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ABSTRACT. Over the last 30 years, there has been spectacular progress in
deriving the well-known hydrodynamic limits from stochastic interacting par-
ticle systems, as well as characterizing the fluctuations of locally conserved
quantities around this limit. Many interesting results on the aforementioned
topic have been derived from stochastic integrability, an approach relying on
very specific combinatorial and algebraic properties of the underlying dynam-
ics which allow deriving several scaling limits. However, a microscopic change
on the dynamics can dramatically impact the macroscopic level, in the sense
that scaling limits are no longer tractable by this methodology. Moreover,
microscopic perturbations can lead to evolution equations with a variety of
behaviours and at the critical parameter of the underlying dynamics, several
universal anomalous laws can emerge, both in hydrodynamics and in fluctu-
ations. More generally, understanding critical points where physical systems
undergo phase transitions, and establishing that the phenomenology is de-
scribed by universal mathematical objects that do not depend on the specific
properties of the underlying microscopic dynamics, is a cornerstone of mod-
ern probability and mathematical physics, both from a pure and an applied
point of view.

Mathematics Subject Classification (2020): 60Fxx, 60G60, 60Hxx, 60Jxx, 60K35, 81Pxx, 81Txx,
82Cxx, 82Dxx.

License: Unless otherwise noted, the content of this report is licensed under CC BY SA 4.0.


https://creativecommons.org/licenses/by-sa/4.0/deed.en

1334 Oberwolfach Report 26/2025

Introduction by the Organizers

The workshop Statistical Physics Out of Equilibrium: Quantitative Results and
Universality, organized by Hugo Duminil-Coupin (Paris), Grégory Miermont
(Lyon) and Patricia Gongalves (Lisbon), was well attended with 51 participants
(including 3 online participants), and with broad geographic representation from
several continents. The core topic of the workshop focused on recent progress
in particle systems, considered under the prism of their hydrodynamics limits,
convergence to equilibrium, integrable and geometric properties. Faithful to the
general spirit of the event, we however kept a large span of topics in modern
probability theory, and also had a number of presentations on other aspects of
statistical physics, quantum systems, Markov chain convergence and random ge-
ometry, with an emphasis on the question of universality that is an ubiquitous
concept in physics.

The week began with a thematic morning on integrable probability, featuring
talks by Tomohiro Sasamoto, Makiko Sasada, and Alessandra Occelli. Tomo-
hiro Sasamoto presented the latest findings of his research group — which includes
Cristian Giardina, Hayate Suda, and Kirone Mallick — on large deviations for in-
teracting particle systems with large spin. The aim of the talk was the derivation
of a new type of large deviation principle based on the Feng-Kurtz framework.
Sasamoto’s talk was followed by an inspiring presentation by Makiko Sasada, who
discussed the independence-preserving property of certain bijections. Sasada re-
viewed recent results obtained with her research group — David Croydon, Ryosuke
Uozumi, Hiroki Kondo, and Sachiko Nakajima — on the use of this property to
study stationary solutions of stochastic integrable models and invariant measures
of discrete (deterministic) integrable systems, as well as the connections between
the independence-preserving property of F' and integrability itself. The next talk
was given by Alessandra Occelli, who discussed hard-edge fluctuations and large
deviations of the Muttalib—Borodin ensemble. The presentation concluded with
the derivation of a large deviation principle for the empirical measure of the plane
partition, and the characterization of the corresponding equilibrium measure via
a Riemann-Hilbert problem associated with the minimization of the rate function.

The afternoon focused on criticality around the KPZ equation. The first talk
was given by Nikolaos Zygouras, who presented recent work (in collaboration with
Francesco Caravenna and Rongfeng Sun) on the critical 2d stochastic heat flow,
which is a non-trivial solution of the SHE in the critical dimension d=2 at the
transition point, but it is neither Gaussian nor a Gaussian multiplicative chaos.
Zygouras reviewed the phase transition of the 2d SHE and explained the construc-
tion and properties of the critical stochastic heat flow. The talk was followed by
Pedro Cardoso, who presented the derivation of the regional fractional stochastic
Burgers equation from interacting particle systems. The underlying model was the
boundary-driven exclusion process with long jumps and asymmetric jump rates,
depending on a parameter that leads the system to stationary solutions of either
the Ornstein—Uhlenbeck equation or energy solutions of the stochastic Burgers
equation. The afternoon session concluded with an inspiring talk by Giuseppe
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Cannizzaro on the super-diffusive central limit theorem (CLT) for the SBE at the
critical dimension. In collaboration with Fabio Toninelli and Quentin Moulard,
they have identified the exact large-time asymptotic behavior of the diffusion ma-
trix and proved that the solution of the SBE satisfies a CLT under a logarithmic
correction scaling.

The Tuesday morning session began with a talk by Tadahisa Funaki on quan-
titative results for the hydrodynamic limits of non-gradient Glauber—Kawasaki
dynamics. The aim of the talk was to discuss the derivation of interface motion
from a non-gradient type Glauber—Kawasaki dynamics and convergence rates were
obtained using quantitative homogenization methods, and results on the fluctua-
tions of the interface were also presented.

Alessandra Faggionato then presented her recent results, partly with Ivailo Har-
tarsky, linking the percolative properties of a vast class of spatial random network
models with the non-degeneracy of the effective homogenized matrix of the random
walk in the large scale limit.

The next talk was from Michael Aizenman who sketched an innovative route to
entanglement in quantum spin chains by drawing on deep parallels with classical
statistical mechanics systems, such as loop models and percolation.

The afternoon session was once again dedicated to critical phenomena in inter-
face growth and the KPZ equation, featuring talks by Duncan Dauvergne, Guil-
laume Barraquand, and Ofer Busani. Dauvergne presented a talk on a joint project
with Lingfu Zhang, focused on the characterization of the directed landscape via
the KPZ fixed point. The talk aimed to give a full characterization of the directed
landscape based on these KPZ fixed point marginals. The talk was followed by
Guillaume Barraquand’s talk, who spoke about KPZ growth with open boundary
conditions and he presented a general framework that applies to various models
and compared it with the classical Matrix Product Ansatz approach. The session
concluded with a talk by Ofer Busani on global solutions of the KPZ fixed point
at exceptional slopes, based on joint work with Sudeshna Bhattacharjee and Evan
Sorensen, where he provided a complete characterization of the global solutions of
the KPZ fixed point, almost surely in all directions, and showed that in exceptional
directions, there exist infinitely many global solutions.

On Tuesday evening, we had a 1-hour night session with quick presentations
by younger participants (William Fleurat, Julian Kern, Maria Chiara Ricciuti,
Beatriz Salvador, Leander Schnee) followed by a short open problem session.

Wednesday morning was devoted to another aspect of 2D random geometry,
with talks by Jason Miller, Armand Riera and Ewain Gwynne. Miller reported on
remarkable progress, obtained in numerous collaborations of his research group, on
the chemical distance structure and diffusions on conformal loop ensembles (CLS),
in the so-called dense regime. This requires a multitude of techniques inspired from
first-passage percolation, random media, Dirichlet forms. Armand Riera discussed
recent results with Curien and Miermont on the scaling limit of random planar
maps with a Boltzmann distribution, when the faces have a heavy-tailed degree
distribution. The possible scaling limits, which are random metric spaces called
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stable gaskets/carpets, present a structure that is analogous to the CLE, and in
particular, they possess two dense/dilute phases as to whether the boundary of
the space may or may not have self-intersections. Indeed, these spaces are ex-
pected to represent a “quantum” version of CLEs, in the sense that CLEs with
distances measured using an independent Gaussian multiplicative chaos instead of
a Euclidean chemical distance should coincide with these stable random fractals.
To conclude the morning session, Ewain Gwynne presented recent progress on
supercritical Liouville Quantum Gravity (LQG) metrics, which form a family of
non-compact random metrics with infinitely many topological ends, and that are
conjectured to be relevant in the context of conformal field theories with central
charge ¢, which arises in particular when one aims at describing statistical physics
models with matter field in R?. Among others, Ewain also gave a possible explana-
tion of the counterintuitive statement that can sometimes be found in the physics
literature that such matter fields present a branched polymer phase, by showing
that natural models of random maps expected to converge to supercritical LQG,
but conditioned on the small-probability event that they are finite, converge to the
Brownian continuum random tree.

The rain left us with a lot of time for discussions in the Wednesday afternoon,
after which Scott Sheffield presented in a night session his views on Yang-Mills
theory. Scott Sheffield delivered an engaging evening overview of the latest break-
throughs in lattice Yang-Mills theory. He illustrated how these discrete probabilis-
tic frameworks provide fresh insight into their elusive continuum counterparts in
gauge theory.

The morning of Thursday started with the talk of Barbara Dembin who reported
striking advances obtained with Dor Elboim and Ron Peled on rigorous results for
minimal surfaces in random environments firmly anchoring several physics based
predictions. The next speaker was Xin Sun that unveiled a suite of novel exact for-
mulae for the scaling limit of two-dimensional critical Bernoulli percolation most
notably, precise annular crossing estimates. Achieving what was once thought
infeasible, these results synthesize sophisticated tools from conformal probability
theory, particularly Liouville quantum gravity (LQG) and conformal loop ensem-
bles (CLE). Finally, Allan Sly presented cutting-edge findings on Glauber dynam-
ics in Ising and Potts models initialized with an excess of plus spins. He showed
that under these conditions, the system exhibits rapid mixing in time O(log(n)).

Thursday afternoon’s session began with a talk by Dominik Schmid on quanti-
tative results for the open Asymmetric Simple Exclusion Process (ASEP), where
he presented a simple characterization of the Bryc polynomials, which enabled
sharp approximation results in the shock region of the open ASEP, while in the
fan region, the results relied on a recent generalization of the Ennola—Derrida rep-
resentation of the classical Matrix Product Ansatz method. The next speaker was
Milton Jara, who gave an expository talk on the non-equilibrium stationary state
(NESS) of the KPZ equation. The underlying discrete model considered was the
WASEP with speed change, for which a novel methodology was proposed to show
that the density fluctuations of the NESS in boundary-driven, weakly asymmetric
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interacting particle systems are tight, and that any limit point is an energy so-
lution of the KPZ equation. The session ended with a talk by Gunter Schiitz on
a reverse duality property for the ASEP with open boundaries. A duality rela-
tionship was established between the ASEP with non-conservative open boundary
conditions and an asymmetric exclusion process with particle-dependent hopping
rates and conservative reflecting boundaries and this allows relating the measures
of the dual processes. The reverse duality also sheds light on certain properties of
the stationary matrix product measures of the open ASEP that are represented
using finite-dimensional matrices.

