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Homology of strict polynomial functors over IF,-linear
additive categories

Aurélien Djament and Antoine Touzé

Abstract. We generalize the strong comparison theorem of Franjou, Friedlander, Scorichenko, and
Suslin to the setting of [Fp-linear additive categories. Our results have a strong impact in terms of
explicit computations of functor homology, and they open the way to new applications to stable
homology of groups or to K-theory. As an illustration, we prove comparison theorems between
cohomologies of classical algebraic groups over infinite perfect fields, in the spirit of a celebrated
result of Cline, Parshall, Scott, and van der Kallen for finite fields.

1. Introduction

Let k be a perfect field of positive characteristic. The category $ of strict polynomial
functors over k was originally introduced by Friedlander and Suslin as a key ingredient in
their study of the cohomology of finite group schemes [12,32,33]. The objects of this cat-
egory are functors from the category of finite-dimensional k-vector spaces to the category
of k-vector spaces, having a ‘base change structure’. Typical examples are the symmetric
powers S¢, the exterior powers A, or the Schur functors of Akin Buchsbaum and Wey-
man [1]. Strict polynomial functors are an avatar of classical representation theory; for
example, computing Ext in % is equivalent to computing Ext in the category of modules
over classical Schur algebras (as e.g., in [15]).

We denote by Vi the category of finitely generated k-vector spaces and, following a
traditional notation for ‘rings with several objects’, we denote by k[V;]-Mod the category
of all functors from Vy to all vector spaces. Forgetting the base change structure of a strict
polynomial functor provides a functor (which is an embedding if k is infinite):

Pre — k[Vi]-Mod.

Given a pair of strict polynomial functors F and G, a natural question is to compare the
extensions Ext*(F, G) computed in $; with those computed in k[V]-Mod. The arti-
cles [10,23] tackled this question when k is a finite field. Let F ) denote the composition
of a strict polynomial functor F with the r-th Frobenius twist functor 7. Then there is
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a increasing sequence of Ext-groups:
s Eth;ak(F(r), G(r)) s Ethok (F(H'l), G(r+1)) s ...

In analogy with the terminology used for representations of algebraic groups [4], the col-
imit of this sequence is called the generic extensions between F and G and it is denoted by
Ext;‘en(F , G). The following fundamental result is called the strong comparison theorem
in [10].

Theorem (strong comparison theorem). Ifk is a finite field of cardinality greater than the
degrees of F and G, there is a graded isomorphism:

Extge,(F, G) = Extyy (F. G).

The interest of this theorem lies in the fact that Extg,,(F, G) is better understood than
Ext; Vi) (F,G).In [10], the strong comparison theorem was successfully used to calculate
the latter when F and G are symmetric, exterior or divided powers and k is finite. Later
works [3, 36, 38] have given formulas which show remarkable properties of generic Ext
(over an arbitrary field k), allowing many further Ext computations in [, [V, ]-Mod.

The structure of the category k[Vi]-Mod becomes significantly more complicated
when k is an infinite field. Suslin wrote in [10, App., p. 717] that the Ext in k[V;]-Mod
‘do not seem to be computable unless we are dealing with finite fields’. Our first main
result bridges the gap between the familiar world of finite fields and the unknown world
of infinite fields. Its simplicity may come as a surprise, given the much higher complexity
of k[Vg]-Mod over infinite fields k.

Theorem 1. Let k be an infinite perfect field of positive characteristic. For all strict poly-
nomial functors F and G, there is a graded isomorphism:

Extg.,(F, G) = Extyy (F. G).

(See Theorem 7.4 for a more precise statement of Theorem 1.)

Since generic Ext are well understood, Theorem | gives a quick access to the Ext
computations in k[Vg]-Mod. As an illustration, we obtain in Theorem 8.2 the infinite
field analogue of the Ext-computations of [10] and we also give further new computations
in Theorem 8.4.

The proof of Theorem 1 is quite long and indirect. We deduce it from a more general
comparison theorem, which holds when the category Vy of finite-dimensional k-vector
spaces is replaced by a more general additive category +. In this general context, it is more
convenient to work with Tor-groups rather than with Ext-groups. To be more specific, keep
our field k of positive characteristic, and assume that:

* A is an additive F-linear category over a subfield F C k,
e AP — k-Mod and p: A — k-Mod are F-linear functors,

* F,G:V; — k-Mod are strict polynomial functors over k.
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We denote by p* G the composition of G and p. If p has infinite-dimensional values then
we make sense of this composition by replacing G by its left Kan extension G to all vector
spaces:

0p*G =G op.

Functors of this form are important building blocks of the category k[4]-Mod of all
functors from 4 to k-vector spaces. For example, all the simple functors with finite-
dimensional values are tensor products of such functors, at least if k is algebraically
closed, see [7, Thm 5.5]. Similarly the composition 7* F of F and m yields an object
of the category Mod-k[+)] of all functors from A°P to k-vector spaces. A natural question
is to try to compute Tor*"™ (z* F, p*G). Let Dy, p 1 V¥ — k-Mod be the k-linear functor
defined by

Dz p(v) := Homy (v, T ®k[A] P)-
In the main body of the article, we construct a map for every degree i
Torf[‘A’](n*F, p*G) — Tor;" (D} ,F.G) (1.1)

where Tor§ " is the Tor-analogue of the generic Ext of Theorem 1. Note that the source
of the comparison map (1.1) consists of mysterious Tor-groups which are out of reach of
computation, while its target consists of relatively well understood Tor-groups, which can
be computed in terms of Tor over classical Schur algebras.

Our second result is a connectivity result for this comparison map, thereby giving a
way to compute ToriM’] (t*F, p*G). The Tor’i®Z'A’ appearing in the homological van-
ishing condition refers to the Tor-groups calculated in the category of additive functors,
as opposed to Tor]i['A’] which are calculated in the category of all functors. The relation
between the two is well understood by [6].

Theorem 2. Assume that the cardinality of F is greater than the degrees of F and G, and
that

k®z A .
Tor; “**(m,p) =0 for0<i <e.
Then the map (1.1) is an isomorphism if 0 < i < e, and surjective if i = e.

(See Theorem 7.1 for a more precise statement of Theorem 2.)

The condition on the size of ' in Theorem 2 can be removed (i.e., we can take F
smaller than the degrees of F' and (), but the price to pay is that the comparison map (1.1)
has to be modified in order to take into account the too small size of IF, in particular D ,
has to be replaced by a similar, but more complicated, k-linear functor. This leads to
our generalized comparison theorem, which is the main comparison result of the paper.
We refer the reader to Theorem 6.1 for the exact statement. Let us only point out here
the counter-intuitive fact that the case of the very small field F = [F,, in our generalized
comparison theorem is the key to prove Theorem 2 for infinite I, hence to finally prove
Theorem 1.
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Consequences for the stable homology of general linear groups

Our motivation to study homological algebra in functor categories is the close relations
with the stable cohomology of GL, (R). To be more specific, let Pg be the category of
finitely generated projective right R-modules over aring R. If T:Pr — k-Mod is a func-
tor, the vector space T (R") is naturally endowed with an action of GL, (R), and taking
the colimit on n yields a left k-linear representation T, of the infinite general linear group
GL (R). Similarly every functor 7’: Py — k-Mod induces a right k-linear representa-
tion T, which may be viewed as a left k-linear representation by letting each element g
of GLso(R) actas g~ 1.

It is known that when 7" = 7n*F and T = p*G with 7, p, F and G as above, and if
the ring R has a finite stable rank, the canonical morphism:

H, (GLA(R): T'(R") ® T(R")) — Hx(GLoo(R): T3, ® Too) (1.2)

is an isomorphism in low degrees (with an explicit isomorphism range, increasing linearly
with n), see [8,40] or [29]. The right-hand side may be therefore referred to as the stable
homology of GL, (R).

Now it follows from [5] that when 7/ = 7* F and T = p*G, there is an isomorphism
for all rings R (even when no stable rank hypothesis is satisfied):

Hoo(GLoo(R); Ty ®% Too) ~ Hu( GLoo(R); k) @ TorkPRI(T7, T).  (1.3)

Thus our results actually give access to the homology of general linear groups with non-
trivial coefficients (modulo the knowledge of the homology with trivial coefficients).

We illustrate the computational applicability of our results with concrete homologi-
cal computations in Section 8.2. For instance, let Ry, denote the right R-module with
countable basis (e;);>1 and with left action of GL(R) given by matrix multiplication
laij] - ej := [aijle; = ), aije;, and let R, be its stable dual, that is, the same R-
module with action of GLo,(R) given by multiplication by transposed inverse matrices:
A-v:= (A"YHTv. If R is a k-algebra, then Ry and R/ can be regarded as k-linear rep-
resentations of GL(R) and we can consider the d -th exterior power (over k) on a direct
sum of copies of these representations:

A = AR @ @Ry ® Roo -+ ® Roo).
—_—— ———
£ copies m copies

Example 3. Assume that k& is an infinite perfect field of positive characteristic, and
that R is a k-algebra. Then for all nonnegative integers d, the graded k-vector space
H4«(GLw(R); Afm) is zero if d is odd, and if d is even it is isomorphic to

Ha (GLoo(R); k) ®k S4/*(Tym)

where S4/2(Ty,,) is %-th symmetric power of the graded k-vector space Ty, which equals
Hompg (R™, R‘) in degree 2i for all i > 0, and which is zero in the other degrees.
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Rational versus discrete cohomology of classical groups

Besides their computational power, our results also have theoretical consequences. We
single out an application to the cohomology of classical groups in Section 9. Namely, if G
is an algebraic group over k, we denote by Extg, (V, W) its algebraic group cohomology
as in [17] and by Extg; (V, W) the cohomology of its underlying discrete group of k-points
as in [2]. These two cohomologies are related by a comparison map:

Extg (V, W) — Extg (V, W).

Assume that G is defined over the prime subfield I, of k. Restricting a representation V'
along the Frobenius group morphism ¢ : G — G yields the twisted representation V1.
If k is perfect, ¢ is an isomorphism in the category of discrete groups, so the comparison
map becomes:

Extt (VI wlly — Extg (v, wlly ~ Exth (v, w). (%)

If G is reductive (e.g., G = GL,(k)), the left-hand side does not depend on 7 in low
degrees if r is big enough, and it is called the generic extensions of G. A celebrated
theorem of Cline, Parshall, Scott and van der Kallen [4, Main Thm. 6.6] shows that if k is
a big finite field, r is big enough and G is split over [F,,, the map () is an isomorphism in
low degrees (the isomorphism range grows with the size of k).

As an application of Theorem 1, we prove a similar result for infinite perfect fields k
when G = GL, (k) in Theorem 9.1.

Theorem 4. Assume that the perfect field k is infinite, and that V and W are two polyno-
mial representations of G = GL,, (k) of degrees less or equal to d. Let r be a nonnegative
integer such that n > max{dp”,4p” + 2d + 1}. Then the map (x) is an isomorphism in
degrees i < 2p" and it is injective in degree i = 2p”.

Analogous results for symplectic and orthogonal groups are given in Theorem 9.2. Let
us emphasize two points regarding these comparison results.

(1) As many perfect fields do not contain big finite subfields, there is no hope to
recover our results from the results of [4] by taking colimits over finite subfields.
Actually, [4] uses that the polynomials on a k-vector space V' are a good approx-
imation of discrete maps from V' to k over big finite fields k. Namely the natural
forgetful map: k[V] — Map(V, k) is surjective, and it is an isomorphism in poly-
nomial degree less than the cardinality of k. This fact obviously fails for infinite
perfect fields, which makes our results rather unexpected.

(2) Our cohomological comparison deals with stable cohomology, in the sense that
n is large. One can wonder what happens when # is small. This question goes
beyond the current understanding of homology of groups, even in the simplest case
W =V =k and G = GL,, (k). In this case, it is known that the left-hand side of ()
is zero in positive degrees [17, Il 4.11]. In sharp contrast, the right-hand side of ()
is mysterious for small values of n, and still under investigation, see e.g., [13,24].
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Relations with other results and future work

Computations in F,[VF,]-Mod and the Steenrod algebra. Homological algebra in
[Fp[VF,]-Mod was actually considered before the relation with the homology of GL (IFp)
was established. The initial motivation was the relation with the category of unstable mod-
ules over the Steenrod algebra, see [16,20-22]. Our results might have applications in this
original context. Indeed, Theorems 3.7 and 3.9 remove the ‘big field assumption’ from the
strong comparison theorem, hence they could be a way to obtain a better understanding of
the homological algebra in I, [VF,]-Mod from the computations of generic Ext.

Comparison without homological vanishing assumption. Theorem 2, and the general-
ized comparison Theorem 6.1 compute Tor]i[‘A’] (m*F, p*G) under a homological vanish-
ing condition on the additive functors 7 and p. In [6] we give a computation of these Tor,
without assumption on 7 and p, but assuming instead the strong hypothesis that F and
G are direct summands of tensor powers. It is not clear to us if there is a closed formula
computing these Tor without any of these assumptions, however there should be at least a
formula in low degrees.

Comparison without I, -linearity. Theorem 2, and the generalized comparison Theo-
rem 6.1 compute Torli[”d"] (7* F, p*G) when the source category 4 is Fp-linear. In view of
the applications to group homology and K-theory, it would be interesting to remove this
assumption. The few computations known in this context [11,27] show that new homo-
logical phenomena appear when F,-linearity is removed, which makes it a challenging

problem.

2. Recollections of functor categories

2.1. Ext and Tor in functor categories

If € is a svelte (= essentially small) category and k is a commutative ring, we denote by
k[€]-Mod the category whose objects are the functors from € to k-modules and whose
morphisms are the natural transformations (with the usual composition of natural trans-
formations). To emphasize the analogy with modules over a ring, and to better distinguish
between the source category € and the functor category k[€]-Mod, we denote by €(c,d)
the Hom-sets in € while we use the notation Homge)(F, G) for the morphisms between
two functors F and G. We refer the reader to [25] for a detailed study of k[€]-Mod; we
only recall here the salient facts which will be useful to us.

Remark 2.1. Although the main focus of the article is the situation where k is a field,
the recollections are given over a commutative ring k because this generality does not
bring additional complexity. Moreover, the results of Section 5, which rely on the material
recalled here, are valid for an arbitrary commutative ring k.

2.1.1. Abelian structure. The category k[€]-Mod is abelian, bicomplete with enough
projectives and injectives. To be more specific, limits and colimits are computed object-
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wise, e.g., the direct sum of two functors is defined on all objects ¢ by (F & G)(c) =
F(c) @ G(c). The standard projectives are the functors P¢ = k[€(c, —)] which map
every object d to the free k-module on €(c, d). The Yoneda lemma yields an isomor-
phism, natural with respect to F' and c:

Homk[fl(PC, F) >~ F(c).

Every object of k[€]-Mod has a projective resolution by direct sums of standard projec-
tives.

2.1.2. Tensor product and Tor. Let Mod-k[€] denote the category of functors from
€ to k-modules (in other words Mod-k[€] = k[€°P]-Mod). There is a tensor product
over €, which generalizes the tensor product of modules over a k-algebra:

®kre] : Mod-k[€] x k[€]-Mod — k-Mod.
To be more specific, E Qe F is the coend [ g (¢) ®x F(c), which can be concretely
computed as the quotient of the k-module P, E(c) @k F(c) by the relations E(f)(y) ®
x=yQ F(f)(x)forall x € F(c),ally € E(d)andall f :c — d.
For all E in Mod-k[€] and all k-modules M, let Dy E in k[€]-Mod denote the
functor defined by (Dps E)(c) = Homg (E(c), M ). Then the tensor product over € is char-
acterized by the following adjunction isomorphism, natural with respect to £, F and M:

Homy (E Qkle] F, M) ~ Homk[g](F, Dy E). 2.1

We denote by Tor’i[C](E , F) the derived functors of the tensor product over €. The
previous adjunction isomorphism may be derived, to give a natural duality isomorphism,
for all injective k-modules M and for all degrees i:

Homy (Tort °/(E. F), M) ~ Extie(F. Dy E).

