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Introduction by the Organizers

The workshop Recent Trends in Algebraic Geometry was organised by Olivier
Debarre (Paris), Gavril Farkas (Berlin), Rahul Pandharipande (Zurich), and Claire
Voisin (Paris). There were 18 one-hour talks with a maximum of four talks a
day, and an evening session of short presentations allowing young participants
to introduce their current work (and themselves). The schedule deliberately left
plenty of room for informal discussion and work in smaller groups. The extended
abstracts give a detailed account of the broad variety of topics of the meeting. We
focus on a representative sample here:

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Samir Canning (with Larson, Payne, and Willwacher): Moduli spaces
of curves with polynomial point counts

Canning discussed his recent breakthrough result on determining which moduli
spaces Mg of curves of genus g have a polynomial point count over a finite field.
It has been known for at least 20 years, due to work of Looijenga and Tommasi
that the moduli spaces of curves of genus 3 and 4 have a polynomial point count.
More generally, due to fundamental work of Deligne this point count is intimately
related to the trace of the Frobenius endomorphism on the compactly supported
cohomology of Mg. In particular, it follows that if one odd Euler characteristic
χk(Mg) is not zero, then the point count |Mg(Fq)| is not polynomial. These Euler
characteristics can be understood via Deligne’s weight spectral sequence on Mg

and it follows that if for all boundary strata MΓ corresponding to a dual graph Γ
of a stable curve of genus g, the invariant part of the cohomology ofMΓ is of Tate
type, then the point count of Mg is polynomial. This methods is used to great
effect to show that the point count of Mg is polynomial for g ≤ 8.

To prove that for remaining cases the point count is not polynomial, Canning
and his collaborators use the 11-th cohomology of Mg,n, taking advantage of the
fact that in genus 1 one has non-zero cohomology at the level of M1,n for n ≥ 11.
At the end of the day they manage to prove that χ11(Mg) 6= 0 for g ≥ 9 but g 6= 12,
whereas χ13(M12) = −6, thus completing the proof of this impressive result.

Stefan Schreieder (with Engel and de Gaay Fortman): On the integral
Hodge conjecture for abelian varieties.

Stefan Schreieder presented, for the first in front of any audience, a superb re-
sult on the rationality and the topology of algebraic varieties. A very important
achievement of the 1970’s was the Clemens-Griffiths theorem saying that a smooth
cubic threefold X is not rational. Their argument involved the intermediate Jaco-
bian of X, a 5-dimensional principally polarized abelian variety, that they proved
not to be a isomorphic to a product of Jacobians of curves, while the rationality
of X would imply that it is. In the same period, Artin and Mumford exhibited
rationally connected threefolds that are not stably rational, (which means that
their product with any projective space is not rational). The question whether
the (very general) cubic threefold is stably rational or not remained open since.
Together with Ph. Engel and O. de Gaay-Fortman, Schreieder established the
stable irrationality of a very general cubic threefold over the complex numbers.

Another question that has been open for 50 years was whether an abelian va-
riety over the complex numbers satisfies the integral Hodge conjecture, and more
specifically, by looking at integral Hodge homology classes of degree 2, whether
the minimal curve class of a principally polarized abelian variety is algebraic. The
three authors prove that the minimal curve class is not algebraic on the interme-
diate Jacobian of a very general cubic threefold. This implies in turn its stable
irrationality by previously known results.
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Junliang Shen (with Maulik, Yin, and Zhang): The D-equivalence con-

jecture for K3[n]-type.

Let X and X ′ be nonsingular, projective, complex Calabi-Yau varieties. The D-
equivalence conjecture of Bondal-Orlov states that if X and X ′ are birational,
then there is an equivalence of bounded derived categories

Db(X) ≃ Db(X ′) .

The conjecture, now almost 30 years old, has been settled in relatively few cases
(the conjecture holds for Calabi-Yau 3-folds by Bridgeland’s results and for hy-
perkähler 4-folds by work of Kawamata and Namikawa). Recently, Halpern-
Leistner proved the D-equivalence conjecture for moduli spaces of stable sheaves
on K3 surfaces. These moduli space are all hyperkähler of K3[n]-type. The main
result presented in Junliang Shen’s lecture was the proof of the the D-equivalence
conjecture for all hyper-Kahler varieties of K3[n]-type.

His talk represented joint work with D. Maulik, Q. Yin, and R. Zhang. In fact,
the results were stronger: Shen and his collaborators construct explicit Fourier-
Mukai kernels using the earlier work of Markman on hyperholomorphic bundles.
Moreover, a more general version of the D-equivalence conjecture is proven for
bounded derived categories of twisted sheaves on X and X ′.

Margarida Melo (with Brandt, Bruce, Chan, Moreland, and Wolfe):
On the top weight rational cohomology of the moduli space of abelian
varieties and universal Jacobians.

The talk of Melo, delivered at the very end of the conference displayed fascinating
analogies with the one of Canning, at the very beginning of the conference and con-
cerned the moduli space Ag of principally polarized abelian varieties of dimension
g. The moduli space Ag being a quotient of a symmetric domain by the action of
the symplectic group Sp2g(Z), its Euler characteristic and stable cohomology have
been long understood due to fundamental work of Borel. In spite of that the full
cohomology of Ag has only been known for g ≤ 3 and it has been a long-standing
open problem whether there is any odd degree cohomology class on Ag.

Melo and her collaborators determine the top degree cohomology of Ag for
g ≤ 7, in particular they show that odd degree cohomology appears both on
A5 (in degree 15) and on A7 (in degrees 33 and 37). The method of proofs
relies on the Deligne’s weight spectral sequence and one fact that the boundary
complex of a certain compactification of Ag can be identified with the link over
the tropicalization of Ag. This reduces the problem of determining the top weight
cohomology of Ag to highly sophisticated graph complex calculations that the
authors manage to carry out in the range mentioned above.

Introductory talks from (and conversations with) younger (or not) par-
ticipants.

On Tuesday evening, volunteering participants had the opportunity to present
snapshots of their research in the form of five minute, one blackboard talks. The
list of speakers was established by Cécile Gachet, and the session was moderated by
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Dan Abramovich. The presentations, listed below, covered a similarly wide range
of topics. This speakers included those younger participants in the workshop who
did not have the opportunity to give a one-hour talk. As with previous years’
young participants, we expect these researchers to quickly establish themselves as
leaders in their areas. Here is a list of the presentations that were given. The first
half featured:

Aitor Iribar Lopez: The tautological ring of Mumford’s partial compactification
Matteo Verni: Lefschetz defect in families
Carolina Tamborini: Abelian varieties with a G-action and curves
Federico Moretti: Degree of irrationality of low genus K3 surfaces

After a short break, we resumed for the second half with:

Ignacio Barros: Extremal divisors on moduli of K3 surfaces
Alexandrou Theodosis: Torsion and divisibility structure of higher Chow groups
Charles Vial: Splinters in positive characteristics
Johannes Schmitt: IMProofBench – a benchmark for AI mathematical reasoning

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Aitor Iribar López (joint with Rahul Pandharipande, Hsian-Hua Tseng.)
Counting maps to an elliptic curve in several ways . . . . . . . . . . . . . . . . . . . 1492

Burt Totaro
Chow groups with twisted coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1495

Mark Andrea A. de Cataldo (joint with Yoonjoo Kim, Christian Schnell)
The group scheme of symmetries of a Lagrangian fibration . . . . . . . . . . . . 1497



1456 Oberwolfach Report 28/2025

Johannes Schmitt (joint with Tim Gehrunger, Jeremy Feusi, Gergely Bérczi)
IMProofBench: Building a benchmark for AI mathematical reasoning
through collaborative problem creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1498

Zsolt Patakfalvi (joint with Fabio Bernasconi, Stefano Filipazzi,
Nikolaos Tsakanikas)
A counterexample to the log canonical Beauville–Bogomolov decomposition 1500

Jenia Tevelev (joint with Elias Sink, Sebastián Torres)
Semi-orthogonal decompositions of Fano moduli spaces . . . . . . . . . . . . . . . 1503

Margarida Melo (joint with Madeleine Brandt, Juliette Bruce, Melody
Chan, Gwyneth Moreland, Corey Wolfe)
On the top weight rational cohomology of the moduli space of abelian
varieties and universal Jacobians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1507



Recent Trends in Algebraic Geometry 1457

Abstracts

Enumeration on the self-dual analogue of the Hilbert scheme of points

Joachim Jelisiejew

(joint work with Andrea Ricolfi, Reinier Schmiermann)

The Hilbert scheme of points Hilbd(X) is typically highly singular for dimX > 2,
even if X = An

k. There are plenty of open questions about its geometry, see [2].
Two known classes of smooth points [Z] ∈ Hilbd(A

n) are

• local complete intersections Z, for any n,
• Gorenstein schemes Z, for n = 3, see [4].

A finite k-scheme Z is Gorenstein if there exists an isomorphism q : ωZ → OZ

of OZ -modules. Such an isomorphism can be interpreted as a symmetric bilinear
form

q : OZ ×OZ → k,

which satisfies q(f1f2, f3) = q(f1, f2f3). We call it the orientation of Z. The

locus HilbGor
d (An) ⊆ Hilbd(A

n) is open. It is thus interesting to look for (partial)
compactifications of this locus other than the Hilbert scheme.
In enumerative geometry, the singularities of Hilbd(A

n) are avoided, for n = 3, 4,
by introducing a virtual fundamental class and using virtual localization, for ex-
ample see, [6, §11] for n = 3. To construct the virtual fundamental class, it is
useful to present Hilbd(A

n) as the free quotient, for a fixed d-dimensional vector
space V :

{
X1, . . . , Xn ∈ End(V ), v ∈ V

∣∣∣ ∀i,j [Xi, Xj ] = 0, stability
}
/GL(V )

where stability denotes the open condition k[X1, . . . , Xn]v = V . It is only natural
to ask if above one can replace End(V ) by some classical subalgebra. We fix a
full rank quadric Q on V and consider Sym2 V ≃ End(V )sym ⊆ End(V ), here
chark 6= 2. We may form a free quotient by the orthogonal group O(Q), keeping
same commutativity and symmetry conditions

{
X1, . . . , Xn ∈ End(V )sym, v ∈ V

∣∣∣ ∀i,j [Xi, Xj] = 0, stability
}
/O(Q)

and the points of this quotient corresponds to pairs ([Z], q), where Z ⊆ V ∨ is
Gorenstein and q is its orientation. However, localization in this setup fails, be-
cause there are not enough torus fixed points. Again, it is desirable to construct a
(partial) compactification which takes into account the orientation. The Iarrobino
scheme is such a compactification.
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Completed quadrics and Iarrobino scheme [3]

The variety CQ(V ) of completed quadrics [5,8] is a wonderful compactification of
the space of full rank quadrics on V . We have

CQ(V )(k) = {[q0], [q1], . . .} ,

where [q0] ∈ P Sym2(V ) is the class of quadric of any nonzero rank, q1 : ker q0 →
coker q0 is a “residual” quadric, in particular q⊤1 = q1, next, if ker q1 is nonzero,
then q2 : ker q1 → coker q1 a “next order residual” quadric and so on.

The geometry of CQ(V ) is very rich and beautiful, however all available con-
structions are rather intricate [7, §10]. It is log-homogeneous [1] and admits [3] a
remarkable subbundle CompV ⊆ End(V )CQ(V ). An element M ∈ End(V ) belongs
to (CompV )|[q•] if the following are satisfied

(1) M preserves the flag V ⊇ ker q0 ⊇ ker q1 ⊇ ker q2 ⊇ . . .,

(2) the induced operators M |Ni
on Ni :=

ker qi
ker qi+1

are symmetric with respect

to the full rank quadric qi|Ni
for every i = −1, 0, . . ..

If the above holds, we say that M and [q•] are compatible. For example, if q0
has full rank, then a compatible M is an element symmetric with respect to q0.
On the other extreme, if q0, q1, . . . are all rank one, then the symmetry condition
becomes vacuous and M is compatible if and only if it preserves the flag. In this
way, CompV features a degeneration from symmetric to upper-triangular matrices.

The functor CQ(−) generalizes from vector spaces to arbitrary vector bundles.
Let X be a k-scheme. For any finite flat family SpecB → SpecA we define
CCQ(A → B) as the functor of compatible pairs M ∈ B, [q•] ∈ CQ(B). The
Iarrobino scheme of d points on X Iard(X) is defined as CCQ(U → Hilbd(X)),
where U is the universal family. It follows that

Iard(X)(k) =

{
Z =Z0 ⊇Z1 ⊇ . . . , [q•] | qi :

IZi

IZi+1

→

(
IZi

IZi+1

)∨

iso. of OZ-mod

}
,

where qi are symmetric. The locus of oriented Gorenstein algebras (Z ⊆ X, q)
embeds as open subset of Iard(X), where q0 := q. The scheme Iard(X) is projective
over Symd(X), hence virtual localization is possible.

Virtually (in the popular sense) nothing is known about the geometry of Iard(X).
We summarize below some observations from [3]:

• For C a smooth curve, Iard(C) is smooth. The natural map π : Iard(C) →
Hilbd(C) is flat, but not smooth. In comparison with Hilbd(A

1) ≃ Ad,
the geometry of Iard(A

1) is much more interesting, this scheme contains
projective subschemes such as permutohedral toric varieties.

• Already Iard(A
2) is not smooth, however it admits a perfect obstruction

theory. It is plausible, but as of today open, whether Iard(S) admits a
perfect obstruction theory for every smooth surface S.

The forgetful map π : Iard(−) → Hilbd(−) a priori connects two different ge-
ometries, governed by GLd and Od, respectively. Despite this, the map be-
haves very regularly, at least in low dimensions. Namely, for X = A1, we have
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Rπ∗OIard(X) = OHilbd(X). For X = A2, conjecturally, we have

Rπ∗O
vir
Iard(A2) ≃ OHilbd(A2),

where Ovir is the virtual structure sheaf which lives in K-theory. The scheme
Iard(A

2) admits interesting bundles which may serve as insertions for the virtual
counts. It is of interest to compare results of such counts with Haiman’s theory of
Hilbd(A

2).
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Moduli spaces of curves with polynomial point count

Samir Canning

(joint work with Hannah Larson, Sam Payne, Thomas Willwacher)

A fundamental counting question in algebraic geometry is to determine the number
of curves of genus g over a finite field with q elements, up to geometric isomorphism.
Let Mg be the moduli space of nonsingular curves of genus g. By [4, 6], the
following point counts are known:

#M2(Fq) = q3,#M3(Fq) = q6 + q5 + 1, and #M4(Fq) = q9 + q8 + q7 − q6.

In each case, the count is polynomial in the size of the field. We prove that
polynomiality occurs only for small genera.

Theorem ([3, Theorem 1.1]). The count #Mg(Fq) is polynomial in q if and only
if g ≤ 8.

The theorem is proven by a study of the cohomology of Mg, which is related
to the point count by the Grothendieck–Lefschetz trace formula:

#Mg(Fq) =
∑

i

(−1)itr(Frob∗q |H
i
c(Mg,Fq

,Qℓ)).
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Here, Frob∗q is the map induced by Frobenius on the compactly supported ℓ-adic
cohomology of Mg,Fq

, where ℓ is a prime such that (ℓ, q) = 1.

By the Weil conjectures, the eigenvalues of Frob∗q acting on Hi
c(Mg,Fq

,Qℓ) are

algebraic integers whose absolute values under any embedding of Qℓ →֒ C are qk/2,
where k is an integer such that 0 ≤ k ≤ i. The numbers k are referred to as the
weights, and they define a filtration

W0H
i
c(Mg) ⊂ · · · ⊂WiH

i
c(Mg)

on the compactly supported cohomology. For example, the top compactly sup-
ported cohomology

H6g−6
c (Mg,Qℓ) = Qℓ(−3g + 3)

is of weight 6g− 6. More generally, Qℓ(−k) has weight 2k. If H∗
c (Mg) is a sum of

Qℓ(−k) for possibly varying k, we say that H∗
c (Mg) is Tate. If H∗

c (Mg) is Tate,
then #Mg(Fq) is polynomial in q, providing a method to prove polynomiality.

We also need a method to obstruct polynomiality. The weight k Euler charac-
teristic is defined as

χk(Mg) =
∑

i

(−1)i dim(grWk Hi
c(Mg)).

Lemma. If there is an odd k such that χk(Mg) 6= 0, then #Mg(Fq) is not
polynomial in q.

