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Abstract. The field of Linear Algebraic Groups is still a very active research
area in contemporary mathematics. It has rich connections to algebraic geom-
etry, representation theory, algebraic combinatorics, number theory, algebraic
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by A. Borel, C. Chevalley, J.-P. Serre, T. A. Springer, R. Steinberg, and J.
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Introduction by the Organizers

For the past 70 years the theory of algebraic groups has been at the forefront of
research in algebra and algebraic geometry. In particular, it plays an important
role in the construction of moduli spaces in algebraic geometry, in the Langlands
program, and in the classification of finite simple groups.

Many important discoveries in the field of algebraic groups were first announced
at a series of Oberwolfach workshops, originated by Springer and Tits. These work-
shops met at (approximately) three year intervals since the 1971; the last meeting
took place in April, 2021 (in hybrid form during the pandemic). This time, there
were 52 participants (46 in Oberwolfach, 6 online) from 12 countries: Canada,
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China, France, Germany, Great Britain, India, Israel, Italy, the Netherlands, Rus-
sia, Switzerland, and the United States. The scientific program consisted of 21
lectures mainly on the following research topics:

(1) Stacks and Geometric Invariant Theory
(2) Branching rules, Schubert geometry and Geometric Langlands theory
(3) Representations of Frobenius kernels and small quantum groups.

Additionally, the two topics Algebraic groups and automorphism groups and
Coulomb branches were considered.

More precisely:

(1) Stacks have been introduced about 50 years ago as a tool to study moduli
problems. Meanwhile they became objects to be studied by themselves. In partic-
ular, there is a general theory available as witnessed by, e.g., the “stacks project.”
Now the focus turned towards a detailed structure theory for certain classed of
stacks. Most stacks occurring in “nature” look locally like a quotient stack [X/G];
this means that locally these stacks can be studied using the powerful machinery
of Geometric Invariant Theory (GIT). After Mumford’s GIT techniques for the
construction of moduli spaces have been gradually replaced by the stack machin-
ery, GIT is now experiencing a powerful resurgence as a tool to study stacks. We
can mention here the talks of Heinloth, Mayeux and Premet.

(2) The Horn problem is to provide the inequalities satisfied by the eigenvalues of
a sum A + B of two hermitian matrices in terms of the eigenvalues of A and B.
This problem has been solved by Klyachko and Knutson-Tao. It involves certain
triples of Schubert classes in the singular cohomology of Grassmannians. These
are related to Littlewood-Richardson coefficients arising in the decomposition of
tensor products of simple representations of GL(n,C). More generally, one can
pose this problem for arbitrary reductive group G. The talks of Francone and
Kumar contributed to this area.

(3) Representations of algebraic reductive groups over an algebraically closed field
in positive characteristic is a central topic in representation theory. It has deep
connection to the geometry of affine flag varieties and representations of affine
Lie algebras and those of quantum groups at roots of unity. There has been
a lot of work on the tensor structure of representations of reductive algebraic
groups. A major obstacle is that tensor products do not preserve blocks. Jonathan
Gruber explained how to define a new tensor structure on the principal block
by introducing a new notion called generic direct summands. Then he posed a
conjecture relating the multiplicity of generic direct summands to coefficients of
Schubert classes in the cohomology ring of affine Grassmannian.

The small quantum group is a characteristic zero analogue of a Frobenius kernel
of an algebraic group G. Their representation theory captures important infor-
mation on the representation of G. In the talk of Anna Lachowska, she explained
recent progresses and new results on the study of Hochschild cohomology of the
small quantum group, conjectural relationships to diagonal coinvariant rings, and
relations to the cohomology of affine Springer fibers.
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(4) Algebraic groups occur often as automorphism groups of algebraic structures
and/or of algebraic varieties. For example the projective linear group PGLn is
the automorphism group of the matrix algebra Mn(k) and also of the projective
space of dimension n − 1. An important question is the following. If G is a
smooth connected algebraic group defined over a field k, can we realize it as of the
automorphism group of a smooth projective variety? It is called the inverse Galois
problem for connected algebraic groups. In the last decade, fundamental results
have been established. There were interesting connections also with Cremona
groups of birational morphisms of projective spaces. We can mention here talks
by Blanc, Kraft and Schroer.

(5) Several years ago, Braverman-Finkelberg-Nakajima gave a mathematical def-
inition of a Coulomb branch associated to a 3 dimensional N=4 supersymmetric
gauge theory. The construction uses equivariant K-theory of loop spaces attached
to a group G and a representation N , which admits natural quantizations if one
imposes equivariance for the loop rotation torus action. These quantized alge-
bras have been shown to be related to shifted quantum affine algebras of ADE
type when G and N arise from a quiver of the same type. Vasserot explained
recent progress in the study of Coulomb branches associated with a quiver with
symmetrizer, which provides a geometric realization of shifted quantum affine al-
gebras of nonsymmetric type, and applications of this realization in the study of
category O for shifted quantum affine algebras.
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Abstracts

An analogue of Whittaker reduction for group-valued moment maps

Ana Bălibanu

Any semisimple complex Lie algebra g has a canonical Kirillov–Kostant Poisson
structure, whose symplectic leaves are the orbits of the adjoint action. Each nilpo-
tent element f of g determines a Slodowy slice S, introduced by Kostant [7] and
Slodowy [15], which is transverse to the adjoint orbits and strictly transverse to
the nilpotent orbit containing f . Work of Gan and Ginzburg [5] shows that the
Kirillov–Kostant symplectic form on any adjoint orbit O restricts to a symplectic
form on the intersection S ∩ O, and the resulting symplectic foliation induces on
S a natural Poisson structure.

Let G be a semisimple complex group integrating g, let M be a complex Poisson
variety on which G acts by Hamiltonian Poisson automorphisms, and let

µ : M −→ g

be the corresponding moment map. Whittaker reduction is a type of Hamiltonian
reduction, first defined by Kostant [8], that takes place along µ at the nilpotent
element f . It can be realized either as a symplectic reduction of M with respect
to the action of a unipotent subgroup N opposite to f , or as the preimage under
µ of the Poisson transversal S. These two constructions fit into the diagram

µ−1(S) µ−1
N (f) M

µ−1
N (f)/N,

∼

where µN is the moment map of the N -action, f is viewed as an element of n∗ using
the Killing form, and the diagonal map is an isomorphism. From this perspective,
Whittaker reduction encodes the Poisson geometry of M in a direction transversal
to the orbits of G.

Poisson manifolds frequently exhibit natural symmetries that fail to preserve
the Poisson bracket, and it was observed by Semenov-Tian-Shansky [13] that this
phenomenon is due to the fact that the group of symmetries itself carries an
additional Poisson structure. In other words, the group G which acts on the
Poisson variety M is a Poisson–Lie group in the sense of Drinfeld [3], and the
action map is a Poisson map.

A Hamiltonian theory for such actions was developed by Lu [9], and the asso-
ciated moment maps take values in the dual Poisson–Lie group G∗. In the case
when G is a semisimple complex group equipped with the standard Poisson–Lie
group structure, there is a local open embedding

G∗ ∼= B ×T B −→ G,
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where B and B are a pair of opposite Borel subgroups and T is their common
maximal torus. The image of this map is the maximal Bruhat cell, and Lu’s
definition can be extended to consider moment maps valued in the group G itself.
This is a special case of the theory of D/G-valued moment maps introduced by
Alekseev and Kosmann-Schwarzbach [1] and later studied by Bursztyn and Crainic
[2]. We develop an analogue of Whittaker reduction along these G-valued moment
maps.

The multiplicative counterpart of the Kostant slice was constructed by Steinberg
[16] and is given by Uww, where w is a minimal-length Coxeter element in the Weyl
group of G and Uw is the subgroup generated by positive roots which are flipped
by w−1. This Steinberg slice consists entirely of regular elements and is strictly
transverse to the regular orbits in G—in particular, it is strictly transverse to the
regular unipotent orbit.

Steinberg’s construction indicates that transversal slices to unipotent orbits in G
are linked to conjugacy classes in the Weyl group. Slices associated to non-Coxeter
conjugacy classes have been studied by He and Lusztig [6], by Sevostyanov [14],
and most recently by Duan [4]. While there are subtle technical differences between
their constructions, they share two fundamental features. First, they associate to
an element w of the Weyl group a slice of the form

Σ := UwZw,

where Uw is defined as above and Z is the reductive subgroup of G generated by
Tw and by the roots fixed by w. Second, each slice has the property that the
conjugation map gives an isomorphism

U × Σ −→ UZwU := Ω,

where U is the unipotent subgroup generated by the positive roots not fixed by
w. This isomorphism implies, in particular, that Σ is transverse to the conjugacy
classes of G.

The work of Sevostyanov [14] shows that the slice Σ has a natural Poisson
structure inherited from the Semenov–Tian–Shansky Poisson structure on G. More
recently, results of Duan [4] make the connection to unipotent orbits precise by
showing that, when the conjugacy class of w is “close to elliptic,” the slice Σ is
strictly transverse to the unipotent orbit associated to w under the Lusztig map
[10, 11, 12]. The slice Σ therefore exhibits multiplicative analogues of the key
geometric features of Slodowy slices.

We introduce an analogue of Whittaker reduction for Poisson actions of Poisson–
Lie groups, which takes place along the slice Σ and its U -saturation Ω. Concretely,
equip the semisimple complex group G with the standard Poisson–Lie group struc-
ture, and suppose that it has a Hamiltonian Poisson action on a complex Poisson
variety M with corresponding moment map µ : M −→ G. There is a commutative
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diagram

µ−1(Σ) µ−1(Ω) M

Q := µ−1(Ω)/U

∼



q

in which the diagonal map is an isomorphism.

Theorem. Let c be the orthogonal complement of the fixed-point set tw in the
maximal Cartan t of the Lie algebra g. Then the quotient Q carries a natural
Poisson bracket {·, ·}Q which is uniquely characterized by the property that

q∗{f, g}Q = ∗{F,G}

for all functions f, g ∈ OQ and all c-invariant lifts F,G ∈ OM that satisfy q∗f =
∗F and q∗g = ∗G.

In the special case when M is the group G itself, the resulting Poisson structure
on Σ agrees with the Poisson structure originally introduced by Sevostyanov.

Moreover, we show that, under the diagonal isomorphism in this diagram, the
Poisson structure on Q can also be viewed as a pullback of the Poisson structure
on M in the sense of Dirac geometry. This allows us to characterize the symplectic
leaves of the reduction.
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Motivic factorization of KZ local systems and deformations of

representation and fusion rings

Prakash Belkale

(joint work with Najmuddin Fakhruddin, Swarnava Mukhopadhyay)

Let g be a simple Lie algebra over C. Let Cn be the configuration space of n-
distinct points on the affine line. Let P+ be the set of dominant integral weights
of g corresponding to a fixed Cartan decomposition. For λ ∈ P+, let Vλ denote
the corresponding irreducible finite dimensional irreducible representation of g.

Let λ1, . . . , λn ∈ P+. The KZ connection is defined on the constant vector

bundle on Cn with fibre V (~λ) = Vλ1⊗Vλ2⊗ . . .⊗Vλn
. Using variables z1, z2, . . . , zn

on Cn, the connection equations are:

κ
∂

∂zi
f =

(∑

j 6=i

Ωij

zi − zj

)
f.

Here f is any local section of V (~λ) ⊗OCn
, Ωij is the normalised Casimir element

acting on the i and j tensor factors, and κ ∈ C×.
This connection, and the related WZW/Hitchin connections, especially in genus

zero, and their q-analogs appear in many areas of mathematics, e.g., representa-
tion theory, enumerative geometry, algebraic geometry, number theory, and also
mathematical physics.

The KZ connection is flat and commutes with the diagonal action of g, hence
it induces a connection on the constant bundle of coinvariants,

A(~λ, ν∗) = (V (~λ)⊗ V ∗
ν )g =

V (~λ)⊗ V ∗
ν

g(V (~λ)⊗ V ∗
ν )

, where V (~λ) = Vλ1 ⊗ . . .⊗ Vλn
.

We will think of these spaces as being attached to the representations Vλ1 , . . . , Vλn

at z1, . . . , zn respectively, and the representation V ∗
ν at ∞ ∈ P1

k
.

Let κ ∈ Q×. The mathematical theory of integral representations of solutions
of KZ equations for generic κ [8], and the extension to arbitrary κ in [7, 2](also see

[3]), allows one to construct motivic local systems KZκ(~λ, ν∗) on Cn whose Betti
realisations give the duals of classical KZ local systems over C. When κ = ℓ+h∨,

one constructs motivic local systems of conformal blocks CBκ(~λ, ν∗) on Cn which

are natural subsystems of KZκ(~λ, ν∗). The fibres of these local systems over points
in Cn(k) are Nori motives over a suitable finite extension of k with coefficients in
a cyclotomic field (here k ⊆ C is the field of definition of the Lie algebra g). The
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same constructions carried out in the derived category of mixed Hodge modules
leads to variations of mixed Hodge structures. These variations were introduced
by Looijenga [7]. The conformal block variations are pure, but the KZ variations
are in general mixed.

In [4] we prove a basic factorisation for the nearby cycles of these motivic local
systems as some of the n points coalesce. This leads to the construction of a family
(parametrised by κ) of deformations over Z[t] of the representation ring of g—we
call these enriched representation rings—which allows one to compute the ranks
of the Hodge filtration of the associated variations of mixed Hodge structure; in
turn, this has applications to both the local and global monodromy of the KZ
connection. The key property is that the Hodge filtration on nearby cycles in
Saito’s mixed Hodge modules category is a suitable limit of the Hodge filtration
along the degeneration, and this property implies the associativity property of
these enriched rings.

In the case of sln we give an explicit algorithm for computing all products in
the enriched representation rings, which we use to prove that if 1/κ ∈ Z then the
global monodromy is finite and scalar.

We can make the enriched representation ring explicit in the case of sl2: It has
a Z-basis given by dominant fundamental weights [a] with a ∈ Z≥0, with [0] the
identity. The motivic Pieri formula is the following. Here a ∈ Z>0 is a dominant
fundamental weight and ̟1 = 1 is the vector representation.

[a] ⋆ [̟1] = [a + ̟1] + [a : κ] · [a−̟1]

where [a : κ] is 1 or t. For example when 1/κ is not an integer and κ > 0, then

(1) If a/κ and (1 + a)/κ are both in Q−Z, then [a;κ] is determined from the
integer 〈−1/κ〉+ 〈−a/κ〉+ 〈(1 + a)/κ〉: If this integer is 2 then [a;κ] is t,
and [a;κ] is 1 if this integer is 1. (Here 〈α〉 = α− ⌊α⌋.)

(2) a/κ ∈ Z then [a;κ] is 1, and if (1 + a)/κ ∈ Z then [a;κ] is t.

We also prove a similar factorisation result for motivic local systems associ-
ated to conformal blocks in genus 0; this leads to the construction of a family of
deformations of the fusion rings.

If κ = r/s, with r, s ∈ Z, then all the mixed sheavesKZκ(~λ, ν∗) have coefficients
in Q(µN ) for an explicit integer N depending on r. If σ ∈ Gal(Q(µN )/Q), we have

Galois twists KZσ
κ(~λ, ν∗) (resp. CBσκ(~λ, ν∗)) of the motivic sheaves KZκ(~λ, ν∗)

(resp. CBκ(~λ, ν∗) for κ = ℓ + h∨) given by precomposing the Q(µN )-structure
with σ−1. If σ(ζN ) = ζaN for some positive integer a with (a,N) = 1, then

KZσ
κ(~λ, ν∗) ≃ KZκ/a(~λ, ν∗).

The Hodge numbers of Galois twists corresponding to complex conjuagates of

KZκ(~λ, ν∗) are related to the weight filtrations of these motives, particularly when
the ranks of these motives are one.

0.1. The weight filtration of KZ motives and quantum groups. Assume
that g is of type A in this section. We consider the category Cκ of finite dimensional
representations (of Type I) of the associated (Lusztig’s) quantum group over C
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at an integer level κ > h (which is often denoted by ℓ in the quantum groups
literature). This has the structure of a rigid braided monoidal category, in fact it
is a ribbon category.

Denote the monodromy representation of the local system underlyingKZκ(~λ, ν∗)

by KZ(~λ; ν∗). The Kazhdan-Lusztig equivalence [5, 6] gives an isomorphism of

KZ(~λ; ν∗) (with the Hom below in the category of QG representations)

Hom(∆(~λ),∇(ν))∨ where ∆(~λ) = ∆(λ1)⊗ · · · ⊗∆(λn),

the latter becoming a pure braid group representation via the action in the category
of the modules for the quantum group. Here ∆(λ) and ∇(λ)) are the Weyl and
dual Weyl modules respectively corresponding to λ.

For any tilting module Q and dominant weight µ, Andersen defines in [1, Section
1.3] a decreasing filtration Hom(Q,∇(µ))• on Hom(Q,∇(µ)) which is functorial
in Q. Note that Andersen’s filtration is actually on invariants rather than coin-
variants, so we are using the dual of his filtrations.

Andersen’s filtration gives rise to a polynomial fµ(Q) ∈ Z[w] with non-negative
coefficients which encodes the dimensions of the successive subquotients of the
filtration [1, 1.5].