2.1.3. Restrictions and adjunctions in the source category. We denote by ¢* F the
composition of a functor ¢: € — D with an object F' of k[D]-Mod. This induces an
exact functor

¢*: k[D]-Mod — k[€]-Mod,

hence graded k-linear maps on the level of Ext and Tor, that we call restriction maps, and
that we denote by res? and resy:

res?: Ext ) (F. G) — Extf e (™ F.$*G).
resg: Tork Il (@* E, p* F) — TorKlPI(E, F).

The natural duality isomorphism between Ext and Tor is natural with respect to restriction
maps. That is, for all injective k-modules M and for all degrees i we have a commutative
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square:

Homy (Tor () (¢* E. ¢* F), M) —=— Extl)(¢* F.¢* Dy E)
Homyg (res¢,M)T res‘ﬁT (22)

Homy (Tor! Y(E, F), M) ——=—— Extl o (F. Dy E).

The next proposition is an important tool for computations. The Ext-version can be
found, e.g., in [28, Lem. 1.3 and Lem. 1.5]. The proof is a straightforward check.

Proposition 2.2. Let ¢ : € < D : Y be an adjoint pair and let u:id — y o ¢p and e: ¢ o
¥ — id denote the unit and the counit of an adjunction. Then the following composition
is an isomorphism:

Ext} ) (F (1),G)
Ext}p)(V*F. G) = Ext; €)@ V*F.9*G) —————— Extie)(F. ¢*G),

whose inverse is given by the composition of res¥ and Ext,t[ °(D](F ,G(e)). Similarly, there
is a Tor-isomorphism given by the following composite map:

Tork(C) (9% B, F (w))
— > T

Tort[€l(p* E, F) Tork € (¢* E, p* y* F) —2% TorkPN(E, y* F),

whose inverse is given by the composition of Tor]i["(D](E (e), ¥* F) and resy,.

2.2. Strict polynomial functors

Assume that k is a field, and let Vi denote the category of finite-dimensional k-vector
spaces. We recall here some basic facts that we will need regarding strict polynomial
functors. As a small difference with [12], we allow our strict polynomial functors to have
infinite-dimensional values—this is needed for example in the statement of the generalized
comparison theorem, in which F1 may have infinite-dimensional values. This difference
does not affect the results of [12, Sec. 2 and Sec. 3] in an essential way.

2.2.1. The abelian structure. We denote by & the category of strict polynomial func-
tors of bounded degree over k (possibly with infinite-dimensional values), and natural
transformations of strict polynomial functors. It is an abelian category, and there is a
(faithful, exact) forgetful functor:

Pr — k[Vk]-MOd

which allows to think of a strict polynomial functor as a functor F: V; — k-Mod equipped
with some additional structure. If k is infinite, this forgetful functor is fully faithful.

The category #% has enough injectives and projectives. To be more specific, the stan-
dard injective objects have the form S{f( ) = S%(V ®¢ —) and the standard projective
objects have the form I'?Y (=) = I'¥ (Homy (V, —)), where V denotes a vector space, and
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S4U) = (U®)g , stands for the d-th symmetric power of a k-vector space U, while
4 (U) = (U®?)®4 stands for its d-th divided power. Every strict polynomial functor has
an injective resolution by products of standard injectives, and a projective resolution by
direct sums of standard projectives.

Remark 2.3. We will usually make no notational distinction between a strict polynomial
functor F and the underlying ordinary functor, i.e., the image of F by the forgetful functor
Pr — k[Vi]-Mod. For example, we will say that the forgetful functor induces a graded
morphism: Ext}k (F.G) — Ext} Vil (F, G). Pushing this (slight) abuse of notation further,
if ¢: € — Vi is a functor, we will also denote by ¢* the composition of the map ¢* of
Section 2.1.3 with the forgetful functor:

Pe — k[Vi]-Mod > k[€]-Mod.

2.2.2. Homogeneous functors. Let $; ; denote the full subcategory of homogeneous
strict polynomial functors of degree d; this is the smallest abelian subcategory of %
which contains the functors T'¢" and S{}' for all V. There is a direct sum decomposition:

P =P Pak.

d>0

Moreover, each category £ i is equivalent to the category S(n, d )-Mod of modules over
the Schur algebra S(n,d) = Endg, ((k™)®?) provided n > d. This equivalence of cate-
gories sends a functor F to the k-vector space F(k™), equipped with the canonical action
of S(n,d).

Remark 2.4. Each subcategory #; i has all direct sums and products. The forgetful func-
tor P4 x — k[Vi]-Mod preserves arbitrary direct sums and arbitrary products.

Remark 2.5. The subcategory &, x may be equivalently described [23, 28] as the cate-
gory of k-linear functors I'¥ Vi — k-Mod where I'? V; denotes the category whose objects
are the finite-dimensional vector spaces and Hompay, (V, W) = Homg, (V4 wed),
With this description, the forgetful functor is given by precomposition with the functor
y4: Vi — 'YV, which is the identity on objects and which satisfies y?(f) = f®¢.
Moreover, S(n,d) = Endray, (k") and the equivalence of categories P >~ S(n,d)-Mod
is simply obtained by restricting a functor to the full subcategory of I'?V supported
by k".

2.2.3. Variants of the category #. The definition of strict polynomial functors in [12]
has obvious variants, such as the category &, of contravariant strict polynomial functors.
Let Vv = Homg (v, k) denote the dual of a vector space v. Then we denote by FV the
composition of F with the duality functor ¥—: V;* — V. Thus F¥(v) = F(¥v). This
construction induces an equivalence of categories
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2.2.4. Tensor functors and Tor. There is a tensor product:
- Qgp, — Pp X Px — k-Mod

which is compatible with the tensor product over k[Vg] in the sense that the forgetful
functor induces a canonical morphism

E ®kv F — E®gp, F. 2.3)

If V is a vector space, we extend the notation of Section 2.1.2 to strict polynomial
functors by letting Dy E denote the strict polynomial functor such that (Dy E)(v) =
Homy (E(v), V). Then the tensor product is characterized by the isomorphism (natural
with respectto E, F, V)

Homy (E ®gp, F,V) ~ Homgp, (F, Dy E). 2.4)

This isomorphism shows that the canonical map (2.3) is always surjective (because the
forgetful functor is faithful), and it is an isomorphism if k is infinite. Since there are
no nonzero morphisms between two homogeneous strict polynomial functors of different
degrees, this isomorphism also shows that E ® », /' = 0if E and F are homogeneous of
different degrees.

We denote by Torfk (E, F) the derived functors of the tensor product. Then the iso-
morphism (2.4) can be derived, it yields an isomorphism

Homy (Tor “ (E. F), V) =~ Exty, (F, Dy E).

Remark 2.6. The equivalence #; x >~ S(n,d)-Mod is strongly monoidal, thus the tensor
product is just the usual tensor product over Schur algebras in disguise:

Torl*(E, F) ~ Tor3 D (EK™), F(k™)).

In the description of $; i as the category of k-linear functors from ¥V to k-Mod, the
tensor product identifies with the tensor product over I'¥ V.

2.2.5. Composition and restriction. The composition of a strict polynomial functor F
of degree d with a strict polynomial functor G of degree e yields a strict polynomial
functor F o G of degree de. Precomposition by G yields an exact functor — o G: Py — Px
and — o G: P, — P, hence graded maps:

Extjok(F, F) — Ext;}k(F oG, F' 0G),
Torl*(E 0 G, F 0 G) — Tor¥(E o G, F o G).

which fit into a commutative diagrams:

Homy (Tor] ¥ (E 0 G, F 0 G), V) —=— Extl (F 0 G. Dy(E 0 G))

T T (2.5)

Homy, (Tor”* (E, F), V) = » Extl, (F, DyE).
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2.3. Frobenius twists and generic homology
Throughout this section, k is a perfect field, of positive characteristic p.

2.3.1. Frobenius twists. Let [F be a perfect field of positive characteristic p. For all inte-
gers r and for all IF-vector spaces v we denote by v the F-vector space which equals v
as an abelian group, with action of F given by

Aoxi= AP x.

We note that ) — is an additive endofunctor of F-vector spaces which preserves dimen-
sion. Moreover, @v = v and ®)(v) = 6+y, hence ) — is a self-equivalence of the
category of IF-vector spaces, with inverse ™) —.

Notation 2.7. For all (contravariant or covariant) functors F: Vg — k-Mod, we denote
by F): Vg — k-Mod the functor such that F ) (v) := F(Mv).

Assume now that F = k. Then if r > 0, the functor ) —: Vi — k-Mod is the under-
lying ordinary functor of a certain p”-homogeneous strict polynomial functor, called the
r-th Frobenius twist functor and denoted by 7). One has (1)) = 17+9) for all non-
negative integers r and s. The following notation is the analogue of Notation 2.7 for strict
polynomial functors.

Notation 2.8. For all strict polynomial functors F of degree d, we denote by F ) the
strict polynomial functor of degree dp” defined as F() := F o (),

2.3.2. Generic Ext and generic Tor. For all positive integers r, precomposition by the
equivalence of categories () —: Vi — Vj yields a graded isomorphism:

Extf [y, (F. G) = Extfy (F,G")

with inverse given by precomposition by ) —. The situation is quite different in the realm
of strict polynomial functors. Indeed, precomposition by the strict polynomial functor 7 )
induces a graded map

Ext}, (F.G) — Ext}, (F).G")

but since 7 ") has no “strict polynomial inverse’ (i.e., there is no strict polynomial functor
171, there is no reason why this graded map should be an isomorphism. The next result
was first established in [10, Cor. 1.3 and Cor. 4.6].

Proposition-Definition 2.9. Let F and G be two strict polynomial functors. The maps
given by precomposition by 7 (:

Extly, (F,G") — Extlp (FUHD GUHD)
are always injective, and they are isomorphisms if i < 2p”. The stable value is called the
generic extensions of degree i and denoted by Ext._ (F, G):

gen

Extl,,(F.G) := colim Extp (F7,G7) = Extlp (FO.GD)if r > 0.
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We refer the reader to [38] for a survey of generic extensions and formulas computing
them (which simplify and generalize the computations of [10]). Using the commutative
diagram (2.5), we can dualize the Ext situation to define generic Tor.

Proposition-Definition 2.10. Let £ and G be two strict polynomial functors, with E
contravariant. The maps given by precomposition by 71

Tor;?)k(E(r+l)7 G(r+1)) N Torf)" (E(’), G(’))

are always surjective, and they are isomorphisms if i < 2p”. The stable value is called the
generic torsion of degree i and denoted by Tor;‘?’en (E,G):

Tor!(E, G) := limTor K (E®, G") = Tor*(ET,G)  forr > 0.
r

3. Homology of strict polynomial functors over Vp,

Throughout the section, k is a perfect field of positive characteristic p, and F is a finite
field of cardinality ¢ = p”. We will elaborate on the results of [10] to prove the gener-
alized comparison theorem over A = Vp, (the category of finite-dimensional F,-vector
spaces). The proof is done in two steps: we first establish the theorem when the field [,
is big enough in Section 3.1, and then we extend the theorem to arbitrary finite fields in
Section 3.2.

3.1. The strong comparison map

We assume that k contains a perfect subfield F, and we let t : Vg — Vj denote the exten-
sion of scalars: #(v) = k ®F v. As explained in Remark 2.3, we slightly abuse notations
and we denote by ¢* the exact functor defined as the composition:

t*: Pr — k[Vi]-Mod — k[Vy]-Mod
where the first functor is the forgetful functor and the second functor is precomposition
by z.

Definition 3.1. The strong comparison map (associated to the extension of perfect fields
F C k) is the graded k-linear map ®f defined for n >> 0 by restriction along ¢* and along
the equivalence of categories ) —: Vg — VF given by the Frobenius twist:

®p: Extly, (F™.G™) - Extly (1*F™ . 1*G") = Ext}y,((*F.1*G)
= Ext._(F,G).

gen

Remark 3.2. The strong comparison map is independent of # (provided » is big enough).
This follows from the commutative squares (in which the horizontal maps are induced
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by ¢* and the vertical ones by restriction along /(" and )—, together with the natural
isomorphisms k @ Vv ~ D (k QF v)):

Ext’ (F(n+1) G(n+1)) N Ext’ (t F(n+1) t G(n+1))

1 1

Extp (F™,G™) ———— Ext}y (*F®,*G™),

The next result follows from the strong comparison theorem [10, Thm. 3.10]. It will
be extended to all perfect infinite fields [ in Section 7.

Theorem 3.3. If T is a finite field with q elements, if F and G are two strict polynomial
functors of degrees less than q, the strong comparison map Py is an isomorphism in all
degrees i.

Proof. Theorem 3.3 slightly generalizes the strong comparison theorem of [10] in two
ways. Firstly, contranly to [10], we do not assume that k = IF,. Secondly, as we recall it
in Section 2.2, we allow our strict polynomial functors to have infinite-dimensional values.
We overcome these two technical points as follows. The standard projective objects
of Py are the divided power functors I'%>* = I'? (Homy (k*, —)) and the standard injec-
tives are the symmetric power functors S¢° = S¢(k* ® —). These two kinds of functors
commute with base change in the following sense: there are canonical isomorphisms

T (0) ~ TE ) @p k and  1*S9°(v) ~ SE°(v) ®F k

where the indices [ indicate their counterparts in the category Jr of strict polynomial
functors over [F. There is a commutative square (compare [10, Prop. 3.8])

EXtt (Fds(n) Ses(n))® k } Eth (Fd,s(n)’Se,s(n))

| Jes

EXt]iF[V[F](F]g’S, Se S) R k —) Extk (t Fd s ot *ge, S)

in which the horizontal morphisms are the base change isomorphisms and the vertical
morphism on the left is induced by the forgetful functor P — F[VF]-Mod and restriction
along ™ —. The vertical map on the left is an isomorphism if 7 >> 0 by [10, Thm. 3.10] if
d = e and by [10, Lem. 3.11] if d # e. Thus ®p is an isomorphism when F is a standard
projective and G is a standard injective.

For arbitrary F and G, we consider a projective resolution of F and an injective
resolution of G, and a standard spectral sequence argument shows that ® is an iso-
morphism. ]

Theorem 3.3 can be dualized. If E and F are two strict polynomial functors of bounded
degrees, with E contravariant, there is a strong comparison map for Tor (still denoted
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by @) defined for n big enough as the composition:

. KIVEF] ~ T rKIVF] P
®p: Tory VI *E, t* F) =~ Tor; V" (¢t * E™  t* F™) — Tor *(E™, F™)
= Tor;gen(E, F)
induced by restriction along the Frobenius twist ) —: Vg — Vp and along 7*. The com-

mutativity of diagrams (2.2) and (2.5) involving the Ext-Tor duality isomorphisms yields
a commutative square:

Homy (Tor;™(E, F). k) = s Ext._ (F, Dy E)

gen

lﬁomk(%,k) lcpm (3.1)

k * * = i * *
Homk(Tori [VF](I E ¢ F),k) _ Eth[VF](I F.t (DkE)).

Thus, Theorem 3.3 has the following consequence.

Corollary 3.4. If E and F be two strict polynomial functors of degree d, with E con-
travariant, and if F a finite field with q > d elements, then the strong comparison map
O is an isomorphism of Tor groups in all degrees i.