The last day of the event started with a talk from Patrik Ferrari about decou-
pling and decay of the two-point functions in a two-species TASEP on the full
line starting from a translation-invariant stationary measure. The main result was
about the asymptotic decoupling of the marginal height profiles along character-
istic lines and the decay of the mixed correlations in the large-time limit, thus
confirming predictions of the nonlinear fluctuating hydrodynamics theory. The
talk was followed by another talk of Simone Warzel. Together with her coauthors,
they have adapted techniques developed by Stroock—Zegarlinski and Martinelli for
Glauber dynamics. Their work establishes a modified log Sobolev inequality gov-
erning the quantum Markovian dynamics that underlie convergence to equilibrium
in the Kitaev toric code model. The workshop ended with a beautiful and inspir-
ing presentation by Justin Salez, who reported on his work aiming at giving a full
characterization of the cutoff phenomenon for Markov chains, meaning that the
convergence to equilibrium occurs abruptly. After introducing the useful concept
of varentropy, which allows to formulate a simple sufficient condition for cutoff,
and explained how an assumption of positive curvature in the Bakry-Emery sense
allows one to make this condition effective. Justin concluded by predicting that
the cutoff phenomenon for negatively curved chains should be of a different nature.
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Abstracts

Large deviation for large spin for interacting particle systems
TOMOHIRO SASAMOTO
(joint work with Cristian Giardina, Kirone Mallick, Hiroki Moriya, Hayate Suda)

The large deviation principle for symmetric simple exclusion process (SEP) had
been established by Kipnis, Olla, Varadhan in 1989 [1]. A somewhat different for-
mulation, known as the macroscopic fluctuation theory (MFT), was initiated and
developed by Jona-Lasinio et al in 2000’s [2] for more generic systems. The basic
equations of the theory, MFT equations, are coupled nonlinear partial differential
equations and had resisted exact analysis except for stationary situation. A few
years ago we have found that a novel generalization of the Cole-Hopf transfor-
mation maps the MFT equations for SEP to the classically integrable Ablowitz-
Kaup-Newell-Segur(AKNS) system. This allows us to solve the equations exactly
in time dependent regime by adapting standard ideas of inverse scattering method
[3, 4]. In this presentation we consider a lattice analogue of the large deviation
and its solution [5].

In recent years several interacting particle systems which have a parameter
called a “spin” have been introduced and studied. They include the partial exclu-
sion process, inclusion process and the harmonic model. For this class of models,
we propose a new type of large deviation for large spin. We first explain the ba-
sic formulation based on the scheme of Feng-Kurtz and calculate the associated
Hamiltonian for a few examples. Next we explain a proof of the large deviation
principle (LDP) for the case of partial exclusion on a finite lattice. We also show
how one can calculate the rate function exactly by mapping to a classical integrable
system on a lattice. If time allows we also discuss connections to the macroscopic
fluctuation theory (MFT).

At the moment we have been able to prove the LDP for models on a finite lattice.
It would be interesting to prove the LDP for models on infinite lattice. Then it is
a challenging question to ask if the large deviation for large spin leads to better
understanding of hydrodynamic LDP and MFT. Finally understanding integrable
structure of the MF'T equations for various models with various geometry is a very
interesting question in another direction.

REFERENCES

[1] C. Kipnis, S. Olla, and S.R.S. Varadhan, Hydrodynamics and large deviations for simple
ezclusion processes, Comm. Pure Appl. Math., 42 (1989), 115-137.

[2] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Macroscopic fluctuation
theory, Rev. Mod. Phys., 87 (2015), 593-636.

[3] K. Mallick, H. Moriya, and T. Sasamoto, Ezact solution of the macroscopic fluctuation
theory for the symmetric exclusion process, Phys. Rev. Lett. 118 (2022), 160601.

[4] K. Mallick, H. Moriya, and T. Sasamoto, Ezact solution of the macroscopic fluctuation
theory for the symmetric exclusion process, JSTAT 2024 (2024), 074001.
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[5] C. Giardina and T. Sasamoto, Large spin large deviations for interacting particle systems;
C. Giardina, K. Mallick, T. Sasamoto, and H. Suda, Ezact solution of discrete macroscopic
fluctuation theory for an integrable spin system, in preparation.

Independence preserving property and integrable systems
MAKIKO SASADA

(joint work with David Croydon, Hiroki Kondo, Sachiko Nakajima,
Ryosuke Uozumi)

The well-known Kac—Bernstein theorem asserts that if X and Y are indepen-
dent real-valued random variables, and moreover X +Y and X —Y are independent
as well, then X and Y must follow normal distributions with the same variance.
This result implies that the bijection F(x,y) = (z + y,z — y) leads to a class of
quadruples of non-degenerate probability measures (u, v, fi, 7) such that

Fluxv)=pxrn.

When a bijection F' satisfies this condition, it is said to have the independence
preserving property (abbreviated as the IP property).

Previous research has primarily focused on examining the IP property for spe-
cific, explicit bijections F', which has led to characterizations of notable probabil-
ity distributions including the normal, gamma, exponential, inverse-Gaussian, and
beta distributions. When F’ takes a particular form, this property is also referred
to as the Matsumoto—Yor property.

The IP properties of the maps Fg(z,y) := (x +y, %) characterizing the gamma
distribution and Fg(z,y) := (1 — zy, f_;qf”y) characterizing the beta distribution
played an essential role in the paper [1] in characterizing the stationary distribu-
tion of the 1+ 1-dimensional lattice polymer model. By applying their method, in
[2] we investigated the stationary distribution of zero-temperature version of 1+ 1-
dimensional polymer lattice models, and in particular, we discovered a new station-
ary distribution. In this analysis, we considered the zero-temperature limits—or in
other words, the ultra-discretizations—of Fg and Fg, and utilized the IP property
of the resulting bijections.

Although the above results focused on stochastic models, it has become evi-
dent that the same methodology can be extended to deterministic models as well.
In particular, in our paper [3], we introduced a class of deterministic models on
the 1 4+ 1 dimensional lattice, called locally-defined dynamics. We showed that a
model in this class has a stationary distribution that is independent and identi-
cally distributed (i.i.d.) if and only if the bijection F' governing the local evolution
satisfies the IP property. Moreover, we demonstrated that this stationary dis-
tribution satisfies the Burke property. This class of models includes important
integrable systems such as the discrete KdV equation, the discrete Toda equation,
the ultra-discrete KdV equation, and the ultra-discrete Toda equation. Using the
aforementioned theorem, we also showed that each of these four models indeed has
a class of i.i.d. stationary distributions.
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From the last results, we observed that four well-known examples of bijections
F' defining integrable systems possess the IP property. This naturally raises the
question of whether there is an intrinsic connection between the IP property of
the map F' and the integrability of the locally-defined dynamics given by F. In
particular, since it is known that the class of bijections F' defining the discrete
KdV equation also satisfies the Yang—Baxter equation, in [5] we conducted the first
study on the relationship between the Yang—Baxter equation and the IP property.
As a result, we newly found that some quadrirational Yang—Baxter maps possess
the IP property. Furthermore, we discovered that most known maps with the
IP property can be derived—through limiting procedures, change of variables or
specifying parameters—from these quadrirational Yang—-Baxter maps.

As a continuation of this work, in [4] we considered ultra-discrete analogues of
quadrirational Yang-Baxter maps, and showed that they also satisfy the Yang-
Baxter equation and possess the IP property. In this study, we introduced the
concept of ultra-discretization of probability measures. A similar approach was
also employed in [2] to investigate the zero-temperature limit of the stationary
distribution in 1 4 1-dimensional lattice polymer models.

Thus, through the IP property, various similarities between probabilistic inte-
grable models and deterministic integrable systems have been revealed. However,
as a fundamental open problem, it remains completely unresolved whether there
is any intrinsic connection between the IP property and integrability, and whether
there exists any direct and universal relationship between probabilistic integrable
models and deterministic integrable systems. To clarify these questions, further
research focusing on various concrete examples is expected to advance in the fu-
ture.

REFERENCES

[1] H. Chaumont and C. Noack, Characterizing stationary 1 + 1 dimensional lattice polymer
models, Electron. J. Probab. 23 (2018), 1-19.

[2] D. A. Croydon and M. Sasada, On the stationary solutions of random polymer models and
their zero-temperature limits, J. Stat. Phys. 188-3 (2022), Paper No. 23, 32.

[3] D. A. Croydon and M. Sasada, Detailed balance and invariant measures for discrete KdV-
and Toda-type systems, arXiv:2007.06203

[4] H. Kondo, S. Nakajima, and M. Sasada, Ultra-discretization of Yang-Baxter maps, proba-
bility distributions and independence preserving property , arXiv:2504.21359

[5] M. Sasada and R. Uozumi, Yang-Bazter maps and independence preserving property, Elec-
tron. J. Probab., 29 (2024), 1-21.
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Discrete and Continuous Muttalib—Borodin Processes: old and
new results

ALESSANDRA OCCELLI
(joint work with Dan Betea, and with Jonathan Husson and Guido Mazzuca)

A plane partition A is a matrix (A; ;j)i1<i<m,1<j<n of non-negative integers satis-
fying the conditions:

Azg > Az ,J+1 and Azg > AlJrl,j'

This arrangement can be visualised as stacks of cubes in a three-dimensional space,
where the array corresponds to the number of cubes placed at each coordinate point
of an M x N rectangular base. Plane partitions have applications in combinatorics,
statistical mechanics, and representation theory. Plane partitions are equivalently
described by a sequence of interlacing integer partitions:

O s ATY AW as >0, MO < AEY as <0,

where the interlacing condition AG) < A®) means )\gs) > )\gt) > )\gs) > )\g) >
This representation connects plane partitions with lozenge tilings, Schur functions,
and determinantal point processes. It can also be visualised as a particle process
on {-M+1,...,0,...,N — 1} x N by the shift 61@ = )\Et) + M —i. Given real
parameters a,q > 0 and 7,6 > 0, we consider the following weight associated with
a plane partition A:

n-Left Vol+6-Right Vol
)

040 )CentraIVol
q

(1) P(A) x (aqT
where LeftVol, CentralVol, and Right Vol represent the volumes of cubes in different
regions of the plane partition. Under this measure each time slice of a plane
partition/particle process corresponds to a discrete Muttalib—Borodin like ensemble
(a biorthogonal ensemble [3]), described by

@ P =0=— [ @) ") [] wa

4 <i<i<r, 1<i<L,

where Zg = [[1<,< s H1<j<N(1 — aqn(i—%)q9(j—%))—1 is the partition function and
wq(l;) represent discrete weights derived from the volume contributions of the
partitions, with

GI(QQ)%Q‘tlm(Qwi‘tHl; Q)N—(JM_M) ift <0,
wa(r) = { a®(QQ)F Q¥ (Q™ Q) N—t—um ift>0and N —t> M,
a®(QQ)z QI (QtN—t=M+1. ), ~(N—t) ift>0and N -t <M.

