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Essential norm resolvent estimates
and essential numerical range

Nicolas Hefti and Christiane Tretter

Abstract. The main result of this paper are novel two-sided estimates of the essential resolvent
norm for closed linear operators T . We prove that the growth of k.T � �/�1ke is governed by
the distance of a point � 2 �.T / nWe.T / to the essential numerical range We.T /. We extend
these bounds even to points � 2 C n We.T / outside the resolvent set �.T / with .T � �/�1

replaced by the Moore–Penrose resolvent .T � �/�. We use similar ideas to prove essen-
tial growth bounds in terms of the real part of the essential numerical range of generators of
C0-semigroups. Further, we study the essential approximate point spectrum �eap.T / and the
essential minimum modulus 
e.T /, in particular, their relations to the various essential spectra
and the essential norm of the Moore–Penrose inverse, respectively. An important consequence
of our results are new perturbation results for the spectra and essential spectra (of type 2) for
accretive and sectorial T . Applications e.g. to Schrödinger operators with purely imaginary
rapidly oscillating potentials in Rd illustrate our results.

1. Introduction

Resolvent estimates are crucial tools not only in the theory of linear operators and
semigroups, but also for perturbation theory and numerical approximations e.g. of
eigenvalues or other types of spectra, see e.g. [2, 4, 16]. This is even more true for
unbounded non-self-adjoint or, more generally, non-normal operators, for which small
perturbations may cause large deviations of eigenvalues or spectra. The reason for
this is that in the normal case the resolvent norm k.T � �/�1k D .dist.�; �.T ///�1

is controlled by the distance to the spectrum �.T /, whereas in the non-normal case it
is merely controlled by the distance to the numerical range W.T /´ ¹.T x; x/ 2 C j

x 2 D.T /; kxk D 1º, more precisely, in the resolvent set �.T /´ C n �.T /

1

dist.�; �.T //
� k.T � �/�1k �

1

dist.�;W.T //
; � 2 �.T / nW.T /: (1.1)
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This classical resolvent estimate applies only outside of the closure of the numerical
range, which may be much larger than the convex hull of the spectrum. Moreover, it
does not distinguish between the very different parts of the spectrum such as isolated
eigenvalues of finite algebraic multiplicity and essential spectrum.

The first aim, and the motivation, of this work is to establish an estimate of the
so-called essential norm k.T � �/�1ke of the resolvent which focuses on the non-
discrete parts of the spectrum such as essential spectra of various types. Our main
result shows that in this case, the role of the numerical range is taken over by the
so-called essential numerical range, more precisely,

1

dist.�; �e2.T //
� k.T � �/�1ke �

1

dist.�;We.T //
; � 2 �.T / nWe.T /I (1.2)

we also prove that this two-sided estimate extends to all points � 2 C nWe.T / if we
replace the resolvent .T � �/�1 by the so-called Moore–Penrose resolvent .T � �/�.

In (1.2) the essential numerical range of an unbounded linear operator T is the set

We.T /´ ¹� 2 C j 9 .xn/n2N � D.T /; kxnk D 1;

xn
w
�! 0; ..T � �/xn; xn/! 0º; (1.3)

introduced and studied only recently in [5]; there it was also proved that We.T / is
the smallest set capturing spectral pollution for any projection method. Further, the
essential spectrum �e2.T / of type 2 is defined correspondingly, replacing the last
condition in (1.3) by k.T � �/xnk ! 0, see (2.1), and the essential norm k � ke of
a bounded linear operator B introduced by Calkin in [7] as the distance of B to the
closed ideal of compact operators K.H/, i.e.

kBke ´ dist.B;K.H// D inf
K compact

kB �Kk;

also plays a role in PDEs e.g. when studying double-layer potential operators, see [8].
As in the case of the essential numerical range itself, there are good reasons why it

took so long to move forward from the essential resolvent norm estimates for bounded
operators first derived by Stampfli and Williams in 1968 in the context of Banach
algebras, see [36, Lemma 1 and Theorem 9]. While in the bounded case the essential
numerical range can be lifted to a numerical range in the Calkin algebra, we show that
this is no longer possible in the unbounded case and so we had to develop completely
new techniques to derive (1.2).

The impact of our new essential resolvent estimates may be seen both from the
results we obtain in establishing it and from the results we derive from it. The former
include, firstly, a detailed study of the essential approximate point spectrum

�eap.T /´
\

K compact

�ap.T CK/;
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first introduced by Rakocevic in [30] for bounded operators, see also [25]. Here the
approximate point spectrum is defined as in (2.3) below. Secondly, we generalise and
investigate the essential minimum modulus


e.T /´ inf �e2.jT j/ 2 Œ0;1� (1.4)

first introduced by Bouldin, see [6], to unbounded closed linear operators, in particu-
lar, we prove that, if T has closed range and T � is its Moore–Penrose inverse,


e.T / D kT
�
k
�1
e : (1.5)

Thirdly, we show that, unlike the bounded case, the so-called essential numerical
range lifting problem does not have a solution for unbounded T . This means that, in
the alternative characterisation

We.T / D
\

K compact

W.T CK/

of the essential numerical range, there need not exist a compact K0 2 K.H/ with
We.T / D W.T CK0/. Finally, our essential resolvent norm bounds inspired us to
prove an estimate for the essential growth rate of a C0-semigroup .�.t//t�0 with
generator �T which, if T is quasi-m-sectorial, takes the form

k�.t/ke � e�t inf ReWe.T /; t � 0I (1.6)

in the accretive case, an analogous result is derived.
The results we derive from the essential norm resolvent (1.2) split into two groups.

The first group are perturbation results for the essential approximate point spectrum
�eap.T C A/ and the essential spectrum �e2.T C A/ for accretive and sectorial T
when the perturbation A is T -bounded with T -bound < 1, e.g. we prove that

�e2.T C A/ �
°
� 2 C

ˇ̌̌
Re� � �

a

1 � b
�

b

1 � b
j Im�j

±
D �

a

1 � b
C S�

2Carctan b
1�b

(1.7)

if kAxk � akxk C bkT xk, x 2 D.T /, with b < 1 and an essential norm bound for
the Moore–Penrose resolvent of T C A,

k.T CA��/�ke �
1

.1 � b/jRe�j � .aC bj Im�j/
; �… �

a

1 � b
CS�

2Carctan b
1�b

:

Here S�
2Carctan b

1�b
´

®
z 2 C

ˇ̌
j arg zj � �

2
C arctan b

1�b

¯
denotes the sector with

semi-angle �
2
C arctan b

1�b
and vertex 0.
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�e2.T / �eap.T / �ap.T /

�e4.T /

We5.T / We1.T / � We.T / W.T /

�.T /

�

�

�

�

�

� � �

� �

Figure 1. Connections of the essential approximate point spectrum with essential numerical
ranges and essential spectra.

The second group of results we obtain employing the essential norm resolvent
(1.2) are applications to concrete differential operators, including an advection-dif-
fusion type operator, see e.g. [5], and Schrödinger operators with purely imaginary
rapidly oscillating potentials in Rd , see [29, 33, 38]. While for the latter the classical
resolvent estimate (1.1) is not applicable/useful due to the lack of good enclosures of
the numerical range, our new essential norm resolvent bound holds for all � 2 �.T /.

The paper is organised as follows. In Section 2, we study the essential approxim-
ate point spectrum of closed linear operators T and its relation to the various other,
in general different types of essential spectra �ei .T / and essential numerical ranges
Wei .T /, i D 1; : : : ; 5, see Figure 1 for a schematic overview and Section 2 for all
definitions. In particular, we show that

�e2.T / � �eap.T / � �e4.T /; �eap.T / � We.T /;

and that �eap.T / consists of �e2.T / plus possibly some ‘holes’ of �e2.T /, which are
the (bounded and unbounded) components of C n �e2.T /, see Proposition 2.6. Fur-
ther, in the chain of inclusions We5.T / � We1.T / � Wei .T / D We.T /, i D 1; : : : ; 4,
see [5, 14, 15] we prove �eap.T / � We1.T /, but, in general, �eap.T / 6� We5.T /,
see Theorem 2.13 and Example 2.14. Note that e.g. for singular non-symmetric
perturbations of self-adjoint operatorsWe1.T /DR, butWe.T /DC may occur, see [5,
Example 3.5].

In Section 3 we introduce the essential minimum modulus 
e.T / by means of the
formula (1.4). We relate it to the essential spectrum of type 2 by showing that

�e2.T / D ¹� 2 C j 
e.T � �/ D 0º

and we prove two alternative characterisations of the essential minimum modulus, the
first one in terms of compact operators under the assumption that 0 … �eap.T /,


e.T / D sup
Kcompact


.T CK/;
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and the second one by means of weakly null-sequences, see Proposition 3.3. The latter
is our main tool to establish the identity (1.5) for the essential norm of the Moore–
Penrose inverse.

In Section 4 we employ the results of Section 3 to establish the essential resolvent
norm estimate (1.2), see Theorem 4.1 and Corollary 4.4. We illustrate this novel bound
by applying it to Schrödinger operators ��C iq in L2.Rd / with rapidly oscillating
purely imaginary potential iq such as iq.x/D i.1C jxj2/�1ejxj sin.ejxj/, x 2 Rd , see
Example 4.8. For the corresponding m-sectorial operator T with �e2.T / D Œ0;1/,
see [29], we prove that

We.T / D Œ0;1/; k.T � �/
�1
ke D

8̂<̂
:

1

j Im�j
; Re� � 0;

1

j�j
; Re� < 0;

� 2 �.T /:

We also show that, unlike the bounded case, the essential numerical range of an un-
bounded closed linear operator is not the minimal closed convex set W � C so that
the essential resolvent norm has at most linear growth k.T � �/�ke � .dist.�;W //�1,
� … W , see Example 4.10.

In Section 5 we prove a series of perturbation results for m-accretive and m-sec-
torial operators T with T -bounded perturbations A having T -bound < 1. The first
group of results is for the perturbed approximate point spectrum �ap.T C A/ and for
the norm k.T C A/�k of the perturbed Moore–Penrose inverse, see Theorem 5.1, the
second group of results is for the perturbed essential spectrum �e2.T C A/ of type 2
and for the essential norm k.T C A/�ke of the perturbed Moore–Penrose inverse, see
Theorem 5.11. All our enclosures for the perturbed spectra �ap.T C A/, �e2.T C A/

and the bounds for k.T CA/�k, k.T CA/�ke are explicit in the T -boundedness con-
stants a, b in kAxk � akxk C bkT xk, x 2 D.T /, with b < 1 and in the sectoriality
angle # 2

�
0; �

2

�
, with # D �

2
for accretive T , see (1.7) and (5.11). This dependence

on the sectoriality angle # is illustrated in Figure 2 below.
In Section 6 we disprove that the essential numerical range lifting problem has a

solution for unbounded closed linear operators. This is in sharp contrast to the bound-
ed case where the essential numerical range and the essential norm can even be lifted
simultaneously, i.e. there exists a compact K0 2 K.H/ with We.T / D W.T CK0/

and kT ke D kT C K0k. This failure in the unbounded case is also the reason why
it is not possible to reduce proofs for the essential numerical range and essential
resolvent norms to results on the numerical range and the usual operator norm. Our
counter-example shows, in fact, much more, since we even construct a normalm-sec-
torial operator T for which there exists an open neighbourhood U ofWe.T / such that
W.T CK/ 6� U for all compact K 2K.H/.
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In the last Section 7 we prove bounds for the essential growth of C0-semigroups
.�.t//t�0 with quasi-m-accretive generator �T . While in the m-sectorial case, the
growth bound may be estimated by the infimum ˇe.T / D inf ReWe.T / of the real
part of the essential numerical range, see (1.6), the upper bound for the growth bound
in the m-accretive case is given by

ˇe.T /´ inf
.xn/n2N2E.T /

lim inf
n!1

Re.T xn; xn/ .� inf ReWe.T //;

see Theorem 7.1, and the inequality may be strict as one of our examples shows;
here E.T / is the set of all normalised weakly null-sequences in D.T /. Our result also
proves the novel criterion ˇe.T / > 0 for the semigroup .�.t//t�0 to be quasi-compact,
or asymptotically compact according to [1, 12].

Throughout this paper, we use the following notation. By H we denote a (com-
plex) infinite-dimensional separable Hilbert space with inner product .�; �/ and induced
norm k � k. A sequence .xn/n2N � H is called normalised if kxnk D 1, n 2 N, and
a weakly null-sequence if xn

w
�! 0, i.e. .xn; x/ ! 0 for all x 2 H . If M � H is

a (not necessarily closed) subspace, we denote by M? its orthogonal complement
and, if in addition M is closed, we denote by PM 2 L.H/ the orthogonal projec-
tion in H onto M . For a closed linear operator T in H with domain D.T / � H ,
we denote the spectrum, point spectrum, resolvent set, kernel and range of T by
�.T /; �p.T /; �.T /; ker.T / and R.T /, respectively. Further, T is called accretive if

W.T / � ¹z 2 C j Re z � 0º µ HC

and sectorial if there exists � 2
�
0; �

2

�
such that W.T / is contained in the (closed)

sector S� with vertex 0 and semi-angle � , that is

W.T / � ¹z 2 C j j arg.z/j � �º µ S� � HC:

If T is accretive or sectorial and � 2 �.T / for some (and hence for all) � 2 C

with Re � < 0, we call T m-accretive or m-sectorial, respectively. Further, T is
called quasi-m-accretive/quasi-m-sectorial if T C ˇ is m-accretive/m-sectorial for
some ˇ 2 R. We refer to [19, Section V.3.10] and [9] for more information on these
and related concepts.

Finally, we use the common conventions sup; ´ �1, inf; ´1 and 1
1
´ 0,

so that dist.�;;/ D1 for every � 2 C.

2. Essential approximate point spectrum and essential numerical
range

For (bounded or unbounded) linear non-self-adjoint operators, there are various
notions of essential spectra which are, in contrast to the self-adjoint case, no longer
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equivalent in general, see e.g. [11, Sections I.4 and IX.1]. Here we only need the
essential spectra of type 2, see (2.1), and of type 4 given by

�e2.T /´ ¹� 2 C j 9 .xn/n2N � D.T /; kxnk D 1; xn
w
�! 0;

.T � �/xn ! 0º; (2.1)

�e4.T /´
\

K2K.H/

�.T CK/: (2.2)

In this section we study the essential approximate point spectrum of closed linear
operators T acting in a Hilbert space; this maybe not-so-well-known type of essential
spectrum was first introduced by Rakocevic in [30] in the bounded case. The essential
approximate point spectrum may be viewed as the essential version of the approxim-
ate point spectrum of T , which is defined as

�ap.T /´¹� 2C j .xn/n2N �D.T /; kxnk D 1; k.T � �/xnk! 0º � �.T /: (2.3)

Definition 2.1. Let T be a closed linear operator. We define the essential approximate
point spectrum �eap.T / of T as

�eap.T /´
\

K2K.H/

�ap.T CK/:

Note that the notion of essential approximate point spectrum is used differently
by different authors; e.g. in [26] it denotes the set �ap.T /.

The following properties of �eap.T / are immediate from its definition and the
closedness of the approximate point spectrum.