3.2. The generalized comparison theorem over VF,

Theorem 3.3 and Corollary 3.4 require that [ is a big finite field. This hypothesis is neces-
sary: it is not hard to see that Homgp, (S 1, §9) has dimension zero, while Homp vy, | (t*St,
t*S7) has dimension one. The purpose of this section is to show that this assumption on
the size of the finite field F can nonetheless be removed, provided the strong comparison
map is replaced by a slightly more complicated map, which takes into account the size of
F in its definition.

Our approach, in particular Lemma 3.6 and Theorem 3.7, is inspired by the proof
of [10, Thm. 6.1]. The key idea is that when the field I is too small, the extensions
Exty VE] (F, G) can be computed in terms of extensions in k[Vz]-Mod where L is a bigger
finite field, provided F and G are restrictions to Vf of functors over V. This is proved
in Lemma 3.6, and, combined with Theorem 3.3, this leads to the generalized compari-
son theorem over finite fields, for which we give two formulations, namely Theorems 3.7
and 3.9.

3.2.1. Skew diagonal maps and skew sum maps. We introduce here some notations
which will be used throughout the article. Assume that L is a perfect field. Then for all
integers @ > 0 and s > 1 and for all L-vector spaces v, we set

@s)y .= Oy g @y ... q (=Da)y

Assume now that L contains a finite field IF;, with g = p” elements, and let : F;,-Mod —
L-Mod be the associated extension of scalars: (x) = L ®p, u. Then for all F,-vector
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spaces u, there is a canonical isomorphism of L-vector spaces:

iso: T(u) = ") 2 (u)

A®x AP @x.
The skew diagonal map is the L-linear map, natural with respect to u:
diag: t(u) — @ (u)

AQ®x > (A®x, AP

ar —ar(s—1)

®x,..., A" ® x).

Remark 3.5. If a = 0 then @ ¢(y) = v(u)®* and in that case, the skew diagonal map
equals the usual diagonal map: A ® x — (A ® x,...,A ® x). In general, the skew-diagonal
map can be written as the composition of the diagonal map 7(u) — 7(u)®* with the
isomorphisms iso: 7 (1) ~ ™)z (y),0 <n < s.

Similarly, the skew sum map is the L-linear map, natural with respect to u:

sum: @) > ()

(Ao ®x0,..., A1 ®X5-1) > Z A,I,’nar & Xn.

0<n<s

3.2.2. A base change isomorphism. We keep our perfect field L. We extend Notation 2.7
for precomposition by Frobenius twists to the case of multiple twists. Namely, for all
(covariant or contravariant) functors F: V;, — k-Mod and for all integers @ > 0 and s > 1,
we denote by F@l9):V; — k-Mod the functor defined by

Fé9 )= F(Oy @ @y g...@ (=Day), (3.2)

Assume now that ¢ = p” and that F; C L is an extension of fields of degree s2, and
let 7: Vg, — VL, denote the extension of scalars. We consider the composition, in which
the second map is induced by F(diag) and G(sum) as in Section 3.2.1:

res®

Extiy, ) (F2.GOW) = Extyy, ((FOW G S Extyy (CF.T°6). (3.3)

Lemma 3.6. [fF, C L is an extension of fields of degree s> and g = p”, then for all F
and G in k[VL]-Mod, the map (3.3) is an isomorphism.

Proof. We can find an intermediate field K such that F, C K C L is a sequence of exten-
sions of fields of degree s. We are going to convert Ext over k[V_] into Ext over k[VF,]
in two steps, by using the restrictions of scalars Vi, — Vg and Vg — V]Fq and their
adjoints, and we are going to check that the two-steps isomorphism obtained coincides
with the explicit map (3.3).

In the first step, we express extensions over k[V] in terms of extensions over k[Vk].
For this purpose, we consider the adjoint pair [10, Prop. 3.1]

pIIVLSVKZ‘L'/
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where 7’ is the extension of scalars and o’ the restriction of scalars associated to the exten-
sion K C L. Note that 7’ = L ®k — is considered here as the right adjoint of p’, which
is possible because the extension K C L has finite degree. By Proposition 2.2 the adjoint
pair (p’, t’) induces an isomorphism for all H in k[V]-Mod

Extfry,j(H, p" 7" G) ~ Ext{py (v H. 77 G). (3.4)

Moreover, there is an isomorphism of L-vector spaces ¢: L @k v =~ Py, <5 @r9)y natural
with respect to the L-vector space v. This isomorphism is given by sending A ® x to
Y o<i<s AP~ x. Therefore we have an isomorphism in k[V]-Mod:

G(p™1):GUsI ~ p* G, (3.5)
By combining the isomorphisms (3.4) and (3.5) we obtain an isomorphism
Ext}py, (H. G"*19) = Ext{y (" H.7"*G). (3.6)

To finish this first step, we give a more explicit expression of the isomorphism (3.6).
Recall from Proposition 2.2 that the isomorphism (3.4) is induced by restriction along
v’ and by the map (t"*G)(g) where ¢ is the counit of the adjunction p’ 4 ¢’. By [10,
Prop. 3.1], this counit of adjunction &,: L ®k u — u is given by &,(A ® x) = T(1)x,
where T(A) = > ;< AP™ is the trace of A. Thus for all K-vector spaces u we have a
commutative square_t of L-vector spaces, in which the upper horizontal arrow is induced
by the canonical isomorphism iso from Section 3.2.1:

Bosis ) — Do<i<s T (W)

¢r’(u)T lsum

r’(p’(r’(u))) & ' (u).
It follows that the isomorphism (3.6) equals the following composition:

Extyry,1(H, GUsloy =2 EXt; 1y (7*H, r’*(G(”ls))) — Eth[VK](r’*H, 7*G)

.. . * G(sum) 4
where the last map is induced by the morphism t/*(G719)) ——— ¢/*G.
In the second step, we express extensions over k[Vk] in terms of extensions over
k[VF,]. For this purpose, we consider a pair of adjoints, in which " and p” are the exten-
sion of scalars and the restriction of scalars associated to the extension F, C K, and 7" is

this time seen as a left adjoint:
" Vg, S Vg :p".
Since p” is right adjoint to 7", Proposition 2.2 yields an isomorphism:

Extfy (0" T* F, E) ~ Extpy,, (T"F. " E). (3.7)
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Moreover, the isomorphism of L-vector spaces ¥/: L ®r, v =~ D, <i<s D (L ®k v) given
by y(A® x) = Y p<ics AP7" x is natural with respect to the K-vector space v, hence it
induces an isomorphism in k[Vg]-Mod:

F(): p""t*F ~ /" (F19), (3.8)
Combining the isomorphisms (3.7) and (3.8), we obtain an isomorphism:
* =~ *
Extipy (7" (F). E) = Extiyy, (" F.7""E). 3.9)

Following the same reasoning as in the first step, one sees that the isomorphism (3.9) is
equal to the composition

(r’*(F(rls)), E) =, Exty| ](t*(F(rls)), 7" E) —> Eth[VFq](t*F, T )

*
EXtervg) Vi,

F (bi
with last map induced by the morphism * F LOlag) e (FUl)y,
Now, the graded morphism (3.3) is the composition of the maps (3.6) (with H =
FU19)y and (3.9) (with E = £/*G), hence it is an isomorphism. ]

3.2.3. The generalized comparison theorem-first form. We extend Notation 2.8 for
precomposition by Frobenius twists to the case of multiple twists. Namely, for all (covari-
ant or contravariant) strict polynomial functors F over k, and for all integers ¢ > 0 and
s > 1, we set

7@ = 1O o 7 () gy . gy [(=Da)

and we let F@l$) = F o 1@l9) [f deg F = d then deg(F©@!9)) = pts—Dag,

Fix a positive integer s. The strong comparison map of Definition 3.1 and the mor-
phisms F(biag) and G(sum) (where biag and sum are the skew maps from Sec-
tion 3.2.1) yield a composite map:

Ext. (FU19 G‘rslﬂ)mExti (*F19 *GUsIDY S Exd o L (1*F,1*G). (3.10)
gen ’ k[V]Fq] s k[VJFq 1 s . .

The next result extends Theorem 3.3 to the case of an arbitrary finite field I, see
Remark 3.8.

Theorem 3.7. Assume that k contains a finite field ¥4 of cardinality g = p”, and let s be
a positive integer. Then for all strict polynomial functors F and G of degrees less than q°,
the map (3.10) is an isomorphism in all degrees i.

Proof. We first claim that it suffices to prove the result when k contains a subfield L
with q“‘2 elements. Indeed, let k — K be a finite extension of fields and let T : k-Mod —
K-Mod be the extension of scalars. By [32, Sec. 2] there is an exact k-linear base change
functor
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such that for all strict polynomial functors F’ over k there are canonical isomorphisms of
functors t* F >~ 7 o F'. Moreover, this base change functor induces an isomorphism on
the level of Ext. (See [32, Cor. 2.7] for the case of functors with finite-dimensional values.
The proof extends to arbitrary functors when k — K is a finite extension of fields.) There
is also an exact base change functor:

K ® —:k[Vr,]-Mod — K[VF,]-Mod

which sends F to the functor K ® F such that (K ®; F)(c) = K ® F(c).Sincek - K
is a finite extension of fields, this functor also induces an isomorphism on the level of Ext.
Let us denote by E the map (3.10) and by E g its counterpart when k is replaced by the
bigger field K. There is a commutative square

Extie, (FY, Gy —=5— Bxtgyy, (7 F. 1" t* Gg)

- ;

K @ Extl, (F19, GO0y E2E, K @ Extry (1" F.1*G)
q

in which the vertical isomorphisms are induced by the base change functors —g and
K ®i — (and by the isomorphisms Hg ot ot >~ 70 H ot, for H = F or G). There-
fore, By is an isomorphism if and only if Ex is an isomorphism. Thus, up to replacing
k by a suitable finite extension K, we may assume that our field k contains a subfield L
with cf2 elements.

We denote by ¢': V, — V. the extension of scalars associated to the extension of fields
L C k. Then Eg is an isomorphism because we can rewrite it as the composition of three
isomorphisms:

=
Sk

Ext,, (F9), GUslo) S Eth[V]Fq](t*F, 1*G)

o ]

Etht[VL](t/*(F(”S))’ l/*(G(rs\s))) = EXtZ[VL]((t/* F)(rls)’ (t/*G)(rsls)).

To be more specific, our assumptions on s imply that the degrees of F 1) and G751 are
less than the cardinality of L, hence & is an isomorphism by Theorem 3.7. To define the
lower horizontal map, we first observe that for all integers i there is a canonical isomor-
phism ("¢’ (v) ~ ¢'(¢"v) which sends an element A ® x € @) (k ®_ v) to the element
AP @ x € k @ @v. These canonical isomorphisms induce isomorphisms of functors
" (FOYy ~ ™ F)19 and "*(GT19) ~ (¢'*G)s19), and the lower horizontal map
is induced by these isomorphisms. Finally, the vertical map on the right-hand side is the
isomorphism provided by Lemma 3.6. ]

Remark 3.8. If s = 1, then FU19) = F, G519 = G and the maps F(diag) and G (sum)
are equal to the identity. Thus, for s = 1 the map (3.10) is equal to @, and the statement
of Theorem 3.7 is exactly the statement of Theorem 3.3.
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3.2.4. The generalized comparison theorem-second form. Functors precomposed by
multiple twists, i.e., functors of the form F@%) are quite complicated. We now prove
a reformulation of the generalized comparison theorem, in which only one of the two
functors appearing in the Ext is precomposed by multiple twists. This second form of the
theorem will be better adapted to generalization to more general additive categories #. So
we now consider the following composite map, where the second map is induced by the
morphisms F(iso) and G(sum), where iso and sum are defined in Section 3.2.1:

| - 2y, OF [ * - * 2 [ * *
Extl, (F"s™,G U ))—q>Ext§€[VFq](t FO 0 GUD) — Extyyy, (FF.1°G). (3.11)

Theorem 3.9. Let k be a perfect field containing a finite subfield with ¢ = p” elements,
and let s be a positive integer. Assume that F and G are two strict polynomial functors
with degrees less than q°. Then the map (3.11) is a graded isomorphism.

Proof. The idea it to show that the map (3.10) of Theorem 3.7 and the map (3.11) coincide
up to an isomorphism. For this purpose, we use strict polynomial multifunctors, as in [32,
Sec. 3] or [10].

Let % (n) denote the category of strict polynomial multifunctors of n variables. Pre-
composition by Frobenius twist extends to the multivariable setting, namely given a strict
polynomial multifunctor F and an n-tuple of nonnegative integers r = (rq,...,r,) we
denote by F© the strict polynomial multifunctor

F(D(vl, ceUy) = F((”)vl, e ('”)vn).
Precomposition by Frobenius twists yields a morphism on Ext:
— o I™:Exty (, (F©,G0) - Bxtp ( (FCT, Grim)

This morphism is an isomorphism if all the integers r; are big enough (with respect
to i, F and G). Indeed, by a spectral sequence argument, it suffices to check this when
F is a standard projective of #;(n) and G is a standard injective of P (n). In this case,
F(vy,...,vy) = F1(v1) ®k -+ ®x F,(v,) for some standard projective strict polyno-
mial functors F;, and G(vy,...,v,) = G1(v1) ®k -+ Qx Gn(v,) for some standard
injective strict polynomial functors G;, hence the isomorphism follows from the Ext-
isomorphism for functors with one variable from proposition-Definition 2.9 and the Kiin-
neth formula [10, (1.7.2), p. 673].

The following functors are adjoint to each other on both sides:

¥ v — Vi A: Vp — v
W1.....v) > P v v (v,...,0).
1<i<n

The Ext-isomorphism induced by adjoint functors, stated in Proposition 4.6, is valid in the
context of strict polynomial functors.
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We are now ready to prove Theorem 3.9. We observe that we may choose strict poly-
nomial multifunctors F’, G’, F” and G” such that there is a commutative diagram, with
n>0:

Ext}k(sz)(F’, G') (;*)> Ext}, ((FUrs=yon), (G(r\sz))(nr))
_OI@T:
EXt}k(sz)(F”, G//) @3.11)

(**)l:

Ext}, (( Fls)yar) (G sl ) G-10)

Eth[VFq](I*F, t*G).

To be more specific, the strict polynomial multifunctors F’, G, F” and G” of the s2
variables v;;, 0 < i, j < s, are respectively given by

F’(...,Uija-”):F( @ (nr+rs—r)vij)’
0<i,j<s

Gl(. Vi ) = G( @ (nr+r(sf17i)+rsj)vij)’

0<i,j<s

F”(...,Uijwu):F( @ ("r+ri)vij),

0<i,j<s

G//(...,Uij,...) = G( @ (nr+rsj)vij>.

0<i,j<s

The s%-tuple m is given by m;; = rs —ri —r and — o 1@ is an isomorphism because n
is big enough. The maps () and (x*) are induced by the adjoints ¥ and A. To be more
explicit, the map () is given by setting v;; = v for all i and j, and by pulling back the
resulting extensions of strict polynomial functors of the variable v by F(dbiag), where
diag: s~ Hnry®s? _, (rs=r+nr)y denotes the map diag(v) = (v, ..., v). Similarly, the
map (**) is given by setting v;; = v for all i and j, and by pulling back and pushing out
the resulting extensions of strict polynomial functors of the variable v by F(biag’) and
G (sum’), where the maps

biag’: @ (ri+nr)v_) @ (ri+nr)U€Bs’

0<i<s o<i<s
sum’: @ (rs_1+nr)v63s - @ (rS]Jrnr)v
0<j<s 0<j<s

restrict to identity morphisms between any two summands with the same number of Frobe-
nius twists.

