
Mathematisches Forschungsinstitut Oberwolfach

Report No. 21/2025

DOI: 10.4171/OWR/2025/21

Uncertainty Quantification

Organized by
Oliver G. Ernst, Chemnitz
Fabio Nobile, Lausanne
Claudia Schillings, Berlin

Tim J. Sullivan, Coventry/London

20 April – 25 April 2025

Abstract. Uncertainty quantification (UQ) is concerned with including and
characterising uncertainties in mathematical models. Major steps include
the proper description of system uncertainties, analysis and efficient quan-
tification of uncertainties in predictions and design problems, and statistical
inference on uncertain parameters starting from available measurements. Re-
search in UQ addresses fundamental mathematical and statistical challenges,
but has also wide applicability in areas such as engineering, environmental,
physical and biological applications. This workshop focussed on mathemati-
cal challenges at the interface of applied mathematics, probability and statis-
tics, numerical analysis, scientific computing and application domains such
as machine learning, modelling of energy production, and bifurcations in cli-
mate models. The workshop brought together experts from those disciplines
to enhance their interaction, to exchange ideas and to develop new, powerful
methods for UQ.
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Introduction by the Organizers

This workshop on uncertainty quantification (UQ) was the sequel to one held in
March 2019. UQ is a key area of research at the interface of applied mathemat-
ics, statistics, and computational science and engineering (CSE). It plays a central
role in predictive modelling by ensuring that uncertainty—arising from incomplete
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knowledge, variability, or measurement error—is rigorously characterised and in-
corporated into simulation, inference, and decision-making. UQ encompasses sev-
eral interconnected challenges: modelling and representing system uncertainties;
analysing sensitivities and quantifying their impact on predictions; inferring pa-
rameters from partial, noisy, and indirect data; and enabling experimental design
and optimisation under uncertainty. This workshop aimed to survey advances
across the broad front of UQ activity over the last few years.

The Bayesian approach to inverse problems is a topic of long-standing impor-
tance in UQ. Since the unknowns of interest are often functions and fields, there
is a strong case—nowadays commonly attributed to the “Finnish school” of in-
verse problems c. 2005 and seminal contributions of Andrew Stuart c. 2010—
that Bayesian inference for such objects should be analysed in the corresponding
infinite-dimensional spaces and that the finite-dimensional computations should
be formulated in a dimension-independent fashion. These aspects were discussed
by many speakers, but were particularly prominent in the joint talk of Andrea
Barth and Oliver König on Bayesian inversion with stochastic forward maps,
Hefin Lambley’s talk on autoencoders in function space, the talk of Björn Sprungk
on dimension-independent Markov chain Monte Carlo on the sphere, and Hanne
Kekkonen’s proposal of random-tree Besov priors for edge preservation. Tapio
Helin presented results on approximate optimal experimental design in Bayesian
inverse problems.

A commonly-used summary statistic for Bayesian inverse problems in the max-
imum a posteriori estimator, which may be heuristically understood as a “most
likely point” under the posterior distribution and as a minimiser of the prior-
regularised misfit functional. Ilja Klebanov gave a blackboard talk on rigorous
generalisations of these ideas to infinite-dimensional and/or metric spaces.

The approximation of Bayesian posterior distributions using variational Bayes
approaches came up in several talks, both their general ideas (H̊avard Rue) and
their use within variational autoencoders (Hefin Lambley). Other approximation
approaches discussed included low-rank structure and other factorisations, as in
the talks of Colin Fox and Han Cheng Lie.

Sampling-based approximations to target distributions are also workhorse tools
of Bayesian inference and UQ more generally. In this vein, Youssef Marzouk—who
has long worked on methods for transporting samples from a “simple” reference
distribution to a complicated target—gave a talk on the optimal scheduling of
these dynamic transport schemes. Some results on the near-optimality of quasi-
Monto Carlo schemes were presented by Yoshihito Kazashi. Björn Sprungk’s talk
on dimension-independent MCMC again deserves mention in this context. How-
ever, one connection that sprang into prominence at this workshop (compared
to 2019) was the interaction between control theory and sampling, with the con-
trol objective being to drive the sampling distribution towards the target; Raúl
Tempone, Sebastian Reich, Georg Stadler, and Philipp Guth all talked on aspects
of this promising approach. Tangentially to this area, Caroline Geiersbach talked
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about some stochastic optimisation problems in Banach spaces, in particular those
with random or almost sure state constraints.

Numerical methods for deterministic and stochastic partial differential equa-
tions remain of considerable relevance to the UQ community. In this connection,
Kristin Kirchner presented some numerical methods for space-time SPDEs. Hanno
Gottschalk addressed an extension of the familiar diffusion problem to random
fields with Lévy coefficients, where there are challenges both in formulating an
appropriate Karhunen–Loève expansion and in calculating quadrature estimates.
Mattieu Dolbeault also addressed a variation on the familiar elliptic problem, in
this case with high-contrast diffusion coefficients.

Building upon the PDE problems that are familiar to the UQ problem, Ana
Djurdevac was able to address some problems in the field of shape uncertainty.
Further broadening the kinds of uncertainties amenable to UQ analysis, Kerstin
Lux-Gottschalk addressed UQ for bifurcations, with a particular application to
tipping points in climate models.

Sven Wang and Imma Curato both addressed the problem of learning from high-
dimensional data and processes, Wang in the case of low-frequency data from an
underlying diffusion, and Curato the use of mixed moving-average fields to learn
from rasterised spatio-temporal fields.

The connections between UQ and machine learning (ML) were strongly repre-
sented in this workshop, much more so than in 2019; this reflected the explosion
in ML in recent years, and the consequent importance of UQ for ML applications.
Eyke Hüllermeier gave an excellent survey of different forms of uncertainty in ML,
along with open challenges and fundamental “no-go” theorems. In the opposite
direction, Claudia Strauch discussed some statistical guarantees for the perfor-
mance of denoising diffusion models as generative models in ML. Kernel methods
for the learning of differential equations were discussed by Houman Owhadi, with
a particular emphasis on data efficiency and quantitative error bounds. Hefin
Lambley offered a talk on the extension of autoencoders and generative modelling
to function spaces.

On Wednesday evening, after returning from the traditional hike to Sankt Roman,
four workshop participants treated the group to a special musical programme.
Alexey Chernov (guitar), Caroline Geiersbach (violin), Youssef Marzouk (piano),
and Sven Wang (piano) performed a selection of solo and duet pieces, ranging from
lively folk dances to classical works by Beethoven, Brahms, and Chopin.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Conic-constrained stochastic optimization: optimality conditions and
sample-based consistency

Caroline Geiersbach

(joint work with Johannes Milz)

This talk is concerned with a general class of risk-neutral stochastic optimisation
problems defined on a Banach space with almost sure conic-type constraints of the
form

(1) min
u∈U

E[J(u, ξ)] + ψ(u) subject to G(u, ξ) ∈ K almost surely.

Here, ξ is a vector-valued random variable defined on a complete probability space
and the set U is a Banach space. The objective is possibly non-convex and is
allowed to contain a non-smooth convex term ψ, and the parametrised constraint
function G should be contained in a convex cone K in Banach space R. This
setting is motivated by applications from optimal control under uncertainty where
the control-to-state operator is not necessarily linear and a further constraint is
applied to the state. For this class of problems, we investigate the consistency of
optimal values and solutions to the corresponding sample average approximation
(SAA) problem

min
u∈U

1

N

N∑

k=1

J(u, ξk) + ψ(u) subject to G(u, ξi) ∈ K, i = 1, . . . , N

as the sample size N is taken to infinity. An assumption of compactness with
respect to the infinite-dimensional optimisation variable u permits us to invoke
epigraphical laws of large numbers following the arguments developed in [1].

In numerical simulations, a Moreau–Yosida-type regularisation of the constraint
is often used to handle state constraints. A continuous function β : R → [0,∞)
is introduced that has the property whereby β(k) = 0 if and only if k ∈ K. We
study the example where problem (1) is replaced by

(2) min
u∈U

E[J(u, ξ)] + ψ(u) + γE[β(G(u, ξ))].

Consistency of solutions and optimal values to the corresponding SAA problems
can also be proven in this case when γN and N are taken to infinity.

In the second half of the talk, we consider optimality conditions corresponding
to (1) and (2). The classical framework in which optimality conditions for these
problems have been derived involves the assumption that the constraint function
is essentially bounded with respect to the parameter ξ. This allows for the appli-
cation of a constraint qualification, which relies on the existence of interior points.
An alternative way to ensure the existence of Lagrange multipliers is to strengthen
the assumptions to require continuity with respect to ξ as was done in [2]. This
is the setting found in robust and semi-infinite optimisation and appears to pro-
vide a theoretical advantage in the sense that, provided R is separable, one can
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work with sequential arguments for Lagrange multipliers as opposed to nets (see
[3] for the latter). Certainly, this is desirable for the SAA problem in the study
of the limiting case as N is taken to infinity. By assuming more regularity on
the objective and constraint functions, we obtain the existence of Lagrange mul-
tipliers for problems (1) and (2) under Robinson’s constraint qualification. For
(1), consistency of Lagrange multipliers from the underlying optimality conditions
can be shown; for this, the constraint qualification must be satisfied locally at an
accumulation point of the sequence (u∗N) of optimal solutions to the corresponding
SAA problem. Similar arguments can be applied in the case of problem (2).

This analysis fills a theoretical gap for infinite-dimensional conic-constrained
stochastic optimisation problems, providing the theoretical justification for the
numerical computation of solutions using SAA.

References

[1] J. Milz, T. Surowiec. Asymptotic consistency for nonconvex risk-averse stochastic optimiza-
tion with infinite dimensional decision spaces. Math. Oper. Res., 9 (2024), 933 1403–1418.

[2] C. Geiersbach, R. Henrion. Optimality conditions in control problems with random state
constraints in probabilistic or almost-sure form. Math. Oper. Res., Articles in Advance

(2024), 1–27.
[3] C. Geiersbach, M. Hintermüller. Optimality conditions and Moreau–Yosida regularization

for almost sure state constraints. ESAIM Control Optim. Calc. Var. 28 (2022), Paper No.
80, 36.

Climate Tipping Points under Uncertainty – A Bifurcation
Theoretic Perspective

Kerstin Lux-Gottschalk

(joint work with Christian Kuehn, Peter Ashwin, Richard Wood,
Jonathan Baker, Björn Sprungk, and Oliver G. Ernst)

Greenland Ice Sheet, Atlantic Meridional Overturning Circulation and Amazon
Rainforest – These are prominent examples of subsystems of the Earth that exhibit
inherently nonlinear dynamics. Instead of only promoting gradual changes, in
these systems, abrupt large and oftentimes irreversible changes can occur under
the variation of an external forcing parameter and might alter equilibria and their
stability properties significantly. This phenomenon is known as tipping. In this
talk, I will shed light on Climate Tipping Points from the perspective of bifurcation
theory by identifying tipping points as particular bifurcation points of the system.
Whereas bifurcation theory is an established and well understood discipline in
nonlinear dynamics, very interesting research questions appear at the interface
with Uncertainty Quantification (UQ). How do uncertain model parameters affect
the bifurcation behaviour of the system and which parameters contribute most to
the tipping dynamics? What is the probability of a system to tip? Which role does
time-correlation in noisy systems play? In this talk, I will focus on uncertainty in
model parameters and present a combination of sensitivity analysis and bifurcation
theory in the form of a probabilistic analysis of bifurcation points and curves. The
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methodology will be illustrated in the context of tipping points of the Atlantic
Meridional Ocean Circulation (AMOC). The latter plays an important role for
the North Atlantic heat transport.

Figure 1 provides a visualisation of our methodology.
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Figure 1. Visualization of our UQ Methodology.

Oftentimes, we do not have exact knowledge of the parameter values but rather
physically reasonable ranges. Therefore, in a first inverse UQ step, we use a
Bayesian inference technique to narrow down the uncertainty in these prior ranges
based on time series data. As a proof of concept of our methodology, we start with a
very simple two-box model of the AMOC [1] and use synthetic time series data that
we obtained by a forward simulation of the simple conceptual model for the AMOC
and including Gaussian additive noise. We calculate the posterior probability
distribution of our model parameter of interest by using a Markov Chain Monte
Carlo approach and derive a probabilistic representation of bifurcation curves [2].
We achieve a substantial narrowing of the range of tipping to occur within. This
brings prospects that we can use knowledge of past behaviour to better understand
likelihoods of future tipping events.

In our current ongoing work, as a second step, we work with a conceptual five-
box model of the AMOC [3]. This enables us to use actual time series data from
bigger General Circulation Models (GCMs) and infer corresponding parameter
values based thereon. The idea is to provide a surrogate model for the compu-
tationally expensive GCMs. Based on the obtained posterior distribution for the
model parameters, we perform a forward uncertainty propagation through the
nonlinear dynamics to obtain the distribution of our output quantity of interest.
We first focus on a particular bifurcation point. We calculate Sobol’ indices to
identify the most influential parameters regarding the location of this bifurcation
point.

As a next step, we focus on bifurcation curves that describe the overall tipping
behaviour of the system instead of just providing the location of a single tipping
point. A challenge is the non-scalar valued nature of these objects. To tackle this,
we have ongoing research starting from [4], where the authors present a sensitivity
analysis of uncertainty propagation for differential equations with random inputs
subject to perturbations of the input measures. To build upon these results, we
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choose the Fréchet distance as a metric on the space of bifurcation curves. We
transfer results from [4] to bifurcation theory. Thereby, we provide a worst case
estimate on the distance between families of bifurcation curves for different input
parameter distributions. Thereby, we contribute to a risk assessment of climate
tipping phenomena.

References

[1] P. Cessi, A simple box model of stochastically forced thermohaline flow, J. Phys. Oceanogr.
24, no. 9 (1994), 1911–1920.
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Numerical methods for the SPDE approach in space–time

Kristin Kirchner

(joint work with Joshua Willems)

Most environmental data sets contain measurements collected over space and time.
It is the purpose of spatiotemporal statistical models to adequately describe the
underlying uncertain spatially explicit phenomena evolving over time. In this
context, Gaussian processes play a central role either as prior distributions or as
components in hierarchical models to describe non-Gaussian dependencies.

Since a Gaussian process (X(j))j∈I is fully characterised by its mean and its
covariance function, second-order-based approaches focus on the construction of
appropriate covariance classes. For processes indexed by a spatial domain in the
Euclidean space I = D ⊆ Rd, the Matérn covariance class,

(1) ̺(x, y) = 21−νσ2[Γ(ν)]−1(κ‖x− y‖Rd)νKν(κ‖x− y‖Rd), x, y ∈ D,
is an important and widely used model. Here, Kν denotes the modified Bessel
function of the second kind, and the three parameters ν, κ, σ2∈ (0,∞) determine
smoothness, correlation length and variance of the process. The interpretability
of these parameters renders this covariance class particularly suitable for making
inference about spatial data.

When considering spatiotemporal phenomena, the following difficulties occur:

• It is desirable to control the properties of the stochastic process named
above (in particular, smoothness and correlation lengths) separately in
space and time. For this reason, considering (1) in d+1 dimensions is not
expedient and it is a difficult task to construct appropriate spatiotemporal
covariance function classes.
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• Second-order-based approaches require the factorisation of, in general,
dense covariance matrices, causing computational costs which are cubic
in the number of observations. The two common assumptions imposed
on spatiotemporal covariance models to reduce the computational costs,
namely separability (factorisation into merely spatial and temporal co-
variance functions) and stationarity (invariance under translations), have
proven unrealistic in many situations.