The weight filtration can be computed from a spectral sequence corresponding
to the choice of a normal crossings compactification. The moduli space Mg has

a canonical such compactification, the moduli space Mg of stable curves. The

boundary of Mg is stratified by the topological type of stable curves, which is
encoded in terms of stable graphs Γ of genus g. For each such stable graph, we set

MΓ =
∏

v∈V (Γ)

Mg(v),n(v),

where V (Γ) is the set of vertices of Γ, g(v) is the genus assignment of the vertex
v, and n(v) is the number of incident half-edges to v.

The stratification by stable graphs gives rise to the weight spectral sequence

(1) Ej,k
1 =

⊕

|E(Γ)|=j

(Hk(MΓ)⊗ detE(Γ))Aut(Γ) ⇒ Hj+k
c (Mg),

which degenerates at E2. The associated filtration on E∞ is the weight filtration.
Here, E(Γ) is the set of edges of Γ, and detE(Γ) is the sign of the permutation
representation of the automorphism group Aut(Γ) on the edge set.

When g ≤ 8, we prove that every entry on the first page of the spectral sequence
(1) is Tate, and thus so is H∗

c (Mg). It is not true that H∗(MΓ) ⊗ detE(Γ) is
Tate, but the non-Tate part is not invariant under the Aut(Γ) action.

When g ≥ 9, we analyze the generating function for the weight 11 Euler char-
acteristic χ11(Mg), which was calculated by Payne and Willwacher [5]. The lower
odd weight Euler characteristics vanish by theorems of Arbarello–Cornalba and
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Bergström–Faber–Payne [1, 2]. Computer calculations show that χ11(Mg) 6= 0
for 9 ≤ g < 600 and g 6= 12. Asymptotic analysis shows that χ11(Mg) 6= 0 for
g ≥ 600. Nevertheless, χ11(M12) = 0. To handle the final case, we compute the
thirteenth cohomology of Mg,n for all g and n [3, Theorem 1.7].

Using the preceding theorem, we calculate that χ13(M12) = −6, finishing the
proof of the main result.
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On minimal exponents of hypersurface singularities

Mircea Mustaţă

The goal of the talk was to give an overview of some recent work on the minimal
exponent. After the definition in terms of b-functions and the characterization in
terms of V -filtration, we discussed the connection with higher Du Bois and rational
singularities, and stated two recent results from [1] and [2].

1. The setup. Let X be a smooth, irreducible, n-dimensional complex algebraic
variety and Z a (nonempty) hypersurface in X , defined by f ∈ OX(X). By
a log resolution of (X,Z), we mean a proper morphism π : Y → X , that is an
isomorphism over X \Z, with Y smooth, and such that E := π∗(D)red is a simple
normal crossing divisor.

2. Classical invariants. Let us recall briefly some well-known notions in bira-
tional geometry. For λ ∈ Q>0, the multiplier ideal J (λZ) is given by

J (λZ) :=
{
g ∈ OX | |g|2

|f |2λ
is locally integrable

}
.

Algebraically, this can be described in terms of a log resolution π of (X,Z):

J (λZ) = π∗OY

(
KY/X − ⌊λπ∗(Z)⌋

)
.

The log canonical threshold lct(Z) is defined as

min
{
λ ∈ Q>0 | J (λZ) 6= OX

}
.
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The algebraic and analytic descriptions of the multiplier ideals give correspond-
ing descriptions for the log canonical threshold. The invariant we focus on is a
refinement of the log canonical threshold.

3. The minimal exponent. By a theorem of Bernstein and Kashiwara, there is
a nonzero polynomial b(s) ∈ C[s] such that

(1) b(s)f s ∈ DX [s] · f s+1,

where DX is the sheaf of differential operators on X . The set of such b(s) forms
an ideal in C[s] and the monic generator of this ideal is the b-function bf (s).

It is a result of Kashiwara [5] that all roots of bf are negative rational numbers.
Furthermore, by a result of Lichtin and Kollár [6], the largest root of bf is −lct(Z).
On the other hand, by specializing s = −1 in (1), one can see that bf (−1) = 0. The
minimal exponent α̃(Z) was defined by Saito as the negative of the largest root of
bf (s)/(s + 1), with the convention that it is ∞ if bf(s) = s + 1 (it is a theorem
that this is the case if and only if Z is smooth). This invariant was systematically
studied in the 80s by Varchenko, Steenbrink, Malgrange, Loeser, etc for isolated
singularities. In that setting, it was known as Arnold exponent, and was defined
using asymptotic expansions of integrals over vanishing cycles.

Note that lct(Z) = min
{
α̃(Z), 1

}
, hence the minimal exponent provides inter-

esting information when lct(Z) = 1. It is a result of Saito [11] that α̃(Z) > 1 if
and only if Z has rational singularities.

Example. If f = xa1
1 + . . .+ xan

n , with ai ≥ 2 for all i, then α̃(Z) =
∑n

i=1
1
ai
.

The definition in terms of b-functions is not very useful for proving properties
of the minimal exponent. A much more useful characterization was provided
by Saito in [12] in terms of the V -filtration of Kashiwara and Malgrange. This
allows relating the minimal exponent to the Hodge filtration on OX [1/f ] and, more
generally, to the one on OX [1/f ]f−α. Using this, several general properties of the
minimal exponent (such as the behavior in families or under taking hyperplane
sections) were proved in [9].

4. Higher singularities. The minimal exponent has been useful in describing
some higher-order versions of Du Bois and rational singularities, as follows.

Theorem 1 ([8], [4]). The hypersurface Z has p-Du Bois singularities (that is,

the canonical morphism Ωi
Z → Ωi

Z is an isomorphism for all i ≤ p, where Ωi
Z

denotes the i-truncation of the Du Bois complex of Z) if and only if α̃(Z) ≥ p+1.

Similarly, α̃(Z) can be used to detect p-rational singularities in the sense of

Friedman and Laza. This means that if µ : Z̃ → Z is a resolution of singularities
that is an isomorphism over Z\Zsing, with E = µ−1(Zsing)red having simple normal
crossings, then Ωi

Z → Rµ∗Ω
i
Z̃
(logE) is an isomorphism for all i ≤ p.

Theorem 2 ([3], [10]). The hypersurface Z has p-rational singularities if and only
if α̃(Z) > p+ 1.

5. A birational description of the minimal exponent. We now give a
description of α̃(Z) in terms of a log resolution π of (X,Z), following [1]. More
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precisely, we describe when α̃(Z) > λ, for some λ ∈ Q≥0. We treat separately the
cases when λ ∈ Z and λ 6∈ Z.

Theorem 3. If p is a nonnegative integer, then α̃(Z) > p if and only if the
following conditions hold:

i) Rqπ∗Ω
i
Y (logE) = 0 for all q ≥ 1 and i ≤ p.

ii) codimZ(Zsing) ≥ 2p.

This result follows easily from the characterization of (p − 1)-rational singu-
larities in Theorem 2. The point is that the condition in ii) allows restating the
vanishings in i) as similar vanishings for higher direct images of sheaves of log
forms on a resolution of Z.

Theorem 4. Let p be a nonnegative integer and α ∈ (0, 1) ∩Q.

i) If α̃(Z) ≥ p, then the canonical map

(2) Rqπ∗Ω
n−p
Y (logE)

(
− E − ⌊απ∗(D)⌋

)
→ Rqπ∗Ω

n−p
Y (logE)(−E)

is an isomorphism for all q 6= p and it is injective for q = p.
ii) If α̃(Z) > p, then we have α̃(Z) > p + α if and only if the map in (2) is

an isomorphism also for q = p.

Note that for p = 0, the assertion in ii) above says that α̃(Z) > α if and only if
J (αZ) = OX .

6. A characterization via the poles of the Archimedean zeta function.
Suppose, for simplicity, that X = An

C and f ∈ C[x1, . . . , xn]. For every smooth
function ϕ on X , with compact support, it is easy to see that the expression

Zf,ϕ(s) =

∫

Cn

|f(z)|2sϕ(z)dzdz

is well-defined and holomorphic for Re(s) > 0. It is an important result, first
proved by Bernstein-Gelfand and Atiyah using the existence of log resolutions, and
then reproved by Bernstein using the existence of b-functions, that Zf,ϕ extends
meromorphically to C. In this way, we can view Zf as a meromorphic function on
C with values in distributions. This is the Archimedean zeta function of f . It is a
consequence of the approach via log resolutions that all poles of Zf are negative
rational numbers, with the largest pole being −lct(Z) (of course, this is related to
the analytic description of the log canonical threshold).

It can be shown that, in general, Zf has a pole of multiplicity ≥ 1 at every
element of Z<0. A nontrivial pole of Zf is a pole that is not in Z<0 or is in Z<0,
but its multiplicity as a pole is ≥ 2. The following recent result of Davis, Lörincz,
and Yang from [2] gives a characterization of the minimal exponent in terms of
the poles of Zf . The case when Z has isolated singularities was proved by Loeser
in [7].

Theorem 5. The largest notrivial pole of Zf is −α̃(Z).
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Quadratic and real Donaldson–Thomas invariants for spin threefolds

Marc Levine

(joint work with Anneloes Viergever)

Enumerative geometry relies on the intersection theory furnished by the Chow
ring/Chow groups, with input given by cycle classes, Chern classes of vector bun-
dles, virtual fundamental classes . . .. Using the six-functor formalism for the mo-
tivic stable homotopy category, Déglise-Jin-Khan have developed an analogous
intersection theory for an arbitrary motivic commutative ring spectrum. We will
give an introduction to this theory and its applications to giving refinements to the
Grothendieck-Witt ring of many known integer-valued invariants for enumerative
problems.

1. Generalized cohomology and Borel-Moore homology for a
motivic commutative ring spectrum

Consider the motivic stable homotopy category as a functor (B a noetherian
scheme of finite Krull dimension, SchB = finite type separated B-schemes.)

SH(−) :Schop
B → Triangulated tensor categories

X 7→ SH(X)

f : Y → X 7→ f∗ : SH(X) → SH(Y )
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with the additional structure of a six-functor formalism [5]. Déglise-Jin-Khan [2]
use this to give, for each motivic commutative ring spectrum E ∈ SH(B), the
theories of twisted E-cohomology and twisted E-Borel Moore homology

(X, v ∈ K(X)) 7→ E∗,∗(X, v), EB.M.
∗,∗ (X, v)

Examples: k a field, B = Spec k. We have motivic commutative ring spectra
EM(KM

∗ ),EM(KMW
∗ ),EM(W∗) ∈ SH(k).

• The Chow groups

CHn(X) = EM(KM
∗ )2n,n(X),CHn(X) = EM(KM

∗ )B.M.
2n,n (X)

• The Chow-Witt groups

C̃H
n
(X,L) = EM(KMW

∗ )2n,n(X,L−O), C̃Hn(X,L) = EM(KM
∗ )B.M.

2n,n (X,L−OX)

• Witt-sheaf cohomology

Hn(X,W(L)) = EM(W∗)
n,0(X,L−O),

HB.M.
n (X,W(L)) = EM(W∗)

B.M.
n,0 (X,L−OX).

2. Localization and virtual localization

One has Atiyah-Bott torus localization and the Bott residue theorem for the T =
Gn

m-equivariant Chow groups [3]. T -localization fails for Witt sheaf cohomology,
but there is a replacement: N -localization, with N the normalizer of the diagonal
torus in SL2[7].

There are also “virtual localization theorems”: A perfect obstruction theory
φ on X gives a virtual fundament class [X,φ]vir ∈ CHr(X), r = rank(φ). This
generalizes to a virtual fundamental class [X,φ]virW ∈ HB.M.

r (X,W(detφ)). There

are equivariant versions [X,φ]virG ∈ CHG
r (X), [X,φ]virG,W ∈ HB.M.

G,r (X,W(detφ)) if
X has a G-action for which φ is G-linearized.

The Graber-Pandharipande virtual T -localization for the CH∗-virtual classes
[4] shows how to compute [X,φ]virT by restriction to XT . I [8] showed how to
generalize this to a similar looking virtual localization theory for [X,φ]virN,W .

3. Degrees and orientations

To transform classes in CH0(X) to integers, for p : X → Spec k proper, one
applies the degree map degk := p∗ : CH0(X) → CH0(Spec k) = Z. Given a
class x ∈ HB.M.

0 (X,W(L)), one needs an orientation, that is, an isomorphism
ρ : L→M⊗2, to get a degree map degρk : HB.M.

0 (X,W(L)) →W (k) by

HB.M.
0 (X,W(L))

ρ
−→ HB.M.

0 (X,W(M⊗2))

can
−−→ HB.M.

0 (X,W)
p∗

−→ HB.M.
0 (Spec k,W) =W (k)

Proposition 1 (L. [6]). Let X be a smooth projective threefold over k with a spin

structure, i.e., an isomorphism τ : ωX/k
∼
−→M⊗2. Then for each n ≥ 1, τ induces

an orientation ρn : detφDT,n → L⊗2
n , where φDT,n is the Donaldson-Thomas

perfect obstruction theory on Hilbn(X).
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Definition 2. For X a smooth projective threefold with spin structure, taking
the degree of [Hilbn(X), φDT,n]

vir
W ∈ HB.M.

0 (Hilbn(X),W(detφDT,n)) defines the
nth quadratic D-T invariant

IWn (X) := degρn

k ([Hilbn(X), φDT,n]
vir
W ) ∈W (k).

4. Some examples

For X a smooth projective threefold, let In(X) = degk([Hilb
n(X), φDT,n]

vir
CH) ∈ Z,

and let M(t) be the MacMahon function

M(t) :=
∏

n≥1

(1− tn)−n = 1 +
∑

n≥1

Pnt
n

counting plane partitions.
We recall

Theorem 3 (MNOP [13], Behrend-Fantechi [1], Li [12], L.-Pandharipande [10]).
For X a smooth projective threefold over C we have

1 +
∑

n≥1

In(X) · qn =M(−q)deg c3(TX⊗KX)

MNOP=Maulik, Nekrasov, Okounkov, Pandharipande.
Two results for the Witt-sheaf versions:
Take k = R, soW (k) =W (R) = Z by the signature map, giving for X a smooth

projective spin threefold over R the generating function

1 +
∑

n≥1

IWn (X)qn ∈ Z[[q]].

Theorem 4 (Viergever [14]). For k = R, IWn (P3) = 0 for n odd and

1 +
∑

n≥1

IWn (P3) · qn =M(−q2)−10 mod q8,

that is, IW2 (P3) = 10, IW4 (P3) = 25, IW6 (P3) = −50.

Theorem 5 (L.-Viergever [11]). For k = R, IWn ((P1)3) = 0 for n odd and

1 +
∑

n≥1

IWn ((P1)3) · qn =M(q2)8

Both results use N -localization for the proof, relying heavily on computations
used by MNOP [13] for the case of toric threefolds.
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Birational automorphism group of the Jacobian of a general
Kummer quartic

Shigeru Mukai

The lattice II1,17(2
+6) is reflective and its orthogonal group has a fundamental

domain with 896+64 facets by Borcherds [4, §12]. This is the Picard lattice (with
respect to the Beauville form) of the Jacobian symplectic 6-fold

Jac2|h| :=
∐

D∈|h|

Jac2D

of a very general Kummer quartic surface (S, h) ⊂ (P3,O(1)).

Main Theorem The birational automorphism group of Jac2|h| is generated by
864 modified reflections with respect to the above 896 − 32 facets and a group of
order 210 whose center is Rapagnetta’s involution ([13]).

1. Lattices

Let (L, 〈 , 〉) be a lattice, i.e., a free Z-module with a non-degenerate symmetric
bilinear form 〈 , 〉 : L× L→ Z.

1.1. Reflective lattices. We consider the hyperbolic case, namely, the signature
is (1, ∗) and the orthogonal group O+(L) of L preserving a positive cone C+. The
orthogonal transformation

rm : x→ x−
2〈x,m〉

〈m2〉
m

https://arxiv.org/abs/2305.15513
https://arxiv.org/abs/2203.13882
https://arxiv.org/abs/2203.15887
https://arxiv.org/abs/2503.14420
https://arxiv.org/abs/2312.09882
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defined for a primitive element m ∈ L with 〈m2〉 < 0 is called a reflection of L if it
preserves L, i.e., rm(L) ⊂ L. m ∈ L (or −m) is called the center of the reflection.
A lattice L is called reflective if the subgroup generated by all reflections of L is
of finite index in O+(L).