0.1.1. The conjecture below is a special case of a conjecture of N. Fakhruddin (in
type A). Ongoing work of P. Belkale and N. Fakhruddin provides evidence for this
conjecture.

Let ~λ be an n-tuple of dominant weights such that ∆(λi) is simple for all i and

ν ∈ P+. Then each ∆(λi) is a tilting module, and hence ∆(~λ) is a tilting module.
Let M be the number of simple roots appearing in the expression of

∑
λi − ν as

a sum of simple roots. This is the “expected” weight of the motivic local system

KZκ(~λ, ν∗).

Conjecture 1. (Fakhruddin) The weight filtration on KZ(~λ; ν∗) coincides (up to

a shift by M) with the dual of the Andersen filtration on Hom(∆(~λ),∇(ν)). In

particular, all weights of KZ(~λ; ν∗) are ≥ M and the weight polynomial is equal

to wMfν(∆(~λ)).
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Actions of algebraic groups: difference between positive and

zero characteristic

Jérémy Blanc

Let us work with an algebraically closed field k.
In characteristic zero, Rentschler proved in 1968 that every action of the additive

group Ga on the affine plane A2 is conjugate to

(x, y) 7→ (x, y + tq(x))

for some q ∈ k[x] (see [11]). If the characteristic is p > 0, Miyanishi proved in
1971 that every Ga action on A2 is conjugate to

(x, y) 7→ (x, y + tq0(x) + tpq1(x) + · · ·+ tp
r

qr(x))

for some r ≥ 1 and q0, . . . , qr ∈ k[x] (see [10]).
In particular, every additive action on the affine plane fixes a variable and is

conjugate to a triangular automorphism.

The first example of a non-triangularisable additive action on A3 was found by
Bass in 1984, see [1]. It works in any characteristic. In higher dimension, there are
actually actions that do not fix any variable. This was first found in 1997 by Gene
Freudenburg in [6], in characteristic zero. The first result in positive characteristic
is much more recent, published in 2025 by Kuroda: [8].

If one asks for free actions on the affine space, every such action is conjugate
to a translation in dimension 3, as proven by Kaliman in 2004, see [7]. In positive
characteristic there are examples found by Kuroda of additive actions that do not
fix any point and are not conjugate to translations, by Kuroda (see [9]). One can
actually give a very simple as follows:

(x, y, z) 7→ (x, y + tx, z + tp).

The ring of invariants is k[x, yp − xz] and as the morphism A3 → A2 given by
(x, y) 7→ (x, yp − xz) has non-reduced fibres, the action is not conjugate to a
translation. However, it is actually not really free, as the infinitesimal subgroup
of Ga given by tp = 0 fixes the plane x = 0.

The ring of invariants of an additive action on an affine space is not always
finitely generated. There are examples in characteristic zero found in dimension 7
in 1990 (Roberts, [12]) and then 6 (Freudenburg, [5]) and 5 (Daigle and Freuden-
burg, [3]) in 1999-2000. In dimension 3 the ring of invariants is always finitely
generated in any characteristic, by a classical result of 1954 of Zariski [13]. The
situation in dimension 4 in characteristic zero and in any dimension ≥ 4 in positive
characteristic are wide open. It is surprising that no known example is known in
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positive characteristic. Actually, Dufresne and Maurischat proved that the rings
of invariants of the known counterexamples in dimension 5, 6 and 7 are finitely
generated in positive characteristic [4].

In arbitrary characteristic, all additive actions on An are actually birationally
conjugate for n ≤ 3 by a result of Rosenlicht (see [2, Corollary 2.5.7]). The
additive subgroups of Bir(An) are in 1 : 1 correspondence with varieties X such
that X × A1 is birational to An, up to birational equivalence [2, Corollary 2.5.4].

However there are many other connected algebraic subgroups of Bir(P3). In
characteristic zero, there is classification of all maximal connected algebraic sub-
group made by Umemura in a serie of papers in the 80’s, using analytic tech-
niques. A version with birational geometry was then reproven in [2]. In many
cases, the families obtained depend on discrete countable parameters (mostly de-
grees of polynomials). The only continuous family is given by automorphisms of
quadric bundles Qg → P1 that depend on polynomials g (see [2] for more details).

Together with Ronan Terpereau, we are dealing with the case of positive char-
acteristic. We have found more continuous families, that are automorphisms of
special kind of P1-bundles over Hirzebruch surfaces Fa with a ≥ 1. Contrary to
the case of characteristic zero the action on the base Fa is not always the whole
group Aut(Fa).
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[13] O. Zariski, Interprétations algébrico-géométriques du quatorzième problème de Hilbert, Bull.
Sci. Math. (2) 78 (1954) 155–168.



Algebraic Groups 955

Hecke operators over local non-archimedian fields, Shalika germs and

symplectic duality

Alexander Braverman

We discuss recent developments about Hecke operators for moduli spaces of G-
bundles on algebraic curves over a local non-archimedian field F . We discuss the
notion of Hecke eigen-function and give some examples. In addition we discuss
the question of how to describe the eigen-values and connect this question to the
classical question about description of Shalika germs. We also briefly mention the
connection to the subject of symplectic duality (in the form of a generalized Hikita
conjecture).

This is a joint work in progress with David Kazhdan.
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Connected components of the moduli space of L-parameters

Sean Cotner

1. Introduction

Let p be a prime number, let F be a finite extension of Qp with residue field Fq,
and let G be a quasi-split connected reductive group over F . Throughout, the
letter ℓ will always denote a prime number different than p. The subject of this
talk concerns the “Galois side” of the Langlands program, but the main theorem
is easier to motivate on the “automorphic side”, so we begin there.

Definition 1. If R is a commutative Z[1/p]-algebra (e.g., C, Fℓ, or Z[1/p] itself),
then a smooth R-representation of G(F ) is an R-module M equipped with a G(F )-
action such that every element of M has open stabilizer in G(F ).

A basic problem is to describe the blocks of RepR(G(F )), i.e., to write

RepR(G(F )) =
∏

i∈I

Ci

for some indecomposable abelian subcategories Ci ⊂ RepR(G(F )). When R = C,
this problem has been solved, as we now describe.

Given a parabolic subgroup P ⊂ G with Levi L and a smooth R-representation
(M,ρ) of L(F ), one can regard ρ as a representation of P (F ) via the quotient map

P → L and form the parabolic induction ind
G(F )
P (F )(ρ).

If V is an irreducible smooth C-representation of G(F ), then there is a minimal

pair (L, ρ) such that V arises as a subquotient of ind
G(F )
P (F )(ρ) for some parabolic

P with Levi factor L, and the pair (L, ρ) is called the supercuspidal support of
V . For such a pair (L, ρ), let RepC(G(F ))(L,ρ) be the subcategory of RepC(G(F ))
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consisting of representations all of whose Jordan–Hölder factors have supercuspidal
support lying in the equivalence class of (L, ρ).

Theorem 2 (Bernstein–Deligne). There is a block decomposition

Rep
C

(G(F )) =
∏

{(L,ρ)}/∼

Rep
C

(G(F ))(L,ρ),

where the product ranges over minimal pairs (L, ρ) considered up to a certain
equivalence relation refining G(F )-conjugacy.

It is expected that similar block decompositions should exist over Fℓ, Zℓ, and
even Z[1/p]; see, e.g., [10], [7], [8], [9] for partial results centered around the case
G = GLn. Even if one is only interested in C-representations, it is profitable to
consider rather general R: for instance, understanding the blocks of Rep

Zℓ
(G(F ))

amounts to understanding the ways in which blocks of Rep
C

(G(F )) “collide” mod-
ulo ℓ. Similarly, the blocks of Rep

Z[1/p](G(F )) describe the ways in which blocks

of Rep
C

(G(F )) conspire to collide modulo all primes ℓ 6= p. This idea was used by
Sécherre–Stevens in [11] to deduce a certain compatibility between local Langlands
and Jacquet–Langlands.

2. Dual groups

Let WF be the Weil group of F , a certain dense subgroup of the absolute Galois

group Gal(F/F ). Let Ĝ denote the Langlands dual group of G, a split reductive
group scheme over Z equipped with a finite action of WF . By definition, the root

datum of Ĝ is dual to the root datum of GF , and the WF -action comes from the

action of WF on the absolute Dynkin diagram of G. We let LG = Ĝ⋊WF denote
the L-group of G.

Definition 3. If ℓ 6= p is prime, then an L-parameter is a continuous homomor-
phism Lϕ : WF → LG(Qℓ) which is a section to the natural projection LG(Qℓ)→

WF . This is equivalent to a continuous 1-cocycle ϕ : WF → Ĝ(Qℓ).

The categorical local Langlands conjecture posits (see [5], [12], [6], [3] for more
precise statements) that for a Z[1/p]-algebra R, there should exist a fully faithful
functor D+RepR(G(F ))→ D+

QCoh(XĜ,R), where XĜ,R denotes the “moduli stack

of L-parameters” defined in [5], [12], and [4]. In particular, if one could obtain a
block decomposition of D+

QCoh(XĜ,R), then one could deduce a product decompo-

sition for RepR(G(F )) (if not, perhaps, into blocks). As a step in this direction,
we describe the set of connected components of XĜ,R when R = Z[1/p].

We will not give a precise definition of XĜ, referring the reader to [4] for the

most “classical”-looking definition. However, we remark that XĜ(Qℓ) is the set

of L-parameters WF → LG(Qℓ) modulo Ĝ(Qℓ)-conjugacy [4, Theorem 4.1 ii)].

Moreover, if the action of WF on Ĝ is tame, i.e., factors through the quotient W tame
F

which is topologically generated by Fr and s with relation FrsFr−1 = sq, then XĜ

admits a closed substack X
(1)

Ĝ
consisting essentially of 1-cocycles W tame

F → Ĝ.
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Theorem 4. [4, Section 3] There exists an isomorphism

XĜ,Z[1/p]
∼=

∐

i∈I

X
(1)

Ĥi,Z[1/p]

for some reductive group schemes Ĥi equipped with finite tame quasi-semisimple
actions of WF .

In particular, it is enough to understand π0(X
(1)

Ĝ,Z[1/p]
) for all Ĝ. Let X

(1)

Ĝ

denote the tautological Ĝ-torsor over X
(1)

Ĝ
, so π0(X

(1)

Ĝ,Z[1/p]
) = π0(X

(1)

Ĝ,Z[1/p]
).

Example 5. Let Ĝ = GL2 equipped with trivial WF -action, so

X
(1)

Ĝ
= {(Φ,Σ) ∈ GL2 ×GL2 : ΦΣΦ−1 = Σq}.

Note that if (Φ,Σ) is a field-valued point of this scheme, then the characteristic
polynomial of Σ is very constrained: if {α, β} is the set of eigenvalues of Σ, then
{α, β} = {αq, βq}, so either α, β ∈ µq−1 or α ∈ µq2−1 and β = αq.

Refining this argument somewhat, one shows that the map π : X
(1)

Ĝ
→ A2

sending (Φ,Σ) to the characteristic polynomial of Σ factors through the finite
closed subscheme (µ2

q−1 ∪ µq2−1)/ ∼, where ∼ is the “flip” equivalence relation.
One can show that π has connected fibers, and using this deduce

π0(X
(1)

Ĝ
) = π0((µ2

q−1 ∪ µq2−1)/ ∼).

Over Z[1/p], the latter set is a singleton, as follows from the fact that q − 1 and
q2 − 1 are not divisible by p.

The following theorem generalizes this example and resolves a conjecture of
Dat–Helm–Kurinczuk–Moss [4, Conjectures 4.3, 4.4].

Theorem 6. [2, Theorem 1.2] If Ĝ is a reductive Z[1/p]-group scheme equipped

with a finite tame quasi-semisimple action of WF , then X
(1)

Ĝ,Z[1/p]
is connected.

If Ĝ has smooth center over Z[1/p], then this theorem is [4, Theorem 4.5]. This
covers many interesting cases, such as the case that G is simply connected or
G = GLn, but it says little for G = PSp2n and nothing for G = PGL6.

The proof of Theorem 6 is essentially a meditation on Example 5: one first

reduces to the case that Ĝ is semisimple and simply connected. Then one considers

the map π : X
(1)

Ĝ
→ Ĝ//sĜ given by (Φ,Σ) 7→ [Σ], and shows that π has connected

image and connected fibers, and deduces the result from a nontrivial topological
argument, using other results of [4]. The most difficult part of the argument
consists of proving connectedness of im(π). The proof is completely uniform if

Ĝ has no simple factors of type A, but the fact that groups of type A can have
centers of order divisible by more than one prime causes serious difficulties.
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[11] V. Sécherre and S. Stevens, Towards an explicit local Jacquet-Langlands correspondence

beyond the cuspidal case, Compos. Math. 155 (2019), no. 10, 1853–1887; MR4000000
[12] X. Zhu, Coherent sheaves on the stack of Langlands parameters, arxiv:2008.02998

Branching problems through cluster algebras

Luca Francone

Given a complex reductive algebraic subgroup Ĝ of the complex reductive group

G, the branching problem of the pair (G, Ĝ) asks to understand how the irreducible

representations of G decompose under the restricted Ĝ-action. A classical example

arises when G = Ĝ × Ĝ and Ĝ is diagonally embedded in G; in this case, the
branching problem corresponds to decomposing the tensor product of irreducible

representations of Ĝ. The solution to the branching problem of the pair (G, Ĝ) is
encoded in a collection of integers known as multiplicities. These multiplicities can
be realized as the dimensions of the homogeneous components of a graded algebra

called the branching algebra, and denoted by Br(G, Ĝ).

Recently, certain branching algebras have been proved to be upper cluster algebras.
This has been done by Magee [5] and Gross-Hacking-Keel-Kontsevich [4] in the
case of the tensor product decomposition of SL(n), and by Fei [1] in the case of
the tensor product decomposition of a simple, simply laced and simply connected
algebraic group. In all these cases, the authors provide explicit polyhedral models
for tensor product multiplicities through the theory of cluster algebras. One of
the models recovered by Magee is the celebrated Knutson–Tao hive model, which
played a central role in the proof of the saturation conjecture in type A. Previously,
this model had only been constructed through an ad hoc approach. In addition,
Fei’s work provides an additive categorification of the branching algebras studied
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in [1] via the theory of quivers with potentials. These results suggest that cluster
algebras can provide a formidable tool for the study of branching problems. Nev-
ertheless, the techniques used in these works to identify branching algebras with
upper cluster algebras do not readily generalize to broader families of branching
problems. In this talk, we present a possible approach to addressing this gap,
developed in [2] and [3].

We introduce the notion of suitable for lifting schemes. For any such scheme X,
we present a homogenisation technique called minimal monomial lifting [2], which
allows to construct an upper cluster subalgebra U ⊆ O(X), starting from a cluster
structure on the ring of regular functions of a distinguished closed subscheme of X.
The algebra U can be proved to be an optimal candidate for endowing O(X) with
the structure of an upper cluster algebra. In many interesting cases, it turns out
that U = O(X). Since spectra of branching algebras are examples of suitable for
lifting schemes, this procedure yields an upper cluster subalgebra of the branching

algebra of many pairs (G, Ĝ) as above. This leads to the following result.

Theorem 1. Assume that the subgroup Ĝ ⊆ G belongs to the following list:

(1) the group Ĝ is a Levi subgroup of the semisimple, simply connected alge-
braic group G;

(2) the group Ĝ is semisimple, simply connected, and diagonally embedded in

G = Ĝ× Ĝ.

Then, the branching algebra Br(G, Ĝ) is an upper cluster algebra.

The previous result enables the use of the theory of cluster algebras to construct
polyhedral models for tensor product multiplicities associated with any semisimple,
simply laced, and simply connected algebraic group, as shown in [3]. Thanks to
recent advancements, this construction can now be extended to the non-simply
laced case as well.

The cluster-theoretic approach to branching problems described here extends be-

yond the specific pairs (G, Ĝ) considered in Theorem 1. In particular, it provides
a framework for constructing cluster structures adapted to the study of branching
problems involving Kronecker and plethysm coefficients, as well as those associ-

ated with spherical subgroups of minimal rank. When Ĝ is a spherical subgroup of
minimal rank of the semisimple, simply connected algebraic group G, it is shown

in [3] that the branching algebra Br(G, Ĝ) can be described as the coordinate ring
of a blow-up of a cluster variety. We look forward to seeing new and interesting
developments arising from this perspective.
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Generic direct summands of tensor products and multiplicity

conjectures

Jonathan Gruber

Let G be a simply connected simple algebraic group over an algebraically closed
field k. This talk is concerned with the problem of understanding the structure of
tensor products of finite-dimensional rational irreducible G-modules.

