A)
and the bounds for ||(T + A)T||, (T + A)T|. are explicit in the T-boundedness con-
stants @, b in ||Ax| < a| x| + b||Tx||, x € D(T), with b < 1 and in the sectoriality
angle ¥ € [0, %] with ¢ = % for accretive 7', see (1.7) and (5.11). This dependence
on the sectoriality angle @ is illustrated in Figure 2 below.

In Section 6 we disprove that the essential numerical range lifting problem has a
solution for unbounded closed linear operators. This is in sharp contrast to the bound-
ed case where the essential numerical range and the essential norm can even be lifted
simultaneously, i.e. there exists a compact K¢ € K (H) with W.(T) = W(T + Ko)
and ||T'|le = ||T + Ko||- This failure in the unbounded case is also the reason why
it is not possible to reduce proofs for the essential numerical range and essential
resolvent norms to results on the numerical range and the usual operator norm. Our
counter-example shows, in fact, much more, since we even construct a normal m-sec-
torial operator 7' for which there exists an open neighbourhood U of W,(T') such that
W(T + K) ¢ U for all compact K € X (H).
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In the last Section 7 we prove bounds for the essential growth of Cy-semigroups
(t(t))r>0 with quasi-m-accretive generator —7. While in the m-sectorial case, the
growth bound may be estimated by the infimum SB.(7) = inf Re W,(T") of the real
part of the essential numerical range, see (1.6), the upper bound for the growth bound
in the m-accretive case is given by

Be(T) := inf liminf Re(T x,, x,) (< infRe W(T)),

(xn)nen€€(T) n—>00

see Theorem 7.1, and the inequality may be strict as one of our examples shows;
here & (T) is the set of all normalised weakly null-sequences in (7). Our result also
proves the novel criterion (7)) > 0 for the semigroup (7 (¢));>0 to be quasi-compact,
or asymptotically compact according to [1, 12].

Throughout this paper, we use the following notation. By H we denote a (com-
plex) infinite-dimensional separable Hilbert space with inner product (-, -) and induced
norm || - ||. A sequence (x,)neNn C H is called normalised if || x,| = 1,n € N, and
a weakly null-sequence if x, = 0,ie. (x4,x) >0forall x e H.If M C H is
a (not necessarily closed) subspace, we denote by M~ its orthogonal complement
and, if in addition M is closed, we denote by Py € L(H) the orthogonal projec-
tion in H onto M. For a closed linear operator T in H with domain O(T) C H,
we denote the spectrum, point spectrum, resolvent set, kernel and range of 7' by
o(T),0,(T), p(T),ker(T) and R(T), respectively. Further, T is called accretive it

W(T)C{zeC|Rez>0}=: Ht

and sectorial if there exists 6 € [0, %) such that W(T) is contained in the (closed)
sector Sg with vertex 0 and semi-angle 6, that is

W(T) C{z e C | |arg(z)| <0} =: Sy C Hy.

If T is accretive or sectorial and A € p(T') for some (and hence for all) A € C
with Re A < 0, we call T m-accretive or m-sectorial, respectively. Further, T is
called quasi-m-accretive/quasi-m-sectorial if T + B is m-accretive/m-sectorial for
some B € R. We refer to [19, Section V.3.10] and [9] for more information on these
and related concepts.

Finally, we use the common conventions sup @ := —oo, inf@ := oo and é =0,
so that dist(A, @) = oo forevery A € C.

2. Essential approximate point spectrum and essential numerical
range

For (bounded or unbounded) linear non-self-adjoint operators, there are various
notions of essential spectra which are, in contrast to the self-adjoint case, no longer
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equivalent in general, see e.g. [11, Sections 1.4 and IX.1]. Here we only need the
essential spectra of type 2, see (2.1), and of type 4 given by

02(T) := {2 € C | I (xn)nen C D(T), |xa] = 1, x4 — 0,
(T = A)xn — 0}, 2.1

0ea(T) := [ )o(T + K). (2.2)
KeX(H)

In this section we study the essential approximate point spectrum of closed linear
operators T acting in a Hilbert space; this maybe not-so-well-known type of essential
spectrum was first introduced by Rakocevic in [30] in the bounded case. The essential
approximate point spectrum may be viewed as the essential version of the approxim-
ate point spectrum of T, which is defined as

0ap(T) :={A €C | (xn)nen CD(T), |xnl| =1, (T = A)xn|| = 0} Co(T). (2.3)

Definition 2.1. Let 7" be a closed linear operator. We define the essential approximate
point spectrum Oeap,(T) of T as

Oeap(T) = [\ owp(T + K).
KeX(H)

Note that the notion of essential approximate point spectrum is used differently
by different authors; e.g. in [26] it denotes the set 0, (7).

The following properties of 0c,p(7) are immediate from its definition and the
closedness of the approximate point spectrum.

Remark 2.2. Let T be a closed linear operator. Then 0eap(T) = 0eqp(T + K) for
every compact operator K, 0eqp(T) is closed and

oeap(T) C 0ea(T).

In order to relate the essential approximate point spectrum to 0.2 (7") in (2.1) and
0ap(T), we establish an equivalent characterisation of 0cp(7') in terms of Fredholm
properties. Recall that a closed linear operator T is called upper semi-Fredholm if
R(T) is closed and dimker(7') < oo and lower semi-Fredholm if R(T) is closed and
dim R(T)* < oo, while T is called Fredholm/semi-Fredholm if T is upper and/or
lower semi-Fredholm. If 7 is a semi-Fredholm operator, we define the index of T as

i(T) := dimker(T) — dim R(T)* € [—o0, 0],
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seee.g. [11, Section I.3]. Then, since T is assumed to be closed, the essential resolvent
sets of type 2 and 4, respectively, satisfy

Pe2(T) := C\ 0e2(T) = {A € C | T — A is upper semi-Fredholm},
Pea(T) :=C\ 0e4(T) = {A € C| T — Ais Fredholm, i(T — A) = 0},

see e.g. [11, Theorems IX.1.3 (i) and IX.1.4]. Further, it is not difficult to see that the
set of regular points of T can be described as

Pap(T) := C \ 04p(T) ={A € C | R(T — A) isclosed, T — A is injective}

and hence p,p(T) C pe2(T) or, equivalently, 0e2(7T) C 0qp(T).

Note that the assumption that 7" is densely defined is not needed in the proofs of
the above equalities for pe»(7") and pe4(7") due to [11, Remark 1.3.27] and by working
with R(T — 1)+ instead of ker(7T* — 1), compare the proof of Lemma 2.3 below.

To characterise 0c,p(7) in terms of Fredholm properties, we generalise a result
due to Yood in [39], see also [25, Theorem 8.7.1], to unbounded operators.

Lemma 2.3. Let T be a closed linear operator with A € pex(T). Then A € pea(T)
withi(T — A) < 0 if and only if there exists K € J(H) with

(i) dimR(K) =dimker(T — 1) < oo,
(i) A € pp(T + K).

Proof. The proof in [25, Theorem 8.7.1] for bounded operators in Banach spaces
may be carried over to the case of closed linear operators in a Hilbert space. For the
convenience of the reader, we briefly sketch it here, also because we do not assume
that 7' is densely defined.

For the implication “=>", note that A € p.»(T") with i(T — A1) < 0 implies that

dimker(T — A) < oo. Let x1, ..., x, € ker(T — A) be an orthonormal basis. Since
i(T — 1) <0, we have dim R(T — A1) > dimker(T — 1) = n and hence there exists
an orthonormal system in yq,..., y, € R(T — A)*. Then the operator

n
K=Y (.xi)yi
i=1
satisfies K € K (H) with dim R(K) = n = dimker(T — A) and R(T + K — })
is closed due to the stability of pe»(7") under compact perturbations, see [11, The-
orem 1.3.21 and Remark 1.3.27]. To show that T + K — A is injective, let vy €
ker(T + K — A). Then, because y; L R(T — A), we obtain

0= (T + K —2)vo, y))

n
= (T =Mvo, y) + Y (o, x) (i, y)) = (o, %)), j =1,....n,
i=1
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which shows that v € ker(T — 1)+ and Kvg = 0. The latter implies that (7 — 1)vg =
(T + K — A)vg = 0 and hence v € ker(T — 1) Nker(T — 1)L = {0}.

For the implication “<=", we note that if K € K (H) is such that (i) and (ii) hold,
then A € pop(T + K) C pe2(T + K) = pe2(T) and the index satisfies i(T — A) =
i(T + K—21)=—dimR(T + K — 1)t <0by [I1, Theorem I.3.21 and Remark
1.3.27]. [

Theorem 2.4. Let T be a closed linear operator. Then
Peap(T) ={A € C | A € pea(T), (T — ) < 0}.

Proof. First, let A € peap(T). Then, by Definition 2.1, there exists a K € K (H) such
that A € pap(T + K) C pe2(T + K) and i(T + K — 1) = —dim R(T + K — 1)+ <0.
Then the stability result for upper Fredholm operators and for the index, see [11,
Theorem 1.3.21 and Remark 1.3.27] implies that A € p.»(T') and

(T —1) =i(T+K—-21) <0.

Vice versa, assume that A € pep(T) with i(T — A) < 0. Then Lemma 2.3 imme-
diately yields that there exists a K € JK(H ) such that A € p,,(T + K) and therefore
A € peap(T') by Definition 2.1. ]

Corollary 2.5. Let T be a closed linear operator. Then
OCZ(T) C Ueap(T) C Gap(T) C W(T)

Proof. The first inclusion is immediate from Theorem 2.4; the last two inclusions are
obvious from the respective definitions, see Definition 2.1 and (2.3). ]

Proposition 2.6. Let T be a closed linear operator. Then
(1) 0e2(T) C O'eap(T) C oes(T);
(11) 8064(T) C 8aeap(T) C aan(T)-

More precisely, 0cap(T') consists of 0.2 (T') and possibly some components of pex(T),
while 0.4(T') consists of 0cap(T') and possibly some components of peap(T).

Proof. (i) The claim was proved in Corollary 2.5 and Remark 2.2.

(ii) It is easy to see that, due to claim (i), it suffices to show that 00cap(T) C 0e2(T)
and 00e4(T) C 0eap(T). Let A € 00¢qp(T'). Then A € 0cp(T') since the latter is closed.
If A ¢ 0e2(T), theni(T — A) > 0 by Theorem 2.4. Since p»(T) is open and the index
is stable, see e.g. [19, Theorem IV.5.5.31], there exists ¢ > 0 such that all u € C
with |A — u| < e satisfy u € pex(T) and (T — u) = i(T — A) > 0, a contradiction to
A € 00¢4p(T'). The inclusion d0e4(7T) C 0cap(T) is proved analogously.
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To prove the last claims, note that if A € 0cap(T') \ 0e2(T), then T — A is upper
semi-Fredholm with i(7T — A) > 0, see the proof of claim (ii). Denote by A the
component of pe>(7T) with A € A. Since the index is stable, see e.g. [19, Theorem
IV.5.5.31], it is locally constant and hence i(T — u) = i(T —A) > Oforall u € A
and thus A C 0¢4p(T). The claim for oe4(T') is shown analogously. [ ]

Remark 2.7. For bounded T, the bounded components of pe»(7") and peqp(7') are the
holes of 0> (T') and 0eqp(T), respectively, see [25, Theorem 8.14.2]; for a compre-
hensive study of holes of various essential spectra of bounded operators see also [21].
For unbounded 7" also the unbounded components of pe>(7") and peap(7") have to be
taken into account which may be interpreted as ‘holes at infinity’.

A simple example how large the difference between 0c.p(T) and oe4(T) is
provided by maximal symmetric operators with non-equal defect numbers where an
entire half-plane has to be added. The same may happen for the difference between
0e2(T) and 0qp(T'), see Example 2.14 below.

Example 2.8. Let T be a closed symmetric operator with defect index (0, k) with
keN,ie. R(T —i) = H, R(T +1) = R(T +1) # H. Then

0e2(T) = Oeap(T) = 00p(T) =R, 0ea(T) =0(T) ={z € C|[Imz < 0}.