By Esselmann [7], reflective lattices exist only in the range rankL ≤ 22. For
example, U + D20, U + D18, U + D17, · · · are reflective lattices belonging to the
Conway-Vinberg chain ([5] = [6, Chap. 28]).

1.2. Notations and convention. Throughout this abstract, we work over the
complex number field C.

• An, Dn and E6,7,8 denote the negative definite root lattices of ADE-type,
generated by (−2)-vectors.

• U denotes the hyperbolic lattice

(
Z2,

(
0 1
1 0

))
of rank two.

• Disc(L) := Coker[L→ Hom(L,Z)] (with Q/2Z-valued quadratic form)
• IIa,b(∗∗) The genus of even lattices of signature (a, b) with discriminant
type ∗∗. For example, ∗∗ = 2+2a means that Disc(L) is a 2-elementary
group of length 2a and the discriminant form is of even integral type ([15]).

• G = L ⋊⋉ R means the semi-direct product with normal subgroup L (in
the left).

1.3. Kummer lattice. Let A be an abelian surface and Km(A) be its Kummer
surface, i.e., the minimal resolution of the quotient A/ ± 1A. The Picard lattice
of Km(A) contains the lattice 16A1 as sub-lattice. The Kummer lattice Kum is
the primitive hull of 16A1 in the Picard lattice. The isomorphism class of Kum
does not depend on A. In fact, it is explicitly described by the Reed-Muller code
[16, 8, 4], the binary code of length 16, minimal weight 8 and dimension 4. The code
is generated by four words c1 = (0000000011111111), c2 = (0000111100001111)
c3 = (0011001100110011) and c4 = (01010101010101). Then we have,

Kum = 16A1 +

4∑

i=1

Z
ci
2
+ Z

(1111111111111111)

2
.

Kum belongs to II0,16(2
+6) and hence U +Kum belongs to II1,17(2

+6). By the
uniqueness theorem of indefinite lattices (Nikulin [15]), II1,17(2

+2a) consists of the
unique lattice. Hence we use U +Kum and II1,17(2

+6) interchangeably.

2. Known geometric realization (ρ = 18)

For a = 0, 1, 2, the lattice II1,17(2
+2a) is realized as the Picard lattice of a K3

surface S, and gives an explicit description of the automorphism group Aut(S).

a = 0 (The unimodular lattice) II1,17 ≃ U+E8+E8 is realized by an elliptic K3

surface with 2 reducible fibers of (Kodaira) type Ẽ8. In this case Aut(S)
is finite (Vinberg [17]).

a = 1 II1,17(2
+2) ≃ U +D16. S is the minimal resolution of the double P1 × P1

studied by Horikawa, Dolgachev, Barth-Peters, M.-Namikawa etc. in 80’s.
The automorphism group Aut(S) is virtually Z.
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a = 2 II1,17(2
+4) ≃ U + D8 + D8. S is the Kummer surface Km(E1 × E2) of

product type. The orthogonal group O+(II1,17(2
+4)) is the semi-direct

product

〈24 (−2)−reflections, 24 (−4)−reflections〉 ⋊⋉ (24.S4,4).

The centers of (−2)-reflections are represented by P1’s and all (−4)-reflections
are geometrically realized by involutions after suitable modification.

Theorem. (Keum-Kondo [11]) The automorphism group of Km(E1 × E2) for
general elliptic cuves E1, E2 is the semi-direct product

〈24 modified (−4)−reflections〉 ⋊⋉ 24.

a = 3 The next is our lattice II1,17(2
+6) ≃ U +Kum but no more realized as

Picard lattice of a K3 surface S since the sum of the rank and the length
of discriminant group exceeds 22, the second Betti number of S.

But . . .

3. Main theorem

. . . our lattice U+Kum is realized as the Picard lattice of a holomorphic symplectic
6-fold associated with a general Kummer quartic surface. More precisely, let S̄ ⊂
P3 be a Kummer quartic surface of a general curve C of genus 2. S̄ is the image
of the Jacobian surface JacC by the linear system |2Θ|. The minimal resolution
S is the Kummer surface of JacC. We denote the hyperplane section class of
S → S̄ ⊂ P3 by h. Consider the (compactified) Jacobian fibration Jacd |h| → |h|,
whose fiber at [D] ∈ |h| is JacdD. In terms of standard notation of moduli of

sheaves, Jacd |h| is MS(0, h, d − 2). By general theory, Jacd |h| is a holomorphic
symplectic 6-fold of deformation type K3[3]. The birational class does not depend
on d but only on its parity. When d is odd, Jacd |h| is birationally equivalent to
the Hilbert square Km(C)[2].

Now we restrict ourselves to the even case, i.e., the symplectic 6-fold Jac2 |h|. By
general theory again, its Picard lattice (with respect to the Beauville-Bogomolov-
Fujiki form) is the orthogonal complement of (0, h, 0) in U + Pic(S). Since the
orthogonal complement of h in Pic(S) is the Kummer lattice Kum, we have
(0, h, 0)⊥ ≃ U +Kum.

Theorem. (Borcherds [4, p. 346]) The orthogonal group O+(II1,17(2
+6)) is the

semi-direct product

〈64 (−2)−reflections, 896 (−4)−reflections〉 ⋊⋉ G.A8,

where G is the extended extra-special 2-group 21+8.2 of order 210.

The centers of all (−2)-reflections and 32 (−4)-reflections are represented by
effective divisors.



1470 Oberwolfach Report 28/2025

Main Theorem. The birational automorphism group of Jac2 |h| is the semi-direct
product

〈864 modified (−4)−reflections〉 ⋊⋉ G,

and the central involution of G is the Mongardi-Rapagnetta-Saccà involution.

4. Sketch of proof

The proof is similar to the case of Km(E1 × E2) in §2 and the case of general
Jacobian Kummer surfaces in [12].

Firstly the centers of 64 (−2)-reflections are represented by effective irreducible
divisors. 32 appear in the reducible fibers of the Lagrangian fibration Jac2 |h| →

|h| ≃ P3 in pairs (16Ã1). The remaining 32 appear in the dual fibration Jac2 |ĥ| →

|ĥ| ≃ P3,∨ (another 16Ã1). (A Kummer quartic is self dual.)
The (in-)effectivity is subtle for the centers of 896 (−4)-reflections. The answer

is that most of (−4)-centers are not but special 32 are represented by effective
irreducible divisors!

We recall the general theory of MMP for MS(v) with v = (r, ∗, s) from Bayer-
Macri [2] and Hassett-Tschinkel [9]. Divisorial contractions are classified into the
following three types modulo flops:

(BN) (−2)-contraction induced from a rigid (or spherical) object, e.g., (−2)P1

on S. BN stands for Brill-Noether.
(HC) The minimal resolution S[n] → S(n) of a symmetric product is typical.

In this typical case the diagonal divisor (with Beauville norm 2 − 2n) is
contracted. HC stands for Hilbert-Chow.

(LGU) The original one is the contraction from the moduli of Giesekser-semi-
stable rank 2 sheaves to the moduli of Uhlenbeck-Yau compactification of
µ-stable moduli. LGU stands for Li-Gieseker-Uhlenbeck.

In our case all 64 (−2)-divisors above are all (BN), and (HC) does not occur
since v = (0, h, 0) has divisibility 2. (LGU) happens for 32 (−4)-centers in the
following way:

We need a preparation on Jac0|h| instead of Jac2|h|. Consider the difference
divisor D − D in the abelian 3-fold Jac0D. Moving [D] over the linear system
|h| ≃ P3, we obtain the difference divisor D − D in Jac0|h|. We have a forgetful
morphism D−D → S × S by definition. Then this divisor D−D is contracted to
the 4-fold S × S by an extremal contraction of Jac0|h| of (LGU)-type.

Now we return to Jac2|h|. Recall that the Kummer quartic S̄ ⊂ P3 has 16
tropes, that is, double conic plane sections. Let t ⊂ S be the reduced part of
one of them and consider the line bundle OS(−t). Its tensor gives rise to an
isomorphism from Jac2|h| to Jac0|h|. Hence we have 16 divisorial contractions
of (LGU)-type of Jac2|h|. We have another set of 16 divisorial contractions by

duality, i.e., by changing h by ĥ. In total we obtain 32 contractible divisors with
Beauville norm −4.

The remaining 864 (−4)-reflections, whose centers are ineffective, are realized
by involutions after suitable modification, whose details we omit here.
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5. Other realization

The realization of U+Kum in §3 is generalized to non-principally polarized abelian
surface A of type (1, d). The twice polarization descends to a polarization h of
degree 4d on the Kummer surface S = Kum(A). By the same computation as
in §3, the Picard lattice of (4d + 2)-fold MS(0, h, 0) contains U + Kum. In the
case d = 2, Kum(A) ⊂ P5 is described explicitly by Barth [1] (see also [8]). Hence
K3[5]-type Jacobian symplectic 10-folds Jac4|h| =MS(0, h, 0) are also interesting.
U +Kum seems also realized in the Picard lattice of symplectic manifolds of

(deformation) type OG10. There are two candidates of pseudo Kummer surfaces:

(A) 4-dimensional family of K3 surface S̄ of degree 6 in P4 with spatial Hea-
wood configuration SH of 15 nodes and 15 twisted cubics, where SH is
the configuration (157 − 157) of 15 points and 15 planes in the projective
space P3(F2) over the binary field.

(B) 4-dimensional family of double planes S̄ with branch the union of six lines
(see e.g., [18], [16]). The minimal resolution S has 21 P1’s with (152 − 65)
configuration.

It is interesting to study the birational automorphism group of S[OG] of these K3
surfaces S. Here S[OG] denotes originally the minimal resolution of the moduli
space MS(2, 0,−2) of semi-stable 2-bundles on S. But, more generally, it also
denotes the minimal resolution of MS(2v) for v with (v2) = 2. For example,
(0, h, 0), h being the pull-back of a line, seems a natural choice for v in the case
(B).

In the case (A), the sum of a twisted cubic counted twice and the seven nodes
on it gives the hyperplane section class h of S̄ ⊂ P4. Furthermore we have 15 such
divisors in |h|. This is a very natural analogy of 16 tropes of a Kummer quartic
surface. This kind of degree 6 divisor 2R+N1 + · · ·+N7 is observed recently in
our study of parabolic version of the description of general polarized K3 surface
of genus 13 in [10].
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The cohomology ring and the derived category of Quot
schemes on curves

Alina Marian

(joint work with Andrei Neguţ)

Let V → C be a rank r locally free sheaf over a smooth complex projective curve
C. We consider the Grothendieck Quot scheme Quotd(V ) parameterizing rank 0
degree d quotients of V :

0 → E → V → F → 0, rank F = 0, deg F = d.

We will denote by π, ρ the projections from the product Quotd(V )×C to the two
factors. In any setting, the Quot scheme carries a universal short exact sequence

0 → E → ρ∗V → F → 0 on Quotd(V )× C,

and its deformation-obstruction complex is Ext•π(E , F). In the situation consid-
ered here, when the quotients F are supported at finitely many points of C, it is
therefore clear that Quotd(V ) is a smooth projective variety of dimension rd.

In this report, based on joint work with Andrei Neguţ (cf. [MN1,MN2]), we
give first a representation-theoretic characterization of the cohomology of the Quot
scheme Quotd(V ) (with Q coefficients). Secondly, we provide a semiorthogonal de-
composition of the derived category of Quotd(V ), which gives an effective approach
for calculating the cohomology of natural tautological bundles over Quotd(V ).

A basic geometric object in our analysis is the nested Quot scheme

Quotd,d+1(V ) ⊂ Quotd(V )× Quotd+1(V ),

(1) Quotd,d+1(V ) = {(E
ι
→֒ V, E′ ι′

→֒ V ) with E′ κ
→֒ E and ι′ = ι ◦ κ}.
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It is endowed with maps

(2) Quotd,d+1(V )

p−

ww♦♦
♦♦
♦♦
♦♦
♦♦
♦

pC

��

p+

''P
PP

PP
PP

PP
PP

P

Quotd(V ) C Quotd+1(V )

which remember E →֒ V, the support point of E/E′, andE′ →֒ V respectively. The
nested Quot scheme can be viewed as parametrizing points E ⊂ V in Quotd(V ),
along with non-zero morphisms E → Cx for x ∈ C. We thus have the isomorphism

(3) Quotd,d+1(V )
∼=

//

p−× pC
((◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

PQuotd(V )×C (E)

��

Quotd × C

where the right-hand side is the projective bundle of one-dimensional quotients of
the universal subsheaf E → Quotd(V ) × C. We note that E is a locally free sheaf
of rank r. We consider the tautological sequence

(4) 0 → G → (p− × pC)
∗(E) → L → 0 on PQuotd(V )×C(E),

where L is the hyperplane line bundle of the projectivization, and the kernel G is
a locally free sheaf of rank r − 1. We write

c1(L) = λ.

We now consider the creation/annihilation operators

(5) ek = (p+ × pC)∗(λ
k · p∗−) : H

∗(Quotd(V )) → H∗(Quotd+1(V )× C),

(6) fk = (p− × pC)∗(λ
k · p∗+) : H

∗(Quotd+1(V )) → H∗(Quotd(V )× C).

for all k, d ≥ 0. It is also natural to use the Chern classes of G in order to define
the operators

(7) ak = (p+ × pC)∗

(
ck(G) · p

∗
−

)
: H∗(Quotd(V )) → H∗(Quotd+1(V )× C).

for k ∈ {0, . . . , r − 1} and all d ≥ 0. We may also consider iterated compositions,
and for any γ ∈ H∗(Cn) the operator

ak1 . . . akn
(γ) : H∗(Quotd(V )) → H∗(Quotd+n(V ))

obtained as

(8) H∗(Quotd(V ))
ak1

...akn
−−−−−−→ H∗(Quotd+n(V )× Cn)

·ρ∗(γ)
−−−−→

−→ H∗(Quotd+n(V )× Cn)
π∗−→ H∗(Quotd+n(V )),

where π, ρ : Quotd(V ) × Cn → Quotd(V ), Cn denote the two projections. The
following result is our main structure theorem for the cohomology of Quotd(V ).
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Theorem 1. (1) For any k, k′ ∈ {0, . . . , r − 1} and d ≥ 0, we have

(9) akak′ = ak′ak

as operators H∗(Quotd(V )) → H∗(Quotd+2(V )×C×C), with the operator denoted
by ak (respectively ak′) acting on both sides in the first (respectively second) factor
of C × C.

(2) For any d ≥ 0, we have

(10) H∗(Quotd(V )) =

r>k1≥···≥kd≥0⊕

γ ∈ Q-basis of H∗(Cd)Σ

Q · ak1 . . . akd
(γ)|0〉

where H∗(Cd)Σ denotes the space of coinvariants in H∗(Cd) under the permutation
of the i-th and j-th factors of Cd for any i and j such that ki = kj. Here |0〉 denotes
the fundamental class of Quot0(V ) = point.

We remark that the theorem offers a conceptual understanding of the Poincarë
series of the Quot schemes Quotd(V ), d ≥ 0 calculated in [BGL,C].

In addition to the operators ek, fk of (5) and (6), we may also consider the
operators of multiplication by universal classes

(11) mi = (multiplication by ci(E)) ◦ π∗ : H∗(Quotd) → H∗(Quotd × C),

The algebra generated by the symbols
{
ek, fk,mi

}
k≥0, i∈{1,...,r}

modulo their commutation relations is the shifted Yangian Y r
~ (sl2) which thus

acts on the cohomology HQuot(V ) =
⊕∞

d=0H
∗(Quotd(V )) (Here ~ is a parameter

appearing in the commutation relations.) We refer the reader to [MN1] for the full
description of this algebra and its action on the cohomology of the Quot scheme.

We now describe a semiorthogonal decomposition of the derived category
DQuotd(V ). Its blocks are labeled by compositions

d = (d0, d1, . . . , dr−1), d0 + · · ·+ dr−1 = d.

Associated with a composition, we consider the nested Quot scheme

(12) Quotd(V ) =
{
E(d) ⊂ E(d−d0) ⊂ · · · ⊂ E(dr−2+dr−1) ⊂ E(dr−1) ⊂ V

}

with length V/E(i) = i. It is well known that Quotd(V ) is a smooth fine moduli
space of dimension rd, equipped with the universal flag of subbundles

E(d) ⊂ E(d−d0) ⊂ · · · ⊂ E(dr−1) ⊂ ρ∗V on Quotd(V )× C.