If char(k) = 0 then the category Rep(G) of finite-dimensional rational G-
modules is semisimple, and so the problem of understanding tensor products is
essentially a combinatorial one (e.g. via the Littlewood–Richardson rule). Here we
instead focus on the case where char char(k) = p > 0, and for technical reasons,
we assume that p ≥ h, the Coxeter number of G. Then the category Rep(G) is
non-semisimple, and it decomposes into blocks according to the so-called p-dilated
dot action of the affine Weyl group of G. Writing Rep0(G) for the principal block
of G, we have the following paremetrizations of simple G-modules:

X+ 1:1
−−−→ { simple G-modules } / ∼=

λ 7−−−→ L(λ)

W+
aff
∼= Wfin\Waff

1:1
−−−→ { simple G-modules in Rep0(G) } / ∼=

x 7−−−→ Lx := L(x · 0)

Here X+ denotes the set of dominant weights and W+
aff denotes the set of minimal

coset representatives of the finite Weyl group Wfin in the affine Weyl group Waff .
Many problems in the modular representation theory of algebaic groups can be

reduced to questions about the principal block, and then resolved using combina-
torial and categorical tools arising from the affine Weyl group (e.g. p-Kazhdan–
Lusztig polynomials and Soergel bimodules). Here, we want to propose an ap-
proach to this program that may allow us to describe the structure of tensor prod-
ucts, the key difficulty being that the principal block is a priori not closed under
tensor products. We overcome this problem by showing the existence of a certain
“generic direct summand” G(x, y) in the tensor product Lx ⊗ Ly, for x, y ∈W+

aff ,
which belongs to Rep0(G) and captures some of the most important properties of
the tensor product. We can further establish a reduction to the principal block,
by which in order to understand tensor products of arbitrary simple G-modules,
it essentially suffices to understand tensor products in Rep0(G). Therefore, the
next important challenge would be to understand the structure of the generic di-
rect summands (in terms of combinatorics arising from Waff). To that end, we
propose the following approach: Let Gr be the affine Grassmannian correspond-
ing to the Langlands dual group over C, with its stratification by Schubert cells
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Gr =
⊔

w∈W+
aff

Ωw. The fundamental classes of the Schubert varieties Xw = Ωw

afford a basis of the homology ring

H•(Gr) = spanZ{[Xw] | w ∈W+
aff},

and as the latter is a Hopf algebra with convolution product, we can define struc-
ture constants via

[Xx] · [Xy] =
∑

z∈W+
aff

azx,y · [Xz].

Conjecture. For x, y, z ∈W+
aff such that ℓ(z) = ℓ(x) + ℓ(y), we have
[
G(x, y) : Lz

]
= azx,y.

Note that the structure constants azx,y also have a combinatorial interpretation
if terms of the nil-affine Hecke and (in type Ak−1) via k-Schur functions, by work
of Thomas Lam, in particular they can be computed explicitly. Some evidence
for the conjecture comes from a forthcoming result of Sherman–Williamson et al.,
which loosely speaking relates tensor products of G-modules to tensor products of
modules over the regular nilpotent centralizer. The latter can be seen equivalently
as tensor products of H•(Gr)-modules, by an observation of Ginzburg and Yun–
Zhu, and these tensor products are defined via the comultiplication on H•(Gr).
The latter is dual to the convolution product on H•(Gr), which is in turn encoded
in the structure constants azx,y.

On the moment measure conjecture

Jochen Heinloth

(joint work with Xucheng Zhang)

To construct proper moduli spaces for a given moduli problem one often needs
to introduce some stability condition, as there are usually so many degenerations
that the space of all objects could not be Hausdorff. This is already appears for
quotients by group actions [X/G], where the orbit space will not be Hausdorff if
the action has non-closed orbits. This issue always arises if G is a reductive group
acting on a proper scheme. Unfortunately, we do not have many methods to find
stability conditions. In the end these are often determined by the datum of a line
bundle on the original moduli problem.

However, there are examples in which this does not cover all possibilities. As
we also know geometric criteria that decide whether an open substack of a moduli
problem admits a proper quotient, it seems natural to ask, whether there are other
methods to find such open substacks.

The moment measure conjecture Bialynicki-Birula and Sommese from [1] gave
a conjecturally complete combinatorial classification of such open subsets for quo-
tients [X/T ] of torus actions on normal projective varieties, which in particular
include quotients that are not projective and thus cannot be constructed through
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GIT. We can now show [2] that this conjecture is true for quotients of the from
[X/T ] where X is smooth, proper, carrying a line bundle that is positive on orbit
closures, in particular this is satisfied if X is projective.

The conjecture was formulated in terms of a cell complex C(X) attached to
[X/T ]. This is defined as

C(X) := {c ⊆ π0(XT ) | c = cell(x) for some x ∈ X}

where π0(XT ) is the set of connected components of the fixed point set XT and
for any point cell(x) is the set of components that intersect the orbit closure Tx.
A (geometric) moment-measure is then a particular choice of cells in C(X). Our
main result is the following:

Theorem (Conjecture of Bia lynicki-Birula–Sommese, [1][2]). Let X be a proper
smooth variety over an algebraically closed field equipped with a torus action T ×
X → X that admits a line bundle L that is ample on Gm-orbit closures of closed
points.

Then a T -invariant open subscheme U ⊆ X admits a proper (geometric) quo-
tient if and only if it is defined by a (geometric) moment measure on the moment
complex C(X).

The main idea of the argument is simple: In the case of geometric quotients, the
rational top cohomology group of [U/T ] is one-dimensional, spanned by the cycle
class of any closed point. For any closed point x ∈ X the orbit closure [Tx/T ] has
an equivariant cycle class, or equivalently a cycle class in the cohomology of the
quotient stack [X/T ], which restricts to a non-zero class in H∗([U/T ]) if and only
if x ∈ U . To prove the theorem we show that this class is uniquely determined by
cell(x), by using that the cohomology of [X/T ] can be described by localization to
the fixed point loci and an explicit computation of the localization of cycle classes
of orbit closures.
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Automorphism Groups of Varieties – A Survey

Hanspeter Kraft

Some Basic Questions

Our base field k is algebraically closed. For a k-variety X we denote by Aut(X)
the group of regular automorphisms. Here are some basic questions:

• Topological structure? Algebraic structure?
• Which groups appear? (finite group, algebraic groups, simple groups? . . . )
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• Orbits of Aut(X) on X? Invariants? Transitive actions? . . .
• Do we have a Lie algebra? Is it a subalgebra of the vector fields? Relation

between the group and its Lie algebra?
• What implications for X can we retrieve from Aut(X)? Is X determined

by Aut(X)?

Remark. If X is projective, then Aut(X)◦ is an algebraic group scheme, and every
connected algebraic group scheme appears (Brion-Schröer 2024, [BS24]). Thus
we will mainly discuss the case where X is affine or quasi-affine.

Some History

Theorem 1 (Whittaker 1963, see [Whi63]). If X and Y are “nice” topological

spaces, then every isomorphism Autcont(X)
∼
−→ Autcont(Y ) between the groups of

continuous automorphisms is induced by a homeomorphism X
∼
−→ Y . Thus X is

completely determined by Autcont(X).

(Here “nice” means a compact and locally euclidean manifold.)

Theorem 2 (Takens 1979, Filipkjewich 1982, see [Tak79], [Fil82]). The same
holds for differentiable manifolds X,Y where Autdiff(X) is the group of diffeomor-
phisms.

Corollary. Every automorphism of Autcont(X) and of Autdiff(X) is inner.

We cannot expect such general results in the algebraic setting: There are many
“nice” varieties with trivial automorphism group.

Ramanujam’s Fundamental Result

Definition. A map ϕ : A→ Aut(X), A a variety, is a morphism if A ×X → X ,
(a, x) 7→ ϕ(a)(x) is a morphism.

Products and inverses of morphisms are morphisms.

Theorem 3 (Ramanujam 1964, see [Ram64]). Let G ⊆ Aut(X) be subgroup
which is “connected” and “finite dimensional”. Then G has a “universal structure”
of a connected algebraic group.

Definitions.

Connected: For every g ∈ G there is a morphism ϕ : A→ Aut(X), A an irreducible
variety, such that idX , g ∈ ϕ(A) ⊆ G.
Finite dimensional: There is an N > 0 such that, for any injective morphism
A→ Aut(X) with image in G, one has dimA ≤ N .
Universal structure: (a) The action map G × X → X is a morphism; (b) If
A → Aut(X) is a morphism with image in G, then A → G is a morphism of
varieties.

Remark. Let A be an irreducible variety and ϕ : A → Aut(X) a morphism with
idX ∈ ϕ(A). Then the subgroup G := 〈ϕ(A)〉 is connected.
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Definition. A subgroup G ⊆ Aut(X) generated by the image of a morphism
ϕ : A → Aut(X) where A is irreducible and idX ∈ ϕ(A) is called algebraically
generated.

Algebraically Generated Groups

Here are two very recent and far reaching generalizations of Ramanujam’s The-
orem.

Theorem 4 (S.Cantat, A.Regeta, J. Xie 2022, see [CRX23]). Let X be an
affine variety and G ⊆ Aut(X) an algebraically generated commutative subgroup.
Then G is a connected commutative algebraic group.

Theorem 5 (S.Cantat, H.K., A.Regeta, I. van Santen, 2025, to appear).
(chark = 0) Let X be a quasi-affine variety and G ⊆ Aut(X) an algebraically
generated solvable group. Then G is a connected solvable algebraic group.

We will see later that these results have very strong consequences for the struc-
ture of Aut(X).

Ind-Varieties and ind-Groups

These objects have been introduced by Shafarevich in [Sha66] as “infinite-
dimensional algebraic varieties”; see [FK18] and [Kum02] for a survey.

Basic example: A k-vector space V ∞ of countable dimension.

• Topology (Zariski-topology): V ⊆ V ∞ is closed :⇐⇒ V ∩ V ⊆ V is closed
for all finite dimensional subspaces V ⊂ V ∞.
• Morphisms: f : X → V ∞ (X a variety) :⇐⇒ (a) f(X) ⊆ V ⊂ V ∞, V

finite-dimensional subspace, and (b) f : X → V is a morphism.

Definition. An (affine) ind-variety is a set V with a filtration V =
⋃

k≥1 Vk by

(affine) algebraic varieties Vk such that Vk ⊆ Vk+1 is a closed subvariety.

Zariski-topology: A subset U ⊆ V =
⋃

k Vk is closed resp. open if the intersections
U ∩ Vk ⊆ Vk are closed, resp. open.
Algebraic subset: A subset is algebraic if it is locally closed and contained in some
Vk.
Zariski tangent space: If V =

⋃
k Vk and x ∈ V , then TxV :=

⋃
k TxVk. This is a

k-vectors space of countable dimension.
Morphisms: Let V =

⋃
k Vk,W =

⋃
ℓWℓ be ind-varieties. A morphism ϕ : V → W

is a map such that the following holds: For any k there is an ℓ such that
(i) ϕ(Vk) ⊆ Wℓ and (ii) ϕ : Vk →Wℓ is a morphism of varieties.

Examples. • Any variety X : Xk := X for all k.
• A discrete countable set S; filtration by finite sets.
• Mor(An,An) ≃ k[x1, . . . , xn]n: filtration e.g. by degree.
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Basic construction. Let R be a commutative k-algebra of countable dimension
(e.g. finitely generated), a ⊆ R a subspace (e.g. an ideal), P ⊆ k[x1, . . . , xn] a set
of polynomials. Then the set

V := {(a1, . . . , an) ∈ Rn | f(a1, . . . , an) ∈ a for all f ∈ P} ⊆ Rn

is a closed subset of the ind-variety Rn, hence an affine ind-variety.

Example. Let X ⊆ kn be a closed subset and R as above. Then the R-rational
points

X(R) := Mor(SpecR,X) ⊆Mor(SpecR, kn) = Rn

form a closed ind-subvariety.

Ind-Groups and Lie Algebras

Definitions (Ind-groups, tangent spaces, connected component).
- An ind-variety G together with a group structure is an ind-group if the multipli-
cation µ : G × G → G and the inverse ι : G → G are morphisms.
- TeG has a natural structure of a Lie algebra, denoted by LieG.
- The connected component G◦ ⊆ G is a closed ind-subgroup of countable index.

Examples. • A linear algebraic group G.
• A countable group F ; LieF = {0}.
• GLn(R), R a commutative k-algebra of countable dimension; then one

gets Lie GLn(R) = Mn(R).

Remarks. - Algebraic subgroups of G ⊆ G are closed, and LieG ⊆ LieG.
- If chark = 0 and G,H ⊆ G are algebraic subgroups where H is connected and

LieH ⊆ LieG ⊆ LieG, then H ⊆ G. We will see later that this does not hold for
closed ind-groups.

Automorphism Groups

Theorem 6 (Shafarevich 1966, see [Sha81]). If X is affine, then Aut(X) is an
affine ind-group.

In fact, we have an embedding Aut(X) →֒ Mor(X,X)×Mor(X,X), g 7→ (g, g−1),
and the image is closed.

Theorem 7 (Furter-K. 2018, [FK18]). Aut(X) ⊆
closed

Dom(X) ⊆
open

Mor(X,X),

where Dom(X) is the set of dominant morphisms.

Note: A G-action on X is the same as a homomorphism G → Aut(X) of ind-
groups.

Remark. We have a natural embedding Lie Aut(X) →֒ Vec(X) into the Lie algebra
of algebraic vector fields on X , i.e., Vec(X) := Der(O(X)).
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What Kind of Groups Appear as Aut(X)?

Proposition. (chark = 0)

(a) (Greenberg 1973) For any finite G there exists a compact Riemann
surface S with Aut(S) ≃ G.

(b) (Jelonek 2015), see [Jel15]) For any finite G there exists a smooth affine
curve C with Aut(C) ≃ G.

Examples. • Aut(A1) = Aff1 = k∗ ⋉ k+;
• Aut(A1 \ {0}) = Z2 ⋉ k∗;
• Aut(A1 \ {a1, . . . , ak}) is trivial for k ≥ 3 points in general position;

• Ȧ := A1 \ {0}, Aut(Ȧ× Ȧ× · · · × Ȧ︸ ︷︷ ︸
m times

) ≃ GLm(Z) ⋉ (k∗)m.

Proposition (Kraft 2017, see [Kra17]). If Aut(X)◦ is an algebraic group, then
either X ≃ A1 (and so Aut(X) = k∗ ⋉ k+) or Aut(X)◦ is a torus of dimension
≤ dimX .

Example (“Replica”). Consider an action of k+ on X given by ρ : k+ → Aut(X).

For f ∈ J := O(X)k
+

we define a new action (“replica”) setting ρf (s)(x) :=
ρ(f(x)s)(x). It has generically the same orbits, if f 6= 0, hence the same invariants.

It follows that f 7→ ρf is a closed immersion k+(J) = J+ →֒ Aut(X) of ind-
groups. As a consequence, if X admits a non-trivial k+-action and dimX ≥ 2,
then Aut(X) is infinite-dimensional.

Example (Furter-Kraft 2018, [FK18]). Let C1, . . . , Cm ⊆ k2 be pairwise non-
isomorphic cuspidal curves. Then Aut(C1 × C2 × · · · × Cm) is an m-dimensional
torus.

Cuspidal curve: C := {xr = ys} ⊆ k2, r ≥ s ≥ 2 coprime:

Example ([FK18]). The smooth surface S := {x2 + y2 + z2 = xyz} ⊆ k3 has a
discrete (countable) automorphism group which contains the braid group B3 with
finite index.

Example. The automorphism group Aut(A2) contains Aff2, the affine group, and
Jonq2, the de Jonquière subgroup:

Aff2 := {(ax + by + r, cx + dy + s) |
[
a b
c d

]
∈ GL2(k), r, s ∈ k}

≃ GL2(k) ⋉ (k2)+︸ ︷︷ ︸
translations

(an algebraic group!)

Jonq2 := {(ax + b, dy + p(x)) | a, d ∈ k∗, p ∈ k[x], b ∈ k} (∞-dimensional!)

Proposition (Jung 1942, van den Kulk 1953, [Jun42], [vdK53]). The group
Aut(A2) is the amalgamated product Aff2 ∗B Jonq2 over B := Aff2 ∩ Jonq2.
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Properties of X Induced by Aut(X)

Proposition (Jelonek 2015, see [Jel15]). (chark = 0, X affine irreducible) If
Aut(X) is infinite, then X is uniruled.

uniruled := ∃ a dominant rational map ϕ : A1 × Y 99K X , dimY = dimX − 1.

For the next result we make the following definitions.

Definitions.

- Let S(X) ⊆ Aut(X) be the subgroup generated by all k+-actions on X .
- X is flexible if Tx(X) is spanned by the k+-orbits for all x ∈ Xreg.

Proposition (I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch,
M. Zaidenberg 2013, see [AFK13]). (chark = 0) X an affine variety of dimen-
sion ≥ 2. The following statements are equivalent:

(i) X is flexible;
(ii) S(X) is transitive on Xreg;

(iii) S(X) is infinitely transitive on Xreg.

Does Aut(X) Determine X?

In her thesis Julie Déserti proved the following result related to the Theorems
of Whittaker, Takens and Filipkjewich, see Corollary to Theorem 1 and 2.

Proposition (J. Déserti 2006, see [Dés06]). (chark = 0) Every automorphism
of Aut(A2) is inner, up to field automorphisms.

A partial generalization of this to the “tame” subgroup of Aut(An) is obtained
in [KS13].

Theorem 8 ([Kra17]). (chark = 0) Let X be connected. If Aut(X) ≃ Aut(An)
as ind-groups, then X ≃ An as varieties.