Proof. Since T is symmetric, W(T) C R, R(T — 1) is closed and ker(7T' — 1) = {0}
for A € C \ R; because the defect index of T is (0, k) with k # 0, we have

(T —1) = —dimR(T —i)t =0, (T +1i)=—dimR(T +1)t =—k <0, 2.4)
and 0(T) = {z € C | Imz < 0}. Then, by Corollary 2.5,
0e2(T) C Ueap(T) C O—ap(T) CR.

If 0.2 (T) # R, then pe> (T) is connected and hence i(7T — i) = i(T + i) since the index
is locally constant, see e.g. [19, Theorem IV.5.31], a contradiction to (2.4). The local
stability of the index and (2.4) also show that {z € C | Imz > 0} C pe4(T). On the
other hand, T — A is Fredholm withi(T — A1) = —k <0OforA € C,ImA < 0, and so
{zeC|Imz <0} C0eq(T); thus 0e4(T) ={z € C | Imz <0} since 0.4(T) is closed.

[

The following proposition shows that, like the essential spectra of type 1,2, 3, 4,
also the essential approximate point spectrum is not only invariant under compact
perturbations by Definition 2.1, but also under relatively compact perturbations.

Recall that a linear operator A is called T-compact (or relatively compact with
respect to T) if OD(T) C D(A) and A|p(r) is compact as an operator from D(T)
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equipped with the graph norm || - ||z of T into H, i.e., whenever for every bounded
sequence (Xp)pen C D(T) with (T x,)pen bounded, (Ax,),en has a convergent
subsequence, see e.g. [19, Section IV.1.3].

Proposition 2.9. Let T be a closed densely defined operator. Then

Oeap(T) = [\ ow(T + K);
K T-compact

in fact, Ocap(T) = Ocap(T + K) for every T -compact K.

Proof. The inclusion “2” is immediate from Definition 2.1 since compact operators
are T-compact. If K is an arbitrary T-compact operator, then Theorem 2.4 together
with the stability theorem for 0., (7") and the index, see e.g. [19, Theorem 1V.5.5.26],
imply that 0eap(T) = Oeap(T + K). Now, the inclusion “C” follows from this and
Corollary 2.5 which yield

Oeap(T) = Oeap(T + K) C 0p(T + K). u

Theorem 2.4 also helps to prove that the essential approximate point spectrum
satisfies a spectral mapping theorem like all other essential spectra, see [11, The-
orem IX.2.3], and that it is stable when the resolvent difference of two operators is
compact like the essential spectra of type 1,2, 3, 4.

Theorem 2.10. Let T be a closed linear operator and A € p(T). Then, for every
ne C\{A},

2 O—eap(T) = (u— /\)_1 € Oeap((T - /\)_1)~
Proof. If |1 € 0¢qp(T), then either € 0e2(T) or u € pe2(T) but i(T — ) > 0 by

Theorem 2.4. In the former case, the spectral mapping theorem for 0.5 (7), see e.g.
[11, Theorem IX.2.3 (iii)], yields that

(N‘ - )L)_l € 062((T - A)_l) - aeap((T - A)_1)-

In the case u € per(T) but i(T — ) > 0, then [11, Theorem IX.2.3 (iii)] yields that
(=21 € pea((T — X)) Y. If i(T — ) = oo, i.e. w is an eigenvalue of T with
infinite geometric multiplicity, then, by [11, Theorem IX.2.3 (ii)], (x — A)~! is an
eigenvalue of (T — A)~! with infinite geometric multiplicity, i.e.

(T =27 = (u=2)7") = oco.

Hence, Theorem 2.4 shows that (4 — A) ™! € 0y (T — A)™1). If, on the other hand,
0 <i(T — ) < oo, then T — u is Fredholm and, proceeding as in the proof of [11,
Theorem IX.2.3 (iii)], we arrive at

(T =)= (=" =iT —p) >0.
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Thus (£ —A) ™! € 0eap((T — A)~1) by Theorem 2.4, as required for “=". The reverse
implication “<=" follows analogously. ]

The next corollary is an immediate consequence of Theorem 2.10 and the invari-
ance of 0¢qp(7') under compact perturbations, see Remark 2.2.

Corollary 2.11. Let T and A be closed linear operators. Suppose that there exists
A € p(T) N p(A) sothat (T —A)~' — (A — 1)~V is compact. Then Geyy(T) = Oeap(A).

Remark 2.12. So far, all results in this section also generalise to separable Banach
spaces with essentially the same proofs, except for the proof of Lemma 2.3. There,
for a closed (not necessarily densely defined) linear operator 7" in a separable Banach
space, one follows the lines of the proof in the bounded case [25, Theorem 8.7.1],
merely replacing every instance of ker(7*) by the annihilator of R(T).

Next, we study the relation of the essential approximate point spectrum to the
essential numerical range W,(T), see (1.3), and its variants Wy; (T) C Wo(T), i =
1,2,3,4,5. While all these closed and convex sets coincide for bounded T, see [13],
this is no longer true in the unbounded case, see [5] for a comprehensive treatment of
Wei(T) fori =1,2,3,4 and [14] for i = 5. However, for a closed linear operator 7T,
one still has W, (T') = W.3(T) = W (T) or, spelled out,

Wo(T) = (\W(T+K)= [ \W(T +F). (2.5)
KeX(H) FeX(H)
dim R(F)<oo

Since 0,5 (T + K) C W(T + K), Definition 2.1 and (2.5) yield that 0., (T) C We(T).
The other essential numerical ranges defined as

Wer(T) := (\W(TlyLnpr))-
VeVeoo

Wea(T) :={A € C | 3 (e) C D(T), orthonormal with (T x,, x,) — A},

A0tn)nen C D(T), [xall =1, X4 =0
VYm e N (Txy,xm) >0, (Txy,x,) > A ’

Wes(T) := {)L eC (2.6)

where V.o, is the set of all finite-dimensional subspaces of H, are in general no
longer equal to W, (T), they only satisfy

0e2(T) C Wes(T) C Wer(T) C Wei(T) = We(T), i =234, (27)

see [5, Theorem 3.1], [14, Corollary 2.4 and Theorem 2.5], [15], and the two inclu-
sions between the essential numerical ranges may be strict. The equality W (T) =
W.(T) holds if D(T) N D(T*) isdense or W(T') # C, and Wes5(T) = W1 (T) holds
if O(T) N D(T*) is a core for 7.
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Our next theorem and Example 2.14 below reveal where the essential approximate
point spectrum is located in the chain of inclusions (2.7), namely 0cap (7)) C Wei(T),
but in general 0., (T) & Wes(T).

To prove this inclusion, we invoke a type of essential numerical range which was
introduced in [5, Remark 4.2] merely to show that in (2.5) compact perturbations
cannot be replaced by relatively compact ones; namely

WA(T):= [ \W(T +K) C We(T).
K T-compact

Theorem 2.13. Let T be a closed linear operator. Then
Geap(T) C We(T) € Wer(T) € Wea(T) C Wer C We(T), i =2.3;

if O(T) N D(T*) is acore for T, then 0eap(T) C Wei (T) = We(T), i =1,2,3,4,5.

Proof. By Corollary 2.9, we have 0¢,p,(T) C ’V[Z(T) and thus it suffices to show that
W;(T) C Wei(T). Parts of our proof are similar to parts of the proof of [5, The-
orem 3.1], but unlike there, we do not assume any density of domains here.

Suppose that fI/I\/;(T) C We1(T) is false, i.e. there exists A € fVI\/;(T) andV € Voo
such that A € W(T |y Lnp(r))- Since the latter is a closed and convex set, the strong
separation property, see e.g. [24, Theorem 3.6.9], shows that there exists a closed
half-plane H C C such that A ¢ H and W(T |y L g (1)) C H. After possible shift and
rotation, we may assume that H = {# € C | Re u > 0} and so Re A < 0. As in the
proof of [5, Theorem 3.1], we infer that there exists a (not necessarily orthogonal)
finite-rank projection P € L(H) such that R(P) = V and R(P*) C D(T). As in
the proof of [5, Theorem 3.1, p. 14], we set

K :=—-TP*—PT 4+ PTP* + uPP*, D(K):=D(T),

which now no longer has a compact closure. Nonetheless, the properties of P imply
that the operators PP* and TP* are bounded and of finite rank hence compact. If
(Xn)nen C D(T) is such that x,, Tx,, — 0 as n — oo, then, trivially, PTx, — 0
as n — oo. Hence, PT and thus also K, are T-bounded. Furthermore, R(K) C
span(R(TP*) U R(P)) € V<o, and so K is T-degenerate and thus T-compact, see
e.g. [19, Remark IV.1.1.13]. Further, we observe that

T+K=(—-P)TUI~-P*)+pnPP"lom) (2.8)
and, for arbitrary x € D(T) with || x| =1,

(I-P%xeR(UI—-PHNDT)=RP):NDT)=VInDT). (29
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Hence combining a simple computation with (2.8) and (2.9), we find that
(T + K)x,x) =(T(I — P*)x,(I — P*)x) + u||P*x]||
eltz+spulze W yLnpery), t,s >0}

Since u € W(T'|yLnp(ry) C H, we deduce W(T + K) C H. Hence, it follows that
Ae W;(T) C W(T + K) C H, a contradiction to Re A < 0. [

Finally, we give an example where 0c.,(T) ¢ Wes(T) for which it was already
proved in [14, Example 2.10] that Wes(T) & Wei (T).

Example 2.14. Let H = (%(N) and (e,)nen C £?(N) be the standard basis of H.
Consider the operator T in {2(N) given by

n—1
Tey:=0. Tey:=Y e. n=2 ODT):={xecl’N):TxeclP(N)}:
k=1

this means that T is a Toeplitz operator with (unbounded) symbol p(z) = (z — 1)7},
z € C\ {1}. In [14, Example 2.10] we showed that T" has the following properties:

(i) T is quasi-m-accretive with o(T) = W(T) = {A eC | Rel > — %}
(ii) {)L eC | Red > — %} Cop(T);

(iii) D(T) N D(T*) is dense in £2(N), but no core for T;

(iv) Wes(T)={AeC|Red =1} < W(T);

W) Wu(T)=W(T)=W({T),i=1,...,4

Here we prove that
Ueap(T) = Wi (T) = We(T)
={Ae<C)ReAz —%} i=1,2.3.4 (2.10)
1
0e2(T) = 30eap(T) = Wis(T) = {A eC ’ Rel = —5}. @2.11)

This shows that 0cap(7') € Wes(T') and illustrates that oc,p(7') consists of 02 (7) and
one of the two (unbounded) components of p.>(7'), namely the open right half-plane,
see Proposition 2.6.

Proof. First we prove that T — A has dense range forany A € C. Let y = (y5)nen C
R(T — A)*. Then

0=((T —Aey,y) =—Ay;,

n—1

n—1
0=(T—MNen,y) =D (e, y) = Men,y) = D vk —Ayn, n=2,3,....
k=1 k=1
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Inductively, these equations imply that y = 0, which proves that R(T — 1)+ = {0}
for any A € C, as required. This and (ii) imply that, if ReA > — % then

i(T — A) = dimker(T — A) — dim R(T — A)* = dimker(7 — 1) > 0.

Thus {1 € C | ReA > —1} C 0e4p(T) by Theorem 2.4. Since 0cyy(T) C W(T), see
Corollary 2.5, and 0eap(T') is closed, see Remark 2.2, the claim in (2.10) follows.
Finally, because 00¢ap(T) € 00e2(T') € 0e2(T) S Wes(T) by Proposition 2.6 (ii)
and [14, Corollary 2.4] and since 00¢a,(T) = Wes(T') by (2.10), the claims in (2.11)
follow. ]

3. Essential minimum modulus and Moore-Penrose inverse

In this section we introduce the essential minimum modulus for closed linear oper-
ators. We relate it to the essential spectrum of type 2 and to the essential norm of
the Moore—Penrose inverse. Further, we prove other characterisations of the essen-
tial minimum modulus which will be used to establish the essential resolvent norm
bounds in the next section.