The Muttalib-Borodin ensemble (MBE) generalises 3-ensembles by introducing an
additional interaction parameter # > 0: the interacting potential A(x)” is replaced
by A(z")A(x%). One can think of it as a system with two-particle interactions,
one between type x;’s, one between type xf’s. The interaction term distinguishes
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MBEs from classical $-ensembles, making them suitable for modeling disordered
conductors [6].
We study the ensemble in the limit

(4) g=e¢, a=e %, Ai(t) = —%, e — 0+,
which gives rise to a space-continuous process (z(t)); supported in [0, 1].

First we connect the discrete and continous ensembles to models of inhomoge-
neous last passage percolation with geometric/power law weights and show that the
last passage time (the total weight of the heaviest directed path) is in distribution
equal the peak of the plane partition, or the position of the left-most particle a:§°>.
Its fluctuations, of order Nlog N are described by a Fredholm determinant of an
explicit kernel operator: in the case n = 6 corresponds to the continous Bessel ker-
nel in exponential coordinate, which shows interpolating regimes between Gumbel
and Tracy—Widom laws [2].

Secondly, we prove a large deviation principle (LDP) for the empirical measure
associated to the process (z(*));: each time slice satisfies an LDP with speed
N? and a good rate function that encodes both the biorthogonal interaction and
the external potential [5]. This result generalizes classical LDPs for Wigner and
Wishart ensembles [1], which provide explicit variational characterizations of the
limit shapes.

Finally, we characterise the limit density profile: if the large deviation rate
function has a unique minimizer, the LDP gives us a law of large numbers for
the empirical measure. The equilibrium measure minimizing the rate function can
be characterized via Riemann—Hilbert analysis, a powerful technique in integrable
probability and random matrix theory [4].

REFERENCES

[1] G. Ben Arous and A. Guionnet, Large deviations for Wigner’s law and Voiculescu’s non-
commutative entropy, Probab. Theory Related Fields 108 (1997), 517-542.

[2] D. Betea and A. Occelli, Discrete and continuous Muttalib—Borodin processes: The hard
edge, Ann. Inst. Henri Poincaré Comb. Phys. Interact. (2024).

[3] A. Borodin, Biorthogonal ensembles, Nuclear Phys. B 536 (1998), 704-732.

[4] P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann—Hilbert Approach,
Courant Lecture Notes, 1999.

(5] J. Husson, G. Mazzuca, and A. Occelli, Discrete and Continuous Muttalib—Borodin process:
Large deviations and Riemann—Hilbert analysis, arXiv:2505.23164v1, 2025.

(6] K. A. Muttalib, Random matriz models with additional interactions, J. Phys. A: Math. Gen.
28 (1995), L159-L164.

[7] D. Wang, Muttalib—Borodin ensembles in random matriz theory, arXiv:1502.07147.
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Exploring the Critical 2d Stochastic Heat Flow
NIKOS ZYGOURAS
(joint work with Francesco Caravenna and Rongfeng Sun)

The Critical 2d Stochastic Heat Flow (SHF) was constructed in [4]. It is a non-
trivial, random object that describes a solution of the two-dimensional Stochastic
Heat Equation (SHE) at the critical dimension 2 and at a critical temperature. It
also represents the scaling limit of models in the universality of SHE, such as the
Directed Polymer Model that we will discuss later.

The stochastic heat equation is

(1) Owu(t,z) = %Au(t,x) + pult,x)é(t, x), t>0, € R?

where £(¢,x) denotes space-time white noise. Dimension 2 is critical for the SHE
as it is the dimension where the singularity of the noise matches the smoothing
effect of the Laplacian and thus cannot be treated perturbatively.

The singularity of the noise and the nonlinear operation (multiplication) be-
tween the noise and the solution in the right-hand side makes the equation ill-
defined. To make sense of it, a suitable approximation is necessary. One approach
is to mollify the noise with a smooth mollifier j¢(z) = ¢~2?j(x/€) and consider the
limit of the corresponding, approximate solution u, as the mollification tends to O.
Alternatively, one can consider a descretisation provided by the partition function
of the Directed Polymer Model Zn(z,y) := E, [erzl(ﬂ“’("’S“)’A(ﬁ)); l{SN:y}],
where (Sp,)n>1 is a simple two-dimensional random walk, with expectation repre-
sented as E,, when the walk starts from x € Z2, and (w(n, T)p>1,0ez2) is a family
of i.i.d. random variables with log-moment generating function A(5).

Either working directly with the continuous equation or its discrete approxima-
tion, the temperature [ needs to be finely tuned in order for a non-trivial limit to
exist. Presented in the case of the directed polymer for simplicity, the tuning is
B =pBn=pBym/logN.

A phase transition was observed in [2]: For B < 1 the one-point fluctuations are
identified in the limit to a log-normal distribution and the field, suitably centered
and scaled by +/log N converges to a gaussian, log-correlated field, which falls in
the Edwards-Wilkinson universality class. On the other hand, within a critical
window B =1+ \/%gl\f’ with 6 € R, correlations emerge and the field converges
without any rescaling to the Critical 2d Stochastic Heat Flow. Bertini-Cancrini
[1] studied the asymptotics of the correlations of the SHE at this critical window.
Combined with higher moment estimates [3, 9] this implies that any limit would
be log-correlated. Thus, the unique limit, which is the SHF, is a log-correlated
field.

The SHF is a flow in the sense that it is a continuous, measure valued pro-
cess [10], singular with respect to the Lebesgue measure [7], which satisfies a
Chapman-Kolmogorov type relation [8]. A characterisation of the SHF as the
unique stochastic flow which is continuous in time, has independent increments
and has prescribed first four moments was provided in [10].
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In terms of spatial regularity, it was shown in [7] that the SHF is a C°~ field,
that is, it just fails to be a function. Moreover it was shown in [5] that it forms
neither a Gaussian nor a Gaussian Multiplicative Chaos (exponential of Gaussian)
process, thus, marking a distinct universality class.

There are many interesting questions around the features and universality of
the SHF and we refer the reader to [6] for a broad overview and a list of questions.
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Regional Fractional Stochastic Burgers from random interactions
PEDRO CARDOSO
(joint work with Patricia Gongalves)

Over the last years there has been a tremendous development in the field of singular
stochastic partial differential equations (SPDEs). One remarkable example is the
KPZ equation, which was proposed in 86’ by Kardar, Parisi and Zhang in [1] as a
universal law ruling the evolution of the profile of a randomly growing interface,
and can be described as follows. For ¢t > 0 and = € R, if h(¢, ) denotes the height
of that interface at time ¢ and position z, then the KPZ equation reads as

(1) Oyh(t, ) = AD2h(t, z)dt + B[0,h(t, z)]*dt + VCW,,

where A, B and C are constants that depend on the thermodynamical quantities
of the interface (see for example [2]) and W; is a space-time white noise. There
is another singular SPDE related to the KPZ equation, that is known as the
Stochastic Burgers equation (SBE). Its solution can be obtained, at least formally,
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from the solution h of the KPZ equation by taking its space derivative, namely,
defining Y; = 0, he. In this case, Y; solves the following equation

(2) dY; = AD2Y,dt + BO,Y2dt +CoW,.

We stress that both (1) and (2) are singular due to the fact that they contain a non-
linear term, and their solutions are not functions, but rather random distributions.
For instance, the second term on the right-hand side of (1) is quadratic, but
defining the product of random distributions in a precise way is often nontrivial.
Some advances in this direction were achieved by Gubinelli and Perkwoski, who
developed the theory of paracontrolled in [3]. There, it was possible to show
the well-posedness not only for (1) but also for a multitude of SPDEs with more
general characteristic operators. We highlight that the notion of solutions to the
KPZ equation used by Gubinelli and Perkwoski is based on the definition of energy
solutions, which was first cooked up by Gongalves and Jara in [4]; this was done by
looking at the fluctuations of a collection of weakly asymmetric exclusion processes
in a one-dimensional lattice and at equilibrium.

An energy solution of a SPDE such as the KPZ equation is a random distri-
bution Y;, which is continuous in time and satisfies a martingale problem that
contains an integral term corresponding to the non-linear term of the equation.

This notion of solution is well adapted to the derivation of fluctuations from
microscopic random systems; they are governed by energy solutions to the KPZ
equation for various models described in many recent works. This has provided
advances for proving the weak KPZ universality conjecture, which states that
the KPZ equation (or its companion, the SBE) is an universal law ruling the
fluctuations of several random growth interfaces close to a stationary state.

A natural question that arose afterwards is regarding the derivation of other
singular SPDEs from scaling limits of random microscopic systems. This was done
in [5], where it was obtained an energy solution to a fractional stochastic Burgers
equation (or its companion the fractional KPZ equation) from an exclusion dy-
namics that allows long jumps. There, the characteristic operators of the equation
replace the Laplacian and the derivative operators (which are present in the clas-
sical KPZ equation) by their fractional versions. Since the particles were evolving
in the set of integers Z, the SPDEs in [5] were stated without boundary conditions.
This was not the case in [6], where it was possible to produce energy solutions to
the KPZ/SBE equation with Neumann/Dirichlet boundary conditions.