Remark 2.2. Let T be a closed linear operator. Then �eap.T / D �eap.T C K/ for
every compact operator K, �eap.T / is closed and

�eap.T / � �e4.T /:

In order to relate the essential approximate point spectrum to �e2.T / in (2.1) and
�ap.T /, we establish an equivalent characterisation of �eap.T / in terms of Fredholm
properties. Recall that a closed linear operator T is called upper semi-Fredholm if
R.T / is closed and dim ker.T / <1 and lower semi-Fredholm if R.T / is closed and
dim R.T /? < 1, while T is called Fredholm/semi-Fredholm if T is upper and/or
lower semi-Fredholm. If T is a semi-Fredholm operator, we define the index of T as

i.T /´ dim ker.T / � dim R.T /? 2 Œ�1;1�;
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see e.g. [11, Section I.3]. Then, since T is assumed to be closed, the essential resolvent
sets of type 2 and 4, respectively, satisfy

�e2.T /´ C n �e2.T / D ¹� 2 C j T � � is upper semi-Fredholmº;

�e4.T /´ C n �e4.T / D ¹� 2 C j T � � is Fredholm, i.T � �/ D 0º;

see e.g. [11, Theorems IX.1.3 (i) and IX.1.4]. Further, it is not difficult to see that the
set of regular points of T can be described as

�ap.T /´ C n �ap.T / D ¹� 2 C j R.T � �/ is closed, T � � is injectiveº

and hence �ap.T / � �e2.T / or, equivalently, �e2.T / � �ap.T /.
Note that the assumption that T is densely defined is not needed in the proofs of

the above equalities for �e2.T / and �e4.T / due to [11, Remark I.3.27] and by working
with R.T � �/? instead of ker.T � � N�/, compare the proof of Lemma 2.3 below.

To characterise �eap.T / in terms of Fredholm properties, we generalise a result
due to Yood in [39], see also [25, Theorem 8.7.1], to unbounded operators.

Lemma 2.3. Let T be a closed linear operator with � 2 �e2.T /. Then � 2 �e2.T /

with i.T � �/ � 0 if and only if there exists K 2K.H/ with

(i) dim R.K/ D dim ker.T � �/ <1;

(ii) � 2 �ap.T CK/.

Proof. The proof in [25, Theorem 8.7.1] for bounded operators in Banach spaces
may be carried over to the case of closed linear operators in a Hilbert space. For the
convenience of the reader, we briefly sketch it here, also because we do not assume
that T is densely defined.

For the implication “H)”, note that � 2 �e2.T / with i.T � �/ � 0 implies that
dim ker.T � �/ <1. Let x1; : : : ; xn 2 ker.T � �/ be an orthonormal basis. Since
i.T � �/ � 0, we have dim R.T � �/? � dim ker.T � �/D n and hence there exists
an orthonormal system in y1; : : : ; yn 2 R.T � �/?. Then the operator

K ´

nX
iD1

.�; xi /yi

satisfies K 2 K.H/ with dim R.K/ D n D dim ker.T � �/ and R.T C K � �/

is closed due to the stability of �e2.T / under compact perturbations, see [11, The-
orem I.3.21 and Remark I.3.27]. To show that T C K � � is injective, let v0 2
ker.T CK � �/. Then, because yj ? R.T � �/, we obtain

0 D ..T CK � �/v0; yj /

D ..T � �/v0; yj /C

nX
iD1

.v0; xi /.yi ; yj / D .v0; xj /; j D 1; : : : ; n;
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which shows that v0 2 ker.T � �/? andKv0D 0. The latter implies that .T � �/v0D
.T CK � �/v0 D 0 and hence v0 2 ker.T � �/ \ ker.T � �/? D ¹0º.

For the implication “(H”, we note that ifK 2K.H/ is such that (i) and (ii) hold,
then � 2 �ap.T C K/ � �e2.T C K/ D �e2.T / and the index satisfies i.T � �/ D
i.T C K � �/ D � dim R.T C K � �/? � 0 by [11, Theorem I.3.21 and Remark
I.3.27].

Theorem 2.4. Let T be a closed linear operator. Then

�eap.T / D ¹� 2 C j � 2 �e2.T /; i.T � �/ � 0º:

Proof. First, let � 2 �eap.T /. Then, by Definition 2.1, there exists a K 2K.H/ such
that � 2 �ap.T CK/� �e2.T CK/ and i.T CK � �/D�dimR.T CK � �/? � 0.
Then the stability result for upper Fredholm operators and for the index, see [11,
Theorem 1.3.21 and Remark I.3.27] implies that � 2 �e2.T / and

i.T � �/ D i.T CK � �/ � 0:

Vice versa, assume that � 2 �e2.T / with i.T � �/ � 0. Then Lemma 2.3 imme-
diately yields that there exists a K 2 K.H/ such that � 2 �ap.T CK/ and therefore
� 2 �eap.T / by Definition 2.1.

Corollary 2.5. Let T be a closed linear operator. Then

�e2.T / � �eap.T / � �ap.T / � W.T /:

Proof. The first inclusion is immediate from Theorem 2.4; the last two inclusions are
obvious from the respective definitions, see Definition 2.1 and (2.3).

Proposition 2.6. Let T be a closed linear operator. Then

(i) �e2.T / � �eap.T / � �e4.T /;

(ii) @�e4.T / � @�eap.T / � @�e2.T /.

More precisely, �eap.T / consists of �e2.T / and possibly some components of �e2.T /,
while �e4.T / consists of �eap.T / and possibly some components of �eap.T /.

Proof. (i) The claim was proved in Corollary 2.5 and Remark 2.2.

(ii) It is easy to see that, due to claim (i), it suffices to show that @�eap.T /� �e2.T /

and @�e4.T /� �eap.T /. Let � 2 @�eap.T /. Then � 2 �eap.T / since the latter is closed.
If � … �e2.T /, then i.T � �/ > 0 by Theorem 2.4. Since �e2.T / is open and the index
is stable, see e.g. [19, Theorem IV.5.5.31], there exists " > 0 such that all � 2 C

with j�� �j < " satisfy � 2 �e2.T / and i.T � �/ D i.T � �/ > 0, a contradiction to
� 2 @�eap.T /. The inclusion @�e4.T / � �eap.T / is proved analogously.
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To prove the last claims, note that if � 2 �eap.T / n �e2.T /, then T � � is upper
semi-Fredholm with i.T � �/ > 0, see the proof of claim (ii). Denote by � the
component of �e2.T / with � 2 �. Since the index is stable, see e.g. [19, Theorem
IV.5.5.31], it is locally constant and hence i.T � �/ D i.T � �/ > 0 for all � 2 �
and thus � � �eap.T /. The claim for �e4.T / is shown analogously.

Remark 2.7. For bounded T , the bounded components of �e2.T / and �eap.T / are the
holes of �e2.T / and �eap.T /, respectively, see [25, Theorem 8.14.2]; for a compre-
hensive study of holes of various essential spectra of bounded operators see also [21].
For unbounded T also the unbounded components of �e2.T / and �eap.T / have to be
taken into account which may be interpreted as ‘holes at infinity’.

A simple example how large the difference between �eap.T / and �e4.T / is
provided by maximal symmetric operators with non-equal defect numbers where an
entire half-plane has to be added. The same may happen for the difference between
�e2.T / and �eap.T /, see Example 2.14 below.

Example 2.8. Let T be a closed symmetric operator with defect index .0; k/ with
k 2 N, i.e. R.T � i/ D H , R.T C i/ D R.T C i/ ¤ H . Then

�e2.T / D �eap.T / D �ap.T / D R; �e4.T / D �.T / D ¹z 2 C j Im z � 0º:

Proof. Since T is symmetric, W.T / � R, R.T � �/ is closed and ker.T � �/ D ¹0º
for � 2 C nR; because the defect index of T is .0; k/ with k ¤ 0, we have

i.T � i/D�dim R.T � i/? D 0; i.T C i/D�dim R.T C i/? D�k < 0; (2.4)

and �.T / D ¹z 2 C j Im z � 0º. Then, by Corollary 2.5,

�e2.T / � �eap.T / � �ap.T / � R:

If �e2.T /¤R, then �e2.T / is connected and hence i.T � i/D i.T C i/ since the index
is locally constant, see e.g. [19, Theorem IV.5.31], a contradiction to (2.4). The local
stability of the index and (2.4) also show that ¹z 2 C j Im z > 0º � �e4.T /. On the
other hand, T � � is Fredholm with i.T � �/D � k < 0 for � 2 C, Im� < 0, and so
¹z 2C j Imz < 0º � �e4.T /; thus �e4.T /D¹z 2C j Imz � 0º since �e4.T / is closed.

The following proposition shows that, like the essential spectra of type 1; 2; 3; 4,
also the essential approximate point spectrum is not only invariant under compact
perturbations by Definition 2.1, but also under relatively compact perturbations.

Recall that a linear operator A is called T -compact (or relatively compact with
respect to T ) if D.T / � D.A/ and AjD.T / is compact as an operator from D.T /
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equipped with the graph norm k � kT of T into H , i.e., whenever for every bounded
sequence .xn/n2N � D.T / with .T xn/n2N bounded, .Axn/n2N has a convergent
subsequence, see e.g. [19, Section IV.1.3].

Proposition 2.9. Let T be a closed densely defined operator. Then

�eap.T / D
\

K T -compact

�ap.T CK/I

in fact, �eap.T / D �eap.T CK/ for every T -compact K.

Proof. The inclusion “�” is immediate from Definition 2.1 since compact operators
are T -compact. If K is an arbitrary T -compact operator, then Theorem 2.4 together
with the stability theorem for �e2.T / and the index, see e.g. [19, Theorem IV.5.5.26],
imply that �eap.T / D �eap.T C K/. Now, the inclusion “�” follows from this and
Corollary 2.5 which yield

�eap.T / D �eap.T CK/ � �ap.T CK/:

Theorem 2.4 also helps to prove that the essential approximate point spectrum
satisfies a spectral mapping theorem like all other essential spectra, see [11, The-
orem IX.2.3], and that it is stable when the resolvent difference of two operators is
compact like the essential spectra of type 1; 2; 3; 4.

Theorem 2.10. Let T be a closed linear operator and � 2 �.T /. Then, for every
� 2 C n ¹�º,

� 2 �eap.T / () .� � �/�1 2 �eap..T � �/
�1/:

Proof. If � 2 �eap.T /, then either � 2 �e2.T / or � 2 �e2.T / but i.T � �/ > 0 by
Theorem 2.4. In the former case, the spectral mapping theorem for �e2.T /, see e.g.
[11, Theorem IX.2.3 (iii)], yields that

.� � �/�1 2 �e2..T � �/
�1/ � �eap..T � �/

�1/:

In the case � 2 �e2.T / but i.T � �/ > 0, then [11, Theorem IX.2.3 (iii)] yields that
.� � �/�1 2 �e2..T � �/

�1/. If i.T � �/ D 1, i.e. � is an eigenvalue of T with
infinite geometric multiplicity, then, by [11, Theorem IX.2.3 (ii)], .� � �/�1 is an
eigenvalue of .T � �/�1 with infinite geometric multiplicity, i.e.

i..T � �/�1 � .� � �/�1/ D1:

Hence, Theorem 2.4 shows that .� � �/�1 2 �eap..T � �/
�1/. If, on the other hand,

0 < i.T � �/ <1, then T � � is Fredholm and, proceeding as in the proof of [11,
Theorem IX.2.3 (iii)], we arrive at

i..T � �/�1 � .� � �/�1/ D i.T � �/ > 0:
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Thus .���/�1 2 �eap..T ��/
�1/ by Theorem 2.4, as required for “H)”. The reverse

implication “(H” follows analogously.

The next corollary is an immediate consequence of Theorem 2.10 and the invari-
ance of �eap.T / under compact perturbations, see Remark 2.2.

Corollary 2.11. Let T and A be closed linear operators. Suppose that there exists
� 2 �.T /\ �.A/ so that .T � �/�1 � .A� �/�1 is compact. Then �eap.T /D �eap.A/.

Remark 2.12. So far, all results in this section also generalise to separable Banach
spaces with essentially the same proofs, except for the proof of Lemma 2.3. There,
for a closed (not necessarily densely defined) linear operator T in a separable Banach
space, one follows the lines of the proof in the bounded case [25, Theorem 8.7.1],
merely replacing every instance of ker.T �/ by the annihilator of R.T /.

Next, we study the relation of the essential approximate point spectrum to the
essential numerical range We.T /, see (1.3), and its variants Wei .T / � We.T /, i D
1; 2; 3; 4; 5. While all these closed and convex sets coincide for bounded T , see [13],
this is no longer true in the unbounded case, see [5] for a comprehensive treatment of
Wei .T / for i D 1; 2; 3; 4 and [14] for i D 5. However, for a closed linear operator T ,
one still has We.T / D We3.T / D We2.T / or, spelled out,

We.T / D
\

K2K.H/

W.T CK/ D
\

F 2K.H/
dim R.F /<1

W.T C F /: (2.5)

Since �ap.T CK/�W.T CK/, Definition 2.1 and (2.5) yield that �eap.T /�We.T /.
The other essential numerical ranges defined as

We1.T /´
\

V 2V<1

W.T jV?\D.T //;

We4.T /´ ¹� 2 C j 9 .en/ � D.T /; orthonormal with .T xn; xn/! �º;

We5.T /´

´
� 2 C

ˇ̌̌̌
ˇ 9.xn/n2N � D.T /; kxnk D 1; xn

w
�! 0

8m 2 N .T xn; xm/! 0; .T xn; xn/! �

µ
; (2.6)

where V<1 is the set of all finite-dimensional subspaces of H , are in general no
longer equal to We.T /, they only satisfy

�e2.T / � We5.T / � We1.T / � Wei .T / D We.T /; i D 2; 3; 4; (2.7)

see [5, Theorem 3.1], [14, Corollary 2.4 and Theorem 2.5], [15], and the two inclu-
sions between the essential numerical ranges may be strict. The equality We1.T / D

We.T / holds if D.T / \D.T �/ is dense orW.T /¤ C, andWe5.T /DWe1.T / holds
if D.T / \D.T �/ is a core for T .
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Our next theorem and Example 2.14 below reveal where the essential approximate
point spectrum is located in the chain of inclusions (2.7), namely �eap.T / � We1.T /,
but in general �eap.T / 6� We5.T /.

To prove this inclusion, we invoke a type of essential numerical range which was
introduced in [5, Remark 4.2] merely to show that in (2.5) compact perturbations
cannot be replaced by relatively compact ones; namely

eWe.T /´
\

K T -compact

W.T CK/ � We.T /:

Theorem 2.13. Let T be a closed linear operator. Then

�eap.T / �eWe.T / � We1.T / � We4.T / � Wei � We.T /; i D 2; 3I

if D.T / \D.T �/ is a core for T , then �eap.T / � Wei .T /D We.T /, i D 1; 2; 3; 4; 5.

Proof. By Corollary 2.9, we have �eap.T / �eWe.T / and thus it suffices to show that
eWe.T / � We1.T /. Parts of our proof are similar to parts of the proof of [5, The-
orem 3.1], but unlike there, we do not assume any density of domains here.