In the past decade, the idea of representing Gaussian processes as solutions to
appropriate stochastic partial differential equations (SPDEs) has gained popular-
ity. More specifically, the (spatial) SPDE approach is motivated by the observation
that a stationary process (X(x))x∈D indexed by the entire Euclidean space D = Rd

which solves the SPDE

(2)
(
κ2 −∆

)β
X(x) = W(x), x ∈ D,

has a covariance function of Matérn type (1) with ν = 2β − d
2 . Here, ∆ denotes

the Laplacian and W is Gaussian white noise. This relation gave rise to the SPDE
approach proposed by Lindgren, Rue, and Lindström [1], where the SPDE (2) is
considered on a bounded domain D ⊂ Rd and augmented with Dirichlet or Neu-
mann boundary conditions. Besides enabling the applicability of efficient numer-
ical methods available for (S)PDEs, such as finite element methods or wavelets,
this approach has the advantage of allowing for more general domains, such as
manifolds, and nonstationary or anisotropic generalizations by replacing κ2 −∆
in (2) with more general strongly elliptic second-order differential operators,

(3) (Lv)(x) = κ2(x)v(x) −∇ · (a(x)∇v(x)), x ∈ D,

where κ : D → R and a : D → Rd×dsym are functions.
In the SPDE (2) the fractional exponent β defines the (spatial) differentiability

of its solution. A realistic description of spatiotemporal phenomena necessitates
controllable differentiability in space and time. This motivates to introduce the
space–time fractional SPDE model

(4)

{(
∂t + Lβ

)γ
X(t, x) = Ẇ(t, x), t ∈ [0, T ], x ∈ D,
X(0, x) = 0, x ∈ D,

where L in (3) is augmented with boundary conditions on ∂D, Ẇ denotes space–
time Gaussian white noise, and T ∈ (0,∞) is the time horizon. Notably, it is
the interplay of the two fractional exponents β and γ that facilitates controlling
spatial and temporal smoothness of the solution process.

We use the method of semigroups to interpret (4) as a fractional parabolic
stochastic evolution equation, and correspondingly introduce solution concepts for
it. To this end, we first give a meaning to negative fractional powers of a parabolic
operator of the form B := ∂t + A, where −A : D(A) ⊆ H → H generates a C0-
semigroup (S(t))t≥0 on a separable Hilbert space H . More specifically, we exploit
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the semigroup representation of B−γ given by

[
B−γf

]
(t) =

1

Γ(γ)

∫ t

0

(t− s)γ−1S(t− s)f(s) ds, f ∈ L2(0, T ;H),

to define, for γ ∈ (12 ,∞), mild solutions to problems of the form (4) via

Zγ(t) =
1

Γ(γ)

∫ t

0

(t− s)γ−1S(t− s) dWQ(s), t ∈ [0, T ],

where ẆQ is an H-valued Q-Wiener process, for some Q ∈ L(H). We then inves-
tigate their existence, uniqueness, regularity and covariance. Our main findings [2]
show that the problem (4) is well-posed, and the properties of its solution with re-
spect to smoothness and covariance structure generalise those of the spatial SPDE
model (2) and relate to the parameters β, γ ∈ (0,∞) in the desired way.

Furthermore, we discuss the efficient approximation of covariance operators
corresponding to the so-defined spatiotemporal Gaussian processes. The numer-
ical methods are based on space-time finite element discretizations of fractional
parabolic operators, supported by a rigorous error analysis using inf-sup theory.

References

[1] F. Lindgren, H. Rue, and J. Lindström, An explicit link between Gaussian fields and Gauss-
ian Markov random fields: the stochastic partial differential equation approach, Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 73 (2011), 423–498.
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Data-Efficient Kernel Methods for Learning Differential Equations
and Their Solution Operators: Algorithms and Error Analysis

Houman Owhadi

(joint work with Yasamin Jalalian, Juan Felipe Osorio Ramirez, Alexander Hsu,
and Bamdad Hosseini)

We introduce a novel kernel-based framework for learning differential equations
and their solution maps that is efficient in data requirements, in terms of so-
lution examples and amount of measurements from each example, and compu-
tational cost, in terms of training procedures. Our approach is mathematically
interpretable and backed by rigorous theoretical guarantees in the form of quan-
titative worst-case error bounds for the learned equation. Numerical benchmarks
demonstrate significant improvements in computational complexity and robust-
ness while achieving one to two orders of magnitude improvements in terms of
accuracy compared to state-of-the-art algorithms. In comparison to equivalent
neural net methods, our approach is significantly more robust to the choice of
hyperparameters and does not require close human supervision during training.
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Why we should care about Variational Bayes

Håvard Rue

(joint work with M. E. Khan, J. van Niekerk, and S. Dutta)

In this talk I discussed Variational Bayes (VB), what it is, why we should care, and
why it should be an integral part of any (modern) statistician’s toolbox. I discussed
our use of it in the R-INLA project, but also its role in the ‘Bayesian Learning
Rule’ from which a wide range of algorithms can be derived from: ridge regres-
sion, Newton’s method, Kalman filter, stochastic-gradient descent, RMSprop, and
Dropout, Laplace’s method, EM and so on.

The use of VB within the R-INLA project is discussed in [1] for the mean
correction, while [2] discusses variance and skewness correction. The Bayesian
Learning Rule is presented in [3].

References

[1] J. van Niekerk and H. Rue, Low-rank variational Bayes correction to the
Laplace method, Journal of Machine Learning Research 25(62) (2024), 1–25. URL
https://jmlr.org/papers/v25/21-1405.html.

[2] S. Dutta, J. van Niekerk, and H. Rue, Scalable skewed Bayesian inference for latent Gauss-
ian model, Submitted (2025). URL https://arxiv.org/abs/2502.19083.

[3] M. E. Khan and H. Rue, The Bayesian learning rule, Journal of Machine Learning Research
24 (2023), 1–46. URL https://jmlr.org/papers/volume24/22-0291/22-0291.pdf.

An approach to infinite-dimensional Bayesian inversion for
stochastic problems

Andrea Barth, Oliver König

In numerous applications necessitating the estimation of a quantity of interest, di-
rect observation is not a viable method. Consequently, an alternative quantity is
observed that is associated with the quantity of interest. The problem of inferring
the quantity of interest from this observation gives rise to the field of inverse prob-
lems. In a more general sense, inverse problems can be understood as data-driven
model fitting problems, thus arising in numerous applications in the sciences, en-
gineering, and finance. Inverse problems are formally defined as the inversion of
well-posed problems, which are often referred to as forward problems. However, it
has been observed that the process of inversion of a well-posed problem frequently
results in an ill-posed problem. Given the ill-posedness of inverse problems, it is
not possible to expect an exact reconstruction of the quantity of interest. There-
fore, methods for quantifying the uncertainty associated with the reconstruction
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are required. To address this issue, Bayesian methods construct a probability
distribution that allows for the reconstruction of the quantity of interest and the
quantification of the associated uncertainties. Here, we consider a generalisation
of a Bayesian inverse problem to allow for infinite-dimensional input and output
spaces that are necessary to consider inherently stochastic forward maps, lifting the
standard assumption of additive, independent noise, allowing for a broader class
of stochastic models of the forward problem capturing both aleatoric and epis-
temic uncertainties. This formulation allows the consideration of inverse problems
based on stochastic processes and random fields as well as stochastic and random
(partial) differential equations. The definition of a consistent finite-dimensional
approximation is then the essential tool. This is achieved by the definition of a
family of finite-dimensional projections of the forward model, that is associated
to a filtration which may be interpreted as the information gain, leading to an
approximate sequence of posterior measures.

Let the input space X and the output space Y be both (infinite dimensional)
separable Banach spaces equipped with their Borel σ-algebras and letX resp. Y be
random variables (defined on a complete probability space (Ω,A,P)) modelling the
uncertain input resp. output taking values in X resp. Y. In the absence of densities
the posterior may still be defined using regular conditional probabilities although
the posterior density can, in general, not be accessed by Bayes’ theorem even if
the posterior density exists. The goal is therefore to construct an approximation
of the stochastic forward map to obtain an approximation of the posterior. To
this end, we define for each n ∈ N by π(n) : Y → Y a measurable mapping such
that the sequence (π(n), n ∈ N) converges pointwise to the identity mapping on
Y. This directly translates to the sequence (Y (n) := π(n)(Y ), n ∈ N) converging
pointwise to Y . The family of projections π := (π(n), n ∈ N) has to be chosen
such that the family of generated σ-algebras (σ(Y (n)), n ∈ N) defines a filtration
on (Ω,A,P). Denote by (Fn, n ∈ N) the augmentation of that filtration, we then
can show convergence of the corresponding posterior distributions. We deduct this
from the fact that for every Borel set A ∈ B(X ) it holds that for the conditional
expectations

E(1A(X)|Fn) → E(1A(X)|F∞)

P-almost surely as n → ∞. This is the foundation of the convergence of the
approximated posterior distribution: Let (P(·|y), y ∈ Y) denote the regular condi-
tional probability of (Y,X) and for n ∈ N, let (P(n)(·|π(n)(y)), y ∈ Y) denote the
regular conditional probability of (Y (n), X). Then, for every Borel set A ∈ B(X ),
it holds

P(n)(A|π(n)(y)) → P(A|y) for n→ ∞.

This proves convergence of the approximation in the number of observation
points and, furthermore, the existence of moments can be guaranteed as well as
stability in the most common distances. Numerous examples encompassing the
reconstruction of coefficient functions of a stochastic (partial) differential equation
from path observations and finding the parameters of a covariance kernel of a
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Gaussian random field from a realization with a varying number of observations
are presented.

PDEs on Gevrey regular random domain deformations: forward and
inverse problems

Ana Djurdjevac

(joint work with V. Kaarnioja, M. Orteu, C. Schillings, and A. Zepernick)

We study uncertainty quantification for partial differential equations (PDEs) sub-
ject to domain uncertainty. Random domains naturally appear in various appli-
cations such as biology and imaging. The numerical consideration of these type of
problems has been very popular [6, 9, 1, 7].

The starting point of the problem is to specify how is the random domain
defined. In this work we consider the so-called domain mapping method, where
it is assumed that the random domain is given via a random flow that connect
the fixed domain and its realization. Next the problem on the random domain
is pulled-back to the fixed deterministic domain, resulting in a PDE on a fixed
domain with random coefficients.

The first question that appears is what type of random deformations do we
consider, in particular with respect to the random parameter y ∈ U . Motivated by
the recent work [2, 3], we consider the Gevrey class of deformations that contains
smooth, but not necessarily holomorphic, functions with a growth condition on
the higher-order partial derivatives. More precisely, the Gevrey regularity of the
perturbation field V (·, y) assumes that it is infinitely many times continuously
differentiable with respect to parameter y ∈ U and there exists a constant C ≥ 1,
an exponent β ≥ 1, and a sequence b = (bj)j≥1 of non-negative numbers such that

‖∂νyV (·, y)‖W 1,∞(Dref ) ≤ C(|ν|!)βbν for all ν ∈ F , y ∈ U,

where F is the set of finitely-supported multi-indices. Harbrecht et al. [8] showed
that such Gevrey regularity is preserved for a broad class of operator equations.
While some of their analysis applies to the stationary PDE problem we consider,
their focus is not on numerical methods, and certain constants in their estimates
are not explicitly tracked. This approach has the advantage of being substantially
more general than models which assume a particular parametric representation of
the input random field such as a Karhunen–Loève series expansion.

We consider both the Poisson equation as well as the heat equation for which
we consider the space–time weak formulation. Next we design randomly shifted
lattice quasi-Monte Carlo (QMC) cubature rules for the computation of the ex-
pected solution under domain uncertainty and consider approximation errors. We
develop a novel parametric regularity analysis for these problems, which is used
to design tailored QMC cubature rules with essentially linear convergence rates
independently of the truncation dimension. In particular, for the Poisson equation
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we obtain the regularity of the type

‖∂νy û(·, y)‖H1
0 (Dref) ≤ Cû,1C

|ν|
û,2(|ν|!)βbν ,

where Cû,1 and Cû,2 are constants that we explicitly compute. The analogue
result holds for the parabolic case. Based on this regularity results, we prove the
main result that gives a choice of product and order dependent weights as well
as a QMC error bound in the sense of the root-mean square error independent
of the dimension of parameter truncation. These results are joint work with V.
Kaarnioja, C. Schillings and A. Zepernick, presented in [4].

Based on these results we also consider Bayesian shape inversion subject to the
Poisson equation under Gevrey regular parameterisations of domain uncertainty.
More precisely, we consider the measurement model that is described by the so-
lution u of the Poisson problem on the random domain and we consider Bayesian
inverse problem of inferring the domain shape based on measurements of certain
observable quantity of interest of u. We study the parametric regularity of the as-
sociated posterior distribution and construct randomly shifted rank-1 lattice rules
that yield dimension-independent convergence rates faster than standard Monte
Carlo for high-dimensional integrals over the posterior. Additionally, we examine
the impact of dimension truncation and finite element discretisation errors within
this model. This is a joint work with V. Kaarnioja, M. Orteu and C. Schillings
[5].
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Uncertainty quantification in machine learning: from aleatoric
to epistemic

Eyke Hüllermeier

(joint work with Viktor Bengs and Willem Waegeman)

Questions regarding the representation and adequate handling of (predictive) un-
certainty have recently received increasing attention in machine learning research.
In this regard, a particular focus is put on the distinction between two important
types of uncertainty, often referred to as aleatoric and epistemic, and the question
of how to quantify these uncertainties in terms of appropriate numerical measures.
Roughly speaking, while aleatoric uncertainty is due to the randomness inherent
in the data-generating process, epistemic uncertainty is caused by the learner’s
ignorance of the true underlying model [4].

Consider a basic task of learning a classifier in a supervised manner: Given
training data

D =
{
(xi, yi)

}N
i=1

⊂ X × Y ,
typically assumed to be i.i.d. according to some (unknown) measure P on X ×Y,
a hypothesis space H of predictors X −→ P(Y) to choose from, and a loss function
L : Y × P(Y) −→ R, the learner seeks to find

h∗ ∈ argmin
h∈H

R(h) ,

i.e., a predictor h : X −→ P(Y) with minimal risk (expected loss)

R(h)
·
= E(x,y)∼PL(y, h(x)) =

∫

X×Y

L(y, h(x)) dP (x, y) .

Here, X is the so-called instance space, Y a finite class of categories, and P(Y)
denotes the set of probability distributions on Y.

Probabilistic predictors h : X −→ P(Y) are able to capture aleatoric but no
epistemic uncertainty. Therefore, the learning of second-order predictors H :
X −→ P(P(Y)) has recently been considered. By predicting a probability dis-
tribution over probability distributions (on the outcome space Y), a second-order
predictor H can express uncertainty about the “right” (ground-truth) first-order
distribution, and thereby represent epistemic uncertainty.

In principle, second-order predictors could be learned in a Bayesian way, which,
however, requires the specification of a prior (over extremely complex hypothesis
spaces) and is often computationally intractable. As an alternative, the idea of
learning a second-order predictor in a more “direct” way has recently been advo-
cated, namely by following the standard principle of empirical risk minimisation

[6]: Given training data D =
{
(xi, yi)

}N
i=1

⊂ X ×Y, the idea is to train a second-

order predictor by minimising the empirical risk (loss on the training data)

Remp(H) =

N∑

i=1

LE
(
H(xi), yi

)
,
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with a suitable second-order (epistemic) loss function

LE : P(P(Y))× Y −→ R .

This approach can be motivated by its first-order counterpart: Training a (first-
order) probabilistic predictor h via empirical risk minimisation, i.e.,

h ∈ argmin
g∈H

N∑

i=1

LA (g(xi), yi) ,

yields (theoretically) unbiased predictors if LA is a (strictly) proper scoring rule
[3]. A loss LA is a proper scoring rule if the following holds for Y ∼ p:

EY∼p[LA(p, Y ) ] ≤ EY∼p[LA(p̂, Y ) ]

for all distributions p̂ ∈ P(Y) (and a strictly proper scoring rule if the inequality
is strict for p̂ 6= p). This can be interpreted as follows: If the learner knows
(or believes) that the outcome Y is sampled according to a distribution p, and
furthermore that predictions are penalised according to the loss LA, then it must
predict p in order to minimise loss in expectation. In other words, a proper
scoring rule LA incentivises the learner to predict the ground-truth (conditional)
probabilities.