Under the hypotheses of Theorem 3.9, the map (3.10) is an isomorphism by Theo-
rem 3.7; hence, the map (3.11) is an isomorphism by commutativity of the above dia-
gram. =
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Theorem 3.9 can be dualized. Let E and F be two strict polynomial functors over k&,
with E contravariant. The morphisms

E(sum):t*E S *ECS) and F(iso): t*F ~ *(Fs77))

together with the strong comparison map @, for Tor induce a graded k-linear map:

[
Tort ¥, 17F) > Tork V(g 0157, o 05-0) T8 pogsen (g 00 p 50y (3,12

The next corollary follows from Theorem 3.9 together with the commutativity of dia-
grams (2.2) and (2.5) involving the Ext-Tor duality isomorphisms.

Corollary 3.10. Let k be a perfect field containing a finite subfield with q¢ = p” elements,
and let s be a positive integer. Assume that E and F are two strict polynomial functors
(respectively contravariant and covariant) with degrees less than q°. Then the map (3.12)
is a graded isomorphism.

4. Recollections of linear functors and Kan extensions

In order to extend the results of the previous section to more general additive source cat-
egories +, we need to recall additional facts and notations relative to linear functors and
Kan extensions.

4.1. Categories of linear functors

Let F be a commutative ring, let 4 be a svelte additive [F-linear category, and let k be a
commutative [F-algebra. We denote by k ®F +4-Mod the full subcategory of k[4]-Mod
on the [F-linear functors. It is an abelian subcategory of k[4]-Mod, stable under arbitrary
limits and colimits, with enough projectives and injectives. The standard projectives of
k ®F A-Mod are the functors of the form k ®p A(a, —). The Yoneda lemma yields
isomorphisms:

Homggy 4 (k ®F #A(a, —), 7) ~ m(a)

natural with respect to a and 7, and every [F-linear functor admits a resolution by direct
sums of standard projectives. The notation k ®F A-Mod for the category of F-linear
functors recalls the form of the standard projectives.

Similarly, we may consider the full subcategory Mod-k ®p 4 = k ®F 4°P-Mod on
the [F-linear functors of Mod-k[4A] = k[A°P]-Mod. By restriction, the tensor product over
A yields a functor

— k] — (Mod-k ®F A4) x (k ®F A-Mod) — k-Mod

which can be derived using projective resolutions in the categories of additive functors.
The resulting derived functors are denoted by Torli®‘”" (7, p).
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Remark 4.1. Since the inclusion k¥ @ A-Mod — k[+A]-Mod is exact, it induces graded
k-linear morphisms:

Extig, (T p) = Extipqg(r', p),  TorklM(x, p) — Tork® 4 (x, p).

Although these graded maps are isomorphisms in degree zero, they are usually very far
from being isomorphisms in positive degrees, see [6].

4.2. Left Kan extensions and generalized compositions

We now assume that F is a field. We denote by F:F-Mod — k-Mod the left Kan extension
to all vector spaces of a functor F: Vg — k-Mod. That is, F (v) is the colimit of the vector
spaces F'(u) taken over the filtered poset of finite-dimensional subspaces u C v ordered
by inclusion. We use left Kan extensions to extend the composition ¢* F = F o ¢ to the
cases when ¢ has infinite-dimensional values.

Definition 4.2. For all functors F' in k[Vy]-Med and for all functors ¢: € — F-Mod we
define ¢* F as the composition: ¢* F := F o ¢.

Remark 4.3. If y: k-Mod — k-Mod is an additive functor, we usually denote by the
same letter its restriction ¥: V — k-Mod. As a consequence, the formula ¢* (¥ * F) is

ambiguous: it may be interpreted as F o ¥ o ¢ or as F o ¥ o ¢. For this reason, we shall
cautiously avoid iterating the notation of Definition 4.2 and we turn back to notations with
compositions whenever there is a risk of ambiguity.

If F and G are strict polynomial functors, F o G can be viewed as a strict polynomial
functor in a canonical way. Indeed, G is the filtered colimit of its subfunctors with finite-
dimensional values (this local finiteness comes from the fact that the category $;x of
d-homogeneous functors is equivalent to modules over a Schur algebra, which is a finite-
dimensional algebra). Thus we can make the following definition.

Definition 4.4. If F and G are two strict polynomial functors, the strict polynomial func-
tor F o G is defined as the colimit of the strict polynomial functors F o G’ taken over the
poset of subfunctors G’ C G having finite-dimensional values. If deg F = d and degG = e
then deg(F o G) = de.

4.3. Homological properties of left Kan extensions

Let 4 be a svelte additive category and let X be a regular cardinal. There is a smallest
svelte additive category A® which contains » as a full subcategory and which has all
direct sums of cardinality less than N.

For all functors F: A — k-Mod, we denote by F R. A® 5 k-Mod the left Kan exten-
sion of F along the inclusion (*: A < A®. If F is additive then F® is additive and
preserves direct sums of cardinality less than X. One can compute F¥(a) as the filtered
colimit of F(b) where b runs over the poset of direct summands of @ which belong to .
‘We refer the reader to [6, Sec. 3] for additional details.
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Example 4.5. The three basic following examples will be needed later.

(1) If A = Vp, then A® = Vfbf is the category of F-vector spaces of dimension less
than N. The functor F® is the restriction of the functor F:F-Mod — F-Mod
defined in Section 4.2 to the category Vif.

(2) For all objects a of #, the left Kan extension of #A(a, —): A — F-Mod is the
functor AN (a, —): AY — F-Mod.

(3) The left Kan extension of a generalized composition 7* F = F o7 of a func-

tor F: Vg — k-Mod with a functor : A — F-Mod, is the composition Fo
7% AY > k-Mod.

An advantage of working with A rather than + is the existence of certain adjoints,
which will play a key role in the computations of Proposition 5.5.

Proposition 4.6. Assume that 4 (a, b) belongs to V]}; for all a and b. Then for all objects
a in A the functor A®(a, —): A¥ — V]l; has a left adjoint — ® a: V]l; — AN,

Being computed with filtered colimits of k-modules, the left Kan extension induces
an exact functor —: k[4]-Mod — k[AY]-Mod, which is left adjoint to the exact functor
given by restriction along (¥. Standard homological algebra gives:

Proposition 4.7. Restriction along (¥: A — A¥ yields isomorphisms

Xty (F. %" G) = Ext} o (F*.G).  ToA(®*E, F) = Tork A (£, FY).

5. An auxiliary comparison map

Throughout this section k is a commutative ring, I is a field, + is a small additive cate-
gory, and we consider functors

F,G:Vgp — k-Mod, m:A® — F-Mod, p:A — F-Mod,

with p and 7 additive. We define a ‘dual’ vector space Dy ,(v) of an F-vector space v by
the formula

Dy »(v) := Homp (v, 7 @F[4] P).

The purpose of this section is to construct a certain comparison map:
OF: ToriM(z* F, p*G) — TorkVF (D F.G).

and to establish its main properties. This comparison map will be a key ingredient in the
proof of our generalized comparison theorem, but it may be interesting in its own right
and useful in other contexts. In particular, we prove in Theorem 5.9 that this comparison
map is an isomorphism under a certain homological condition on 7 and p, a result which
may also be useful in the ‘cross characteristic context’ (i.e., when F ®z k = 0) that is not
the focus of this article.
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Remark 5.1. We will use the results of this section in the proof of Proposition 6.5. This
requires that 7, p or Dy , are allowed to have infinite-dimensional values. Thus, a nota-
tion like 77* F is defined using the left Kan extension of F if needed: n*F = F o 7, as
explained in Section 4.2.

5.1. Construction and first properties of O

It follows from the isomorphism (2.1) of Section 2.1 that we have an adjoint pair of
functors — ®p[4) p : Mod-F[A] < F-Mod : Homp (p, —). We denote by 6 the unit
of adjunction:

6p: w — Homp (p, T ®F[4] p) = Drp o p. (5.1)

Thus 6 is a morphism in Mod-F[+4], whose component at a is the [F-linear map
(0F)a: w(a) — Homp (p(a), w ®F[4] p)

which sends x € 7 (a) to the F-linear map y — [x ® y] where the brackets denote the
class of x ® y in p ®p[4] w. Next, we choose a regular cardinal X such that the images
of p and 7 are contained in the category V]’; of vector spaces of dimension less than R,
and we let (¥; Vflﬁ < [F-Mod be the inclusion of categories. We define O as the unique
graded k-linear map fitting into the commutative square (note that res,» is an isomorphism
by Proposition 4.7):

TorXIMN(F o 7, G o p) I N TorkV¥*\(F o D, ,. G)
Tors ) (F (6), GOP)l :lres‘R (6.2)

[]F]

Tor* 'A’](Fo ,,pOp,G o p) — = % Tor (FODﬂ,p,é).

Lemma 5.2. The map O does not depend on the choice of N.

Proof. This is a consequence of the fact that for a cardinal 2 greater than X we have a
commutative diagram (where (2 is the inclusion of V]’E into Vﬂ%):

TotkV*\(F o D, ,F. G)

~ | res,x resa
~

TorliM](Fo Dypom,Gop) — Tor, “(F o Dy ,.G) ' .

res
\ lrestk’n

k[VF](F o Dy p. G)

kIVE]

Lemma 5.3. The map Oy is natural with respect to F, G, w and p.

Proof. Itis equivalent to prove the naturality of res,x o ®; with respect to F', G, 7 and p.
Naturality with respect to F', G and  is a straightforward verification. We check naturality
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with respect to p, which is less straightforward since 0 is not natural with respect to p.
Let f:p — p’ be a natural transformation, and let Dy: D := Dy, — D' := Dy y be
the natural transformation induced by f. We consider the following diagram of graded
k-modules, in which the composition operator for functors is omitted, e.g., ‘F 7’ means
Fo 7, and the arrows are labeled by the natural transformations which induce them.

Gf

Tork4)(Fix, G p) > Tore (. Gl
_ Fop
lF Or

Tor’i[‘A’](I*:Dp, Gp) Tori[‘A’] (FD'p',Gp) Fop

_ Gf
m lFDf\)

Tesp Torli['A’](I*:D’p, Gp) ToriM](I?D’p’, Gp)

Ies o/
. 4
resp l

R _ —
s TorsF{(F D', G).

Ny _ _ FD
TorsVF(F D, G) s

The upper right triangle and the lower left triangle of the diagram are obviously commu-
tative. The upper left parallelogram is commutative because of the dinaturality of 6, i.e.,
because the following square commutes:

O

m » D'p’ = Homp (0', T ®F[A] £')

lQIF lHomIF (fir®rra10)
Homp (0,7 ®F[.A4] /)
7

Dp = Homp (p, T ®F[4] P) D'p = Homp (p, 7 ®F[A] p')-

Finally, the lower right parallelogram commutes by dinaturality of restriction maps be-
tween Tor-modules. Thus the outer square is commutative, which shows that resx o OF,
hence O, is natural with respect to 7. [

5.2. Base change

Let F — K be a morphism of fields. We now establish a relation between the maps O
and O, which will be needed in the proof of the generalized comparison theorem in
Section 6.3. Let ¢: F-Mod — K-Mod denote the extension of scalars: #(v) = K QF v.
There is a canonical isomorphism

t(m ®F[a) p) = (t o ) ®K[A] (1 0 p)

which sends A ® [x ® y] to [(A ® x) ® (1 ® y)]. Together with the canonical map base
change map ¢ (Homp (v, w)) — Homg (¢ (v), t (w)), they induce a canonical K-linear map,
natural with respect to the [F-vector space v and the additive functors 7 and p:

t (Homp (v, 7 ®p(4] p)) — Homk ((v), ( 0 ) ®k[4) (¢ © p)). (5.3)
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which is an isomorphism when v has finite dimension. If we let D , and Doz 00 be the
duality functors respectively defined by:

Dn,p(v) = Homp (v, w QF[4] ).
Dton,tOp(w) = Homg (w, (tom) RK[A] (to P))

then the morphism (5.3) can be written as a morphism of functors

can

to Dn,p > Dton,top ot 5.4)
whose component at every finite-dimensional vector space v is an isomorphism.

Proposition 54. Let F — K be a field morphism. For all additive functors w: AP —
F-Mod and p: A — F-Mod, and for all objects F and G in k[Vk]-Mod, we have a
commutative diagram in which the lower horizontal isomorphism is induced by the iso-
morphism F(can):

Tor’i[""](l*: oftom,Goto 0) L) Tori[VK](I*: 0 Diox tops G)

l@)ﬂz restT

Tort "™ (F o1 0 Dy p, G 0 1) —=— Toli"™(F 0 Dyonsop 01, G 01).

Proof. Let us denote D = Djox r0p and D’ = D , for short and let R be a big enough
regular cardinal. We have a diagram of graded k-modules, in which the composition sym-
bol for functors has been omitted and the arrows are labeled by the name of the morphisms
which induce them.

_ — F _ — b _ —
Tork (i, Gip) —255 Tok*(FD1p, G1p) —=s Tor- VK (F D, G)

— F Cé res
lF 0 y lres 0 / 2Trcslx

Tor]i['A](I*:ZD’p, Gtp) k[V]F](FDt Gt) Tor{,f[VK](I?D, G)
lresp FC'/) restx mt
To YV (Fip7, Gy = TokVF)(FeD', Gi) —> Tor'VFY(F D1, Gr).

res n

One readily checks from the explicit expressions of 0k, O and of the canonical morphism
can:tD’ — Dt that g = (canp) o (¢0), hence the upper left triangle of the diagram
commutes. The other cells of the diagram obviously commute. The commutativity of the
outer square proves Proposition 5.4. ]

5.3. A first isomorphism result

The next proposition will be used in the proof of the generalized comparison theorem in
Section 6.3.
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Proposition 5.5. If A is F-linear and if 1 = A(—, a) and p = A(b, —), then OF is an
isomorphism.

Proof. By Lemma 5.2, we may assume X as big as we want in the definition of ®p, in
particular we may assume that the functor p® = A®(b, —): A — V]*f; has a left adjoint
T := b ®F — by Proposition 4.6. We also let 7% = A¥(—,a): A — F-Mod.

We first reinterpret O in the situation of Proposition 5.5. We have an isomorphism

¢ 7 Qrpa p — Ab,a)

which sends the class of f ® g € A(x,a) QF A(b,x) to f o g € A(b,a). (The inverse
of ¢ sends an element f € A(a, b) to the class of id; ® [ € A(a,a) ®F A(b,a).) From
the explicit expressions of O and ¢, one sees that the lower left triangle of the following
diagram commutes.

Ax, a) Aler.a) X(h @p A(b x).a)

o | m (55)

Homp (A(b, X), 7 ®F[4] p) m) Homp (J’o(b x) A(b, a)).
The upper right triangle of diagram (5.5) also commutes: here « is an adjunction isomor-
phism for the adjunction between 7 and p¥, and &, is the associated counit of adjunction.
Diagram (5.5) is our new interpretation of Of.
Next we prove that res’ o O is an isomorphism. We let D := D , for short, and we
let y: D ~ 7™ o 7 be the isomorphism whose component at v is given by the composition:

-1
Homp (v, 7 ®F[4] p) M HomF(v,A(a,b)) a—N—> Ax(b RF v,a).

We consider the following diagram of graded k-modules, in which the composition oper-
ator for functors is omitted and the arrows are labeled by the natural transformations
which induce them. The vertical maps res,x are induced by restriction along the inclu-
sion (¥: A < AN, and they are isomorphisms by Proposition 4.7.

Tor’ k[‘A’ W(Fr¥, Gp®) Frls 1, or’y kLAY ](FJTRI,OR G —25 To k[VF](FJth, G)

:Tresﬁ‘ ZTresLN ‘ ’

To k[‘A’](Fn ,Gp®) —> Tor [‘A’](Fn 0, G p) LN Tor ](Fzrxr, G)
| o I
—_ _ F _ _ s N o _
Tol\"M (Fr, Gp) — 2% ToX™(FDp, Gp) —=2 s TorsF{(F D, G).