However, an isomorphism as ind-groups is a very strong assumption since it
sends algebraic subgroups isomorphically onto algebraic subgroups!

Theorem 9 (S.Cantat, A.Regeta, J. Xie 2022, see [CRX23]). (chark arbi-
trary) Let X be a connected affine variety. If Aut(X) is isomorphic to Aut(An)
as an abstract group, then X is isomorphic to An as a variety.

This is a consequence of Theorem 4: The image D of the subgroup of transla-
tions is (a) a commutative algebraic group, (b) is unipotent, (c) has no invariants,
From that one concludes that D has a dense orbit, hence acts transitively and so
X is an affine space.

From now one we assume chark = 0.

Theorem 10 (Leuenberger-Regeta 2017, see [LR22]).

• All generic Danielewski-surfaces Dp have abstractly isomorphic auto-
morphism groups.
(Dp := {xy = p(z)} ⊆ k3), p a polynomial)
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• If Aut(Dp)◦ ≃ Aut(Dq)◦ as ind-groups, or Lie Aut(Dp) ≃ Lie Aut(Dq),
or Vec(Dp) ≃ Vec(Dq) as Lie-algebras, then Dp ≃ Dq as varieties.

This shows that there exist automorphism groups which are non-isomorphic as
ind-groups, but isomorphic as abstract groups!

For surfaces we have the following result.

Theorem 11 (Liendo-Regeta-Urech 2018, see [LRU23]). Let S1 be an affine
toric surface and S2 a normal affine surface. If Aut(S1) ≃ Aut(S2), then S1 ≃ S2.

The main ingredient here is a group-theoretic characterization of the algebraic
elements in Aut(S) for an affine surface S.

Definition. An automorphism g ∈ Aut(X) is algebraic if it belongs to an algebraic
subgroup of Aut(X). It is unipotent, resp. semisimple if it belongs to a unipotent,
resp. diagonalizable algebraic subgroup.

Lemma. Let S be an affine surface. Then an element g ∈ Aut(S) is algebraic if
and only if a power gk is divisible in Aut(S).

The proposition above was generalized to arbitrary affine toric varieties.

Theorem 12 (A. Regeta and I. van Santen 2022, see [RvS25]). Let X,Y be
irreducible normal affine varieties such that Aut(X) ≃ Aut(Y ) as abstract groups.
If X is toric and not isomorphic to a torus, then Y is isomorphic to X. The same
holds if X is smooth and spherical.

The proof is based on the following lemma about unipotent elements.

Lemma. Let X,Y be irreducible affine varieties, and let θ : Aut(X)
∼
−→ Aut(Y )

be an isomorphism of (abstract) groups. Then θ maps unipotent elements to
unipotent elements.

For the proof they show that a maximal commutative subgroup consisting of
unipotent elements is maximal among all commutative subgroups!

Is Aut(X) Simple?

Let SAut(An) ⊆ Aut(An) denote the kernel of the Jacobian determinant

jac : Aut(An)→ k∗, (f1, . . . , fn) 7→ det(
∂fi
∂xj

).

It was shown in 1974 by Danilov that the group SAut(A2) is not simple as an
abstract group [Dan74], cf. Furter-Lamy 2010, [FL10].

In his paper from 1966 Shafarevitch claims that SAut(An) is simple as a
topological group, i.e., there is no non-trivial closed normal subgroup:

- It is easy to see that Lie SAut(An) is a simple Lie algebra.

- Then he “proves” that for a closed ind-subgroup H ⊆ G of a connected ind-
group G we have H = G in case LieH = LieG, and he is done!

- But we gave a counterexample to this last statement in [FK18]!
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Theorem 13 (J. Blanc 2024, see [Bla24]). (Any base field k.) A closed normal
subgroup of SAut(An) contains the tame subgroup, i.e., the subgroup generated by
SAffn and SJonqn. In particular, SAut(A2) is simple as a topological group.

Since one knows that 〈Aff3, Jonq3〉 $ Aut(A3) (Shestakov-Umirbaev 2002,
[SU03]), and so 〈SAff3, SJonq3〉 $ SAut(A3), the problem is not yet solved!

Nested ind-Groups

Definition. An ind-group G is nested if it admits a filtration by algebraic groups.

We cannot expect that Aut(X) is nested, but large subgroups might be!

Examples. • (V ∞)+ =
⋃

k V
+
k , with Vk finite dimensional;

• GL∞(k) =
⋃

k GLk(k), with obvious embeddings GLk(k) →֒ GLk+1(k);
• The de Jonquière subgroup of Aut(An):

Jonqn := {(f1, . . . , fn) ∈ Aut(An) | fi ∈ k[x1, . . . , xi]}.

Let R be a finitely generated integral k-domain.

• Un(R) where Un ⊆ GLn are the upper triangular unipotent matrices;
• For a torus T we have T (R)◦ = T , because k∗(R) = R∗, the subgroup of

invertible elements, and one knows that R∗/k∗ is a finitely generated free
abelian group.
• Bn(R)◦ where Bn ⊆ GLn are the upper triangular matrices.

Groups Consisting of Algebraic Elements

As a consequence of the Theorems 4 and 5 by Cantat et al we get the following
results.

Corollary. (A) (chark arbitrary, X affine) A closed connected and commu-
tative subgroup of Aut(X) is nested.

(B) (chark = 0, X quasi-affine) A closed connected and solvable subgroup of
Aut(X) is nested.

Theorem 14 (A. Perepechko 2024, [Per23], cf. [KPZ17]). Let G ⊆ Aut(X) be
a connected nested subgroup. Then G is closed and of the form G = G ⋉ Ru(G)
where G is a reductive algebraic subgroup and Ru(G) a nested unipotent subgroup.
(Levi decomposition!)

In a nested subgroup of Aut(X) every element is algebraic. In the same paper
Perepechko proves a partial converse of this.

Theorem 15 ([Per23]). Let U ⊆ Aut(X) be a subgroup consisting of unipotent
elements. Then the closure Ū ⊆ Aut(X) is a nested unipotent subgroup.
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Relation between G and LieG

The relation between a subgroup G ⊆ Aut(X) and its Lie algebra LieG ⊆ Vec(X)
is still unclear. A brief overview of a few selected chapters can be found in [KZ24b];
it includes some open questions. Here is an interesting result in this direction.

Theorem 16 (Kraft-Zaidenberg 2014, see [KZ24a]). Let G ⊆ Aut(X) be a
subgroup generated by a family {Gj}j∈J of algebraic groups. Then G is an algebraic
group if and only if the Lie algebras LieGj ⊆ Vec(X) generate a finite dimensional
Lie algebra.

We have already mentioned an example from [FK18] of a closed connected
subgroup G ⊆ Aut(A3) which contains a strict closed subgroup H $ G with
LieH = LieG. Clearly, this cannot happen if G is nested.

Some Open Problems

(1) Let G ⊆ Aut(X) be a connected closed subgroup and N $ G a proper
normal and closed subgroup. Does it follow that LieN $ LieG?

(2) Let H,G ⊆ Aut(X) be closed subgroups. Assume that G is connected,
LieG ⊆ LieH, and that every element of G is algebraic. Does it follow
that G ⊆ H?

(3) Let G ⊆ Aut(X) be a closed subgroup consisting of algebraic elements.
Does this imply that G is nested? More generally, let G ⊆ Aut(X) be
an arbitrary subgroup consisting of algebraic elements. Is the closure G
nested? (Cf. [PR23], [PR24])

(4) If Aut(X) is not discrete, i.e., Aut(X)◦ is non-trivial, does it follow that
it contains a non-finite algebraic group, i.e., a copy of k∗ or of k+?

(5) Is the closure of the normalizer of the tame subgroup 〈SAffn, SJonqn〉 ⊆
SAut(An) the whole group?
This would imply that SAut(An) is simple as a topological group.

References

[AFK13] Ivan Arzhantsev, Hubert Flenner, Shulim Kaliman, Frank Kutzschebauch, and Mikhail
Zaidenberg, Flexible varieties and automorphism groups, Duke Math. J. 162 (2013),
no. 4, 767–823.
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Alternating sign behavior for the product structure in T -equivariant

quantum K-theory of flag varieties

Shrawan Kumar

Consider the T -equivariant (small) quantum K-theory QKT (XP ) defined by Kim
and Givental, where XP = G/P for a semisimple group G and any parabolic
subgroup P , and T ⊂ P is a maximal torus. Let {[Ow]}w∈W/WP

be the structure

sheaf basis corresponding to the opposite Schubert variety B−wP/P ⊂ XP over
the representation ring R(T ) of T , where W (resp. WP ) is the Weyl group of G
(resp. P ) and B− is the opposite Borel subgroup. Then, it is conjectured that
the structure constants of the product in QKT (XP ) in the structure sheaf basis
exhibit an alternating sign behavior. Special cases of this conjecture have been
obtained by Buch-Chaput-Mihalcea-Perrin, Weihong Xu, Lenart-Naito-Sagaki.

We recall the following result due to Syu Kato, where GrG is the infinite Grass-
mannian G((t))/G[[t]]: There exists a ‘natural’ isomorphism of algebras:

KT (GrG)loc ≃ QKT (XB)loc,

which sends the Schubert basis of KT (GrG) to the Schubert basis of QKT (XB)
(up to a Novikov monomial), where KT (GrG)loc (resp. QKT (XB)loc) is a certain
localization of KT (GrG) (resp. QKT (XB)) and KT (GrG) acquires its product
via Pontryagin product. Moreover, for any standard parabolic subgroup P , there
exists a surjective morphism of commutative algebras QKT (XB) → QKT (XP ),
which takes the Schubert basis of QKT (XB) to the Schubert basis of QKT (XP ).
Thus, the original alternating sign behavior in QKT (XP ) reduces to that of the
corresponding alternating sign behavior for the Pontryagin product in the com-
mutative ring KT (Gr) with respect to the Schubert basis. The aim of the talk is
to report a precise conjecture on the alternating sign behavior in the Pontryagin
product in KT (Gr) with respect to the Schubert basis and on the progress towards
this conjecture.

Center of the small quantum group: towards a combinatorial model

Anna Lachowska

(joint work with Qi You, Nicolas Hemelsoet, Oskar Kivinen)

The small quantum group uq(g) is a finite-dimensional Hopf algebra associated
to a semisimple Lie algebra g and an (odd) lth root of unity q. It occurs as a
subquotient of the big quantum group, as defined by Lusztig, generated by the
divided powers of the usual Chevalley generators.

The problem of determining the structure of the centers of small quantum
groups at roots of unity has a long history. Even before the small quantum group
uq(g) was defined by Lusztig [8] for a semisimple Lie algebra g and an l-th root of
unity q, a similar problem was considered for the restricted enveloping algebra of a
reductive algebraic group over a field of positive characteristic. In both quantum
and modular cases the objects under consideration are finite-dimensional Hopf
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algebras whose structure are determined by a finite root system and an integer
or a prime parameter. By the work of Andersen, Jantzen and Soergel [1], the
principal blocks of both algebras are Morita equivalent to the same algebra (up to
a base field change, with some restrictions on l), meaning that an answer for the
structure of the center for one of them translates to the other.

Let

uq(g) = ⊕λ∈P/W̃l
uλ

be the block decomposition of the Hopf algebra uq(g), where P is the root lattice
and λ runs over the set of the orbits of the action of the extended affine Weyl

group (̃W )l = W ⋉ lP in P . The same decomposition holds for the center of uq(g).
A major breakthrough in the study of the center of uq(g) is given by the following
result first established for the principal block containing the trivial representation
[2] and then extended to the singular blocks in [6] [7] (with some restrictions on
l):

Theorem 1. Let P ⊂ G, g = Lie(G), be the parabolic subgroup whose Weyl group

WP ⊂ W stabilizes λ. Let ÑP ≃ T ∗(G/P ) be the parabolic Springer resolution.
Then there is an equivalence of triangulated categories

Db(Rep(u)λ) ∼= Db(CohC∗(ÑP )).

Corollary 2. Let λ ∈ P be an integral weight of G, and P the parabolic subgroup
whose Weyl group WP ⊂ W stabilizes λ. Then the Hochschild cohomology of the
singular block Rep(u)λ is isomorphic to the C∗-equivariant Hochschild cohomology

ring of the variety ÑP , where C∗ acts by dilations on the fibers:

HH⋆
C∗(ÑP ) ∼=

⊕

i+j+k=⋆

Hi(ÑP ,∧
jT ÑP )k.

In particular, the center of the singular block zλ := z(uλ) is isomorphic as a
commutative algebra

zλ
∼= HH0

C∗(ÑP ) ∼=
⊕

i+j+k=0

Hi(ÑP ,∧
jT ÑP )k.

In general the right-hand side of the isomorphism in 2 is hard to compute. A

careful study of the C∗-equivariant cohomologies of the variety ÑP in several low
rank cases allowed to formulate the combinatorial conjecture on the structure of
the blocks of the center [6, 7] (with some restrictions on l):

Conjecture 3. Let WP ⊂ W be the stabilizer subgroup of the weight λ, and let
DRWP

W denote the canonical quotient of the diagonal coinvariant algebra C[h ⊕
h∗]WP /C[h⊕ h∗]W+ , that is a module over the Cherednik algebra [4]. As a bigraded

vector space the G-invariant part of the block of the center is isomorphic to DRWP

W :

z
G
λ
∼= DRWP

W .

In particular, the dimension of zGλ equals to (h + 1)rk(g), where h is the Coxeter
number of g.
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The next major advance is due to the work [3] where an isomorphism of algebras
between the center z(uq(g)) and certain cohomology of an affine Springer fiber
was conjectured and later proved. The paper [5] in combination [3] uses this
new geometric model to prove the following result, which partially confirms the
conjecture 3 (with some restrictions on l):

Theorem 4. Let λ ∈ P be an integral weight of G, and P the parabolic subgroup
whose Weyl group WP ⊂W stabilizes λ. Then

dim z
G
λ = dim DRWP

W .

Summing up for all blocks of zG = ⊕
λ∈P/W̃l

z
G
λ , we obtain the following result

for the dimension of the G-invariant part of the center of the small quantum group
[5]:

Theorem 5. Let l be very good for g. Then

dim z(uq(g))G = CatW ((h + 1)l− h, h),

where we denote by CatW the generalized rational Coxeter-Catalan numbers cor-
responding to the Weyl group W .
In particular, let G = SLn and suppose that n and n + 1 are coprime to l. Then

dim z(uq(g))G =
1

(n + 1)l

(
(n + 1)l

n

)
,

the rational ((n + 1)l− n, n)-Catalan number.

Several important questions remain open. In particular, the following conjecture
was formulated in [7]:

Conjecture 6. In type A we have z(uq(g))G ∼= z(uq(g)).

It is known that this conjecture fails for types B2, B3 and G2, but holds for An

for n ≤ 4.
Further, more precise combinatorial information on the structure of the center

of the small quantum group is still missing. We would like to understand the
bigraded structure of the center that is evident in its coherent geometric model
2, as well as its multiplicative structure. We would like to define a natural W -
action on z(uq(g)) that would turn the isomorphism 3 into an isomorphism of
W -modules, up to tensoring with the sign representation. These are the directions
of our subsequent research.
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Wonderful Embedding for group schemes in Bruhat–Tits theory

Shang Li

Let G be a connected quasi-split semisimple group of adjoint type over a strictly
Henselian discretely valued field k with the ring of integers o, the maximal ideal m
and the perfect residue field κ. Let G be the wonderful compactification of G after
De Concini and Procesi. This geometric object G plays an important role in Lie
theory, enumerative geometry, representation theory, and arithmetic geometry. As
a generalization of wonderful compactification, for a general reductive group (not
necessarily adjoint), we have the theory of equivariant toroidal embeddings which
are classified by combinatorial data.

In order to facilitate applying various useful results of wonderful compactifi-
cation (and also of toroidal embedding) into Bruhat–Tits theory and arithmetic
geometry, in this report, we propose a theory of wonderful embedding for concave
function group schemes in the Bruhat–Tits theory.

To state our main results, we need to fix some notations. Let S be a maximal
k-split torus which is contained in a Borel k-subgroup B ⊂ G. Let T be the
centralizer of S in G. Then T is a maximal k-torus contained in B. Let B− be the
opposite Borel such that B

⋂
B− = T , and let U and U− be the unipotent radicals

of B and B−. Let Φ := Φ(G,S) be the relative root system, and let Φ̂ = Φ
⋃
{0}.

The choice of B gives a set of simple roots ∆ ⊂ Φ.
Let B(G) be the Bruhat–Tits building of G(k), and let A(S) be the apartment

corresponding to S. To a point x ∈ A(S) and a concave function f : Φ̂ → R, we
can associate with an open bounded subgroup G(k)x,f ⊂ G(k) which is a central
object of the Bruhat–Tits theory. These groups include parahoric subgroups,
Moy–Prasad groups and Schneider–Stuhler groups as special cases. A fundamental
algebro-geometric result of [3] and [6] is that G(k)x,f admits (necessarily uniquely)
an integral model Gx,f over o. The group scheme Gx,f is rarely reductive, i.e., the
unipotent radical Ru((Gx,f )κ) of the special fiber (Gx,f )κ is rarely trivial. We
denote by Gx,f the maximal reductive quotient of the special fiber (Gx,f )κ.