Despite this motivation, we recently obtained a series of negative results, show-
ing that second-order loss minimisation is theoretically flawed [1, 2, 5]. Somewhat
simplified, a loss LE incentivising the learner to make meaningful second-order
predictions Q cannot exist. To make this more rigorous, we generalised the notion
of proper scoring rule to proper second-order scoring rule: A second-order loss LE
(such that LE(Q, ·) is P(P(Y))-quasi-integrable for all Q ∈ P(P(Y))) is a proper

second-order scoring rule if, for all Q̂,Q ∈ P(P(Y)),

Ep∼Q

[
EY∼p[LE(Q, Y ) ]

]
≤ Ep∼Q

[
EY∼p[LE(Q̂, Y ) ]

]
.

This can be interpreted as follows: If the learner holds “second-order belief” Q and
is penalised according to LE , then it should report Q̂ = Q as the (double-)expected
loss-minimising prediction. We could show, however, that a second-order scoring
rule LE that is proper in this sense (i.e., guaranteed to satisfy the above inequality)
cannot exist [2].

An alternative second-order representation is in terms of a set (instead of dis-
tribution) of probability distributions (on Y), a so-called credal set [7]. It is an
interesting question to what extent our results for second-order distributions carry
over to credal sets, and this is something that we will explore in future work.
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[4] E. Hüllermeier and W. Waegeman. Aleatoric and epistemic uncertainty in machine learning:
An introduction to concepts and methods, Machine Learning, 110(3):457–506, 2021.
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Statistical Algorithms for Low-Frequency Diffusion Data:
A PDE Approach

Sven Wang

(joint work with Matteo Giordano)

This extended abstract summarises the main contributions of our work [1], which
develops new computational techniques for statistical inference from low-frequency
diffusion data. We consider the problem of statistical inference for multi-dimen-
sional diffusion processes from low-frequency observations. In this setting, tradi-
tional likelihood-based methods are notoriously difficult to implement due to the
intractability of the transition densities and their gradients. Motivated by these
challenges, we develop a novel computational approach that builds on the theory of
partial differential equations (PDEs) and leverages spectral techniques for elliptic
operators.

Our approach is based on the characterisation of the transition densities of
the underlying reflected diffusion process as solutions of the associated Fokker–
Planck equation with Neumann boundary conditions. Using regularity results from
parabolic PDE theory [5], we derive a new representation for the gradient of the
likelihood with respect to the unknown diffusivity function. This representation
expresses the derivative through a variation-of-constants formula, see also [3], and
allows us to avoid the need for costly data augmentation schemes often employed
in the analysis of low-frequency diffusion data.

Crucially, both the transition densities and their gradients can be approximated
via the spectral decomposition of the elliptic generator of the diffusion, a self-
adjoint operator in divergence form. This reduces the problem to the numerical
solution of standard elliptic eigenvalue problems, for which efficient finite element
solvers are available. Our approach thus enables the use of a wide range of sta-
tistical algorithms, including gradient-based optimisation methods and gradient-
informed Markov chain Monte Carlo (MCMC) samplers.

We demonstrate these developments in a nonparametric Bayesian framework
using Gaussian process priors [4]. The resulting algorithms allow for the com-
putation of maximum likelihood and maximum a posteriori estimates, posterior
means, and quantiles, all without resorting to trajectory simulation or latent vari-
able augmentation. In extensive simulation studies on a two-dimensional domain,
our methods show excellent empirical performance, providing accurate reconstruc-
tion of the diffusivity function and competitive runtimes even at high sample sizes.
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Our work opens up several avenues for future research. These include exten-
sions to diffusions with non-divergence form structure, models with noisy observa-
tions, and sampling on unbounded domains. Moreover, the PDE-based gradient
characterisation may pave the way for a theoretical analysis of the computational
complexity of the employed statistical algorithms, such as proving stability bounds
and polynomial-time computability [2].
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Defining Modes and MAP Estimators: A Systematic Approach

Ilja Klebanov

(joint work with Hefin Lambley and T. J. Sullivan)

What does it mean to be the “most likely” outcome of a probability measure
µ ∈ P(X) on a metric space (X, d)? Such “modes” naturally arise as MAP
estimators in Bayesian inverse problems, yet multiple competing definitions exist.
These definitions reflect different ways of characterising the asymptotic behaviour
of probability mass in vanishingly small neighborhoods. Instead of examining
specific mode definitions, we introduce a systematic framework based on mode
maps M : MetProb → Set, which map metric probability spaces to sets of modes:
M(µ) = M(X, d, µ) = {modes of µ} ⊆ X. Guided by intuitive axioms that ensure
consistency across discrete and continuous settings, we identify exactly ten well-
justified definitions and explore their interactions, coincidences, and simplifications
in well-behaved cases. The details of this work can be found in [4].

Definition 1 (Axioms for mode maps). A mode map M : MetProb → Set satisfies

(LP) the Lebesgue property if, whenever X = Rm and µ ∈ P(Rm) has
continuous Lebesgue density ρ, M(µ) = argmaxx∈X ρ(x);

(AP) the atomic property if, for any metric space X , K ∈ N, non-atomic
measure µ0 ∈ P(X), pairwise distinct x1, . . . , xK ∈ X , α0, . . . , αK ∈ [0, 1]

with
∑K

k=0 αk = 1 and α0 6= 1,

M

(
α0µ0 +

K∑

k=1

αkδxk

)
=

{
xk

∣∣∣∣ k = 1, . . . ,K with αk = max
j=1,...,K

αj

}
;
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(CP) the cloning property if, for any normed space X , µ ∈ P(X), α ∈ [0, 1]
and b ∈ X such that dist(supp(µ), b+ supp(µ)) > 0,

M
(
αµ+ (1− α)µ( · − b)

)
=





M(µ), if α > 1
2 ,

M(µ) ∪ (M(µ) + b), if α = 1
2 ,

M(µ) + b, if α < 1
2 .

If a measure lacks atoms or a Lebesgue density (in particular, in infinite-
dimensional spaces X), defining a mode becomes difficult and ambiguous. Instead
of using densities, a common approach is to compare the mass of balls Br(x) as
the radius r > 0 shrinks to zero. The ratio of such ball masses,

R
µ
r (u, v)

·
=
µ(Br(u))

µ(Br(v))
, R

µ
r (u, sup)

·
=

µ(Br(u))

supx∈X µ(Br(x))
, u, v ∈ X,

is then a crucial concept. Modes can be defined as points with the “heaviest small
balls”, leading to the following well-established definitions:

Definition 2. For µ ∈ P(X), a point u ∈ X is called a

(a) strong mode (Ŋ-mode, [2]) if lim infr→0 R
µ
r (u, sup) ≥ 1;

(b) weak mode (w-mode, [3]) if, for every comparison point (cp) v 6= u,
lim infr→0 R

µ
r (u, v) ≥ 1;

(c) generalized strong mode (gŊ-mode, [1]) if, for every null sequence
(ns) rn → 0, there exists an approximating sequence (as) un → u such
that lim infn→∞ R

µ
r (un, sup) ≥ 1.

For strong modes, the µ-probability of the ball Br(u) asymptotically dominates
the supremal ball mass supx∈X µ(Br(x)). In contrast, weak modes dominate Br(v)
for every comparison point (cp) v 6= u separately. Generalised strong modes allow
the ball mass to dominate along some approximating sequence (as) un → u.

Similarly, one can define generalised weak modes (gw-modes). However, since
the adjectives weak and generalised correspond to quantifiers ∀cp and ∃as, their
order becomes an issue. We therefore distinguish between generalised weak (gw)
and weak generalised (wg) modes, leaving the precise definitions to the reader.
Given our definitions so far, several natural questions arise:

• Should the comparison point v have its own comparison sequence (cs)
vn → v, introducing the quantifier “approximating” = a = ∀cs?

• Should u be required to be dominant only along some ns rn, rather than
every ns, leading to the quantifier “partial” = p = ∃ns?

While these new quantifiers lead to seemingly meaningful definitions, they in-
troduce a whole zoo of notions due to possible permutations of quantifier order,
making the relationships between them complex. Moreover, this “letter notation”
[4, Definition 4.1], based on the alphabet {Ŋ,w, g, a, p}, still lacks some potentially
meaningful definitions:

• What about the quantifiers ∀as and ∃cs?
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• While the quantifier p = ∃ns can appear at different positions (e.g., wpag
or wgap), ∀ns (implicitly representing the absence of p) is fixed as the first
quantifier, limiting flexibility.

To address these issues, we propose replacing the cumbersome “letter notation”
with a more structured system that directly incorporates quantifiers into the mode
(map) name:

Definition 3. For µ ∈ P(X), u ∈ X is called a [Q1 . . .QK ]-mode for a sequence
Q = [Q1 . . .QK ] of quantifiers Qk ∈ {∀ns, ∃ns, ∀cp, ∃cp, ∀as, ∃as, ∀cs, ∃cs}, if

Q1 . . .QK : lim inf
n→∞

R
µ
rn(⋆1, ⋆2) ≥ 1,

where, recalling that the quantifiersQ1 . . . QK may define (un)n∈N, v, and (vn)n∈N,
⋆1 ∈ {u, un} and ⋆2 ∈ {v, vn, sup} depend on whether as , cs and cp appeared in Q.
The sequence Q of quantifiers obeys certain rather obvious rules [4, Definition 4.9],
and the corresponding mode map is denoted by M[Q1 . . . QK ].

We reduce the large number of resulting definitions to a manageable set as
follows [4, Propositions 4.13, 4.14, 4.15, 4.16; and Section 6], and illustrate the
resulting Hasse diagram in Figure 1.

• Of the 282 definitions from Definition 3, many are trivially equivalent, as
subsequent ∀-quantifiers (or ∃-quantifiers) commute (e.g., [∀ns∀cp]-modes
and [∀cp∀ns]-modes coincide).

• Of the remaining 144 definitions, many violate at least one of the axioms
(LP), (AP), (CP).

• Among the remaining 21 definitions, some are (non-trivially) equivalent.
• The final 10 definitions satisfy our axioms (LP), (AP), (CP) and are prov-
ably distinct (cf. Figure 1).

• All but one of these 10 definitions fit the letter notation above. The
exception is the [∀cp∀cs∃as∀ns]-mode, termed the exotic mode (e-mode).

Ŋ

(e)

w

gŊ

pŊ

pwpgŊ

wp

gwap

wgap

Ex. 6.2

Ex. 6.3

Ex. 6.4

Ex. 6.7

Ex. 6.8

Ex. 6.9

Figure 1. The remaining ten mean-
ingful small-ball mode maps, where
descending black lines indicate the
implication structure. Each coun-
terexample from [4, Section 6] sepa-
rates the lattice into two subsets: the
indicated example is a mode for all
types below the red line but not for
those above, ruling out further impli-
cations among the ten types.

In [4, Section 5], we study conditions under which certain mode maps coincide.
As an example, we state the following result:
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Theorem 1 (MAP estimators for Gaussian prior and continuous potential). Let
X be a separable Banach space and µ ∈ P(X) have a continuous potential with
respect to a non-degenerate Gaussian prior µ0. Then the ten meaningful small-ball
modes of µ fall into three equivalence classes, namely

{Ŋ, gŊ}, {pŊ, pgŊ}, and {e,w, pw,wp, gwap,wgap}.
These three classes are generally distinct, but coincide if the potential is either
uniformly continuous or quadratically lower bounded.

Future work may include exploring additional axioms, order-theoretic properties
of modes, and alternative mode definitions not covered by Definition 3.
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Bayesian Inference (for Inverse Problems) by Factorisation and
Function Approximation, without Sampling

Colin Fox

(joint work with Lennart Golks)

We present our ongoing work on evaluating posterior expectations, in Bayesian
hierarchical formulations of inverse problems, using deterministic algorithms. In
particular, we avoid sample-based Monte Carlo estimates of posterior expectations,
commonly used in the fields of UQ (Uncertainty Quantification) and Statistics.

In doing so we are heeding the advice of the giants of the subject who preceded
us; John von Neumann said that anyone implementing Monte Carlo is “living in
a state of sin”, while Hammersley & Handscomb advised that “it will usually pay
to scrutinize each part of a Monte Carlo experiment to see whether that part
cannot be replaced by exact theoretical analysis contributing no uncertainty”.
More recently, Alan Sokal emphasised that “Monte Carlo is an extremely bad
method; it should be used only when all alternative methods are worse.” We
have taken these wise words to heart, and for some time we, with colleagues, have
been building the tools required to allow posterior expectations to be evaluated in
realistic, high-dimensional inverse problems, using only deterministic calculations.
We report those methods and an example here.

Our experience in solving inverse problems, particularly in industrial settings
where quantitative performance is paramount, and checked (!), has lead us to a
view of what constitutes an ‘inverse problem’. In common with all formulations,
the observation process involves a complex physical mapping for which analytic



1034 Oberwolfach Report 21/2025

inversion presents difficulties, and the ‘primary unknowns’ are the unobserved
physical properties of the system under study. When a stochastic model is used
to represent the allowable physical properties, the unknowns are a ‘latent field’.
But then, in most current UQ analyses the latent field is modelled as a Gaussian
random field, noise is additive Gaussian, forming the complete Bayesian model that
is analysed. We have found that quantitative accuracy also requires Physics-based
hierarchical modelling of hyperparameters appearing in the stochastic model for
the latent field, to ensure consistency with a plausible physical process, and have
also found that directly modelling objects or boundaries using mid- and high-level
spatial models [6], such as as developed in the field of stochastic geometry [10], can
dramatically improve quantitative performance and interpretability of recovered
fields, as well reducing ill-posedness. Unfortunately, high-level representations
are beyond our current ability to compute deterministically, but comprehensive
hierarchical modelling is readily included, as we will see.

A simplified, though ubiquitous, DAG (directed acyclic graph) showing condi-
tional dependencies in the Bayesian formulation is

where θ are hyper-parameters with hyperprior distribution [θ]1, x is the latent field
with prior distribution [x|θ], and y is observed data with likelihood function [y|x].
Such a DAG is sufficient to explain our methods, while accommodating a physically
realistic prior representation, a physical hierarchical model for hyperparameters,
and validated/noninformative prior and hyperprior distributions.

The focus of inference is the posterior distribution

[x, θ|y] = [y|x] [x|θ] [θ]
[y]

and we will assume throughout that the normalizing constant [y] is finite. Our
goal is often to compute posterior expectations

Ex,θ|y[f(x)] =

∫
f(x)[x, θ|y] dxdθ

for suitable functions f . The obvious difficulty is performing integration over
high-dimensional latent field x and also hyperparameters θ.

As mentioned above, the most common current route is to approximate the
integral, that defines the expectation, by the Monte Carlo estimate

∫
f(x)[x, θ|y) dxdθ ≈ 1

N

N∑

i=1

f(xi)

where (xi, θi) ∼ [x, θ|y] are samples drawn from the posterior distribution, or,
more generally {(xi, θi)} is a sequence that is ergodic for [x, θ|y].

1We learned this notation from Alan Gelfand: read [a] as “the distribution over a”, and [a|b]
as “the distribution over a given b”. We will shortly abuse this notation to also denote the
density function.
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There are many choices of algorithms to generate ergodic sequences, under
the moniker of MCMC (Markov chain Monte Carlo) algorithms. Most common2

are the random-walk Metropolis algorithms, including off-the-shelf Adaptive Me-
tropolis (AM) and Hamiltonian Monte Carlo (HMC), that can be very slow for
large-scale inverse problems, because of the ill-posedness that causes high posterior
correlations, or weird geometry of state space.

A representative MCMC scheme is the block, or partially-collapsed, Gibbs sam-
pler that updates (x, θ) to (x′, θ′) by alternating drawing from full conditionals

• Draw θ′ ∼ [θ|x]
• Draw x′ ∼ [x|θ′, y]

producing a transition kernel that targets the posterior [x, θ|y]. By treating the
latent field as a single block, block Gibbs is immune to the high correlations within
the latent field, but remains very slow due to high correlation between the latent
field x and hyperparameters θ that leads to slow mixing, because full conditionals
are narrow, as indicated by the following stylised scatter plot of [x, θ|y].