It is worth to note that by taking B = 0 in (2), one obtains the Ornstein-
Uhlenbeck equation. This corresponds to a Gaussian process that is typically
obtained in the fluctuations of a variety of microscopic systems whose asymmetry
is missing (such as the symmetric simple exclusion process), or negligible. Some
different notions of solutions for this process were also described in [5, 6].

In this talk an energy solution to the KPZ/SBE equation with characteristic
operators given in terms of fractional operators such as the regional fractional
Laplacian, which was not present previously in the literature. As this operator
is non-local and it may a priori not be well-defined at the boundary, some Neu-
mann/Dirichlet boundary conditions are required for our test functions, depending
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on the values of some parameters ruling the dynamics. And similarly as in other
previous works, when the asymmetry of our model is not strong enough we obtain
solutions to the Ornstein-Uhlenbeck equation, as expected. All of this is done by
applying a scaling limit to a particular interacting particle system.

We consider the model introduced in [7, 8] which consists of an exclusion process
evolving on the one-dimensional discrete set of points A, := {1,--- ,n — 1} that
we call bulk. The transition probability depends on the size of the jump but,
and contrarily to the setting of [7, 8], it may not be symmetric; its moments are
regulated by a parameter v € (0,2). Moreover at each site z,y € Z satisfying x <0
or y > n we add a reservoir that can inject or remove particles in the system. As
in [7, 8], the symmetric part of the dynamics is tuned by parameters a > 0 and
B € R in the boundary, but not in the bulk. On the other hand, the antisymmetric
part of the dynamics is tuned in both the boundary and the bulk by parameters
aq > 0 and B, > 0. Depending on the range of the aforementioned parameters,
we conclude that the fluctuations at equilibrium of our models are either given
in terms of the Ornstein-Uhlenbeck process or energy solutions to the SBE. We
do not present the analogous results for the KPZ equation but we observe that
one could follow the same strategy as in [4] and restate our results for the KPZ
instead of the SBE. In order to do so, it is only necessary to replace the density
fluctuation by the height density field, as an object of study. We leave this to the
interested reader.

We observe that the recent article [9] not only proves the existence and unique-
ness to energy solutions of the equation that we derive, but also for a much more
general version of this equation, in which the noise is more irregular and presents
bilinear nonlinearities. Their approach is not based on Fourier series expansion
and this allows treating the uniqueness problem for a much larger class of char-
acteristic operators, as the regional fractional Laplacian, a wide range of domains
and boundary conditions. We believe that the results in [9] can be applied in many
more contexts, aside from the ones of our work.

At this point it is worth to make a few comments about possible extensions
of our model. We note that it should be possible to extend our results to more
microscopic dynamics, with corresponding macroscopic operators given in terms
of other kernels. A particular feature of our dynamics is the exclusion rule, which
allows at most one particle per site. This restriction is absolutely not mandatory,
but has the advantage of avoiding additional technical issues. Taking everything
into account, our work is still a significant contribution to the literature, due to the
fact that this is the first article regarding the derivation of SPDE written in terms
of the regional fractional Laplacian in bounded domains from particle systems.

Lastly we remark that the Ornstein-Uhlenbeck equation and the SBE here ob-
tained (or their analogous counterparts) should also arise as as the scaling limit of
equilibrium fluctuations in the case of multi-component models. In this direction,
we refer the reader to the articles of [10, 11] where it is conjectured that the fluctu-
ations for such models are described by a number of limit SPDEs. However, very
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little has been done in a rigorous way to prove those conjectures. Quite possibly
the results in [9] are an important step in that direction.
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Superdiffusive Central Limit Theorem for the critical Stochastic
Burgers Equation

GIUSEPPE CANNIZZARO
(joint work with Quentin Moulard, Fabio L. Toninelli)

The Stochastic Burgers Equation (SBE) is the singular, non-linear Stochastic Par-
tial Differential Equation (SPDE) given by

(1) B =2An+ A\w - V) +V-€

where 5 = (&1,...,&4) is a d-dimensional vector-valued space-time white noise,
and \ > 0 is the so-called coupling constant. Here, 1o is a unit vector in R?, but,
by rotational invariance, the specific choice of tv is irrelevant.

The SBE was introduced in [3] as an effective continuous model for the meso-
scopic fluctuations of driven diffusive systems with a single conserved scalar quan-
tity, such as the Asymmetric Simple Exclusion Process (ASEP), the Zero-Range
Process with asymmetric rates and other driven, conservative, interacting particle
systems. In fact, the three terms at the right-hand side of (1) represent respec-
tively a diffusive term, the non-linear effect of the driving field acting in direction
to, and a microscopic noise of conservative type. On the basis of the so-called
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mode-coupling theory, [3] predicts the large-scale behaviour of SBE in any dimen-
sion d > 1: in the subcritical dimension d = 1, the authors conjecture strong
superdiffusion with a ¢!/3 divergence of the diffusion coefficient for large time
t; in the critical dimension d = 2, logarithmic enhancement of diffusion of order
(log t)2/ 3. and, in the super-critical dimensions d > 3, classical diffusive behaviour.
Let us point out that in d = 1, the SBE is nothing but the spatial derivative of the
KPZ equation which, by now, is mathematically well-understood (see [11], for a
review): not only the t'/3 behaviour was confirmed [2], but the solution was shown
to have a non-Gaussian and universal fixed point (the “KPZ fixed point” [10]),
that also describes the large-scale behaviour of a large class of one-dimensional
driven diffusive processes such as ASEP [12] and directed polymers in random en-
vironment [13]. In dimension d > 3, the series of works [9, 6, 8] has confirmed the
conjectured normal diffusion of ASEP and the convergence of the particle density
fluctuations to a linear Stochastic Heat Equation at large scales. A counterpart
on the SPDE side is the recent [4], where the same result is obtained for the SBE
in d > 3. As for the critical dimension d = 2, the breakthrough work [14] proved
(logt)?/3 diffusivity for ASEP, while in [7] the analogous was shown for the SBE.
Let us stress though that in both cases, the upper and lower bounds on the dif-
fusivity feature diverging subleading corrections and their statement is phrased in
the Tauberian sense, i.e. in terms of Laplace transform.

The problem when analysing the SPDE (1) is that it is severely ill-defined due to
the presence of the non-linearity. Since dimension d = 2 is critical, it falls outside
of the scope of any of the path-wise theories mentioned above which successfully
addressed subcritical equations and, in fact, a local solution theory is not even
expected. Our main results are the following. First, we determine the sharp large-
time asymptotic behaviour of the diffusion matriz, including the explicit constant
prefactor, thus significantly improving over both [14, 7] and fully addressing the
long-standing conjecture of [3]. Second, we move well beyond that and obtain
the (Gaussian) large-scale fized point of the regularised SBE, when space-time is
rescaled in a suitable, logarithmically superdiffusive way.

In addition to being the first such result for critical SPDEs, our work opens in-
triguing perspectives for other driven diffusive systems, including interacting par-
ticle systems. In broader terms, the paper [5] can be seen as an out-of-equilibrium
counterpart of the celebrated work [1] that proves that the large-scale limit of the
Ising and ®% equilibrium measures, in the critical dimension d = 4, is Gaussian,
despite the presence of logarithmic corrections to the mean field critical exponents.
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Quantitative hydrodynamic limit for non-gradient
Glauber-Kawasaki dynamics

TADAHISA FUNAKI

Let us consider the Glauber-Kawasaki dynamics on a d-dimensional periodic lat-
tice of large size NN, i.e., the particle system of interacting random-walks subject to
the exclusion rule (Kawasaki part) with the creation and annihilation of particles
(Glauber part) whose rates are set to favor two levels of particle density, called
sparse and dense. We then studied the limit of our dynamics under the hydrody-
namic scaling, i.e., 1/ in space and a diffusive scaling N? for the Kawasaki part
and another scaling K = K(NV), which diverges slower, for the Glauber part in
time. In the limit as N — oo, the particles autonomously undergo phase separation
into sparse or dense phases at the microscopic level, and an interface separating two
regions forms at the macroscopic level and evolves under an anisotropic curvature
flow; see [1, 2, 3].

We also discussed the fluctuation of interfaces under a simple situation that
the Kawasaki part is a simple exclusion and the interface is flat and immobile;
see [4, 5]. Furthermore, we discussed the hydrodynamic limit for the conservative
dynamic P(¢)2 model on a two-dimensional continuous torus of size N.
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Transport and crossings
ALESSANDRA FAGGIONATO

The effective homogenized matrix D enters in the large scale limit of transport
in disordered media, modeled e.g. via random resistor networks or interacting
particle systems on random graphs. The non-degeneracy of D implies that the
medium is a conductor and, on the other hand, is implied by the existence of
enough long crossings.

In the first part of the talk we recall several large scale limits for random walks,
interacting particle systems and random resistor networks on a very large class of
random graphs with random conductances (cf. [1, 2, 3]). The resulting limiting
behavior is described in terms of the matrix D, which could also be non-degenerate.

In the second part of the talk we present lower bounds (obtained in collabo-
ration with Ivailo Hartarsky) for the statistics of left-right (LR) crossings leading
to the non-degeneracy of D for a very large class of random graphs built on a
Poisson point process with independent marks [4]. We briefly recall these results
on crossings.

Given p > 0, a probability measure v on a Polish space M and a symmetric
connection function ¢ : (R? x M)? — [0, 1], we consider the homogeneous Poisson
point process with intensity p on R? and mark its points z by ii.d. random
variables m, with common law v. The random connection model RCM(p, v, ¢) is
then the random graph with vertex set the realization of the Poisson point process
and edge set obtained by inserting an edge between vertices x,y with probability
¢((z,myz), (y,my)). A special case is given by the so—called generalized Boolean
models (as the Poisson-Boolean model and the Mott variable range hopping graph
with cutoff) where ¢ is the characteristic function of some set S.

We assume the following for a triple (A, v, ¢):

(A1) ¢ is stationary, i.e. p((z,m), (2/,m")) = ¢((0,m), (' — z,m’));

(A2) 3 ¢, > 0 such that ¢((z,m), (z/,m')) = 0if |2 — 2/|oc > y;

(A3) @((0.m), (,m")) = (0, m), (y,m')) it

e y is obtained from x by a permutation of the coordinates of x,
e or y is obtained from x by flipping the sign of one coordinate of x.

(A4) for all p > X the graph RCM(p, v, ) has at most one unbounded connected

component a.s.;

(A5) the graph RCM(\, v, ) has an unbounded connected component a.s..