First, we recall the definition of the Moore—Penrose (generalised) inverse of a
closed densely defined linear operator 7" with closed range. Under these assumptions,
the operator 7 between the Hilbert spaces ker(T')* and R(T') given by

D(Ty) := D(T)Nker(T):, Tix=Tx, xeDT),

is closed and bijective, and hence has a bounded inverse 77" ! by the closed graph
theorem. Then the bounded operator

TV := T/ Pr(ry € L(H)

is called Moore—Penrose inverse of T, see e.g. [22,23] or [3, Chapter 9] (where
TT is called maximal Tseng inverse). It follows from the definition and [23, Proposi-
tion 3.2] that

TT' = Paary, TTT C Py R(TT) = D(T) Nker(T)*, (3.1

ie. TiTx = me, x € D(T), see also [3, Theorem 9.2]. Moreover, if

T):= inf T 0, 00), 3.2
y(T)= _nt T € [0.00) (32)

denotes the minimum modulus of T, see e.g. [11, Definition 1.3.3], then [23, Propos-
ition 3.9] implies that, whenever T is injective with closed range or, equivalently,
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0 € pap(T'), we have that
1
1T =1T7" = ——. (3.3)
y(T)
where T7~1 = T ! is the inverse of T acting from the Hilbert space R(T') to H . For
a closed densely defined linear operator 7, it is obvious that
0ap(T) ={A € C | y(T = 1) =0}. (3.4)

It is known that the norm of the Moore—Penrose resolvent ||(T —A)T|| = (y (T —1))71,
for A € pp(T) and A ¢ W(T), respectively, satisfies

! t
mf (T =)'

see [19, Theorem V.3.3.2].
To establish an ‘essential version’ of the minimum modulus, the characterisation

| <
dist(A, W(T))

y(T) = info(|T) = mino(|T])

with |T| = (T*T)% is more useful, see [6, Theorem 1] for the case of bounded T.
It follows easily from the spectral theorem for the self-adjoint operator |T| since
ITx|| = |||T|x], x € D(T) = D(|T|). Note also that y(T) = y(|T|).

Definition 3.1. For a closed densely defined linear operator 7', we define the essential
minimum modulus y.(T) of T as

Ye(T) :=inf 0 (|T|) € [0, o0].

The following properties of the essential minimum modulus are immediate from
its definition and since the essential spectrum is closed.

Remark 3.2. Clearly, y(T) < ye(T), ye(T) = ve(IT]) and ye(T) = min o (|T']) if
o (IT]) # 9.

Proposition 3.3. Let T be a closed densely defined linear defined operator. Then
D) 02(T) ={2 € C | y(T —21) =0};
(i) if we abbreviate, see [11, Theorem IX.1.7],
E(T) := {(xn)nen C D(T) |

(Xn)nen is a normalised weakly null-sequence},
then

Ve(T) = inf liminf | Tx,|| < dist(0, 0e2(7T)): (3.5)

(xn)nen€E(T) n—>00
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in particular, y.(T) = y.(T + K) for all compact K € K (H);
(iii) if 0 € peap(T)(C pe2(T) and hence y.(T) > 0), then

ve(T) = sup y(T + K).
KeX(H)
Proof of Proposition 3.3. (i) It follows from [13, Theorem (1.1)] that A € 0o (T)
if and only if ker(7 — A) is infinite dimensional or 0 is an accumulation point of
o(|T — A|). Since |T — A| is self-adjoint, this is equivalent to 0 € 0.(|T — A|). This
shows the inclusion “C” and, since the essential spectrum is closed, also “D”.
(ii) Let A € 0.(|T|). There exists a normalised weakly null-sequence (y,)neN C
D(T|) = D(T) with ||(|IT| — A)yu|l = 0 and hence |||T|yn|| = A as n — oo. Thus
inf liminf ||Tx,|| <liminf ||Ty,|| = lim |||T|yal = A.
(xXn)nen€E(T) n—>0 n—o00 n—00
To prove the reverse inequality, let A > 0 be such that there exists a normalised weakly
null-sequence (x,)neny C D(T) = D(|T|) with ||T x,|| — A as n — oco. Then

0 < (T lxn. xn) < [ITxnll = 1Txnl| = A, 1 — o0.

Thus we can assume, by passing to subsequences, that (|T'|x,, x,) — 4 < A and so,
by definition (1.3), it follows that u € W.(|T|). Since |T| is self-adjoint and semi-
bounded, [5, Theorem 3.8] implies that

ye(T) = infor(|T) = inf We(IT|) < < A.

The inequality in (3.5) follows from the equality therein, which we just proved,
and from [11, Theorem IX.1.7].
Finally, from (3.5) and the definition of &(T), the last claim is evident.

(iii) Parts of the following proof of (iii) are similar to the proof for the bounded
case, see [35]. By Remark 3.2 and the last claim in (ii), it follows that

sup Y(T +K) =< sup (T + K) = ye(T).
KeX(H) KeX(H)

To prove the reverse inequality, we note that pe,,(7) C pe2(T) by Corollary 2.5 and
hence y.(T') > 0 by claim (i). Moreover, since 0 € peap(T"), Definition 2.1 and equa-
tion (3.4) imply that there exists Ko € K (H) with 0 € p,, (T + Kp) or, equivalently,
Y(T + Ko|) = y(T + Kp) > 0. By (3.4), the latter implies that 0 € p,, (|7 + Ko)
and hence, since |T + K| is self-adjoint, 0 € p(|T + Kol).

By Remark 3.2 and the last claim in (ii), we have

Ye(IT + Kol) = ve(T + Ko) = ye(T) > 0.
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Now, we choose an arbitrary sequence (A,)nen such that 0 < A, < y.(T), n € N,
and A, /" y.(T) = y.(T + Ko) as n — oo. Let E(-) denote the spectral measure of
|T 4+ Kol and set

Py = E([0,An)), Kn:=AyPy—|T + Ko|P,, neN.

Then R(P,) C O(T) and dim(R(P,)) < oo because A, < infA.(|T + Kp|), and
hence the operators K, are compact for all n € N; moreover,

|T+KO|+KnZ)LnPn+|T+KO|(I_Pn)y neN.
Again by Remark 3.2 and the last claim in (ii), it now follows that
nA, < y(T + Kol + K») < ye(IT + Ko| + K») = y(T + Ko), n € N.

Since An, 7 ye(T + Ky) as n — oo, we obtain that y (|7 + Ko| + Ky) /7 ye(T + Kp)
as n — oo. By the polar decomposition, see e.g. [19, Section V1.2.7], there exists an
isometry U from R(|T + K¢|) = H to R(T + Ko) suchthat T + Ko = U|T + Kp].
Because Ky and K are compact, so is En = Koy + UK, for n € N. If we use that
I(T + K)x|l = [U(T + Kol + Ku)x|l = [I(IT + Kol + Kn)x| for x € D(T) =
D(T + Kp|) in the definition (3.2) of the minimum modulus, it follows that

(T + Kn) = y(IT + Kol + Kn) /' 7e(T + Ko) = ye(T). n—o00.
Corollary 3.4. If T is self-adjoint, then, for A € C,
Ye(T —A) = dist(A, 0¢;(T)) = dist(A, 0eqp(T)), i =1,...,5,

where the essential spectra 0.;(T), i = 2,4, are as in (2.1), (2.2) and 6¢;(T), i =
1,3, 5, are defined as in [11, Chapter IX].

Proof. Since for a self-adjoint operator, all essential spectra and the essential approx-
imate point spectrum coincide, see [11, Theorem IX.1.6] and Proposition 2.2 (ii), the
claim is immediate from Proposition 3.3 (ii) and [1 1, Theorem IX.1.7]. [ ]

The following lemma shows, in particular, that in Proposition 3.3 (ii) the infimum
in (3.5) is, in fact, a minimum (if we choose M = {0} below).

Lemma 3.5. Let T be a closed densely defined upper semi-Fredholm operator and let
M C D(T) be a finite-dimensional subspace. Then there exists a normalised weakly
null-sequence (xp)nen C D(T) N M~ such that

T x| = y.(T), n — oo.
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Proof. Since T is upper semi-Fredholm, we have 0 € p.>(7") and so y.(7T") > 0 by Pro-
position 3.3 (i). Further, Proposition 3.3 (ii) together with a standard diagonal sequence
argument yields that there exists a normalised weakly null-sequence
(Vn)nen C D(T) such that || Ty,|| — ye(T) as n — oo. Since M is finite dimen-
sional, Pps is compact and so we can assume, upon choosing a subsequence, that
Pyryn — 0 and hence || (I — Pp)ynll — 1 asn — oo. Then

I—P
xn:—ﬂeﬂ)(T)ﬂM{ neN,

I = Pa)yall

defines a normalised weakly null-sequence. Because M C D(T) is finite dimensional,
it is easy to see that 7'Pyy is everywhere defined and compact, so that we can assume,
again upon choosing a subsequence, that 7' Pys y, — 0 and thus, altogether,

ITyn — TPpyull
(1 = Par) yull

Remark 3.6. If we note that, in [17, pp. 257-258], it was shown that

1T xn || =

— y.(T), n— oo. ]

| Blle = sup{limsup || Bx,| | (xn)neN is a normalised weakly null-sequence},
n—>oo

(3.6)

then this and a standard diagonal sequence argument imply that there exists a norm-
alised weakly null-sequence (x,),en C H such that || Bx,| — ||B|. asn — oc.

Next we establish the ‘essential version’ of (3.3), i.e. we prove that the essential
norm of the Moore—Penrose inverse coincides with the reciprocal of the essential
minimum modulus. This result seems to be new even for bounded operators.

Theorem 3.7. If T is a closed densely defined upper semi-Fredholm operator, then

1
7. = ) 3.7
7"l o) (3.7

In particular, if 0 € p(T), then T has compact resolvent or, equivalently, |T| has

compact resolvent if and only if y(T) = oo.

Proof. Since 0 € pe>(T') by assumption, ker(7') is finite dimensional, R(T') is closed
and y.(T") > 0 by Proposition 3.3 (i).

First we prove the inequality “>”. By Lemma 3.5, there exists a normalised
weakly null-sequence (x,)nen C D(T) Nker(T)* with |[Tx, || = ve(T) € [0, 00] as
n — oo. In particular, (T'x,)neN is a bounded sequence and, upon passing to a sub-
sequence, we may assume that it is weakly convergent. Since T is closed, its graph
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is also weakly closed, see e.g. [32, Theorem 3.12], which implies that 7 x, 2 0as

n — oo. Then the normalised sequence
Tx,

17 xnl

Yo = e D(T), neN,

also satisfies y, 2 0asn — oo. Further, by (3.1) we have x,, € D(T) Nker(T)* =
R(TYyand |TTTx,| = |lx.]| = 1, n € N. Altogether, it follows that

1T x|
B2 20 gim 1Ty < (1T
n—0o0

= lim = lim
Ye(T)  n=oo |[Txp|| n—oo ||Txy|l

To prove the inequality “<”, we note that if || 7| = 0, there is nothing to show.
Thus assume that |77 > 0. Then, by (3.6), there exists a normalised weakly null-
sequence (yn)nen such that | 7Ty, || = ||TT|le. Since R(T) is closed, we have H =
R(T) ® R(T)*. Hence there exist bounded sequences (¥} )peny C R(T), (¥2)nen C
R(T)* with y, = yp 4+ yZ2and 1 = ||y, > = [lys]|1*> + lly2]|* for n € N. By passing
to subsequences, we may assume that y;, 20,i =1,2,and lyh| = r €0, 1]. Since
TT is bounded and ker(7T) = R(T)™L, see [23, Proposition 3.2], it follows that

0 < IT e = tim |71yl = lim |77y} < T

|r, 3.8)
which implies that » > 0. Therefore, (#’i‘”)n ey C JC is a normalised weakly null-
sequence. Then, by (3.6) and the equalitielé in (3.8), it follows that
TTyl 77,
17" = timsup 1200~ AT o ey
r

n—00 ”yr% [

and so equality holds everywhere, which means that r = 1. Since T is bounded and
Tyl — ITTe > 0asn — oo,

Ty,
IT%yall

e R(T") = D(T) Nker(T)*, neN,

Xp

defines a normalised weakly null-sequence (x,),en. Then we obtain that, because
(YDnen € R(T) and by (3.1),
L Tyl 1Tyl
ITxall  (ITTTyr Iyl

— ||TT||e, n — oo.