We note the determinant line bundles

(13) L1, . . . ,Lr → Quotd(V )

given by

(14) Li = det
(
Rπ∗E

(di+···+dr−1) −Rπ∗E
(di−1+···+dr−1)

)
, 1 ≤ i ≤ r.
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(Note that Lr = (detRπ∗E(dr−1))−1.) We set

(15) Ld =

r⊗

i=1

Li−1
i .

We also record the support map

(16) sd : Quotd(V ) → C(d0) × C(d1) × · · · × C(dr−1) = C(d)

which keeps track of the support points of the quotients E(d)/E(d−d0), ..., V/E(dr−1),
and the morphism

td : Quotd → Quotd

which only remembers the deepest sheaf E(d) in a flag. The following definition in-
troduces the functors which are the building blocks of the derived category DQuotd .

Definition 2. For any composition d of d, we let

ẽ red
d : DC(d) → DQuotd

denote the string

(17) ẽ red
d : DC(d)

Ls∗d
−−→ DQuotd

⊗Ld

−−−→ DQuotd

Rtd∗
−−−→ DQuotd .

It can be shown (cf. [MN2]) that the functors ẽ red
d are suitably symmetrized

compositions of elementary functors ẽi which lift to the derived category the coho-
mological operators (5). Following Definition (2), we have the following structural
result for DQuotd(V ).

Theorem 3. The functors ẽ red
d as d = (d0, . . . , dr−1) runs over compositions of

d are fully faithful and semi-orthogonal, i.e. we have natural identifications
(18)

HomQuotd

(
ẽ red
d (γ), ẽ red

d′ (γ′)
)
∼=

{
0 if d < d′ lexicographically

HomC(d)(γ, γ′) if d = d′

The essential images of the functors ẽ red
d generate DQuotd as a triangulated cate-

gory.

We note that a semi-orthogonal decomposition of DQuotd(V ) indexed by the same
data was obtained in [To] by a different method, using categorical wall-crossing
for the framed one-loop quiver and the machinery of windows and categorical Hall
prod- ucts. It would be interesting to match the decomposition [To] with our
geometrically explicit construction.

If M is a line bundle on the curve C, let

M [d] = π∗(F ⊗ ρ∗M)

be its corresponding tautological vector bundle of rank d on Quotd(V ). The
semiorthogonal decomposition of Theorem 3 can be effectively used to calculate
the cohomology of tautological bundles over the Quot scheme. As an example, we
state the following result (cf. [MN2]).
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Theorem 4. We have ∧ℓM [d] = ẽ red
(d−ℓ,ℓ,0,...,0)(O

(d−ℓ)
⊠M (ℓ)) and

H•
(
Quotd(V ),∧ℓM [d]

)
∼= ∧ℓH•(C, V ⊗M)

⊗
Sd−ℓH•(C,OC).

(Here we write M (ℓ) → C(ℓ) for the descent of any line bundle M ℓ → Cℓ under
the action of the symmetric group Sℓ.)
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[C] L. Chen, Poincaré polynomials of hyperquot schemes, Math. Ann. 321 (2001), 235 - 251.
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Canonical decompositions for derived categories of G-surfaces
and rationality

Evgeny Shinder

(joint work with Alexey Elagin, Julia Schneider)

We work with smooth projective algebraic varieties over a perfect field k. One
of the most important questions about derived categories in algebraic geometry
is: given a birational map X 99K Y , how are Db(X) and Db(Y ) related? A key
observation in this direction is that if f : Y → X is a derived contraction, that
is a morphism with Rf∗OY ≃ OX (e.g. a smooth blow up), then the derived
pullback Lf∗ : Db(X) → Db(Y ) is fully faithful and we have a semiorthogonal
decomposition

Db(Y ) = 〈K, Lf∗Db(X)〉, where K = ker(Rf∗).

The kernel category K decomposes further in special cases (blow ups, Fano fibra-
tions etc). Thus derived categories of birational varieties are expected to have
common pieces. A specific particular case is the following:

Conjecture 1 (Kuznetsov). Consider X ⊂ P5 a smooth complex cubic fourfold,
so that Db(X) = 〈AX ,O,O(1),O(2)〉. Then

X is rational ⇐⇒ AX ≃ Db(S) for a surface S.

The reasoning for the =⇒ direction in Kuznetsov’s conjecture is as follows.
If semiorthogonal decompositions into indecomposable pieces were unique up to
mutations, then every rational variety X would satisfy

Db(X) = 〈B1, . . . ,Bn〉 with Bj ⊂ Db(Zj), dimZj ≤ dim(X)− 2.

As AX in Kuznetsov’s conjecture is a K3 category, the only possibility for a blow
up center is a K3 surface S.
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However, uniqueness of decompositions into indecomposable pieces fails already
in dimension two, so modifications are needed to make this strategy work.

Conjecture 2 (Kontsevich). There should exist canonical semiorthogonal decom-
positions, well-defined up to mutations.

Canonical here can be understood in the following ways:

• Geometric: if Y → X is a blow up, Fano fibration etc, then canonical
decompositions of Db(Y ) and Db(X) are compatible.

• Matching quantum cohomology via the Gamma class and Iritani’s blow
up formulas.

Work in progress by Katzarkov, Kontsevich, Pantev and Yu constructs a canon-
ical decomposition of quantum cohomology into elementary blocks called atoms.
Motivated by this we make the following definition, for a fixed group G:

Definition 1. A G-atomic theory is an assignment for all smooth projective vari-
eties with a G-action a mutation-equivalence class of G-invariant semiorthogonal
decompositions, called atomic decompositions with the following property. For
any G-equivariant derived contraction f : Y → X with rationally connected fibers
f : Y → X atomic decomposition for Db(X) = 〈A1, . . . ,An〉, included into

Db(Y ) = 〈ker(Rf∗), Lf
∗A1, . . . , Lf

∗An〉

can be refined to an atomic decomposition of Db(Y ).

For a group G we allow in particular the geometric case k = k, G ⊂ Aut(X/k)

and the arithmetic case G = Gal(k/k). Our main result is the following:

Theorem 1. There is a canonical atomic theory for G-varieites of dimension ≤ 2.

This proves Kontsevich’ Conjecture in dimension 2 and improves an earlier
result by Auel–Bernardara who introduced Kuznetsov component for geometrically
rational surfaces in the arithmetic case. IfH ⊂ G is a subgroup, then the G-atomic
theory we construct is compatible with the H-atomic theory, that is, G-atomic
decompositions can be refined to H-atomic decompositions.

Example 2. In the simplest case k = k and G = {e}, for rational surfaces our
result says the following. There are two types of minimal rational surfaces P2 and
Hirzebruch surfaces Fn, n > 0, n 6= 1, with atomic decompositions

Db(P2) = 〈O(−2),O(−1),O〉, Db(Fn) = 〈O(−E − F ),O(−E),O(−F ),O〉.

Here F is the fiber class and E is the negative section class. Now if X is any
rational surface with minimal contractions πi : X → Xi, for i = 1, 2, then two
exceptional collections on X induced from X1 and X2 by the blow up formula are
both atomic decompositions, in particular they are mutation equivalent.

We refer to pieces of atomic semiorthogonal decompositions of Db(X) as atoms ;
these pieces are independent of the choice an atomic decomposition as mutations
simply permute the atoms of a decomposition. Conjecturally atomic decompo-
sitions we construct correspond to quantom cohomology atoms constructed by
Katzarkov–Kontsevich–Pantev–Yu.
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Sketch of proof of Theorem 1. There are three steps in the proof:

(1) Define atomic decompositions for minimal surfaces. The most important
case is that of G-Mori fiber spaces, i.e. G-del Pezzo surfaces of rank one
and G-conic bundles of rank two.

(2) Prove compatibility with Sarkisov links between G-Mori fibers spaces:

X //❴❴❴

Mfs

��

X ′

Mfs

��

B B′

By Iskovskikh’ classification of Sarkisov links, there are only finitely many
(but still a lot) things to check here.

(3) Decompose birational maps into Sarkisov links.

�

In the arithmetic case we deduce a complete birational classification of geomet-
rically rational surfaces in terms of their atoms. In particular we have:

Corollary 1. Let X/k be a surface. Then:

X is rational ⇐⇒ atoms of Db(X) are Db(L) for finite field extensions L/k.

This is the baby analog of Kuznetsov’s Conjecture 1.

Proof. Given a birational map P2
99K X , atoms of X will come from blow up

centers. Conversely, for the other direction we can assume X is minimal in which
case the result follows by inspection. �

Example 3 (Châtelet surface). A Châtelet surface surface X → P1 is a conic
bundle y2 − az2 = P (x) with four singular fibers and a prescribed Galois action.
It is known that X is irrational, but stably rational, more precisely by a result of
Shepherd-Barron, X × P2 is rational. It has atomic decomposition

Db(X) = 〈AX ,O(−h),O〉

where h is the pullback of an ample generator from P1. Here AX is not equivalent
to any Db(L) which is in agreement with Corollary 1.

Furthermore, it is easy to see that AX 6≃ Db(Z) for any curve Z. Thus if we
could extend atomic theories to dimension three, AX will be an atom ofDb(X×P1),
and X × P1 would be forced to be irrational. We conjecture that this is the case.
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Hurwitz–Brill–Noether, K3 surfaces and stability conditions

Andrés Rojas

(joint work with Gavril Farkas, Soheyla Feyzbakhsh)

Given a smooth projective curve C of genus g, the essential invariants to under-
stand its extrinsic geometry are the Brill–Noether loci

W r
d (C) :=

{
L ∈ Picd(C) : h0(C,L) ≥ r + 1

}
.

When the curve C is general in moduli, W r
d (C) is irreducible, of the expected

dimension ρ(g, r, d) := g − (r + 1)(g − d + r), and smooth away from W r+1
d (C),

as described by a collection of important results dating back to the late 1970s
and early 1980s [5–7]. One of these results, the Gieseker–Petri theorem, found a
remarkable proof by Lazarsfeld [11] by specialization to curves on K3 surfaces:

Theorem 1 (Lazarsfeld). Let (X,H) be a polarized K3 surface with Pic(X) =

Z ·H, and let g := H2

2 + 1. Then:

(1) A general curve C ∈ |H | satisfies the Petri condition. In particular,
W r

d (C) has the expected dimension ρ(g, r, d).
(2) If ρ(g, r, d) < 0, then W r

d (C) is empty for every smooth curve C ∈ |H |.

In striking contrast to earlier proofs by degeneration, Lazarsfeld’s result pro-
vides the first examples of smooth, Brill–Noether general curves.

Hurwitz–Brill–Noether theory is a much more recent development, and concerns

the Brill–Noether theory of curves C equipped with a degree k morphism C
f
→ P1.

Assuming without loss of generality that d ≤ g − 1, let us consider the number

ρk(g, r, d) := max
0≤ℓ≤r

(ρ(g, r − ℓ, d)− ℓk) .

Recent results of Pflueger [12] and Jensen–Ranganathan [8], via tropical geometry,
and of H. Larson [10] and Larson–Larson–Vogt [9], via degeneration, describe the
geometry of W r

d (C) for a general degree k cover f : C → P1 of genus g. In
particular, via the notion of splitting type first considered by H. Larson, there is a
good understanding of the irreducible components ofW r

d (C) and their dimensions;
it turns out that dimW r

d (C) = ρk(g, r, d).
In the work [4], we develop a new approach to Hurwitz–Brill–Noether theory

via Bridgeland stability conditions on elliptic K3 surfaces. More precisely, let X
be a degree k elliptic K3 surface, namely: Pic(X) = Z ·H ⊕ Z ·E, where H is an
ample class with H2 = 2g − 2, and |E| is an elliptic pencil satisfying E · H = k.
In this way, integral curves C ∈ |H | are naturally endowed with the degree k map
f : C →֒ X → P1.

The following result may be thought of as a parallel, in the Hurwitz setting, of
Lazarsfeld’s theorem:

Theorem 2.

(1) A general curve C ∈ |H | satisfies dimW r
d (C) = ρk(g, r, d).

(2) If ρk(g, r, d) < 0, then W r
d (C) is empty for every smooth curve C ∈ |H |.
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In particular, curves on elliptic K3 surfaces serve as the first known examples
of smooth curves that behave generically from the viewpoint of Hurwitz–Brill–
Noether theory. Indeed, genericity also extends to some important loci in W r

d (C),
that can be defined for a degree k cover f : C → P1.

More precisely, for a fixed ℓ with max{0, r + 2 − k} ≤ ℓ ≤ r, there are unique
integers e,m1 ≥ 0 and m2 > 0 satisfying

r + 1 = m1(e + 2) +m2(e+ 1), r + 1− ℓ = m1 +m2.

Then one can define the following locus in W r
d (C) \W

r+1
d (C):

V r
d,ℓ(C, f) :=

{
L ∈ Picd(C) : f∗L = O(e + 1)⊕m1 ⊕O(e)⊕m2 ⊕N

}
,

where N means a direct sum of line bundles of negative degree. For appropriate

values of ℓ, by [9, 10] the closures V r
d,ℓ(C, f) are known to describe the irreducible

components of W r
d (C) for a general f : C → P1. We prove the following:

Theorem 3. Let X be a general degree k elliptic K3 surface as above. For C ∈ |H |
general, the loci V r

d,ℓ(C, f) are smooth of the expected dimension ρ(g, r− ℓ, d)− ℓk.

The main technique to establish these results is wall-crossing with respect to
stability conditions on the bounded derived category D(X). Roughly speaking
Bridgeland stability, introduced in [2, 3], is a generalization of the usual notions
of stability for coherent sheaves. It replaces Coh(X) by other appropriate abelian
subcategories of D(X).

Associated to any polarization H ′ ∈ Pic(X)Q there is a ray of Bridgeland sta-

bility conditions σw (w > 0) with a fixed abelian subcategory Coh0(X) ⊂ D(X).
Stability conditions in this ray enjoy remarkable properties:

• For w ≫ 0, σw-stability is equivalent to Gieseker stability for sheaves.
• Stability of objects varies along a locally finite wall and chamber structure.
• For σw lying outside a wall, there is a moduli space of σw-stable objects
of a fixed Chern character.

If we consider the moduli space M parametrizing H ′-Gieseker stable sheaves
(or equivalently, σw-stable objects in Coh0(X) for w ≫ 0) of Chern character
(0, H, 1+d− g), then M is naturally a relative degree d compactified Jacobian for
curves in the linear system |H |. By understanding how σw-stability of objects in
M varies as w decreases (via wall-crossing techniques), one can infer constraints
on the geometry of the Brill–Noether loci W r

d (C) for C ∈ |H |. Whereas this
philosophy can be easily applied for K3 surfaces of Picard rank one (see [1] for
a reproof of Lazarsfeld’s theorem), performing wall-crossing for K3 surfaces of
higher Picard rank is usually very challenging.

In the problem at hand, we show that if the polarization is chosen carefully
(namely, H ′ = E + ǫH with ǫ ∈ Q>0 small enough), then all possible destabiliza-
tions for objects of M along the ray σw involve line bundles of the form OX(tiE).
This is part of a more general phenomenon, where other Chern characters apart
from (0, H, 1 + d − g) can be considered, that describes wall-crossing in a similar
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fashion. For a given object, the information provided by wall-crossing can then be
encoded in a collection of integers, that we call its Bridgeland stability type.

After constructing moduli spaces of objects with a fixed Bridgeland stabil-
ity type and exploiting their algebro-geometric properties (expected dimension,
smooth, irreducibility), we obtain strong constraints from which our results fol-
low.
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Asymptotic directions in the moduli space of curves

Elisabetta Colombo

(joint work with Paola Frediani, Gian Pietro Pirola)

The local geometry of the Torelli locus inside Ag is governed by the second fun-
damental form, which, at a non-hyperelliptic point, is a linear map II : I2 →
Sym2H0(K⊗2

C ), where I2 is the vector space of quadrics containing the canonical
curve (for an explicit description see [1], [2] and [3])

Our goal is to study the base locus of the image of II as a linear system of
quadrics in PH1(TC) ∼= P3g−4 (see [4] ). We call asymptotic direction a nonzero
tangent vector ζ ∈ H1(TC) such that II(Q)(ζ ⊙ ζ) = 0 for all Q ∈ I2.