Under (Al),...,(A5) in [4] we have proved the following. For any p > A there
exist ¢1,co > 0 such that, for all £ > 1, it holds

P (N > clédfl) >1—exp(—c €d*1) ,
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where A denotes the maximal number of vertex-disjoint LR, crossings of the box
[—¢,£]¢ included in the unique infinite cluster of RCM(p, v, ¢).

As a consequence we have also shown that, by considering the unique infinite
cluster of RCM(p, v, ¢) with unit conductances, for any p > X the corresponding
effective homogenized matrix D is strictly positive definite. By monotonicity this
result can be extended to more models.

For other results, including the discussion of the Boolean model without (A2)
and the applications to Mott’s law we refer to [4].
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Quantum stoquastic tensor networks from a stat mech perspective
MICHAEL AIZENMAN
(joint work with Simone Warzel)

Tensor networks form platforms for quantum computations, and appear naturally
also in the representation of thermal and ground states of many body quantum
systems. The talk focused on correlations and entanglement in a class of such
networks through methods that emerge from analogies with systems of classical
stat mech.

The presentation was organized as follows.

I. The entropy of the restriction of a pure quantum state to a subsystem is a
measure of the entanglement between the system’s two components.

II. After explaining the concepts, the talk focused on conditions implying an
area- type bound on the entanglement in pure states of quantum lattice models.

ITI. The general criterion was demonstrated to be applicable to the ground
states of the quantum Ising model on Z?, for which it implies that an area-type
entanglement upper bound holds in all dimensions up to the model’s quantum
phase transition.
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Characterization of the directed landscape from the KPZ fixed point
DuNCcAN DAUVERGNE
(joint work with Lingfu Zhang)

The KPZ (Kardar-Parisi-Zhang) universality class is a loose term for a collection
of two-dimensional random metric and polymer models built from an i.i.d. field,
together with random interface growth models and particle systems that are often
built from these structures. The directed landscape is the scaling limit of random
metrics in this class. The KPZ fixed point is the scaling limit for random growth
models in this class, and arises as a marginal of the directed landscape. In the
present work [4], we give a characterization of the directed landscape from its KPZ
fixed point marginals. For a large range of models, this reduces the problem of
proving convergence to the directed landscape to proving convergence to the KPZ
fixed point.

The KPZ fixed point is a Markov process on the space of upper semicontinuous
functions UC = {h : R - R U {—oc0}}, introduced by Matetski, Quastel, and
Remenik [5] as the scaling limit of TASEP. It has been shown to be the scaling
limit of a handful of other integrable growth models, e.g. Brownian TASEP [6],
ASEP [1], and the KPZ equation [9]. We write H (z,t; f) for the value of the KPZ
fixed point at time ¢ > 0 and location = € R started from an initial condition f.
For functions f,g € UC, the transition probability

P(H(xz,t; f) < —g(x) for all x € R)

can be expressed as a Fredholm determinant. It is this determinantal formula
which was used in [5] to define the KPZ fixed point.

The directed landscape is a random continuous function £ : ]R‘Tl — R, where
]R‘Tl = {(z,s;y,t) € R* : s < t}. It was constructed by Dauvergne, Ortmann, and
Virdg [2] as the scaling limit of Brownian last passage percolation, and has since
been shown to be the scaling limit of a handful of other integrable metric and
polymer models in an i.i.d. field, e.g. exponential /Poisson last passage percolation
[3], coloured ASEP and the stochastic six vertex model [1], and the continuum
directed random polymer [7]. As with its prelimits, the directed landscape value
L(x,s;y,t) is best thought of as defining a distance between points (z,s) and
(y,t) in R2. It is directed, in the sense that distances are not defined if the points
(z,s) and (y, t) are reversed, and real-valued rather than positive. However, it still
satisfies a (reverse) triangle inequality: for any o = (z,5), p = (y,7), ¢ = (2,t) € R?
with s < r < t, we have

(1) L(o;p) + L(p; q) < L(03q),

and so we may meaningfully think of it as a metric. It also has an independent
increment property which allows us to view it as maximizing path length through

an (ill-defined) independent noise field: for any disjoint time intervals [s;, ¢;],7 =
...k

(2) the functions L(-, s;;-,t;),i = 1,..., k are independent.
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Unlike the KPZ fixed point, there are not exact formulas for all statistics in the di-
rected landscape. Instead, the construction proceeds by studying a scaling limit of
the one aspect of the classical Robinson-Schensted-Knuth (RSK) correspondence.

The connection between the directed landscape and the KPZ fixed point was
demonstrated in [3, 6]. For any fixed f € UC and s € R, as functions of (z,t) €
R x (0,00) we have the following equality in law:

(3) H(z,t; f) £ sup f(y) + Ly, 532, 5 +1).
yeR

That is, the directed landscape can be viewed as a coupling of the KPZ fixed point
simultaneously from all initial conditions and started at all times.

The upshot of this relationship is that in any metric or polymer model where we
have convergence to the directed landscape, we immediately have convergence of an
associated growth model to the KPZ fixed point. Is the opposite true? If we have
a collection of growth models converging to the KPZ fixed point coupled together
in a natural way, can we say that the limiting coupling comes from the directed
landscape? In other words, can we characterize the directed landscape from its
KPZ fixed point marginals? Our work [4] offers an answer to these questions with
the following theorem.

Theorem 1. Suppose that L : R% — R is a random continuous function
satisfying the triangle inequality (1), the independent increment property (2), and
the KPZ fixed point marginal property (3). Then L is a directed landscape.

Theorem 1 has a rephrasing in terms of monotone, shift commutative couplings of
the KPZ fixed point, which is useful for models in which a metric structure is less
obvious. We can also weaken various conditions in the theorem. For example, the
initial function £ could instead be defined only on a countable dense set, and we
can ask that the marginal property (3) only holds for narrow wedge initial con-
ditions. As a consequence of Theorem 1, we can quickly show that many models
which converge to the KPZ fixed point also converge to the directed landscape.
We can recover known examples this way without passing through RSK or sim-
ilar machinery, and also cover a handful of new models without any RSK-type
combinatorics: the Brownian/random walk web distances from [8], the particle
coupling of ASEP, and a family of exotic couplings of ASEP and TASEP that lack
integrability.
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KPZ growth with open boundary conditions
GUILLAUME BARRAQUAND

Stationary measures of a variety of growth models in the Kardar-Parisi-Zhang class
can be described in terms of couples of interacting random walks or Brownian
motions, called two-layer Gibbs measures. A prototypical example is the open
KPZ equation: the stochastic PDE

for « € [0, L], with boundary conditions

=—v

O:h(t, )|  =wu, Oh(tx)

x=0

=L

where u,v € R are boundary parameters. It can be viewed as a continuous scaling
limit [8] of ASEP’s height function with appropriately scaled asymmetry ¢ =
e~ YV~ and boundary parameters so that density is 1/24+0O(1/VN).

a q 1 B
—a A—~——a —a
———@ : : @ : : |
1 2 3 N
— S
Y 0

The stationary measure of open ASEP is characterized through the Matrix
Product Ansatz introduced in [9] and further exploited in [10, 6]. Taking a scaling
limit, [7] obtained stationary measures for the open KPZ equation. The following
characterization was obtained in [5] and [3]. When u + v > 0, the open KPZ
stationary measure can be written as

Bt () = Av(w) = A1(0)

where A1, Ay are continuous processes distributed as

]Pq}?]gz(Al; AQ) = EL,U(Ala AQ) PBrown (Al)PBrown (AQ)

Zu(L)

)
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where Pprown is the Brownian measure with free endpoints, and the functional
Fuyis

L
Fuo(A1,As) = exp [ — / o~ (M1(9)=82(5)) gg | o= u(A1(0)=A2(0)) —v(Ar (L) —Aa(L))
0

After presenting this result, the talk mentioned a number of further directions:

e An alternative description from [3] involving the Pitman transform, ex-
pected to be valid for all u,v € R;

e A formula for E[h(t,0)] when starting from the stationary initial condition
[1];

e Some non-rigorous results about fluctuations and large deviations [4].

Then, the rest of the talk was devoted to explaining why this structure involving
a couple of two interacting Brownian motions is natural. In general, for solvable
discrete models, there exist analogous results where interacting random walks are
defined in a Gibbsian way [2]. The Boltzman weights used to define them originate
in branching rules satisfied by families of symmetric functions in the Macdonald
hierarchy (Schur polynomials, Hall-Littlewood functions, (¢)-Whittaker...). This
framework applies to various models: interacting particle systems between bound-
ary reservoirs, directed polymer models in a strip, last passage percolation, the
stochastic six-vertex model. To conclude, we also compared the outcome of this
method with the traditional approach via Matrix Product Ansatz.
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On the global solutions of the KPZ fixed point
OFER BUSANI
(joint work with Sudeshna Bhattacharjee, Evan Sorensen)

The KPZ fixed-point is a random process appearing as the universal scaling limit
of 141 random growth models. As the slope of an initial condition is a conserved
quantity for this system, it is natural to ask, for a fixed realization of the system,
how many eternal solutions (bi-infinite in time) of a fixed slope exist? It is known
that for a fixed realization, there is a ‘good’ set of slopes for which ‘one force one
solution’ principle holds i.e. there exists a unique global solution to the KPZ fixed
point with a prescribed slope. Outside the good set not much is known other than
that for ‘bad’ slopes uniqueness fails. In particular, the number and nature of such
‘bad slope’ global solutions is unknown.

In this work we completely characterize all global solutions to the KPZ fixed
point with a prescribed slope. In particular we show that for bad slopes there
exists infinitely many global solutions.

The scaling limit of simple random walk and the intrinsic metric on
2D critical percolation clusters

JASON MILLER

(joint work with Valeria Ambrosio, Irina Dankovic, Maarten Markering,
Yizheng Yuan)

The conformal loop ensemble (CLE,;, x € (8/3,8)) is the canonical one-parameter
family of conformally invariant probability measures on non-crossing loops in a
simply connected domain D C C [3, 4]. Each loop looks locally like one of
Schramm’s SLE,; curves [2], meaning that the loops are simple and do not intersect
each other or the domain boundary for € (8/3,4] and intersect themselves, each
other, and the domain boundary for x € (4,8). The CLE,; are important because
they arise as the scaling limit of a variety of discrete lattice models, including
critical percolation (k = 6) [5].