Since Proposition 3.3 (ii) implies that liminf, o || 7 X, || > ye(T), we conclude that

> lim sup = |77,
Ve(T) n—o00 ||Txn|| ¢

which completes the proof of (3.7).
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Finally, if 0 € p(T), then T has compact resolvent if and only if 7T = T~ is
compact or, equivalently, || 7| = 0. By (3.7) this is in turn equivalent to y.(T") = oo.
By definition, this holds if and only if 0.2 (|T|) = 9. Since |T| is self-adjoint, this is
equivalent to the resolvent of |T'| being compact, see e.g. [34, Theorem V.5.12]. =

4. Resolvent estimates in the essential norm

In this section we establish two-sided estimates of the essential norm of the Moore—
Penrose resolvent and the resolvent in terms of the essential numerical ranges and
the essential spectrum of type 2. These bounds are new even in the case of bounded
operators and they apply in regions inside of the numerical range where, up to now,
no generally valid resolvent estimates have been available. Examples of differential
operators show that e.g. for m-sectorial operators the essential norm of the resolvent
may be estimated everywhere outside of [0, 00).

Theorem 4.1. If T is a closed densely defined linear operator, then, for A ¢ 0. (T),

1

<—— i=1,...,5. 4.1
= Gy T b

1
s _
distr oy ~ 1T =4

Proof. First, we note that A ¢ 0., (T) if and only if y.(T — A) > 0 by Proposition 3.3,
and the latter is equivalent to || (7 — A1) < oo by Theorem 3.7.

By Theorem 3.7, the first inequality is equivalent to y.(7T — A) < dist(A, 0e2(T)),
which was proved in [11, Theorem IX.1.7].

To prove the second inequality, by (2.7) — see also [5, Theorem 3.1] and [14,
Theorem 2.5] — it suffices to prove the claim for i = 5. If |[(T — A)T||. = 0, there is
nothing to prove. If || (T — A)t||c > 0, then y.(T — 1) < oo by Theorem 3.7. Due to
Proposition 3.3 (ii) there exists a normalised weakly null-sequence (x,)nen C D(T)
with

(T = Dxnll = ye(T = A) = n — 00; (4.2)

1
T —nie =
in particular, (T'x,),en C H is a bounded sequence. By passing to a subsequence if
necessary, we may assume that (7 x,),en is weakly convergent and (7 x,, x,) — 1
for some pu € C. Since T is closed, its graph is also weakly closed, see e.g.
[32, Theorem 3.12]. Hence, x; 2o implies that T x,, %, 0asn — 0o. Then it follows
from the definition of W.5(T) in (2.6) that u € We5(T). Using (4.2), we conclude that

1 1 1
T-.= lim ———— < 7§ < .
I = e = i T T = 7 [T moem) = ] = disth, Ws (1)
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Remark 4.2. If T is closed and densely defined, then, for A ¢ 0eqp(T),

1 1
dist(A, Oeap(T))  dist(A, 0e2(T)

E 1T =) (4.3)

Proof. The first equality follows from Proposition 2.6 and thus Theorem 4.1 implies
the desired inequality; alternatively, we could also use the characterisation in Propos-
ition 3.3 (iii) of the essential minimum modulus. ]

The next corollary is obvious from Theorem 3.7, Corollary 3.4 and Theorem 3.7.

Corollary 4.3. If T is self-adjoint, then, for A € p(T),

1 1

—1 _ =
1T =D = G oa ) ~ dsthom(T)"

i=1,...,5.

If we also have A € p(T') rather than A € pe,(T') in Theorem 4.1, then (T — A1)t =
(T —2)~! and the next result shows that then the lower bounds in (4.1) and (4.3)
coincide.

To this end, we recall that if B is a bounded operator, then always o.; (B) # @,
i =1,...,5, and s0 0¢,p(B) # @ as well by Corollary 2.5. Moreover, the so-called
essential spectral radius of B satisfies

re(B) := sup{|A| | A € 0i(B)} = sup{|A| | A € Ocap(B)} < | Blle, i =1,...,5,
no matter whether the various essential spectra of B coincide or not.

Proposition 4.4. Let T be a closed densely defined linear operator andi € {1,...,5}.
Then, for A € p(T),

re((T—2)7) = dist()t,Jeap(T)) - dist(A, 0 (T))
<IT =17 < W)

Proof. Since A € p(T), the two inequalities are immediate from Theorem 4.1 by the
preceding remarks. To prove the first equality, we use that by the essential spectral
mapping theorem, see [11, Theorem 1X.2.3 (iii)], u € 0.; (T) if and only if we have
(=2t eo;((T—2)"H\{0}fori =1,...,5. If oo((T — A)~1) \ {0} # @, this
implies that

1
= sup |u-A"'= sup 2] = re((T =27
dist(A,06i(T)) o (T) z€0,; (T—A)~H\{0}

fori =1,...,5.If oo ((T — A)~1) \ {0} = @, then it follows from the essential spectral
mapping theorem that o> (7') = @ and hence dist(A, 0.2 (7)) = oo.
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Since 0e2(T) C 0eap(T) C 0ea(T) by Proposition 2.6 (i), the second equality fol-
lows from the first one; alternatively, we could also use the essential spectral mapping
theorem for 0, (7'), Theorem 2.10. ]

Proposition 4.4 yields a useful information on operators with empty essential
numerical range, which seems to be new. Note that W.(T') # @ if T is bounded.

Corollary 4.5. Let T be a densely defined linear operator with W(T) = @. Then
either o (T) = C or T has compact resolvent.

Proof. If 6(T) # C, then p(T') # @ and hence T is closed. Then W (T) = @ implies
that, for all A € p(T'), we have dist(A, W.(T')) = oo and thus ||[(T — 1)~} = 0 by
Proposition 4.4, i.e. (T — A)~! is compact. ]

Remark 4.6. The converse of Corollary 4.5 is not true, not even in the self-adjoint
case. In fact, if T is self-adjoint with compact resolvent, but not semi-bounded, then
Wo(T) = R, see [5, Theorem 3.8].

On the other hand, it is well known that a self-adjoint operator 7' has compact
resolvent if and only if 0.,(7T) = 0, see e.g. [34, Proposition V.5.12]; note that
Corollary 4.3 yields another proof of this equivalence since 0. (7T) = @ is equival-
ent to dist(A, 0¢2(T)) = oo and hence to ||(T — A1)~ !l = 0,i.e. (T —A)~! compact,
for A € p(T).

In the following we illustrate our results by applying them to two different
examples from mathematical physics, first to an advection-diffusion type differential
operator on R studied in [5, 10].

Example 4.7. For the advection-diffusion type differential operator

2
Tim 0105+ Qo). DT) = HA(R),

X dx

with complex-valued coefficients Qg, Q1 € L*°(R) such that Q1(x) — —2, and
Qo(x) — 0 as |x| — oo, it was shown in [5, Example 7.3] that the essential spec-
trum of type 2 is a parabola and the essential numerical range is the convex hull of
this parabola. Analogously, using Corollary 2.9 or Corollary 2.11, respectively, it is

easy to see that 0eap(T') = 0e2(T), so that altogether
(Im 1) }
2 9

Oeap(T) = 0ea(T) = {A eC ( Red =

We(T) = Wei (T) = conv(0e2(T)) = {,\ ceC | Red > (Im21)2}7

Then Corollary 4.4 implies that, ‘outside’ of the parabola,

1 1

T =27 e = dist(A, We(T)) _ dist(A, 0e(T))’

A€ p(T)\ We(T).
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In the particular case Q1 = — 2, Q¢ = 0 where it is also known that 0 (T') = 0 (T)
and W(T) = W.(T), see [10], Theorem 4.1 still yields that, also ‘inside’ of the para-
bola,

(T —A)" A€ p(T)\ oea(T).

Moz —t
Z Gisth, 00 (T)

Our second example are Schrodinger operators with rapidly oscillating potentials
on R, d > 3, which were studied in [33,38] in the case of real-valued potentials
and in [29] for complex-valued potentials. For the purpose of illustrating our essential
norm estimates of the resolvent, it is sufficient to focus on purely imaginary potentials.

Example 4.8 (Schrodinger operators with purely imaginary rapidly oscillating poten-
tials). Let the operator Ty in the Hilbert space L2(R¢), d > 3, be given by

Tof(x) == =Af(x) +iq(x) f(x), [ € D(To) := C°(RY), x € RY,

where g € L7° (R?) is a real-valued potential satisfying

2

[ atrorar

This means that there exists a function w: (0, c0) — [0, 00) with limg—co W(R) = 0
such that for all w € dB1(0) and r, > r; > R,

)
’/q(ra)) dr
1

Typical examples of such potentials include ¢ (x) = |x|?sin(|x|), x € R4, and ¢(x) =
(1 + |x[*)~'e*l sin(el¥!), x € R,
It was shown in [29, Theorems 6 and 10] that Ty is sectorial and admits a Friedrichs

lim sup =0.

T1,12700 ,9B; (0)

< w(R).

extension T = Ty which is m-sectorial and satisfies 0e>(T) = [0, c0). Here, we will
show that, although the potential is purely imaginary, the essential numerical range is
real and, by our previous results, we can determine the essential norm of the resolvent,
more precisely,

m, RCA > 0,

— m

We(T) = [0,00), (T =17l = ) A€ p(T);
—, Rel <0,
|A]

note that it then follows directly that 0e> (T") = 0cap(T) = We(T) = [0, 00).
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Proof. Due to [29, Theorem 10] and [5, Proposition 2.2] it suffices to show that
W.(Tp) C [0,00). If A € W,(Ty), then there exists a normalised weakly null-sequence
(fudnen C D(Ty) = CE(RY) such that (Ty f, f) — A, ie.

Re(To fu. fo) = IV full72@ay = Re A,

Im(To fy. f,) = / 40O fu() 2 dx — Tm . “44)

R4

To show that Im A = 0, let ¢ > 0 be arbitrary. Since ( f,),eN is a normalised weakly
null-sequence in L, (R?), we obtain that, for all g € Cs° (R9),

/ V£ (x)Vg(x)dx = — / fa(x)Ag(x)dx -0, n— oo.
R4 R4

Since C*° (R%) is dense in H'(R¥) and (V f;)nen is bounded in L, (R?) by the first
equation in (4.4), so that ( f,)nen is bounded in H ! (R?), it follows that ( f;)nen is a
weak null-sequence in H'(R?).

Now set C := sup, ey || /n | g1 ey and choose Ro > 1 so that w(R) < %#
for R > Ry. Due to the assumptions on ¢, we can apply [29, Lemma 7] which implies
that, foralln € N and R > R,,

A

[ 4P dx| < wRY I ol ey +d — 1)

[x|=R

IA

w(R)2C +d — 1) < g (4.5)

On the other hand, because ( f;,)nen is bounded in H ! (R%), the Rellich—-Kondrachov
theorem shows that there exists a subsequence such that

Vel 8oy = / o (0] dx 0,k — oo, “.6)
|x]<R

Further, by the Gagliardo—Nirenberg inequality with 8 = dLH, there exists M > 0
such that

‘ / ()] fu () dx

|x|<R

< sup 1g@)| 1 /125,000

|x|<R
= M2 sup laC) i ey 11
x|<

B &
= M2C?* sup lqOl I lZitseon <5 @D
|x|<R
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by (4.6) for k > ko with ko chosen sufficiently large. Using (4.5) and (4.7) in the
second equation in (4.4), we conclude that Im (T fu,, fn, )| < € for k > ko and
hence ImA = 0 as ¢ > 0 was arbitrary. |

It is well known that the closure VTT) of the numerical range is the minimal
closed convex set W C C for which the resolvent satisfies the linear growth condi-
tion ||(T — A)~1|| < (dist(A, W))~! for A ¢ W. Note that, although in [28, 36] only
bounded operators or elements of Banach algebras, respectively, were considered, the
proofs therein also apply to closed densely defined operators with only minor adjust-
ments. In particular, T is accretive if and only if ||(T — A)™!|| < |Re A|™! for all
A € C withRe A < 0, see [28, Lemma 2].

For bounded operators, a similar result for the essential numerical range was
deduced in [36, Theorems 2 and 9], using that the essential numerical range W(T') =
Wes(T) = (Ngexy W(T + K) is a numerical range in the Calkin algebra.