Let S be the schematic closure of S in Gx,f , and let S be the isomorphic image
of the special fiber Sκ in the maximal reductive quotient Gx,f . We will adopt the
natural identifications of the character lattices and of cocharacter lattices:

(1) X∗(S) ∼= X∗(S ) ∼= X∗(S); X∗(S) ∼= X∗(S ) ∼= X∗(S).
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Let Φx,f := {a ∈ Φ|f(a) + f(−a) = 0 and f(a) ∈ Γ′
a} which is identified with

the root system of Gx,f with respect to the maximal torus S under the above
identifications, where Γ′

a is the set of values of the root subgroup Ua(k) with respect
to x. Let ∆x,f := ∆

⋂
Φx,f ⊂ Φx,f which is a set of simple roots. Moreover, the

negative Weyl chamber C ⊂ X∗(S)R defined by the simple roots ∆ is a cone inside
the negative Weyl chamber Cx,f ⊂ X∗(S)R defined by ∆x,f .

We establish the following result. For simplicity, in this report, we only state
it under the assumption that G splits over k. The theorem is valid for quasi-split
groups after replacing A1,o with certain Weil restriction of it.

Theorem 1. There is a unique smooth quasi-projective integral model Gx,f over

o of G satisfying

(i) the (G ×k G)-equivariant open immersion G →֒ G extends to a (Gx,f ×o

Gx,f )-equivariant open immersion Gx,f →֒ Gx,f ;
(ii) the canonical k-open immersion Ω := U−×k

∏
∆ A1,k×kU

+ →֒ G extends
to an o-open immersion

Ωx,f := U− ×o

∏

∆

A(f(0))
1,o ×o U

+ →֒ Gx,f ,

where U− and U+ are the schematic closures of U− and U+ in Gx,f and

A(f(0))
1,o is the unique integral model of A1,k over o such that A(f(0))

1,o (o) =

1 + mf(0);
(iii) (Gx,f ×o Gx,f ) ·Ωx,f = Gx,f , i.e., the group action morphism is surjective.

Moreover we have

(1) if f(0) = 0, the quotient sheaf (Gx,f )κ/(Ru((Gx,f )κ) ×κ Ru((Gx,f )κ)) is
represented by a scheme and the natural morphism

Gx,f −→ (Gx,f )κ/(Ru((Gx,f )κ)×κ Ru((Gx,f )κ))

induced by the open immersion Gx,f →֒ Gx,f is an equivariant toroidal
embedding of the split reductive group Gx,f determined by the cone C in
the negative Weyl chamber Cx,f in the sense of [1, Definition 6.2.2];

(2) if f(0) > 0, the special fiber of Gx,f degenerates to the special fiber (Gx,f )κ;

(3) Gx,f is projective over o if and only if Gx,f is a reductive group scheme over
o. This is the case, for instance, if f = 0 and x ∈ B(G) is a hyperspecial
point;

(4) the boundary Gx,f\Gx,f is covered by (Gx,f×oGx,f)-stable smooth o-relative
effective Cartier divisor Sα for α ∈ ∆ with o-relative normal crossings.

We first remark that the existence part of Theorem 1 is only nontrivial when
f(0) = 0 because the (2) says that, when f(0) > 0, the Gx,f is simply a gluing of

G and Gx,f along the open subscheme G. This is similar to the structure of the

group scheme Gx,f when f(0) > 0. Moreover, our wonderful embedding Gx,f is
compatible with dilatation operation on the group scheme Gx,f .

We study the Picard group of Gx,f and its generators, which are similar to those

of the classical wonderful compactification G.
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Theorem 2. The boundary Gx,f\Ωx,f is covered by prime effective Cartier divisors

Dα := B · ṡα · B−, α ∈ ∆

where the bar indicates taking the schematic closure in Gx,f and ṡα ∈ NG(S)(k)
is a representative of the simple reflection along α in the relative Weyl group of
G with respect to S. Moreover the Picard group Pic(Gx,f ) is freely generated by
{Dα|α ∈ ∆}.

Beyond the quasi-split case, we construct our wonderful embedding by étale
descent. We now consider an adjoint reductive (not necessarily quasi-split) group
G over a Henselian discretely valued field k with perfect residue field and ring of
integers o. Let K be a maximal unramified extension of k, and let O ⊂ K be the
ring of integers. By a theorem of Steinberg, GK is quasi-split over K. We choose
a maximal k-split torus S with Φ(S) := Φ(S,G) and Φ̂(S) := Φ(S)

⋃
{0}. Let

T be a special k-torus containing S. For a concave function f̃ : Φ̂(TK) → R the

concave function obtained by compositing a concave function f : Φ̂(S) −→ R with
the restriction map X∗(TK)→ X∗(SK) = X∗(S) and a point x in the apartment
A(S) of the building B(G) corresponding to S, by Bruhat–Tits theory, we have
the o-group scheme Gx,f obtained by étale descent from the O-group scheme Gx,f̃ .

Let Gx,f̃ be the integral model over O by applying Theorem 1 to Gx,f̃ .

Theorem 3. The (Gx,f̃ ×O Gx,f̃)-scheme Gx,f̃ over O descends to a smooth quasi-

projective (Gx,f ×o Gx,f )-scheme Gx,f over o which equivariantly contains Gx,f as

an open dense subscheme, and the boundary Gx,f\Gx,f is an o-relative Cartier

divisor with o-relative normal crossings. Moreover, Gx,f is o-projective if and only
if Gx,f is a reductive group scheme over o.

Since the scheme Gx,f behaves in many aspects similarly to the wonderful com-

pactification G (when f = 0), Theorem 1 and Theorem 3 can serve as a first step
towards the Bruhat–Tits theory for wonderful compactification. It is also expected
to expend our results to more general wonderful varieties in the sense of [4].

Remark 4. Recall that, when G splits over k, the set of the (G ×k G)-orbits of
the wonderful compactification G are bijective to the set ∆×{0, 1}. This has the
following affine analogue. If f(0) = 0, the (Gx,f (o)× Gx,f (o))-orbits of Gx,f(o) are

bijective to the set
∏

α∈∆(Γα

⋂
R≥0). Given such a parallel between G and Gx,f ,

we ask if there is a classification of (G(k)C,0 × G(k)C,0)-orbits in Gx,f(o), where
C ⊂ B(G) is a chamber containing x and G(k)C,0 is thus an Iwahoric subgroup,

as an analogue of the classification of (B ×k B)-orbits in G [2, § 2.1]; if we have a
description of Gx,f (o)Diag-stable pieces in Gx,f (o) as an analogue of [5].
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Modular ramified geometric Satake equivalence

João Lourenço

(joint work with Pramod Achar, Timo Richarz, Simon Riche)

Recall that the geometric Satake equivalence of Mirković–Vilonen [MV07] consists
of an equivalence of monoidal categories between perverse sheaves on the Hecke
stack HkG of a reductive group G and representations of the Langlands dual G∨.
Nowadays, many variants for different flavors of sheaf theories and geometric ob-
jects have been established.

In our talk, we presented work [ALRR22, ALRR24] on a ramified version of the
geometric Satake equivalence with integral and modular coefficients. This builds
on a theme initiated by Zhu–Richarz [Zhu15, Ric16] for ℓ-adic coefficients with
ℓ 6= p, which allows for ramification in the reductive group under consideration.
To be more precise, let us introduce some notation: we let k denote an algebraic
closure of Fp, O = k[[t]] its power series ring, and F = k((t)) its Laurent series field;
G is a reductive F -group and G a special parahoric O-model of G. Note that we no
longer assume G is a split reductive k-group, but rather possibly nonsplit reductive
F -group. We now extend the previous work of Zhu–Richarz to coefficients in an
algebraic extension of Fℓ or an integral closure of Zℓ in an algebraic extension of
Qℓ with ℓ 6= p:

Theorem 1. There is a symmetric monoidal equivalence Perv(HkG)≃Rep((G∨
Λ)I),

intertwinning nearby cycles Perv(HkG) → Perv(HkG) with the restriction map
Rep(G∨

Λ)→ Rep((G∨
Λ)I).

In the next sections, we explain the various concepts appearing in the statement
and sketch the main ideas in the proofs.
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1. Pinned fixed points as group schemes

In Zhu–Richarz, the dual group is given by the scheme-theoretic inertia fixed
points (G∨

Qℓ
)I over Qℓ, where the natural I-action preserves the canonical pinning

of G∨. This Qℓ-group is possibly disconnected, but always reductive. (It also only
depends on G, and not on the choice of special facet, which is surprising, given
that odd unitary groups have 2 conjugacy classes of special parahorics with quite
distinct reductive quotients.) In the case of modular or integral coefficients Λ, it
is thus natural to expect the dual group to equal the scheme-theoretic fixed points
(G∨

Λ)I of fixed points of the action as above on the dual split reductive group
scheme G∨

Λ over the given ring of coefficients Λ. Little seemed to be known about
the Zℓ-scheme, so we proved the following result in [ALRR22]:

Theorem 2. The Zℓ-group scheme G∨
Zℓ

is flat with reduced fibers being isogenous
reductive group schemes. It is smooth if and only if there is no pair of roots
{α, ℓα} ⊂ ΦG and X∗(T )I is ℓ-torsion free. It is connected if and only if X∗(T )I
has no ℓ-primary torsion.

The proof proceeds by a big cell argument and then a case-by-case analysis
of the various fixed points, exploiting crucially the stability of the pinning under
the I-action. The conditions on X∗(T )I refer to toral behavior, and the condition

of {α, ℓα} reflects the non-smoothness of GL
Z/2Z
2n+1,Z2

arising from G = U2n+1 and
only when ℓ = 2. This recovers only one of the many examples of non-reductive
quasi-reductive groups in the sense of Prasad–Yu [PY06].

2. Ramified affine Grassmannians

Let L+G be the positive loop group of our fixed special parahoric model and LG
be the loop group of our reductive group. We define GrG as the étale quotient
LG/L+G, and this is an ind-projective ind-scheme. The assumption that G fixes
a special facet is necessary to ensure a certain parity condition on L+G-orbit
dimensions in GrG , without which a geometric Satake equivalence cannot hold.
Note that the reduction of GrG is the colimit of all its L+G-orbit closures GrG,≤ν̄ ,

where ν̄ ∈ X∗(T )+I . As usual, we also study semi-infinite orbits in GrG and their
relationship to attractors, filling some gaps on their geometry in the paper of
Haines–Richarz [HR21]. Intersecting these orbits with Schubert varieties, we get
the corresponding Mirković–Vilonen cycles, and the topological results required for
proving semi-smallness of convolution in the ramified case stem from [AGLR22].

There is another important geometric input: the Beilinson–Drinfeld Grassman-
nian GrG,O arising as the base change of a construction in [BD91]. Its special
fiber is precisely the ind-scheme GrG considered in the previous paragraph and
its generic fiber identifies with the constant affine Grassmannian GrG (now with
residue field F instead of k). We can take nearby cycles along this geometric space,
and this allows us to link the unramified with the ramified Hecke category. This
is how the intertwinning of unramified and ramified geometric Satake arises in our
main theorem, and plays a major role in computing the Tannakian dual group.
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3. The fiber functor

With characteristic 0 coefficients, the ramified statement can be deduced almost
immediately from the unramified one thanks to semisimplicity of Rep((G∨

Qℓ
)I)

and to a result of Bezrukavnikov regarding central functors from representations
of algebraic groups. While nearby cycles still work integrally, the remaining facts
become inaccessible. We therefore focus on following [MV07].

The first step lies in studying weight functors arising from constant terms CTP

(also known as Braden’s hyperbolic localization for the corresponding attractor
correspondence), so that we can prove monoidality of the obvious fiber functor
H∗ of total cohomology (and of all the CTP themselves). In [MV07] the fusion
product induced by the Beilinson–Drinfeld deformation is used to endow the fiber
functor with a monoidal structure: unfortunately, this deformation takes us from
ramified to unramified groups generically, so it is not of great help for us. The
fusion product is even more crucial when it comes to proving symmetry of the
monoidal structure, but we handle this differently in the next section.

We bypass the difficulty regarding the lack of a fusion product in a different
way, constructing this monoidal structure by exploiting parity properties of orbit
dimensions. Indeed, it is relatively easy to write down a filtration on total co-
homology relating to closures of semi-infinite orbits, and still easy to identify the
successive subquotients. It is much harder to show that the filtration is naturally
split, and that is where parity enters.

We warn the reader that there is an extremely pervasive error in the literature
going back to [MV07], claiming that one can construct a complementary filtration
via natural geometric operations: every single paper claiming this contains a sign
mistake, so that the two complementary filtrations are one and the same.

4. Tannakian reconstruction

The next goal is to identify the monoidal category Perv(HkG ,Λ) with the cate-
gory of finitely generated BG(Λ)-comodules for some flat Λ-bialgebra BG(Λ). We
cannot directly apply the Tannakian formalism as Λ is not a field, but nonetheless
an easy variant of Barr–Beck yields the existence of the desired Λ-bialgebra. The
formation of BG is compatible with extension of scalars in Λ. The missing sym-
metry constraint can be deduced now by checking commutativity of the bialgebra
as follows: the Qℓ-bialgebra is already known by Zhu–Richarz to be commutative;
the Zℓ-bialgebra embeds in the previous one by flatness; and the Fℓ-bialgebra is
obtained as a quotient. It is not too hard to check now that its spectrum is a
Λ-group scheme G∨Λ .

Next, we exploit the nearby cycles functor and the Tannakian formalism to get
a map of Λ-groups G∨Λ → G∨

Λ. This is easily seen to factor through the inertia fixed
points (G∨

Λ)I and our goal is to show the isomorphy of the resulting map. To prove
this, we first treat the case of relative rank 1, and exploit once again the possibility
of transferring information between the different coefficient rings. The SL2 case
is quite straightforward and one simply follows the argument of Fargues–Scholze
[FS21]. In the SU3, there is some extra subtlety involved only when ℓ = 2, and
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we rely on the proof in [ALRR22] that (G∨
Z2

)I cannot be dilated into becoming a
group scheme with reduced fiber (it is crucial that no square root of 2 is allowed in
the coefficients! Afterwards, one can calmly base change to Z̄2). During the talk,
Sean Cotner asked if we were simply proving normality of this Z2-group, but this
does not hold true: in fact, the normalization turns out not to be a group scheme
in this particular case.

Once again, we would like to emphasize the weirdness of these group schemes:
it is quite stunning that they naturally arise as the Tannakian group for a category
of perverse sheaves. Finally, we should mention that the result also holds for the
Witt Grassmannians of Zhu, and even with motivic Z[1/p]-coefficients by work of
van den Hove [vdH24].

5. Underlying motivation and future directions

The main motivation for the constructions in [Zhu15, Ric16] was the application
to some properties of Shimura varieties. At this point it does not seem that our
integral and modular versions lead to any specific new application in this direction;
in fact our desire to establish them came from representation theory. Namely, in
many cases the group (G∨

Fℓ
)I is still a reductive group. It was conjectured by

Brundan [Bru98], and proved by him in most cases, that the restriction along
(G∨

Fℓ
)I → G∨

Fℓ
preserves tilting modules. The remaining cases were later treated

by van der Kallen [vdK01] on a case-by-case basis. Our hope is that the geometric
description of the restriction functor in terms of nearby cycles will shed some light
behind the actual reason behind this property. Recently, Fargues–Scholze [FS21]
give a uniform proof of this result, assuming the I-action factors through a p-prime
quotient, but not assuming it respects a pinning, see [FS21, Theorem VIII.5.15].
It would be interesting to see whether the coprimality assumption can be removed
in our setting.
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Parabolic and horospherical subgroup schemes of reductive groups in

small characteristics

Matilde Maccan

(joint work with Ronan Terpereau)

This report summarizes the results presented in [8] and [9], along with the strat-
egy of the ongoing work in [10] and [11]. It is structured in three parts. The
first section presents a complete classification of non-reduced parabolic subgroup
schemes of reductive groups across all characteristics. The second discusses the
connected component of the automorphism group of the associated homogeneous
spaces, extending classical results of Demazure. The final section outlines the first
steps towards a classification of horospherical subgroups, which naturally general-
ize parabolics.

We work over an algebraically closed field of prime characteristic p > 0. Let G be
a simple adjoint group with a fixed Borel subgroup B and maximal torus T ⊂ B.
For a simple root α (with respect to the chosen pinning), the associated maximal
reduced parabolic subgroup is denoted Pα; it is characterized by having trivial
intersection with the negative root subgroup associated to −α. A key object is
the kernel mG of the m-th iterated relative Frobenius homomorphism of G, which
is by construction an infinitesimal subgroup. All group schemes considered are of
finite type over the base field and need not be smooth.

1. Parabolic subgroup schemes

Flag varieties are among the few classes of algebraic varieties that allow for con-
crete computations. In positive characteristic, there exist twisted counterparts,
namely projective homogeneous spaces with possibly non-reduced parabolic sta-
bilizers. Their geometry appears to differ significantly from that of classical flag
varieties, and their classification–originally due to Haboush, Lauritzen, and Wenzel
for characteristics at least five–has now been completed in full generality.