Since a tangent direction to a totally geodesic subvariety is clearly asymptotic,
this study is related to the Coleman-Oort conjecture according to which for g
sufficiently high there should not exist special (or Shimura) subvarieties of Ag

generically contained in the Torelli locus. We recall that special subvarieties of
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Ag are totally geodesic and in the last years the study of the second fundamental
form has been used to attack this problem, starting from [3].

For dimension reasons the intersection of the quadrics in II(I2) is non empty
for g ≤ 9 (II is injective, see [2]). In fact for g ≤ 7 there are examples of special
subvarieties of Ag generically contained in the Torelli locus but not for higher
genus (see for example [5],[7], [6], [8]).

On the other hand for high values of g one could expect that this intersection
would be empty. One of our results is that instead for all g there are examples of
asymptotic directions depending on the geometry of the curve, in particular for
any trigonal and bielliptic curve.

For our computation we develop a new technique to calculate II(Q)(ζ ⊙ ζ) on
certain tangent vectors by computing residues of some meromorphic forms, using
the Hodge Gaussian maps introduced in [1]. Our technique works for ζ of not
maximal rank, where the rank is the one of the associated infinitesimal variation
fo Hodge structures ∪ζ : H0(KC) → H1(OC).

We denote by C(d) the symmetric product of C and we recall that the image of
the natural map PTC(d) → PH1(TC) is given by classes of elements in H(C;TC)
in the annihilator of H0(C, 2KC(−D)) where D is an effective divisor of degree
at most d hence it is clearly of rank at most d. When d = 1 the image is the
bicanonical curve and the tangent vectors corresponding to such points are called
Schiffer variations. One of the main results we obtain by application of these ideas
is the following theorem.

Theorem 1. Let C be a non-hyperelliptic curve of genus g ≥ 4 and d < Cliff(C)
a positive integer, then:

(1) the locus in P(H1(TC)) of tangent directions of rank at most d is equal to
the image of PTC(d)

(2) any tangent directions of rank at most d is not asymptotic.

Notice that the first part of the above result can be seen as a generalization of
the generic Torelli theorem of Griffiths.

In the case where the rank of ζ is equal to the Clifford index of the curve,
we give sufficient conditions ensuring that the infinitesimal deformation ζ is not
asymptotic. This allows us to determine all asymptotic directions of rank 1.

Theorem 2.

(1) If C is trigonal of genus g ≥ 8, or of genus g = 6, 7 and Maroni degree 2,
then rank one asymptotic directions are exactly the Schiffer variations in
the ramification points of the g13.

(2) On a smooth plane quintic there are no rank one asymptotic directions.

For trigonal curves of genus g = 5, or g = 6, 7 and Maroni degree 1, we show that
there exist further asymptotic directions. We describe these asymptotic directions
and we give the explicit equations of the trigonal curves admitting such asymptotic
directions.
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For bielliptic curves we show the following:

Theorem 3. On any bielliptic curve of genus at least 5 there exist linear combi-
nations of two Schiffer variations that are asymptotic of rank 2.
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The D-equivalence conjecture for K3[n]-type

Junliang Shen

(joint work with Davesh Maulik, Qizheng Yin, Ruxuan Zhang)

Throughout, we work over the complex numbers C. The purpose of my lecture
is to present a proof of the D-equivalence conjecture for hyper-Kähler varieties
of K3[n]-type, i.e., hyper-Kähler varieties that are deformation equivalent to the
Hilbert scheme of n points on a K3 surface. Our method actually proves a stronger
version, involving arbitrary Brauer classes.

Theorem 1 ([2]). Let X 99K X ′ be a birational map of hyper-Kähler varieties of
K3[n]-type, which induces an identification of the Brauer groups

Br(X) = Br(X ′).

Then for any class α ∈ Br(X), we have a derived equivalence

Db(X,α) ≃ Db(X ′, α′)

with α′ ∈ Br(X ′) the class corresponding to α.

When α = 0, this result confirms in the case of K3[n]-type the D-equivalence
conjecture of Bondal–Orlov, which generally predicts that any birational projec-
tive nonsingular Calabi–Yau varieties are derived equivalent. The D-equivalence
conjecture is known for Calabi–Yau 3-folds by Bridgeland and for hyper-Kähler
fourfolds by Kawamata and Namikawa over 20 years ago. Very few examples are
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known in higher dimensions due to the complexity of birational geometry. Re-
cently, Halpern–Leistner established the D-equivalence conjecture for nonsingular
moduli of stable sheaves on a K3 surface using window techniques, confirming
this conjecture for infinitely many families of higher dimensional examples. Since
these moduli spaces are hyper-Kähler, Theorem 1 gives a new proof of Halpern–
Leistner’s result, but the construction of the equivalences seem to be quite different;
it is interesting to explore the connection between these two methods.

Our proof of Theorem 1 relies on a class of projectively hyperholomorphic bun-
dles by Markman [1]; Markman’s work generalizes the earlier work of Buskin in
his proof of the Shafarevich conjecture for rational Hodge isometries between K3
surfaces.

Now let S be a K3 surface, and let M be a 2-dimensional nonsingular fine
moduli space of stable vector bundles on S; then M is also a K3 surface with a
universal vector bundle

U  M × S.

Conjugating the Bridgeland–King–Reid correspondence, this gives rise to a vector
bundle

U [n]
 M [n] × S[n]

of rank n!rk(U) on the product of the Hilbert schemes of points, which further
induces a derived equivalence

(1) FMU [n] : Db(M [n])
≃
−→ Db(S[n]).

A key result proven by Markman in [1] is that the Fourier–Mukai kernel U [n]

is projectively hyperholomorphic. Hence it can be deformed as a twisted vector
bundle along diagonal twistor paths.

Ideally, one hopes that the Fourier–Mukai equivalence (1) is deformed to a
Fourier–Mukai equivalence

Db(X,α)
≃
−→ Db(X ′, α′)

which immediately solves our problem. However, this is not possible: even if we

consider the very special case that the birational transform is an identity X
id
−→

X ′ = X with trivial Brauer classes α = α′ = 0, the derived equivalence Db(X)
≃
−→

Dv(X) should be induced by the structure sheaf of the diagonal ∆X ⊂ X × X ;
the Fourier–Mukai kernel is a torsion sheaf, which is not locally free.

Instead, our strategy is to deform (1) to two derived equivalences

(2) Db(X,α)
≃
−→ Db(Y, β), Db(X ′, α′)

≃
−→ Db(Y, β),

so that each equivalence is induced by a (projectively hyperholomorphic) bundle,
and the composition recovers the desired equivalence of Theorem 1.

Although achieving (2) for a general birational map X 99K X ′ seems still diffi-
cult, we prove that we can decompose the birational mapX 99K X ′ into a sequence
of birational maps of hyper-Kähler varieties of K3[n]-type

X = X0 99K X1 99K X2 99K · · · 99K XN = X ′
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such that for each 1 ≤ i ≤ N , there exists a hyper-Kähler variety Yi of K3[n]-type
with a Brauer class βi ∈ Br(Yi) achieving (2):

Db(Xi−1, αi−1)
≃
−→ Db(Yi, βi), Db(Xi, αi)

≃
−→ Db(Yi, βi).

Here all the classes αi ∈ Br(Xi) are induced by the original one α ∈ Br(X), and the
number N measures the “distance” between the Kähler cones of X,X ′ respectively
in the birational Kähler cone of X . Eventually, the desired derived equivalence of
Theorem 1 is realized as a composition of 2N Fourier–Mukai transforms, each of
which is induced by a projectively hyperholomorphic bundle deformed from U [n]

for a suitable choice of S and M .
We note that in Theorem 1 the Brauer class α can be chosen arbitrarily; the

bundles we constructed in the proof in fact gives a nontrivial bound for the period–
index problem — a long standing question measuring the difference of two impor-
tant invariants associated with a Brauer class α: the period per(α) and the index
ind(α). Pursuing this idea further, we obtain the following theorem.

Theorem 2 ([3]). For any hyper-Kähler variety X of K3[n]-type, there exists an
integer NX such that

ind(α)
∣∣ per(α)dim(X)

for all α ∈ Br(X) with per(α) corpime to NX .

The famous period-index conjecture predicts that NX = 1 and the exponent
can be obtained to be dim(X)− 1 for any X ; this conjectual bound is close to and
slightly stronger than the one we obtained in Theorem 2. However, Huybrechts
[4] recently conjectured that the exponent for a hyper-Kähler variety X can be
reduced to 1

2dim(X), which is much stronger than what we can obtain for the
moment from Markman’s projectively hyperholomorphic bundles.
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Chen ranks formulae

Marian Aprodu

(joint work with Gavril Farkas, Claudiu Raicu, and Alexandru Suciu)

Chen ranks are fundamental invariants in geometric group theory, derived from
the lower central series of the maximal metabelian quotient of a finitely–generated
group. Their effective computation, however, requires tools from algebraic geom-
etry, a mathematical field with different methods and perspectives.
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The setup is as follows. Let G be a finitely generated group, and consider the
complex vector space

V ∨ := H1(G,C)

whose dimension is n = b1(G). Define also

K⊥ := ker

(∧2
H1(G,C)

∪G−−−→ H2(G,C)

)

the kernel of the cup–product map. Note that K⊥ is the algebraic orthogonal of

a subspace K ⊆
∧2
V = H1(G,C), which coincides with the image of the dual of

the map ∪G. Let S = Sym(V ) denote the symmetric algebra of V .
The homology W (G) of the complex of graded S–modules

(1) K ⊗ S → V ⊗ S(1) → S(2)

naturally induced by the Koszul complex is an infinitesimal version of the Alexan-
der invariant and is called the Koszul module of the group G. It was shown in
[5] that, if the group is 1–formal in the sense of rational homotopy theory, then
the Chen ranks of the group coincide with the dimensions of the graded pieces of
W (G) (up to a shift by two in degrees).

Note that the complex (1) can be defined for any n–dimensional complex vector

space V and any subspace K ⊆
∧2
V not necessarily associated to a group. In

that case, the homology W (V,K) of the complex (1) is called the Koszul module
of the pair (V,K), see [6].

We are immediately lead to the following fundamental question:

Question. Given a pair (V,K) as above, can we effectively compute the Hilbert
series of the Koszul module W (V,K)?

We can answer this question under certain hypotheses on the support of the
Koszul module. Recall from [6] that the set-theoretic support R(V,K) of the
Koszul module W (V,K) is the cone in V ∨ defined by

R(V,K) :=
{
a ∈ V ∨ : there exists b ∈ V ∨ \ C · a such that a ∧ b ∈ K⊥

}
.

This set, called the resonance of the pair (V,K), naturally carries a scheme struc-
ture defined by the annihilator of W (V,K). As such, it is the affine cone over a
projective scheme

R(V,K) ⊆ P(V ∨),

called the projectivized resonance scheme. Set–theoretically, the projectivized res-
onance is closely related to the intersection

Gr2(V
∨) ∩ P(K⊥) ⊆ P(

∧2
V ∨)

via the incidence variety, see for example [4]. Specifically, if

Ξ := {(x, L) ∈ P(V ∨)×Gr2(V
∨) : x ∈ L}

denotes the incidence, and pr1 : Ξ → P(V ∨), pr2 : Ξ → Gr2(V
∨) are the natural

projection maps, then we have the following set–theoretical identification

R(V,K) = pr1(pr
−1
2 (Gr2(V

∨) ∩ P(K⊥))).
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In particular, Gr2(V
∨) ∩ P(K⊥) = ∅ if and only if R(V,K) = ∅, and Gr2(V

∨) ∩
P(K⊥) is finite if and only if R(V,K) is a union of disjoint projective lines i.e. is
non–empty of minimal dimension.

Our first answer to the main question is given by the following:

Theorem 1 (see [1], [2]). If R(V,K) = {0}, then Wq(V,K) = 0 for all q ≥ n− 3.

Note that, since the resonance is the support of the Koszul module, a trivial
resonance locus corresponds to a Koszul module of finite length. However, the
theorem above provides an explicit and optimal vanishing bound. In algebraic
geometry, this has direct applications to the study of syzygies of generic canonical
curves, via an explicit version of Hermite reciprocity, as shown in [1].

When the resonance is non-trivial, the first result is the following:

Theorem 2 (see [3]). Assume that the scheme-theoretic intersection Gr2(V
∨) ∩

P(K⊥) is finite of length ℓ. Then

dimWq(V,K) = (q + 1)ℓ for all q ≥ n− 3.

The proofs of Theorems 1 and 2 are similar, relying on a careful analysis of
the hypercohomology spectral sequence associated to a twisted Koszul complex,
in which Bott’s theorem is used to compute the cohomology of vector bundles on
Grassmannians, see [1], [2], [3].

To analyze the case where the resonance loci have higher-dimensional compo-
nents, we use a condition we call strong–isotropy, see [4]. Specifically, we say that
resonance R(V,K) is strongly isotropic if the following three conditions hold true:

• The resonance is linear, i.e. R(V,K) = V
∨

1 ∪· · ·∪V
∨

k , where each V
∨

t ⊂ V ∨

is a linear subspace and V
∨

t 6⊆ V
∨

s for all t, s.

• The components are isotropic, i.e.,
∧2
V

∨

t ⊆ K⊥ for all t.

• The components are separable, i.e., for each t, if 〈V
∨

t 〉 denotes the ideal

generated by V
∨

t in the exterior algebra of V ∨, then

〈V
∨

t 〉 ∩K
⊥ ⊆

∧2
V

∨

t .

One consequence of strong–isotropy is that the scheme-theoretic intersection

Gr2(V
∨)∩P(K⊥) is the disjoint union of the sub-Grassmannians Gr2(V

∨

t ), see [3].
In this setting, we prove:

Theorem 3 (see [3]). Assume that the resonance of the pair (V,K) is strongly

isotropic, and write R(V,K) = V
∨

1 ∪ · · · ∪ V
∨

k . Then

(2) dimWq(V,K) =

k∑

t=1

(q + 1)

(
q + dim(V

∨

t )

q + 2

)
for all q ≥ n− 3.

One of the applications of Theorem 3 is to (certain) hyperplane arrangement
groups for which an asymptotic formula of type (2) was conjectured. Note that
an asymptotic version of Theorem 3 appears already in [4], and the version stated
here strengthens that result by providing an explicit effective bound.
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On the integral Hodge conjecture for abelian varieties

Stefan Schreieder

(joint work with Phil Engel, Olivier de Gaay Fortman)

Clemens and Griffiths [CG72] proved that a rationally connected threefold is irra-
tional if its intermediate Jacobian is, as principally polarized abelian variety, not
isomorphic to a product of Jacobians of curves. They applied this criteria to the
intermediate Jacobian of a smooth cubic threefold, thereby establishing the irra-
tionality of such cubics. The question whether smooth cubic threefolds are stably
rational remained open.

By Matsusaka’s criterion, one may reformulate the Clemens–Griffiths criterion
by saying that a rationally connected threefold Y is irrational if the minimal curve
class [ΘY ]

g−1/(g − 1)! ∈ H2(JY,Z) of its intermediate Jacobian (JY,ΘY ) is not
represented by an effective curve. In [Voi17], Voisin generalized this criterion by
proving that Y does not admit a decomposition of the diagonal (hence is in par-
ticular not stably rational, nor retract rational nor A1-connected, see e.g. [LS24]
and the references therein), if the minimal curve class of its intermediate Jacobian
is not algebraic, i.e. not represented by a Z-linear combination of curves. Voisin
showed in [Voi17] that for many codimension 3 loci in the moduli space of cubic
threefolds, the criterion fails and the associated cubic has in fact a decomposition
of the diagonal.

In many cases of interest, JY is a Prym variety, in which case 2[ΘY ]
g−1/(g −

1)! is always algebraic. If, in addition, JY has Picard rank one, then Voisin’s
criterion essentially boils down to the question whether JY contains a curve whose
cohomology class is some odd multiple of the minimal class. The case of cubic
threefolds has been a classical open problem until now. In fact, the validity of
the integral Hodge conjecture for abelian varieties has been an open question until
now; the problem goes back at least to Barton and Clemens, see [BC77, p. 66].
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In this talk, we presented the following result.

Theorem 1. Let Y ⊂ P4
C be a very general cubic hypersurface. Then the homology

class of any curve C ⊂ JY on its intermediate Jacobian JY is an even multiple
of the minimal class [ΘY ]

4/4!.

By [Voi17], the theorem implies:

Corollary 2. Very general cubic threefolds Y ⊂ P4
C do not admit a decomposi-

tion of the diagonal, hence they are neither stably nor retract rational, nor A1-
connected.