Suppose thateWe .T / �We1.T / is false, i.e. there exists � 2eWe .T / and V 2 V<1

such that � … W.T jV?\D.T //. Since the latter is a closed and convex set, the strong
separation property, see e.g. [24, Theorem 3.6.9], shows that there exists a closed
half-plane H � C such that � …H andW.T jV?\D.T //�H. After possible shift and
rotation, we may assume that H D ¹� 2 C j Re� � 0º and so Re � < 0. As in the
proof of [5, Theorem 3.1], we infer that there exists a (not necessarily orthogonal)
finite-rank projection P 2 L.H/ such that R.P / D V and R.P �/ � D.T /. As in
the proof of [5, Theorem 3.1, p. 14], we set

K ´ �TP � � PT C PTP � C �PP �; D.K/´ D.T /;

which now no longer has a compact closure. Nonetheless, the properties of P imply
that the operators PP � and TP � are bounded and of finite rank hence compact. If
.xn/n2N � D.T / is such that xn, T xn ! 0 as n!1, then, trivially, PT xn ! 0

as n ! 1. Hence, PT and thus also K, are T -bounded. Furthermore, R.K/ �

span.R.TP �/ [R.P // 2 V<1, and so K is T -degenerate and thus T -compact, see
e.g. [19, Remark IV.1.1.13]. Further, we observe that

T CK D ..I � P /T .I � P �/C �PP �/jD.T / (2.8)

and, for arbitrary x 2 D.T / with kxk D 1,

.I � P �/x 2 R.I � P �/ \D.T / D R.P /? \D.T / D V ? \D.T /: (2.9)
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Hence combining a simple computation with (2.8) and (2.9), we find that

..T CK/x; x/ D .T .I � P �/x; .I � P �/x/C �kP �xk

2 ¹tz C s� j z 2 W.T jV?\D.T //; t; s � 0º:

Since � 2 W.T jV?\D.T // � H, we deduce W.T CK/ � H. Hence, it follows that
� 2eWe.T / � W.T CK/ � H, a contradiction to Re� < 0.

Finally, we give an example where �eap.T / 6� We5.T / for which it was already
proved in [14, Example 2.10] that We5.T / ¨ We1.T /.

Example 2.14. Let H D `2.N/ and .en/n2N � `
2.N/ be the standard basis of H .

Consider the operator T in `2.N/ given by

Te1´ 0; Ten´

n�1X
kD1

ek; n � 2; D.T /´ ¹x 2 `2.N/ W T x 2 `2.N/ºI

this means that T is a Toeplitz operator with (unbounded) symbol p.z/ D .z � 1/�1,
z 2 C n ¹1º. In [14, Example 2.10] we showed that T has the following properties:

(i) T is quasi-m-accretive with �.T / D W.T / D
®
� 2 C

ˇ̌
Re� � � 1

2

¯
;

(ii)
®
� 2 C

ˇ̌
Re� > � 1

2

¯
� �p.T /;

(iii) D.T / \D.T �/ is dense in `2.N/, but no core for T ;

(iv) We5.T / D
®
� 2 C

ˇ̌
Re� D 1

2

¯
¨ W.T /;

(v) Wei .T / D We.T / D W.T /, i D 1; : : : ; 4.

Here we prove that

�eap.T / D Wei .T / D We.T /

D

°
� 2 C

ˇ̌̌
Re� � �

1

2

±
; i D 1; 2; 3; 4; (2.10)

�e2.T / D @�eap.T / D We5.T / D
°
� 2 C

ˇ̌̌
Re� D �

1

2

±
: (2.11)

This shows that �eap.T / ª We5.T / and illustrates that �eap.T / consists of �e2.T / and
one of the two (unbounded) components of �e2.T /, namely the open right half-plane,
see Proposition 2.6.

Proof. First we prove that T � � has dense range for any � 2 C. Let y D .yn/n2N �

R.T � �/?. Then

0 D ..T � �/e1; y/ D ��y1;

0 D ..T � �/en; y/ D

n�1X
kD1

.ek; y/ � �.en; y/ D

n�1X
kD1

yk � �yn; n D 2; 3; : : : :
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Inductively, these equations imply that y D 0, which proves that R.T � �/? D ¹0º

for any � 2 C, as required. This and (ii) imply that, if Re� > � 1
2

, then

i.T � �/ D dim ker.T � �/ � dim R.T � �/? D dim ker.T � �/ > 0:

Thus
®
� 2 C j Re� > �1

2

¯
� �eap.T / by Theorem 2.4. Since �eap.T / � W.T /, see

Corollary 2.5, and �eap.T / is closed, see Remark 2.2, the claim in (2.10) follows.
Finally, because @�eap.T / � @�e2.T / � �e2.T / � We5.T / by Proposition 2.6 (ii)

and [14, Corollary 2.4] and since @�eap.T / D We5.T / by (2.10), the claims in (2.11)
follow.

3. Essential minimum modulus and Moore–Penrose inverse

In this section we introduce the essential minimum modulus for closed linear oper-
ators. We relate it to the essential spectrum of type 2 and to the essential norm of
the Moore–Penrose inverse. Further, we prove other characterisations of the essen-
tial minimum modulus which will be used to establish the essential resolvent norm
bounds in the next section.

First, we recall the definition of the Moore–Penrose (generalised) inverse of a
closed densely defined linear operator T with closed range. Under these assumptions,
the operator T1 between the Hilbert spaces ker.T /? and R.T / given by

D.T1/´ D.T / \ ker.T /?; T1x D T x; x 2 D.T /;

is closed and bijective, and hence has a bounded inverse T �11 by the closed graph
theorem. Then the bounded operator

T �´ T �11 PR.T / 2 L.H/

is called Moore–Penrose inverse of T , see e.g. [22, 23] or [3, Chapter 9] (where
T � is called maximal Tseng inverse). It follows from the definition and [23, Proposi-
tion 3.2] that

T T � D PR.T /; T �T � P
R.T �/

; R.T �/ D D.T / \ ker.T /?; (3.1)

i.e. T �T x D P
R.T �/

x, x 2 D.T /, see also [3, Theorem 9.2]. Moreover, if


.T /´ inf
x2D.T /; kxkD1

kT xk 2 Œ0;1/; (3.2)

denotes the minimum modulus of T , see e.g. [11, Definition I.3.3], then [23, Propos-
ition 3.9] implies that, whenever T is injective with closed range or, equivalently,
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0 2 �ap.T /, we have that

kT �k D kT �1k D
1


.T /
; (3.3)

where T �1 D T �11 is the inverse of T acting from the Hilbert space R.T / to H . For
a closed densely defined linear operator T , it is obvious that

�ap.T / D ¹� 2 C j 
.T � �/ D 0º: (3.4)

It is known that the norm of the Moore–Penrose resolvent k.T ��/�kD.
.T ��//�1,
for � 2 �ap.T / and � … W.T /, respectively, satisfies

1

dist.�; �ap.T //
� k.T � �/�k �

1

dist.�;W.T //
;

see [19, Theorem V.3.3.2].
To establish an ‘essential version’ of the minimum modulus, the characterisation


.T / D inf �.jT j/ D min �.jT j/

with jT j D .T �T /
1
2 is more useful, see [6, Theorem 1] for the case of bounded T .

It follows easily from the spectral theorem for the self-adjoint operator jT j since
kT xk D kjT jxk, x 2 D.T / D D.jT j/. Note also that 
.T / D 
.jT j/.

Definition 3.1. For a closed densely defined linear operator T , we define the essential
minimum modulus 
e.T / of T as


e.T /´ inf �e.jT j/ 2 Œ0;1�:

The following properties of the essential minimum modulus are immediate from
its definition and since the essential spectrum is closed.

Remark 3.2. Clearly, 
.T / � 
e.T /, 
e.T / D 
e.jT j/ and 
e.T / D min �e.jT j/ if
�e.jT j/ ¤ ;.

Proposition 3.3. Let T be a closed densely defined linear defined operator. Then

(i) �e2.T / D ¹� 2 C j 
e.T � �/ D 0º;

(ii) if we abbreviate, see [11, Theorem IX.1.7],

E.T /´ ¹.xn/n2N � D.T / j

.xn/n2N is a normalised weakly null-sequenceº;

then


e.T / D inf
.xn/n2N2E.T /

lim inf
n!1

kT xnk � dist.0; �e2.T //I (3.5)
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in particular, 
e.T / D 
e.T CK/ for all compact K 2K.H/;

(iii) if 0 2 �eap.T /.� �e2.T / and hence 
e.T / > 0/, then


e.T / D sup
K2K.H/


.T CK/:

Proof of Proposition 3.3. (i) It follows from [13, Theorem (1.1)] that � 2 �e2.T /

if and only if ker.T � �/ is infinite dimensional or 0 is an accumulation point of
�.jT � �j/. Since jT � �j is self-adjoint, this is equivalent to 0 2 �e.jT � �j/. This
shows the inclusion “�” and, since the essential spectrum is closed, also “�”.

(ii) Let � 2 �e.jT j/. There exists a normalised weakly null-sequence .yn/n2N �

D.jT j/ DD.T / with k.jT j � �/ynk ! 0 and hence kjT jynk ! � as n!1. Thus

inf
.xn/n2N2E.T /

lim inf
n!1

kT xnk � lim inf
n!1

kTynk D lim
n!1

kjT jynk D �:

To prove the reverse inequality, let �� 0 be such that there exists a normalised weakly
null-sequence .xn/n2N � D.T / D D.jT j/ with kT xnk ! � as n!1. Then

0 � .jT jxn; xn/ � kjT jxnk D kT xnk ! �; n!1:

Thus we can assume, by passing to subsequences, that .jT jxn; xn/! � � � and so,
by definition (1.3), it follows that � 2 We.jT j/. Since jT j is self-adjoint and semi-
bounded, [5, Theorem 3.8] implies that


e.T / D inf �e.jT j/ D infWe.jT j/ � � � �:

The inequality in (3.5) follows from the equality therein, which we just proved,
and from [11, Theorem IX.1.7].

Finally, from (3.5) and the definition of E.T /, the last claim is evident.

(iii) Parts of the following proof of (iii) are similar to the proof for the bounded
case, see [35]. By Remark 3.2 and the last claim in (ii), it follows that

sup
K2K.H/


.T CK/ � sup
K2K.H/


e.T CK/ D 
e.T /:

To prove the reverse inequality, we note that �eap.T / � �e2.T / by Corollary 2.5 and
hence 
e.T / > 0 by claim (i). Moreover, since 0 2 �eap.T /, Definition 2.1 and equa-
tion (3.4) imply that there exists K0 2K.H/ with 0 2 �ap.T CK0/ or, equivalently,

.jT CK0j/ D 
.T CK0/ > 0. By (3.4), the latter implies that 0 2 �ap.jT CK0j/

and hence, since jT CK0j is self-adjoint, 0 2 �.jT CK0j/.
By Remark 3.2 and the last claim in (ii), we have


e.jT CK0j/ D 
e.T CK0/ D 
e.T / > 0:
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Now, we choose an arbitrary sequence .�n/n2N such that 0 < �n < 
e.T /, n 2 N,
and �n % 
e.T / D 
e.T CK0/ as n!1. Let E.�/ denote the spectral measure of
jT CK0j and set

Pn´ E.Œ0; �n//; Kn´ �nPn � jT CK0jPn; n 2 N:

Then R.Pn/ � D.T / and dim.R.Pn// < 1 because �n < inf �e.jT C K0j/, and
hence the operators Kn are compact for all n 2 N; moreover,

jT CK0j CKn D �nPn C jT CK0j.I � Pn/; n 2 N:

Again by Remark 3.2 and the last claim in (ii), it now follows that

n�n � 
.jT CK0j CKn/ � 
e.jT CK0j CKn/ D 
e.T CK0/; n 2 N:

Since �n% 
e.T CK0/ as n!1, we obtain that 
.jT CK0j CKn/% 
e.T CK0/

as n!1. By the polar decomposition, see e.g. [19, Section VI.2.7], there exists an
isometry U from R.jT CK0j/DH to R.T CK0/ such that T CK0 DU jT CK0j.
Because K0 and Kn are compact, so is zKn ´ K0 C UKn for n 2 N. If we use that
k.T C zKn/xk D kU.jT CK0j CKn/xk D k.jT CK0j CKn/xk for x 2 D.T / D

D.jT CK0j/ in the definition (3.2) of the minimum modulus, it follows that


.T C zKn/ D 
.jT CK0j CKn/% 
e.T CK0/ D 
e.T /; n!1:

Corollary 3.4. If T is self-adjoint, then, for � 2 C,


e.T � �/ D dist.�; �ei .T // D dist.�; �eap.T //; i D 1; : : : ; 5;

where the essential spectra �ei .T /, i D 2; 4, are as in (2.1), (2.2) and �ei .T /, i D
1; 3; 5, are defined as in [11, Chapter IX].

Proof. Since for a self-adjoint operator, all essential spectra and the essential approx-
imate point spectrum coincide, see [11, Theorem IX.1.6] and Proposition 2.2 (ii), the
claim is immediate from Proposition 3.3 (ii) and [11, Theorem IX.1.7].

The following lemma shows, in particular, that in Proposition 3.3 (ii) the infimum
in (3.5) is, in fact, a minimum (if we choose M D ¹0º below).

Lemma 3.5. Let T be a closed densely defined upper semi-Fredholm operator and let
M � D.T / be a finite-dimensional subspace. Then there exists a normalised weakly
null-sequence .xn/n2N � D.T / \M? such that

kT xnk ! 
e.T /; n!1:
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Proof. Since T is upper semi-Fredholm, we have 02 �e2.T / and so 
e.T / > 0 by Pro-
position 3.3 (i). Further, Proposition 3.3 (ii) together with a standard diagonal sequence
argument yields that there exists a normalised weakly null-sequence
.yn/n2N � D.T / such that kTynk ! 
e.T / as n! 1. Since M is finite dimen-
sional, PM is compact and so we can assume, upon choosing a subsequence, that
PMyn ! 0 and hence k.I � PM /ynk ! 1 as n!1. Then

xn´
.I � PM /yn

k.I � PM /ynk
2 D.T / \M?; n 2 N;

defines a normalised weakly null-sequence. BecauseM�D.T / is finite dimensional,
it is easy to see that TPM is everywhere defined and compact, so that we can assume,
again upon choosing a subsequence, that TPMyn ! 0 and thus, altogether,

kT xnk D
kTyn � TPMynk

k.I � PM /ynk
! 
e.T /; n!1:

Remark 3.6. If we note that, in [17, pp. 257–258], it was shown that

kBke D sup¹lim sup
n!1

kBxnk j .xn/n2N is a normalised weakly null-sequenceº;

(3.6)

then this and a standard diagonal sequence argument imply that there exists a norm-
alised weakly null-sequence .xn/n2N � H such that kBxnk ! kBke as n!1.

Next we establish the ‘essential version’ of (3.3), i.e. we prove that the essential
norm of the Moore–Penrose inverse coincides with the reciprocal of the essential
minimum modulus. This result seems to be new even for bounded operators.