θ

x

As noted in [8, 4], better mixing is achieved by moving θ according to the marginal
posterior distribution over hyperparameters, [θ|y] =

∫
X
[x, θ|y] dx, also shown in

the figure. Then one utilises the factorisation of the posterior density

[x, θ|y] = [x|θ, y] [θ|y]
i.e. into the full conditional for x and the marginal posterior over θ.

The following Lemma shows how to sample from the posterior distribution.

Lemma 1. Sampling θ′ ∼ [θ|y] then x′ ∼ [x|θ′, y] generates a sample from the
posterior distribution, i.e.,

(x′, θ′) ∼ [x, θ|y].
As can be seen, one samples first from the marginal posterior over hyperparame-
ters, then the full conditional over the latent field, a scheme that we call marginal
then conditional (MTC) sampling when the first step draws independent θ′.

2as measured by papers I review
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Various schemes may be used to sample θ ∼ [θ|y] (see [4]):

• Linchpin [1] updates θ using one step of a geometrically ergodic MCMC;
convergence rate of the chain in (x, θ) is the same as the chain in θ.

• One-block [8] is a linchpin algorithm though requires x in the marginal
posterior calculation, so has expensive cost per step.

• MTC [4] is a linchpin with independent θ drawn by many steps of a cheap
MCMC, hence draws independent posterior samples.

More efficient again is using the function approximation methods developed in [9]
to draw independent samples from [θ|y]. Later we will use these same function rep-
resentations to perform efficient quadrature over hyperparameters, thereby avoid-
ing sampling completely.

The marginal posterior distribution over hyperparameters is defined by the
integral [θ|y] =

∫
X
[x, θ|y] dx, as mentioned above, but this calculation is to be

avoided because the integral is over the high-dimensional latent field x. A cheap
algebraic calculation is available when the full conditional for x

[x|θ, y] = [y|x)[x|θ]
[y|θ)]

has known form, implying that the normalising constant [y|θ] has known θ depen-
dence, and hence one can evaluate the marginal posterior over θ

[θ|y] ∝ [y|θ][θ].

See [7] for details, and applications in several (nonlinear) models from Statistics.
The typically moderate dimension of hyperparameters θ makes it feasible to

represent the full marginal posterior distribution [θ|y] in the tensor-train (TT)
representation [9], while the algebraic calculation, above, makes this step com-
putationally cheap. Cui and Dolgov [2] recently developed the ‘SIRT’ TT rep-
resentation that has improved regularity. These TT representations have many
similarities to the transport map methods [3], though the TT representations also
allow efficient quadrature against the reference measure, as noted in [9].

The final piece required for deterministic calculation is the expansion of the
posterior expectation of any function h(x) using the ‘law of iterated expectation’

Ex,θ|y [h (x)] = Eθ|y
[
Ex|θ,y [h (x)]

]
.

Using TT representation, the outer expectation on the RHS may be computed
by quadrature, in those cases where the inner expectation is sufficiently regular.
A common case where the inner expectation may be computed directly, that is
without sampling, is where the full conditional [x|θ, y] is Gaussian, as occurs in the
linear-Gaussian inverse problem, or in the weakly non-linear example that we con-
sider later. Then, the inner expectation is a task in numerical linear algebra [4, 5],
and with the outer expectation evaluated by quadrature, we may evaluate the
posterior mean using only deterministic calculations. When the inner expectation
evaluates variances, it is inconvenient, and somewhat pointless, to evaluate the full
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conditional covariance matrices by deterministic methods, and instead we evalu-
ate estimates of the posterior variance from a handful of independent posterior
samples, drawn using the MTC method, also avoiding MCMC.

Our first application of this deterministic calculation of posterior expectations,
used for ironing out computational issues and bugs, has been to the recovery of the
stratospheric ozone profile from limb data. In this application, passive radiation
from stratospheric ozone is measured by a radiometer mounted on a satellite at a
height of 500km to 800km, as depicted in the following figure.

Measurements are made in multiple pointing directions of the radiometer, defining
multiple lines of sight from the radiometer. This measurement geometry is called
‘limb sounding’, with the ‘limb’ being the shell of the atmosphere tangent to
the line of sight. Each measurement corresponds to a path integral of thermal
radiation in the stratosphere, reduced by re-absorption, along the line of sight of
the radiometer, leading to the weakly nonlinear radiative transfer equation

yj =

∫

Γj

k(ν, T )
p(T )

kBT (r)
B(ν, T )

︸ ︷︷ ︸
Aj

x(r)τ(r)dr

τ(r) = exp

{
−
∫ 0

robs

k(ν, T )
p(T )

kbT (r′)
x(r′)dr′

}

where x is ozone profile (radiance), p is pressure, T is temperature, and kB is
Boltzmann’s constant. The nonlinearity occurs because the absorption term τ
depends on unknown x, though this typically only reduces measurements by a few
percent.

The following DAG shows the dependence of 16 hyperparameters introduced
to model physically-realistic unknown pressure and temperature profiles, and also
a non-stationary precision matrix Q defining the GMRF (Gauss–Markov random
field) over latent profile x.



1038 Oberwolfach Report 21/2025

We do not present details of those models here, but suffice it to say that a compre-
hensive hierarchical model may be accommodated in the deterministic calculation
of posterior expectations. We simulated noisy data for a typical ozone profile. The
right subfigure shows the true (nonlinear) data, data simulated using the approxi-
mate linear map that ignores absorption, and the result of an affine approximation
to the forward map showing that the approximation allows data simulation to well
within observation errors.

Since an affine map preserves Gaussian fields, the full conditional over the latent
field is Gaussian, hence has known form, allowing the efficient representation of
the marginal posterior distribution over all 16 hyperparameters as outlined above.
Further, the mean of the full conditional distribution over the latent field may be
evaluated by numerical linear algebra, for each value of hyperparameters. These
are the components needed to evaluate the posterior mean via the law of iterated
expectation, using only deterministic calculation.

We also evaluated posterior variances by drawing a few dozen independent pos-
terior samples, requiring just a few dozen linear solves. Some diagnostics for those
models and calculations are presented in the following figure.

The left two subfigures show prior samples over pressure and temperature, indi-
cating the range of physically-plausible profiles allowed. The right-most subfigure
show posterior samples and the ‘true’ unknown ozone profile x showing that the
posterior mean recovers the unknown ozone profile, while the cloud of sampled
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profiles indicates posterior variances and covariances. This whole calculation took
a few minutes on a standard laptop computer, though we have to admit that
adjusting code took a lot longer, particularly for the TT representation of [θ|y].

Development of robust code for that TT representation step is currently under-
way. We are optimistic that the majority of inverse problems currently treated by
MCMC methods will soon be amenable to completely deterministic evaluation of
posterior expectations, as we have described here.
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Approximative Bayesian optimal design in inverse problems

Tapio Helin

(joint work with Youssef Marzouk and Rodrigo Rojo-Garcia)

Bayesian optimal experimental design provides a principled methodology for choos-
ing experimental configurations that maximise the information gained about an
unknown parameter of interest. More precisely, suppose X denotes our unknown
parameter, Y stands for the observation and θ is the design parameter. The ex-
pected utility U is given by

U(θ) = Eνu(X,Y ; θ),

where u(X,Y ; θ) denotes the utility of an estimate X given observation Y with
design θ, and the expectation is taken w.r.t. the joint distribution ν of X and Y .
Notice carefully that ν depends on θ.
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In the inverse problem context, the utility u is traditionally chosen as the ex-
pected information gain (EIG), based on the Kullback–Leibler divergence between
prior and posterior distributions, or the negative squared distance between X and
the posterior mean, which leads to a utility proportional to the trace of the pos-
terior covariance. While EIG is grounded in information theory and satisfies key
theoretical criteria such as sufficiency ordering and full posterior dependence, the
latter is tempting in practise as it reflects expected improvement in estimation
through a more cumulative and averaged lens.

Inspired by this tradeoff, we propose a new class of utility functions based on
the Wasserstein distance between the posterior and prior measures in [1]. The
Wasserstein distance provides a geometric measure of discrepancy between proba-
bility distributions by quantifying the optimal transport cost required to transform
one distribution into another. Moreover, it remains well-defined even when the
two measures are mutually singular, making it particularly suitable for the high-
dimensional and computationally intensive setting of Bayesian inverse problems.
We define the expected Wasserstein utility by setting

Up(θ) = EYW p
p (µ, µ

Y ),

where Wp is the p-Wasserstein distance between the prior µ and the posterior µY .
In the case of Gaussian priors and linear observation operators, the Wasserstein-
2 utility admits a closed-form expression involving only the mean and covariance
operators and leads to efficient computation and a transparent interpretation anal-
ogous to A-optimality criteria.

We show that the Wasserstein utility satisfies the sufficiency ordering condition
in the sense of Ginebra [3] in finite parameter spaces. In addition, we establish
the well-posedness of the utility in infinite-dimensional Hilbert spaces, ensuring
its applicability in nonparametric Bayesian inverse problems. The main contribu-
tion of this work, however, lies in the stability analysis of the Wasserstein utility,
especially for p = 1. A key result is the stability with respect to perturbations in
the prior distribution. Namely, suppose two different prior distributions µ and µ̃

give rise to two expected utilities U1 and Ũ1, respectively. Then, under suitable
conditions, there exists a constant C > 0 such that

|U1(θ)− Ũ1(θ)| ≤ CW2(µ, µ̃).

It follows in particular that U1 is stable under empirical approximations of the
prior. In our earlier work [2], we derived stability result for the expected in-
formation gain under likelihood perturbations, but prior perturbations were not
analysed. In the present study, analogous likelihood stability is proven for W1-
utility.

Finally, we demonstrate the computability of the Wasserstein utility through
examples. Nonetheless, the development of efficient computational methods for
high-dimensional problems remains an important part of the future work.
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MMAF-guided learning for spatio-temporal data

Imma Curato

(joint work with Lorenzo Proietti, Jasmin Sternkopf, and Leonardo Bardi)

Mixed moving average fields are a class of stationary models defined as

Zt(x) =

∫

S

∫

R×Rd

f(A, x− ξ, t− s) Λ(dA, dξ, ds), (t, x) ∈ R× Rd,(1)

where f is a deterministic function called kernel, S is denoting a non-empty topo-
logical space and Λ is a (homogeneous) Lévy basis, i.e. an independently scattered
random measure on S×R×Rd. Loosely speaking, the measure associates a random
number with any bounded subset B belonging to the Borel sets B(S × R × Rd).
Whenever two subsets are disjoint, the associated measures are independent, and
the measure of a disjoint union of sets almost certainly equals the sum of the mea-
sures of the individual sets. The dependence on the random parameter A in the
kernel function is a key feature of MMAF, which allows versatile modelling of short
and long-range temporal and spatial dependence. Despite their versatility, the use
of MMAF is hindered by the fact that its predictive distribution is not generally
known as part for the Gaussian case, see [5]. More in details, let us assume to
have n observations at different space-time locations {Zi = Zti(xi) : i = 1, . . . , n},
and we want to predict Z0 = Zt0(x0) at a new space-time location. Then, the
predictive distribution is defined as Z0|Z, where Z = (Z1, . . . ,Zn), and it is not
available in closed form for non-Gaussian distributed Lévy basis in (1).

MMAF-guided learning is a theory-guided machine learning methodology that
allows for determining a one-time ahead ensemble forecast in a given spatial po-
sition and extends the applicability of MMAF to forecast non-Gaussian distributed
data. Our methodology is based solely on moment assumptions, an opportune
spatio-temporal embedding, and a generalised Bayesian algorithm [4].

So far, MMAF-guided learning has been designed for handling spatio-temporal
data called raster data cubes. Nowadays, the latter is used for social and demo-
graphic analysis, environmental monitoring, and satellite image time series anal-
ysis. A data set observed on a regular lattice L ⊂ R2 across time T = {1, . . . , N}
is a general example of a raster data cube, see Figure 1-(a).

We assume that such data are generated by an MMAF defined on the set

(2) At(x) :=
{
(s, ξ) ∈ R× Rd : s ≤ t and ‖x− ξ‖ ≤ c|t− s|

}
.
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Note that the model (1) defined on the set At(x) is also called an Ambit field in
the literature; see [1]. The cone (2) is a model of the causal relationship between
space-time points that influence the values of the field in a given spatial point
(t, x).

The first step in MMAF-guided learning is selecting a training data set from a
raster data cube to enable one-time ahead prediction in a given spatial position x∗,
pictured as a red pixel in Figure 1-(b). We follow a supervised learning framework
and extract as input data the ones corresponding to the green pixels in Figure
1-(b), namely,

I(t, x∗) := {(is, ξs) : ‖x∗ − ξs‖ ≤ c (t− is) for 0 < t− is ≤ p,

and (is, ξs) <lex (is+1, ξs+1)}.
We then define a training data set, as shown in Figure 1-(c). The spatio-temporal

(a)

• • • • •

1 1 1 1 1 1

• • • • •

(b)

• • • • • • • • •

(c)

Figure 1. (a) Observed raster data cube. (b) The index set
of the spatio-temporal embedding is determined as follows. The
outputs in each example are determined by the red pixels, which
identify the spatial point x∗, and the inputs by the sets I(t, x∗),
which are represented by the pixels in the green boxes. (c) The
training data set is then defined by sampling the observed field
on the index set defined in (b).

embedding is defined such to preserve the dependence and causal structure of an
MMAF defined on the set At(x), for more details see [2, Section 3]. We then train
a (stochastic) neural network using a PAC Bayesian bound designed to hold for θ-
lex weakly dependent data [3]. The proof of such result can be found in [2, Section
3], as the detailed methodology which brings at the end to select the distribution
of the weights of the neural network—what we call a generalised posterior.
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Finally, for each given spatial position x∗, we sample from the (generalised)
posterior previously selected and obtain different one-time ahead forecasts, which
we collect in an ensemble. In [2], we test the learning procedure for a Gibbs
posterior distribution and a Gaussian reference distribution on the class of linear

models. Our posterior has a convergence rate of O(m− 1
2 ), where m is the number

of examples in the training data set, with respect to our PAC Bayesian bound
framework. We simulate a set of six data sets from an STOU process with Gaussian
and NIG Lévy seed and determine (50 members) ensemble forecasts. We obtain
that the inter-quartile ranges of our forecasts always contain the test set and
are narrower when the number of observations in the training data set increases.
Moreover, our forecasts have a causal interpretation induced by the sets At(x) of
the data-generating process known as Rubin’s potential outcomes framework [6].

Our actual and future work on MMAF-guided learning focuses on investigating
the performance of different (generalised) posterior distributions for deep neural
network architecture and establishing a theoretical framework for analysing the
relationship between the generated ensemble forecast and the true predictive dis-
tribution of an MMAF.
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Constructing and optimizing dynamic transport schemes

Youssef Marzouk

(joint work with Aimee Maurais, Zhi Robert Ren, Panos Tsimpos, and
Jakob Zech)

We discuss constructions for sampling a probability distribution of interest via
transportation of measure. The essential idea of these constructions is to couple
the target probability distribution with a simple, tractable ‘reference’ distribution,
and to use this coupling to generate new samples. Our focus here is on determinis-
tic couplings, induced by transport maps, and in particular on dynamic transport
schemes that realise such maps incrementally, via the flow map of a system of or-
dinary differential equations (ODEs). Dynamic transport schemes underpin many
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modern methods for Bayesian computation and generative modeling, but the con-
siderable ‘design’ freedom they offer—centering on how to make effective use of
the time axis—has not been rigorously understood.