All the squares of the diagram are obviously commutative, except the lower left square
which commutes by commutativity of diagram (5.5). The composite in the top row is
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the Tor-map induced by the adjunction between ¢ and p¥, hence it is an isomorphism by
Proposition 2.2. We deduce that the composite in the bottom row, which is nothing but

L

R . . . . . .
res’ o O, is an isomorphism. Hence O is an isomorphism. ]

Corollary 5.6. If A is F-linear, and if

1 =P Aa). p=PAb.-)

iel jeJ
for some possibly infinite indexing sets I and J, then O is an isomorphism.

Proof. If I and J are finite, then 7 >~ A(—, a) and p >~ A(b, —) for a = P a; and
b = & bj, hence O is an isomorphism by Proposition 5.5. For arbitrary I and J, the
functors 7 and p are filtered colimits of monomorphisms of functors of the form A(—, a)
and 4 (b, —). So the result follows from the fact that the target and the source of O both
preserve filtered colimits of monomorphisms of functors, when viewed as functors of the
variables 7 and p. (Indeed Tors, F o7, G o p and F o D, , preserve filtered colimits
of monomorphisms — for F o 7, G o p, this follows from the fact that F and G are left
Kan extensions of F and G, and for F o Dy ,, one uses in addition the isomorphism
Dy »,(v) ~ Homg (v, IF) ®F (7 ®F[4] p), which holds because we view D , as a functor
from V to F-Mod.) [

5.4. Simplicial resolutions

In order to generalize the result of Corollary 5.6 to more general functors 7 and p, we will
rely on some simplicial techniques that we explain now. We refer the reader to [14,41] for
further details on simplicial objects.

Recall that the homotopy groups of a simplicial object in an abelian category M
may be defined as the homology groups of the associated normalized chain complex;
if M = R-Mod, this coincides with the usual homotopy groups of the underlying sim-
plicial set. A morphism f: X — Y of simplicial objects is called e-connected if the map
7i(f):mj X — 7;(Y) induced on the level of homotopy groups is an isomorphism if
0 < j < e and an epimorphism if j = e. A morphism f: X — Y is called a simplicial
resolution of Y if 7;(f) is an isomorphism for all i. This terminology also applies to
objects Y of M by considering them as constant simplicial objects. If M has enough pro-
jectives, then it follows from the Dold—Kan correspondence that every simplicial object
Y of M admits a projective simplicial resolution, i.e., a simplicial resolution X — Y in
which X is degreewise projective.

If K is afield, F is a simplicial object in k[Vk]-Mod, and p is a simplicial object in the
category of additive functors A4 — K-Mod, we let u* F be the diagonal simplicial object
F, o jt,. Thus u* F is a simplicial object in k[#]-Mod natural with respect to x and X.
The next two lemmas are our main tools to construct convenient simplicial resolutions.
The first one is a variant of the Whitehead theorem (and ultimately relies on it).

Lemma 5.7. If f: F — G and g: 0 — v are e-connected morphisms, the induced mor-
phism u*F — v*G is e-connected.
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Proof. 1t suffices to show that for all objects a of #4, the following two morphisms of
simplicial k-modules are e-connected:

f(1@): F(u@) = G(u@), G():G (@) - G(v(a).

We first observe that for all K-vector spaces v, the simplicial map f: F(v) — G(v)
is e-connected because f is e-connected and homotopy groups preserve filtered colim-
its. Hence the e-connectedness of f (u(a)) follows from the spectral sequence [14, IV,
Sec. 2.2], which is natural with respect to F:

E;il,n(ﬁ) = ”m(ﬁ(ﬂn(a))) = TTm+n (ﬁ(ﬂ(a)))

Let us prove the e-connectedness of G (g). Let P — G be a simplicial resolution of G
in k[Vk]-Mod by direct sums of standard projectives. Since taking left Kan extensions is
exact, P — G is also a simplicial resolution. Therefore we have a commutative diagram
of simplicial k-modules

F(/L(a)) M ]S(v(a))

| !

G(u(a)) @, G (v(a))

whose vertical arrows induce isomorphisms on homotopy groups by the preceding para-
graph. Thus, it suffices to check that P (g) is e-connected. By using the spectral sequence
natural with respect to the simplicial vector space v:

'E}n () = 704 (P (v)) = 7tmin (P (V).

the proof reduces further to showing that if Q is a standard projective of k[Vk]-Mod, the
morphism of simplicial k-modules Q(g) is e-connected. Now the left Kan extension of a
standard projective Q has the form:

k[Homg (K", —)] ~ k[-®"] : K-Mod — K-Mod.

Hence Q(g) ~ k[g®"], and g®" is e-connected. Thus the e-connectedness of Q(g) fol-
lows from the Whitehead theorem, namely if 4: X — Y is an e-connected morphism of
cofibrant (= Kan) simplicial sets, then k[A]: k[X] — k[Y] is an e-connected morphism of
simplicial k-modules. u

Lemma 5.8. Let F — K be a field extension, and let A be a svelte additive T -linear
category. If 0 — p and P — F are projective simplicial resolutions in K QF #4-Mod
and k[Vk]-Mod respectively, then the induced morphism o* P — p*F is a projective
simplicial resolution in k[A]-Mod.

Proof. We already know that o* P — p* F is a simplicial resolution by Lemma 5.7. It
remains to prove that o* P is degreewise projective. By considering standard projectives
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and using that K @ A(a, —) ~ A(a, —)®EF| as F-modules (hence as sets), this reduces
to proving that k[, . #(a;, —)] is projective in k[+]-Mod for every family (a;);cr of
objects of .

For all g; there is a canonical direct sum decomposition k[ (a;, —)] >~ K,, @ k where
the constant functor & = k[0] is seen as a subfunctor of k[A(a;, —)] via the inclusion
induced by the unique map 0 — 4A(a;,—), and K, is the kernel of the map k[A(a;, —)] —
k[0] = k induced by the unique map #(a;, —) — 0. With this notation, we have an iso-

morphism
P QK =k DA )]
1ePr(E) i€l i€E

where & (E) is the set of finite subsets of £ Indeed, such an isomorphism is easily seen
to hold if E is finite, and if E is infinite it may be obtained as the filtered colimit of the
isomorphisms on the finite subsets £’ C E. Every tensor product (Q);; Kg, is projective
since it is a direct summand of Q);c; k[A(a;, —)] >~ k[A(D,¢; ai. —)]. Therefore the
functor k[P, g #A(a;, —)] is projective. L]

5.5. A general isomorphism result

Theorem 5.9. Let k be a commutative ring and let A be a svelte additive F -linear cate-
gory over a field F. Assume that w and p are [F-linear, and that e is a positive integer such
that Tor]iF®F'A’(7r, p) =0 for0 <i <e. Then for all objects F, G of k[Vr]-Mod, the map

@F:Torf[A](N*F, 0*G) — Torf[VF](D;’pF, G)
is an isomorphism if 0 < j < e and is surjective if j = e.

Proof. Let§ — G, w — m and ¢ — p be simplicial resolutions by direct sums of standard
projectives in the categories k[Vr]-Mod, Mod-F ®f 4 and F ®F +4-Mod respectively.
We have a commutative diagram of simplicial k-modules, in which the maps (}) are
induced by the morphisms @w — 7w and ¢ — p, the maps O are degreewise equal to
the degree zero component of O, and composition operators for functors are omitted
(e.g., F stands for F o w):

= > FOp)®d = = 1) = >
Fo @) 0 ———— F Dy pp ®k[a] 90 ——— F Dy pp Qi[a] Gp

FW lres 0
()

OF Fr @i Gp FDrp ®yys) 9

\@‘%
:Tres R

(1) =
> FDyp Qrvp] 9.

F_Dw,g Rkvp] &

The homotopy groups of F Dy.p ®k[vyp] gand Fo ®1(_M] gg are re_spectivsly equal to
Tor’i[VF](D;’pF, G) and Tor’fﬁ[""](n*F, 0p*G) because G — G and §9 — Gp are sim-
plicial projective resolutions (see Lemma 5.8). And the map induced on the level of
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homotopy groups by the top right corner of the diagram is ®f. Moreover, by Corollary 5.6,
the vertical map @]} is an isomorphism. Thus, to prove the theorem, it remains to prove
that the bottom horizontal map () is e-connected.

The Tor-condition in the theorem ensures that @ ®g[.4] 0 — T ®k[4] p is e-connected.
Thus D4,o— Dy p is e-connected, hence I*:Dw,g — I*:D,,,p is e-connected by Lemma 5.7.
This implies that the bottom horizontal map is e-connected by a standard spectral sequence
argument (use the spectral sequence of a bisimplicial k-module as in [14, TV, Sec. 2.2]). =

Remark 5.10. Although O can be constructed without requiring that «4, 7 and p are F-
linear, one cannot hope that it is an isomorphism without F -linearity. Indeed, assume that
IF is a field of prime characteristic p of cardinality greater than p, contained in a field k.
Consider 7(u) = Homp, (u, IF) and p(u) = F ®p, u, then Dy ,(v) = Homg (v, F). If
G(v) =k ®F v and F(v) = S?(k ®F v) then one has:

7*F ®pa] p*G ~k and D;,pF Rkvg] G = 0.

6. The generalized comparison theorem

The purpose of this section is to prove an analogue of Corollary 3.10 in which the category
Vg, is replaced by an [F;-linear category ». Throughout the section:

* k is a perfect field of characteristic p containing a subfield F, with g = p” elements,
* A is asvelte additive I -linear category,

e m:A® — k-Mod and p: A — k-Mod are F,-linear functors,

e F and G are two strict polynomial functors over k.

We will prove that under a certain homological condition on 7 and p, the graded vec-

tor space Tor\[™ (* F, p*G) is isomorphic to Tor’™ (F*, G) for some strict polynomial

functor FT constructed from F, 7 and p. This result is the content of the generalized
comparison Theorem 6.1, which is proved in Section 6.3.

6.1. Statement of the generalized comparison theorem
Fix a positive integer s. For all integers i, we define additive functors:
=g o=,

where a notation such as "9 refers to the additive functor obtained as the composition
of 7 with the Frobenius twist ) —: k-Mod — k-Mod. Then every k-vector space v has
a dual k-vector space D, o (v) defined by:

Dy, o (v) := Homyg (v, 1; ®k[4] O)-

We consider each D, , as a contravariant strict polynomial functor of degree 1, hence the
composition i)Dni .+ as a contravariant strict polynomial functor of degree ¢'. If F is a
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strict polynomial functor of degree d over k, we define a contravariant strict polynomial
functor FT of degree quL1 by (see Definition 4.4):

Ft.= Fo( D (”')D,,i,(,). 6.1)
0<i<s2
In Section 6.2, we will construct an explicit morphism of graded vector spaces, natural
with respect to F, G, 7 and p:

Tort ™ (x* F. p*G) — Tor¥™(F', G7). 6.2)

The additive functors are allowed to have infinite-dimensional values, hence 7 * F and
0*G refer to generalized compositions as in Definition 4.2. In the remainder of the article,
we will refer to morphism (6.2) as the generalized comparison map, and we will refer to
the following theorem as the generalized comparison theorem.

Theorem 6.1. Let k be a perfect field of prime characteristic p containing a subfield [F,
with g = p" elements, let A be a svelte additive [F,-linear category, let w: AP — k-Mod
and p: A — k-Mod be two Fy-linear functors. Assume that s and e are positive integers

such that
k®z A —ri _
Tork®? ( P O rs)p) =0
0<i<s2

for 0 < j < e. Then for all strict polynomial functors F and G of degrees less than g°,
the generalized comparison map (6.2) is an isomorphism for 0 < j < e, and surjective

for j =e.
6.2. Construction of the generalized comparison map

We first define a map @}; which is a variant of the auxiliary map ®, from Section 5.
Namely, we denote by 9; the natural transformation:

. (ri)g .
9;: n@sz — @ (rl)n,i M @ (”)Dn’i 00, (63)
0<i<s? 0<i<s?

where 6 refers to the natural transformation introduced in Section 5.1. Then we define
@;E as the unique map making the following diagram commute:

_ _ o]
Tori['A’](F ° (ne)sz), Go ,O) ok s Torli[vk](FT, G(rs=n))

TOI’],:[(A'] (F(GZ)’éop)l ereslﬂ (64)

—_ k N _
Tor];[’A](FT 00,Grs™ o ) o Tor*[vk](FT, Grs—n)).

The next lemma is proved exactly in the same way as Lemmas 5.2 and 5.3.
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Lemma 6.2. The map @}; does not depend on the cardinal X. Moreover, it is natural with
respect to F, G, w and p.

The map (91 is closely related to the map ®j from Section 5. Indeed, assume that we
are given isomorphisms of functors 7 ~ "9 and p ~ "~75) p._ Then these isomorphisms
induce isomorphisms (for the notation F' (r|s2), see (3.2)):

(nQBsz)*F ~ n*(F(r\sl)) p*G ~ p*(G(rs—r))’ Ft~ D;’p(F(rlsz)),
and the next lemma is a straightforward verification.

Lemma 6.3. There is a commutative square, whose vertical isomorphisms are induced by
the above isomorphisms of functors:

of
Tor]i[‘A]((n@sz)*F, p*G) -k Tori[vk](FT, Grs—))

L :

TOI"{Z[A] (n*(F(rlsz)),p*G(”_r)) & Tori[vk](D;,p(F(rlsz)), G(rs—r)).

Definition 6.4. The generalized comparison map (6.2) is the following composition of
three maps:

Torl,i[‘A’](n*F, 0*G) N S Torl,:[‘A’]((n@sz)*F, p*G)

I
1(6.2) l@,ﬁ
3

Tors™(FT, Gs=) <T Tor{,f[vk](FT, Grs=r))y,

where A is induced by F (diag), where diag: 7 — 7® is the diagonal map, and @ is
the strong comparison map from Section 3.1.

6.3. Proof of the generalized comparison Theorem 6.1

The strategy of the proof can be summarized as follows. In a first step, we prove Theo-
rem 6.1 when 7 and p are projective (as additive functors). This step relies on the fact that
such projective functors factor through F,-vector spaces, and because of this factoriza-
tion, the generalized comparison map can be rewritten as the composition of the auxiliary
comparison map O, of Section 5 and the generalized comparison map of Section 3.2,
both of which are isomorphisms. Then in a second step, one extends the isomorphism to
all additive functors 7 and p by taking simplicial resolutions. The proof is similar in spirit
(though slightly more complicated) to the proof of Theorem 5.9, in particular we rely on
the simplicial results of Section 5.4. The homological condition of Theorem 6.1 is used
in this second step, to ensure that the tensor product of a projective simplicial resolution
of &7 7 with a projective simplicial resolution of ") p is, up to degree e, a projective
simplicial resolution of “") 7 @41 " p.
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Proposition 6.5. Assume that

T = @k ®r, A(—.a;), p= @k ®F, 4(b;,—)

iel jeJ

for some possibly infinite indexing sets I and J. Then the generalized comparison map
(6.2) is an isomorphism in all degrees i.

Proof. 1f1(v) = k ®p, v denotes the extension of scalars from [F, to k, then we have 7 =~
t o and p >~ t o v for some additive functors p: A°? — F,-Mod and v: A — [F,-Mod.
The canonical isomorphisms of functors # ~ ¢ induce isomorphisms 7 ~ ¢z and
p =~ 795 So Lemma 6.3 and naturality of ®; with respect to the isomorphism F =
F@ls) o Dy ,, yield a commutative square (in which the composition operator of functors
is omitted in the arguments of Tor):

Tor]i["%](l*:zt, Gp) S SN Tor]i[""](ﬁ("sz)n, G571 p)
lex
6.2) Tor’;[vk](ﬁ(rlsz)Dmp, Grs=n)

Lo

Tors™ (FT,GUs=7))y — = TolS™(FUI) D, ,, GUs—1)

in which the map A’ is induced by the canonical isomorphism ¢ ~ S~)¢ and by the
skew diagonal biag:t — Py <52 ()¢, Therefore in order to prove Proposition 6.5 it
suffices to prove that the comszition ®;. 0 O o A’ in top right corner of the diagram is
an isomorphism.