In this work, we focus on the case that x € (4,8). The gasket of such a CLE,
is the set of points which are not surrounded by one of the loops. The reason for
this terminology is that the CLE, gasket is like a random analog of the Sierpinski
gasket. Jointly with Valeria Ambrosio and Yizheng Yuan, we show that the CLE,,
gasket can be associated with:

e a canonical geodesic metric (the CLE, metric) and
e a canonical diffusion (the CLE, Brownian motion).

We conjecture that the CLE, metric describes the scaling limit of the intrinsic
(a.k.a. chemical distance) metric of any discrete model which converges to a CLE,,
in the scaling limit. We also conjecture that the CLE, Brownian motion describes
the scaling limit of simple random walk on the clusters of any discrete model
which converges to a CLE, in the scaling limit. Jointly with Irina Dankovic,
Maarten Markering, and Yizheng Yuan, we prove these conjectures in the case of
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critical percolation on the triangular lattice. This work in particular is aimed at
addressing the “Ant in the Labyrinth” problem (i.e., the study of simple random
walk on critical percolation clusters) put forward by de Gennes [1].
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The scaling limit of random planar maps with large faces
ARMAND RIERA
(joint work with Nicolas Curien, Grégory Miermont)

In [2], we prove that large bipartite Boltzmann planar maps in the heavy-tailed
regime « € (1,2) admit a universal scaling limit that we construct explicitly.
Specifically, after rescaling graph distances by n~1/(2® | these random maps con-
verge in law — in the Gromov-Hausdorff-Prokhorov sense — to a one-parameter
family of fractal metric spaces S,,.

F1GURE 1. Simulations of Boltzmann random planar maps with
a € {1.8,1.6,1.5,1.4}, from top left to bottom right.
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Discret model. A planar map is a proper embedding of a finite multigraph in the
two-dimensional sphere such that the connected components of the complement
are simply connected. Embeddings are considered up to orientation-preserving
homeomorphism. As usual, all maps are rooted (one corner is distinguished) and
marked (one vertex is distinguished). In the bipartite Boltzmann model, each face
of degree (or perimeter) 2k carries weight g > 0, so that a map M with root
half-edge € and mark p has total weight

wq(Maga p) = H q(leg(f)/Qv
fE€Faces(M)

where deg(f) stands for the degree of f. When the tail of a typical face degree is in
domain of attraction of a a-stable law, we say that q is non-generic of exponent c.
Such maps arise naturally as gaskets of critical O(NN) loop models, percolation
clusters, or other statistical-mechanics models, see Figure 2.

FIGURE 2. On the left, a (rigid) loop configuration on a quad-
rangulation with a boundary. On the right, its gasket obtained
by removing the loops and the faces inside them. At criticality,
under natural multiplicative measures, the gasket is a non-generic
bipartite Boltzmann planar map in the heavy-tailed regime.

Main Theorem. Let (9M,,, €., pn) be a a-non-generic g-Boltzmann map, condi-
tioned to have n vertices (with root half-edge €, and mark p,). Denote the graph
distance by d&" and write vol,, for the uniform measure on the vertices of 9i,.
The main result of [2] established that there exists an explicit constant sq > 0
(depending only on q) such that

(V(Dﬁn), (sq n)fl/(%z) d%r,pn,voln) ﬂ) (Sa, Dy, o, Vola),

where V(9,,) stands for the vertices of 9M,,, and (Sa, Dy, pZ,Vola) is a random
compact metric space with distinguished point p}, and Borel measure Vol,. We
call it the a-stable carpet if a > 3/2, and the a-stable gasket if o < 3/2.

Continuum construction. The limit space is obtained by first letting X be
the normalized excursion of a spectrally positive a-stable Lévy process over [0, 1].
Identifying pairs of times according to the jump structure of X yields the stable
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looptree L. Next, on each loop corresponding to a jump of size A, one grafts an
independent Brownian bridge of length A, producing a continuous Gaussian label
process Z, which can also be interpreted as the Brownian motion indexed by L.
Finally, one defines the intrinsic pseudo-metric:

P

D7 (s,t) mf;(Zsk_ + Zy, — 2 max([g}tnk] Z, [gugri] Z)),
where the infimum is over all integers p > 1 and sequences (sg, tx)1<k<p such that
(s1,tp) = (s,t) and, for each 1 < k < p, the times ¢ and sky1 project to the same
point in £. The label process Z realizes its infimum at a unique time ¢t*. The
quotient [0,1]/{D% = 0}! endowed with D, the equivalent class of t*, and the
pushforward of Lebesgue measure is the space (Sn, D%, pt, Voly). The loops of £
become the boundaries of the faces of S,,.

Main steps of the proof. Tightness in Gromov-Hausdorff—~Prokhorov follows
from the Bouttier-Di Francesco—Guitter bijection and the contour—label conver-
gence of Le Gall-Miermont [3]. Furthermore, it follows that any subsequential
limit can be written in the form

([0,1]/{D =0}, D, p, Vol),

where D is a random pseudo-distance, p a distinguished point, and Vol the image
of the Lebesgue measure. By construction, we can couple D and D}, in such a way
that, almost surely, D < D} and so that they share a family of geodesics to p},
called simple geodesics, see Figure 3. The term “simple geodesics” reflects the fact
that they can be read from the construction of S, in a simple way.

The goal is then to prove that D = D} using this family of simple geodesics.
To this end, one starts establishing that

D(s,t) =0 < D}(s,t)=0

by exploiting the continuous “faces” inherited from £, which implies that the two
spaces have the same topology and volume measure, and that p coincides with p%,
which is then a uniform point with respect to the volume measure.

Next, via an adaptation of Miermont’s two-point bijection with delays, one
shows that all geodesics (for D and DY) to pf are simple geodesics. A final
surgery argument — approximating arbitrary geodesics by concatenations of simple
geodesics — yields D = D}, everywhere. This analysis relies on studying the process
(X, Z) using the theory of stochastic processes, and on developing an analogue of
the Brownian snake theory in this setting.

Topological Phases and Outlook. The topology exhibits a phase transition at
a = 3/2. In the dilute phase, a > 3/2, face boundaries are disjoint Jordan loops,
and Moore-Whyburn’s theorems imply that S, is homeomorphic to the Sierpinski
carpet. In the dense phase, a < 3/2, loops intersect in fractal patterns, yielding a
conjecturally random homeomorphism type.

Hfd:[0,1] — R2 is a pseudo-distance we write [0, 1]/{d = 0} for the quotient space obtained
using the equivalence relation s ~4 t if and only if d(s,t) = 0.
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Labels

FIGURE 3. Label-cactus representation of the looptree: the ver-
tical axis is the label value. The looptree is equipped with a
clockwise exploration p: [0,1] — £ (violet). The simple geodesic
associated with ¢, starts at p(t) and then follows successive record
minima (red) until p(¢*), which becomes p* in the quotient.

*

P

FIGURE 4. Illustration for D(s,t) = 0 <= DX(s,t) = 0. The
“faces” of S, (blue holes) prevent extra identifications: any two
distinct points are separated by a sequence of faces and simple
geodesics (red).

Natural extensions of this work include scaling limits of non-bipartite and
higher-genus maps, statistical-physics decorations (percolation, Ising), and con-
nections with Liouville quantum gravity decorated with conformal loop ensem-
bles. A “stable geometry” theory parallel to Brownian geometry is currently un-
der development, which we hope will enrich the interplay between probability,
fractal topology, and mathematical physics. We also expect to directly connect
this “stable geometry” with the recent theory of self-similar Markov trees [1] (see
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FiGURE 5. Illustration in yellow of a geodesic between two typical
(for Vol) points p; and pz. The geodesic bounces off the bound-
aries of faces. This phenomenon allows us to trap neighborhoods
of the geodesic so that any geodesic from these neighborhoods
towards p* will intersect the yellow geodesic. This makes it pos-
sible to recover portions of the geodesic between p; and ps by
using simple geodesics of the same length for D and D},. The rest
of the geodesic is controlled via stretched-exponential volume-of-
balls estimates.

FIGURE 6. Illustration of the behavior of the faces in the dilute
(left) and dense (right) phases.

Section 8.2 therein for the discrete counterpart and [4, 5] for similar results for
Liouville quantum gravity).2
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Liouville quantum gravity with central charge in (1,25)
EwWAIN GWYNNE

A Liouville quantum gravity (LQG) surface with the disk topology, with
central charge ¢ > 1, is the random surface with Riemannian metric tensor g on
the unit disk D, where g is sampled from “uniform measure on Riemannian met-
ric tensors, weighted by (det Ag)*(%*c)/277 and A, denotes the Laplace-Beltrami
operator.

The above definition does not make literal sense. In the subcritical or weakly
coupled phase, which corresponds to ¢ > 25, as well as the critical case ¢ = 25,
there has been enormous progress in recent years on making rigorous sense of LQG
surfaces and relating them to other objects. Some highlights include connections
between LQG surface and Schramm-Loewner evolution (SLE) and random pla-
nar maps, the construction of the LQG metric, and the rigorous formulation of
Liouville conformal field theory.

The supercritical or strongly coupled phase of LQG, which corresponds
to ¢ € (1,25), is much more mysterious than the subcritical phase, even at a
physics level of rigor. However, this phase is potentially even more interesting
than the subcritical phase from the perspective of bosonic string theory and, more
speculatively, Yang-Mills theory. In my talk, I gave an overview of some recent
mathematical developments concerning supercritical LQG:

e The construction of a metric associated with supercritical LQG (joint with
Jian Ding).

e A coupling of supercritical LQG with the conformal loop ensemble (CLE,)
for each ¢ € (1,25). This coupling has similar Markovian and solvability
properties as couplings of subcritical LQG with SLE. In contrast to the
subcritical case, the LQG surface and the CLE, are neither independent
from each other nor determine each other; rather, the coupling depends
on ¢ (based on joint work with Morris Ang).

e A class of combinatorially defined loop-decorated random planar maps
whose scaling limit is conjectured to be supercritical LQG coupled to CLE,4
(based on joint work with Morris Ang).

e A proof that it is not possible to associate a locally finite area measure with
supercritical LQG (based on joint work with Manan Bhatia and Jinwoo
Sung).

e A rigorous version, in the setting of random planar maps, of the heuristic
that supercritical LQG surfaces “conditioned to be finite” should corre-
spond to “branched polymers”, i.e., they should look like the continuum
random tree (based on joint work with Manan Bhatia and Jinwoo Sung).