Our obstruction also works for very general principally polarized abelian vari-
eties of dimension g ≥ 4. For such abelian varieties, we show that the homology
class of any curve is an even multiple of the minimal class.

1. Motivation of the obstruction. If (X,Θ) is a principal polarized abelian
variety and f : JC → X is a morphism from a Jacobian of a curve C such that
f∗[C] = m · [Θg−1]/(g − 1)!, then the composition

X
f∨

−→ JC
f

−→ X

is multiplication by m, where f∨ denotes the dual of f and where we use the
principal polarizations on X and JC to identify those abelian varieties canonically
with their duals. Assume now thatm is odd and let Λ := Z(2). Thenm is invertible

in Λ and so 1
mf

∨
∗ splits f∗. Hence, we get a canonical decomposition

H1(JC,Λ) = f∨
∗ H1(X,Λ)⊕ ker(f∗).

Since (f∨)∗ΘC = m · Θ, we have f∨
∗ H1(X,Λ) ∼= H1(X,Λ). It thus suffices to

show that H1(JC,Λ) does not have H1(X,Λ) as a direct factor. Of course, it is
impossible to prove this directly on the level of Λ-modules for a single X , but we
will be able to do so for very general X after spreading out everything to families,
at which point monodromy operators are at our disposal.

We now outline how to prove this for the intermediate Jacobian of a cubic three-
fold; the case of very general principally polarized abelian varieties of dimension
at least 4 is similar. We start with the Segre cubic threefold

Y0 =

{
5∑

i=0

xi =

5∑

i=0

x3i = 0

}
⊂ P5

C,

which is the unique cubic threefold with 10 nodes. We denote its set of nodes by
S and let

Y → DefY0 = ∆S = ∆10

be the universal deformation, which is smooth over the punctured polydisc (∆∗)S

and such that the node s ∈ S does not smooth out over the coordinate hyperplane
{ts = 0}. Fix a base point t ∈ (∆∗)S and fix for s ∈ S a vanishing cycle

αs ∈ H3(Yt,Z(−1)) = H1(JYt,Z),
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unique up to a sign. The collection of these classes yields an integral realization
of the R10 matroid, see [Gwe04]. Moreover, the above vanishing cycles are con-
tained in W−2 of the corresponding limit mixed Hodge structure. The principal
polarization on JYt identifies W−2H1(JYt,Z) to the dual of U := grW0 H1(JYt,Z).
We thus get a realization

S −→ U∗, s 7→ ys

of R10, where ys denotes the linear form on U that is induced by the vanishing
cycles αs. The nilpotent operator Ns = Ts − id identifies via the given principal
polarization to a monodromy bilinear formBs on U , which by the Picard–Lefschetz
formula identifies to Bs = y2s , i.e. to x⊗ y 7→ ys(x)ys(y).

Consider now a family of nodal curves C → ∆S , smooth over (∆∗)S , and with
regular total space. Then the dual graph G := Γ(C0) is an S-colored graph,
i.e. there is a decomposition E(G) =

⊔
s∈S Es of its set of edges, by declaring

that an edge has color s if the corresponding node does not smooth out over the
general fibre of {ts = 0}. (The regularity assumption on C implies that nodes over
different coordinate hyperplanes never specialize to the same node on the special
fibre, so that this definition is well-defined.) Note further that there is a canonical
isomorphism

grW0 H1(JCt,Z) ∼= H1(G,Z).

The monodromy about {ts = 0} induces as before a monodromy bilinear form
Qs on the above free Z-module and the Picard–Lefschetz formula implies Qs =∑

e∈Es
x2e, where xe ∈ H1(G,Z)

∗ is the linear form induced by the edge e (together
with the choice of an orientation).

To motivate our obstruction, we make now the strong assumption that for
Λ = Z(2), we can find a family of curves as above such that for general b ∈

∆S , H1(JCb,Λ) contains H1(Xb,Λ) as a direct summand and this extends to a
decomposition of the corresponding local system on (∆∗)S . This implies that the
monodromy operators respect the direct sum decomposition. We thus get a direct
sum decomposition

H1(G,Λ) ∼= grW0 H1(Ct,Λ) = UΛ ⊕ U ′

for some U ′ ⊂ H1(G,Λ). Moreover, the above decomposition is orthogonal with
respect to the monodromy quadratic form Qs and we have Qs|UΛ = Bs for all
s ∈ S.

If the above family of curves does not exist on the nose but only after a base
change of the form ∆S → ∆S , (ts) 7→ (tds) (which is still a very strong assumption),
then we will get a Qs-orthogonal decomposition as above, but with Qs|UΛ = d ·Bs

for all s ∈ S. This motivates the following definition:

Definition 1. Let (R,S) be a regular matroid with integral realization S → U∗,
s 7→ ys. Let Λ be a ring. A quadratic Λ-splitting of level d of (R,S) in a graph
G is an S-coloring E = ⊔s∈SEs of the edges of G together with an embedding
UΛ →֒ H1(G,Λ) which induces a decomposition

H1(G,Λ) = UΛ ⊕ U ′,(1)
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for some U ′ ⊂ H1(G,Λ), such that for all s ∈ S the following holds for the s-th
diagonal quadratic form Qs =

∑
e∈Es

x2e on H1(G,Λ):

(1) the decomposition (1) is orthogonal with respect to Qs;
(2) the restriction of Qs to UΛ agrees with d · Bs = d · y2s .

2. Outline. In order to prove Theorem 1, we proceed as follows:

• We show that R10 does not admit a quadratic Z(2)-splitting of level 1 into
a graph. To this end, we introduce Albanese graphs associated to matroids
and reduce the problem to the computation of what we call “solutions of
the Albanese graph”, which are certain collections of s-colored 1-chains bs
that satisfy linear relations that are dictated by the matroid. We then show
that all solutions are even (i.e. they contain an even number of edges of
each color), while the existence of an splitting as above implies that there
are odd solutions. Technically speaking, the problem reduces to showing
that a certain sparse 160 × 160 matrix over F2 has the same rank as a
matrix of rank 160× 170 that is given by adding 10 additional columns.

• We prove a technical theorem that allows us to essentially reduce a qua-
dratic Λ-splitting of level d into a graph to one of level 1. (The actual
statement proven in [EGFS25] is slightly different and involves the afore-
mentioned solutions in Albanese graphs; morally it allows us to go from
level d to level 1.)

• We show that if X → ∆S is a matroidal degeneration of principally po-
larized abelian varieties, associated to a regular matroid (R,S) without
loops and with totally unimodular realization S → U∗, such that the very
general fibre contains a curve whose cohomology class is an odd multiple
of the minimal class, then (R,S) admits a quadratic Λ-splitting of some
level d into some S-colored graph G.

In this talk the method is mostly described in the case of the intermediate
Jacobian of very general cubics, where the problem is 2-local and so we worked with
Z(2)-coefficients. In [EGFS25], the general case of Z(ℓ)-coefficients and arbitrary
regular matroids (R,S) will be considered. Moreover, we show in [EGFS25] the
following statement which generalizes the first item above:

Theorem 2. Let (R,S) be a regular matroid. Then (R,S) admits a Z(2)-splitting
of some level d ≥ 1 into some graph if and only if (R,S) is cographic.
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Counting maps to an elliptic curve in several ways

Aitor Iribar López

(joint work with Rahul Pandharipande, Hsian-Hua Tseng.)

We report on joint work with R. Pandharipande and H.-H. Tseng on the enumer-
ative geometry of the space of maps C → E, when C is a genus g curve, E is an
elliptic curve, and both curves move in moduli. Three approaches to this problem
are discussed. They connect to 3 open problems, related to intersection theory on
the moduli space of g-dimensional principally polarized abelian varieties Ag, the

Gromov-Witten theory of the universal elliptic curve E −→ M1,1 and the g = 1
Gromov-Witten theory of the Hilbert scheme of points in C2.

1. Cycles on Ag

G. van der Geer introduces in [8] the tautological ring R∗(Ag) as the subring of
CH

∗(Ag) generated by the Chern classes of the Hodge bundle:

λi = ci(E) ∈ CH
i(Ag) .

The only relations are λg = 0 and c(E⊕ E∨) = 1, but most geometrically defined
cycles are not known to be tautological. The relation between geometric cycles and
tautological classes is governed by the projection operator defined by S. Canning,
S. Molcho, D. Oprea and R. Pandharipande [1]:

(1) taut : CH∗(Ag) −→ R
∗(Ag) .

The following basic question is introduced in [3]:

Question 1. Is the tautological projection (1) a ring homomorphism?

An abelian variety of dimension g can have Picard number greater than 1 in
two ways: through real multiplication and through abelian subvarieties. We focus
on the latter. Fix a positive integer d and consider the Noether-Lefschetz locus :

NLg,d = {(X, θ) ∈ Ag | there is a map E → X such that deg(f∗θ) = d} .

It gives rise to special cycles [NLg,d] ∈ CH
g−1(Ag). We can also consider cycles

given by the fundamental class of the Jacobian locus [Jg] ∈ CH3g−3(Ag). We will
consider their relation to that tautological projection (1).
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2. Maps to a moving elliptic curve

Let π : E −→ M1,1 be the universal family, with section 0, and let Mg,1(π, d)
be the moduli space of relative maps to the fibers of π. It is a Deligne–Mumford
stack with a virtual class [Mg,1(π, d)]

vir of expected dimension 2g. Consider the
diagram

Mg,1(π, d) E

Mg,1

ev

ft .

Gromov-Witten invariants of π are defined by the above correspondence:

(2) 〈Λτk(0)〉
π,d
g,1 :=

∫

[Mg,1(π,d)]vir
ft∗ Λ · ψk

1 ev
∗[0] .

Determining these invariants in general is an open question since degeneration
of the target elliptic curve to a rational curve is not allowed.

Question 2. How to compute the Gromov-Witten invariants 〈Λτk(0)〉
π,d
g,1?

3. Maps to the Hilbert scheme of points

Consider the Hilbert scheme of d points on the plane Hilb
d(C2), which carries an

action of the torus T = (C∗)2. For any partition µ of d, there is a cohomology
class

|µ〉 ∈ H
2d−2l(µ)
T (Hilbd(C2)) ,

and these form a basis of the T -equivariant cohomology over H∗
T (pt). The divisor

class D = −
∣∣(1, 2d−2)

〉
is the first Chern class of the universal quotient, and

generates H2. A curve class βn is defined by the condition that
∫

βn

D = n .

The Deligne–Mumford stack Mg,r(Hilb
d(C2), βn) parametrizes space of stable

maps to Hilb
d(C2) in the curve class βn. It is equivariantly proper, carries a

T -equivariant virtual class and evaluation maps

evi : Mg,r(Hilb
d(C2), βn) −→ Hilb

d(C2) , i = 1, . . . , r .

Gromov-Witten invariants of Hilbd(C2) are defined by equivariant integration:

(3) 〈µ1, . . . , µr〉
Hilb

d(C2)
g =

∑

n≥0

qn
∫

[Mg,r(Hilbd(C2),βn)]vir

r∏

i=1

ev∗i (|µi〉) ∈ Q(t1, t2, q) .

Question 3. Provide a method to compute the invariants (3) for all g.

For g = 0, this was carried out by R. Pandharipande and A. Okounkov [5]. In
this case, the theory is governed by the operator of quantum multiplication by D:

(4) MD = D⋆ : H∗
T (Hilb

d(C2))[[q]] −→ H∗
T (Hilb

d(C2))[[q]] .
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For g > 0, no closed expressions were known. In [6], Pandharipande asks for a

closed expression for 〈D〉
Hilb

d(C2)
1 , which was later conjectured by R. Pandharipande

and H.-H. Tseng.

4. Results

In the talk, the following triple equivalence between particular instances of Ques-
tions 1, 2 and 3 was discussed:

Theorem 1 ([3, 4]). Consider the following statements:

(1) The projection (1) is an homomorphism when applied to [ÑLg,d] and [Jg]:

taut([ÑLg,d] · [Jg]) = taut([ÑLg,d]) · taut([Jg]) .

(2) We can evaluate any Gromov-Witten invariant (2) with a λg insertion:

〈λgΛτk(0)〉
π,d
g,1 =

g σ2g−1(d)

6|B2g|

∫

Mg,1

λgλg−1Λψ
k
1 .

(3) The invariant 〈D〉
Hilb

d(C2)
1 has the following closed expression:

〈D〉
Hilb

d(C2)
1 =

−1

24

(t1 + t2)
2

t1t2

(
Trd +

d−1∑

e=1

σ−1(d− e)Tre

)
,

where (t1 + t2)Trd ∈ Q(t1, t2, q) is the trace of the operator MD in (4).

Then, (a), (b) and (c) are equivalent, and moreover, all of them are true.

Some parts of the proof, which depend on work of R. Pandharipande, H.-H.
Tseng [7] and F. Greer, C. Lian [2] were explained. In the last part of the talk,
the following result was discussed, which answers Question 3 for g = 1:

Theorem 2 ([4]). For every d, there is a matrix Wd of size |Part(d) |× |Part(d) |
with coefficients in Q(t1, t2)[[q]] such that, if det(Wd) is not identically 0, then
all the Gromov-Witten invariants (3) for g = 1 can be reconstructed from the

knowledge of MD and 〈D〉
Hilb

d(C2)
1 . For d ≤ 7, det(Wd) 6= 0.
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Chow groups with twisted coefficients

Burt Totaro

It is natural to ask whether we can define the Chow group of algebraic cycles with
twisted coefficients, as we can do for cohomology. Rost gave such a definition.
Namely, he defined the Chow groups of a scheme X with coefficients in a locally
constant étale sheaf E, assuming that E is torsion of exponent invertible in the
base field k [4, Remarks 1.11 and 2.5]. We generalize the definition so that E need
not be torsion (and, in characteristic p > 0, p need not act invertibly on E) [5]. It
was not obvious how to make such a definition, because Chow groups are defined
in terms of the Zariski topology, not the étale topology.

Definition 1. Let X be a separated scheme of finite type over a field k. Let
E be a locally constant étale sheaf on X , and let i be an integer. The twisted
Chow group CHi(X,E) is defined to be the cokernel of the residue map on étale
cohomology groups of fields:

⊕x∈X(i+1)
H1

et(k(x), E(1)) → ⊕x∈X(i)
H0

et(k(x), E).

Here we interpret Z(1) as Gm[−1], a shift of the multiplicative group in the derived
category of étale sheaves over a field, as in Voevodsky’s theory of motivic coho-
mology [2, Theorem 4.1]. Define E(1) as the derived tensor product E⊗L

ZGm[−1].

As we want, for the constant sheaf ZX , the twisted Chow group CHi(X,ZX)
is the usual Chow group CHiX .

Thanks to Rost’s work on cycle modules, twisted Chow groups have essentially
all the formal properties of the usual Chow groups: proper pushforward, flat pull-
back, localization sequence, homotopy invariance, products on smooth varieties,
and pullback by arbitrary morphisms of smooth varieties [5, section 1]. Also, for
X smooth over k, there are cycle maps from twisted Chow groups to twisted étale
motivic cohomology, and (when k = C) to ordinary cohomology with twisted
coefficients [5, Theorems 6.1 and 7.1].

For a connected schemeX , we can think of a locally constant étale sheaf onX as
a representation of the étale fundamental group of X . When this is a permutation
representation, twisted Chow groups coincide with the usual Chow groups of a
suitable covering space of X (in the topological sense), perhaps not connected [5,
Lemma 2.1]. Note that every representation of a finite groupG over the rationalsQ
is a summand of a permutation representation (such as the regular representation
QG). As a result, twisted Chow groups tensored with the rationals are completely
understood in terms of the usual Chow groups of covering spaces of X . Rational

https://doi.org/10.1017/fmp.2019.4
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twisted Chow groups should be a useful formalism; but the more novel problem is
to try to understand twisted Chow groups integrally or with finite coefficients.

A key feature of twisted Chow groups is that they are always generated by the
usual Chow groups of covering spaces of X , in the following sense [5, Theorem
8.1].

Theorem 2. Let X be a k-scheme of finite type, G a finite group, Y → X an
étale G-torsor (so X = Y/G), and E a ZG-module. Then CHi(X,E) is generated
by the images of the homomorphisms

EH ⊗Z CHi(Y/H) → CHi(Y/H,E) → CHi(X,E)

over all subgroups H of G, where the last map is the transfer or pushforward.
More strongly, we do not need to use all subgroups of G. For each element

x ∈ E, let Gx be the centralizer of x in G. Then CHi(X,E) is generated by the
elements trGGx

(xy) for all x ∈ E and all y ∈ CHi(Y/Gx).