In small characteristics (two and three), some additional exotic objects arise. More
precisely, if the Dynkin diagram of G has an edge of multiplicity p–which occurs
for types Bn, Cn, F4 when p = 2, and type G2 when p = 3–one can define the very
special isogeny of such a group. This is a finite map with source G whose kernel
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K is minimal among normal noncentral subgroups killed by Frobenius; see [3] and
the original work of [2] for more details. The subgroup K is uniquely determined
by its Lie algebra, which is generated by the subspaces corresponding to short
roots.

When G is an exceptional group of type G2 and p = 2, there are two additional
parabolic subgroups Q1 and Q2 whose reduced part is Pα1 , where α1 denotes the
short simple root and α2 the long one. Their respective Lie subalgebras are:

LieQ1 = LiePα1 ⊕ g−2α1−α2 , LieQ2 = LiePα1 ⊕ g−α1 ⊕ g−α1−α2 .

We now have all the ingredients to state the main classification results.

Theorem 1. Let P ⊂ G be a parabolic subgroup with reduced part Pα for some
simple root α. Up to taking the quotient by some Frobenius kernel G, the parabolic
P is one of

Pα, KPα, Q1, Q2,

where K denotes the kernel of the very special isogeny, and Qi are the two exotic
parabolics.

Theorem 2. Let P ⊂ G be a parabolic subgroup. Suppose Pred is the intersection
of P β1 , . . . , P βr for simple roots βi. Then

P =

r⋂

i=1

Qi,

where each Qi is the smallest subgroup containing both P and P βi . In particular,
any parabolic subgroup is an intersection of parabolics with maximal reduced part.

2. The connected automorphism group of a flag variety

Very little is known about the geometry of homogeneous varieties X = G/P , where
G is simple adjoint and P is a non-reduced parabolic. A few works on the subject
include [5], [7], and [12]. A natural question is to determine exactly when

ι : G →֒ Aut0X

is an isomorphism. Moreover, when ι is a strict inclusion, one can ask about
the structure of the connected automorphism group, viewed as a (possibly non-
reduced) group scheme. In the case of a reduced parabolic, Demazure showed that
ι is always an isomorphism, except for the following three Picard rank one cases:

• G = PSp2n, α = α1, whose associated homogeneous space is the projective
space of dimension 2n− 1;
• G = SO2n+1, α = αn, whose space parametrizes totally isotropic subspaces

of k2n+1 of dimension n;
• G = G2, α = α1, whose space is a smooth quadric in P6.

We refer to such Pα as exceptional.

In characteristic p > 0, the only known example to the author is [1, Proposition
4.3.4], which proves non-reducedness via Lie algebra computations. The following
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generalizes this example to all types and characteristics, and is the main result of
the ongoing work in [10].

Theorem 3. Let X = G/P of Picard rank at least two, where the stabilizer is of
the form

P = PJ ∩ (ker ξ)P ′.

Assume ξ is a non-central isogeny and is minimal with respect to inclusion.

(1) If PJ 6= Pα for an exceptional root α, then Aut0X = G.
(2) If PJ = Pα is exceptional, there is a unique m ≥ 0 such that

Aut0X = mĜ ·G ⊂ Ĝ,

where Ĝ denotes the connected automorphism group of G/Pα.

A very short sketch of the proof is to combine Demazure’s theorem with results
from [8] on contractions of Schubert curves on X , Blanchard’s Lemma, and explicit

computations on the Lie algebra of Ĝ as a G-module.

3. Horospherical subgroup schemes

A natural generalization of parabolic subgroups is the notion of horospherical sub-
groups. These are, up to conjugation, subgroups of G containing the unipotent rad-
ical U of the Borel subgroup B. In characteristic zero, they are well studied because
the associated homogeneous spaces–and their equivariant compactifications–offer
a good compromise between spherical and flag varieties, with a rich combinatorial
structure. This final section is joint work in progress with Ronan Terpereau.

A subgroup H ⊂ G is horospherical if it contains a maximal unipotent subgroup.
We say that it is strongly horospherical if its normalizer NG(H) is a parabolic
subgroup scheme. In characteristic zero, all horospherical subgroups are strongly
horospherical. This fails in positive characteristic, as shown by the following ex-
ample, due to [6].

Example 4. Let p = 2 and define

H =

{(
a b

a + a3 a3 + (1 + a2)b

)
: a4 = 1

}
⊂ SL2.

Then Hred = U , but NSL2
(H) = H , so H is horospherical but not strongly horo-

spherical.

Conjecture 5. Let H ⊂ G be a horospherical subgroup over a field of character-
istic p ≥ 3. Then H is strongly horospherical.

Currently, the authors can only show that if p ≥ 3, then LieH is normalized by
T . In characteristic two, we are working towards a classification of strongly horo-
spherical subgroups using root systems and the known classification of parabolics.
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Quotients of LLG

Andrea Maffei

(joint work with Valerio Melani, Gabriele Vezzosi)

This is a report on our joint work contained in [3]. Given a smooth affine algebraic
group G over an algebraically closed field k, the aim of our work is to study certain
quotients of G(k((x))((y))), for example by the group G(k((x))[[y]]) or by the group
G(k[[x]]((y))). We want to thank Philippe Gille for explaining to us, during the
conference in Oberwolfach, how to extend a result of our paper to a more general
class of groups (see Remark 4).

Let us recall some definitions. If F is a functor from k-algebras to sets, the loop
space LF of F and the jet space JF of F , on a k-algebra R, are defined as

LF(R) = F
(
R((t))

)
JF(R) = F

(
R[[t]]

)
.

If G is an affine algebraic group over k, its affine Grassmannian is the presheaf
R 7→ LG(R)/JG(R). By a result of Česnavičius, this presheaf is actually a sheaf
for the fppf topology (see [1] and [3], Corollary 1.3). It can be shown that the
affine Grassmannian is an ind-scheme, and moreover, we can interpret the affine
Grassmannian as a space of G-torsors on the formal disk of a point on a smooth
curve, with a trivialization on the punctured disk. In our work, we focused on
studying analogous properties for quotients of the group LLG.

2312.00415
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Ind-representability. The quotients of LLG that we considered in our study
are the following.

The affine Grassmannian of the loop group is the presheaf quotient LLG/JLG.
We denote it as

GrLG : R 7−→
LLG(R)

JLG(R)
=

G
(
R((t))((s))

)

G
(
R[[t]]((s))

) .

This is an analogue of the affine Grassmannian for the loop group LG.

The loop space of the affine Grassmannian is the presheaf quotient LLG/LJG.
We denote it as

LGrG : R 7−→
LLG(R)

LJG(R)
=

G
(
R((t))((s))

)

G
(
R((t))[[s]]

) .

This is the loop presheaf of the usual affine Grassmannian of G.

The big Grassmannian is the presheaf quotient LLG/JJG. We denote it as follows:

GrbigG : R 7−→
LLG(R)

JJG(R)
=

G
(
R((t))((s))

)

G
(
R[[t]][[s]]

) .

The 2-dimensional local field affine Grassmannian is the presheaf quotient
LLG/G(2), where for a given a k-algebra R we put O′′(R) = R[[t]]+

∑
i>0 R((t))si ⊂

R((t))[[s]], and consider the subgroup of LLG(R) given by G(2)(R) = G(O′′(R)).
The 2-dimensional local field affine Grassmannian is denoted as

Gr
(2)
G : R 7−→

LLG(R)

G(2)(R)
=

LLG(R)

G(O′′(R))
.

Theorem 1 (Theorem 1.7 of [3]). If G is solvable then the above Grasmmannians
are represented by ind-schemes.

We notice that these indschemes are over filtered sets, and the transition maps
are closed immersion, however they are over uncountable sets. In particular if
G is solvable the presheaves defining these Grassmannians are already sheaves.

For a general G we denote with GrL,♯
G , LGr♯G, etc. the sheaves associated to the

presheaves defined above.

Geometric interpretation. Let X be a smooth surface over k, D an effective
Cartier divisor in X , and Z ⊂ X a closed subscheme of dimension zero. We define
the following spaces of G torsors corresponding to the flag Z ⊂ D ⊂ X . For
simplicity, in this exposition, we will assume X = SpecA is affine.

The geometric Grassmannian of the loop group is defined as

GrLD,Z := BunG
(Ẑ)affrD

×BunG

(ẐD̂
rZ)affrD

{∗}.

The geometric loop Grassmannian is defined as

LGrD,Z := BunG
(ẐD̂rZ)aff

×BunG

(ẐD̂
rZ)affrD

{∗}.
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The geometric big Grassmannian is defined as

Gr
big
D,Z := BunG

Ẑ
×BunG

(ẐD̂
rZ)affrD

{∗}.

The geometric 2-dimensional local field Grassmannian is defined as

Gr
(2)
D,Z := (BunG

(ẐD̂rZ)aff
×BunG

ẐD
rZ

BunG
ẐD

)×BunG

(ẐD̂
rZ)affrD

{∗}.

The definition has some formal subtleties that we now explain in the case of
the geometric grassmannian of the loop group (for the other cases see [3]). First

we explain what kind of objects are Ẑ rD and (ẐD̂ rZ)rD. To every k-algebra
R over X (that is with a given map ϕ : SpecR −→ X) they associate a scheme
or an indscheme (functors from the category of k algebras over X to the category
of schemes or indscheme or more generally stacks were introduced in [2] and they
called them fiber functors). We denote by DR and ZR the pull back of D and Z
via ϕ. Assume that DR is defined by the ideal IR and ZR by the ideal JR, then

• Ẑ(R) is the formal neighborhood of ZR in XR, this is the colimit of the
schemes SpecR/Jn

R.

• (Ẑ)aff(R) = Spec R̂Z where R̂Z is the limit of R/Jn
R.

• DR determines a closed subset in (Ẑ)aff(R). Define ((Ẑ)aff r D)(R) =

(Ẑ)aff(R) rDR.

• We now define (ẐD̂ r Z)(R). To define this object we first consider the

formal neighborhood (Ẑ)Dn of Z in Dn, where Dn = SpecR/InR. So that

(Ẑ)Dn is the colimit over m of SpecR/InR + Jm
R . Its affinization is then

Spec R̂n where Rn is the limit over m of R/InR + Jm
R . We remove ZR from

this affinization and we obtain a scheme (ẐDn)aff(R)rZR. The indscheme

(ẐD̂ r Z)(R) is the colimit of these schemes.

• Finally
(
(ẐD̂rZ)affrD

)
(R) is defined by removing the closed subschemes

DR by the affinization of (ẐD̂ r Z)(R).

On a ring over R the grassmannian GrLD,Z(R) is then defined as the grupoid of

G-torsors on
(
(Ẑ)aff rD

)
(R) with a trivialization on

(
(ẐD̂ r Z)aff rD

)
(R).

To compare these grassmannian with the quotients of LLG, for a k-algebra R
(not over X) we define GrLD,Z(R) = GrLD,Z(R⊗A), where recall X = SpecA.

For example if X = A2 with coordinates t and s, D is the divisor s = 0 and Z
is the origin then GrLD,Z(R) is the grupoid of G-torsors on SpecR[[t]]((s)) with a
trivilization on SpecR((t))((s)).

Finally we define Gr
L,♯
D,Z as the stackification of GrLD,Z .

The following result gives the geometric interpretation of the quotients of LLG.

Theorem 2 (Theorem 2.14 and Corollary 3.11 of [3]). Assume D is smooth and
Z is a simple point. Then

LGr
♯
D,Z ≃

LGr♯G Gr
(2),♯
D,Z ≃ Gr

(2),♯
G , Gr

big,♯
D,Z ≃ Gr

big,♯
G .
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In the case of the affine grassmannian of the loop group, our result is weaker.

Theorem 3 (Proposition 2.16 and Corollary 3.11 of [3]). Assume G is connected
and solvable or G is semisimple connected and simply connected. Then

GrLD,Z(k) ≃ GrLG(k).

The last statement immediately generalizes to connected algebraic groups which
have a filtration {e} = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G such that Gi is normal in Gi+1

and the quotients Gi/Gi−1 are connected and solvable or connected semisimple
and simply connected. For example it holds

Remark 4. The last theorem is stated in [3] only for G solvable and G semisimple
and special. We thank Philippe Gille for explaining us, how to extend this result
to any G simply connected.
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The theory of edifices

Benjamin Martin

(joint work with Michael Bate, Gerhard Roehrle)

1. Spherical buildings and optimality

In this talk I describe how to generalise the notions of vector and spherical buildings
from connected reductive groups to arbitrary connected linear algebraic groups.
For now, let G be a connected reductive algebraic group over a field k. The
spherical building ∆G of G is the simplicial complex formed by the set of parabolic
(i.e., k-parabolic) subgroups of G, ordered by reverse inclusion. Given a maximal
split torus T of G, the apartment ∆T is the subcomplex of ∆G consisting of the
parabolic subgroups that contain T . We denote the geometric realisations by |∆G|
and |∆T |; the latter is an (r−1)-sphere, where r is the semisimple rank of G. Since
any two parabolic subgroups of G contain a common maximal split torus, it follows
that any two simplices of ∆G are contained in a common apartment (we say that
G satisfies the common apartment property).

There is a beautiful construction of |∆G| using the set YG of cocharacters of
G. Our motivation is the following application to geometric invariant theory.
Suppose k = k. Let X be an affine G-variety and let x ∈ X such that G · x is
not closed. We can associate to x a so-called “optimal destabilising cocharacter”
λopt with corresponding parabolic subgroup Popt; these have the property that
x′ := lima→0 λ(a) · x exists, G · x′ is closed and Popt contains the stabiliser Gx.
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Now let k be arbitrary again. We would like to extend these constructions. We
can associate to X and x a closed convex subset Σ of |∆G|; roughly speaking, Σ
is the set of cocharacters λ such that lima→0 λ(a) · x exists. If we knew that Σ
was a subcomplex of ∆G then we could use Tits’s Centre Conjecture — which
is now a theorem — to deduce the existence of an appropriate analogue of Popt.
Unfortunately Σ is not a subcomplex in general.

We do not know how to construct Popt for arbitrary k. While investigating
this, however, we have looked further into the construction of |∆G| in terms of
cocharacters. It turns out that this makes sense for arbitrary connected groups,
producing objects we call the spherical edifice and vector edifice of G. We describe
these now.

From here on we let G be an arbitrary connected linear algebraic group over k.
If λ is a cocharacter of G then we define subgroups Pλ and Lλ of G by

Pλ(k) = {g ∈ G(k) | lima→0 λ(a) · x exists}

and

Lλ(k) = {g ∈ G(k) | lima→0 λ(a) · x = x}.

We call Pλ a Richardson parabolic (R-parabolic) subgroup of G, and Lλ a Richard-
son Levi (R-Levi) subgroup of G. If G is reductive then Pλ is a parabolic subgroup
of G, Lλ is a Levi subgroup of G, and all parabolic and Levi subgroups of G arise
in this way.

Set K = Q or R. Given a maximal split torus T of G, we define YT ⊆ YG to be
the set of cocharacters of T . Then YT is an abelian group, so we it makes sense to
define YT (K) := YT ⊗Z K. We can associate an R-parabolic subgroup Pλ and an
R-Levi subgroup Lλ to any λ ∈ YT (K). The group G(k) acts on Y :=

⋃
T YT (K) in

a natural way, and we have Pg·λ = gPλg
−1 for any λ and any g. Given λ ∈ YT (K)

and λ′ ∈ YT ′(K), we define λ′ ∼ λ if there exists g ∈ Pλ(k) such that λ′ = g · λ.
This gives an equivalence relation on Y.

Definition 1. We define VG(K) = Y/∼, and we call this the vector edifice of G.
We write φG for the canonical projection from Y to VG(K). If ζ ∈ VG(K) then we
define Pζ to be Pλ for any λ ∈ Y such that φG(λ) = ζ (this does not depend on
the choice of λ).

There is a natural way to endow VG(K) with a metric.

Theorem 2 ([1, Prop. 6.8]). VG(K) is a complete metric space.

We define ∆G to be the poset of R-parabolic subgroups of G ordered by reverse
inclusion; note that ∆G need not be a simplicial complex. We call ∆G the combi-
natorial edifice of G. Given a maximal split torus T of G, we define ∆T to be the
set of R-parabolic subgroups of G that contain T , and we call this an apartment
of ∆G. (There is a notion of apartment for the vector building as well: we define
VT (K) = φG(YT (K).)
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The point: If G is reductive then ∆G is precisely the spherical building of G
from before, and VG(R) is the vector building of G. If G is semisimple then we
may identify |∆G| with the unit sphere S in VG(R): given a parabolic subgroup
P of G, we can associate to P the topological simplex {ζ ∈ S |Pζ ⊇ P}.

Even if one is interested only in reductive G, this more general construction can
be useful: for instance, one can describe the projection map (in the general sense
of buildings) from ∆G onto a Levi sphere ∆L in terms of the vector edifices VP (K)
and VL(K), where P is a parabolic subgroup of G such that L is a Levi subgroup
of P .

It is known that if G is pseudo-reductive then the spherical edifice ∆G is a
spherical building. Our next result identifies the class of groups for which the
analogous result holds. Let Gt,s be the subgroup generated by all the split tori of
G and let Ru,s(G) be the largest split connected normal unipotent subgroup of G.