Theorem 4.9 ([36]). Let T be a bounded linear operator and W C C be any non-
empty closed convex set. Then We(T) C W if and only if 0e2(T) C W and

1
T-D)e.<——\, 1eC\W.
Il( Mle < st eC\

The next example shows that Theorem 4.9 does not generalise to unbounded oper-
ators for any type of essential numerical range, even if we add extra conditions on the
operator T such as normality or m-accretivity or geometrical constraints on the con-
vex set W such as being unbounded or similarly shaped as the numerical range.

Example 4.10. Let H = (>(N) & ¢2(N) and let A be the operator in £?(N) given by

D) = {(rnhnen € 2(V) | S anf? < o).

n=1

Ae, = (1 + i(=1)"n)e,,

n € N, where {e, | n € N} C £2(N) is the standard orthonormal basis. Then the
operator

T::AEBO:(A 0

. 2
A o)’ D(T) = D(A) & L2(N) C H,

is closed and densely defined, and has the following properties:
(i) T is a normal operator;
(i) W(T)=10,1] + iR and T is m-accretive;
(i) We(T) = Wo(T)=W(T)=[0,1]+iR,i =1,...,5;
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(iv) 0(T) = Ueap(T) = {0} CiR;
V) T =1)Te < |AI7* = (dist(A, {0}))"! for all A € C \ {0} and hence, in
particular, ||[(T — A)T|le < |ReA|™! = (dist(A,iR))"! forall A € C \ iR.

Proof. (i) Since A = I + iS where S is the self-adjoint operator given by D(S) =
D(A), Se, = (—1)"e,, n € N, it is immediate that A* = I —iS so that D(4*) =
D(A)and A*A = AA* = I + S2. Therefore, A, and hence T, is normal.

(ii) It is evident that W(A) = 1 4 iR and hence

W(T) = conv(W(A4) U {0}) = [0, 1] + iR,

which shows that T is accretive. By claim (i), T is normal and so D(T) = D(T™).
This implies that W(T*) = W(T)* = {(T x, x) | x € D(T)} and hence T* is accretive
too. Thus T is m-accretive by [20, Theorem 1.4.4].

(iii) Because W(A) is a line and W(T) is a strip by claim (ii), [5, Corollary 2.5]
yields that W,(A4) = W(A) and that W.(T)) C W(T) is a strip or a line. Moreover,
clearly, W.(A) = 1 +iR C W.(T). This, 0 € 0.2(T) C W(T) and the fact that W.(T)
is closed and convex yield that W.(T) = W(T) = [0, 1] + iR. Since T is normal by
claim (i), D(T) N D(T*) = D(T) is acore of T and hence [14, Theorem 2.5] shows
that We;(T) = We(T) fori =1,...,5.

(iv) Since 0e2(T') C 0cap(T') and 0 € 02 (T'), it suffices to show that o, (7) C {0}.
For this purpose, define the compact operators K %,k € N,in H by

- —(1 +i(=D*k)ex, n =k,
Kke,,:z{ (I +iEDEer, n e N,

Ky, =K, &0,
07 n?ék’

Since T + Ek, k € N, are normal, [34, Proposition 3.26iii) and Example 3.8] imply
that

0up(T + Ki) = 0(T 4+ Ki) = {0} U{l +i(=1)"n | n e N\ {k}}, keN.
Hence, by Definition 2.1

Oep(T) = [Now(T + K) C () 0up(T + Ki) = {0}.
KeX(H) keN

(v) Let A = a 4+ ib € C \ {0}. Note that the claim is equivalent to y.(T — 1) > |A|
by Theorem 3.7. By Lemma 3.5 (applied with M = {0}) there exists a normalised
weakly null-sequence (vn)nen = ((xn, yn)")nen C D(T) such that ye(T — 1) =
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limy, 00 || (T — A)vu||%. Then

Ye(T —1)?K € X(H)
= lim (T =), [? = Tim (J|(A = V)xa[* + [Ayn]?)
n—oo n—oo
= lim (JA|? + ||Ax,||*> — 2a Re(Axy,, xp) + 2b Im(Ax,,, xp,))
n—>oo

= A2+ lim (| Axn]|? = 2a]|xa]? = 256 Im(AXn, Xn)).
n—>o00

Since ||vn|| = 1, n € N, we may assume, by passing to a subsequence, that || x, | — r
with r € [0, 1] and hence

Ye(T — /\)2 = |/\|2 —2ar + nlglgo(”AanZ —2bIm(Axp, xn)). (4.8)

Next, we show that (Ax,),eN is bounded. Otherwise, there exists a subsequence
with ||Axp, || = oo as k — oo. Since || x, || < ||va|| <1, it follows that, for sufficiently
large k € N,

| Axn, | —2b Im(Axn;  Xn, ) = [|AXn, || | AXny || = 2|6]| = 00, k — oo.

Then (4.8) yields that y.(T — A) = oo. However, by Proposition 3.3 (ii), it follows
that y.(T — A) < dist(0, 02 (T — 1)) = dist(A, 0.2(T)) = |A] < o0, a contradiction.
Hence (Ax,)nen C H is bounded.

Next, we prove that r = lim,_,« || X, || = 0. Otherwise, if r > 0, we may assume
that ||x,|| > 0, n € N. Then, with x,, =: (X, x)kxeN, 7 € N, we have

o0
1A > = Y (0 + D) xail* = IIxal® + 1IS1xal? neN,  (49)
k=1

where | S| is the non-negative self-adjoint operator with compact resolvent in £2(N)
given by

|Slen, = ne,, neN, D(S]) :=D(A).

By [5, Theorem 3.8], we know that We(|S|)S= @. Since (ﬁ)neN C D) = D)
is a normalised weakly null-sequence, (%)n <y cannot be bounded since in
this case it would have a convergent subsequence which would converge to a point
u € We(]S|). Hence there exists a subsequence such that

o i USPme¥n0) S

k—o00 ||Xnk ||2 k—o00

Thus |[|S|xp, || = oo as k — oo and so, by (4.9), also ||Axy,, || = oo as k — oo,
a contradiction to the boundedness of (Axy),eN-.
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Altogether, lim,,_, » ||x, || = r = 0 and the boundedness of (Ax,),en imply that
(Axy, xp) = 0as n — oo. Combining this with (4.8), we conclude that y.(T — 1) >
|A| > Re A, as required. ]

5. Perturbation results

In this section we establish perturbation results for the approximate point spectrum,
the essential approximate point spectrum and the essential spectrum of type 2 under
relatively bounded perturbations. The latter two results are derived using the essential
norm estimates for resolvents obtained in the previous section and are hence accom-
panied by essential norm estimates of the perturbed resolvents.

If T and A are linear operators in a Banach or Hilbert space H, then A is called
T -bounded (or relatively bounded with respect to T) if D(T) C D(A) and there exist
constants a, b > 0 such that

[Ax|l < allx[l + b Tx]l,  x € DT); (5.1

the infimum of all b > 0 for which there exists an ¢ > 0 such that (5.1) holds is called
the T-bound or relative bound with respect to T of A, see e.g. [19, Section IV.1].

Our first theorem is a perturbation result for the approximate point spectrum of
accretive and sectorial operators. To this end, for © € (—m, ] we define

Sy i=1{z € C | [arg(z)| = 9},

ie. if ¥ = 7, then Sy =: H is the closed right half-plane and if ¢ < 7, then Sy is
the closed sector with vertex 0 and semi-angle ¢.

Theorem 5.1. Let T be a closed densely defined linear operator, let A be T -bounded
with T-bound < 1anda, b >0,b < 1, asin (5.1), and let ¥y := arctanleb € [0, %)
(i) If T is accretive, then

a
ow(T + A) C 1= T 5%+
b

_ {Ae(C ‘Re)&z—laTb—mHmM}

and

1
I = T ReA = @ 5 B[ImA]

(T + A4 —2)T

ford & — 15 + Sz 19,
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(ii) If T is sectorial with semi-angle 6 € [O, %) then

a
(T + 4) C Bray () U (‘ bcosO + (1 —b)sinf +Se+”b)

— B0 OU{ieC|Rerz ‘

_bc039+(1—b)sin9

_bsin@—(l—b)cosGHmM}
bcosh + (1 —b)sinf
and
1
T+A-2)7 _
1T+ A= = =T

for A ¢ (BlaTb(O) U S%H))’ as well as

1
T+ A-20)F —_—
1T+ 4= 21 = g

for}t € S%+6 \ (_ bcos@-l—(al—b)sina + S9+19b)’ where

d(Ad;a,b,0):=(1—b)|cosfImA —sinf Re A|
—(a+b|cosOReA + sinf ImA|).

Remark 5.2. The claims in (i) are identical with the claims in (ii) if we allow 0 = %
there; note that in this case cos 8 = 0, sinf = 1 and the disc B]“T,, (0) is then contained

N~ pesar(i-Bymg + S6+% = ~15 + ST 40,
Proof of Theorem 5.1. (i) Let A € C withRe A < 0 and x € OD(T). Since T is accret-
ive, we can estimate
I(T = )x||*> = (T —ilmA)x|* + |Re A|*| x> = 2Re ARe((T —iIlmA)x, x)
= |(T —iImA)x||* + |Re A|*||x||* — 2Re A Re((T'x, x))
> (T —ilmA)x|?

and hence
[Ax| < allx| + b Tx|
< (a+b|ImA|)|lx[| + b|(T —ilmA)x||
< (a +b|ImAD|x|| + bI(T — A)x]|,

which implies that

(T + A= 2)x[| = (T = M)x[| — | Ax]|
= (1 =D)I(T = Vx|l = (@ + b Im A) || x]|.
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Taking the infimum over all x € D(T), ||x|| = 1, by (3.2) we obtain that, forall A € C
withReA < 0,

(T +A—21)> 1 =b)y(T —A) — (a + b|ImA|)
> (1 —b)|Re | — (a + b| Im A]). (5.2)

Thus it follows that A € p,(T + A) or, equivalently, y(T + A — A) > 0 provided
that (1 —b)|ReA| — (a + b|Im A|) > 0; since Re A < O the latter is equivalent to the
condition Re A < —W, which proves the first claim. The norm estimate for the
Moore—Penrose inverse for these A follows from (5.2) and from ||(T + A — 1)T|| =
TR see (3.3).

(i) The claims in the sectorial case all follow by applying (i) for the accretive
case in two different situations in the upper and lower half-plane, depending on the
position of A ¢ Sg. If A € Sz 19 \ Sg and Im A > 0 then the operator ¢~ T is
accretive and we apply the claims in (i) to e (F-OT perturbed by (=94 at the
point el(Z-0); analogously, we treat the case that Im A < O replacing the rotating
factor (=9 by e (50 If ) ¢ Sz ¢ and Im A > 0, then arg(}) € (0 + Z.7), the
operator e!™ 2@ T g accretive and we apply the claims in (i) to e/F—aE)T
perturbed by el("~2€®) 4 at the point !~ A analogously, we treat the case
that Im A < O replacing the rotating factor ¢!(*=2¢(1) py e=ilm—arz(D) We Jeave the
remaining simple details of deriving the claimed formulas in (ii) to the reader. |

If more is known about the shape of the numerical range of 7' than being contained
in a half-plane or in a sector, then the following local perturbation result may be
applied to all rays perpendicular to supporting half-planes in boundary points of the
numerical range. Here, for ¢ € (—m, 7] and r > 0, we denote the open ray emanating
from the point re'® with angle ¢ by

Rrg :={te® € C |t >r}.