Theorem 3.7. If T is a closed densely defined upper semi-Fredholm operator, then

kT �ke D
1


e.T /
: (3.7)

In particular, if 0 2 �.T /, then T has compact resolvent or, equivalently, jT j has
compact resolvent if and only if 
e.T / D1.

Proof. Since 0 2 �e2.T / by assumption, ker.T / is finite dimensional, R.T / is closed
and 
e.T / > 0 by Proposition 3.3 (i).

First we prove the inequality “�”. By Lemma 3.5, there exists a normalised
weakly null-sequence .xn/n2N �D.T /\ ker.T /? with kT xnk! 
e.T / 2 Œ0;1� as
n!1. In particular, .T xn/n2N is a bounded sequence and, upon passing to a sub-
sequence, we may assume that it is weakly convergent. Since T is closed, its graph
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is also weakly closed, see e.g. [32, Theorem 3.12], which implies that T xn
w
�! 0 as

n!1. Then the normalised sequence

yn´
T xn

kT xnk
2 D.T /; n 2 N;

also satisfies yn
w
�! 0 as n!1. Further, by (3.1) we have xn 2D.T /\ ker.T /? D

R.T �/ and kT �T xnk D kxnk D 1, n 2 N. Altogether, it follows that

1


e.T /
D lim
n!1

1

kT xnk
D lim
n!1

kT �T xnk

kT xnk
D lim
n!1

kT �ynk � kT
�
ke:

To prove the inequality “�”, we note that if kT �ke D 0, there is nothing to show.
Thus assume that kT �ke > 0. Then, by (3.6), there exists a normalised weakly null-
sequence .yn/n2N such that kT �ynk ! kT �ke. Since R.T / is closed, we have H D
R.T /˚R.T /?. Hence there exist bounded sequences .y1n/n2N �R.T /, .y2n/n2N �

R.T /? with yn D y1n C y
2
n and 1D kynk2 D ky1nk

2 C ky2nk
2 for n 2 N. By passing

to subsequences, we may assume that yin
w
�! 0, i D 1; 2, and ky1nk ! r 2 Œ0; 1�. Since

T � is bounded and ker.T �/ D R.T /?, see [23, Proposition 3.2], it follows that

0 < kT �ke D lim
n!1

kT �ynk D lim
n!1

kT �y1nk � kT
�
kr; (3.8)

which implies that r > 0. Therefore,
� y1n
ky1nk

�
n2N
� H is a normalised weakly null-

sequence. Then, by (3.6) and the equalities in (3.8), it follows that

kT �ke � lim sup
n!1

kT �y1nk

ky1nk
D
kT �ke

r
� kT �ke;

and so equality holds everywhere, which means that r D 1. Since T � is bounded and
kT �y1nk ! kT

�ke > 0 as n!1,

xn´
T �y1n
kT �y1nk

2 R.T �/ D D.T / \ ker.T /?; n 2 N;

defines a normalised weakly null-sequence .xn/n2N . Then we obtain that, because
.y1n/n2N � R.T / and by (3.1),

1

kT xnk
D
kT �y1nk

kT T �y1nk
D
kT �y1nk

ky1nk
! kT �ke; n!1:

Since Proposition 3.3 (ii) implies that lim infn!1 kT xnk � 
e.T /, we conclude that

1


e.T /
� lim sup

n!1

1

kT xnk
D kT �ke;

which completes the proof of (3.7).
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Finally, if 0 2 �.T /, then T has compact resolvent if and only if T � D T �1 is
compact or, equivalently, kT �ke D 0. By (3.7) this is in turn equivalent to 
e.T /D1.
By definition, this holds if and only if �e2.jT j/ D ;. Since jT j is self-adjoint, this is
equivalent to the resolvent of jT j being compact, see e.g. [34, Theorem V.5.12].

4. Resolvent estimates in the essential norm

In this section we establish two-sided estimates of the essential norm of the Moore–
Penrose resolvent and the resolvent in terms of the essential numerical ranges and
the essential spectrum of type 2. These bounds are new even in the case of bounded
operators and they apply in regions inside of the numerical range where, up to now,
no generally valid resolvent estimates have been available. Examples of differential
operators show that e.g. for m-sectorial operators the essential norm of the resolvent
may be estimated everywhere outside of Œ0;1/.

Theorem 4.1. If T is a closed densely defined linear operator, then, for � … �e2.T /,

1

dist.�; �e2.T //
� k.T � �/�ke �

1

dist.�;Wei .T //
; i D 1; : : : ; 5: (4.1)

Proof. First, we note that � … �e2.T / if and only if 
e.T � �/ > 0 by Proposition 3.3,
and the latter is equivalent to k.T � �/�ke <1 by Theorem 3.7.

By Theorem 3.7, the first inequality is equivalent to 
e.T � �/ � dist.�; �e2.T //,
which was proved in [11, Theorem IX.1.7].

To prove the second inequality, by (2.7) – see also [5, Theorem 3.1] and [14,
Theorem 2.5] – it suffices to prove the claim for i D 5. If k.T � �/�ke D 0, there is
nothing to prove. If k.T � �/�ke > 0, then 
e.T � �/ < 1 by Theorem 3.7. Due to
Proposition 3.3 (ii) there exists a normalised weakly null-sequence .xn/n2N � D.T /

with

k.T � �/xnk ! 
e.T � �/ D
1

k.T � �/�ke
<1; n!1I (4.2)

in particular, .T xn/n2N � H is a bounded sequence. By passing to a subsequence if
necessary, we may assume that .T xn/n2N is weakly convergent and .T xn; xn/! �

for some � 2 C. Since T is closed, its graph is also weakly closed, see e.g.
[32, Theorem 3.12]. Hence, xn

w
�! 0 implies that T xn

w
�! 0 as n!1. Then it follows

from the definition ofWe5.T / in (2.6) that � 2We5.T /. Using (4.2), we conclude that

k.T � �/�ke D lim
n!1

1

k.T � �/xnk
� lim

n!1

1

j.T xn; xn/ � �j
�

1

dist.�;We5.T //
:
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Remark 4.2. If T is closed and densely defined, then, for � … �eap.T /,

1

dist.�; �eap.T //
D

1

dist.�; �e2.T //
� k.T � �/�ke: (4.3)

Proof. The first equality follows from Proposition 2.6 and thus Theorem 4.1 implies
the desired inequality; alternatively, we could also use the characterisation in Propos-
ition 3.3 (iii) of the essential minimum modulus.

The next corollary is obvious from Theorem 3.7, Corollary 3.4 and Theorem 3.7.

Corollary 4.3. If T is self-adjoint, then, for � 2 �.T /,

k.T � �/�1ke D
1

dist.�; �ei .T //
D

1

dist.�; �eap.T //
; i D 1; : : : ; 5:

If we also have � 2 �.T / rather than � 2 �e2.T / in Theorem 4.1, then .T � �/� D
.T � �/�1 and the next result shows that then the lower bounds in (4.1) and (4.3)
coincide.

To this end, we recall that if B is a bounded operator, then always �ei .B/ ¤ ;,
i D 1; : : : ; 5, and so �eap.B/ ¤ ; as well by Corollary 2.5. Moreover, the so-called
essential spectral radius of B satisfies

re.B/´ sup¹j�j j � 2 �ei .B/º D sup¹j�j j � 2 �eap.B/º � kBke; i D 1; : : : ; 5;

no matter whether the various essential spectra of B coincide or not.

Proposition 4.4. Let T be a closed densely defined linear operator and i 2 ¹1; : : : ; 5º.
Then, for � 2 �.T /,

re..T � �/
�1/ D

1

dist.�; �eap.T //
D

1

dist.�; �ei .T //

� k.T � �/�1ke �
1

dist.�;Wei .T //
:

Proof. Since � 2 �.T /, the two inequalities are immediate from Theorem 4.1 by the
preceding remarks. To prove the first equality, we use that by the essential spectral
mapping theorem, see [11, Theorem IX.2.3 (iii)], � 2 �ei .T / if and only if we have
.�� �/�1 2 �ei ..T � �/

�1/ n ¹0º for i D 1; : : : ; 5. If �e2..T � �/
�1/ n ¹0º ¤ ;,this

implies that

1

dist.�; �ei .T //
D sup

�2�ei .T /

j� � �j�1 D sup
z2�ei ..T��/

�1/n¹0º

jzj D re..T � �/
�1/

for i D 1; : : : ;5. If �e2..T ��/
�1/ n ¹0ºD;, then it follows from the essential spectral

mapping theorem that �e2.T / D ; and hence dist.�; �e2.T // D1.
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Since �e2.T / � �eap.T / � �e4.T / by Proposition 2.6 (i), the second equality fol-
lows from the first one; alternatively, we could also use the essential spectral mapping
theorem for �eap.T /, Theorem 2.10.

Proposition 4.4 yields a useful information on operators with empty essential
numerical range, which seems to be new. Note that We.T / ¤ ; if T is bounded.

Corollary 4.5. Let T be a densely defined linear operator with We.T / D ;. Then
either �.T / D C or T has compact resolvent.

Proof. If �.T /¤ C, then �.T /¤ ; and hence T is closed. ThenWe.T /D ; implies
that, for all � 2 �.T /, we have dist.�;We.T // D 1 and thus k.T � �/�1ke D 0 by
Proposition 4.4, i.e. .T � �/�1 is compact.

Remark 4.6. The converse of Corollary 4.5 is not true, not even in the self-adjoint
case. In fact, if T is self-adjoint with compact resolvent, but not semi-bounded, then
We.T / D R, see [5, Theorem 3.8].

On the other hand, it is well known that a self-adjoint operator T has compact
resolvent if and only if �e2.T / D ;, see e.g. [34, Proposition V.5.12]; note that
Corollary 4.3 yields another proof of this equivalence since �e2.T / D ; is equival-
ent to dist.�; �e2.T // D1 and hence to k.T � �/�1ke D 0, i.e. .T � �/�1 compact,
for � 2 �.T /.

In the following we illustrate our results by applying them to two different
examples from mathematical physics, first to an advection-diffusion type differential
operator on R studied in [5, 10].

Example 4.7. For the advection-diffusion type differential operator

T ´ �
d2

dx2
CQ1.x/

d
dx
CQ0.x/; D.T /´ H 2.R/;

with complex-valued coefficients Q0, Q1 2 L1.R/ such that Q1.x/ ! �2, and
Q0.x/! 0 as jxj ! 1, it was shown in [5, Example 7.3] that the essential spec-
trum of type 2 is a parabola and the essential numerical range is the convex hull of
this parabola. Analogously, using Corollary 2.9 or Corollary 2.11, respectively, it is
easy to see that �eap.T / D �e2.T /, so that altogether

�eap.T / D �e2.T / D
°
� 2 C

ˇ̌̌
Re� D

.Im�/2

2

±
;

We.T / D Wei .T / D conv.�e2.T // D
°
� 2 C

ˇ̌̌
Re� �

.Im�/2

2

±
; i D 1; : : : ; 5:

Then Corollary 4.4 implies that, ‘outside’ of the parabola,

k.T � �/�1ke D
1

dist.�;We.T //
D

1

dist.�; �e2.T //
; � 2 �.T / nWe.T /:
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In the particular case Q1 � � 2,Q0 � 0 where it is also known that �.T / D �e2.T /

and W.T / D We.T /, see [10], Theorem 4.1 still yields that, also ‘inside’ of the para-
bola,

k.T � �/�1ke �
1

dist.�; �e2.T //
; � 2 �.T / n �e2.T /:

Our second example are Schrödinger operators with rapidly oscillating potentials
on Rd , d � 3, which were studied in [33, 38] in the case of real-valued potentials
and in [29] for complex-valued potentials. For the purpose of illustrating our essential
norm estimates of the resolvent, it is sufficient to focus on purely imaginary potentials.

Example 4.8 (Schrödinger operators with purely imaginary rapidly oscillating poten-
tials). Let the operator T0 in the Hilbert space L2.Rd /, d � 3, be given by

T0f .x/´ ��f .x/C iq.x/f .x/; f 2 D.T0/´ C10 .R
d /; x 2 Rd ;

where q 2 L1
loc
.Rd / is a real-valued potential satisfying

lim
r1; r2!1

sup
!2@B1.0/

ˇ̌̌̌ r2Z
r1

q.r!/ dr
ˇ̌̌̌
D 0:

This means that there exists a function wW .0;1/! Œ0;1/ with limR!1w.R/ D 0

such that for all ! 2 @B1.0/ and r2 > r1 > R,ˇ̌̌̌ r2Z
r1

q.r!/ dr
ˇ̌̌̌
� w.R/:

Typical examples of such potentials include q.x/Djxj3 sin.jxj5/, x 2Rd , and q.x/D
.1C jxj2/�1ejxj sin.ejxj/, x 2 Rd .

It was shown in [29, Theorems 6 and 10] that T0 is sectorial and admits a Friedrichs
extension T D T0 which is m-sectorial and satisfies �e2.T / D Œ0;1/. Here, we will
show that, although the potential is purely imaginary, the essential numerical range is
real and, by our previous results, we can determine the essential norm of the resolvent,
more precisely,

We.T / D Œ0;1/; k.T � �/
�1
ke D

8̂̂<̂
:̂

1

j Im�j
; Re� � 0;

1

j�j
; Re� < 0;

� 2 �.T /I

note that it then follows directly that �e2.T / D �eap.T / D We.T / D Œ0;1/.
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Proof. Due to [29, Theorem 10] and [5, Proposition 2.2] it suffices to show that
We.T0/ � Œ0;1/. If � 2We.T0/, then there exists a normalised weakly null-sequence
.fn/n2N � D.T0/ D C

1
0 .R

d / such that .T0fn; fn/! �, i.e.

Re.T0fn; fn/ D krfnk2L2.Rd / ! Re�;

Im.T0fn; fn/ D
Z

Rd

q.x/jfn.x/j
2 dx ! Im�: (4.4)

To show that Im� D 0, let " > 0 be arbitrary. Since .fn/n2N is a normalised weakly
null-sequence in L2.Rd /, we obtain that, for all g 2 C10 .R

d /,Z
Rd

rfn.x/rg.x/ dx D �
Z

Rd

fn.x/�g.x/ dx ! 0; n!1:

Since C10 .R
d / is dense inH 1.Rd / and .rfn/n2N is bounded in L2.Rd / by the first

equation in (4.4), so that .fn/n2N is bounded inH 1.Rd /, it follows that .fn/n2N is a
weak null-sequence in H 1.Rd /.