The case of codimension-1 cycles in Theorem 2 reproves Merkurjev–Scavia’s
2024 computation of Serre’s “negligible” subgroup of finite group cohomology in
degree 2 [3, Theorem 1.3, Corollary 4.2], [5, Corollary 8.3]. That was the key to
their construction of the first known field with a Galois representation over Fp

that does not lift to Z/p2 [3, Theorem 1.4].
Although Theorem 2 gives explicit generators for twisted Chow groups in terms

of the usual Chow groups, it is not clear how to describe the relations. There is a
similar theory for which we understand the relations. Namely, Heller–Voineagu–
Østvær defined twisted motivic cohomology with coefficients in a locally constant
sheaf E; this is a bigraded theory, Hi

M(X,E(j)) [1, section 5.2], [5, section 4].
In one way, these behave better than twisted Chow groups: for any short exact
sequence 0 → A → B → C → 0 of locally constant étale sheaves on a scheme X
with A coflasque, there is a long exact sequence of twisted motivic cohomology
[5, Lemma 4.1]:

· · · → H2i−1
M (X,C(i)) → H2i

M(X,A(i)) → H2i
M(X,B(i)) → H2i

M(X,C(i)) → 0.

(For a finite group G, a ZG-module A is coflasque if H1(H,A) = 0 for every
subgroup H of G.) For twisted Chow groups, we only have an exact sequence

CHi(X,A) → CHi(X,B) → CHi(X,C) → 0

under the stronger assumption that A is a summand of a permutation module over
Z [5, Lemma 2.3, Theorem 14.1].

Using the exact sequence above for twisted motivic cohomology, we can always
describe H2i

M(X,E(i)) as the cokernel of a homomorphism between the usual Chow
groups of suitable finite covering spaces of X [5, Remark 4.2]. The problem of
finding analogous relations for twisted Chow groups remains open, in view of
[5, Remark 14.2]:

Theorem 3. For a locally constant étale sheaf E on a smooth k-scheme X, there
is a natural surjection

H2i
M(X,E(i)) → CHi(X,E);
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but this is not always an isomorphism, even for i = 1.

The counterexample involves an étale sheaf E with structure group Z/2×Z/2.
One positive result on twisted Chow groups is that CH1(X,E) injects into

twisted étale motivic cohomology H2
et(X,E(1)), whereas H2

M(X,E(1)) need not
[5, Theorems 10.1 and 14.1]. This suggests that twisted Chow groups form a
meaningful intermediary between twisted motivic cohomology and twisted étale
motivic cohomology:

H2i
M(X,E(i)) → CHi(X,E) → H2i

et (X,E(i)).
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The group scheme of symmetries of a Lagrangian fibration

Mark Andrea A. de Cataldo

(joint work with Yoonjoo Kim, Christian Schnell)

I report on on-going joint work with Yoonjoo Kim at Columbia Univeristy and
Christian Schell at Stony Brook University.

Let f : X → B be a Lagrangian fibration (for ease of exposition, X is nonsin-
gular Kähler equipped with a holomorphic symplectic form σ, f is proper holo-
morphic with connected fibers onto B a complex manifold and the general fiber is
Lagrangian wrt to σ). The case when f is projective of quasi-projective varieties is
a special case. In our arguments, we need to work analyticlly, even in an algebraic
set-up, in which case, the results, not the proofs, are in the algebraic context.

It is well-known that if we restrict f over the open subset Bnc of non-critical
values of f , then the resulting fibration is one of compact complex tori and one has
the relative Albanese torus fibration Alb(Xnc/Bnc) acting on Xnc/Bnc, turning
the latter into a torsor over the former (Liouville-Arnold Theorem).

We prove that there is a smooth commutative group analytic space P/B that
acts on X/B and that embeds in a locally closed fashion into the non flat group
space Aut(X/B)/B and hence also in the relative Douady space of X ×B X over
B. The group space P/B does not have connected fibers over B, but it does over
Bnc. The union P o/B of the connected components P o

b of the identity of each
fiber Pb as b ranges in B is a a smooth commutative group space with connected
fibers, and its construction, as a quotient of the total space of a vector bundle by
the étalé space of a constructible sheaf of finitely generated free abelian groups,
says that P o/B deserves the name of relative Albanese. Note however, that X/B

arXiv:2410.12560
arXiv:2502.20618
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is not a torsor for P/B, nor for P o/B. Both group objects are not proper over B
in general.

Earlier work by other authors, established the result for Lagrangian fibrations
with reduced fibers. The novelty here is that the result holds in complete gener-
ality, without assumptions on the fibers.

The proof consists of a careful analysis of the natural, yet very transcendental,
holomorphic B-map form the total space of the cotangent bundle to the group ob-
ject Aut(X/B), map obtained by considering the Hamiltonian vector fields induced
by the symplectic structure.

We then use the group space P/B to give a precise form of the Decomposition
Theorem for the direct image complex Rf∗QX , in terms of certain direct sum-
mands that we name Ngô strings. Each of this string is a direct sum of shifted
intersection complexes supported on certain subspaces of B (called supports) with
coefficient local systems arising from the group scheme and from the constructible
sheaf R2nf∗QX , where n is the relative dimension of f .

The total space of the fibration can be assumed to be normal (instead of smooth)
(and then Rf∗QX is to be replaced by Rf∗ICX , ICX the intersection cohomology
complex of X), but at present, we need B smooth. While B may be expected to
be smooth if X is smooth, if X is singular, B can be singular. It would be nice to
remove the smoothness assumption on B in our work.

The decomposition into Ngô strings should also be studied in detail for special
Lagrangian fibrations arising in geometry, where it could lead to insight in their
cohomological properties.

IMProofBench: Building a benchmark for AI mathematical reasoning
through collaborative problem creation

Johannes Schmitt

(joint work with Tim Gehrunger, Jeremy Feusi, Gergely Bérczi)

The rapid development of Artificial Intelligence based on Large Language Models
(such as ChatGPT) has created an urgent need for rigorous evaluation of their
mathematical capabilities. A benchmark is a standardized test suite that mea-
sures performance on representative tasks. Current mathematical benchmarks
suffer from significant limitations: those focusing on unique numerical answers
[1, 2] fail to test proof generation and are vulnerable to shortcuts. On the other
hand, benchmarks requiring formally verified proofs in systems like Lean or Coq
[3] exclude much of contemporary research mathematics since the prerequisite ba-
sics from these mathematical theories have not yet been formalized. This work
introduces IMProofBench, a new benchmark designed to evaluate AI systems on
research-level mathematical proof generation, addressing these gaps through a
focus on long-form arguments that meet the standards of peer-reviewed mathe-
matics.

The project was first presented during a 10-minute talk in the Tuesday evening
short talks session, followed by a one-hour collaborative work session on Thursday
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evening. The initial presentation began with an interactive quiz demonstrating
current AI capabilities. Three questions were posed:

(A) What is the minimal integer whose square is between 5 and 17?
(B) For S = {1, . . . , 8}, how many maps ◦ : S × S → S make (S, ◦) into a

group?
(C) What is the étale fundamental group of Spec C[x, y]/(xy − 1)?

ChatGPT-o3 incorrectly answered (A) with 3 instead of -4, but correctly solved

both (B) with the formula
∑

|G|=8 8!/|Aut(G)| = 22080 and (C) as Ẑ. This exer-

cise illustrated both the surprising competence and characteristic failure modes of
current systems, motivating the need for systematic evaluation.

IMProofBench addresses fundamental issues with existing benchmarks. Unlike
numerical-answer formats, proof-based evaluation directly targets hallucination
and logical gaps–even when final answers are correct, flawed reasoning is penal-
ized. The benchmark maintains a private problem repository to prevent training
contamination and overfitting, also addressing concerns about inadvertently accel-
erating AI capabilities. Each problem consists of a proof-requiring main question
paired with automatically verifiable subquestions, enabling both deep evaluation
and efficient testing.

The Thursday evening work session attracted approximately 20 participants
who collaboratively created and tested problems. The session demonstrated strong
engagement across career stages, from graduate students to senior faculty. Many
participants initially submitted questions suitable for advanced oral examinations
before progressing to research-oriented problems. Over 60 submissions were gen-
erated during the session, with remote support from collaborators who manually
entered questions into ChatGPT and other AI systems that have access to web
search and computational tools, capabilities not yet available through our direct
API integration.

The interactive testing revealed nuanced AI performance patterns. While sev-
eral participants reported solution attempts that exhibited deeply flawed argu-
ments, there were also some reported successes, such as calculating coefficients in
tautological relations on universal Jacobians (in response to a question by Q. Yin).
Participants expressed both surprise at specific achievements and reassurance that
fundamental mathematical reasoning remains beyond current capabilities. Several
of them noted that the exercise clarified the gap between pattern matching and
genuine mathematical understanding.

The benchmark’s design philosophy prioritizes authentic mathematical prac-
tice: problems should reflect actual work at PhD level and above, require genuine
insight beyond routine algorithm application, and generate consequences that can
be checked mechanically. There is a plan for a dual evaluation structure – human-
graded proofs complemented by automated subquestion checking – which balances
thoroughness with scalability. Initial focus areas include algebraic geometry and
related fields, with plans to expand coverage through domain-specific editors.

Next steps consist of reviewing submitted problems and providing detailed feed-
back to contributors, followed by systematic evaluation across frontier models (e.g.
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ChatGPT o3, Claude Opus 4, Gemini 2.5 Pro). All contributors will be invited
to participate in grading AI responses and have the option of co-authorship on
the resulting publication targeted for the International Conference on Learning
Representations (ICLR) 2026.

The collaborative format at Oberwolfach, bringing together domain experts
who could contribute sophisticated problems while directly experiencing AI capa-
bilities, suggests a productive model for developing evaluation frameworks across
mathematical disciplines. The direct engagement with AI systems helped partici-
pants calibrate their intuitions about current capabilities while contributing to a
community resource for tracking progress in automated mathematical reasoning.
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A counterexample to the log canonical
Beauville–Bogomolov decomposition

Zsolt Patakfalvi

(joint work with Fabio Bernasconi, Stefano Filipazzi, Nikolaos Tsakanikas)

We work over the field C of complex numbers.
Smooth projective varieties with torsion canonical divisor are one of the fun-

damental classes of varieties studied in birational geometry. The Beauville–Bogo-
molov decomposition provides a structure theorem for these varieties. It asserts
that a smooth K-trivial variety can be decomposed, possibly after an étale cover,
into a product of abelian varieties, strict Calabi–Yau varieties, and irreducible
holomorphic symplectic varieties [Bog74, Bea83]. From this one can deduce the
statement that is sometimes called the weak Beauville–Bogomolov decomposition:
the Albanese morphism of a variety with trivial canonical divisor is isotrivial. This
was first established by Calabi [Cal57]. The isotriviality of the Albanese morphism
has been extended by Cao [Cao19] to the case of smooth projective varieties with
nef anti-canonical divisor. This result has later been applied by Cao and Höring
[CH19] to establish a Beauville–Bogomolov type decomposition of their universal
cover.

From the perspective of the classification theory of varieties, a decomposition
theorem for smooth projective varieties with trivial canonical class is not sufficient.
One would need variants allowing mild singularities (e.g., klt or log canonical). In
fact, such varieties are one of the main building blocks of the final outputs of
the Minimal Modeal Program (MMP), singular Fano varieties and canonically
polarized varieties being the other two.

https://epochai.org/frontiermath
https://scale.com/humanity-last-exam
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Following this motivation, in the series of articles [GKP16, Dru18, GGK19,
HP19], an analog of the Beauville–Bogomolov decomposition for projective va-
rieties with klt singularities and numerically trivial canonical class has been ob-
tained. This result has been partially extended to the case of klt pairs with nef
anti-canonical class in [CCM21,PZ19,MW21], and it can be summarized by the
following structure theorem.

Theorem 1 (Decomposition theorem for klt pairs with nef anti-canonical divisor).
[GKP16, Dru18, GGK19, HP19, CCM21, PZ19,MW21] Let (X,∆) be a projective
klt pair such that −(KX +∆) is nef. The following statements hold:

(1) the Albanese morphism albX : (X,∆) → AlbX is an isotrivial morphism
for the pair (X,∆) and has connected fibers;

(2) if KX +∆ ≡ 0, then there exists a finite quasi-étale cover γ : Y → X such
that

(Y, γ∗∆) = (F,∆F )×A×
∏

Yi ×
∏

Zi,

where F is a rationally connected variety and ∆F = (γ∗∆)|F , A is an
abelian variety, the Yi are singular strict Calabi–Yau varieties and the Zi

are irreducible symplectic varieties; and
(3) if X is smooth and ∆ = 0, then the universal cover Y of X admits a

decomposition

Y = F × Cq ×
∏

Yi ×
∏

Zi,

where F , Zi and Yi are as above and smooth.

Note that the decomposition of the universal cover of a klt pair with nef anti-
canonical class is still an open problem; see [MW21, Conjecture 1.5]. Note also
that in point (3) the splitting does not happen on a finite cover, as instead in point
(2), but only on the universal one. This can be traced back to the fact that, for
any polarization, the polarized automorphism group is finite in the K-trivial klt
case, but it is infinite in general in the −KX nef case.

Varieties and pairs with log canonical singularities form the largest class of va-
rieties for which the MMP is expected to hold. It is thus a central question to
decide whether Theorem 1 holds for log canonical pairs. However, one could then
wonder which point of Theorem 1 should generalize to the log canonical case. As
the polarized automorphism groups can be positive dimensional in the log canon-
ical case, even in the K-trivial case (e.g., take (P1, {0} + {∞}) with OP1(1) as
polarization), one does not expect point (2) to extend to the log canonical case.
Hence, even in the K-trivial log canonical case, the best one could hope for is that
a decomposition as in point (3) of Theorem 1 holds on the universal cover.

Thus, we are primarily interested in the following question:

Question 1. Given a log canonical variety (or pair) X with KX ∼Q 0, does the
universal cover Y of Xreg admit a decomposition

Y = Freg × Cq ×
∏

Yi,reg ×
∏

Zi,reg,
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where F , Yi and Zi are the singular versions of the factors of point (1)refitm:smooth
of Theorem 1?

Our main theorem is the following:

Theorem 2. The answer to Question 1 is negative.

In fact, Theorem 2 is an immediate corollary of the following more precise
theorem, which states that the Albanese morphism fails, in general, to be isotrivial.

Theorem 3. For every integer d ≥ 4, there exists a projective log canonical variety
X of dimension d such that the following hold, where albX : X → AlbX is the
Albanese morphism of X:

(1) KX ∼ 0;
(2) AlbX is an elliptic curve;
(3) every fiber of albX is birational to exactly finitely many other fibers; and
(4) the natural map π1(Xreg) → π1(AlbX) is an isomorphism.

Therefore, any quasi-étale cover of X is induced by an étale cover of AlbX . In
particular, the universal cover of Xreg admits a fibration to C where any fiber is
birational to exactly countably many other fibers.

In the case of pairs, we also construct a counterexample to the Beauville–
Bogomolov decomposition where the pair has plt singularities.

We note that there exists an earlier example [EIM23, Example 6.3], whose
Albanese morphism is isotrivial, but does not split after a finite étale base change.
This shows that there is no log canonical Beauville–Bogomolov decomposition as
in point (2) of Theorem 1. However, this example really only exploits the fact
that the polarized automorphism groups are positive dimensional. In particular,
the fibration does become split when one passes to the quasi-étale universal cover,
and hence it does not give a counterexample to Question 1.

We also treat the case of open varieties. By [Kaw81,Fuj24], the quasi-Albanese
morphism of a quasi-projective variety with logarithmic Kodaira dimension 0 is a
dominant morphism with irreducible general fibers. We show that this is optimal.

Theorem 4. For every integer d ≥ 4, there exists a smooth quasi-projective variety
U of dimension d and logarithmic Kodaira dimension κ(U) = 0 such that the
following hold:

(1) the quasi-Albanese morphism albU : U → Gm is flat with irreducible fibers;
and

(2) every fiber of albU is birational to exactly finitely many other fibers.