1366 Oberwolfach Report 26/2025

e A way of defining the Tutte embedding of random planar maps with finite
boundary but infinitely many ends, including ones conjectured to converge
to supercritical LQG (based on joint with with Jinwoo Sung).

Yang-Mills theory and random surfaces
SCOTT SHEFFIELD
(joint work with Sky Cao, Ron Nissim, Joshua Pfeffer, Minjae Park, Pu Yu)

The Clay Institute famously offered one million dollars to anyone who could math-
ematically construct and understand a certain continuum version of “Yang-Mills
gauge theory”. This theory is the basis of the standard model of physics, and
the heart of the problem is to understand the so-called “Wilson loop expecta-
tions”. Following recent work with Sky Cao and Minjae Park, I will explain how
the “Wilson loop expectations” in a lattice Yang-Mills model are equivalent to
”insertion costs” of loops in a related random-closed-surface-ensemble model. In
a sense, these results allow us to convert one famously hard problem into another
presumably hard problem. But the new problem is all about random surfaces and
random permutations, and it has a lot of relationships with and similarities to
other problems we understand (think domino tilings, random planar maps, Young
tableaux and symmetric group representation theory, and the Weingarten calcu-
lus). It gives us some intuition for *why* certain things should be true like the
“area law” or “exponential correlation decay” (what physicists call “quark confine-
ment” or “mass gap”) even if we can’t prove all of them yet. I’ll also explain more
recent work with Cao and Nissim that applies these ideas to extend the regime of
parameters for which the area law can be proved.

Minimal surfaces in random environments
BARBARA DEMBIN
(joint work with Dor Elboim, Ron Peled)

Let d,n > 1 be integers. The surface is modeled by a function ¢ : Z¢ — R™,
defined on the cubic lattice Z? and having n components. Given an environment
n:Z% x R" — (—o0,00], later taken to be random and termed the disorder, the
formal Hamiltonian for ¢ is

1
(1) H" () := EZH%—%HQJFZ%M,

where || - || is the Euclidean norm in R™ and u ~ v indicates that u,v € Z?
are adjacent. Our goal is to study the minimizers of H" in finite domains with
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prescribed boundary values. Given a finite A C Z¢ and a function 7 : Z¢ — R",
the finite-volume Hamiltonian in A is given by

1
HU’A(@) = 5 Z HQPU_@DHQ"_Z”v,cha

u~v
{u,v}NA#D veh

and the configuration space with boundary values T outside A is given by
Qb7 = {¢: 7% — R": Yy =Ty for v € Zd\A}.

We write 7 for the ground configuration of the finite-volume model, i.e., for
the ¢ € QM7 which minimizes H"" (if existing). We let

QEMAT .— Hn,A((pn,Aﬂ')

be the ground energy. In the minimization process, there is a trade-off between
the elastic energy, which favors flatness of the surface, and the noise contribution,
which drives the surface to delocalize in order to exploit favorable fluctuations. A
key question is whether the surface delocalizes depending on the dimension, and
how the vertical fluctuations (i.e., the typical height of the surface) relate to the
fluctuations of the ground energy. In two dimensions, scaling relations are known
for models such as first and last passage percolation [3, 1, 2], but no analogous
results have been rigorously established for minimal surface models (see [5] for
physics prediction).

This model is very general and, depending on the choice of disorder 7, can serve
as a toy model for various physical systems. For instance, when 7 is a mollified
white noise, the model can approximate the domain wall in the random bond Ising
model at zero temperature under Dobrushin boundary conditions. In earlier work
(see [4]), we derived, for the mollified white noise, a version of the scaling relation
x = 2§ + d — 2, connecting the ground energy fluctuation exponent y and the
vertical fluctuation exponent &, along with bounds on the vertical fluctuations.

In this talk, we focus on the case where (7,,.),cz¢ are independent fractional
Brownian motions with Hurst parameter H € (0,1). The case H = 1/2 corre-
sponds to standard two-sided Brownian motion and is particularly relevant as a
simplified model for domain walls in the random field Ising model.

MaAIN RESULTS

In dimensions d € {1,2, 3}, we show that the surface delocalizes polynomially and
that the scaling relation holds. More precisely, there exist constants C,c > 0,
depending only on H and n, such that for all £ > 0 and all integers L > 1:

e Height fluctuations:
4—2H 4-d 4—2H
ce” ¢t <P <max | AE || > tL4—2H> < Ce e .
vEAL

e Ground energy fluctuations:

_Ct27H

ce O <P (|GEPN — BIGEM]| > 135 H2) < Ce



1368 Oberwolfach Report 26/2025

In dimension d = 4, which we identify as the critical dimension, the height
fluctuations are bounded between (loglog L)Y/ (=2H) and (log L)%/ (4—2H),

For dimensions d > 5, the surface remains essentially flat, and the standard
deviation of the ground energy scales like L#/2.
Remark. Just prior to the first appearance of this paper, Otto, Palmieri and Wag-
ner published the work [6] which studies the model (1) in the 1 + 1-dimensional
case with Brownian disorder. Our results overlap for the upper-bound for the
height fluctuations (d =n =1 and H = 1/2).

PROOF IDEAS

Our approach hinges on the following identity, which plays a central role in the
analysis. For any functions s, : Z¢ — R", we have

. 1
H" Mg+ 5) = H" () = (9, ~A8) + SlIVsIR = Do —a0
vEA

where the shifted and recentered disorder n® is defined by

s .
Mot = Nut—sy, = Tho,—sy-

This identity enables to quantify the cost of vertically shifting the surface. De-
localization occurs when the energetic gain to be at a higher height exceeds the
shift cost. The scaling relation naturally emerges when these two effects are bal-
anced. Unlike in our previous work [4], here the gain in energy is dominated by
the additive term )\ 7,,—s,, which can be easily controlled. This enables us to
precisely identify the scaling exponents.
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Application of Liouville quantum gravity in 2D percolation
XIN SUN

Two-dimensional (2D) percolation at criticality can be studied by various tech-
niques related to conformal invariance. The most famous example is Cardy’s for-
mula for rectangular crossing [6]. Viewing the crossing probability as a four-point
correlation function of a conformal field theory (CFT), Cardy’s predicted an exact
formula as the solution to a second order differential equation. This was later
proved by Smirnov for site percolation on the triangular lattice [27]. Schramm-
Loewner evolution (SLE) [26] is an approach to scaling limit of 2D lattice models
that is complementary to CFT. In particular, the SLEg curves describe the scaling
limit of 2D percolation. Therefore the exact formulae for 2D percolation predicted
by CFT can be formulated as exact statements about SLEg. For example, the
aforementioned Cardy’s formula for SLEg can be proved by considering a proper
martingale observable. Furthermore, the SLE connection was used by Lawler,
Schramm, Smirnov, Werner [28, 16] to rigorously prove conjectural formulae for
the one-arm exponent and the polychromatic arm exponents for 2D percolation.

The main purpose of this talk is to explain how the method of Liouville quantum
gravity (LQG) can be used to obtain exact results for 2D percolation that is hard
to assess via pure SLE method based on martingale observable. As an illustration,
we consider the crossing probability for critical percolation on an annulus in the
continuum limit. By conformal invariance, the probability is a function of the
ratio between the inner radius r and the outer radius R of the annulus. In [§],
Cardy predicted a formula for P[7]:

3 n(6ir)n (3ir) . 1 R
(1) Plr] = \/; i3 with 7= %log(?)
and n(z) = etz [[07, (1 — ™) is the Dedekind eta function.

Cardy’s prediction is based on a non-rigorous Coulomb gas method. In a recent
work [29] with Shengjing Xu and Zijie Zhuang, we rigorously proved (1). This
formula is not easy to asscess with the martingale observable method, since the
differential equation involved is a PDE from which (1) is not clear [14].

Our derivation of (1) is based on LQG on the annulus. Recall that the scaling
limit of uniformly sampled random triangulation is the Brownian surface of certain
topology [17, 18, 4]. For Brownian sphere and disk, Miller and Sheffield [19, 20, 21]
showed that the random geometry can be produced by the LQG geometry with
parameter v = \/8/_3 induced by a variant of Gaussian free field (GFF). It was
further showed in [3] that the GFF variant is given by Liouville CFT [9]. Altogether
these confirm a picture from Polyakov’s seminal paper [24]. For the Brownian
annulus, there is an additional randomness coming from the conformal structure
of the surface. Namely the conformal modulus of the Brownian annulus is random.
The exact law of of this random modulus was predicted in physics, and rigorous
proved in our recent work with Ang and Remy [2].

The approach in [2] is based on the integrability of Liouville CFT and the
mating-of-trees framework of SLE/LQG coupling [12]. The paper gives a general
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method to compute the random modulus for natural LQG surfaces. Consider the
scaling limit of the uniform triangulation of annular topology, decorated with criti-
cal percolation, restricted to the event that the annulus crossing event occurs. The
additional crossing constraint does not change the local geometry of the surface,
but the exact law of the random modulus differs from that of the Brownian an-
nulus. By conformal invariance, the Radon-Nikodym derivative between the new
and old random moduli is exactly P[r]. This gives (1).

This is an example of a wave of applications of LQG in obtaining exact results for
2D percolation. Another example is the evaluation of the backbone exponent [23],
which was previously unknown in physics. The idea of using quantum gravity
to the study the continuum limit of 2D lattice models is not new. For example,
Duplantier [10] famously used the Knizhnik-Polyakov-Zamolodchikov (KPZ) rela-
tion to give a convincing derivation for Mandelbrot’s conjecture that the frontier
of planar Brownian motion has dimension 4/3. The first mathematical version of
the KPZ relation was established by Duplantier and Sheffield [11], marking the
beginning of LQG in probability. The key novelty in our recent applications is the
crucial usage of the integrability of Liouville CFT. For example, the derivation of
the backbone exponent relies on the boundary analog of the DOZZ formula [15],
which was obtained by Remy and Zhu [25]. The derivation of (1) relies on the
exact formula for the annulus partition function of Liouville CFT on the annulus
obtained by Wu [30].