A way of understanding this freedom is as follows. Suppose that one has pre-
scribed a reference measure π0 and a target measure π1 on Rd, and let both be
absolutely continuous with respect to the Lebesgue measure on Rd. Then there
exist, in general, infinitely many transport maps T : Rd → Rd achieving T♯π0 = π1.
One such map is the Brenier map, i.e., the optimal map with respect to L2 cost.
Another such map is the triangular Knothe–Rosenblatt rearrangement. But there
are (infinitely) many more. A different way to think of the problem is to consider
paths through the space of (absolutely continuous) probability measures on Rd,
(πt)t∈[0,1], indexed by a ‘time’ parameter t. Infinitely many paths can have π0 and

π1 as endpoints. If one prescribes a ‘velocity’ field v : Rd × [0, 1] → R and solves
the ODE initial value problem,

(1)

{
d
dtX(x, t) = v(X(x, t), t), t ∈ [0, 1],

X(x, 0) = x,

then both the transport T and the path of measures (πt)t∈[0,1] are prescribed. In
other words, v determines T and (πt)t∈0,1 (with the initial condition x ∼ π0), but
the latter two do not fully specify the first. There are in general infinitely many
velocity fields that realise a given transport map T as the time-one flow map of (1),
i.e., achieving T (x) = X(x, 1). Similarly, there are infinitely many velocity fields
that produce the path of marginal distributions (πt)t∈[0,1] (consider two velocities
that differ by a solenoidal vector field). These considerations frame the two main
topics of the talk.

First, we propose a method for realising (1) given access only to samples from
π0 and the unnormalised density ratio π1/π0. This setting arises in Bayesian
inference (where π1 represents the posterior distribution) and in ensemble data
assimilation schemes, where often one does not have the ability to evaluate gra-
dients of log(π1/π0). Our method construct a mean-field analogue of (1), where
the velocity v(·, t) depends on the law of Xt, and then a corresponding interacting
particle system (IPS) for sampling. The mean-field ODE is obtained by solving a
Poisson equation for a velocity field that transports samples along the geometric
mixture of the two densities, which is the path of a particular Fisher–Rao gra-
dient flow. We employ a RKHS ansatz for the velocity field, which makes the
Poisson equation tractable and enables discretisation of the resulting mean-field
ODE over finite samples. The mean-field ODE can be additionally be derived
from a discrete-time perspective as the limit of successive linearizations of the
Monge–Ampère equations, within a framework known as sample-driven optimal
transport. We illustrate both the successes and pitfalls of this construction, and
discuss how choices of path other than the geometric mixture could yield better
performance in some settings.

Second, we address the question of optimal scheduling of dynamic transport,
i.e., with what speed should one proceed along a prescribed path of probability
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measures. Though many popular methods seek straight line trajectories, i.e.,
trajectories with zero acceleration in a Lagrangian frame, we show how a specific
class of ‘curved’ trajectories can significantly improve approximation and learning.
In particular, we consider the unit-time interpolation of a given transport map T
with the identity map, i.e., Tt(x) = tT (x) + (1 − t)x for t ∈ [0, 1]. A modified
version of this one-parameter family of transports is given by x 7→ Tτ(t)(x), where
τ : [0, 1] → [0, 1] is called a ‘schedule’ and satisfies τ ′(t) > 0, τ(0) = 0, τ(1) =
1. A velocity field v that realises x 7→ Tτ(t)(x) as the time-t flow map of (1)
can be written down quite easily. Now we seek the the τ that minimises the
spatial Lipschitz constant of this v(·, t), uniformly over times t ∈ [0, 1]. Crucially,
this aspect of regularity in the velocity controls distribution approximation error
when the velocity field is learned from data. We show that, for a broad class
of source/target measures and transport maps T , the optimal schedule can be
computed in closed form, and that the resulting optimal Lipschitz constant is
exponentially smaller than that induced by an identity schedule (corresponding to,
for instance, the Wasserstein geodesic). Our proof technique relies on the calculus
of variations and Γ-convergence, allowing us to approximate the aforementioned
degenerate objective by a family of smooth, tractable problems. We close the talk
by discussing how this variational formulation could be applied to other dynamic
transport schemes, encompassing broader design choices than the schedule τ above.
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On hierarchical low-rank structure of posteriors for linear Gaussian
inverse problems

Han Cheng Lie

(joint work with Giuseppe Carere)

We consider linear Gaussian inverse problems, i.e. Bayesian inverse problems given
by the observation model

Y = GX + ζ,

for G ∈ B(H,Rn), a separable Hilbertian parameter space H, finite-dimensional
data space Rn, nondegenerate Rn-valued Gaussian noise ζ ∼ N (0, Cobs), and non-
degenerate Gaussian prior for X given by µpr = N (0, Cpr) on H. Thus, Cpr is a
linear, positive, self-adjoint trace-class operator on H. Given a realisation y of
the data random variable Y , the corresponding solution to the Bayesian inverse
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problem is the Gaussian posterior measure µpos(y) = N (mpos(y), Cpos), where
mpos(y) =CposG∗C−1

obsy,(1a)

Cpos =Cpr − CprG∗(Cobs +GCprG∗)−1GCpr,(1b)

C−1
pos =C−1

pr +H,(1c)

and H := G∗C−1
obsG denotes the Hessian of the negative-log likelihood.

In [4], a numerical method was proposed for efficiently computing approxima-
tions of Cpos, in the case where H = Rd for some d ∈ N. This method was
motivated by large-scale PDE inverse problems. The starting point of the method
was to observe that by (1c),

Cpos = (C−1
pos)

−1 = (C−1
pr +H)−1 = C1/2

pr (I + C1/2
pr HC1/2

pr )−1C1/2
pr ,

where C1/2
pr HC1/2

pr is known as the ‘prior-preconditioned Hessian’. By using a rank-r
truncated singular value decomposition (SVD)

C1/2
pr HC1/2

pr =W diag(( −λi

1+λi
)di=1) W

⊤ ≈Wr diag(( −λi

1+λi
)ri=1) W

⊤
r

and by applying the Sherman–Morrison–Woodbury formula, one obtains

(2) Cpos = C1/2
pr (I + C1/2

pr HC1/2
pr )−1C1/2

pr = Cpr − C1/2
pr Wr diag((λi)

r
i=1)W

⊤
r C1/2

pr ,

i.e. an approximation of Cpos in terms of a rank-r negative update of Cpr.
In [5], the optimality of the low-rank approximations of Cpos in (2) was analysed

in terms of finding best approximations to the exact Gaussian posterior. LetD(·‖·)
denote a measure of dissimilarity on the space of probability measures on H, e.g.
the Hellinger metric or the Kullback–Leibler divergence. Since G ∈ B(H,Rn),
it follows that the operator CprG∗(Cobs + GCprG∗)−1GCpr in (1b) is a bounded
self-adjoint operator of rank at most n, and hence can be represented as

CprG∗(Cobs +GCprG∗)−1GCpr = KnK
∗
n

for some Kn ∈ B(Rn,H). This suggests a family of approximation problems:

(3) min
{
D
(
N (mpos(y), Cpos)‖N (mpos(y), Cpr −KK∗)

)
: K ∈ B(Rr,H)

}
,

where the family is indexed by the rank parameter r ∈ {1, . . . , n}. As r increases,
one expects the corresponding solutions to (3) to yield a hierarchy of increasingly
accurate low-rank approximations, with zero error when r = n.

We report some our recent results in [2, 3] on generalisations of the results of [5]
to the case where H can be Rd or an infinite-dimensional separable Hilbert space.

By the Feldman–Hajek theorem, if µi := N (mi, Ci), i = 1, 2 are Gaussian
measures on a separable Hilbert spaceH, then either µ1 and µ2 are either mutually
singular or mutually absolutely continuous, and the latter holds if and only if the

following conditions all hold: ranC1/2
1 = ranC1/2

2 , m1 −m2 ∈ ranC1/2
1 , and

R(C1‖C2) := (C−1/2
1 C1/2

2 )(C−1/2
1 C1/2

2 )∗ − I

is Hilbert–Schmidt on H. Our first key result is to show a connection between the
Feldman–Hajek operator R(Cpos‖Cpr) and the prior-preconditioned Hessian.
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Proposition 1 ([2, Proposition 3.7]). There exists a nondecreasing sequence (λi)i
in ℓ2((−1, 0]) with exactly rank (H) nonzero entries and an orthonormal basis (wi)i

of H, such that (wi)i ⊂ ranC1/2
pr , and

R(Cpos‖Cpr) = (C−1/2
pos C1/2

pr )(C−1/2
pos C1/2

pr )∗ − I =
∑

i

λiwi ⊗ wi

C1/2
pr HC1/2

pr = (C−1/2
pos C1/2

pr )∗(C−1/2
pos C1/2

pr )− I =
∑

i

−λi
1 + λi

wi ⊗ wi.

The proposition above shows that the Feldman–Hajek operatorR(Cpos‖Cpr) and
the prior-preconditioned Hessian are simultaneously diagonalisable by (wi)i, and
that their eigenvalues are related via the involution (−1,∞) ∋ x 7→ −x

1+x . We use
the proposition to obtain the following.

Theorem 1 ([2, Theorem 4.21]). Let (λi)i ∈ ℓ2((−1, 0]) and (wi)i be as in Propo-
sition 1. For r ≤ n, an optimal solution of (3) is

Copt
r := Cpr − C1/2

pr

( r∑

i=1

−λiwi ⊗ wi

)
C1/2
pr .

This solution is unique if and only if λr+1 = 0 or λr < λr+1.

When the measure of dissimilarity D(·‖·) in (3) is the Kullback–Leibler diver-
gence, Hellinger distance, or some ρ-Rényi divergence for ρ ∈ (0, 1), there is an
explicit formula for the corresponding approximation error; see [2, Lemma 4.2].

Theorem 1 shows that the approximation (2) that was proposed in [4] for PDE
inverse problems applies more generally to all linear Gaussian inverse problems
with Hilbertian parameter spaces. In particular, the optimality of the approxi-
mations proposed in [4] is independent of the numerical method used to solve the
PDE inverse problem and the dimension of the discretisation.

In addition to the low-rank posterior covariance approximation problem (3), it
is natural to consider a family of low-rank mean approximation problems of the
posterior mean, by searching for rank-r approximations of the data-to-posterior
mean map CposG∗C−1

obs in (1a) that are optimal when averaged over the data Y :

(5) min {E[D(N (mpos(Y ), Cpos)‖N (AY, Cpos)] : A ∈ B(Rn,H), rank (A) ≤ r} ,

see [5, Section 4]. To solve (5), we consider the square root factorisation

C1/2
pr HC1/2

pr = C1/2
pr G∗C−1

obsGC
1/2
pr = (C1/2

pr G∗C−1/2
obs )(C1/2

pr G∗C−1/2
obs )∗

of the prior-preconditioned Hessian, and then compute the SVD of the square root.
Recalling that G ∈ B(H,Rn), we have

(6) C1/2
pr G

∗C−1/2
obs =

n∑

i=1

√
−λi
1 + λi

wi ⊗ ϕi,

for (λi, wi)i from Proposition 1 and an orthonormal basis (ϕi)
n
i=1 of Rn.
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Theorem 2 ([3, Theorem 5.10]). Let (λi, wi)i and (ϕi)
n
i=1 be as in (6) and r ≤ n.

An optimal solution of (5) is

Aopt
r = C1/2

pr

( r∑

i=1

√
−λi(1 + λi)wi ⊗ ϕi

)
C−1/2
obs .

This solution is unique if and only if λr+1 = 0 or λr < λr+1.

The result above generalises [5, Theorem 4.1] to infinite-dimensional parameter
spaces H, and uses our work on rank-constrained operator approximation [1].

We can combine the optimal solutions from Theorems 1 and 2 to find low-rank
joint approximations of the mean and covariance that are optimal in a Kullback–
Leibler divergence; see [3, Proposition 6.1]. We characterise the resulting approx-
imations N (Ay, Cpr −KK∗) of the exact Gaussian posterior N (mpos(y), Cpos) as
the posteriors corresponding to projected Bayesian inverse problems, i.e. inverse
problems with the observation model Y = GPX + ζ for some projection P to a
r-dimensional subspace of the parameter space H [3, Section 7]. These results are
new, also for the case of finite-dimensional parameter spaces H.

Our results reveal the importance of the Feldman–Hajek theorem and the finite
dimensionality of the data for the low-rank structure of posteriors associated to
linear Gaussian inverse problems.
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A Pontryagin minimum principle for stochastic optimal control

Sebastian Reich

(joint work with Manfred Opper)

In this talk, a deterministic mean-field formulation of the Pontryagin minimum
principle for stochastic optimal control problems has been sketched out for the
first time. Contrary to the well-known forward and backward SDE formulation of
the stochastic Pontryaginminimum principle [1], the proposed mean-field approach
leads to a gauge variable which can be freely chosen and can be used to decouple
the arising forward and reverse time mean-field ODEs.
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Problem statement. We consider the optimal control problem for a controlled
SDE of the form

(1) dXt = b(Xt)dt+GUtdt+Σ1/2dBt, X0 = a,

under cost function

(2) JT (a, U0:T ) = E

[∫ T

0

(
c(Xt) +

1

2
UT
t R

−1Ut

)
dt+ f(XT )

]
.

Here Bt denotes dx-dimensional Brownian motion, Σ ∈ Rdx×dx the symmetric
positive definite diffusion matrix, R ∈ Rdu×du a symmetric positive definite weight
matrix, G ∈ Rdx×du the control matrix, c(x) the running cost, and f(x) the
terminal cost. See, for example, reference [1] for more details. We also introduce
the weighted norm ‖ · ‖R via ‖u‖2R = uTR−1u.

The aim is to find the closed loop control law Ut = ut(Xt) that minimises
JT (a, U0:T ) over the set of admissible control laws. It is well-known [1] that,
assuming sufficient regularity, the desired closed loop control law is provided by

(3) ut(x) = −RGT∇xvt(x)

with the optimal value function vt(x) satisfying the Hamilton–Jacobi–Bellman
(HJB) equation

(4) −∂tvt = b · ∇xvt +
1

2
Σ : D2

xvt + c+min
u

(
Gu · ∇xvt +

1

2
‖u‖2R

)
, vT = f.

Deterministic Hamiltonian mean-field formulation. We now formulate the
proposed mean-field Pontryaginminimum principle. The initial conditions a ∈ Rdx

may be viewed as a label in the sense of Lagrangian fluid dynamics, which we as-
sume to be distributed according to a probability density function π0. We therefore
consider functions x(a), p(x), u(a), and β(a) and introduce the Hamiltonian func-
tional

(5) H(x, p, u, β) =

∫

Rdx

H(x, p, u, β)(a)π0(a) da

with Hamiltonian density

H(x, p, u, β)(a) := p(a)T (b(x(a)) +Gu(a)) +
1

2
∇x · (Σφ(x(a)))+(6a)

β(a)T (p(a)− φ(x(a))) + c(x(a)) +
1

2
‖u(a)‖2R.(6b)

Here β(a) ∈ Rdx takes the role of a gauge variable [2], which does not appear in
the classical Pontryagin minimum principle [3]. We also note the occurrence of the
function φ(x), which will be determined in terms of the non-holonomic constraint
arising from variations with respect to β(a) [2]. More specifically, the desired
equations of motion are induced by the phase space action principle [2] applied to

(7) S =

∫

Rdx

{∫ T

0

(
PT
t Ẋt −H(Xt, Pt, Ut, βt)

)
dt− f(XT )

}
π0da.
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Taking variations with respect to Ut, we find that the optimal control satisfies

(8) ∇uH(Xt(a), Pt(a), Ut(a), βt(a)) = R−1Ut(a) +GTPt(a).

Variations with respect to βt lead on the other hand to the constraint

(9) φt(Xt(a)) = Pt(a),

which defines the function φt(x) in terms of Xt(a) and Pt(a). Using the thus
specified φt(x), we obtain the closed loop control

(10) ut(x) = −RGTφt(x).

Finally, variations with respect to Xt and Pt lead to the Hamiltonian evolution
equations in (Xt, Pt); i.e.,

Ẋt(a) = +∇pH(Xt(a), Pt(a), Ut(a), βt(a)),(11a)

Ṗt(a) = −∇xH(Xt(a), Pt(a), Ut(a), βt(a))(11b)

for each a ∈ Rdx . The boundary conditions are X0(a) = a ∼ π0 and PT (a) =
∇xf(XT (a)). Dropping the label a ∈ Rdx from now on, the Hamiltonian equations
of motion (11) therefore become

Ẋt = b(Xt) +GUt + βt,(12a)

Ṗt = (Dxφt(Xt))
T
βt − (Dxb(Xt))

T
Pt −

1

2
∇x∇x · (Σφt(Xt))−∇xc(Xt).(12b)

The following theorem provides the key result with regard to the gauge vari-
able βt and demonstrates that (12) indeed delivers the desired extension of the
Pontryagin minimum principle to stochastic optimal control problems.