Next, since w =t o u and p = ¢ o v, the base change property of Proposition 5.4 gives
a commutative square:

Tori["%](l*:("sz)n, G5 p) & Torli[VFq](F("sz)tDmv, Gs7rt)

Jos I-

— k _ _
TordM(FOI D, GO o Tor, " (FOWI D, G5y,

Hence, by naturality of ®p, with respect to the isomorphism G(iso0): Gt ~ G5t and
the morphism F(bdiag): Ft — FU s®), we obtain a commutative square:

o ) k — =
Tort ™ (Fr, G p) ———"—— Tor, " (F1D,,,. Gr)

l@koA/ lA//

_ k _ _
TotkVH(FO) D, ) GOs~) o Tory 2 (FOWI D ot G511
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where A” is induced by the skew diagonal diag:t — (rls®)y, by the isomorphism isp: ¢ ~
(rs=r)t and by the canonical isomorphism can: ¢ o D, ~ Dy, o t. The map O, on the
top row of this square is an isomorphism by Corollary 5.6. Hence, to prove Proposition 6.5
it remains to prove that the composition ®; o res; o A” is an isomorphism.

For this purpose, we are going to rewrite the composition ®; o res; o A” into yet
another form. We claim that there is a k-linear isomorphism, natural with respect to v, i
and v:

YD () = Din (90),

Indeed, we have isomorphisms of vector spaces, natural with respect to i and v:

bi: "D (tp ®ppa) 1V) =t Rppa] 1V

which send the class [(@ ® x) ® (B ® y)] where &, B € k, x € pu(a) and y € v(a) to
the class [(¢¢ ® x) ® (87 ® y)]. We define ¥ as the following composition, where T
stands for 7i4 ®k[.4) fv, the first and last isomorphisms are the canonical ones and the
second morphism is induced by the ¢;:

Dy ) = @ Hom(v.T) > @ Homy (Mo, CIT)

0<i<s2 0<i<s?

= 69 Homg ("Pv, T)

0<i<s?

= Homk< @ i)y, T) = Dyyuan(").

0<i<s?2
Moreover, one readily checks that v fits into a commutative diagram in Mod-k [F,]:

(rls

diag(Dy,y) (rls

2)
D, Dy —=20 O D ot
:lcan :ly/(t) (6.5)
Dyt Drplem) s Dy,

rls¢ — ¢ is the skew sum map. Diagram (6.5) and naturality of ®; and

res; with respect to the map F () yield a commutative square, in which the horizontal
isomorphisms are induced by the isomorphisms F(can) and F(y) and the map A” is
induced by F(Dﬂ,p(sum)):

where sum:

k _ _ ~ k _ _
Tors " (FiD,..Gt) — = Tors " (F D, 1, G1)
l@kores,oA” ld)korestoA’”

Tory" (f(rlsz) Dy p, G(rs—r)) = Torie"(F_Dn’p(rlsz)’ G(rs—r))_
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Thus, to prove Proposition 6.5, it suffices to prove that ®; o res; o A’ is an isomorphism.
But @ o res; o A" equals the comparison map of equation (3.12), hence it is an isomor-
phism by Corollary 3.10. This concludes the proof. ]

Proof of Theorem 6.1. For concision, we set 0 = (’_”)p and H = G~ Thus, prG =
o* H. To emphasize the dependence of FT on 7 and o we set:

Fl )= I‘:( @ DHomy (v, (T 1) ki) a)).

0<i<s?

We fix an integer n >> 0 (n > log,,(e/2) suffices) such that the canonical map

Tors™ (F}} 5, H) — Tork* ((FJ )™, H™) (6.6)

0

is e-connected. Let

W TorkM(FS L H) — Torl* ((F) )™, H®™)

50.’

be the morphism given by restriction along ) — and by the restriction from ordinary
functors to strict polynomial functors. Then Wj equals the composition of the canonical
map (6.6) with the strong comparison map ®i. Thus, in order to prove Theorem 6.1, it
suffices to prove that the composition Wy o @}; o A is e-connected.

For this purpose, we are going to realize the Tor vector spaces in play as homotopy
groups of some simplicial vector spaces, and the maps Wy, @;; and A as the morphisms
induced on the level of homotopy groups by some morphisms of simplicial vector spaces.
Let

H—>H H —-HD w7 ¢ — o,

be projective simplicial resolutions in the categories
k[Vi]-Mod, &Pr, Mod-(k ®z A), (kK 7z A)-Mod

respectively. It follows from Lemmas 5.7 and 5.8 that ¢ * # is a simplicial projective reso-
lution of o* H in k[A]-Mod, and that (= ®")* F is a simplicial (not projective) resolution
of (7®)* F in Mod-k [A)] for all positive integers i. Therefore we have identifications of
homotopy groups:

(@ F Qka) s H) = Tor*lA (n* F, 0* H),
n*((we”z)*F QA S H) = Tor],:[""’]((n@sz)*F,o*H),
1(Ff 5 ®rpa) #) = Tors V(ES L H),

7 (Ffo)™ @, H') = Torls ((Ff )™ H®).

Moreover, let f : H — H’ M pea simplicial morphism in k[V]-Mod lifting the identity
morphism of H. Then the maps A, @}; and Wy, are respectively induced by the morphisms
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of simplicial k-vector spaces:

A
0" F Qra) s H — (w®s2)*F Qkia) S H.

~

o) )
(@®)* F Qi) *H —> FJ . @k, H — F) ®k[Vk H,

d® f _
F;,o ®k[v,] H — (F;’U)(”)( ) kv, Jfl( n ¥ (FJr )( n) P, g’

Here, the 51mphclal morphlsm (f) is induced by the simplicial morphisms @ — 7 and
¢ — o and A, ®, and \Ilk are degreew1se equal to the degree zero component of A, ®}
and Wy, e.g., the component of Ay , in degree j is equal to

Tork['A’ (W F,s; #;) A Tor ['A]((w@s VF. ) H;).

(That these simplicial morphisms induce our maps A, ®;£ and Wy is obvious for the first
one and the last one. For @Z, this follows by the same reasoning as in the proof of The-

orem 5.9). We deduce that the comparison map Wy o G),t o A equals the map induced on
homotopy groups by the composition of the simplicial morphism:

(Ux o (id® f)0Of 0 R): w*F @iy *H — (Fl, )™ ®@p, H' (6.7
followed by the simplicial morphism induced by @ — m and ¢ — o
(FL o)™ ®p, H' — (FI )™ @5, H'. (6.8)

Now we are going to show that the simplicial morphisms (6.7) and (6.8) are e-con-
nected. Let us regard the source and the target of (6.7) as the diagonal of bisimplicial
objects @ F Q4] 5; H; and (F,:f,l.,gi)(”) ®, H; with bisimplicial degrees (i, j). Then
the simplicial morphism (6.7) actually comes from a bisimplicial morphism. Spectral
sequences of bisimplicial k-modules as in [14, IV, Sec. 2.2] yield two spectral sequences:

1 = To{ M (@} F. ¢ H) = miy j (@ F @i s*50).

I, = Tor"k( o H) = i (FL O™ @9, ).

And there is a morphism of spectral sequences I — II which coincides with the mor-
phism (6.7) on the abutment, and with the map Wy o @Jr o A on the first page. By Propo-
sition 6.5, the map Py o @Jr o A is an isomorphism When m and p are direct sums of
standard pI'OJeCtheS hence the morphism of spectral sequences is an isomorphism on the
first page. Hence the simplicial morphism (6.7) is an isomorphism on the level of homo-
topy groups (hence e-connected).

Thus, it remains to prove that the simplicial morphism (6.8) is e-connected. The
Tor-vanishing hypothesis of Theorem 6.1 implies that the maps (")) ®k[A] S —
(G ®k[4] 0 are e-connected for all integers i. Hence the map F:U,g — F,;r,g is e-
connected by Lemma 5.7, hence the simplicial morphism (6.8) is e-connected by the usual
bisimplicial spectral sequence argument. ]
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7. Special cases of the generalized comparison theorem

In this section, we spell out explicitly some special cases and direct consequences of the
generalized comparison theorem (Theorem 6.1).

7.1. Linearity over a big subfield F

The statement of the generalized comparison theorem can be simplified when the functors
7 and p are linear over a big subfield F. For all strict polynomial functors F and G and
all additive functors 7 and p we consider the composition:

(€] [
Tor} M (2 * F, p*G) = Tot! V(D) F, G) = Tor!™ (D} ,F.G),  (1.1)

where O is the auxiliary comparison map of Section 5, and ®y, is the strong comparison
map for F = k (note that when F = k, the base change functor ¢ is the identity functor,
hence it can be removed from the notation).

Theorem 7.1. Let k be an infinite perfect field of positive characteristic, containing a
subfield F and let A be an additive F -linear category. Let 7w and p be two F -linear func-
tors from A to k-vector spaces, respectively contravariant and covariant, and let F and
G be two strict polynomial functors with degrees less than the cardinality of F. Assume
furthermore that

Torf®Z'A(n,p) =0 for0<j <e.

Then the map (7.1) is an isomorphism if ] < e, and it is surjective if ] = e.

Proof. If F is a finite field, we can apply Theorem 6.1 with s = 1. Then the generalized
comparison map (6.2) is equal to the map (7.1), which proves the result.

Now assume that I is infinite. Then Tors®Z*(® (Dp) =0 for all i # j by Lemma 7.2
below. Moreover, composition with the equivalence of categories ¢/): k-Mod — k-Mod
induces an isomorphism Tori®z"’°(n, p) Tor’,,f®z""((j)7t, () p) for all j. Thus we may
apply Theorem 6.1 for r = 1 (I, is the prime field) and s big enough, in order that p*
is greater or equal to the degrees of F and G. In this situation, the expression of FT
simplifies because @7 Qk[A] (Dp =0foralli # j. Namely if we let « = =97 and
B = (=9 p then we have:

Ft=F6D, Dyg.

Moreover, one readily checks that the composite map
O} o A TorklA(x* F, p*G) — Tori™ (D} 4 (F6=), G6~Y)

is equal to the map Oy relative to o = =) 7 and g = (1=9)p.

Now we consider the following diagram, in which the composition of functors is
omitted, Ty stands for Tor, and we use the following notations x :=s —1, D = D ,,
D' = D, g. The Frobenius twist functor ®)—: k-Mod — k-Mod is isomorphic to the
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extension of scalars along the morphism of fields k — k, A — A?", hence we have a
canonical isomorphism can : ®) D’ ~ D™ and the isomorphisms (e) in this diagram are
induced by this canonical isomorphism.

TfM](I‘:JT, G/O) Ok Tf[Vk](f(x)D/, G(x)) Pk N T*gen(F(x)D/’ G(x))

l@k :lres(x)_ :lres(x)—

Tf[Vk](fD’ G) (T) Tf[vk](F(x)Dl(—x), G) Pk N Tfen(ﬁ(x)Dr(—x), G)

o e

TENFD,G).

The diagram is commutative: the upper left square commutes by the base change property
of Proposition 5.4, the upper right square and the triangle commute by naturality of ®y.
As explained above, the composite map corresponding to the upper row is e-connected by
Theorem 6.1. Therefore, the composite given by the first column is also e-connected. But
this composite is nothing but the map (7.1). This finishes the proof of the theorem. ]

The next vanishing lemma is used in the proof of Theorem 7.1. In this lemma, 4 is a
[F-linear category, and we say that an additive functor o: A — k-Mod is d -homogeneous
if «(Af) = Aa(f) for all morphisms f in 4 andall A € F.

Lemma 7.2. Let IF be a subfield of k, and let d # e be two nonnegative integers less than

the cardinality of F. Let w and p are two additive functors from 4 to k-Mod which are

respectively contravariant and covariant. If 70 is d -homogeneous and p is e-homogeneous,
k®ZA

then Tor (m,p) = 0.

Proof. Let Dy denote the dual of 7, i.e., Dim(v) = Homg (7 (v), k). Then the k-linear
dual of Torf‘g’Z'A’(n, p) is isomorphic to the ExtljcéZ 4 (0, D), hence it suffices to prove
that the latter is zero for all ;.

Let o and S be two arbitrary objects of k ®z A-Mod. Since + is F-linear, every A € F
yields a natural transformation A, € Endgg, 4 (o) whose component at x equals o (Aidy).
Thus Ext,t®ZA(a, B) has an F-F-bimodule structure given by A - [£] - & = [ug 0 § 0 A4],
where — o A4 is the pullback of an extension along A, and ug o — is the pushout of an
extension along pg. Moreover, for all morphisms f:y — § in kK ®z A-Mod we have
f oA, = puso f, which implies that the two F-module structures on Eth®Z 4@, B)
coincide: A - [£] = [£] - A. Assume now that « is d -homogeneous and 8 is e-homogeneous.
Then Ay = A%idy and Ag = A®idg. Thus for all extensions [§] we have

AE] = Ao - [E] = [E] - A = A°[E].

Since the cardinality of F is greater than d and e, this implies that [£] = O for all [§] €
Ext,”;®Z (o, B). The result now follows by taking « = pand § = Dy . |

Recall that each strict polynomial functor F has an associated contravariant strict poly-
nomial functor FV (=) = F(Homg (—, k)).
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Corollary 7.3. Let k be an infinite perfect field of positive characteristic, the strong com-
parison map
@y TorkVH(FY G) = Tor®™(FY, G)

is an isomorphism for all strict polynomial functors F and G.

Proof. We wish to apply Theorem 7.1 with 7 (v) = Vv, p(v) = vand F = k. As explained
in the proof of [6, Lem. 6.1], the Eilenberg—Watts theorem yields an isomorphism with the
Hochschild homology of k:

Tork®2Vk (1, p) =~ Tork®z¥ (k k) = HH, (k),

and the Hochschild—Kostant—Rosenberg theorem together with the perfectness of k imply
that this Hochschild homology is zero in positive degrees. Hence @y o ®f is an isomor-
phism by Theorem 7.1. Moreover, = and p are standard projectives of Mod-k ®; Vi
and k ®; Vi-Mod respectively, hence ® is an isomorphism by Proposition 5.5. Thus,
Dy : Tori[v"](D;,pF, G) —> Torien(D;,pF, G) is an isomorphism. To finish the proof, it
suffices to observe that HHg(k) = k, so that D , >~ ¥ —. [

7.2. The generalized comparison theorem for Ext

We now dualize the generalized comparison theorem and its special cases. We start with
the simplest case of Corollary 7.3. Recall that the strong comparison map @ from Defi-
nition 3.1.

Theorem 7.4. Let k be an infinite perfect field of positive characteristic. For all strict
polynomial functors F and G the strong comparison map
®p: Exthe, (F, G) — Extypy, 1 (F, G)

is a graded isomorphism.