Theorem 3 (BMR 2024). The following are equivalent.

(a) ∆G is a spherical building.
(b) G has the common apartment property.
(c) Ru,s(G) commutes with Gt,s.
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Algebraic Magnetism

Arnaud Mayeux

Introduction

The talk was an introduction to a new invariant in the setting of an arbitrary
algebraic action a of a diagonalizable group scheme D(M)S . I also computed this
invariant in the case where a is the adjoint action of a maximal split torus on a
split reductive group and explained that it encodes classical invariants in this very
special case (root system, standard parabolic groups, root groups).

Setting

Let S be a base scheme, M an abelian group, X a scheme over S, and let a be an S-
action of the diagonalizable group scheme D(M)S (cf. [2] for diagonalizable group
schemes) on X . For simplicity of exposition, we assume that M is finitely generated
and that the morphism X → S is separated and locally of finite presentation. For
statements and details in more general settings, see [4, 5]. We refer to [7] for
monoids.
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Attractors and Magnets

We proceed with the above setting. If N is a submonoid of M , then the diagonal-
izable group scheme D(M)S acts canonically on the diagonalizable monoid scheme
A(N)S := Spec(Z[N ])×Spec(Z)S over S. We now introduce a contravariant functor

XN from the category of schemes over S to the category of sets.

Definition 1. XN : (T → S) 7→ Hom
D(M)T
T (A(N)T , XT )

(D(M)T -equivariant morphisms)

.

The functor XN is called the attractor associated to the monoid N under the
action a. This terminology comes from dynamic, e.g. Gm-actions. If M = Z
and N = N, then D(M)S ∼= Gm,S , A(N)S ∼= A1

S and XN is denoted X+, cf. the
numerous references in [4, 5]. However, the references on Gm-actions cited in [4, 5]
(including [1, 8, 3]) do not make use of the language of monoid schemes associated
with commutative monoids [7], which is central to our theory. Indeed, if k is a
commutative ring, Spec(k[t]) is primarily regarded as the affine line A1

k in those
works.

Theorem 2.

(1) The functor XN is representable by a scheme.
(2) If X → S is affine, then XN is a closed subscheme of X. Explicitely, if
A denotes the quasi-coherent algebra of X so that X = SpecS(A), then
XN ∼= SpecS(A/JN ) where JN = 〈Am|m ∈M \N〉 (an action of D(M)S
on an S-affine scheme corresponds to an M -grading on the associated
quasi-coherent algebra, so that we have in particular a decomposition A =⊕

m∈M Am).

(3) If N = Z is a group, then XZ = XD(M/Z)S , i.e. XZ identifies with the
fixed points scheme of X under the action of D(M/Z)S on X (D(M/Z)S
acts on X via the morphism D(M)S → D(M/Z)S associated to the pro-
jection M →M/Z).

(4) In the extremal cases, we have XM = XD(M/M)S = X and X0 = XD(M)S .
(5) If N ⊂ L are submonoids of M , then we have a canonical monomorphism

XN → XL (we use Definition 1 and the equivariant morphism A(L)S →
A(N)S associated to the canonical morphism of M -graded rings Z[N ] →
Z[L]).

(6) We obtain a canonical monomorphism XN → XM = X (in general XN →
X is not a closed immersion). We think about N as a magnet which
attracts XN .

(7) There are canonical actions of A(N)S and D(M)S on XN .
(8) If L is another submonoid of M , then (XN)L = XN∩L (we use (7)).
(9) If F ⊂ N is a face of N , then we have a canonical morphism XN → XF

called a face morphism (to obtain it, observe that the M -graded projec-
tion Z[N ] → Z[F ] is a morphism of rings so that we have an equivariant

morphism A(F )S → A(N)S). The composition XF (5)
→ XN → XF is the

identity. Moreover if X/S is smooth, then XN → XF is smooth.
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(10) Let f : X → Y be a D(M)S-equivariant morphism, then we obtain a
morphism fN : XN → Y N on attractors. Moreover if f is étale/smooth/a
closed or open immersion, so is fN (this is wrong for flatness in general).

(11) The face morphism XN → XN∗

induces a bijection on connected compo-
nents (here N∗ = {x ∈ N |∃y ∈ N such that x+ y = 0} denotes the face of
invertible elements). If X/S is smooth and a is Zariski locally linearizable,
then XN → XN∗

is an affine bundle.
(12) If X → S is a monoid/group scheme, so is XN → S.
(13) If f : M → Z is a morphism of abelian groups and Y is a submonoid of

Z such that f−1(Y ) = N , then XY⊂Z = XN⊂M (D(Z)S acts on X via
D(Z)S → D(M)S dual to M → Z).

Recall that a denotes the action of D(M)S on X .

Definition 3. A magnet of a is a submonoid of M . The set of magnets is denoted
m(a), it only depends on M .

Proposition 4. XN = XE(N) where E(N) = ∩
L∈m(a)
XN=XL

L.

Definition 5. A pure magnet of a is a magnet of a of the form E(N). Equivalently,
N ∈ m(a) is a pure magnet if and only if for all L ∈ m(a) such that XN = XL,
we have N ⊂ L. The set of pure magnets of a is denoted ✵(a). We have a
decomposition

m(a) =
⊔

N∈✵(a)

mN (a)

where mN (a) = {L ∈ m(a)|XL = XN}.

We obtain a bijection between (classes of) attractors and pure magnets

{XN |N ∈ m(a)} ↔ ✵(a).

The set ✵(a) is a poset relatively to the relation of inclusions of submonoids
of M . This poset together with associated attractors form the new invariant
attached to a, as announced in the introduction. We are often also interested in
the cardinalities of minimal generating sets of pure magnets (as monoids). Assume
now, for simplicity, that a is Zariski locally linearizable. We then have the following
finiteness result.

Proposition 6. Assume that X → S is finitely presented, then ✵(a) is finite.

Definition 7. Let Z → XN∗

be a monomorphism, we put XN
Z = XN ×XN∗ Z.

In a work in progress, Algebraic Magnetism is used and studied for algebraic
stacks [6].

Examples

Let G be a Chevalley group scheme over Z. Let T = D(M) be a maximal split
torus of G and let Φ = Φ(G, T ) ⊂ M be the associated root system (we omit
S = Spec(Z)). Let a and a be the adjoint actions of T on G and Lie(G).
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Proposition 8. We have ✵(a) ∼= ✵(a)
bijection
←→ {additively stable subsets of Φ}.

The bijection sends a magnet N to the additively stable subset Φ∩N . Conversely,
a stable subset Σ is sent to the submonoid [Σ〉 of M generated by Σ (a subset
Σ ⊂ Φ is called additively stable if [Σ〉 ∩ Φ = Σ).

So Φ identifies with the mono-generated pure magnets. Let B be a Borel sub-
group of G containing T and B be the associated base of Φ. Recall the bijection b
between the set of subsets of B and the set of parabolic subgroups of G containing
B.

Proposition 9. The bijection b is given by Γ 7→ G[B∪−Γ〉 ([B ∪ −Γ〉 denotes the
monoid generated by B ∪ −Γ).

Proposition 10. Let α ∈ Φ be a root and eG be the neutral subgroup scheme.

Then G
[α〉
eG is the usual root group Uα.

Assume G = SL3, so Φ is the root system of type A2. Let α1, . . . , α6 be the roots
in Φ, indexed Z/6Z-cyclically. Then the additively stable subsets of Φ are
(ordered by cardinality): Cardinality 0: {∅}, Cardinality 1:{{αi}|1 ≤ i ≤ 6},
Cardinality 2: {{αi, αi+1}|1 ≤ i ≤ 6}, {{αi, αi+3}|1 ≤ i ≤ 3}, (note that
{αi, αi+2} is not stable because αi+1 = αi + αi+2), Cardinality 3:
{{αi, αi+1, αi+2}|1 ≤ i ≤ 6}, Cardinality 4: {{αi, αi+1, αi+2, αi+3}|1 ≤ i ≤ 6},
Cardinality 5: There is no stable subset of Φ of cardinality 5, Cardinality 6: {Φ}.
So #✵(a) = 1 + 6 + 9 + 6 + 6 + 0 + 1 = 29.
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Hesselink strata and Lusztig–Xue pieces

Alexander Premet

Let G be a connected reductive algebraic group of rank ℓ over an algebraically
closed field k and T a maximal torus of G. Let Σ be the root system of G with
respect to T and Π a basis of simple roots of Σ. Write X(T ) (resp. X∗(T )) for
the lattice of rational characters (resp. cocharacters) of T and X+

∗ (T ) for the
intersection of X∗(T ) with the dual Weyl chamber of X∗(T )R := X∗(T ) ⊗Z R
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associated with Π. We fix an inner product ( · , · ) on X∗(T )R invariant under
the action of the Weyl group W (Σ). The set X∗(G) = {gX∗(T )g−1 | g ∈ G}
of all rational cocharacters of G admits an (AdG)-invariant norm || · || such that

||λ|| =
√

(λ, λ) for all λ ∈ X∗(T ).
Each nonzero λ ∈ X∗(G) gives rise to a Z-grading

g =
⊕

i∈Z g(λ, i), g(λ, i) = {x ∈ g | (Ad λ(t))x = tix for all t ∈ k×}

of the Lie algebra g = Lie(G). For d ∈ Z, we put g(λ,≥ d) :=
⊕

i≥d g(λ, i) and

denote by P (λ) = L(λ)Ru(λ) the parabolic subgroup of G associated with λ. Here
L(λ) = ZG(λ) is a Levi subgroup of G. Recall that Lie(P (λ)) = g(λ,≥ 0) and
Lie(L(λ)) = g(λ, 0). Following [1] we denote by L⊥(λ) the normal subgroup of
L(λ) generated by (L(λ), L(λ)) and the subtorus T λ := 〈µ(k×) | (µ, λ) = 0〉 of
T . Note that L⊥(λ) is a connected reductive group of rank is ℓ − 1 and it has
codimension 1 in L(λ).

We write N (g) for the nilpotent cone of g, the variety of all (AdG)-unstable
vectors of g, and denote by DG the set of all Bala–Carter labels attached to the
nilpotent orbits of a complex Lie algebra with root system Σ. As explained in [1],
the Hesselink strata H(∆) of N (g) are parameterised by the set of cocharacters
τ∆ ∈ X+

∗ (T ) with ∆ ∈ DG, and they form a partition of N (g), so that

(1) N (g) =
⊔

∆∈DG
H(∆).

The cocharacter τ∆ can be read off the weighted Dynkin diagram (a1, . . . , aℓ)
associated with ∆ as follows: if x is a root vector of g associated with αi ∈ Π then
(Ad τ∆(t)))(x) = taix for all t ∈ k×. The Hesselink stratum attached to ∆ has
the form

H(∆) = (AdG)
(
V(τ∆, 2)ss + g(τ∆,≥ 3)

)

where V(τ∆, 2)ss is the set of all (AdL⊥(τ∆))-semistable vectors of g(τ∆, 2); see
[1] for more detail.

Given ∆ ∈ DG we write g∆,!
2 for the set of all x ∈ g(τ∆, 2) such that Gx ⊂ P (τ∆)

where Gx = ZG(x) is the stabiliser of x in G. As explained in [1] each set g
∆,!
2

contains V(τ∆, 2)ss, a nonempty Zariski open subset of g(τ∆, 2). The set

LX(∆) := (AdG)
(
g
∆,!
2 + g(τ∆,≥ 3)

)

containing H(∆) will be referred to as the Lusztig-Xue piece of N (g) associated
with ∆. The pieces LX(∆) and their analogues for N (g∗) and for the unipotent
variety of G were introduced by Lusztig. Viability of these pieces has to do with

the fact that g
∆,!
2 is defined in a more transparent fashion than its elusive subset

V(τ∆, 2)ss.
In [4, Appendix A], Lusztig and Xue proved that the pieces LX(∆) form a

partition of N (g) in the case where G is a classical group. Very recently, the same
property was established by Voggesberger [8] for groups of type G2, F4 and E6

with the help of Magma. These results imply that LX(∆) = H(∆) for all ∆ ∈ DG

provided that G is not of type E7 or E8.
The partition property of the coadjoint analogues of LX(∆) was established

by Lusztig [5] and Xue [9] in all cases where G is a simple algebraic group and
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p = char(k) equals the ratio of the squared lengths of long and short roots in Σ. In
all other cases there is a G-equivariant bijection between N (g) and N (g∗) which
enables one to identify the nilpotent coadjoint orbits and pieces of g∗ with those
of g; see [7, Section 5.6].

In [6], we prove the following:

Theorem 1. Let G be a connected reductive group over an algebraically closed
field k of characteristic p ≥ 0. Then H(∆) = LX(∆) for all ∆ ∈ DG and hence

N (g) =
⊔

∆∈DG
LX(∆).

Our proof is computer-free, but relies heavily on some results of Liebeck–Seitz
obtained in [3]. In view of (1) this theorem confirms Voggesberger’s conjecture and
earlier expectations of Lusztig (pertaining to the nilpotent and unipotent case).
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Complete reducibility and Semisimplification

Gerhard Röhrle

(joint work with M. Bate, S. Böhm, B. Martin and L. Voggesberger)

This is a report on the joint papers [1] and [5].

1. Cocharacter-closed orbits

Following [8], [7], and [3], we regard an affine variety over a field k as a variety X
over the algebraic closure k together with a choice of k-structure. We write X(k)
for the set of k-points of X and X(k) (or just X) for the set of k-points of X . By a

subvariety of X we mean a closed k-subvariety of X ; a k-subvariety is a subvariety
that is defined over k.

Below G denotes a possibly non-connected reductive linear algebraic group over
k. By a subgroup of G we mean a closed k-subgroup and by a k-subgroup we mean
a subgroup that is defined over k. We define Yk(G) to be the set of k-defined
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cocharacters of G and Y (G) := Yk(G) to be the set of all cocharacters of G. Let
H be a subgroup of G.

Next we recall some basic notation concerning parabolic subgroups in (non-
connected) reductive groups G from [4, §6] and [7]. Given λ ∈ Y (G), we define

Pλ = {g ∈ G | lim
a→0

λ(a)gλ(a)−1 exists}

and Lλ = CG(Im(λ)). We call Pλ an R-parabolic subgroup of G and Lλ an R-Levi
subgroup of Pλ. We have Pλ = Lλ = G if Im (λ) belongs to the centre of G.

We denote the canonical projection from P to L by cL; this is k-defined if P
and L are. If we are given λ ∈ Y (G) such that P = Pλ and L = Lλ then we often
write cλ instead of cL. We have cλ(g) = lima→0 λ(a)gλ(a)−1 for g ∈ Pλ; the kernel
of cλ is the unipotent radical Ru(Pλ) and the set of fixed points of cλ is Lλ.

Let m ∈ N. Below we consider the action of G on Gm by simultaneous conju-
gation: g · (g1, . . . , gm) = (gg1g

−1, . . . , ggmg−1). Given λ ∈ Y (G), we have a map
Pm
λ → Lm

λ given by g 7→ lima→0 λ(a) · g; we abuse notation slightly and also call
this map cλ. For any g ∈ Pm

λ , there exists an R-Levi k-subgroup L of Pλ with
g ∈ Ln if and only if cλ(g) = u · g for some u ∈ Ru(Pλ)(k).

Our main tool from GIT is the notion of cocharacter-closure from [7] and [3].

Definition 1. Let X be an affine G-variety and let x ∈ X (we do not require x to
be a k-point). We say that the orbit G(k) · x is cocharacter-closed over k if for all
λ ∈ Yk(G) such that x′ := lima→0 λ(a) · x exists, x′ belongs to G(k) · x. If k = k
then it follows from the Hilbert-Mumford Theorem that G(k) · x is cocharacter-
closed over k if and only if G(k) · x is closed [9, Thm. 1.4]. If O is a G(k)-orbit in
X then we say that O is accessible from x over k if there exists λ ∈ Yk(G) such
that x′ := lima→0 λ(a) · x belongs to O.

Theorem 2 (Rational Hilbert-Mumford Theorem ([3, Thm. 1.3])). Let G, X, x
be as above. Then there is a unique G(k)-orbit O such that O is cocharacter-closed
over k and accessible from x over k.

2. G-complete reducibility

Definition 3. Let H be a subgroup of G. We say that H is G-completely reducible
over k (G-cr over k) if for any R-parabolic k-subgroup P of G such that P contains
H , there is an R-Levi k-subgroup L of P such that L contains H . We say that H is
G-irreducible over k (G-ir over k) if H is not contained in any proper R-parabolic

k-subgroup of G at all. We say that H is G-cr if H is G-cr over k.

For more on G-complete reducibility, see [11] and [4]. Note that the definition
make sense even if H is not k-defined. We have Pg·λ = gPλg

−1 and Lg·λ = gLλg
−1

for any λ ∈ Y (G) and any g ∈ G (cf. [4, §6]). It follows that if H is G-cr over k
(resp., G-ir over k) then so is any G(k)-conjugate of H .

Fix a k-embedding G → GLn for some n ∈ N. Let H be a subgroup of G.
Let m ∈ N and let h = (h1, . . . , hm) ∈ Hm. We call h a generic tuple for H if
h1, . . . , hm generates the subalgebra of Mn generated by H [7, Def. 5.4], where
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Mn denotes the associative algebra of n× n matrices over k. Note that we don’t
insist that h is a k-point.