Theorem 1. For any choice of the gauge variable βt, the resulting function φt(x)
satisfies

(13) φt(x) = ∇xvt(x)

where vt(x) is the value function satisfying the HJB equation (4).

Proof. Let us derive the evolution equation for φt(x) implied by (9):

−∂tφt(Xt) = Dxφt(Xt)Ẋt − Ṗt(14a)

= Dxφt(Xt) (b(Xt) +GUt) +
1

2
∇x∇x · (Σφt(Xt))+(14b)

(Dxb(Xt))
T
φt(Xt) +∇xc(Xt).(14c)

Here we have used that Dxφt(x) is symmetric since φt(x) itself is the gradient of
the value function vt(x). Hence, φt(x) satisfies the reverse time PDE

(15) −∂tφt = Dxφt (b+GUt) +
1

2
∇x∇x · (Σφt) + (Dxb)

T φt +∇xc

subject to the terminal condition φT = ∇xf , which also follows from (4) by taking
the gradient. Hence φt(x) = ∇xvt(x) independent of βt. �
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A natural choice for the gauge function βt is

(16) βt = −1

2
Σ∇x log πt(Xt),

where πt(x) denotes the law of Xt. Alternatively, consider

(17) βt = GRGTφt(Xt),

which eliminates the control from the forward evolution equation in Xt since

(18) GUt = −GRGTφt(Xt) = −βt.
Both choices for the gauge variable can also be combined into

(19) βt = GRGTφt(Xt) +Gureft (Xt)−
1

2
Σ∇x log πt(Xt),

where ureft (x) denotes a known reference control; if available.

Open questions. Similar to the well-known forward and backward SDE formu-
lation of the stochastic Pontryagin principle [1], a linear regression problem arises
from (9) when discretised as an interacting particle systems. The accuracy and
stability of numerical approximations needs to be investigated and compared to
forward and backward SDE formulations. Furthermore, the freedom in the choice
of the gauge variable βt, such as (19), allows for a decoupling of the forward and
reverse time mean-field ODEs in Xt and Pt. Again, implications on algorithmic
implementations need to be investigated. Application of the proposed methodol-
ogy to model predictive control [4] should be of particular interest.
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Autoencoders in Function Space

Hefin Lambley

(joint work with Justin Bunker, Mark Girolami, Andrew M. Stuart, and
T. J. Sullivan)

Deep learning is widely used in uncertainty quantification, e.g., in the construction
of surrogate models, but traditional architectures must operate at fixed input and
output resolutions. In recent years there has been much interest in deep-learning
methods for functions, with architectures such as DeepONet [1] and Fourier neu-
ral operators [2] that can be discretised, trained, and evaluated at any resolution.
Much of this work has focussed on supervised learning, e.g., in approximating the
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solution operator to a differential equation from input–output pairs, and unsu-
pervised tasks such as dimension reduction and generative modelling have only
recently started to receive attention in, e.g., [3] and [4].

In this work, we focus on a class of methods known as autoencoders. Au-
toencoders solve two tasks in unsupervised learning: dimension reduction and
generative modelling. More precisely, autoencoders assume access to samples from
an unknown distribution Υ on the data space U ; then, a latent space Z is chosen,
typically of much lower dimension than U , and an autoencoder seeks to learn two
transformations: an encoder mapping from U to Z, and a decoder mapping from
Z to U . The goal is to choose the encoder and decoder so that their composition
is approximately the identity; doing so leads to dimension reduction, because the
encoded representation of u ∼ Υ is forced to capture meaningful features. More-
over, a generative model can be obtained by sampling from the latent space Z
appropriately and then decoding to obtain a distribution approximating Υ.

We formulate function-space versions of autoencoders, in both their determin-
istic (FAE) and variational (FVAE) forms, and deploy them on scientific data sets
including path distributions of stochastic differential equations (SDEs) as arising
in molecular dynamics, and vorticity fields of Navier–Stokes fluid flows [5].

FVAE is an extension of the variational autoencoder (VAE) of Kingma and
Welling [6], which we formulate as a problem of matching two joint distributions
in function space. Take U to be a separable Banach space, possibly of infinite
dimension, and select a latent space Z = RdZ and an easily sampled latent dis-
tribution Pz on Z. Under FVAE, the encoder and decoder are transformations
taking points to probability distributions:

(encoder) U ∋ u 7→ Qθz|u ∈ P(Z),(1a)

(decoder) Z ∋ z 7→ P
ψ
u|z ∈ P(U).(1b)

Here P(X) denotes the set of probability measures on X , and Qθz|u and P
ψ
u|z will

be chosen to lie in parametric classes depending on parameters θ ∈ Θ and ψ ∈ Ψ.
We wish to approximately enforce that composing (1a) and (1b) gives the iden-

tity for u ∼ Υ. To do this we specify two joint models on the product space Z×U :

(joint encoder model) Qθz,u(dz, du) = Qθz|u(dz)Υ(du),(2a)

(joint decoder model) Pψz,u(dz, du) = P
ψ
u|z(du)Pz(dz).(2b)

This suggests a natural objective functional to be minimised, which proves to
be an appropriate generalisation of the VAE objective to function space:

(3) (FVAE objective) argmin
θ∈Θ, ψ∈Ψ

DKL

(
Qθz,u ‖Pψz,u

)
.

This objective simultaneously trains an autoencoder as well as a generative
model Pψu , the u-marginal of (2b). When U has finite dimension, the objective (3)
is equal, up to a finite constant, to the evidence lower bound (ELBO) usually taken
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as the VAE training objective, but our approach makes no appeal to Lebesgue
densities, which do not exist in infinite dimensions.

The most common VAE model in finite dimensions is to take all relevant distri-
butions to be Gaussian, with the mean and covariance of the encoder determined
by learnable maps f and Σ, with the mean of the decoder determined by a learn-
able map g, and with the decoder covariance fixed as βIU :

Pz = N
(
0, IZ

)
(4a)

Qθz|u = N
(
f(u; θ),Σ(u; θ)

)
(4b)

P
ψ
u|z = N

(
g(z;ψ), βIU

)
.(4c)

To illustrate the difficulties that arise in the infinite-dimensional setting, take U =
L2(0, 1) and Υ ∈ P(U); then consider the model (4a)–(4c), noting that, for each

latent vector z ∈ Z, the decoder Pψu|z now returns a function g(z;ψ) corrupted by

additive white noise. This is the setting adopted by the variational autoencoding
neural operator [7]. One key finding of our work is that, since realisations from
the decoder contain additive white noise that never has L2-regularity, draws from
the decoder distribution and data distribution have different levels of smoothness.
Owing to this incompatibility, there is no absolute continuity between the joint
models (2a) and (2b), and thus the joint divergence in (3) is identically infinite
for all θ and ψ. This renders the FVAE objective meaningless; moreover this issue
is not purely theoretical, and manifests in practice through increasing instability
and a divergent training objective as the resolution of the training data is refined.

In order to obtain a meaningful extension of VAEs to infinite dimensions, we
restrict attention to problem classes where the decoder distribution can be chosen
to be compatible with the data distribution. This is a stringent condition in infinite
dimensions, but there are many problem classes for which this compatibility can
be established, e.g., when Υ is the path distribution of an SDE. In such settings,
FVAE performs well as a probabilistic generative model and an autoencoder, with
the advantage that uncertainty quantification is inherently built in to the model.

To address the fact that FVAE is limited to specific classes of data, we also
generalise regularised autoencoders to yield FAE. The FAE objective works “out
of the box” for a broad class of data distributions, but has the disadvantage that
it merely trains an autoencoder with no inherent uncertainty quantification. How-
ever, we show that a generative model can be established through a two-step pro-
cedure in which one first trains an autoencoder and then trains a finite-dimensional
generative model on the autoencoder latent space.

Using neural operators in the encoder and decoder of FVAE and FAE enables
training and evaluation across resolutions; this permits new applications to in-
painting, superresolution, and generative modelling. For example, after training
on a data set of vorticity fields of fluid flows, FAE can reconstruct the vorticity
field from sparse measurements with 95% of the original training mesh missing.
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Statistical guarantees for denoising reflected diffusion models

Claudia Strauch

(joint work with Asbjørn Holk and Lukas Trottner)

Denoising diffusion models represent a prominent class of generative models, in
which a forward stochastic process gradually perturbs data by noise and a back-
ward process is trained to reverse this transformation. The backward dynamics
are typically characterised via the so-called score, the gradient of the log-density of
the noised data distribution. While these models have shown impressive empirical
performance in various application domains, an in-depth study of their statistical
properties as estimators of data-generating distributions has only recently begun
[1, 5, 6].

In our talk, based on [3], we presented a constrained variant of such models,
referred to as denoising reflected diffusion models (DRDMs), in which the forward
and backward processes are confined to a bounded domain via normal reflection
at the boundary. This setting naturally arises when the support of the data-
generating distribution is compact, or when physical constraints impose spatial
boundaries. While recent empirical studies [2, 4] have demonstrated the potential
of such models, a statistical analysis investigating the model in terms of distribu-
tional learning has so far been lacking.

The focus of the talk was on the statistical properties of DRDMs as distribution
estimators. Implementation and algorithmic aspects were not addressed. Instead,
the analysis concentrated on quantifying the effect of estimation errors in the score
function on the discrepancy between the true data distribution and the distribution
induced by the generative process. The forward process in our model is defined
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by the reflected stochastic differential equation

dXt = ∇f(Xt) dt+
√
2f(Xt) dWt + ν(Xt) dℓ

D
t ,

where W is a d-dimensional Brownian motion, f : Rd → [fmin,∞) ⊂ (0,∞) is
a smooth potential, D is an open and bounded domain with smooth boundary,
ν is the inward-pointing normal vector field on ∂D, and ℓD· is the local time at
the boundary. This process is constrained to D through normal reflections at
the boundary and is analytically characterised by the divergence-form generator
A = ∇ · f∇, subject to Neumann boundary conditions. The specific form of the
generator implies time-reversibility of the process with respect to its uniform sta-
tionary distribution, and the spectral gap of A yields an exponential convergence
rate. This combination of a fast speed of convergence and an easy-to-sample-
from limiting distribution makes this class of processes particularly suitable for
generative modelling purposes.

The backward process reverses the forward dynamics and requires the time-
and space-dependent score function s◦(x, t) = ∇ log pt(x), where for the forward
transition densities qt(x, y) and the underlying data distribution p0, the forward

density pt(x) is given by pt(x) =
∫ t
0
qt(y, x)p0 (dy). Since it depends on p0, which

is generally unknown, this score must be estimated from data via a variant of score
matching, adapted to the reflected setting. For this purpose, a spectral representa-
tion of s◦(x, t) in terms of the eigenfunctions of A is derived. This representation
facilitates the construction of neural network estimators, the approximation and
generalisation abilities of which are studied in [3]. More precisely, our investigation
addresses the estimation error in total variation between the true and generated
data distributions. The score estimator is obtained via empirical risk minimisa-
tion of the denoising score matching loss over a suitably regularised class of ReLU
networks. The generalisation error is controlled via uniform bounds and the met-
ric entropy of the induced loss class, while the approximation error is analysed
using Sobolev smoothness assumptions on p0 and spectral truncation of the score
expansion. The main result establishes that, under appropriate lower bounds and
Sobolev regularity conditions on the data-generating density, the expected total
variation distance between the true distribution and the one induced by the learned
generative process converges at a minimax optimal rate, up to small logarithmic
factors. This indicates that DRDMs can achieve statistically optimal performance
in a constrained setting.

The framework presented in the talk extends the statistical theory of denoising
diffusion models to settings with spatial constraints, providing a detailed account of
the interplay between generalisation and approximation in score-based generative
modelling. While the present work abstracts from numerical and implementation
issues, it suggests further research directions, particularly with regard to uncer-
tainty quantification in reflected generative models, where the propagation of score
estimation uncertainty through the generative process remains an open question.
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Dimension-independent Markov chain Monte Carlo on the sphere

Björn Sprungk

(joint work with Han Cheng Lie, Daniel Rudolf, and T. J. Sullivan)

We consider Bayesian analysis on high-dimensional unit spheres Sd−1 ⊂ Rd with
angular central Gaussian prior distribution. This prior can be defined as the push-
forward of a centred Gaussian distribution in Rd under the radial projection. It
models antipodally symmetric directional data, is easily defined in Hilbert spaces,
and occurs, for instance, in Bayesian density estimation and binary level set inver-
sion. In [2] we derive efficient Markov chain Monte Carlo methods for approximate
sampling of posteriors with respect to this kind of priors. Our approach relies on
lifting the sampling problem to the ambient Hilbert space and exploit existing
dimension-independent samplers in Rd such as the pCN Metropolis algorithm [1]
and the elliptical slice sampler [3]. By a push-forward Markov kernel construc-
tion [4] we then obtain Markov chains on the sphere which inherit reversibility
and spectral gap properties from samplers in linear spaces. In particular, we can
show that given only the boundedness of the likelihood the obtained reprojected
pCN Metropolis on the sphere possesses a dimension-independent spectral gap [2].
This is verified in numerical experiments. Also the reprojected elliptical slice sam-
pler performs dimension-independent in our experiments. Moreover, we observe
that the performance in terms of integrated autocorrelation time (IAT) of clas-
sical random walk-like Metropolis algorithms on the sphere (e.g., [5]) deteriorate
very quickly with increasing dimension d → ∞. Our numerical experiments sug-
gest that the IAT grows like O(d5) which is in contrast to the well-known rate of
O(d1) in Rd. This behaviour on Sd−1 is currently unexplained and left as an open
question for future research on optimal scalings of random walk-like Metropolis
algorithms on Sd−1.
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Edge preserving random tree Besov priors

Hanne Kekkonen

(joint work with Matti Lassas, Eero Saksman, Samuli Siltanen, and
Andreas Tataris)

Robust methods for solving inverse problems rely on combining measurement data
with a priori information about the unknown function. One of the key challenges
in inverse problems research is to formulate such prior knowledge in a mathemat-
ically meaningful and computationally tractable way. Popular models promote
global smoothness, piecewise regularity, or sparsity. These models can be imple-
mented via variational regularisation, yielding stable solutions but offering little
information about its uncertainties. Bayesian inversion provides an attractive al-
ternative by delivering not only point estimates but also a characterisation of the
uncertainties arising from noise and model error.

In practice measurements are discrete and corrupted by noise, which can in
many cases be reasonably modelled using independent Gaussian random variables.
This gives rise to the measurement model

Mi = (Af)i + wi, i = 1, . . . , n, wi
iid∼ N (0, 1),(1)

where A describes the forward process. Solving the inverse problem computation-
ally also requires a finite-dimensional model for the unknown f . It is advisable to
construct models for f in a discretisation-invariant way, for instance, by defining a
continuous model and discretising it as late as possible in the inference procedure
[5].

In the Bayesian framework, we place a prior probability measure Π on f ; the
solution to the inverse problem is then the posterior distribution, i.e. the con-
ditional distribution of f given the observed data M . Most existing theory for
infinite-dimensional Bayesian inverse problems assumes a Gaussian prior. While
Gaussian priors have computational advantages, they fail to capture sharp fea-
tures such as edges and interfaces, which are critical in many signal and image
reconstruction tasks.

A popular method for achieving edge-preserving reconstructions in image anal-
ysis is using the so-called total variation (TV) prior and the mode of the posterior
as a point estimate. In practice this means minimising

‖Af −M‖2L2 + α‖∇f‖L1.(2)
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However, despite extensive study, there is no known infinite-dimensional prior for
which (2) would be the maximum a posteriori (MAP) estimate. In other words,
the commonly used formal prior

π(f) ∝
formally

exp (−α‖∇f‖L1)(3)

is not known to correspond to any well-defined random variable. Furthermore,
standard discrete TV priors can converge to Gaussian smoothness priors under
mesh refinement, see [4].