Now set C ´ supn2N kfnkH1.Rd / and choose R0 � 1 so that w.R/ � 1
2

"
2CCd�1

forR � R0. Due to the assumptions on q, we can apply [29, Lemma 7] which implies
that, for all n 2 N and R � R0,ˇ̌̌̌ Z

jxj�R

q.x/jfn.x/j
2 dx

ˇ̌̌̌
� w.R/.2kfnkH1.Rd / C d � 1/

� w.R/.2C C d � 1/ �
"

2
: (4.5)

On the other hand, because .fn/n2N is bounded inH 1.Rd /, the Rellich–Kondrachov
theorem shows that there exists a subsequence such that

kfnkkL1.BR.0// D

Z
jxj<R

jfnk .x/j dx ! 0; k !1: (4.6)

Further, by the Gagliardo–Nirenberg inequality with � D d
dC2

, there exists M > 0

such thatˇ̌̌̌ Z
jxj<R

q.x/jfn.x/j
2 dx

ˇ̌̌̌
� sup
jxj�R

jq.x/j kfnk
2
L2.BR.0//

�M 2 sup
jxj�R

jq.x/j kfnk
2�
H1.Rd /

kfnk
2�2�
L1.BR.0//

�M 2C 2� sup
jxj�R

jq.x/j kfnk
2�2�
L1.BR.0//

�
"

2
(4.7)
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by (4.6) for k � k0 with k0 chosen sufficiently large. Using (4.5) and (4.7) in the
second equation in (4.4), we conclude that Im j.T0fnk ; fnk /j � " for k � k0 and
hence Im� D 0 as " > 0 was arbitrary.

It is well known that the closure W.T / of the numerical range is the minimal
closed convex set W � C for which the resolvent satisfies the linear growth condi-
tion k.T � �/�1k � .dist.�;W //�1 for � … W . Note that, although in [28, 36] only
bounded operators or elements of Banach algebras, respectively, were considered, the
proofs therein also apply to closed densely defined operators with only minor adjust-
ments. In particular, T is accretive if and only if k.T � �/�1k � j Re �j�1 for all
� 2 C with Re� < 0, see [28, Lemma 2].

For bounded operators, a similar result for the essential numerical range was
deduced in [36, Theorems 2 and 9], using that the essential numerical rangeWe.T /D

We3.T / D
T
K2K.H/W.T CK/ is a numerical range in the Calkin algebra.

Theorem 4.9 ([36]). Let T be a bounded linear operator and W � C be any non-
empty closed convex set. Then We.T / � W if and only if �e2.T / � W and

k.T � �/�ke �
1

dist.�;W /
; � 2 C nW:

The next example shows that Theorem 4.9 does not generalise to unbounded oper-
ators for any type of essential numerical range, even if we add extra conditions on the
operator T such as normality or m-accretivity or geometrical constraints on the con-
vex set W such as being unbounded or similarly shaped as the numerical range.

Example 4.10. LetH D `2.N/˚ `2.N/ and let A be the operator in `2.N/ given by

D.A/´
°
.xn/n2N 2 `

2.N/
ˇ̌̌ 1X
nD1

n2jxnj
2 <1

±
;

Aen´ .1C i.�1/nn/en;

n 2 N, where ¹en j n 2 Nº � `2.N/ is the standard orthonormal basis. Then the
operator

T ´ A˚ 0 D

�
A 0

0 0

�
; D.T /´ D.A/˚ `2.N/ � H;

is closed and densely defined, and has the following properties:

(i) T is a normal operator;

(ii) W.T / D Œ0; 1�C iR and T is m-accretive;

(iii) Wei .T / D We.T / D W.T / D Œ0; 1�C iR, i D 1; : : : ; 5;
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(iv) �e2.T / D �eap.T / D ¹0º � iR;

(v) k.T � �/�ke � j�j
�1 D .dist.�; ¹0º//�1 for all � 2 C n ¹0º and hence, in

particular, k.T � �/�ke � jRe�j�1 D .dist.�; iR//�1 for all � 2 C n iR.

Proof. (i) Since A D I C iS where S is the self-adjoint operator given by D.S/ D

D.A/, Sen D .�1/nen, n 2 N, it is immediate that A� D I � iS so that D.A�/ D

D.A/ and A�A D AA� D I C S2. Therefore, A, and hence T , is normal.

(ii) It is evident that W.A/ D 1C iR and hence

W.T / D conv.W.A/ [ ¹0º/ D Œ0; 1�C iR;

which shows that T is accretive. By claim (i), T is normal and so D.T / D D.T �/.
This implies thatW.T �/DW.T /�D¹.T x; x/ j x 2D.T /º and hence T � is accretive
too. Thus T is m-accretive by [20, Theorem I.4.4].

(iii) Because W.A/ is a line and W.T / is a strip by claim (ii), [5, Corollary 2.5]
yields that We.A/ D W.A/ and that We.T / � W.T / is a strip or a line. Moreover,
clearly,We.A/D 1C iR�We.T /. This, 0 2 �e2.T /�We.T / and the fact thatWe.T /

is closed and convex yield that We.T / D W.T / D Œ0; 1�C iR. Since T is normal by
claim (i), D.T /\D.T �/DD.T / is a core of T and hence [14, Theorem 2.5] shows
that Wei .T / D We.T / for i D 1; : : : ; 5.

(iv) Since �e2.T /� �eap.T / and 0 2 �e2.T /, it suffices to show that �eap.T /� ¹0º.
For this purpose, define the compact operators zKk , k 2 N, in H by

zKk ´ Kk ˚ 0; Kken´

´
�.1C i.�1/kk/ek; n D k;

0; n ¤ k;
n 2 N:

Since T C zKk , k 2 N, are normal, [34, Proposition 3.26 iii) and Example 3.8] imply
that

�ap.T C zKk/ D �.T C zKk/ D ¹0º [ ¹1C i.�1/nn j n 2 N n ¹kºº; k 2 N:

Hence, by Definition 2.1

�eap.T / D
\

K2K.H/

�ap.T CK/ �
\
k2N

�ap.T C zKk/ D ¹0º:

(v) Let �D aC ib 2 C n ¹0º. Note that the claim is equivalent to 
e.T � �/ � j�j

by Theorem 3.7. By Lemma 3.5 (applied with M D ¹0º) there exists a normalised
weakly null-sequence .vn/n2N D ..xn; yn/

t /n2N � D.T / such that 
e.T � �/ D



N. Hefti and C. Tretter 1570

limn!1 k.T � �/vnk
2. Then


e.T � �/
2K 2K.H/

D lim
n!1

k.T � �/vnk
2
D lim
n!1

.k.A � �/xnk
2
C k�ynk

2/

D lim
n!1

.j�j2 C kAxnk
2
� 2aRe.Axn; xn/C 2b Im.Axn; xn//

D j�j2 C lim
n!1

.kAxnk
2
� 2akxnk

2
� 2b Im.Axn; xn//:

Since kvnk D 1, n 2 N, we may assume, by passing to a subsequence, that kxnk ! r

with r 2 Œ0; 1� and hence


e.T � �/
2
D j�j2 � 2ar C lim

n!1
.kAxnk

2
� 2b Im.Axn; xn//: (4.8)

Next, we show that .Axn/n2N is bounded. Otherwise, there exists a subsequence
with kAxnkk!1 as k!1. Since kxnk � kvnk � 1, it follows that, for sufficiently
large k 2 N,

kAxnkk
2
� 2b Im.Axnk ; xnk / � kAxnkk jkAxnkk � 2jbjj ! 1; k !1:

Then (4.8) yields that 
e.T � �/ D 1. However, by Proposition 3.3 (ii), it follows
that 
e.T � �/ � dist.0; �e2.T � �// D dist.�; �e2.T // D j�j <1, a contradiction.
Hence .Axn/n2N � H is bounded.

Next, we prove that r D limn!1 kxnk D 0. Otherwise, if r > 0, we may assume
that kxnk > 0, n 2 N. Then, with xnµ .xn;k/k2N , n 2 N, we have

kAxnk
2
D

1X
kD1

.1C k2/jxn;kj
2
D kxnk

2
C kjS jxnk

2; n 2 N; (4.9)

where jS j is the non-negative self-adjoint operator with compact resolvent in `2.N/
given by

jS jen D nen; n 2 N; D.jS j/´ D.A/:

By [5, Theorem 3.8], we know thatWe.jS j/D ;. Since
�
xn
kxnk

�
n2N
� D.A/ D D.S/

is a normalised weakly null-sequence,
�
.jS jxn;xn/

kxnk2

�
n2N

cannot be bounded since in
this case it would have a convergent subsequence which would converge to a point
� 2 We.jS j/. Hence there exists a subsequence such that

1D lim
k!1

.jS jxnk ; xnk /

kxnkk
2

� lim inf
k!1

kjS jxnkk

r
:

Thus kjS jxnkk ! 1 as k ! 1 and so, by (4.9), also kAxnkk ! 1 as k ! 1,
a contradiction to the boundedness of .Axn/n2N .
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Altogether, limn!1 kxnk D r D 0 and the boundedness of .Axn/n2N imply that
.Axn; xn/! 0 as n!1. Combining this with (4.8), we conclude that 
e.T � �/ �

j�j � Re�, as required.

5. Perturbation results

In this section we establish perturbation results for the approximate point spectrum,
the essential approximate point spectrum and the essential spectrum of type 2 under
relatively bounded perturbations. The latter two results are derived using the essential
norm estimates for resolvents obtained in the previous section and are hence accom-
panied by essential norm estimates of the perturbed resolvents.

If T and A are linear operators in a Banach or Hilbert space H , then A is called
T -bounded (or relatively bounded with respect to T ) if D.T /�D.A/ and there exist
constants a; b � 0 such that

kAxk � akxk C bkT xk; x 2 D.T /I (5.1)

the infimum of all b � 0 for which there exists an a � 0 such that (5.1) holds is called
the T -bound or relative bound with respect to T of A, see e.g. [19, Section IV.1].

Our first theorem is a perturbation result for the approximate point spectrum of
accretive and sectorial operators. To this end, for # 2 .��; �� we define

S# ´ ¹z 2 C j j arg.z/j � #º;

i.e. if # D �
2

, then S# µ HC is the closed right half-plane and if # < �
2

, then S# is
the closed sector with vertex 0 and semi-angle # .

Theorem 5.1. Let T be a closed densely defined linear operator, let A be T -bounded
with T -bound< 1 and a, b � 0, b < 1, as in (5.1), and let #b´ arctan b

1�b
2
�
0; �
2

�
.

(i) If T is accretive, then

�ap.T C A/ � �
a

1 � b
C S�

2C#b

D

°
� 2 C

ˇ̌̌
Re� � �

a

1 � b
�

b

1 � b
j Im�j

±
and

k.T C A � �/�k �
1

.1 � b/jRe�j � .aC bj Im�j/

for � … � a
1�b
C S�

2C#b
.
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(ii) If T is sectorial with semi-angle � 2
�
0; �

2

�
, then

�ap.T C A/ � B a
1�b

.0/ [
�
�

a

b cos � C .1 � b/ sin �
C S�C#b

�
D B a

1�b
.0/ [

°
� 2 C

ˇ̌̌
Re� � �

a

b cos � C .1 � b/ sin �

�
b sin � � .1 � b/ cos �
b cos � C .1 � b/ sin �

j Im�j
±

and

k.T C A � �/�k �
1

.1 � b/j�j � a

for � … .B a
1�b

.0/ [ S�
2C�

/, as well as

k.T C A � �/�k �
1

d.�I a; b; �/

for � 2 S�
2C�
n
�
�

a
b cos �C.1�b/ sin � C S�C#b

�
, where

d.�I a; b; �/´ .1 � b/j cos � Im� � sin � Re�j

� .aC bj cos � Re�C sin � Im�j/:

Remark 5.2. The claims in (i) are identical with the claims in (ii) if we allow � D �
2

there; note that in this case cos� D 0, sin� D 1 and the discB a
1�b

.0/ is then contained
in � a

b cos �C.1�b/ sin � C S�C#b D �
a
1�b
C S�

2C#b
.

Proof of Theorem 5.1. (i) Let � 2 C with Re� < 0 and x 2D.T /. Since T is accret-
ive, we can estimate

k.T � �/xk2 D k.T � i Im�/xk2 C jRe�j2kxk2 � 2Re�Re..T � i Im�/x; x/

D k.T � i Im�/xk2 C jRe�j2kxk2 � 2Re�Re..T x; x//

� k.T � i Im�/xk2

and hence

kAxk � akxk C bkT xk

� .aC bj Im�j/kxk C bk.T � i Im�/xk

� .aC bj Im�j/kxk C bk.T � �/xk;

which implies that

k.T C A � �/xk � k.T � �/xk � kAxk

� .1 � b/k.T � �/xk � .aC bj Im�j/kxk:
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Taking the infimum over all x 2D.T /, kxk D 1, by (3.2) we obtain that, for all � 2C

with Re� < 0,


.T C A � �/ � .1 � b/
.T � �/ � .aC bj Im�j/

� .1 � b/jRe�j � .aC bj Im�j/: (5.2)

Thus it follows that � 2 �ap.T C A/ or, equivalently, 
.T C A � �/ > 0 provided
that .1 � b/jRe�j � .aC bj Im�j/ > 0; since Re� < 0 the latter is equivalent to the
condition Re� < �aCbj Im�j

1�b
, which proves the first claim. The norm estimate for the

Moore–Penrose inverse for these � follows from (5.2) and from k.T C A � �/�k D
1


.TCA��/
, see (3.3).

(ii) The claims in the sectorial case all follow by applying (i) for the accretive
case in two different situations in the upper and lower half-plane, depending on the
position of � … S� . If � 2 S�

2C�
n S� and Im � > 0 then the operator ei.�2 ��/T is

accretive and we apply the claims in (i) to ei.�2 ��/T perturbed by ei.�2 ��/A at the
point ei.�2 ��/�; analogously, we treat the case that Im � < 0 replacing the rotating
factor ei.�2 ��/ by e�i.�2 ��/. If � … S�

2C�
and Im� > 0, then arg.�/ 2

�
� C �

2
; �
�
, the

operator ei.��arg.�//T is accretive and we apply the claims in (i) to ei.��arg.�//T

perturbed by ei.��arg.�//A at the point ei.��arg.�//�; analogously, we treat the case
that Im� < 0 replacing the rotating factor ei.��arg.�// by e�i.��arg.�//. We leave the
remaining simple details of deriving the claimed formulas in (ii) to the reader.

If more is known about the shape of the numerical range of T than being contained
in a half-plane or in a sector, then the following local perturbation result may be
applied to all rays perpendicular to supporting half-planes in boundary points of the
numerical range. Here, for � 2 .��;�� and r � 0, we denote the open ray emanating
from the point rei� with angle � by

Rr;� ´ ¹tei�
2 C j t > rº:

Lemma 5.3. Let T be a closed densely defined linear operator, � 2 C and � 2
.��; ��. Suppose A is T -bounded with T -bound < 1 and constants a, b � 0, b < 1,
as in (5.1). If .�CR0;�/ \W.T / D ; and

dist.�C tei� ; W.T // � t; t � 0; (5.3)

i.e. the ray �CR0;� is perpendicular to some line separating W.T / and �C R0;� .
Then

�CRaCbj�j
1�b

; �
� �ap.T C A/

and

k.T C A � �/�k �
1

.1 � b/ dist.�;W.T // � .aC bj�j/
; � 2 RaCbj�j

1�b
;�
:
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Figure 2. The blue hatched area shows S� for the indicated � 2
�
0; �
2

�
and the red area shows

the enclosure obtained for �ap.T C A/ via Theorem 5.1 in this situation for a D 1 and b D 1
2

.