Lemma 5.3. Let T be a closed densely defined linear operator, i € C and ¢ €
(—m, 7). Suppose A is T-bounded with T-bound < 1 and constants a, b > 0, b < 1,
asin (5.1). If (uw + Ro,p) N W(T) = @ and

dist(u + te'®, W(T)) >¢t, t >0, (5.3)

i.e. the ray i + Ro g is perpendicular to some line separating W(T') and i + Ro 4.
Then

n+ RQT—bL“"‘P C pap(T + A)

and

(T +A—1)T

1
< A. Ra .
= (= b)disth, W(T)) —(a+ blp)’ S e
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a=1,b=05,0=049
10

7.5

—=7.5 1

—10 T T T
—-10 -7.5 -5 —-2.5 0 2.5 5 7.5 10

Figure 2. The blue hatched area shows Sy for the indicated 6 € [0, %] and the red area shows
the enclosure obtained for 0., (7" + A) via Theorem 5.1 in this situation fora = 1 and b = %

Proof. The proof is analogous to the proof of Theorem 5.1 (i) if we show that the
operator —e ¢ (T — ) is accretive. Suppose the contrary, i.e. there is a z € W(T') with

—Re(e ™ (z — pn)) <0.
This implies that
I + el —z|2 — 12 = | — z|> — 2t Re(e ?(z — p)) > —o00, t — oo.
Thus there exists 7y > 0 such that
dist(u + te'®, W(T)) < |u +te'® —z| <1, > 1o,
a contradiction to (5.3). ]

In order to establish analogous enclosures for essential spectra and corresponding
essential norm estimates of Moore—Penrose resolvents, we need two geometric lem-
mas relating W, (T) and W(T). The first one is a generalisation of [5, Proposition 2.4].

Lemma 5.4. Let T be an arbitrary linear operator. If Ao € W.(T') and there exists
6o € (—m, ] with R := Ao + €90, 00) € W(T), then R C Wo(T).
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Remark 5.5. In [5, Proposition 2.4] it was assumed that R C W(T') rather than R C
W(T). Note that parts of the proof of [5, Corollary 2.5] would have already required
the stronger result Lemma 5.4; thus, although its proof is similar to the one of [5,
Proposition 2.4], we sketch it here.

Proof of Lemma 5.4. After possible shift and rotation, we may assume, without loss
of generality, that Lo = 6y = 0, i.e. R = [0,00). Let A > 0 be arbitrary. By assumption
0 € W|.(T) and hence there exists a normalised weakly null-sequence (x,)nen C
D(T) such that (T x,, x,,) — 0 as n — oco. Since R C W(T) there exists a normalised
sequence (yn)neN C D(T) such that

(Tyn,yn) =n+¢€,, neN,

. . w .
where (e,)nen C C is a bounded sequence. Since x,, — 0 as n — oo, there exists a
strictly increasing sequence (ng)reny C N with

Ok o)l < o 1Tyl < 7 ke,
Further, we choose r;y > 0 and 0 € (—m, ] so that
r2k 4 | (Txng, i) = A, e % (Txn,, ) >0, k €N;
note that then ry — 0 as k — oo. Hence, if we set

Uk 1= Xn, + ey, v k €N,

el

then |ug| — 1 as k — o0, (vg)ken C D(T) is a normalised weakly null-sequence
and, noting that r,fek — 0 as k — oo since (e)ren is bounded, it is not difficult to
check that (T vy, vg) — A as k — oo and hence A € W, (T). [

Recall that if 7' is bounded, then W,(T') is a non-empty compact set. Examples
show, see e.g. [5, Examples 2.6 and 3.5], that if 7" is unbounded, then W,(T) may be
empty or unbounded. Lemma 5.4 yields that either of these cases prevails.

Corollary 5.6. Let T be an arbitrary unbounded linear operator. Then
i)  W(T) is unbounded;
(ii) W(T) is either empty or unbounded.

Remark 5.7. For densely defined operators, claim (i) was shown in [37, Proposi-
tion 2.51], but we are not aware of a reference for the case without dense domain.

Proof of Corollary 5.6. (i) Set M := D(T) and consider the compression Ty :=
Py Ty with D(Tyr) = O(T). Then Ty is densely defined in the Hilbert space
M and therefore W(T') = W(T)y) is unbounded by [37, Proposition 2.51].
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(>ii) Since W(T) is closed, convex and unbounded by (i), it contains some ray, see
e.g. [31, Theorem 8.4]. If W.(T') # @, then W,(T) therefore also contains some ray
by Lemma 5.4 and is thus unbounded as well. ]

Lemma 5.8. Let T be a linear operator with W.(T) # @ and
We(T) CHy ={z € C |Rez > 0}.
Then there exist ¢ € (—%, %) and n € C, Re u < 0, such that
W(T) C pn + e®H,.

Proof. In this proof we will frequently use the fact that if C C C is an unbounded
closed convex set, then for every z € C there exists a ray R, emanating from z such
that R, C C; this follows e.g. from [31, Theorem 8.4].

Let Ao € W(T). Since W,(T) # C by assumption, it follows that W(T') # C
by [5, Corollary 2.5]. If inf Re W(T') > —oo0, then the claim follows with ¢ := 0 and
w := min{inf Re W(T), 0}. So it remains to consider the case that W(T') # C and
infRe W(T) = —o0.

Then there exists a sequence (A,)yen C W(T') such that Re A;, — —o0 asn — oo.
If s 1= sup, ey, [ ImAy| < 0o, then [Ag| < s and

Co:= (R +i[-s,s]) N{z € C|Rez <ReAo} N W(T)

is an unbounded closed convex set with A9 € Cy and (A,)sen C Co. Hence, by [31,
Theorem 8.4], there exists aray R emanating from A¢ € Cy with R C Cy. By definition
of Cy, this ray must be of the form R = Ay + (—o0, 0]. Now Lemma 5.4 implies that
R C We(T), acontradiction to We(T') C H . Therefore s = sup,,cyy,, [ ImA,| = 0o and
hence at least one of SUP,eN, Im A, = oo orinf,en, Im A, = —o0 prevails. Assume
that the first case holds. Then

Ci={eC|Imz>ImAg}N{z € C|Rez <Reio} N W(T)

is an unbounded closed convex set with Ag € C4+ and (A,)seny C C4. Hence, by
[31, Theorem 8.4], there exists a ray R emanating from Ay € C4 with R C C4. By
definition of Cy, this ray must be of the form R = ¢ + ¢'?[0, co) for some 6 € [%, JT].
Now Lemma 5.4 yields that R C W.(T).If @ > Z, this contradicts W.(T) C H and

T

therefore 6 = 7. le.

R = Ao +i[0, 00) C W(T) C W(T). (5.4)

Moreover, [31, Theorem 8.3] yields that R, := (A, — A9) + R = A, + 1[0, 00) C
W(T) forn € Ny. Let L,, C C, n € Ny, be the vertical lines with R, C L,,n € N.
Suppose that there exists 9 € N such that L,, C W(T'). Because A, € R, C W(T),
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n € N, [31, Theorem 8.4] yields that L,, C W(T) for all n € Ny. Since Re A,, - —o0
as n — oo, this implies that

{ze C|Rez <RelAo} C W(T).

Therefore and because Re Ao > 0, VTT) must be a left half-plane of the form
{z € C |Rez < zp} for some zp > 0. Then, by [5, Corollary 2.5], W.(T) is a half-plane
as well and W,(T') € W(T), a contradiction to Wo(T) C H,.. Hence L, ¢ W(T) for
all n € Ny. This and A, € L, for n € Ny imply that

L, NoW(T)+# @, n € Np.
Let u, € L, N dW(T), n € Ng. Then
Reu, =Red,, n e Ny,

and hence Re u, — —o0 as n — 0o. Next we show that sup,, cxy Im 1, = 00. Suppose
the contrary, i.e. that § := sup, ey, Im @, < 0o. Then

C_o:={zeC|Imz<5}N{zeC|Rez <Reio} N W(T)

is an unbounded closed convex set. Since A¢g € C_, [31, Theorem 8.4] yields that there
exists aray R C C_ emanating from Ag € C_. By definition of C_, this ray must be
of the form R = Ao + el? [0, o0) for some e [—n, —%] Now Lemma 5.4 yields that
R C W(T). If 0 < —7, this contradicts W,(T') C H and therefore § = —7.. But
then we have Lo = R U R C W(T), a contradiction to L, ¢ W(T) for all n € Nj.
Hence sup, ey, Im un = oo. Together with Re pu, — —00 as n — o0, it follows that
there exists N € N with

Imuy >ImAyg, Reuny <0 <Relo. (5.5)

Since W(T) is closed and convex with uy € dW(T), there exists a supporting hyper-
plane at iy by [24, Theorem 3.7.4], i.e. there is a ¢ € (—, 7] such that

W(T) C uy + e®H,. (5.6)

Since Ay € W.(T) C I/ITT) and, by [31, Theorem 8.4] and (5.4), uny + i[0, o0) €
W(T). This yields that ¢ € [0, 7]. It is not difficult to check that the inequalities (5.5)
together with ux € OW(T) imply ¢ € [O, %) This completes the proof in the case
SUp,en, ImA, = oo.

In the case inf,en, Im A, = —o0, the proof is analogous and here (5.6) holds with
¢ € (—%.0]. .
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Our next stability result generalises the general stability theorem for semi-Fred-
holm operators, see [18, Section 4, Theorem 1a] or [19, Theorem IV.5.22]. The latter
shows that if T is injective with closed range, i.e. 0 € p,p(7) and hence y(T') > 0, A
is T-bounded with T-bound < 1 and a, b > 0 in (5.1) with b < 1 satisfy

a < (1 =b)y(T),

then 7 + A is injective with closed range, i.e., 0 € p,(T + A). In analogy to the
proof of [19, Theorem IV.1.16], one can also show that in this case y(7 + A) >
(1 —=>0)y(T) — a > 0 or, equivalently, see (3.3),

M L
= (U =b)—a|T7|

(T + A)F

Proposition 5.9. Let T be a closed densely defined linear operator and let A be
T -bounded with T-bound < 1. Suppose that T is upper semi-Fredholm, i.e., 0 €
pe2(T) (so that y.(T) > 0), and a., b. > 0, b, < 1, are such that, for all normal-
ised weakly null-sequences (x,)nen C D(T),

limsup ||Axy|| < ae + belimsup || T x| 6.7
n—>oo n—>oo
If
ae < (1 —=be)ye(T), (5.8)

then T 4+ A is upper-semi-Fredholm, i.e. 0 € pep(T + A), with essential minimum
modulus y.(T + A) = (1 — be)ye(T) — a. > 0 or, equivalently,

©T (1 =be) —ac| T

I(T + 4)f (5.9)
Remark 5.10. The constants a. and b, in (5.7) can always be chosen equal to the
constants a, b in (5.1), but, since (5.7) is a weaker condition, they may also be chosen
differently to optimise the constants in the estimate (5.9).

Proof of Proposition 5.9. Since A has T-bound < 1, there exista, b > 0, b < 1, sat-
isfying (5.1) and T + A is closed by [19, Theorem IV.1.1]. If (x,)pen C D(T) is an
arbitrary normalised weakly null-sequence, then

(I =D)Txnl| —a < [(T + Axpl = A+ b)[|Txull +a. neN. (510

Hence liminf,—o ||TXx|| = oo if and only if liminf,.o [|[(T + A)x,| = oo;
in particular, y.(T) = oo if and only if y.(T + A) = co. Now let y.(T) < o©
and (x,)pen C D(T) be an arbitrary normalised weakly null-sequence such that
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liminf, o ||Tx,| < oo. Then there is a subsequence (X, )xen Of (Xn)nen With
liminf, o0 [|TXp || = limgoo | TXp, ||. Since A is T-bounded, (|| Axz, [)xen C C is
a bounded sequence and hence we may assume, upon choosing another subsequence,
without loss of generality that (|[Ax,, ||)xen converges in C. Then, by (5.7), (5.8),
and Proposition 3.3 (ii),

liminf ||(T 4+ A)x,| = liminf || Tx,|| — lim sup || Ax, ||
n—oo n—00 n—>00
= tim [T, | = lim [ Axn |
k—o00 k—o00

> (1 =be) lim [[Txp, || — ac
k—o00
> (1 - be)ye(T) —ae > 0.

By Proposition 3.3 (ii) and (i), this yields y.(T + A) > 0 and hence 0 € pe2 (T + A) as
well as the estimate for y.(T + A) which, by Theorem 3.7, is equivalent to (5.9). =

Now we are ready to prove our perturbation result for the essential spectrum of
type 2 and the essential approximate point spectrum, accompanied by essential norm
estimates for the Moore—Penrose resolvents of the perturbed operators.

Theorem 5.11. Let T be a closed densely defined linear operator, let A be T -bounded
with T-bound < 1 anda, b > 0,b < 1, asin (5.1), and let ¥y := arctan% € [0, l).