To address this, [3] proposed replacing (3) with a well-defined prior

π(f) ∝
formally

exp
(
−‖∇f‖pB0

pp

)
,

where the Besov spaces B0
pp are closely related to Lp spaces. For p = 1, the

above prior has similar properties to the total variation prior, but corresponds to
a well-defined infinite-dimensional random variable. The construction of the Besov
prior uses the Karhunen-Loève expansion with wavelet basis. This is particularly
suitable when modelling smooth functions with few local irregularities since such
functions have sparse expansion in the wavelet basis unlike, e.g., in the Fourier ba-
sis. Truncating the expansion yields practical finite-dimensional approximations.
The well-definedness and well-posedness of the posterior measure were extended
to non-linear cases in [1].

The idea of the random tree Besov priors, presented in [2], is to use the
Karhunen-Loève expansion to create priors similar to [3], but to choose the non-
zero wavelets in the sum in a systematic way, so that draws are mainly smooth
with few large jumps. This can be done by introducing a new random variable T
that takes values in the space of ‘trees’. The wavelet coefficients can be arranged
into a tree with the coarser scales at the top, and finer details further down. A
coefficient at a finer scale can be non-zero only if all its ancestors in the tree are
also non-zero. This structure models persistence of features across scales. A jump
in a signal results in large wavelet coefficients across many levels, while white noise
yields large coefficients primarily at fine scales. The density of the non-zero co-
efficients, and consequently the sparsity of the reconstruction, is controlled by a
parameter β.

In [2] the wavelet density index β was chosen manually for the considered de-
noising problems but we would like to choose β automatically from data. This also
enables the use of level-dependent β = (βj)j , allowing the sparsity to vary across
scales. This is a natural extension, as wavelet coefficients of a signal or image are
typically sparser at finer resolutions. We place a hyperprior on β and estimate it
via levelwise MAP estimation.

We consider first the non-parametric regression problem where A = I in (1),
and set the prior π(βj) ∝ (0.5 − βj)

c, βj ∈ [0, 0.5], c ≥ 0 for the wavelet density
index. This leads to a problem that can be solved analytically; starting from
the finest level, we estimate βj iteratively up to the coarsest level. The resulting
reconstructions outperform those obtained with the best fixed β. For general
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linear inverse problems, a plug-and-play approach leads to similarly promising
edge preserving results in deconvolution.

An interesting open question is how to sample from the posteriors arising from
random tree Besov priors. While tree-based methods have proven highly success-
ful in regression and density estimation, they do not readily extend to inverse
problems. Developing efficient sampling methods for such priors could open new
directions in both inverse problems and Bayesian statistics.
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Joint chance constraints in stochastic optimal control and
Gaussian processes

Georg Stadler

(joint work with Kewei Wang)

Chance constraints are the generalisation of inequality constraints to stochastic op-
timisation, where constraints for random variables can often only be enforced with
a given, typically high probability. Joint chance constraints generalise point-wise
bound constraints and require that the realisations of a random variable satisfy
a pointwise bound constraint everywhere with high probability. Such probabilis-
tic constraints have been studied in the context of finite-dimensional optimisation
for several decades, but their analysis in the context of infinite-dimensional op-
timisation and optimal control is more recent [1, 2, 3]. The challenges are both
theoretical and computational. An example of an optimal control problem with
joint chance state constraints is given by

(1) min
u,y

J (y, u) s.t. e(y(ω), u, ξ(ω)) = 0,

where u is the deterministic control and ξ(ω) is a random variable depending on an
event ω. Through the PDE constraint e(y(ω), u, ξ(ω)) = 0, the state y(ω) depends
not only on u but also on ξ(ω) and is thus a random variable. The objective J
typically involves an expectation over ω. Assume that the PDE is defined over a
domain D ⊂ Rd, d ∈ {1, 2, 3}, such that the state y is also a function of x ∈ D. A
joint chance state constraint for given lower bound y : D 7→ R is then given by

(2) P(ω | y(x) ≤ y(x, ω) for a. a. x ∈ D) ≥ p,
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Figure 1. Illustration of spherical-radial decomposition to esti-
mate a two-dimensional joint chance constraint probability, given
by a Gaussian measure integrated over the red shaded area.
Shown are level sets of the Gaussian density in blue (dotted),
the unit sphere S1 in blue (solid), the rays rθi, r > 0 in red, as
well as the radius ρi at which the ray exits the feasible area.

where 0 < p < 1 is given (typically close to 1), and almost everywhere bounds
are necessary if the states y(ω) are not guaranteed to be continuous functions in
x. For the case where the governing PDE (2) is linear or bilinear, theoretical and
computational results for problems of the form (1), (2) are presented in [3].

For the numerical approximation of chance constraints, the spherical-radial de-
composition (SRD) of elliptically distributed (e.g., Gaussian) multivariate distri-
butions has proven to be a useful tool. The SRD for an n-dimensional random
vector ζ is

(3) ζ = m+ τLθ,

where m ∈ Rn, L ∈ Rn×k with k ≤ n, τ is a one-dimensional non-negative random
variable, and θ is a uniformly distributed random vector on the unit sphere Sk−1

of Rk. When ζ follows a multivariate normal distribution, then m is the mean
of this distribution, L is a square root of the covariance matrix, and τ follows
a one-dimensional χ-distribution with k degrees of freedom. The decomposition
(3) not only provides an alternative to standard Monte Carlo sampling from the
distribution, but additionally facilitates the computation of probabilities arising
in joint chance constraints. To be more precise, one can draw samples θi from
the uniform distribution over Sk−1 and then, for problems where the random
variable enters linearly, compute the radius ρi, at which the ray rθi (r ≥ 0) leaves
the feasible set, as illustrated in Figure 1. Compared to standard Monte Carlo
sampling of (2), a Monte Carlo estimator based on the SRD has a reduced variance
and provides derivatives of the probability with respect to the control [3].

Currently, we extend SRD-based methods to enforce that realisations of a
Gaussian process satisfy a bound constraint with high probability [4, 5]. Con-
sider a (prior) Gaussian process ξpr ∼ N (ξ0,K), where the covariance function K
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is

(4) K(x, x′) = σ2 exp

(−‖x− x′‖22
2l2

)
+ σ2

nδx,x′ ,

with to-be-determined kernel parameters (l, σ, σn). Suppose that we have obser-
vations y = (y(1), . . . , y(N)) at locations X = (x(1), . . . , x(N)) and use a Gaussian
process to fit these data. To tailor the kernel function, we minimise the negative
log-likelihood as a function of the kernel parameters, i.e.,

(5) min
l,σ,σn

1

2

(
(y − ξ0)

TK−1(y − ξ0) + log |K|+N log(2π)
)
,

where ξ0 = (ξ0(x
(1)), . . . , ξ0(x

(N))), and K denotes the covariance matrix for the
points in X. We also require that the posterior ξpost satisfies a joint chance
constraint for the lower bound ξ with high probability p, 0 < p < 1, i.e.,

(6) P(ω|ξ(x) ≤ ξpost(x, ω) for a.a. x) ≥ p.

This problem resembles the stochastic optimal control problem (1), (2), and we
again apply the SRD to enforce the joint chance constraint (6). In (3), we now use
a Karhunen-Loève (KL) expansion of the covariance operator corresponding to the
kernel function (4), and truncate this KL expansion after m terms. The variable
θ then follows a uniform distribution on Sm−1, and we use a large number of grid
points at which we enforce the bound constraint. For our method, it is necessary
to make an explicit choice for m and use the m-variable χ-distribution in the SRD.
Although the SRD method is not very sensitive to the choice ofm, we would prefer
to formulate and use the SRD in infinite dimensions to avoid making an explicit
choice for m. However, this is challenging, as currently the SRD requires the
transformation of a Gaussian random variable into a random variable with a unit
covariance matrix (see (3)). Choosingm = 40, the numerical results obtained with
our SRD-based method applied to Example 1 from [4] can be seen in Figure 2. In
these calculations, the derivatives with respect to the kernel parameter, which are
needed for the minimisation of (5) are calculated using automatic differentiation
as provided by JAX.
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Figure 2. Gaussian process with optimised kernel parameters
such that realizations from the posterior satisfy the joint chance
bound constraint with probability p = 0.95. Shown are the data
points (black), the mean of the posterior (blue) and random draws
from the posterior (in grey). The right figure uses a tighter lower
bound ξ, requiring kernel parameter resulting in lower variance of
the posterior samples.

Learning to integrate the uncertainty of diffusion equations with
Lévy coefficients

Hanno Gottschalk

(joint work with Oliver Ernst, Toni Kowalewitz, and P. Krüger)

Uncertainty quantification often requires multiple simulations of physical systems
at a high computational cost [11]. A well studied example is the case of the
diffusion equation with random conductivity modeled by a random field.

−∇ · (a(x)∇)u(x) = 0, a(x) = exp(ZK(x)),

where mixed Neumann and Dirichlet boundary conditions are applied on different
portions of the boundary of the computational domain D, which is assumed to be
bounded and to have sufficiently regular boundary.

Under the hypothesis that the random field ZK(x) is Gaussian, one can apply
the Karhunen–Loève (KL) expansion [11] and approximate the law of the Gaussian
random field with a dimensional normal distributions. For these, quadrature rules
like Smolyak’s sparse grid [9] allow an evaluation of the expected values on the
number of quadrature points that scales favourably with respect to the dimension
of the KL expansion.

In this extended abstract, we reconsider the diffusion equation with Lévy ran-
dom fields [1, 2] in place of the Gaussian random fields. We therefore have two
crucial problems to solve. First, we have to develop the KL expansion for Lévy
random fields, and, second, we have to design quadrature rules, which work for
this extended class of Lévy distributions.



Uncertainty Quantification 1063

Starting with the first problem, we consider a solution ZK(x) of stochastic
pseudo partial differential equation driven by Lévy noise Z(x) [1, 5],

(−∆+m2)αZK(x) = Z(x),

where ∆ the Laplace operator and m2, α positive constants.
The solution of this equation can be can be obtained applying the green function

of pseudo differential operator (−∆+m2)α to the Lévy noise generalised random
field [6]. As Lévy random fields are not determined by their co-variance function,
we have to apply the expansion directly to the integral kernel of the Green’s
function. Unfortunately, this is not possible as pseudo differential operator has
continuous spectrum.

We therefore first apply a circular embedding on a torus which leads to a Laplace
operator with discrete spectrum and hence the Green’s function can now be ex-
panded into an eigenvalue decomposition where the eigenfunctions are the trigono-
metric functions sin(κ · x) and cos(κ · x) with wave vectors κ inside a discrete grid
πZ2. The eigenvalues are then obtained by inserting the wave vectors into the
symbol (|κ|2 +m2)−α of the Green’s function. It has been shown in prior work
that under this expansion the solution to the solution of the diffusion equation
converges to the solution with the non-truncated Lévy random field [5].

The second problem, how to evaluate the expected value of some quantity of
interest that depends on the random solution u(x), however remains, as there are
no efficient quadrature rules for high-dimensional Lévy distributions.

In our work, we tackle this problem with recent machine learning models from
the field of generative AI. In generative AI, some complex distribution of data is
transformed into a simple distribution often given by a standard normal distribu-
tion. In other words, generative AI learns a transport map [10] that normalizes
complex distributions to multivariate standard normal distribution. There are
many variants [4, 3, 7], how such normalising flows can be modeled by your net-
works. In our work, we use affine coupling flows, flow matching and optimal trans-
port flow matching as algorithms and apply them to the given high-dimensional
Lévy distribution. All these normalising flow networks are easy to invert and ad-
mit an easy to evaluate representation of the log-likelihood. Alternatively, the
flows are modeled in continuous time and the training objective is to establish
a similarity of the temporal derivatives of the flow with some pre-defined trans-
port vector field [7]. Hence, after appropriate likelihood maximisation or vector
field matching based training on the Lévy data, we can not only approximately
transform the Levy distribution into Gaussian noise, but we can also transform
Gaussian noise approximately back into the Lévy distribution.

This enables us to use Smolyak’s [9] sparse grid quadrature points and weights
for the standard normal distribution to evaluate the quantity of interest composed
with the generative direction of our machine learning model. Equivalently, we can
transport the quadrature points of the standard normal distribution into quadra-
ture points of the involved Lévy distributions by application of the generative map
to the quadrature points, keeping the weights fixed.
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In this way, we obtain learned quadrature rules on which we then can evaluate
the quantity of interest by first performing the simulations and then evaluating
the quantity of interest on the solution with the same computational complexity
as for original sparse grids.

We also provide extensive numerical experiments that show that the evalua-
tions of the expected values nicely reproduce the results of a brute-force Monte
Carlo simulation with hundred thousand samples, provided the approximate level
distributions do not contain discrete components, or have restricted support.
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Approximation to elliptic PDEs with high contrast
diffusion coefficients

Matthieu Dolbeault

(joint work with Albert Cohen, Wolfgang Dahmen, and Agustin Somacal)

We consider the elliptic diffusion equation
{

−div · a∇u = f in Ω
u = 0 on ∂Ω

for some domain Ω ⊂ Rd, a fixed source term f ∈ H−1(Ω), and a piecewise
constant diffusion coefficient a : Ω → R∗

+. This setting occurs for instance when
modelling the thermal properties of a heterogeneous material: a takes large values
on conductive components of Ω, and small values in insulating parts.
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Our interest lies in understanding how the solution u depends on the values
taken by a. This question arises in uncertainty quantification, when the material
properties are not precisely known, and one wishes to estimate the statistical
distribution of a quantity of interest, such as the maximal temperature or the
heat flow through a part of the boundary. It is also relevant for the construction
of preconditioners, since classical multilevel methods [1] fail to converge in the
high-contrast regime

maxx∈Ω a(x)

minx∈Ω a(x)
≫ 1.

To describe the similarity between solutions, we resort to reduced order mod-
elling: given the partition of Ω into subdomains Ω1, . . . ,Ωp, we consider the set of
all solutions

K =




u(a) : a =

p∑

j=1

aj1Ωj , (a1, . . . , ap) ∈ (0,∞)p






and estimate its size by bounding the Kolmogorov widths

dn(K)H1
0
= inf

dim(Vn)=n
sup
u∈K

min
v∈Vn

‖u− v‖H1
0
,

that is, the distance between class K and the linear subspace Vn ⊂ H1
0 (Ω) that

best approximates it.
When the values of a are bounded from above and below, it is known from [2]

that the Kolmogorov widths decay as exp(−cn1/p) when n goes to infinity. In the
unbounded case, we prove in [3] that

dn(K)H1
0
≤ C exp(−cn1/2p)

for some constants C, c that depend on the geometry of the partition.
In fact, the above result only holds under a geometric assumption, which is

also required in the construction of multilevel preconditioners adapted to the high
contrast regime [4]. In an ongoing work with Markus Bachmayr [5], we try to single
out the cases where this geometric assumption is not satisfied, in order to treat
them separately. It turns out that when Ω is of dimension d = 2, the only difficulty
is the situation where four subdomains join at a point. Simplifying the geometry
even further, we analyse the case where Ω = [−1, 1]2 is split along the axes into
four smaller squares. Leveraging the homogeneity and the symmetries with respect
to the vertical and horizontal axes, we only need to study a one-parameter family
of solutions, depicted on the image below.