Proof. By a standard spectral sequence argument, the proof reduces to the case where G
is a standard injective, hence when G = Homg (E, k), where E is a standard projective
in & precomposed by duality ¥—. Then ®; is an isomorphism as a consequence of
Corollary 7.3 and the duality diagram (3.1). ]

Similarly, one can dualize Theorem 7.1. To be more specific, given two additive func-
tors p, 0: A — k-Mod and a k-vector space v, we let

Ty,5(v) := Homy4)(p,0) ® v.
Then for all strict polynomial functors G and K we have a map
O: EXtZ[vk](F’ TyeG) = Exty (0" F,0*G)
induced by restriction along p and by the canonical evaluation morphism

ev: Homg4)(p,0) ® p — 0.
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Theorem 7.5. Let k be an infinite perfect field of positive characteristic, containing a
subfield F and let A be a svelte additive F-linear category. Let p,c: A — Vi be two
F-linear functors such that o takes finite-dimensional values and Homy[4)(p, 0) is finite-
dimensional. Let e be a positive integer such that

Ext,]@ZA(p, 0)=0 forO<j <e.

Then for all strict polynomial functors F and G with degrees less than the cardinality of
I, the map
O o Dy: Ext/

gen

(F.T,,G) — ExtiM (p*F,0*G)
is an isomorphism if j < e and it is injective if ] = e.
Proof. In this proof, we let ¥ — = Homy (—, k) and we omit the composition operator for
functors, e.g., if K is a strict polynomial functor, ¥ K" stands for (V¥—) o K o (V—).
We first prove the result when G = VK" for some K in Px. We let 7 := Yo and we

let &: T, , — ¥ Dy, be the morphism of functors whose component at a vector space v is
given by the composition

v ® Homyg 4 (p, Vr) S v Vn Rk[A] L) — YHomy (v, @ ®k[A] £)

where the first map is the usual adjunction isomorphism and the second map is the canon-
ical map
can:v ® Yw — YHomy (v, w)

such that can(x ® f)(¢) = f(¢(x)), and which is an isomorphism if v is finite dimen-
sional. One readily checks that the composition

&p VO
Tpop = "Dapp—> ‘m =0

equals the canonical evaluation map ev. The finite dimensionality hypotheses on the values
of o and on Homy[4)(p, 0') imply that:

(i) &:Typ — Y Dgpis an isomorphism,

(i) o*(GY)=GYo =Gn =n*G,

(iii) YV Dy, identifies with D .

Hence we have a commutative diagram

V(ey)
Extf iy (F.VKYTp0) =5 Exty (Fp.V KV T,0p) Ty Extf 4 (Fp. Y KY0)

VotV (KT, 5, F) —% VTol M (KV T, o p, Fp) X2 Vo) (K Vg, Fp)

:lKV(E) :lK Y (&p) H

VTot"W (K Dy, F) —=25 VTotX"™ (K Dy pp. Fp) 2% VTor) (K 7, Fp)
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from which we deduce that the graded map ®y, o @i fits into a commutative square

ExtZ, (F. T}y (VKY)) —22%% Exty g (0" F.0*(KY))

B lz l: (7.2)

VT (D} K, F) — 2%y ok A (e ot )

where the bottom arrow is dual to the map (7.1) of Theorem 7.1. Since Ext}:@)Z 40, 0)
is isomorphic to vTorl,i@’Z ‘A’(ﬂ, p), this bottom arrow is an isomorphism by Theorem 7.1,
hence Theorem 7.5 holds when G = VK.

This proves in particular that Theorem 7.5 holds for all strict polynomial functors
G with finite-dimensional values, and hence for the standard injectives. For an arbitrary
G one can consider an injective resolution and the result follows by a standard spectral

sequence argument. |

With the same strategy, one can also dualize Theorem 6.1. Given a strict polynomial
functor G, we denote by G* the strict polynomial functor such that

G*w) = (_;( @ (’i)(v ® Homk[ﬁ](('_”)p, (_’i)cr))).

0<i<s?
One defines a comparison map in the same fashion as the map of Theorem 7.5:

Ext/ (F(rs—r)’ Gi) — EXtIi[qA](p* F,0*G). (7.3)

gen

The proof of the following corollary is similar to the proof of Theorem 7.5 and is left to
the reader.

Theorem 7.6. Let k be an infinite perfect field of characteristic p, containing a finite field
Fy of cardinality g = p”. Let A be a svelte additive F4-linear category, let p,c: A — Vi
be two Fy-linear functors such that o has finite-dimensional values and Homy[4)(p, 0) is
finite-dimensional. Assume that s and e are positive integers such that

B, 4 (5. P0) =0

for0 < j <eand0 <i < s2. Then for all strict polynomial functors F and G of degrees
less than q°, the map (7.3) is an isomorphism if j < e and injective if j = e.

Remark 7.7. The finite dimensionality hypotheses that we make on the values of o and
on Homg4)(p, 0) are necessary in the proof of Theorem 7.5 in order that (i), (ii) and (iii)
are satisfied. Without them, we would not obtain a commutative square (7.2) with vertical
isomorphisms. Similarly, the finite dimensionality hypotheses are needed for the proof of
Theorem 7.6. Instead of dualizing, one could try to prove Theorems 7.5 and 7.6 by a direct
approach, following the same strategy as the proofs of Theorems 6.1 and 7.1. However,
such a direct approach seems to raise inextricable problems with (co)limits.
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8. Some concrete calculations

In this section, we apply the generalized comparison theorem (or the special cases given
in Section 7) to obtain new explicit homological computations.

8.1. A sample of new functor homology calculations over k[V]

Many concrete computations of generic Ext can be found in the literature (or quickly
deduced from existing results). By contrast, no' Ext-computation in k[V;]-Mod is known
when k is an infinite perfect field of positive characteristic p. Thus, Theorem 7.4 can be
viewed as an efficient tool to obtain concrete Ext-computations in k[V]-Mod over an
infinite field. We illustrate this idea here.

Notation 8.1. We will write Ext* indifferently for Exty., or for Exty , since the two
are isomorphic. If one interprets the statements of the section with Extg,,, then these state-
ments simply gather some well-known computations. But if one interprets the statements
of the section with Extz[vk], then these statements give new homological computations

which were previously out of reach.

We first generalize the computations of [10] of the Ext-algebras between symmetric,
exterior and divided powers to an infinite perfect field k. To be more specific, let C* be a
graded coalgebra in % and let A* be a graded algebra in ;. We consider the trigraded
vector space

E*(C*. 4%):= P Ext'(C?. 4%
i,d,e>0

equipped with the algebra structure given by convolution:
E(CY, A9) @ B/ (CF, A%) S Bt/ (€9 @ C7, A° @ A%) — EITI (C4+S pe+s),

The symmetric powers S*, the exterior powers A* and the divided powers I'* all have a
canonical Hopf algebra structure, hence Ext between them have an algebra structure.

For all finite-dimensional vector spaces V' and all strict polynomial functors G over k,
we denote by Gy the ‘functor with parameter V'’ defined by Gy (—) := G(V ®; —). If
A* is a graded algebra, then A7, is also a graded algebra.

Theorem 8.2. Let k be an infinite perfect field of positive characteristic p, let V be a
k-vector space of finite dimension, and let r be a nonnegative integer. Let

Ver =@ OV [2ip" + 5" = 1) 1.p']

i>0

be the trigraded k-vector space where each WV [€, m,n] denotes a copy of PV placed
in tridegree (£, m,n). Then we have isomorphisms of trigraded algebras, natural with

! Apart from the recent results of [6], which are only valid for Ext between direct summands of tensor
powers.
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respectto V':
E*(I*0).87) >~ S(Vo,).  EX(T*0.A}) = A(Vip).
E*(A*),85) ~ A(Vo,r), BY(A*AY) ~ T (1),
E*($*),8p) ~ T (Vo,), E*(T*0.T}) ~T(Va,).
Proof. The result is obtained by letting s — oo in [37, Thm. 15.1]. ]

Remark 8.3. The pairs (A*(), 'y, (S*™), I'};) and (§*0), A7) do not appear in The-
orem 8.2. The reader may obtain the corresponding generic Ext by letting s — oo in [37,
Thm. 15.2 and Thm. 15.3]; we do not reproduce them here to save space. Additional
computations of the same flavor, involving more general Hopf algebras, can be retrieved
from [39, Thm. 7.1].

There is a general formula computing extensions between twisted strict polynomial
functors, see [3,36,38]. Namely, if V' is a finite-dimensional graded k-vector space and G
is a strict polynomial functor, the functor with parameter Gy (—) := G(V ®; —) inherits a
grading. It is the unique grading natural with respect to G and V', which coincides with the
usual grading on symmetric powers of a graded vector space if G is a standard injective,
see [35, Sec. 2.5] and [38, Sec. 4.2]. Let E, be the graded vector space which equals k
in degrees 2i for 0 < i < p”" and which is zero in the other degrees. Then we have a
graded isomorphism, where the degree on the right-hand side is obtained by totalizing the
Ext-degree with the degree of the functor Gg, (that is, if G]ér denotes the component of

degree j then the summand Extf?k(F , G]ér) is placed in degree i + j):
Exty, (F”),G")) ~ Ext}, (F.Gg,).

We extend the parametrization of G to infinite-dimensional graded vector spaces v by
letting Gy := colim Gy, where the colimit is taken over the poset of all finite-dimensional
graded vector spaces U C V. By taking the colimit over r in the previous isomorphism,
and by using Theorem 7.4 we obtain the following result (in which no Frobenius twist
appear in the Ext of the right-hand side!).

Theorem 8.4. Let k be an infinite perfect field of positive characteristic. Let E, be the
graded vector space equal to k in even degrees and to 0 in odd degrees. There is a graded
isomorphism, natural with respect to the strict polynomial functors F and G, and where
the degree on the right-hand side is computed by totalizing the Ext-degree with the degree
of the functor Gg,:

Ext*(F, G) ~ Extp (F, GE,).

Remark 8.5. If G is d-homogeneous and F = I'?, the right-hand side in Theorem 8.4 is
zero in positive Ext-degrees, and in Ext-degree zero it can be computed by [35, Lem. 2.10].
One obtains a graded isomorphism:

Ext*(T¢,G) ~ Gg_, (k) = G(Eoo).
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Duality between Ext and Tor allows to convert the results of this section into Tor
computations. To be more specific, let Tor, denote Tors" or Tor]i[vk]. If F* and G™* are
two graded strict polynomial functors over k, we denote by T.(F*, G*) the trigraded
vector space defined by

T«(F*, G*) = @ Tor; (F4V, G®),

i,d,e>0
where F¢V is the contravariant strict polynomial functor associated to F?V.

Corollary 8.6. Let k be an infinite perfect field of positive characteristic p, let V be a
k-vector space, and let r be a nonnegative integer. Let

Ver =@ OV[2ip" +5(p" — 1).1.p']
i>0

be the trigraded k-vector space where each "V [{, m, n] denotes a copy of ™V placed
in tridegree (£, m,n). There are isomorphisms of trigraded vector spaces, natural with
respectto V:

To(Cp. T*) = T(Vor),  Ta(A}.T*0) > A(V1,),

To(D5 A*) = A(Vo,), Tu(A A™D) 2 S(V,),

To(Ty, S*7) ~ S(Vo,),  Tu(Sy, T*) > S(Va,).
Proof. If V has finite dimension, the result is deduced from Theorem 8.2 by duality
between Ext and Tor. Each of the obtained isomorphisms extends to the case of infinite-

dimensional V' by taking filtered colimits over the finite-dimensional vector subspaces
of V. ]

Corollary 8.7. Let k be an infinite perfect field of positive characteristic. Let T oo be the
graded vector space equal to k in even degrees and to 0 in odd degrees. There is a graded
isomorphism, natural with respect to the strict polynomial functors F and G, and where
the degree on the right-hand side is computed by totalizing the Tor-degree with the degree
of the functor Fy_ :

Tory(FV, G) ~ TorZ* ((Fr.,)", G).

8.2. Calculations over k[Pg] and homology of GL,(R)

The next result, combined with the explicit computations of generic Tor from the previous
section, yields many explicit computations of Tor over k[Pg].

Theorem 8.8. Assume that R is an algebra over an infinite perfect field k of positive
characteristic. Let £ and m be two positive integers, and let © and p be the additive
functors:

. PY — k-Mod o: Pr — k-Mod

v HomR(v,Rﬁ), v +— Hompg(R™,v).
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There is a graded isomorphism, natural with respect to F, G, RY and R™:
Tor];[PR](ﬂ*F’ IO*G) = Torien((FHomR(Rm,Rl))v’ G)

Proof. The result will follow from Theorem 7.1, once we have proved that the graded
vector space Torli®ZPR (. p) is equal to zero in positive degrees, and to Homg (R™, RY)
in degree zero. By additivity of Tor, it suffices to prove this for £ = m = 1. Then, the
Eilenberg—Watts theorem yields an isomorphism:

k
T0r1;®ZPR (7, p) ~ Tor*®ZR(R, R).

If P — k is a free resolution in the category of (k, k)-bimodules, then by applying base
change along the flat morphism k& — R on the left action of k we obtain a free resolution
R ®, P - R ®x k = R in the category of (R, k)-bimodules. Thus Torﬁ®ZR(R, R) is
the homology of the complex:

R ®re ik (RQ®k P) ~ R ®y (k Qrg, i P).

Hence Tor],i®Z R(R , R)= R ®; HH.(k) by the universal coefficient theorem, where HH (k)

is the Hochschild homology of k. The latter is equal to k in degree zero and it is zero in
higher degrees since k is a perfect field (see, e.g., the proof of [6, Lem. 6.1] for a detailed
argument). Whence the result. ]

The infinite general linear group is defined as
GLoo(R) = |_J GLA(R),
n>1

where each group GL, (R) is viewed as the subgroup of GL,41(R) of block matrices of
the form [ ¥ 91

01
Every functor 7: Pr — k-Mod yields a left k-linear representation Too 0f GLo(R).
To be more specific, as a k-vector space Too = | J,,»; T(R"), where each T'(R") is seen

as a subspace of T'(R™) via the map T'(1,) where (, is the standard inclusion of R” as
the first n coordinates of R"™1. The action of GLoo(R) is the unique action such that
each g € GL, (R) acts as T'(g) on T(R"). Similarly, every T": Py — k-Mod yields a left
k-linear representation T, of GLo(R), which equals the increasing union of the vector
spaces T'(R™) (where each T'(R") is now seen as a subspace of T/(R"*1) via T'(p,)
with p, the canonical projection of R"*1 onto its first n coordinates), with action of
GLoo (R) such that each g € GL,,(R) acts as T'(g~!) on T'(R").

If we take 7w and p as in Theorem 8.8, then ps is the direct sum of m copies of
the R-module with infinite countable basis R*® (viewed as a k-vector space by restric-
tion along k — R), each of these copies endowed with the action of GLy(R) by matrix
multiplication: g - v := gv, while 7 is the direct sum of £ copies of R* with action
of GLwo(R) given by multiplication by inverse transpose: g - v := (g~ ')Tv. Moreover,
for all strict polynomial functors F and G the representations (* F) oo and (p*G)eo are
respectively equal to F (7o) and G (pso). The next result follows from [5, Thm. 5.6] (due
to Scorichenko, unpublished) and Theorem 8.8.
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Corollary 8.9. Under the hypotheses of Theorem 8.8, there is a graded isomorphism,
natural with respect to F, G, RY and R™:

H, (GLoo (R); F (o) ®k G (pos)) = Ha(GLoo(R); k) Ry Tors™ (Fiyomp(rm. %) "+ G)-

Concrete computations of the generic Tor appearing in the right-hand side of Corol-
lary 8.9 are given in Section 8.1. For example, the decomposition A% (7o @ poo) =
D, j=d A (T00) ®k A (poo), together with Corollary 8.9 and the Tor-computation of
Corollary 8.6 give the computation of Example 3 from the introduction.

9. Rational versus discrete cohomology

Let G be an algebraic group over an infinite perfect field k of positive characteristic p,
let Modg denote the category of all k-linear representations of the discrete group G, and
let Ratg denote the full subcategory of Modg on the rational representations as in [17].
Extensions between two rational representations V' and W can be computed in Ratg or
Modg. In the sequel, we let

Extly (V. W) = Extga, (V. W), H*(G; W) := Ext (k, W),
Extg (V. W) := Extipoq, (V. W), H*(G:W) := Ext(k, W).