Proof. The proof is analogous to the proof of Theorem 5.1 (i) if we show that the
operator�e�i�.T ��/ is accretive. Suppose the contrary, i.e. there is a z 2W.T /with

�Re.e�i�.z � �// < 0:

This implies that

j�C tei�
� zj2 � t2 D j� � zj2 � 2t Re.e�i�.z � �//! �1; t !1:

Thus there exists t0 > 0 such that

dist.�C tei� ; W.T // � j�C tei�
� zj < t; t � t0;

a contradiction to (5.3).

In order to establish analogous enclosures for essential spectra and corresponding
essential norm estimates of Moore–Penrose resolvents, we need two geometric lem-
mas relatingWe.T / andW.T /. The first one is a generalisation of [5, Proposition 2.4].

Lemma 5.4. Let T be an arbitrary linear operator. If �0 2 We.T / and there exists
�0 2 .��; �� with R´ �0 C ei�0 Œ0;1/ � W.T /, then R � We.T /.
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Remark 5.5. In [5, Proposition 2.4] it was assumed that R � W.T / rather than R �
W.T /. Note that parts of the proof of [5, Corollary 2.5] would have already required
the stronger result Lemma 5.4; thus, although its proof is similar to the one of [5,
Proposition 2.4], we sketch it here.

Proof of Lemma 5.4. After possible shift and rotation, we may assume, without loss
of generality, that �0 D �0 D 0, i.e.RD Œ0;1/. Let � > 0 be arbitrary. By assumption
0 2 W je.T / and hence there exists a normalised weakly null-sequence .xn/n2N �

D.T / such that .T xn; xn/! 0 as n!1. SinceR�W.T / there exists a normalised
sequence .yn/n2N � D.T / such that

.Tyn; yn/ D nC "n; n 2 N;

where ."n/n2N � C is a bounded sequence. Since xn
w
�! 0 as n!1, there exists a

strictly increasing sequence .nk/k2N � N with

j.yk; xnk /j <
1

k
; j.Tyk; xnk /j <

1

k
; k 2 N:

Further, we choose rk � 0 and �k 2 .��; �� so that

r2kk C rkj.T xnk ; yk/j D �; e�i�k .T xnk ; yk/ � 0; k 2 NI

note that then rk ! 0 as k !1. Hence, if we set

uk ´ xnk C rkei�kyk; vk ´
uk

kukk
; k 2 N;

then kukk ! 1 as k !1, .vk/k2N � D.T / is a normalised weakly null-sequence
and, noting that r2

k
"k ! 0 as k !1 since ."k/k2N is bounded, it is not difficult to

check that .T vk; vk/! � as k !1 and hence � 2 We.T /.

Recall that if T is bounded, then We.T / is a non-empty compact set. Examples
show, see e.g. [5, Examples 2.6 and 3.5], that if T is unbounded, then We.T / may be
empty or unbounded. Lemma 5.4 yields that either of these cases prevails.

Corollary 5.6. Let T be an arbitrary unbounded linear operator. Then

(i) W.T / is unbounded;

(ii) We.T / is either empty or unbounded.

Remark 5.7. For densely defined operators, claim (i) was shown in [37, Proposi-
tion 2.51], but we are not aware of a reference for the case without dense domain.

Proof of Corollary 5.6. (i) Set M ´ D.T / and consider the compression TM ´
PMT jM with D.TM / D D.T /. Then TM is densely defined in the Hilbert space
M and therefore W.T / D W.TM / is unbounded by [37, Proposition 2.51].
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(ii) Since W.T / is closed, convex and unbounded by (i), it contains some ray, see
e.g. [31, Theorem 8.4]. If We.T / ¤ ;, then We.T / therefore also contains some ray
by Lemma 5.4 and is thus unbounded as well.

Lemma 5.8. Let T be a linear operator with We.T / ¤ ; and

We.T / � HC D ¹z 2 C j Re z � 0º:

Then there exist � 2
�
�
�
2
; �
2

�
and � 2 C, Re� � 0, such that

W.T / � � C ei�HC:

Proof. In this proof we will frequently use the fact that if C � C is an unbounded
closed convex set, then for every z 2 C there exists a ray Rz emanating from z such
that Rz � C ; this follows e.g. from [31, Theorem 8.4].

Let �0 2 We.T /. Since We.T / ¤ C by assumption, it follows that W.T / ¤ C

by [5, Corollary 2.5]. If inf ReW.T / > �1, then the claim follows with � ´ 0 and
�´ min¹inf ReW.T /; 0º. So it remains to consider the case that W.T / ¤ C and
inf ReW.T / D �1.

Then there exists a sequence .�n/n2N �W.T / such that Re�n!�1 as n!1.
If s´ supn2N0 j Im�nj <1, then j�0j � s and

C0´ .RC iŒ�s; s�/ \ ¹z 2 C j Re z � Re�0º \W.T /

is an unbounded closed convex set with �0 2 C0 and .�n/n2N � C0. Hence, by [31,
Theorem 8.4], there exists a rayR emanating from �0 2C0 withR�C0. By definition
of C0, this ray must be of the form R D �0 C .�1; 0�. Now Lemma 5.4 implies that
R�We.T /, a contradiction toWe.T /�HC. Therefore sD supn2N0 j Im�nj D1 and
hence at least one of supn2N0 Im�n D 1 or infn2N0 Im�n D �1 prevails. Assume
that the first case holds. Then

CC´ ¹z 2 C j Im z � Im�0º \ ¹z 2 C j Re z � Re�0º \W.T /

is an unbounded closed convex set with �0 2 CC and .�n/n2N � CC. Hence, by
[31, Theorem 8.4], there exists a ray R emanating from �0 2 CC with R � CC. By
definition ofCC, this ray must be of the formRD�0C ei� Œ0;1/ for some � 2

�
�
2
;�
�
.

Now Lemma 5.4 yields that R � We.T /. If � > �
2

, this contradictsWe.T / �HC and
therefore � D �

2
, i.e.

R D �0 C iŒ0;1/ � We.T / � W.T /: (5.4)

Moreover, [31, Theorem 8.3] yields that Rn ´ .�n � �0/ C R D �n C iŒ0;1/ �
W.T / for n 2 N0. Let Ln � C, n 2 N0, be the vertical lines with Rn � Ln, n 2 N.
Suppose that there exists n0 2 N such that Ln0 � W.T /. Because �n 2 Rn � W.T /,
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n 2N, [31, Theorem 8.4] yields that Ln �W.T / for all n 2N0. Since Re�n!�1
as n!1, this implies that

¹z 2 C j Re z � Re�0º � W.T /:

Therefore and because Re �0 � 0, W.T / must be a left half-plane of the form
¹z 2C jRez � z0º for some z0 � 0. Then, by [5, Corollary 2.5],We.T / is a half-plane
as well andWe.T / � W.T /, a contradiction toWe.T / �HC. Hence Ln 6� W.T / for
all n 2 N0. This and �n 2 Ln for n 2 N0 imply that

Ln \ @W.T / ¤ ;; n 2 N0:

Let �n 2 Ln \ @W.T /, n 2 N0. Then

Re�n D Re�n; n 2 N0;

and hence Re�n!�1 as n!1. Next we show that supn2N Im�n D1. Suppose
the contrary, i.e. that Qs´ supn2N0 Im�n <1. Then

C�´ ¹z 2 C j Im z � Qsº \ ¹z 2 C j Re z � Re�0º \W.T /

is an unbounded closed convex set. Since �0 2C�, [31, Theorem 8.4] yields that there
exists a ray zR � C� emanating from �0 2 C�. By definition of C�, this ray must be
of the form zR D �0C ei Q� Œ0;1/ for some Q� 2

�
��;��

2

�
. Now Lemma 5.4 yields that

R � We.T /. If � < ��
2

, this contradicts We.T / � HC and therefore � D ��
2

. But
then we have L0 D R [ zR � W.T /, a contradiction to Ln 6� W.T / for all n 2 N0.
Hence supn2N0 Im�n D 1. Together with Re�n ! �1 as n!1, it follows that
there exists N 2 N with

Im�N > Im�0; Re�N < 0 � Re�0: (5.5)

SinceW.T / is closed and convex with �N 2 @W.T /, there exists a supporting hyper-
plane at �N by [24, Theorem 3.7.4], i.e. there is a � 2 .��; �� such that

W.T / � �N C ei�HC: (5.6)

Since �0 2 We.T / � W.T / and, by [31, Theorem 8.4] and (5.4), �N C iŒ0;1/ 2
W.T /. This yields that � 2 Œ0; ��. It is not difficult to check that the inequalities (5.5)
together with �N 2 @W.T / imply � 2

�
0; �

2

�
. This completes the proof in the case

supn2N0 Im�n D1.
In the case infn2N0 Im�n D�1, the proof is analogous and here (5.6) holds with

� 2
�
�
�
2
; 0
�
.
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Our next stability result generalises the general stability theorem for semi-Fred-
holm operators, see [18, Section 4, Theorem 1a] or [19, Theorem IV.5.22]. The latter
shows that if T is injective with closed range, i.e. 0 2 �ap.T / and hence 
.T / > 0, A
is T -bounded with T -bound < 1 and a, b � 0 in (5.1) with b < 1 satisfy

a < .1 � b/
.T /;

then T C A is injective with closed range, i.e., 0 2 �ap.T C A/. In analogy to the
proof of [19, Theorem IV.1.16], one can also show that in this case 
.T C A/ �
.1 � b/
.T / � a > 0 or, equivalently, see (3.3),

k.T C A/�k �
kT �k

.1 � b/ � akT �k
:

Proposition 5.9. Let T be a closed densely defined linear operator and let A be
T -bounded with T -bound < 1. Suppose that T is upper semi-Fredholm, i.e., 0 2
�e2.T / (so that 
e.T / > 0), and ae, be � 0, be < 1, are such that, for all normal-
ised weakly null-sequences .xn/n2N � D.T /,

lim sup
n!1

kAxnk � ae C be lim sup
n!1

kT xnk: (5.7)

If

ae < .1 � be/
e.T /; (5.8)

then T C A is upper-semi-Fredholm, i.e. 0 2 �e2.T C A/, with essential minimum
modulus 
e.T C A/ � .1 � be/
e.T / � ae > 0 or, equivalently,

k.T C A/�ke �
kT �ke

.1 � be/ � aekT �ke
: (5.9)

Remark 5.10. The constants ae and be in (5.7) can always be chosen equal to the
constants a, b in (5.1), but, since (5.7) is a weaker condition, they may also be chosen
differently to optimise the constants in the estimate (5.9).

Proof of Proposition 5.9. Since A has T -bound < 1, there exist a, b � 0, b < 1, sat-
isfying (5.1) and T C A is closed by [19, Theorem IV.1.1]. If .xn/n2N � D.T / is an
arbitrary normalised weakly null-sequence, then

.1 � b/kT xnk � a � k.T C A/xnk � .1C b/kT xnk C a; n 2 N: (5.10)

Hence lim infn!1 kT xnk D 1 if and only if lim infn!1 k.T C A/xnk D 1;
in particular, 
e.T / D 1 if and only if 
e.T C A/ D 1. Now let 
e.T / < 1

and .xn/n2N � D.T / be an arbitrary normalised weakly null-sequence such that
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lim infn!1 kT xnk < 1. Then there is a subsequence .xnk /k2N of .xn/n2N with
lim infn!1 kT xnk D limk!1 kT xnkk. Since A is T -bounded, .kAxnkk/k2N �C is
a bounded sequence and hence we may assume, upon choosing another subsequence,
without loss of generality that .kAxnkk/k2N converges in C. Then, by (5.7), (5.8),
and Proposition 3.3 (ii),

lim inf
n!1

k.T C A/xnk � lim inf
n!1

kT xnk � lim sup
n!1

kAxnk

D lim
k!1

kT xnkk � lim
k!1

kAxnkk

� .1 � be/ lim
k!1

kT xnkk � ae

� .1 � be/
e.T / � ae > 0:

By Proposition 3.3 (ii) and (i), this yields 
e.T CA/ > 0 and hence 0 2 �e2.T CA/ as
well as the estimate for 
e.T C A/ which, by Theorem 3.7, is equivalent to (5.9).

Now we are ready to prove our perturbation result for the essential spectrum of
type 2 and the essential approximate point spectrum, accompanied by essential norm
estimates for the Moore–Penrose resolvents of the perturbed operators.

Theorem 5.11. Let T be a closed densely defined linear operator, letA be T -bounded
with T -bound< 1 and a, b � 0, b < 1, as in (5.1), and let #b´ arctan b

1�b
2
�
0; �
2

�
.

(i) If We5.T / � HC D S�
2

, then

�e2.T C A/ � �
a

1 � b
C S�

2C#b

D

°
� 2 C

ˇ̌̌
Re� � �

a

1 � b
�

b

1 � b
j Im�j

±
and

k.T C A � �/�ke �
1

.1 � b/jRe�j � .aC bj Im�j/

for � … � a
1�b
C S�

2C#b
.

(ii) If We5.T / � S� with � 2
�
0; �

2

�
, then

�e2.T C A/ � B a
1�b

.0/ [
�
�

a

b cos � C .1 � b/ sin �
C S�C#b

�
D B a

1�b
.0/ [

°
� 2 C

ˇ̌̌
Re� � �

a

b cos � C .1 � b/ sin �

�
b sin � � .1 � b/ cos �
b cos � C .1 � b/ sin �

j Im�j
±

(5.11)
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and

k.T C A � �/�ke �
1

.1 � b/j�j � a

for � … .B a
1�b

.0/ [ S�
2C�

/, as well as

k.T C A � �/�ke �
1

d.�I a; b; �/
;

for � 2 S�
2C�
n
�
�

a
b cos �C.1�b/ sin � C S�C#b

�
, where

d.�I a; b; �/´ .1 � b/j cos � Im� � sin � Re�j

� .aC bj cos � Re�C sin � Im�j/:

If D.T /\D.T �/ is a core of T or the assumptions in (i) or (ii) hold withWe5.T /

replaced by (the possibly larger set) We.T /, then the respective claims in (i) or (ii)
hold with �e2.T C A/ replaced by (the possibly larger set) �eap.T C A/.

Remark 5.12. The claims in (i) are identical with the claims in (ii) if we allow � D �
2

there, compare Remark 5.2.