We remark that the variety in Theorem 3 is obtained by base change of a
suitable compactification of the variety in Theorem 4.
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Ann. Sci. Éc. Norm. Supér. (4) 52 (2019), no. 5, 1137–1154. MR4057779
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Semi-orthogonal decompositions of Fano moduli spaces

Jenia Tevelev

(joint work with Elias Sink, Sebastián Torres)

Let C be a smooth complex projective curve of genus g ≥ 2, and let SUC(2,Λ0)
(resp. SUC(2,Λ)) denote the coarse moduli space of semistable rank-2 vector bun-
dles on C with a fixed determinant of even (resp. odd) degree. Both are Fano
varieties of dimension 3g − 3 and Picard number 1, but whereas SUC(2,Λ) is
smooth, SUC(2,Λ0) has Gorenstein rational singularities.

Belmans–Galkin–Mukhopadhyay [2, Conjecture A] and Narasimhan [10, Con-
jecture 1.1] conjectured that Db(SUC(2,Λ)) admits a semiorthogonal decomposi-

tion (SOD) with componentsDb(SymkC). This was proved in [16,17]; see also [19].

https://arxiv.org/abs/2402.04595
https://arxiv.org/abs/2105.14308
https://arxiv.org/abs/1912.12742v2
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Theorem 1 (Tevelev–Torres). Db(SUC(2,Λ)) admits a semiorthogonal decompo-

sition with blocks Db(SymkC) (two copies for k < g−1 and one copy for k = g−1).

Many geometric resolutions of the singularities of SUC(2,Λ0) have appeared in
the literature. On the other hand, Kuznetsov [8] defines a noncommutative reso-
lution of singularities of a projective variety X to be a smooth proper triangulated
category D equipped with an adjoint pair of functors

f∗ : D → Db(X), f∗ : Perf(X) → D,

such that f∗ ◦f∗ ∼= Id. Bondal and Orlov [3] conjectured that every variety admits
a minimal noncommutative resolution; see also [6].

Padurariu and Toda [12] introduced, in a general moduli-theoretic framework,
the notion of quasi-BPS categories. In our context, these are the subcategories B0

and B1 of the derived category of the stack of semistable rank-2 vector bundles [12,
Section 3.4]. Moreover, B0 provides a noncommutative resolution of SUC(2,Λ0),
whereas B1 may be regarded as a Brauer-twisted noncommutative resolution.

Theorem 2 (Sink–Tevelev). The categories B0 and B1 admit semiorthogonal de-

compositions with components Db(SymkC): four blocks for k < g − 1 and two
blocks for k = g− 1. Blocks with even k (resp. odd k) contribute to B0 (resp. B1).

In the even-genus case, Theorem 2 verifies a conjecture of Belmans [1]: here B0

is a strongly crepant noncommutative resolution of SUC(2,Λ0) in the sense of [8],
categorifying the intersection cohomology of SUC(2,Λ0).

The categoriesDb(SUC(2,Λ)), (resp., B0, and B1) are studied via their admissi-
ble embeddings in Db(M), where M denotes the Thaddeus moduli space of stable
pairs (F, s); here F is a rank-2 vector bundle on C with fixed determinant of de-
gree 2g− 1 (resp. 2g), and s ∈ H0(C,F ) is a nonzero section (see [18]). Moreover,

the derived categories Db(Sym2kC) embed into Db(M) via explicit Fourier–Mukai
functors whose kernels are tensor bundles twisted by various line bundles.

In the odd-degree case, the moduli spaces of stable bundles and of stable pairs
are birational. In contrast, when deg(Λ0) = 2g, the morphism M → SUC(2,Λ0)
has generic fiber P1. Although M is always rational, the rationality of SUC(2,Λ0)
remains a longstanding open problem, going back to the early works of Tyurin and
Newstead. In light of the Kuznetsov rationality proposal [9], Theorem 2 suggests
that any weak factorization of a hypothetical birational map SUC(2,Λ) 99K P

3g−3

should involve blow-ups and blow-downs of Sym2kC for 2k ≤ g − 1.
There is a large body of conjectures predicting explicit semiorthogonal decom-

positions of Fano varieties, often based on analyses of Hodge diamonds and on the
additivity of Hochschild homology in semiorthogonal decompositions. Such pre-
dictions are challenging to prove. One general approach is to analyze the two-ray
game determined by two extremal contractions of a Fano variety:

(1)

X

Y Z
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In our situation, X = M , Y = P3g−3 (resp. P3g−2 in the even-degree case),
and Z = SUC(2,Λ) (resp. SUC(2,Λ0)). We begin with a known semiorthogonal
decomposition of Db(Y ) and extend it to one of Db(X), which in our case is
straightforward. The hard part is to mutate this decomposition of Db(X) to one
compatible with a semiorthogonal decomposition of Db(Z):

Conjecture 3. Let (1) be the extremal contractions of smooth Fano varieties.
Then there exist semiorthogonal decompositions of Db(X) that are compatible with
pullbacks along these maps:

Db(X) = 〈A1, . . . ,As,P1, . . . ,Pr〉 = 〈Q1, . . . , Qu,B1, . . . ,Bt〉,

Db(Y ) = 〈A1, . . . ,As〉, Db(Z) = 〈B1, . . . ,Bt〉.

Moreover, the two decompositions of Db(X) are related by a mutation.

Our approach uses weaving patterns of [16], allowing for tight control of the

Fourier–Mukai kernels for the various functors Db(SymkC) → Db(M) embedding
the blocks on different stages of the mutation. From the perspective of homological
mirror symmetry for Fano manifolds, such mutations should exist in general, and
we can predict a description of the corresponding braid (recall that mutation gives
rise to a braid group action on the set of semiorthogonal decompositions):

Conjecture 4. The braid appearing in Conjecture 3 can be computed as the mon-
odromy of the eigenvalues of c1(X) acting on the small quantum cohomology ring
QH

∗(X,C), as the quantum parameter τ varies along a path in the ample cone
of X (with a small B-field perturbation iB to avoid collisions of eigenvalues).
As the path approaches the walls of the ample cone, the eigenvalues cluster into
groups reflecting the structure of the birational contractions Y L99 X 99K Z.

We do not claim originality for these conjectures, which align with existing
literature (see, e.g., [4–7, 13]). Currently, the only way to test Conjecture 4 is
by computing and comparing the two braids; see [15] for numerous examples. It
would be valuable to accumulate further evidence by realizing other pairs of Fano
varieties Y and Z via a common Fano variety X , such as toric Fano varieties,
maximal flag varieties, Fano threefolds, and various moduli-theoretic Fano spaces.

One motivation for Theorem 1 was the categorification of the Muñoz result [11]
that the quantum spectrum of SUC(2,Λ) consists of eigenvalues 8λ, where

λ = 1− g, (2 − g)i, 3− g, . . . , g − 3, (g − 2)i, g − 1,

and the eigenspace corresponding to 8λ is isomorphic to H∗(Sym g−1−|λ|(C),C).
We therefore conjecture:

Conjecture 5. The semiorthogonal decomposition of SUC(2,Λ) from Theorem 1
is atomic, i.e., compatible with the orthogonal decomposition of H∗(SUC(2,Λ),C)
into generalized eigenspaces of quantum multiplication by c1. The precise notion
of compatibility is as in the Sanda–Shamoto conjecture [13].
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Following a suggestion of Padurariu and Toda, we prove Conjecture 3 in the
setting of the Hecke correspondence

H

SUC(2,Λ0) SUC(2,Λ)

π0 π

Here H denotes the moduli space of stable parabolic bundles (at a fixed point
q ∈ C) with a fixed odd determinant. We obtain semiorthogonal decompositions

〈B0,B1〉 = Db(H) = 〈Db(SUC(2,Λ)), D
b(SUC(2,Λ))⊗Oπ(1)〉

compatible with the morphisms π0 and π. Here B0 and B1 are the quasi-BPS cate-
gories for SUC(2,Λ0), and the second decomposition reflects that π is a P1-bundle.
We construct a mutation in Db(H) relating the decompositions of Theorems 1
and 2, which we call the Hecke Braid.

This research was supported by NSF grants DMS-2101726 and DMS-2401387.

References

[1] P. Belmans, Seshadri’s desingularisation in the Hodge diamond cutter, and a
bold proposal, 2021. https://pbelmans.ncag.info/blog/2021/03/21/seshadris-desingula
risation-in-hodge-diamond-cutter/.

[2] P. Belmans, S. Galkin, and S. Mukhopadhyay, Decompositions of moduli spaces of vector
bundles and graph potentials, Forum Math. Sigma 11 (2023).

[3] A. Bondal and D. Orlov, Derived categories of coherent sheaves, Proceedings of the ICM,
Vol. II (2002), 47–56.

[4] B. Dubrovin, Geometry and analytic theory of Frobenius manifolds, Proceedings of the
International Congress of Mathematicians, Vol. II (Berlin, 1998), 1998, pp. 315–326.

[5] S. Galkin, V. Golyshev, and H. Iritani, Gamma classes and quantum cohomology of Fano
manifolds: gamma conjectures, Duke Math. J. 165 (2016), no. 11, 2005–2077.

[6] D. Halpern-Leistner, The noncommutative minimal model program (2024), available at
https://arxiv.org/abs/2301.13168.

[7] M. Kontsevich, Quantum spectrum in algebraic geometry I,II,III, 2020. Lectures at Miami,
January 27–February 1, 2020, https://schms.math.berkeley.edu/events/miami2020/.

[8] A. Kuznetsov, Lefschetz decompositions and categorical resolutions of singularities, Selecta
Math. 13 (2008), no. 4, 661.

[9] , Derived Categories View on Rationality Problems, Rationality Problems in Alge-
braic Geometry: Levico Terme, Italy 2015, 2016.

[10] K.-S. Lee and M. S. Narasimhan, Symmetric products and moduli spaces of vector bundles
of curves (2021), available at https://arxiv.org/abs/2106.04872.
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On the top weight rational cohomology of the moduli space of abelian
varieties and universal Jacobians

Margarida Melo

(joint work with Madeleine Brandt, Juliette Bruce, Melody Chan,
Gwyneth Moreland, Corey Wolfe)

Constructing compactifications of moduli spaces often requires the use of combi-
natorial data, which is associated with degeneration data of the original objects.

In the last few years, tropical methods have been applied quite successfully in
understanding the combinatorics behind a number of compactifications of moduli
spaces, in particular by endowing them with a tropical modular interpretation.
Consequently, one can study different properties of these (compactified) spaces by
studying their tropical counterparts.

In the talk, I will focus on the moduli space Ag of abelian varieties of dimension
g. In particular, I will explain joint work with Madeleine Brandt, Juliette Bruce,
Melody Chan, Gwyneth Moreland and Corey Wolfe where we apply the tropical
understanding of the classical toroidal compactifications of Ag to compute, for
small values of g, the top weight rational cohomology of Ag. We also show that our
results can be used to study the stable cohomology of the Satake compactification
of Ag and the cohomology of GLg(Z).

1. The top-weight cohomology of Ag

The moduli stack Ag of (principally polarized) abelian varieties of dimension g is

a smooth stack of dimension d =
(
g+1
2

)
, and it is one of the most studied moduli

spaces in algebraic geometry. However, the full cohomology ring of Ag is known
only up to g = 3: the cases when g ≤ 2 are classically known, and the case when
g = 3 is the work of Hain [Hai02].

Since Ag is not proper and its coarse moduli space Ag is a complex algebraic
variety, its rational cohomology groups of Ag admit a weight filtration in the sense

of mixed Hodge theory, with graded pieces GrWj H•(Ag;Q) which may appear for
j from 0 to 2d, so the piece of weight j = 2d is known as the top-weight rational
cohomology of Ag. This report presents joint work of the author with Madeleine
Brandt, Juliette Bruce, Melody Chan, Gwyneth Moreland and Corey Wolf in
[BBCMMW24] concerning the study of the top-weight rational cohomology of Ag,
GrW2dH

•(Ag;Q). In detail, our computations allow us to determineGrW2dH
•(Ag ;Q)

https://arxiv.org/abs/2312.07542
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for g ≤ 7, as described below: The top-weight rational cohomology of Ag for
2 ≤ g ≤ 7, is

GrW6 Hk(A2;Q) = 0

GrW12 H
k(A3;Q) =

{
Q if k = 6,

0 else,

GrW20 H
k(A4;Q) = 0

GrW30 H
k(A5;Q) =

{
Q if k = 15, 20,

0 else,

GrW42 H
k(A6;Q) =

{
Q if k = 30,

0 else,

GrW56 H
k(A7;Q) =

{
Q if k = 28, 33, 37, 42

0 else.

The cases g = 2, 3 and 4 were already known: the whole cohomology ring ofA2 was
classically computed by Igusa, the whole cohomology ring of A3 was computed by
Hain in [Hai02] and the case g = 4 is contained in the work of Hulek and Tommasi
in [HK12]. We notice that our results exhibit for the first time the existence
of nonzero odd cohomology of Ag (for g = 5, 7), answering an open question of
Grushevsky (see [Gru09, Open Problem 7]).

Our techniques for studying Ag are analogous to those employed in [CGP21] for
Mg: there exist well behaved compactifications of Ag associated to combinatorial
data that has a tropical modular interpretation. The moduli spaces parametrizing
such tropical varieties are generalized cone complexes whose homology can be
identified with the compactly supported cohomology of Ag and computed using
combinatorial techniques.

In detail, the moduli spaces Ag admit toroidal compactifications Ag
Σ
, which

are proper Deligne–Mumford stacks. The compactifications Ag
Σ

are associated
to admissible decompositions Σ of Ωrt

g , the rational closure of the cone of positive
definite quadratic forms in g variables. The same data was also used to construct
the moduli space Atrop,Σ

g of tropical abelian varieties of dimension g in the category
of generalized cone complexes in joint work of the author with Brannetti and
Viviani in [BMV11].

Notice that a similar relation has been shown to hold more generally for toroidal
compactifications of locally symmetric varieties in the recent preprint [ABBCV]
by Assaf, Brandt, Bruce, Chan and Vlad.

Then for any admissible decomposition Σ of Ωrt
g and for each i ≥ 0, and writing

LAtrop,Σ
g for the link of the cone point of Atrop,Σ

g , the following canonical identifi-
cation holds:

H̃i−1(LA
trop,Σ
g ;Q) ∼= GrW2d H

2d−i(Ag;Q).
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This identification follows from applying the generalization to Deligne–Mumford
stacks, spelled out in [CGP21], of Deligne’s comparison theorems in mixed Hodge

theory using the fact that there exist admissible decompositions Σ for which A
Σ

g

is a smooth simple normal crossings compactification of Ag whose boundary com-
plex is identified with LAtrop,Σ

g and that the homeomorphism type of LAtrop,Σ
g is

independent of Σ.
Therefore, in order to compute the topology of Atrop,Σ

g , we consider the perfect

or first Voronoi toroidal compactification Ag
P

and its tropical version Atrop,P
g ,

associated to the perfect cone decomposition, as it is very well known and enjoys
interesting combinatorial properties. We then identify the homology of the link
of Atrop,P

g with the homology of a complex, that we call the perfect chain complex

P
(g)
• , using the framework of cellular chain complexes of symmetric CW-complexes

due to Allcock-Corey-Payne [ACP22].

To compute the homology of the complex P
(g)
• we use a related complex V

(g)
• ,

called the Voronoi complex. This complex which was introduced in [EVGS13,LS78]
to compute the cohomology of the modular groups GLg(Z) and SLg(Z) and we

show that it relates to P
(g)
• as they both sit in the following exact sequence

0 P
(g−1)
• P

(g)
• V

(g)
• 0.π

We can therefore compute the homology of P
(g)
• by using the results in the homol-

ogy of V
(g)
• in [EVGS13,LS78], which are based on the existence of lists of perfect

forms for g ≤ 7 obtained by Jaquet in [Jaq93].
Our main results on H∗(Ag;Q) ∼= H∗(Sp2g(Z);Q) are also related to the stable

cohomology of Satake compactifications. More precisely, the classes we find in
this paper seem to relate to interesting generators of the stable cohomology ring
of ASat

g , defined by Charney and Lee.
Finally, our results also highlight the connection between H∗(Sp2g(Z);Q) and

H∗(GLg(Z);Q), that is, for all k,

H(g2)−k(GLg(Z);Q) ∼= Hk+g−1(V
(g))

and

Hk−1(P
(g)) ∼= GrWg2+gH

g2+g−k(Ag;Q)և Hg2+g−k(Ag;Q).
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