2
() If Wes(T) C Hy = Sg, then

a
0e2(T + A) C —m‘i‘sgwb
a b
= > - -
{Ae(C‘Re/\_ " 1_b|1m|}

and

1
<
©= (1 —b)|ReA|— (a + b|ImA|)

(T +4—=20)7

ford ¢ — 15 + Sz,
(i) If Wes(T) C Sg with 6 € [0, %), then

a
(T +4) C By (O U <_ bcosh + (1 —b)sinb + SO-H”’)

=Bﬁ(O)U{AeC‘ReAZ

a

_b0059+(1—b)sin9
bsinf — (1 —b)cosb

- ImA
bcos@—l—(l—b)sin@| o |}

(5.11)
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and

1
T+A-)e< ——o
1T+ A=l =

for A ¢ (Blfﬁ O)u Sz 1g), as well as

1
T A_ATe VI
T+ A= 27 = o

fOi”)& € 5%4‘9 \ (_ bcos@—i—(‘i—b)sin@ + S‘g+19b)’ where

d(A;a,b,0):= (1 —>b)|cosfImA —sin6O Re A|
—(a+b|cosORe A + sin6 ImA|).

If D(T)ND(T*) is acore of T or the assumptions in (i) or (ii) hold with Wy5(T')
replaced by (the possibly larger set) W.(T), then the respective claims in (i) or (ii)
hold with o> (T + A) replaced by (the possibly larger set) Ocap(T + A).

T

Remark 5.12. The claims in (i) are identical with the claims in (ii) if we allow 6 = >

there, compare Remark 5.2.

Proof of Theorem 5.11. (i) Let A € C withRe A < 0 and let (x,),eny C D(T) be any
normalised weakly null-sequence. Then

(T = M)xnll> = (T —iImA)xu [|> + | Re A [lx, |12
—2ReARe((T —ilmA)xy, xp)
= |[(T —ilmA)x,||*> + |ReA|> —2Re ARe((Tx,, x,)). (5.12)

Suppose that sup, ¢y [|7X,|| < oo. Since A is T-bounded, (|| Ax,, [)xen C C is a
bounded sequence and hence we may assume, upon choosing another subsequence,
without loss of generality that there exists a subsequence (X, )xeN C (Xn)neN such
that (T'xp, )xen is weakly convergent, (||(7T —iIm A)x,, ||)xen converges in C and

lim ||Axp, || = limsup ||Ax,| < oo,
k—o00

nmee (5.13)
lim (T xp,, Xp,) =z € C;
k—o00

note that then, by (5.12), (|[(T — A)xn, | )ken converges as well. Since T is closed,

its graph is also weakly closed, see e.g. [32, Theorem 3.12], and so T'x;, 2 0as
k — 00 as (xp, )ken is a weakly null-sequence. Hence [14, Theorem 2.3] implies



Essential norm resolvent estimates and essential numerical range 1581

that z € W,5(T). By assumption, it then follows that Re z > 0 and thus, by (5.12)
and (5.13),

lim (T —iImA)xp, [|*> < lim [[(T —iImA)x,, ||* + |ReA|> —2Re A Rez
k—o0 k—o0

= klim (T — A)xn, |I* < limsup (T — )x, %
—>00

n—>oo

imply that

lim sup || Axp || lim || Axp, ||
n—>o00 k—o00

IA

a~+ blimsup || T xp, ||

k—o00

(a+ bl TmA]) +b lim [[(7—iIm A, |
—>00

IA

< (a +b|ImA]) + blimsup |[(T — A)x,]|.

Now suppose that sup,,cp || 7 x| = oo. Since, by the two-sided estimate (5.10), this

is equivalent to sup, < || Ax, || = 0o, we have
limsup | Tx,|| = co < limsup ||Ax,| = oo.
neN neN

Hence, in all cases, condition (5.7) of Proposition 5.9 holds for the operators 7 — A
and A with constants a. = a + b|Im A| and b, = b therein. Now all claims in (i)
follow from Proposition 5.9 and from [|[(T + A — A)T|lc = (ye(T + A — 1))7!, see
Theorem 3.7.

(ii) The proof of the case where W,5(T') is contained in a sector follows by apply-
ing the claims in the case where W,5(T) is contained in the closed right half-plane
in the very same way as the sectorial case (ii) in Theorem 5.1 was derived from the
accretive case (i) therein.

IfD(T) N D(T*)is acore of T, then Ws(T) = W.(T). Hence to prove the last
claims, in both cases we can assume that even W.(T) D W,5(T) instead of W,5(T)
satisfies the enclosures in (i) and (ii). So assume that W.(T") C Sy for some 6 € [0, %]
Then, since W.5(T) C W.(T) C Sg, we infer from (i) or (ii), respectively, that

_— a
Agi=C\ (Bl”Tb(O) - (_ bcosB + (1 —b)sinb

+ 50+19b)) C pe2(T + A).
(5.14)

Since the set Ag is connected and the index is locally constant, See e.g. [19, Theorem
1V.5.31], it suffices, in view of Theorem 2.4, to find a connected set A C pea(T + A)
with

ANAg#0, AN pp(T + A) # 0 (5.15)
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note that, since W,(T') C Sg does not imply that W(T) lies in some right half-plane,
compare Lemma 5.8, we cannot simply choose A = Ag and use Theorem 4.1.

Assume first that W, (T) = @. Then Theorem 4.1 implies that y.(T — 1) = oo
for all A € C and so pe(T + A) = C by Proposition 5.9. Since W (T) # C,
[5, Corollary 2.5] yields W(T) # C. Thus W(T) is contained in some closed half-
plane H. After some shift and rotation (which only change the constant a but leave
the relative bound b < 1 unchanged) we can assume without loss of generality that
H = H . Applying Theorem 5.1 (i), we obtain that p,, (T + A) # @ and hence (5.15)
holds for A := C.

Assume now that W.(T') # @. Then Lemma 5.8 applies and shows that there exist
¢o € (—%.%) and p € C with Re st < 0 such that

W(T) C pu + e%H,. (5.16)

Because e %0 4 is relatively bounded with respect to e~'%0(T — ) with constants
a + b|u| and b < 1, we can apply Theorem 5.1 to the accretive operator e 7190 (T — 1)
to conclude that

ci%0 (_Oo, _a+blyl

— )+MCpap(T—|—A) (5.17)

Suppose that ¢9 > 0 and let ¢ € [0, ¢po] be arbitrary; the case ¢¢ < 0 is analogous.
Then, due to
Wes(T) € We(T) C Sp C Hy

and W.(T) C W(T), by (5.16) we obtain that
Wes(T — ) C (Hy —p) Ne9°H, c Hy Nel®H, C eYH,. (5.18)

By (5.18), we can apply claim (i) to the operator e "'?(T — ) (e7'? A4 is relatively
bounded with respect to e 7 (T — 1) with constants a + b|u| and b < 1) which yields

a+blul

Ry = ei"’(—oo,— -

) + 1 C palT + 4).

Set A := U¢€[0,¢o] Ry C pea(T + A). Then A is clearly connected and satisfies
D#RyNAg CANAg, D # Ry, CANpyp(T + A),

by (5.14) and (5.17), as required in (5.15). ]

Remark 5.13. There exists an essential version of Lemma 5.3 which may be used to
study perturbations of operators for which more is known on the shape of the essential
numerical range than just lying in a half-plane or a sector; in this case either W(T')
is replaced by W.s(T') and, consequently, p,,(T') is replaced by pe2(T') or W(T) is
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replaced by W, (T') and, consequently, p,,(T') is replaced by peap(T). In either of those
cases, the norm of the Moore—Penrose resolvent is replaced by the essential norm of
the Moore—Penrose resolvent.

6. Numerical range lifting problem for unbounded operators

In this section we show that the numerical range lifting problem does not have a
solution for unbounded operators. This means that, unlike for bounded operators B
where there always exists a compact operator K € J(H) with W.(B) = W(B + K),
this is no longer true for unbounded operators.

In fact, we show that this property may fail even for normal m-sectorial operators.
A fortiori, we give an example of a normal m-sectorial operator 7' such that there
exists an open neighbourhood U of W,(T') such that W(T + K) ¢ U for all compact
operators K € K (H).

Example 6.1. Let /gy denote the identity operator and let S be a self-adjoint semi-
bounded operator in a Hilbert space H with

I/ITS) = [1’00)7 I/Ve(S) =0;

e.g. we can choose H = {,(N) and Se, =ney, n € N, with maximal domain D (S) =
{x € £,(N):Sx € £5(N)}. Then the operator T := Iy ® (S +ilg)in H>=H @& H,
i.e.

( 0 S +i1H)’ D(T) e D(S)C H,

is densely defined and closed. In the following we prove:
(1) T is normal,
(i) W(T) =1i[0,1] + [1,00) and T is m-sectorial with semi-angle T
(iii)  We(T) = [1, 00);
(iv) there exists ¢ > 0 with W(T 4+ K) ¢ U, := (1 — ¢, 00) + i(—¢, ¢) for all
K e K(H).

Proof. (i) It is easy to check that T is normal since S is self-adjoint and hence 7T* =
Ig & (S —ilg).
(i1) It is straightforward to check that W(S + il/g) =i+ [1, 00). Thus

W(T) = conv(W(I) UW(S +il)) = conv({1} U (i + [1,00))) = [1,00) + [0, 1].

Hence T is sectorial with semi-angle 7. Moreover, it is obvious that 0 € p(T') and
hence o (T) C W(T), which shows that T is m-sectorial.
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(iii) Suppose A = a + ib € W (T) with b # 0. Then a € [1,0), b € (0, 1] since
W.(T) C W(T) = [1,00) + i[0, 1] by (ii) and there exists a normalised weakly null-
sequence (Vy)neN = ((Xn, yn)t)neN C D(T) such that

(Tvp,vn) = |xall®> + il ynll® + (Syn. yn) = A =a +ib, n — oo. 6.1)

Hence |y,||> — b > 0 and so (m)neN C D(S) is a normalised weakly null-
sequence. Since S is self-adjoint and semi-bounded with W.(S) = 0, it follows that
(Syn, yn) — 00, a contradiction to (6.1). Hence W,(T) C [1, co). Since, obviously,
{1} = W.(Igr) € Wo(T) and [1, 00) € W(T) by (ii), [5, Proposition 2.4] or also

Lemma 5.4, respectively, yield that W (T') = [1, c0).
(iv) Suppose that (iv) is false. Then for all &£ > 0 there exists K, € K (H) with

W(T + K;) CU; = (1 —¢,00) + i(—s,¢).

Let ¢ > 0 and v = (Pyv, Pov)" € O(T) with |v|| = 1 be arbitrary, where P; and
P, denote the orthogonal projections in H? onto H & {0} and {0} & H, respectively.
Since K. is compact, the self-adjoint operators Re K, = %(Ks + K})andIm K, =
%(Ks — K) are compact as well. Then, for all ¢ > 0,

I Im(((T + Ks)v,v))| = [[[P2v]> + (Im K¢v, v)]
= |((P2 + Im K;)v,v)| < &. (6.2)

Since Im K, and P, (as an orthogonal projection) are self-adjoint, P, + Im K, is
self-adjoint as well. Hence, (6.2) and the fact that D (7') is dense in H imply that

| P> +ImK,| = sup [((P2 +Im Kg)v,v)| <e. (6.3)
veD(T), llvl=1

Inequality (6.3) shows that Im K, — P, uniformly as & \ 0. Since Im K are compact
for all & > 0, it follows that P, is compact as well, a contradiction because P, =
0 & Iy is a non-zero infinite-rank orthogonal projection. ]

Remark 6.2. It may not be obvious why the unboundedness of 7" in Example 6.1
is necessary. However, it is essential that W,(S) = @ which is impossible if S is
bounded. Indeed, it is easy to check that if we replace S in Example 6.1 with any
(bounded or unbounded) self-adjoint operator such that W(S) C [1, 00) and Ay €
We(S), then claim (iv) continues to hold, but it is no longer a contradiction to the
numerical range lifting problem because i + Ao € W.(T') and hence W.(T) ¢ U, for
e < 1.E.g if @ # Wa(S) = [Ao. A1] € W(S) C [1,00), then W,(T) is the triangle
with vertices 1, Ag +1and A1 + 1.