Here is one of the pivotal results from [3].

Theorem 4 ([3, Thm. 9.3]). Let H be a subgroup of G and let h ∈ Hm be a generic
tuple for H. Then H is G-completely reducible over k if and only if G(k) · h is
cocharacter-closed over k.

Using this result one can derive many results on G-complete reducibility: for
instance, see [4] for the algebraically closed case and [7], [3] for arbitrary k. For
more on G-complete reducibility for subgroups of G, see [11], [4].

Next we recall the definition of G-complete reducibility for Lie subalgebras of
Lie(G) and also the link between this concept and GIT using generating tuples,
due to Richardson.

Definition 5. A subalgebra h of g is G-completely reducible over k (G-cr over
k) if for any parabolic k-subgroup P of G such that h ⊆ Lie(P ), there is a Levi
k-subgroup L of P such that h ⊆ Lie(L) (see [2, Def. 5.3]).

As in the subgroup case, we say that h is G-completely reducible, if it is G-
completely reducible over k.

For k = k, this notion is due to McNinch, see [10] and also [7, §5.3].
We now recall the link to GIT. For this, we need the following definition.

Definition 6. Let h be a Lie algebra. Call x = (x1, . . . , xm) ∈ hm (some m ∈ N)
a generating tuple for h if x1, . . . , xm is a generating set for h as a Lie algebra.

The next theorem is [2, Thm. 5.4]; see also [10, Thm. 1(i)] for the case k = k.

Theorem 7 ([2, Thm. 5.4]). Let h be a subalgebra of g = Lie(G). Let x ∈ gm

be a generating tuple for h, and let G act on gm by simultaneous conjugation (via
Ad). Then h is G-completely reducible over k if and only if the G(k)-orbit of x is
cocharacter-closed in gm over k.

3. k-semisimplification

Definition 8. Let H be a subgroup of G. We say that a subgroup H ′ of G is a
k-semisimplification of H if there exist an R-parabolic k-subgroup P of G and an
R-Levi k-subgroup L of P such that H ⊆ P , H ′ = cL(H) and H ′ is G-completely
reducible (or equivalently, L-completely reducible, by [5, Prop. 3.6(b)]) over k. We
say the pair (P,L) yields H ′.

Remarks 9. (a). Let H be a subgroup of G. If H is G-cr over k then clearly H is
a k-semisimplification of itself, yielded by the pair (G,G).

(b). Suppose (P,L) yields a k-semisimplification H ′ of H . Let L1 be another
R-Levi k-subgroup of P . Then L1 = uLu−1 for some u ∈ Ru(P )(k), so cL1(H) =
ucL(H)u−1. Hence (P,L1) also yields a k-semisimplification of H . We say that P
yields a k-semisimplification of H .

(c). For G connected and H a subgroup of G(k), Definition 8 generalizes Serre’s
“G-analogue” of a semisimplification from [11, §3.2.4].
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Remark 10. Let h = (h1, . . . , hm) ∈ Hm be a generic tuple for H . It is easy
to see that cλ(h) = (cλ(h1), . . . , cλ(hm)) is a generic tuple for cλ(H). Hence
by Theorem 4, cλ(H) is a k-semisimplification of H if and only if G(k) · cλ(h)
is cocharacter-closed over k. Owing to Theorem 2, H admits at least one k-
semisimplification: choose λ ∈ Yk(G) such that G(k) · cλ(h) is cocharacter-closed
over k, so cλ(H) is a k-semisimplification of H , yielded by (Pλ, Lλ).

Here is the main result from [5], which was proved in the special case k = k in
[7, Prop. 5.14(i)], cf. [11, Prop. 3.3(b)]. The uniqueness statement is akin to the
theorem of Jordan–Hölder.

Theorem 11 ([5, Thm. 4.5]). Let H be a subgroup of G. Then any two k-
semisimplifications of H are G(k)-conjugate.

Remark 12. Given a reductive k-group G and a subgroup H of G, we may regard
G as a k-group by forgetting the k-structure, so it makes sense to consider the k-
semisimplification of H . It can happen that H is G-cr over k but not G-cr, or vice
versa: see [4, Ex. 5.11] and [6, Ex. 7.22]. So there is no direct relation between
the notions of k-semisimplification and k-semisimplification in general.

We now come to the analogue of Definition 8 for subalgebras of g.

Definition 13 ([1, Def. 5.4]). Let h be a Lie subalgebra of g. A Lie subalgebra
h′ of g is a k-semisimplification of h (for G) if there exist a parabolic k-subgroup
P of G and a Levi k-subgroup L of P such that h ⊆ Lie(P ), h′ = cLie(L)(h) and h′

is G-completely reducible over k. We say the pair (P,L) yields h′.

Remarks 14. (i). Let h be a subalgebra of g. If h is already G-cr over k then
clearly h is a k-semisimplification of itself, yielded by the pair (G,G).

(ii). Suppose (P,L) yields a k-semisimplification h′ of h. Let L1 be an-
other Levi k-subgroup of P . Then L1 = uLu−1 for some u ∈ Ru(P )(k) by [1,
Lem. 2.3(iii)], so consequently cLie(L1)(h) = u · cLie(L)(h). Hence (P,L1) also yields
a k-semisimplification of h. Because of this, when the choice of L doesn’t matter
we simply say that P yields a k-semisimplification of h.

As in the group case (Remark 9(ii)) a k-semisimplification of an arbitrary sub-
algebra of g always exists, due to the rational Hilbert-Mumford Theorem 2:

Remark 15. Suppose h is a subalgebra of g. Let h = (h1, . . . , hm) ∈ hm be a
generating tuple for h. Then cλ(h) = (cλ(h1), . . . , cλ(hm)) is a generating tuple for
cλ(h), for any λ ∈ Yk(G), and hence cλ(h) is a k-semisimplification of h if and only if
G(k) ·cλ(h) is cocharacter-closed over k, by Theorem 7. It follows from Theorem 2
that h admits at least one k-semisimplification: for we can choose λ ∈ Yk(G) such
that G(k) · cλ(h) is cocharacter-closed over k, so cλ(h) is a k-semisimplification of
h, yielded by (Pλ, Lλ).

Here is the analogue of Theorem 11 in the Lie algebra setting, which can again
be viewed as a kind of Jordan–Hölder theorem. Since the adjoint action is k-linear,
the proof is easier than the one for Theorem 11 in [5], where a descending chain
argument is needed.
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Theorem 16 ([1, Thm. 5.8]). Let h be a subalgebra of g. Then any two k-
semisimplifications of h are Ad(G(k))-conjugate.

It turns out that the notions of k-semisimplifications for subgroups and subal-
gebras are compatible in the following natural fashion.

Theorem 17 ([1, Thm. 5.9]). Let H be a subgroup of G and let H ′ be a k-
semisimplification of H. Then Lie(H ′) is a k-semisimplification of Lie(H).
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Realization of algebraic groups as automorphism group schemes

Stefan Schröer

(joint work with Michel Brion)

Let k be a ground field of characteristic p ≥ 0, and X a proper scheme. According
to a result of Matsumura and Oort [2], the automorphism group scheme AutX/k

exists and the connected component of the identity Aut0X/k is an algebraic group,
that is, a group scheme of finite type. Note that the underlying scheme may be
singular for p > 0.

It is natural to wonder if each connected algebraic group arises in this way.
We show that this is indeed the case ([1], Theorem 2.1): Given such G there is
an integral projective scheme X where Aut0X/k is isomorphic to G. For smooth

G, one may choose dim(X) = 2 dim(G). For singular G, however, there is little
control on dimensions. By the work of Lombardo and Maffei [4] and Blanc and
Brion [3], some connectedness assumptions are inevitable.
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The idea of the proof for smooth G is as follows: Choose some equivariant
compactification G ⊂ V , formed with respect to the left-right action of G × G.
Then interpret G = G×{e} as the scheme of fixed points inside Aut0V/k with respect

to some finite étale subscheme {e} × F in G × G. On the product Y = V × V ,
this gives

G = Aut0(Y,Z)/k ⊂ Aut0Y/k,

for the scheme of graphs Z ⊂ Y , defined as the schematic image of F × V →
V × V = Y . With the Blanchard Lemma, one then deduce that the blowing-up
X = BlZ(V ) has the desired properties.

The argument for singular G in characteristic p > 0 is more involved. First
choose some

G ⊂ H and H = Aut0Y/k

for some smooth connected algebraic group H , and some projective Y . One may
assume that Y is geometrically integral, also normal, and with free H-action on
some H-stable dense open U that is smooth. Now choose some finite étale F ⊂
U/G, and take Z ⊂ Y as the closure of U ×U/G F . Again the blowing-up X =
BlZ(Y ) has the desired properties. This relies on a careful computation of Fitting
ideals for complete intersections, the local structure of the ring O

∧
G,e after passing

to perfect closure, and Blanchard’s Lemma.

References
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Representations of shifted affine quantum groups and

Coulomb branches

Eric Vasserot

(joint work with Michela Varagnolo)

Given an arbitrary Cartan matrix c, a mathematical definition of the Coulomb
branch of a 3D, N=4 quiver gauge theory associated with two I-graded vector
spaces V and W was given by Nakajima and Weekes in [6]. It was proved in
[6] that the quantization of the Coulomb branch is a truncated shifted Yangian,
and the fixed point set of some C×-action on the space of triples (i.e., the BFN
space) associated with the Coulomb branch was computed. Some consequences
for the module category of the truncated shifted Yangian were also discussed. A
related construction in physics in the context of 4D, N=2 quiver gauge theory was
considered by Kimura and Pestun in [4].
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In this paper we consider the Coulomb branch with symmetrizers of the 3D, N=4
quiver gauge theory associated with the Cartan matrix c. We relate it to a trun-
cated shifted quantum loop group of type c, generalizing the work of Finkelberg-
Tsymbaliuk [2] in the symmetric case. The BFN space is infinite dimensional.
We use the formalism of Cautis-Williams [1] to represent it by an ind-geometric
derived ∞-stack. We then prove a version of the Segal-Thomason localization
theorem which relates the Coulomb branch to the K-theory and Borel-Moore ho-
mology of the fixed point subset of the C×-action on the BFN space.

This result yields an equivalence from the integral category O of the truncated
shifted quantum loop group to the category of nilpotent modules of a new version
of quiver Hecke algebras, which we call an integral Z-quiver Hecke algebra. This
quiver Hecke algebra is attached to the symmetric Cartan matrix C obtained by
unfolding c, and depends also on a grading given by c (and not by C only). While
the presence of this unfolding was already observed in [6], the role of the integral Z-
quiver Hecke algebra is new and important. For symmetric c the integral Z-quiver
Hecke algebra coincides with the parity quiver Hecke algebra of type c considered
in [3]. For non symmetric c, the definition of the integral Z-quiver Hecke algebra
differs from the definition of the parity quiver Hecke algebra of C.

This new quiver Hecke algebra allows us to decategorify the integral category O
of the truncated shifted quantum loop group in term of a finite dimensional mod-
ule over the simple Lie algebra whose Cartan matrix is C. This finite-dimensional
module is not generally known. We provide a few conditions it satisfies and com-
pute it in type B2. We also give a (partly conjectural) combinatorial rule to com-
pute this representation. This rule uses a crystal which generalizes Nakajima’s
monomial crystal.

Notably, the integral Z-quiver Hecke algebra admits a cohomological grading,
as it is a convolution algebra in Borel-Moore homology. Consequently, our equiv-
alence of categories yields a grading on the integral category O. Furthermore,
although we focus on finite types, many of our results extend naturally to the case
of symmetrizable generalized Cartan matrices. We will return to this elsewhere.

Another motivation for this work comes from [8], where we provide a geometriza-
tion of (shifted) quantum loop groups of arbitrary types via the critical K-theory
of quiver varieties, generalizing Nakajima’s work on symmetric types in [5]. Quiver
varieties are the 3D mirror duals of Coulomb branches. We aim to better under-
stand the relationships between these two constructions.

First, we describe quiver Hecke algebras modeled over spaces of Z-flags, i.e.,
spaces of sequencew of finite-dimensional vector spaces labeled by Z. We compare
them with the tensor product algebras introduced by Webster. Next, we fix a non-
symmetric Cartan matrix c whose Dynkin diagram a folded Dynkin diagram of a
symmetric Cartan matrix C. We introduce the integral Z-quiver Hecke algebras of
type c, which are modeled on Z-quiver Hecke algebras of type C, with an additional
integrality condition that generalizes the parity quiver Hecke algebras from [3] in
the symmetric case. We then prove that the module categories of integral Z-quiver
Hecke algebras are quotients of the module categories of tensor product algebras
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of type C. Let ggg be complex simple Lie algebra of c, and g the complex simple Lie
algebra of C. Subsequently, we decategorify the integral Z-quiver Hecke algebras
0T ρ

µµµ by weight subspaces in some g-modules. While we do not explicitly compute
these modules, we discuss their connections to [3] in the symmetric case and we
compute them in certain specific scenarios, such as the generic case.

Next, we introduce the BFN space with symmetrizers R, following [6]. To
facilitate the application of K-theory later, we employ a variation of the formalism
from [1], which uses ind-tamely presented∞-stacks of ind-geometric type. We then
describe the fixed point locus of certain automorphisms. Finally, we introduce the
Coulomb branches of 4D, N=2 quiver gauge theories with symmetrizers Aλ

µ,R.
Finally, we introduce shifted quantum groups Uµµµ,R and their integral cate-

gory O. Next, we introduce truncated shifted quantum groups and their mod-
ule category 0Oρ =

⊕
µµµ

0Oρ
µµµ, along with the surjective algebra homomorphism

Φ : Uµµµ,R ⊗RTW
→ Aλ

µ,R that maps to Coulomb branches with symmetrizers. We
then prove a localization theorem for Coulomb branches, employing techniques
similar to those in [7], which identify the Coulomb branch Aλ

µ with the integral

Z-quiver Hecke algebras 0T̃ ρ
µµµ after suitable completions. Leveraging the localiza-

tion theorem, we establish a connection between the truncated shifted category
O and integral Z-quiver Hecke algebras, and we discuss a few implications at the
decategorified level. The main result is the following.

Theorem.

(1) 0Oρ
µµµ is equivalent to a category of nilpotent modules over the integral Z-

quiver Hecke algebra 0T ρ
µµµ .

(2) There is a representation of g in K(0Oρ) and an embedding of K(0Oρ)
into a tensor product of fundamental modules of g which takes the simple
modules into the dual canonical basis.

The representation of g in the Grothendieck group K(0Oρ) is not known in
general. We define a crystal of type C which is, conjecturally, isomorphic to the
crystal of the g-module K(0Oρ). This yields a combinatorial rule to compute the

ℓ-highest weight of all simple modules in 0Oρ which holds true in type B2. We
will come back to this elsewhere.
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Complementary spherical subalgebras and compatible

Poisson brackets

Oksana Yakimova

(joint work with Dmitri Panyushev)

Let g be a complex reductive Lie algebra and h ⊂ g a Lie subalgebra. Then g

can be contracted to g(0) := h ⋉ (g/h)ab, where (g/h)ab is an Abelian ideal. The
index of a Lie algebra is the codimension of a generic coadjoint orbit and under
contraction it can only increase. Our first observation is that ind g(0) = rk g if and
only if h is a spherical subalgebra [2, Sect. 2].

If there is a complementary subalgebra r ⊂ g, i.e., g = h⊕ r as a vectror space,
then the Lie–Poisson brackets { , } and { , }0 of g and g(0) are compatible. By
definition this means that { , }a,b := a{ , } + b{ , }0 is a Poisson bracket on the
symmetric algebra S(g) for any a, b ∈ C. Suppose that h and r are spherical. Then
each non-zero bracket { , }a,b has the same rank as { , }, which is dim g − rk g.
This is important for constructions of integrable systems.

If Za,b ⊂ S(g) denotes the Poisson centre of (S(g), { , }a,b), then the subalgebra
Z = Z(h, r) ⊂ S(g) generated by all Za,b is Poisson-commutative w.r.t. { , } and
{ , }0. Furthermore, tr.degZ takes the maximal possible value b(g) := 1

2 (dim g +
rk g) and Z is complete on generic coadjoint orbits. In many interesting cases, Z
can be described explicitly and it turns out to be a polynomial ring. The most
striking instance is related to a triangular decomposition g = u− ⊕ t ⊕ u. Set
b = t⊕ u. Then g = b⊕ u−.

The algebra Z = Z(b, u−) is described in [2]. For any generating set {Fi |
1 ≤ i ≤ rk g} ⊂ S(g)g consisting of homogeneous elements, the bi-homogeneous
components

(Fi)j,di−j ∈ S
j(b)Sdi−j(u−) with 1 ≤ j < di := degFi and 1 ≤ i ≤ rk g

together with a basis of t freely generate Z = Z(b, u−). Furthermore, Z is com-
plete on each regular coadjoint orbit and it is a maximal Poisson-commutative
subalgebra of S(g) [2, Thm. 4.4 & Thm. 5.5]. Recently, Z was lifted to a commu-
tative subalgebra of the enveloping algebra U(g) [1].
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