Proof of Theorem 5.11. (i) Let � 2 C with Re� < 0 and let .xn/n2N �D.T / be any
normalised weakly null-sequence. Then

k.T � �/xnk
2
D k.T � i Im�/xnk

2
C jRe�j2kxnk2

� 2Re�Re..T � i Im�/xn; xn/

D k.T � i Im�/xnk
2
C jRe�j2 � 2Re�Re..T xn; xn//: (5.12)

Suppose that supn2N kT xnk < 1. Since A is T -bounded, .kAxnkk/k2N � C is a
bounded sequence and hence we may assume, upon choosing another subsequence,
without loss of generality that there exists a subsequence .xnk /k2N � .xn/n2N such
that .T xnk /k2N is weakly convergent, .k.T � i Im�/xnkk/k2N converges in C and

lim
k!1

kAxnkk D lim sup
n!1

kAxnk <1;

lim
k!1

.T xnk ; xnk / D z 2 CI
(5.13)

note that then, by (5.12), .k.T � �/xnkk/k2N converges as well. Since T is closed,

its graph is also weakly closed, see e.g. [32, Theorem 3.12], and so T xnk
w
�! 0 as

k ! 1 as .xnk /k2N is a weakly null-sequence. Hence [14, Theorem 2.3] implies
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that z 2 We5.T /. By assumption, it then follows that Re z > 0 and thus, by (5.12)
and (5.13),

lim
k!1

k.T � i Im�/xnkk
2
� lim

k!1
k.T � i Im�/xnkk

2
C jRe�j2 � 2Re�Re z

D lim
k!1

k.T � �/xnkk
2
� lim sup

n!1
k.T � �/xnk

2:

imply that

lim sup
n!1

kAxnk D lim
k!1

kAxnkk

� aC b lim sup
k!1

kT xnkk

� .aC bj Im�j/C b lim
k!1

k.T � i Im�/xnkk

� .aC bj Im�j/C b lim sup
n!1

k.T � �/xnk:

Now suppose that supn2N kT xnk D 1. Since, by the two-sided estimate (5.10), this
is equivalent to supn2N kAxnk D 1, we have

lim sup
n2N

kT xnk D 1 () lim sup
n2N

kAxnk D 1:

Hence, in all cases, condition (5.7) of Proposition 5.9 holds for the operators T � �
and A with constants ae D a C bj Im �j and be D b therein. Now all claims in (i)
follow from Proposition 5.9 and from k.T C A � �/�ke D .
e.T C A � �//

�1, see
Theorem 3.7.

(ii) The proof of the case whereWe5.T / is contained in a sector follows by apply-
ing the claims in the case where We5.T / is contained in the closed right half-plane
in the very same way as the sectorial case (ii) in Theorem 5.1 was derived from the
accretive case (i) therein.

If D.T / \D.T �/ is a core of T , then We5.T / D We.T /. Hence to prove the last
claims, in both cases we can assume that even We.T / � We5.T / instead of We5.T /

satisfies the enclosures in (i) and (ii). So assume thatWe.T /� S� for some � 2
�
0; �
2

�
.

Then, since We5.T / � We.T / � S� , we infer from (i) or (ii), respectively, that

�� ´ C n
�
B a
1�b

.0/ [
�
�

a

b cos � C .1 � b/ sin �
C S�C#b

��
� �e2.T C A/:

(5.14)

Since the set�� is connected and the index is locally constant, See e.g. [19, Theorem
IV.5.31], it suffices, in view of Theorem 2.4, to find a connected set � � �e2.T C A/

with

� \�� ¤ ;; � \ �ap.T C A/ ¤ ;I (5.15)



N. Hefti and C. Tretter 1582

note that, since We.T / � S� does not imply that W.T / lies in some right half-plane,
compare Lemma 5.8, we cannot simply choose � D �� and use Theorem 4.1.

Assume first that We.T / D ;. Then Theorem 4.1 implies that 
e.T � �/ D 1

for all � 2 C and so �e2.T C A/ D C by Proposition 5.9. Since We.T / ¤ C,
[5, Corollary 2.5] yields W.T / ¤ C. Thus W.T / is contained in some closed half-
plane H. After some shift and rotation (which only change the constant a but leave
the relative bound b < 1 unchanged) we can assume without loss of generality that
HDHC. Applying Theorem 5.1 (i), we obtain that �ap.T CA/¤ ; and hence (5.15)
holds for �´ C.

Assume now thatWe.T /¤ ;. Then Lemma 5.8 applies and shows that there exist
�0 2

�
�
�
2
; �
2

�
and � 2 C with Re� � 0 such that

W.T / � �C ei�0HC: (5.16)

Because e�i�0A is relatively bounded with respect to e�i�0.T � �/ with constants
aC bj�j and b < 1, we can apply Theorem 5.1 to the accretive operator e�i�0.T ��/

to conclude that

ei�0
�
�1;�

aC bj�j

1 � b

�
C � � �ap.T C A/ (5.17)

Suppose that �0 � 0 and let � 2 Œ0; �0� be arbitrary; the case �0 � 0 is analogous.
Then, due to

We5.T / � We.T / � S� � HC

and We.T / � W.T /, by (5.16) we obtain that

We5.T � �/ � .HC � �/ \ ei�0HC � HC \ ei�0HC � ei�HC: (5.18)

By (5.18), we can apply claim (i) to the operator e�i�.T � �/ (e�i�A is relatively
bounded with respect to e�i�.T ��/with constants aC bj�j and b < 1) which yields

R� ´ ei�
�
�1;�

aC bj�j

1 � b

�
C � � �e2.T C A/:

Set �´
S
�2Œ0;�0�

R� � �e2.T C A/. Then � is clearly connected and satisfies

; ¤ R0 \�� � � \�� ; ; ¤ R�0 � � \ �ap.T C A/;

by (5.14) and (5.17), as required in (5.15).

Remark 5.13. There exists an essential version of Lemma 5.3 which may be used to
study perturbations of operators for which more is known on the shape of the essential
numerical range than just lying in a half-plane or a sector; in this case either W.T /
is replaced by We5.T / and, consequently, �ap.T / is replaced by �e2.T / or W.T / is
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replaced byWe.T / and, consequently, �ap.T / is replaced by �eap.T /. In either of those
cases, the norm of the Moore–Penrose resolvent is replaced by the essential norm of
the Moore–Penrose resolvent.

6. Numerical range lifting problem for unbounded operators

In this section we show that the numerical range lifting problem does not have a
solution for unbounded operators. This means that, unlike for bounded operators B
where there always exists a compact operatorK 2K.H/ withWe.B/DW.B CK/,
this is no longer true for unbounded operators.

In fact, we show that this property may fail even for normalm-sectorial operators.
A fortiori, we give an example of a normal m-sectorial operator T such that there
exists an open neighbourhood U ofWe.T / such thatW.T CK/ 6� U for all compact
operators K 2K.H/.

Example 6.1. Let IH denote the identity operator and let S be a self-adjoint semi-
bounded operator in a Hilbert space H with

W.S/ D Œ1;1/; We.S/ D ;I

e.g. we can chooseH D `2.N/ and SenD nen, n2N, with maximal domain D.S/D

¹x 2 `2.N/WSx 2 `2.N/º. Then the operator T ´ IH ˚ .S C iIH / inH 2DH ˚H ,
i.e.

T D

�
IH 0

0 S C iIH

�
; D.T /´ H ˚D.S/ � H 2;

is densely defined and closed. In the following we prove:

(i) T is normal;

(ii) W.T / D iŒ0; 1�C Œ1;1/ and T is m-sectorial with semi-angle �
4

;

(iii) We.T / D Œ1;1/;

(iv) there exists " > 0 with W.T C K/ 6� U" ´ .1 � ";1/C i.�"; "/ for all
K 2K.H/.

Proof. (i) It is easy to check that T is normal since S is self-adjoint and hence T � D
IH ˚ .S � iIH /.

(ii) It is straightforward to check that W.S C iIH / D iC Œ1;1/. Thus

W.T / D conv.W.I / [W.S C iI // D conv.¹1º [ .iC Œ1;1/// D Œ1;1/C iŒ0; 1�:

Hence T is sectorial with semi-angle �
4

. Moreover, it is obvious that 0 2 �.T / and
hence �.T / � W.T /, which shows that T is m-sectorial.
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(iii) Suppose � D aC ib 2 We.T / with b ¤ 0. Then a 2 Œ1;1/, b 2 .0; 1� since
We.T / � W.T / D Œ1;1/C iŒ0; 1� by (ii) and there exists a normalised weakly null-
sequence .vn/n2N D ..xn; yn/

t /n2N � D.T / such that

.T vn; vn/ D kxnk
2
C ikynk2 C .Syn; yn/! � D aC ib; n!1: (6.1)

Hence kynk2 ! b > 0 and so
�
yn
kynk

�
n2N
� D.S/ is a normalised weakly null-

sequence. Since S is self-adjoint and semi-bounded with We.S/ D ;, it follows that
.Syn; yn/!1, a contradiction to (6.1). Hence We.T / � Œ1;1/. Since, obviously,
¹1º D We.IH / � We.T / and Œ1;1/ � W.T / by (ii), [5, Proposition 2.4] or also
Lemma 5.4, respectively, yield that We.T / D Œ1;1/.

(iv) Suppose that (iv) is false. Then for all " > 0 there exists K" 2K.H/ with

W.T CK"/ � U" D .1 � ";1/C i.�"; "/:

Let " > 0 and v D .P1v; P2v/
t 2 D.T / with kvk D 1 be arbitrary, where P1 and

P2 denote the orthogonal projections inH 2 ontoH ˚ ¹0º and ¹0º ˚H , respectively.
Since K" is compact, the self-adjoint operators ReK" D 1

2
.K" CK

�
" / and ImK" D

1
2i .K" �K

�
" / are compact as well. Then, for all " > 0,

j Im...T CK"/v; v//j D jkP2vk2 C .ImK"v; v/j

D j..P2 C ImK"/v; v/j < ": (6.2)

Since ImK" and P2 (as an orthogonal projection) are self-adjoint, P2 C ImK" is
self-adjoint as well. Hence, (6.2) and the fact that D.T / is dense in H imply that

kP2 C ImK"k D sup
v2D.T /; kvkD1

j..P2 C ImK"/v; v/j � ": (6.3)

Inequality (6.3) shows that ImK"!P2 uniformly as "& 0. Since ImK" are compact
for all " > 0, it follows that P2 is compact as well, a contradiction because P2 D
0˚ IH is a non-zero infinite-rank orthogonal projection.

Remark 6.2. It may not be obvious why the unboundedness of T in Example 6.1
is necessary. However, it is essential that We.S/ D ; which is impossible if S is
bounded. Indeed, it is easy to check that if we replace S in Example 6.1 with any
(bounded or unbounded) self-adjoint operator such that W.S/ � Œ1;1/ and �0 2
We.S/, then claim (iv) continues to hold, but it is no longer a contradiction to the
numerical range lifting problem because iC �0 2 We.T / and hence We.T / 6� U" for
" < 1. E.g. if ; ¤ We.S/ D Œ�0; �1� � W.S/ � Œ1;1/, then We.T / is the triangle
with vertices 1, �0 C i and �1 C i.



Essential norm resolvent estimates and essential numerical range 1585

7. Essential norm of C0-semigroups and essential growth bounds

In this last section we derive estimates of the essential norm of C0-semigroups
with generator �T for which T is quasi-m-accretive and we obtain a criterion for
a C0-semigroup to be quasi-compact.

Recall that if T is quasi-m-accretive, i.e. its numerical range lies in some left half-
plane and T is m-accretive, then �T generates a C0-semigroup .�.t//t�0. A simple
application of the Lumer–Philipps theorem, see [12, Theorem II.3.15], shows that

k�.t/k � e�tˇ.T /; t > 0; (7.1)

where ˇ.T / is given by

ˇ.T /´ inf ReW.T /:

Furthermore, a C0-semigroup .�.t//t�0 is called quasi-compact, see e.g. [12, Defini-
tion V.3.4], if

lim
t!1
k�.t/ke D 0: (7.2)

In order to estimate the essential norm of .�.t//t�0, we introduce the essential
analogue of the quantity ˇ.T / by setting, for an arbitrary linear operator T ,

ˇe.T /´ inf
.xn/n2N2E.T /

lim inf
n!1

Re.T xn; xn/; (7.3)

where E.T / is the set of all normalised weakly null-sequences, see Proposition 3.3.
Clearly,

ˇ.T / � ˇe.T / � inf ReWe.T / (7.4)

and both inequalities may be strict. Especially for the second inequality in (7.4), we
give an example for strict inequality, see Example 7.4 below, and we establish criteria
for equality, see Proposition 7.3.

Theorem 7.1. Let T be a quasi-m-accretive linear operator in H and let .�.t//t�0
be the associated C0-semigroup generated by �T . Then

k�.t/ke � e�tˇe.T /; t > 0I (7.5)

in particular, if ˇe.T / > 0, then .�.t//t�0 is quasi-compact.

Proof. Let t0 > 0 be arbitrary. If k�.t0/ke D 0, then there is nothing to show. If
k�.t0/ke > 0, then, because D.T / is dense and thus a core for the bounded oper-
ator �.t0/, it is easy to see that, by (3.6) and a standard diagonal sequence argument,
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there exists a normalised weakly null-sequence .xn/n2N � D.T / with k�.t0/xnk !
k�.t0/ke as n!1. Since �T is the generator of .�.t//t�0, the function yn.t/´
�.t/xn is the unique classical solution of the abstract Cauchy problem´

y0n.t/ D �Tyn.t/; t > 0;

yn.0/ D xn;
(7.6)

see e.g. [12, Proposition II.6.2], i.e. the function yn is differentiable on .0;1/ and
satisfies (7.6). Next we show that lim infn!1 kyn.t/k > 0, t 2 Œ0; t0�; otherwise, if
we had lim infn!1 kyn.t/k D 0 for some t 2 .0; t0/, then also

k�.t0/ke D lim inf
n!1

k�.t0/xnk D lim inf
n!1

k�.t0 � t /�.t/xnk

D lim inf
n!1

k�.t0 � t /yn.t/k D 0;

a contradiction to k�.t0/ke > 0. Thus, upon choosing subsequences, the sequences

.vn.t//n2N ´

� yn.t/

kyn.t/k

�
n2N
� D.T /; t 2 Œ0; t0�;

are normalised weakly null-sequences. Moreover, by (7.6) we have, for t 2 Œ0; t0� and
n 2 N,

d
dt
kyn.t/k

2
D 2Re.y0n.t/; yn.t// D �

2Re.Tyn.t/; yn.t//
kyn.t/k2

kyn.t/k
2;

and, therefore,

d
dt

ln kyn.t/k D
d
dt kyn.t/k

kyn.t/k

kyn.t/k

kyn.t/k
D

1
2

d
dt kyn.t/k

2

kyn.t/k2
D �

Re.Tyn.t/; yn.t//
kyn.t/k2

:

Hence, noting that kxnk D kyn.0/k D 1, we can write

k�.t0/xnk D kyn.t0/k D exp
�
�

t0Z
0

Re.Tyn.t/; yn.t//
kyn.t/k2

dt
�
; n 2 N: (7.7)

Now we set f .t/´ lim infn!1 fn.t/ 2 Œˇe.T /;1�, t 2 Œ0; t0�, where

fn.t/´
Re.Tyn.t/; yn.t//
kyn.t/k2

2 Œˇ.T /;1/; t 2 Œ0; t0�:

Then, by (7.7) and Fatou’s lemma,

k�.t0/ke D lim
n!1

k�.t0/xnk D lim sup
n!1

k�.t0/xnk

D exp
�
� lim inf

n!1

t0Z
0

fn.t/dt
�
� exp

�
�

t0Z
0

f .t/dt
�
� exp. � t0ˇe.T //;
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which proves (7.5) since t0 > 0 was arbitrary. If ˇe.T / > 0, then (7.5) immediately
yields that limt!1 k�.t/ke D 0, i.e. .�.t//t�0 is quasi-compact, see (7.2).