Essential norm resolvent estimates and essential numerical range 1585
7. Essential norm of Cy-semigroups and essential growth bounds

In this last section we derive estimates of the essential norm of Cy-semigroups
with generator —7" for which T is quasi-m-accretive and we obtain a criterion for
a Cp-semigroup to be quasi-compact.

Recall that if T is quasi-m-accretive, i.e. its numerical range lies in some left half-
plane and 7' is m-accretive, then —T generates a Cy-semigroup (t(¢))s>o. A simple
application of the Lumer—Philipps theorem, see [12, Theorem I1.3.15], shows that

le@)l <@, >0, (7.1)
where B(T) is given by
B(T) :=infRe W(T).

Furthermore, a Co-semigroup (t(¢));>o is called quasi-compact, see e.g. [12, Defini-
tion V.3.4], if

lim [[z(t)]le = 0. (7.2)
t—>00

In order to estimate the essential norm of (7(¢));>0, we introduce the essential
analogue of the quantity B(7) by setting, for an arbitrary linear operator 7,

Be(T) := inf liminf Re(T x,, x,), (7.3)

(xn)nen€E(T) n—>00

where & (T') is the set of all normalised weakly null-sequences, see Proposition 3.3.
Clearly,

B(T) < Be(T) < inf Re We(T) (7.4

and both inequalities may be strict. Especially for the second inequality in (7.4), we
give an example for strict inequality, see Example 7.4 below, and we establish criteria
for equality, see Proposition 7.3.

Theorem 7.1. Let T be a quasi-m-accretive linear operator in H and let (t(t)):>0
be the associated Cy-semigroup generated by —T'. Then

le@)]e < e D >0 (7.5)

in particular, if Be(T) > 0, then (t(t))>0 is quasi-compact.

Proof. Let typ > 0 be arbitrary. If ||t(fp)|lc = 0, then there is nothing to show. If
Iz (¢0)|le > O, then, because O(T) is dense and thus a core for the bounded oper-
ator t(tp), it is easy to see that, by (3.6) and a standard diagonal sequence argument,
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there exists a normalised weakly null-sequence (x,),eny C D(T) with || t(t0)xn| —
|z (to)|le as n — oo. Since —T is the generator of (7(¢));>0, the function y,(¢) :=
7(t)xy is the unique classical solution of the abstract Cauchy problem

{y;(t) = ~Tya(t), >0,
yn(o) = Xn,

(7.6)

see e.g. [12, Proposition 11.6.2], i.e. the function y, is differentiable on (0, co) and
satisfies (7.6). Next we show that liminf, o ||y, (¢)]| > 0, ¢ € [0, to]; otherwise, if
we had liminf, o ||y, (¢)|| = 0 for some ¢ € (0, #), then also

Iz (o) lle = liminf ||z (z0)x,|l = liminf [[z(to — )T (t)xn|
n—>oo n—>oo
= liminf||z(to — 1) yn ()|l = 0,
n—>00
a contradiction to ||7(¢9)||e > 0. Thus, upon choosing subsequences, the sequences

Vu(t)
[yn @)l

are normalised weakly null-sequences. Moreover, by (7.6) we have, for ¢ € [0, fo] and
neN,

(vn(ery := (2250) D). 1€ 0.0,

e MO

diz”y" (I = 2Re(y} (1), ya(t)) =

and, therefore,

@ oy = SOOI _ S OI7 _Re(Tyato). yn(t)
dr ! [ya @1 lya @] llyn ()17 l[yn ()17
Hence, noting that ||x, || = ||y»(0)|| = 1, we can write

to

Ie(to)xall = v (t)l| = exp(_ /
0

Re(Ty,(t), yn(t)) ) neN. (7.7

lyn (@12

Now we set f(¢) := liminf, oo f5(t) € [Be(T),00], t € [0, tp], where

Re(Tyn (1), yn(t))
|y ()11

Then, by (7.7) and Fatou’s lemma,

fn(t) =

€ [B(T).00), t€]0,1)].

Iz (o)lle = lim |z (zo)xx | = limsup [|z(z0)xn |
n—>00 n—00

—exp( — timint [ o0 ) = exp — [ £0a1) < exp—10BT),
0 0
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which proves (7.5) since ty > 0 was arbitrary. If 8.(T) > 0, then (7.5) immediately
yields that lim; o || 7(#)]le = O, i.e. (z(¢))s>0 is quasi-compact, see (7.2). ]

Theorem 7.1 gives some information on the so-called growth bound w(—T') and
essential growth bound we(—T') of the Cp-semigroup (7(¢));>o with generator —7T
which may be defined as

.1 o1
o(=T) := inf —log|lt(@)|., we(=T) := inf —log |7 (¢)lle,
>0 1 t>0f

see [12, Definition 1.5.6, Proposition IV.2.2, and Definition IV.2.9]; in fact, w(—T) is
the infimum of all @ € R so that there exists My, > 1 with ||7(2)|| < Mwe'®, t > 0.
It is well known that w(—T) is related to the so-called spectral bound s(—T) of =T
defined as

s(=T):= sup Red=-—

inf Re(A),
rea(=T) Ae€a(T)

see [12, Definition IV.2.1], via the formula
o(=T) = max {s(~T), we(~T)},

see [12, Corollary IV.2.11] or [27, Section 2.3]. The next corollary yields a new suffi-
cient condition for the so-called spectral growth bound condition w(—T) = s(=T).

Corollary 7.2. Let T be quasi-m-accretive. Then
we(=T) = =e(T). o(=T) < max{s(=T),—fe(T)}:

in particular, if B.(T) = oo, the spectral growth bound condition w(—T) = s(—T)
holds.

Finally, we give a criterion for equality in 8¢(7T") < inf Re W,(T), see (7.4).

Proposition 7.3. Let T be an arbitrary linear operator with We(T') # 0. Assume that
W(T) or, equivalently, We(T') does not contain any vertical ray. Then

Be(T) = infRe W, (T); (7.8)
in particular, (7.8) holds if T is quasi-sectorial.

Proof. Since Wo(T') # @, Lemma 5.4 implies that W(T') contains a vertical ray if and
only if W.(T') does. If infRe W, (T') = —oo, then the claim follows from the inequality
Be(T) <inf Re W.(T). If T is bounded, the claim follows trivially. So suppose that
T is unbounded. If inf Re W, (T') > —oo, then

Wo(T) C{z e C|Rez > infRe W,(T)} # C, (7.9)
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and hence W,(T') # C. By [5, Corollary 2.5] it follows that W(T') # C. If W(T)
is a half-plane, then so is W.(T') by [5, Corollary 2.5]. Then, due to (7.9) and since
W(T) D W.(T), we obtain

W(T) ={z € C |Rez > B(T)},

a contradiction to the assumption that W(T) does not contain any vertical ray. If
W(T) is a strip or a line, then so is W(T) by [5, Corollary 2.5]. Thus (7.9) and
W(T) D W(T) yield that

W(T) =1{z € C | B(T) <Rez < supRe W(T)},

again a contradiction to the assumption that I/TT) does not contain any vertical ray.
Altogether, I/ITT) is neither C, nor a half-plane, nor a strip or a line. Because I/TT)
is convex, and hence the intersection of all its supporting half-planes, it must be con-
tained in a sector. Moreover, since I/TT) does not contain any vertical rays, this sector
can be chosen to be of the form

W(T) C{z eC||arg(z—B)| <0} or W(T)C{zeC ||ag(—z+ )| <6}

forsome f e Rand 6 € [O, %) In the second case, (7.9) yields that W,(T') is bounded.
However, since W.(T') # @ by assumption and 7 is unbounded, Corollary 5.6 yields
that W.(T) must be unbounded, a contradiction. Hence we have W(T) C {z € C |
|arg(z — )| < 6.

By definition of B8.(T") in (7.3) and a standard diagonal sequence argument, there
is a normalised weakly null-sequence (x,)nen C D(T) such that Re ((Txp, X5)) \y
Be(T), n — o0o. Since W(T) C {z € C | |arg(z — B)| < 0}, it follows that the sequence
(IIm(T xp, Xn)|)nen is bounded. Hence, by passing to a subsequence (X, Jken, We
have limg o0 (T Xp, , Xnx) € We(T') and hence B.(T) = infRe W (T). [

The next example shows that Theorem 7.1 is sharp. In fact, if W(T') or, equival-
ently, W.(T) contains vertical rays, then the strict inequality 8.(7T) < infRe W.(T)
may hold and the semigroup decay (7.5) need not hold with B.(T) replaced by the
quantity inf Re W, (T).

Example 7.4. Let /g denote the identity operator and let S be a self-adjoint semi-
bounded operator in a Hilbert space H with

W(S) =[1,00), Wc(S)=20.
e.g., we can choose H = £5(N) and Se, = ne,,n € N,

D(S) = {x € Lr(N) | Sx € £>(N)}.
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Then the operator T := Iy @ i(S —Ig)in H> = H ® H, i.e.

_ (Ig 0 L 2
T_(O i(S_IH)), D(T):= He D(S) C H,

is densely defined and closed. In the following, we prove:
(i) T is normal,
(i) W(T) =10, 1] +i[0, o0] and T is m-accretive;
(iii)) W.(T) = 1 4]0, o0) and hence infRe W, (T) = 1;
(iv)  B(T) = Be(T) = 0;

(v)  the Co-semigroup (7(¢));>0 generated by —7 is not quasi-compact, more
precisely, [[7(0)]le = [[t(®)] = 1 = e 7)1 > 0, i.e. the decay in (7.5)
is sharp.

Proof. (1) and (ii) follow similarly to claims (i) and (ii) in Example 6.1, respectively.

(iii) Clearly, 1 € W.(Ig) C W.(T). Hence, by claim (ii) and Lemma 5.4, it follows
that 1 4 i[0, co) C W.(T). To prove the reverse inclusion, assume that A = a + ib €
W.(T)(C W(T)). Then a € [0, 1] by (ii) and there exists a normalised weakly null-
sequence (Vy)neN = ((Xn, yn)t)neN C D(T) with

(Tvp, V) = |l +1(Syp, yn) —illynl> = A =a +ib, n—oco. (7.10)

If liminf, o || yx| > O, then (”;—Z”)n ey C D(S) is a normalised weakly null-se-
quence. Since W.(S) = @ and S is semi-bounded, we obtain that (Sy,, y,) — oo
as n — o0, a contradiction to (7.10) because ||y,|| < 1, n € N. Hence, by passing
to a subsequence, we can assume without loss of generality that y, — 0 as n — oo.
Since (vy)nen is normalised, this implies that || x,|| — 1 as n — oo. Inserting this
into (7.10) yields a = 1, which proves the claim.

(iv) By claim (ii), we obtain 0 = B(T') < Be(T). Let (yn)nen C D(S) be a norm-
alised weakly null-sequence and define v, := (0, y,)’, n € N. Then (vy)neny C D(T)

is a normalised weakly null-sequence as well and Re(T vy, v,) = 0, n € N. Now, by
the definition of B.(7T') in (7.3) and since B.(T) > 0, it follows that S.(T") = 0.

(v) It is easy to see that the Cy-semigroup generated by —7 is given by

X\ _ (€7 Xn)neN _ _
T(t)(y) = (((U(I)Yn)neN)) X = (Xn)neN,Y = (Vn)neN € Z2(N)v t >0,

where U(-) is the Cp-semigroup in the Hilbert space H generated by —i(S — Ig).
Since S — Iy is self-adjoint, U(-) extends to a Cy-group of unitary operators by
Stone’s theorem, see e.g. [12, Theorem 3.24]. If (e, )nen C H is any orthonormal sys-
tem, then the sequence (V,)neN := (U(—t)e,)neN, is an orthonormal system as well
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because U(—t) is unitary, thus, in particular, it is a normalised weakly null-sequence.
Applying (3.6), we readily see that

0 0
f(t)(yn) (U(t)U(—t)e,,)H =1, t>0. (7.11)

Since B(T) = 0, we have ||z(¢)|| < e *#T) =1 by (7.1) and hence, together with
1D, |t = llt@)]le = 1 fort > 0. [

Iz(@)]le = lim sup
n—oo n—>oo

‘ = lim sup
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