Writing the equation in radial coordinates allows to construct explicit a-har-
monic solutions [6], and the set of these solutions has exponentially decaying Kol-
mogorov widths. Therefore, we expect this rate of convergence to also hold for
more general geometries, which would lead to improvements in reduced-order mod-
els and preconditioners for the diffusion equation.
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Ω3

a3 = 1

Ω2

a2 = 1

Ω1

a1 ≫ 1

Ω4

a4 = a1
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Feedback control under uncertainty

Philipp A. Guth

(joint work with Peter Kritzer and Karl Kunisch)

The approximation of a Riccati-based feedback control law for optimal control
problems constrained by parametric partial differential equations (PDEs) is stud-
ied. Parametric PDEs arise, for instance, from countably infinite series expansions
of random or uncertain coefficients in PDEs. To do so, given a sequence of pa-

rameters σ = (σ)j≥1 ∈ [−1, 1]
N
with i.i.d. uniformly distributed components, let

us consider the parameter-dependent optimal control problem

min
u,y

J (u, y), J (u, y) :=
1

2

(∫ T

0

(
R

(
‖C(y(·; t)− g(t))‖2H

)
+ ‖u(t)‖2U

)
dt

+R
(
‖P (y(·;T )− gT )‖2H

))
,

(1)
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subject to

ẏ(σ; t) = A(σ)y(σ; t) +Bu(t) + f(t) y(σ; 0) = y0.(2)

Given a time horizon T > 0, an initial condition y(σ; 0) = y0 ∈ H , and an ex-
ternal forcing f ∈ L2(0, T ;V ′), the goal is to find a control input u ∈ L2(0, T ;U)
which steers the parameter-dependent state y(σ) as close as possible to the tar-
gets g ∈ C([0, T ];H) and gT ∈ H . The time evolution of the system is de-
scribed by the parameter-dependent A(σ) ∈ L(V, V ′) acting on the current state,
and B ∈ L(U,H) acting on the input control. The operator C ∈ L(H) is an
observation operator and P ∈ L(H).

The following two risk measures are studied: the risk-neutral expected value R
= E, and the risk-averse entropic risk measure R = Rθ, defined as

Rθ(X) :=
1

θ
log

(
E
[
eθX

])
, θ > 0.

The expected values are given as infinite-dimensional parametric integrals E[X ] =∫
[−1,1]N

X(σ) dσ, with respect to the product probability measure dσ :=
⊗

j∈N

dσj

2 .

In the risk-averse case, a quadratic approximation of the entropic risk mea-
sure about ȳ ∈ C([0, T ];L∞(S;H)) leads to the linear quadratic subproblem
minu,y Jquad, subject to (2), where

Jquad(u, y) =
1

2

(∫ T

0

(
E

[
‖QC,ω(ȳ(·; t))1/2(y(·; t)− g̃(·; t))‖2H

]
+ ‖u(t)‖2U

)
dt,

+ E

[
‖QP,ω(ȳ(·;T ))1/2(y(·;T )− g̃T (·))‖2H

])

with target g̃(σ; t) = ȳ(σ; t)−QC,ω(ȳ(σ; t))
−1RC(ȳ(σ; t); t) and terminal target

g̃T (σ) = ȳ(σ;T ) − QP,ω(ȳ(σ;T );T )
−1RP (ȳ(σ;T );T ). The operators QC,ω(ȳ; t)

∈ L(L2(S;H)) and QP,ω(ȳ;T ) ∈ L(L2(S;H)) are given as

〈QC,ω(ȳ(·; t); t)δ1, δ2〉L2(S;H) = Eωθ,C(ȳ(σ;t)) [〈C∗Cδ2(·; t), δ1(·; t)〉H ]

+ 2θCovωθ,C(y(σ;t))

(
〈C (·; t), δ2(·; t)〉H , 〈C (·; t), δ1(·; t)〉H

)

for almost every t ∈ [0, T ] and

〈QP,ω(ȳ(·;T );T )δ1, δ2〉L2(S;H) = Eωθ,P (ȳ(σ;T )) [〈P ∗Pδ2(·;T ), δ1(·;T )〉H ]

+ 2θCovωθ,P (y(σ;T ))

(
〈P(·;T ), δ2(·;T )〉H , 〈P(·;T ), δ1(·;T )〉H

)
,

where we use C (σ; t) := C∗C(ȳ(σ; t)− g(t)) and P(σ;T ) := P ∗P (ȳ(σ;T )− gT ),

RC(ȳ(σ; t); t) := C (·; t)ωθ,C(ȳ(σ; t)), RP (ȳ(σ;T );T ) := P(·;T )ωθ,P (ȳ(σ;T )),
and the expected values as well as the covariances are respectively weighted by

ωθ,C(y(σ; t)) :=
eθ‖C(y(σ;t)−g(t))‖2

H

E
[
eθ‖C(y(·;t)−g(t))‖2

H

] , and ωθ,P (y(σ;T ))=
eθ‖P (y(σ;T )−gT )‖2

H

E
[
eθ‖P (y(·;T )−gT )‖2

H

] .

For θ → 0, the quadratic approximation coincides with the risk-neutral case.
Furthermore, the optimality system of the quadratic approximation is a New-

ton step for the original problem (1)–(2). Thus, repeatedly solving the quadratic
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approximation with updated expansion points results in a so-called sequential qua-
dratic programming (SQP) method [4] for solving the original problem. More pre-

cisely, the sequence of minimisers {(u(k)⋆ , y
(k)
⋆ )}k≥0 generated by repeatedly solving

the linear quadratic subproblems with updated expansion points ȳ(k) = y
(k−1)
⋆ con-

verges locally quadratically to the unique minimiser of the original problem (1)–(2)
provided that the initial guess is sufficiently close to the minimiser. Particularly,
this procedure finds an approximation of the risk-averse optimal control in feed-
back form.

In [5] it has been shown that the optimal control and optimal state-adjoint-
state pair of a parametric linear quadratic optimal control problem are real an-
alytic functions with respect to the parameter sequence under the assumptions
that the family {A(σ) | σ ∈ [−1, 1]N} has a uniformly bounded inverse and
that ‖∂ν

σ
A(σ)‖L(V,V ′) ≤ bν for a monotonically decreasing sequence b = (bj)j∈N,

which is p-summable for some p ∈ (0, 1). Here the following notation is used: for
a sequence b := (bj)j∈N of real numbers and ν ∈ {m ∈ NN

0 | ∑j≥1mj < ∞},
define ∂ν

σ
:= ∂ν1

∂σ1

∂ν2

∂σ2
· · · , and σν :=

∏∞
j=1 σ

νj
j , with the convention 00 := 1.

Based on this result, in [8] it is shown that a Riccati-based feedback law for
an autonomous system (A(·), B, C, P ) admits the same analytic regularity. Such
regularity results are frequently obtained in the context of random field expan-
sions, and can be used for the numerical analysis of the problem; this includes the
so-called dimension truncation [6] (i.e., the truncation of the parameter sequence
to σ≤s := (σ1, . . . , σs, 0, 0, . . .)), the approximation of the high-dimensional inte-
grals over the parameters using higher-order methods, such as quasi-Monte Carlo
methods [3] or sparse-grid methods [1], as well as approximations by generalised
polynomial chaos expansions [2] or deep neural networks [9].

While the parametric regularity for the problem (1)–(2) with the entropic risk
measure is analysed in [7], the analysis of the quadratic approximation of this prob-
lem, with a non-autonomous Riccati equation as well as a parameter-dependent
target, is an interesting open research direction and would enable the design of
efficient algorithms to approximate a feedback law in the risk-averse formulation.
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(Near-)Optimality of Quasi-Monte Carlo Methods and Suboptimality
of the Sparse-Grid Gauss–Hermite Rule in Gaussian Sobolev Spaces

Yoshihito Kazashi

(joint work with Takashi Goda and Yuya Suzuki)

We study the numerical integration of multivariate functions over Rd in high di-
mensions, with particular focus on integration with respect to the standard Gauss-
ian measure:

I(f) :=

∫

Rd

f(x)ρ(x)dx ≈ QN (f),

where ρ(x) := e−|x|2/2

(2π)d/2
, and |x| =

√
x21 + · · ·+ x2d for x ∈ Rd denotes the Euclidean

norm, and QN is a suitable numerical integration rule using N evaluations of f .
In this work, we show that, in terms of convergence rate, sparse-grid Gauss–

Hermite quadrature is suboptimal, whereas several quasi-Monte Carlo (QMC)
methods are optimal. More precisely, for L2-Sobolev spaces of an integer degree
α, the sparse-grid Gauss–Hermite rule achieves a convergence rate O(N−α/2) up
to a logarithmic factor; several QMC methods together with change of variables
achieve O(N−α) up to a logarithmic factor. The rate O(N−α) is in fact optimal,
as there exists a matching lower bound established by Dick et al. [1] for general
numerical integration rules using N -point evaluations. In this sense, QMC meth-
ods considered herein are optimal. In contrast, we also show a lower bound of
the rate N−α/2 for the sparse-grid Gauss–Hermite rule, showing that this rate is
unimprovable more than a logarithmic factor.

Such a gap in convergence rates between the sparse-grid Gauss–Hermite rule
and QMC methods has also been observed numerically by Dick et al. [1] and in
subsequent work by Nuyens and one of the collaborators of the present work [3].
Our theoretical results provide a rigorous explanation of these empirical findings.

We work within the Sobolev space defined by the norm:

‖f‖Hα
ρ
:=




∑

|r|∞≤α

‖Drf‖2L2
ρ




1
2

where ‖g‖L2
ρ
:=

√∫
Rd |g(x)|2ρ(x)dx is the weighted L2-norm. Note that the

summation is taken over multi-indices r with respect to the maximum norm | · |∞,
in contrast to the more commonly used ℓ1-norm | · |1. This space is also known as
the Hermite space of finite smoothness.



1070 Oberwolfach Report 21/2025

Sparse-grid quadrature based on the Gauss–Hermite rule

Let SΛL be the sparse–grid quadrature based on the Gauss–Hermite rule, associ-
ated with the index set ΛL = {ℓ ∈ Nd | 1 ≤ ℓ, |ℓ|1 ≤ L}. Let Quni

ℓ , for ℓ ∈ N,
denote the Gauss–Hermite rule for univariate functions with nℓ quadrature points.
With ∆ℓ(f) := Quni

ℓ (f)−Quni
ℓ−1(f) for ℓ ∈ N and ∆0 := 0, the algorithm SΛL is of

the form

SΛL(f) =
∑

(ℓ1,...,ℓd)∈ΛL

(
∆ℓ1 ⊗ · · · ⊗∆ℓd

)
(f),

where ∆ℓ1 ⊗ · · · ⊗∆ℓd denotes the product rule defined by the difference quadra-
tures, i.e., each quadrature ∆ℓj acts on f by treating it as a univariate function
in the j-th variable, with all other variables held fixed.

Suppose that we choose nℓ as

nℓ ≍M ℓ and nL−d+1 ≥ ed−1,

for some M > 1. Let N denote the resulting total number of the function evalua-
tions used in SΛL . Then, we show

sup
06=f∈Hα

ρ

|I(f)− SΛL(f)|
‖f‖Hα

ρ

≥ cα,dN
−α/2(logN)

a
2
(d−1).

where the constant cα,d > 0 is independent of L and N .
We also show an analogous lower bound for more general, downward-closed

index set, for which we have a lower bound of order N−α/2. These lower bounds
are built upon out previous result in one dimension [2].

The polynomial factor N−α/2 is sharp. Indeed, we can show a matching upper
bound up to a logarithmic factor. Namely, for nℓ ≍M ℓ we have

sup
06=f∈Hα

ρ

|I(f)− SΛL(f)|
‖f‖Hα

ρ

≤ cα,d(logN)(1+
α
2
)(d−1)N−α/2,

where the constant cα,d is independent of f .

Quasi-Monte Carlo with Change of Variables

A quasi-Monte Carlo method is an equal-weight integration rule. Such methods
are typically defined over the unit cube [0, 1]d, i.e.,

1

N

N∑

j=1

f(tj) ≈
∫

[0,1]d
f(x)dx,

where the numerical integration points tj ∈ [0, 1]d, j = 1, . . . , N , are chosen suit-
ably. Popular classes for the choice of tj include lattice points, higher-order digital
nets, and low discrepancy points/sequences (these classes are not mutually exclu-
sive).
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As mentioned above, QMC points are typically defined on the unit cube [0, 1]d.
To integrate functions over Rd, we therefore apply a change of variables:

∫

Rd

f(x) ρ(x) dx =

∫

[0,1]d
f(Ψ(t)) ρ(Ψ(t)) | det(DΨ(t))| dt

≈ 1

N

N∑

j=1

f (Ψ(tj)) ρ (Ψ(tj)) | det(DΨ(tj)| =: QN(f).(1)

We work with non-negative component-wise mappings, Ψ(t) = (Ψ1(t
1), ...,Ψd(t

d)),
in which case the Jacobian factor simplifies as

| det(DΨ(t))| =
d∏

k=1

Ψ′
k(t

k).

In this work, we study two types of change of variables. The first is the affine
map considered in [1]. For b = (b, . . . , b) ∈ (0,∞)d, define the isotropic affine

transformation Ψaffine,b : [0, 1]
d → ∏d

j=1[−b, b] ⊂ Rd by

Ψaffine,b(t) = 2bt− b.

Dick et al. [1] showed that with b =
√
α logN , one can construct a higher order

digital net such that the corresponding method (1) achieves the convergence rate

O( (logN)s
2α+3

4
− 1

2

Nα ) for functions in Hα
ρ .

The other change of variables we consider is a co-tangent Möbius transformation
considered in [4]. Here we define our change of variables Ψcotan : [0, 1]d → Rd by

Ψcotan(t) := (φ(t1), . . . , φ(td)), φ(t) := − cot(2πt).

It can be shown that good rank-1 lattice rules attain the convergence rate
N−α(lnN)dα and higher-order digital nets attain the rate

(2) O(N−α(logN)(d−1)/2).

We reiterate that Dick et al. [1] also showed that the polynomial factor N−α

is the best possible among any numerical integration using N -point evaluations
as information about the integral. Consequently, these rates achieved by QMC
methods with change of variables are not improvable beyond a logarithmic factor.
In fact, the lower bound established therein is of order N−α(logN)(d−1)/2, so the
rate (2) achieved by the higher-order digital nets with the co-tangent transform is
optimal including the logarithmic factor.
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Mathematics of Computation (2025).

Reporter: Hefin Lambley



Uncertainty Quantification 1073

Participants

Prof. Dr. Andrea Barth

Institut für Angewandte Analysis und
Numerische Simulation
Abteilung für Computational Methods
for Uncertainty Quantification
Universität Stuttgart
Allmandring 5b
70569 Stuttgart
GERMANY

Dr. Joshua Chen

Oden Institute for Computational
Engineering and Sciences
The University of Texas at Austin
1 University Station C1200
Austin TX 78712-1082
UNITED STATES

Prof. Dr. Alexey Chernov

Institut für Mathematik
Carl von Ossietzky Universität
Oldenburg
26111 Oldenburg
GERMANY

Prof. Dr. Imma Valentina Curato

Fakultät für Mathematik
TU Chemnitz
Postfach 964
09009 Chemnitz
GERMANY

Prof. Dr. Ana Djurdjevac

Freie Universität Berlin
Arnimallee 6
14195 Berlin
GERMANY

Dr. Matthieu Dolbeault

Institut für Geometrie und Praktische
Mathematik
RWTH Aachen
Templergraben 55
52062 Aachen
GERMANY

Prof. Dr. Oliver Ernst

Fakultät für Mathematik
Technische Universität Chemnitz
09107 Chemnitz
GERMANY

Prof. Dr. Colin Fox

Department of Physics
University of Otago
P.O. Box 56
Dunedin 9054
NEW ZEALAND

Prof. Dr. Caroline Geiersbach

Department Mathematik
Universität Hamburg
Bundesstr. 55
20146 Hamburg
GERMANY

Prof. Dr. Hanno Gottschalk

Fachbereich Mathematik, Sekr.MA 8-5
Technische Universität Berlin
Straße des 17. Juni 136
10623 Berlin
GERMANY

Dr. Philipp Guth

Johann Radon Institute for
Computational and Applied
Mathematics
Austrian Academy of Sciences
4040 Linz
AUSTRIA



1074 Oberwolfach Report 21/2025

Prof. Dr. Helmut Harbrecht

Departement Mathematik und
Informatik
Universität Basel
Spiegelgasse 1
4051 Basel
SWITZERLAND

Prof. Dr. Tapio Helin

Department of Computational
Engineering
LUT University
53851 Lappeenranta
FINLAND

Ly Duc Hoang

Rudower Chaussee 25, Room 1.211
Fachbereich Mathematik
Humboldt Universität Berlin
12161 Berlin
GERMANY

Prof. Dr. Eyke Hüllermeier
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