There is a canonical morphism:
Ext§, (V. W) — Ext§ (V. W)

which is far from being an isomorphism in general. An important difference between the
source and the target of the canonical morphism is the behavior of Frobenius morphisms.
Namely assume that G is one of the classical groups GL, (k), Sp,, (k) or O, , (k) (and
if k has characteristic # 2 in the latter case), let ¢: G — G, [a;;] — [‘15’]’ denote the
morphism of algebraic groups induced by the Frobenius endomorphism of k, and let V"]
denote the restriction of V' along ¢”". We have a commutative ladder whose horizontal
arrows are induced by restriction along ¢:

Ext (V. W) — -+ — Ext (VI W) — ExtG (Vi1 wiretl) — ..

| | !

ExtL (V,W) — -+ — Ext, (VUL Wiy — Exd, (vU+1 wl+1ly ...

Since k is perfect, ¢ has an inverse ¢ ' ([a;;]) = [a;;”] so that the morphisms in the bottom
row are all isomorphisms. However ¢ has no inverse in the sense of algebraic groups;
instead it is known [17, II 10.14] that the morphisms in the top row are all injective (and
that they are isomorphisms for » >> 0 only). Hence, the ladder yields canonical maps:

@y q: Bxts (VI Wy - Exel (v, W). 9.1)
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Embed G = GL,(k), Sp,,,(k) or O, , (k) into the multiplicative monoid of matrices
M (k) in the usual way (here m = n for GL, (k) and m = 2n for the symplectic or
orthogonal groups). Then a finite-dimensional representation V' of G is called polynomial
of degree less or equal to d if it is the restriction to G of a representation of M, (k), such
that the coordinate maps of the action morphism

pv: M (k) — Endg (V) = Maimv (k)

are polynomials of degree less or equal to d of the m? entries of [a;;] € M, (k). The first
main result of the section is the following theorem.

Theorem 9.1. Assume that the perfect field k is infinite, and that V and W are two
polynomial representations of G = GL,, (k) of degrees less or equal to d. Let r be a
nonnegative integer such that n > max{dp”, 4p” + 2d + 1}. Then the map (9.1) is an
isomorphism in degrees i < 2p" and it is injective in degreei = 2p".

The second main result of the section is an analogue of Theorem 9.1 for orthogonal
and symplectic groups. Here we take V = k hence V'] = k and the comparison map (9.1)
can be rewritten as a map

@6 H*(G; W'y = H* (G W). 9.2)

Theorem 9.2. Let k be an infinite perfect field of odd characteristic p, let G = Sp,,, (k)
or Oy » (k) and let W be a polynomial representation of degree less or equal to d. Assume
that 2n > max{dp”,8p” + 4 4+ 2d}. Then the comparison map (9.2) is an isomorphism
in degreesi < 2p" and it is injective in degree i = 2p".

The remainder of the section is devoted to the proof of Theorems 9.1 and 9.2.

9.1. Proof of Theorem 9.1

Let us say that a map between cohomologically graded vector spaces is e-connected if it
is an isomorphism in degrees less than e and if it is injective in degree e. Thus, we have to
show that the canonical map

@éLn(k)(V[r]’ W[r]) N EXtELn(k)(V[r]’ W[r])

is 2p”-connected. Since n > dp”, we know from [12, Lem. 3.4] that there are uniquely
determined strict polynomial functors F and G with degrees less or equal to d and with
finite-dimensional values, such that F (k") ~ VIl and G (k") = W'l We consider
the commutative diagram, in which the vertical arrows are induced by evaluation on k"
and the horizontal arrows are the canonical maps (induced by forgetting the ‘scheme struc-
ture’):

Exty, (F,G®) _®» Extyy, (F©,G®)

l(a) l(C)

Extf; o (FOE"). GO (™) —— Bty o (FO ™). G (K™)).
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The map (a) is a graded isomorphism by [12, Cor. 4.3.1] since n > dp”. The map (b) is
2 p"-connected by Theorem 7.4 and by the bound of stabilization for generic Ext given
in Proposition-Definition 2.9. Thus, the following proposition finishes the proof of Theo-
rem 9.1.

Proposition 9.3. For all strict polynomial functors F and G of degree less or equal to d
with finite-dimensional values, if n > 2e + 2d + 1, then the map (c) is e-connected.

Proof. Let T and T’ be two strict polynomial functors, respectively covariant and con-
travariant. Then 7T defines left k[GL,, (k)]-modules T (k™) (where g € GL,(k) acts as
T (g) on T(k™)) for all positive n, and the colimit of these representations yields a left
k[GLoo]-module To (as explained in Section 8.2). Similarly, 7’ defines right k[GL,, (k)]-
modules 7" (k™) and a right k[GL]-module T7,. We consider the commutative triangle

Tor];[GLf"’(R)](T;O, Too)
= colim Tork S ®I(T7 (k) T (k™))
n

(Q)T &

Tork PN (Tr(km), T (k")) ———— Tork™(17, T)

in which the vertical arrow (<) is the canonical arrow of the colimit, the horizontal arrow
is induced by evaluation on k" and the last arrow (¢¢) is the one given by the universal
property of colimits.

The homology H.(GL(k); k) is zero in positive degrees by Lemma 9.4, hence it
follows from [5, Thm. 5.6] that the map (¢ <) is a graded isomorphism.

Now strict polynomial functors yield split coefficient systems of finite degree in the
sense of [29, Def. 4.10], thus it follows from [29, Thm. 5.11] that the vertical map (¢)
is an isomorphism in degrees less than e and an epimorphism in degree e provided n >
2e¢ + § + 1, where § is the degree of the coefficient system T'/(k") ® T'(k™), n > 1.
Using duality between Ext and Tor, we deduce that the map induced by evaluation on k”:

Extipy, (T, DiT') — ExtgLn(k)(T(k"), D T' (k™))

is e-connected, provided n > 2e + § + 1.

Now take T = F) and T’ = D;G™. Then G") = D} T’ since G has finite-dimen-
sional values, and the proposition follows from the fact that if F' and G are both strict
polynomial functors of degree less or equal to d, then the degree of the coefficient system
T' (k") @k T(k"™),n > 1, is less or equal to 2d. [

Lemma 9.4. Let k be an infinite perfect field of positive characteristic p. The mod p
homology of GL (k) is zero in positive degrees.

Proof. The result follows from the p-local Hurewicz theorem [26, Thm. 1.8.1] and the
unique p-divisibility of the homotopy groups of B GL(k)™* over an infinite perfect field
of characteristic p [19, Lem. 5.2 and Cor. 5.5]. [
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9.2. Proof of Theorem 9.2

The proof of Theorem 9.2 follows the same idea as the GL, (k) case. Since 2n > dp”, we
know from [12, Lem. 3.4] that there is a uniquely determined strict polynomial functor F
with degree less or equal to d and with finite-dimensional values such that F ) (k?") =
W1, Thus we have to show that the canonical map

H*(G: F(k*")) — H*(G: F (k™))

is 2p”-connected. Since every strict polynomial functor splits as a direct sum of homo-
geneous strict polynomial functors, we may assume further that F' is homogeneous of
degree d.

Assume that G = Oy, , (k) or G = Sp,,, (k). We associate to G a ‘characteristic func-
tor’ X : Vi — Vi, namely X = S? in the orthogonal case X = A? in the symplectic case.
Let k[X] denote the functor which sends a vector space v to the vector space with basis
X (v) and let T'? X denote the functor such that T'¢ X (v) = ' (X (v)). We set:

Hy (k[Vi]: F©0) := Extpy  (k[X], F©),

Exty, (P774/2X, F©)) if d is even,

Hy (P F7) =
X 0 if d is odd.

We consider the commutative square

HE (P FO) — s B (k[Vi]: FO)

l(a) l(C)

H*(G;F(r)(an)) % H*(G;F(r)(an))

in which maps (a), (b) and (c) are defined as follows. The bilinear form defining G yields
an element @ € X (k") invariant under the action of G, hence a G-equivariant morphism
A ik — k[X(k?")] such that A(1) = . The map (c) is the composition

Extfpy,  (k[X]. F©) — Extg (k[ X(k*")], FO (k*")) — Extg (k. FO (k"))

where the first map is given by evaluation on k2", and the second one is pullback along A.
Similarly, the map (a) is zero if d is odd, and if d is even, it is induced by evaluation
on k2" and pullback along the G-equivariant morphism A : k — I'%/2(X (k")) such that
A(1) = @®4/2, Finally, the map (b) is zero if d is odd, and if d is even, it equals the
composition

Hy (Pr: F) — Extypy, (T7 2 X, F©) — Hy (k[Vi]: F©)

where the first map is induced by the forgetful functor $, — k[Vy]-Mod and the second
one is induced by pullback along the natural transformation k[X] — I'?"4/2X which
sends every element x € X(v) to x®2'4/2 ¢ TP'4/2(x(v)).
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Since 2n > dp”, the map (a) is an isomorphism by [34, Thm. 3.17] or [34, Thm. 3.24].
The map (b) is 2 p” -connected by Proposition 9.5 below, and the map (c) is 2 p” -connected
by Proposition 9.6 below. Thus ®; g is 2 p”-connected, which finishes the proof of The-
orem 9.2.

Proposition 9.5. Let k be a field of odd characteristic. For all strict polynomial functors
F with finite-dimensional values, the map (b) is 2 p” -connected.

Proof. Assume first that d is even. Let ®2 be the second tensor power, i.e., ®2(v) = v®2.
We consider the map

Ext}, (7422 F©)) — Extipy, ) (k[®%]. F©) 9.3)

induced by the forgetful functor $, — k[Vi]-Mod and by pullback along the natural
transformation
k[®2] - Fprd/2®2

which sends every element x € X(v) to x®?'4/2 ¢ TP"4/2(X(v)). Consider the action
of the symmetric group &, on ®? such that (®2)®> = X. Then the action of &, on ®?
induces an action of G, on the source and the target of (9.3). Since p is odd, &,-fixed
points are direct summands, hence the map (b) is a retract of the map (9.3). Thus it suffices
to show that the map (9.3) is 2 p” -connected.

Let $#%(2) denote the category of strict polynomial bifunctors with two covariant
variables. Let X2 be the bifunctor such that X?(v, w) = v ® w, let B be the strict
polynomial bifunctor such that B(v, w) = F(v & w), and let B®) denote the bifunc-
tor obtained by precomposing each variable of B by the Frobenius twist /), that is
BM (v, w) = B(Mv, Mw). By using adjunction between sum and diagonal as in [10,
(1.7.1), p. 672], the map (9.3) identifies with the map

Exth, () (T7" 2R, BT)) — Extffy, v, (K[X?]. BY) 9.4)

induced by the forgetful functor #;(2) — k[Vi x Vi]-Mod and by pullback along the
natural transformation k[X?] — I'?"4/2X? which sends every basis element x € v ®
w to x®P'4/2 ¢ TP"4/2(y @ w). Thus, it suffices to prove that the map (9.4) is 2p”-
connected for all homogeneous strict polynomial bifunctors B of degree d, with finite-
dimensional values.

Every such B has a irresolution by strict polynomial bifunctors of separable type,
that is, of the form (F; X F,)(v, w) = F1(v) Q% F2(w), where F; and F, are homo-
geneous strict polynomial functors of degrees di and d, with dy + d» = d and with
finite-dimensional values. Thus by a standard spectral sequence argument, it suffices to
prove that the map (9.4) is 2p”-connected when B = F; X F5. In this case, by dualizing
the first variable and by using [9, Thm. 1.5] and its equivalent for ordinary functors, The
map (9.4) identifies with the map

Exty, (Ff . F") — Extgy j(FF 7. F) (9.5)
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induced by the forgetful map #, —k[Vy]-Mod, and where F 1# refers to the Kuhn dual of F;
[12, Prop. 2.6]. Finally, the map (9.5) is 2 p” -connected as a consequence of Theorem 7.4
and of the bound of stabilization for generic Ext given in Proposition-Definition 2.9, which
finishes the proof of Proposition 9.5 for d even.

Assume now that d is odd. Then Proposition 9.5 is equivalent to the vanishing of
H*(k[X]; F). This vanishing is proved with the same reduction steps as in the case
d even. Namely, H* (k[X]; F) is a direct summand of Extypy, (K [®2], F™), which
is isomorphic to Extz[vkka](k[&z], B®™) with B(v, w) = F(v @ w). Thus, it suffices
to prove that the latter is zero for all homogeneous strict polynomial bifunctors B of
degree d. The case B = F; X F; is sufficient, where F; and F, are homogeneous strict
polynomial functors of degrees d; and d, with di + d» = d and with finite-dimensional
values, and in that case, Extz[vk <Vi] (k[x2], B™)is isomorphic to Ext}:[vk](Ff(r), Fz(r)).
We observe that d; # d, because d is odd. Thus these extensions are zero by the same
argument as in the proof of Lemma 7.2. ]

Proposition 9.6. Let k be a perfect field of odd characteristic. For all strict polynomial
Sfunctors F of degree less or equal to d, the map (c) is e-connected provided 2n > 4e +
2d + 4.

Proof. We proceed exactly in the same way as for the proof of Proposition 9.3, using
Lemma 9.7 below for the vanishing of H. (G k), the stable homology computations of [5,
Cor. 5.4] and the homological stabilization result of [29, Thm. 5.15]. [

Lemma 9.7. Let k be a perfect field of odd characteristic p. Then the mod p homology
of the groups Spo, (k) and O 00 (k) is zero in positive degrees.

Proof. Let G = Spyy (k) or Ono,00(k). By the universal coefficient theorem, it is equiv-
alent to prove that H; (G; Z) is uniquely p-divisible for i > 0. If 4 is an abelian group,
we let A[1/2] denote the tensor product A ®z Z[1/2]. Since p is odd, A is uniquely
p-divisible if and only if A[1/2] is uniquely p-divisible. And since Z[1/2] is flat we
have H..(G; Z)[1/2] = H«(G; Z[1/2]). Thus the statement of the lemma is equivalent to
H; (G; Z[1/2]) being uniquely p-divisible for i > 0.

Since k is a field of odd characteristic, the Witt groups W (k) are 2-primary torsion
groups [30, Chap. 2, Thm. 6.4]. Thus by [18, Thm. 3.18] H.(G; Z[1/2]) is equal to Ty (k),
that is, to the homology of a space € (k) which is a retract of the localized classifying space
(B ?,;+)(2), see [18, p. 253] for the latter point. Since the integral homology of (B #; +)(2)
is equal to Hy« (B 5’,;4'; 7Z)[1/2], the lemma will be proved if we can prove that B 5’,2+ has
uniquely p-divisible positive integral homology groups.

But BJ’,;Jr has the weak homotopy type of Ko(k) x B GLwo(k)™, which is uniquely
p-divisible by Lemma 9.4 and by the universal coefficient theorem. ]

Remark 9.8 (B. Calmes). Instead of relying on [18], one could prove Lemma 9.7 by using
the formula of [31, Rem. 7.8], which says that after tensoring by Z[1/2], the hermitian K-
theory (hence [31, App. A] the homotopy groups of BG ™ for G = Sp., (k) or O 00 (k))
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is the direct sum of a term computed from the K-theory of k£ and a term given by Balmer’s
Witt groups of k tensored with Z[1/2].

Funding. This work was partially supported by the project ChroK (ANR-16-CE40-0003),
Labex CEMPI (ANR-11-LABX-0007-01) and, for the first author, by AlMaRe (ANR-19-
CE40-0001-01).
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