Theorem 7.1 gives some information on the so-called growth bound !.�T / and
essential growth bound !e.�T / of the C0-semigroup .�.t//t�0 with generator �T
which may be defined as

!.�T /´ inf
t>0

1

t
log k�.t/k; !e.�T /´ inf

t>0

1

t
log k�.t/ke;

see [12, Definition I.5.6, Proposition IV.2.2, and Definition IV.2.9]; in fact, !.�T / is
the infimum of all ! 2 R so that there exists M! � 1 with k�.t/k � M!et! , t � 0.
It is well known that !.�T / is related to the so-called spectral bound s.�T / of �T
defined as

s.�T /´ sup
�2�.�T /

Re� D � inf
�2�.T /

Re.�/;

see [12, Definition IV.2.1], via the formula

!.�T / D max
®
s.�T /; !e.�T /

¯
;

see [12, Corollary IV.2.11] or [27, Section 2.3]. The next corollary yields a new suffi-
cient condition for the so-called spectral growth bound condition !.�T / D s.�T /.

Corollary 7.2. Let T be quasi-m-accretive. Then

!e.�T / � �ˇe.T /; !.�T / � max¹s.�T /;�ˇe.T /ºI

in particular, if ˇe.T / D 1, the spectral growth bound condition !.�T / D s.�T /
holds.

Finally, we give a criterion for equality in ˇe.T / � inf ReWe.T /, see (7.4).

Proposition 7.3. Let T be an arbitrary linear operator withWe.T /¤ ;. Assume that
W.T / or, equivalently, We.T / does not contain any vertical ray. Then

ˇe.T / D inf ReWe.T /I (7.8)

in particular, (7.8) holds if T is quasi-sectorial.

Proof. SinceWe.T /¤ ;, Lemma 5.4 implies thatW.T / contains a vertical ray if and
only ifWe.T / does. If inf ReWe.T /D�1, then the claim follows from the inequality
ˇe.T / � inf ReWe.T /. If T is bounded, the claim follows trivially. So suppose that
T is unbounded. If inf ReWe.T / > �1, then

We.T / � ¹z 2 C j Re z � inf ReWe.T /º ¤ C; (7.9)
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and hence We.T / ¤ C. By [5, Corollary 2.5] it follows that W.T / ¤ C. If W.T /
is a half-plane, then so is We.T / by [5, Corollary 2.5]. Then, due to (7.9) and since
W.T / � We.T /, we obtain

W.T / D ¹z 2 C j Re z � ˇ.T /º;

a contradiction to the assumption that W.T / does not contain any vertical ray. If
W.T / is a strip or a line, then so is We.T / by [5, Corollary 2.5]. Thus (7.9) and
W.T / � We.T / yield that

W.T / D ¹z 2 C j ˇ.T / � Re z � sup ReW.T /º;

again a contradiction to the assumption that W.T / does not contain any vertical ray.
Altogether, W.T / is neither C, nor a half-plane, nor a strip or a line. Because W.T /
is convex, and hence the intersection of all its supporting half-planes, it must be con-
tained in a sector. Moreover, sinceW.T / does not contain any vertical rays, this sector
can be chosen to be of the form

W.T / � ¹z 2 C j j arg.z � ˇ/j � �º or W.T / � ¹z 2 C j j arg.�z C ˇ/j � �º

for some ˇ 2R and � 2
�
0; �
2

�
. In the second case, (7.9) yields thatWe.T / is bounded.

However, since We.T / ¤ ; by assumption and T is unbounded, Corollary 5.6 yields
that We.T / must be unbounded, a contradiction. Hence we have W.T / � ¹z 2 C j

j arg.z � ˇ/j � �º.
By definition of ˇe.T / in (7.3) and a standard diagonal sequence argument, there

is a normalised weakly null-sequence .xn/n2N � D.T / such that Re ..T xn; xn//&
ˇe.T /, n!1. SinceW.T /� ¹z 2C j jarg.z �ˇ/j � �º, it follows that the sequence
.j Im.T xn; xn/j/n2N is bounded. Hence, by passing to a subsequence .xnk /k2N , we
have limk!1.T xnk ; xnk/ 2 We.T / and hence ˇe.T / D inf ReWe.T /.

The next example shows that Theorem 7.1 is sharp. In fact, if W.T / or, equival-
ently, We.T / contains vertical rays, then the strict inequality ˇe.T / < inf ReWe.T /

may hold and the semigroup decay (7.5) need not hold with ˇe.T / replaced by the
quantity inf Re We.T /.

Example 7.4. Let IH denote the identity operator and let S be a self-adjoint semi-
bounded operator in a Hilbert space H with

W.S/ D Œ1;1/; We.S/ D ;:

e.g., we can choose H D `2.N/ and Sen D nen, n 2 N,

D.S/ D ¹x 2 `2.N/ j Sx 2 `2.N/º:
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Then the operator T ´ IH ˚ i.S � IH / in H 2 D H ˚H , i.e.

T D

�
IH 0

0 i.S � IH /

�
; D.T /´ H ˚D.S/ � H 2;

is densely defined and closed. In the following, we prove:

(i) T is normal;

(ii) W.T / D Œ0; 1�C iŒ0;1� and T is m-accretive;

(iii) We.T / D 1C iŒ0;1/ and hence inf ReWe.T / D 1;

(iv) ˇ.T / D ˇe.T / D 0;

(v) the C0-semigroup .�.t//t�0 generated by �T is not quasi-compact, more
precisely, k�.t/ke D k�.t/k D 1 D e�tˇe.T /, t � 0, i.e. the decay in (7.5)
is sharp.

Proof. (i) and (ii) follow similarly to claims (i) and (ii) in Example 6.1, respectively.

(iii) Clearly, 1 2We.IH /�We.T /. Hence, by claim (ii) and Lemma 5.4, it follows
that 1C iŒ0;1/ � We.T /. To prove the reverse inclusion, assume that � D aC ib 2
We.T /.� W.T //. Then a 2 Œ0; 1� by (ii) and there exists a normalised weakly null-
sequence .vn/n2N D ..xn; yn/

t /n2N � D.T / with

.T vn; vn/ D kxnk
2
C i.Syn; yn/ � ikynk2 ! � D aC ib; n!1: (7.10)

If lim infn!1 kynk > 0, then
�
yn
kynk

�
n2N
� D.S/ is a normalised weakly null-se-

quence. Since We.S/ D ; and S is semi-bounded, we obtain that .Syn; yn/ ! 1
as n! 1, a contradiction to (7.10) because kynk � 1, n 2 N. Hence, by passing
to a subsequence, we can assume without loss of generality that yn ! 0 as n!1.
Since .vn/n2N is normalised, this implies that kxnk ! 1 as n!1. Inserting this
into (7.10) yields a D 1, which proves the claim.

(iv) By claim (ii), we obtain 0D ˇ.T / � ˇe.T /. Let .yn/n2N �D.S/ be a norm-
alised weakly null-sequence and define vn´ .0;yn/

t , n 2N. Then .vn/n2N �D.T /

is a normalised weakly null-sequence as well and Re.T vn; vn/ D 0, n 2 N. Now, by
the definition of ˇe.T / in (7.3) and since ˇe.T / � 0, it follows that ˇe.T / D 0.

(v) It is easy to see that the C0-semigroup generated by �T is given by

�.t/

�
x

y

�
D

��
.e�txn/n2N

.U.t/yn/n2N

��
x D .xn/n2N ; y D .yn/n2N 2 `

2.N/; t � 0;

where U.�/ is the C0-semigroup in the Hilbert space H generated by �i.S � IH /.
Since S � IH is self-adjoint, U.�/ extends to a C0-group of unitary operators by
Stone’s theorem, see e.g. [12, Theorem 3.24]. If .en/n2N �H is any orthonormal sys-
tem, then the sequence .yn/n2N ´ .U.�t /en/n2N , is an orthonormal system as well
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because U.�t / is unitary, thus, in particular, it is a normalised weakly null-sequence.
Applying (3.6), we readily see that

k�.t/ke � lim sup
n!1





�.t/� 0yn
�



 D lim sup

n!1





� 0

U.t/U.�t /en

�



 D 1; t � 0: (7.11)

Since ˇ.T / D 0, we have k�.t/k � e�tˇ.T / D 1 by (7.1) and hence, together with
(7.11), k�.t/k D k�.t/ke D 1 for t � 0.

Funding. The authors gratefully acknowledge the support of Schweizer National-
fonds (SNF) through grant 200021_204788 for funding the PhD position within which
this work could be realised.

References

[1] W. Arendt and I. Chalendar, Essentially coercive forms and asymptotically compact
semigroups. J. Math. Anal. Appl. 491 (2020), no. 2, article no. 124318 Zbl 1520.47010
MR 4123236

[2] O. F. Bandtlow, Estimates for norms of resolvents and an application to the perturbation
of spectra. Math. Nachr. 267 (2004), 3–11 Zbl 1056.47004 MR 2047381

[3] A. Ben-Israel and T. N. E. Greville, Generalized inverses. Theory and applications. 2nd
edn., CMS Books Math./Ouvrages Math. SMC 15, Springer, New York, 2003
MR 1987382 Zbl 1026.15004

[4] S. Bögli, Local convergence of spectra and pseudospectra. J. Spectr. Theory 8 (2018),
no. 3, 1051–1098 Zbl 1500.47011 MR 3831156

[5] S. Bögli, M. Marletta, and C. Tretter, The essential numerical range for unbounded linear
operators. J. Funct. Anal. 279 (2020), no. 1, article no. 108509 Zbl 1505.47007
MR 4083777

[6] R. Bouldin, The essential minimum modulus. Indiana Univ. Math. J. 30 (1981), no. 4,
513–517 Zbl 0483.47015 MR 0620264

[7] J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert
space. Ann. of Math. (2) 42 (1941), 839–873 Zbl 0063.00692 MR 0005790

[8] S. N. Chandler-Wilde and E. A. Spence, Coercivity, essential norms, and the Galerkin
method for second-kind integral equations on polyhedral and Lipschitz domains. Numer.
Math. 150 (2022), no. 2, 299–371 Zbl 1486.31004 MR 4382583

[9] R. Corso, Maximal operators with respect to the numerical range. Complex Anal. Oper.
Theory 13 (2019), no. 3, 781–800 Zbl 1480.47016 MR 3940390

[10] E. B. Davies, Pseudospectra of differential operators. J. Operator Theory 43 (2000), no. 2,
243–262 Zbl 0998.34067 MR 1753408

[11] D. E. Edmunds and W. D. Evans, Spectral theory and differential operators. Oxford Math.
Monogr., The Clarendon Press, Oxford University Press, New York, 1987
Zbl 0628.47017 MR 0929030

https://doi.org/10.1016/j.jmaa.2020.124318
https://doi.org/10.1016/j.jmaa.2020.124318
https://zbmath.org/?q=an:1520.47010
https://mathscinet.ams.org/mathscinet-getitem?mr=4123236
https://doi.org/10.1002/mana.200310149
https://doi.org/10.1002/mana.200310149
https://zbmath.org/?q=an:1056.47004
https://mathscinet.ams.org/mathscinet-getitem?mr=2047381
https://doi.org/10.1007/b97366
https://mathscinet.ams.org/mathscinet-getitem?mr=1987382
https://zbmath.org/?q=an:1026.15004
https://doi.org/10.4171/JST/222
https://zbmath.org/?q=an:1500.47011
https://mathscinet.ams.org/mathscinet-getitem?mr=3831156
https://doi.org/10.1016/j.jfa.2020.108509
https://doi.org/10.1016/j.jfa.2020.108509
https://zbmath.org/?q=an:1505.47007
https://mathscinet.ams.org/mathscinet-getitem?mr=4083777
https://doi.org/10.1512/iumj.1981.30.30042
https://zbmath.org/?q=an:0483.47015
https://mathscinet.ams.org/mathscinet-getitem?mr=0620264
https://doi.org/10.2307/1968771
https://doi.org/10.2307/1968771
https://zbmath.org/?q=an:0063.00692
https://mathscinet.ams.org/mathscinet-getitem?mr=0005790
https://doi.org/10.1007/s00211-021-01256-x
https://doi.org/10.1007/s00211-021-01256-x
https://zbmath.org/?q=an:1486.31004
https://mathscinet.ams.org/mathscinet-getitem?mr=4382583
https://doi.org/10.1007/s11785-018-0805-6
https://zbmath.org/?q=an:1480.47016
https://mathscinet.ams.org/mathscinet-getitem?mr=3940390
https://zbmath.org/?q=an:0998.34067
https://mathscinet.ams.org/mathscinet-getitem?mr=1753408
https://doi.org/10.1093/oso/9780198812050.001.0001
https://zbmath.org/?q=an:0628.47017
https://mathscinet.ams.org/mathscinet-getitem?mr=0929030


Essential norm resolvent estimates and essential numerical range 1591

[12] K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations. Grad.
Texts in Math. 194, Springer, New York, 2000 Zbl 0952.47036 MR 1721989

[13] P. A. Fillmore, J. G. Stampfli, and J. P. Williams, On the essential numerical range,
the essential spectrum, and a problem of Halmos. Acta Sci. Math. (Szeged) 33 (1972),
179–192 Zbl 0246.47006 MR 0322534

[14] N. Hefti and C. Tretter, Essential numerical range and C -numerical range for unbounded
operators. Studia Math. 264 (2022), no. 3, 305–333 Zbl 1506.47009 MR 4416023

[15] N. Hefti and C. Tretter, Essential norm resolvent estimates and essential numerical range
of operator functions. Preprint, 2024

[16] B. Helffer, J. Sjöstrand, and J. Viola, Discussing semigroup bounds with resolvent estim-
ates. Integral Equations Operator Theory 96 (2024), no. 1, article no. 5 Zbl 07812578
MR 4706076

[17] R. B. Holmes and B. R. Kripke, Best approximation by compact operators. Indiana Univ.
Math. J. 21 (1971), 255–263 Zbl 0228.41005 MR 0296659

[18] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators.
J. Analyse Math. 6 (1958), 261–322 Zbl 0090.09003 MR 0107819

[19] T. Kato, Perturbation theory for linear operators. Classics in Mathematics, Springer,
Berlin, 1995 Zbl 0836.47009 MR 1335452

[20] S. G. Kreı̆n, Linear differential equations in Banach space. Transl. Math. Monogr., 29,
American Mathematical Society, Providence, RI, 1971 Zbl 0229.34050 MR 0342804

[21] C. S. Kubrusly, Spectral theory of bounded linear operators. Birkhäuser/Springer, Cham,
2020 Zbl 1454.47001 MR 4292537

[22] J.-P. Labrousse, Inverses généralisés d’opérateurs non bornés. Proc. Amer. Math. Soc. 115
(1992), no. 1, 125–129 Zbl 0758.47001 MR 1079701

[23] J.-P. Labrousse and M. Mbekhta, Les opérateurs points de continuité pour la conorme et
l’inverse de Moore–Penrose. Houston J. Math. 18 (1992), no. 1, 7–23 Zbl 0779.47002
MR 1159435

[24] I. E. Leonard and J. E. Lewis, Geometry of convex sets. John Wiley & Sons, Hoboken, NJ,
2016 Zbl 1344.52001 MR 3497790
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