Our proof method for (1) is quite general. In the original [2], we used it to
derived the annulus partition for conformal loop ensemble with s € (%, 4). In [29],
in addition to (1), we derived a formula for the probability that there exists two
paths of opposite colors crossing the annulus, and a formula for the probability that
there exists two disjoint paths of the same color. The former formula was originally
conjectured by Cardy [7], whose leading asymptotic is given by the polychromatic
two-arm exponent. The latter probability corresponds to the monochromatic two-
arm exponent, namely the backbone exponent. Our latter formula is again new
to physicists. In a forthcoming work, with Cai, Fu, and Xie, we will give an exact
formula for the disconnection probability for a Brownian excursion that crosses an
annulus.

We conclude our talk with a list of future directions and open questions.

(1) So far we have only rigorously derived the random modulus for the Brown-
ian annulus. In fact, there is a conjectural formula for Brownian surface of
general topology, based on bosonic string theory [13]. We are working with
Baverez, Jego, and Wu towards proving this conjecture. We expect that
this can help obtaining exact results for percolation on general Riemann
surfaces.

(2) All of the aforementioned exact results for 2D percolation except for the
backbone exponent and its corresponding annular crossing probability
have a CFT interpretation. It would be extremely interesting to find such
interpretations for the backbone related quantities. In fact, the formula
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we obtained for the annulus crossing probability in [29] is quite suggestive;
see Section 1.1 there for more discussion.

(3) We are still far from a complete understanding of the CFT behind 2D per-
colation; see the most recent progress in math [1, 5], and in physics [22],
respectively. We expect that understanding the Coulomb gas method rig-
orously will play a key role.

(4) Our discussion is not specific to 2D percolation. All existing applications
and further questions discussed here makes sense for other 2D lattice mod-
els with conformally invariant scaling limit, such as random cluster model
and self avoiding walk.
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Rapid phase ordering for Ising and Potts dynamics on random
regular graphs

ALLAN SLY
(joint work with Reza Gheissari, Youngtak Sohn)

The out-of-equilibrium dynamics of spin systems like the Ising and Potts models
are very well-studied in a variety of fields. One of their notable features is that
at low-temperatures, the dynamics are slow to equilibrate due to a bottleneck
between configurations that are mostly in one state, versus mostly in another. A
central question is in what sense this is the “only” obstruction to fast relaxation
of the low-temperature dynamics. This question can be posed in the following
form: if you initialize with a small bias towards one ground state, does the low-
temperature dynamics converge rapidly to the restriction of the Gibbs distribution
to the corresponding phase?

In the mathematical physics literature, such questions have been studied nu-
merically for a long time, with extensive predictions for the convergence of the
Ising dynamics from random initializations, in which it is expected that the mag-
netization diffuses away from 0 and picks one phase to dominate, at which point
quasi-equilibration within that phase is rather fast. The Ising and Potts models
on non-trivial geometries serve as the natural baselines with which to put these
predictions on a rigorous footing.

Mathematically, a major obstruction to answering these kinds of questions is
the fact that many of the tools for bounding mixing times (e.g., functional in-
equalities like spectral gap and bottleneck sets, and the more modern tools of
spectral independence and localization schemes) are useful for controlling mixing
from worst-case initialization using local decay of correlation inputs, but in con-
texts where the worst-case mixing time is exponentially slow due to strong local
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correlations, showing fast mixing from classes of “nice” initializations can be very
challenging.

In this talk, we discuss the low (but positive) temperature Ising and Potts
Glauber dynamics on random d-regular graphs initialized from biased initializa-
tions and demonstrate that they quasi-equilibrate in optimal O(logn) time to the
corresponding metastable distribution, i.e., the Potts distribution conditioned on
having plurality in state-1. Notably, the methods are general enough to apply to
a wide range of ferromagnetic models on treelike expander graphs.

We consider the Glauber dynamics of the Ising model on graphs G drawn from
the uniform distribution over d-regular graphs on n vertices, which we denote
by G ~ Ggq(n). The Ising model on G ~ Gg(n) undergoes a phase transition at
Be(d) := tanh™'(1/(d — 1)) (which goes to zero as 1/d as d — oo). While for
high temperatures 8 < S.(d), the worst-case mixing time (the time to be at total-
variation distance at most 1/4 to the stationary distribution from a worst-case
initialization) is an optimal O(logn), for 8 > B.(d), the worst-case mixing time is
slow, exp(©(n)), because of a bottleneck between configurations with a majority
plus,

Qt = {0 :m(o) > 0}, where m(o) = 1 Z Oy,
n veV
and ones with a majority minus, 2~. This in particular means that if we initialize
from the plus phase, by which we mean the Gibbs distribution conditioned on
being in Q1| ie., 77 = «(- | @), the time for the Markov chain to hit Q~ is
exponentially long.

Our main theorem is that at all sufficiently low temperatures, the Ising Glauber

dynamics initialized from a configuration Xy with a bias to the plus phase, i.e.,
m(Xo) > ¢, (quasi-)equilibrates to 77 in O(nlogn) time steps.
Theorem: For every d > 7, there exists constants C(e, 8,d) > 0, ey(d) € (0,1)
and By < oo with €y(d) =g @ and By <q4 lo{gid, such that for every e € (eg, 1] and
every 8 > [, if G ~ G4(n), the following holds with probability 1 — o(1). If Xy
has m(Xy) > ¢, then

IPx, (X € ) —ma(- | Q)|tw <n 10,  forall  Clogn <t<e/C.

By symmetry, we have the same bound on the distance to 7, = 7¢(- | Q7) if X,
has m(Xy) < —e.

Let us make some comments on the different parameter requirements in the
theorem. Firstly, we expect the analogous theorem to hold for any d > 3, but
the condition d > 7 is a barrier to our proof method, and getting down to d > 3
would require some new ideas to more carefully handle short cycles in G that are
all-minus by chance. We leave this to future investigation.

In the other direction, we can say the following about the large-d asymptotics
of €¢, By and C. The requirement 5y > C logd is the threshold below which under
7T, the set of minus spins, has a giant component, preventing use of the locally
treelike geometry to confine minus regions of the stationary distribution. The rate
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of decay of the minimal bias, g9 =<4 @, can be improved to €y =g % at the
expense of By =<q4 %, but we note that for any fixed d, for sufficiently small ¢,
there may exist configurations with magnetizations near ¢ that in the g — oo
limit trap the dynamics. Therefore, the treatment at very small ¢ would need to
subtly address the ability of positive temperature dynamics to escape even though
zero-temperature dynamics may not.
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uantitative results for the open asymmetric simple exclusion process
titati Its for th tric si 1 lusi
DOMINIK SCHMID
(joint work with Zongrui Yang)

The open asymmetric simple exclusion process (open ASEP) is among the best
studied examples of an interacting particle system. It can intuitively be described
as follows. Consider a segment of length N € N and bias parameter ¢ € [0,1).
Each site of the segment is either occupied by a particle, or left vacant. The
particles perform independent random walks with jumps to the right at rate 1,
and to the left at rate g. However, a jump is performed if and only if the target
is a vacant site. This exclusion rule ensures that each site is occupied by at most
one particle at a time. In addition, for some fixed «, 3,7, > 0, we let particles
enter at site 1 at rate «, exit at site IV at rate [, exit at site 1 at rate -y, and enter
at site IV at rate ¢, respectively, subject to the exclusion constraint.

The stationary distribution of the open ASEP is intensively studied over the past
decades. Depending on the choice of boundary parameters, it is well-known that
the open ASEP can be partitioned into three phases: The high density phase,
the low density phase, and the maximal current phase. Furthermore, the phase
diagram can be partitioned in the so-called fan and region. In joint work with
Yang, we show that the stationary distribution of the open ASEP can in all three
phases be well-approximated in total-variation distance by certain simple random
measures. This supersedes earlier joint work with Nestoridi when v = 4 = 0 in
the fan region, using a Motzkin path representation [4].

Our arguments rely on several new developments in the past two years. In a
recent breakthrough, Barraquand, Corwin and Yang establish a two-layer Gibbs
structure for the invariant measure of a class of integrable models on a strip [1].
Very recently, Bryc showed that the stationary measure of the open ASEP has a
two-layer representation [2]. His arguments involve a specific polynomial, to which
we refer as the Bryc polynomial. We provide a simple characterization of the Bryc
polynomial to achieve sharp approximation results in the shock region of the open
ASEP. For the fan region, we rely on a recent generalization of the Enaux-Derrida
representation of the matrix product ansatz, established by Hegde and Yang in [3].
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NESS for KPZ
MILTON JARA
(joint work with Juan Arroyave)

Let Ay := {1,...,N — 1} be the discrete interval and let Qy := {0,1}*~ be
the state space of an interacting particle system to be described below. We de-
note by n = (ny;z € An) the elements of Qn. We will extend 7 to the inter-
val {~1,0,...,n,n + 1} by taking n_; = no = p? and 1, = n.11 = p?, with
o, pB €[0,1]. For z,y € Ay and n € Qu, let n™Y € Qp be obtained from 7 by
interchanging the values of 1, and n,. If y does not belong to Ay, we define n*¥
by exchanging 7, with 1 — 7,. Consider the linear operator Ly given by

Lnf) = N3 crman ) (ome(1 = 1) + avmosn (L — 1)) (FE) = F(m)
x=0

for every f: Qn — R and every n € Qn, where

Cza+1(n) =1+ a(Ne-1 + Nat2),

pN = 1+ \/UN’ gn = 1 — \/”ﬁ, and a > —1/2,v # 0 are fixed parameters.
The operator Ly is the generator of a Markov chain (n(¢);t > 0) known in the
literature as the speed-change WASEP on the interval with reservoirs of densities
p, pB. For a = 0, this model corresponds to the WASEP analyzed in [3], [2],
[1]. In these references, the authors identified the limit of the density fluctuations
under the stationary measure of the process (1(t);t > 0) as the stationary measure
of the KPZ equation with Dirichlet boundary conditions. They identified a two-
parameter family of solutions, which correspond to the choice of boundary values
as perturbations of the triple point of the dynamics:

=t Bt
VN’ VN

In the case a = 0, p, = % For a # 0, we identify the triple point as the unique

solution of
2ap.(1 — ps) + (14 2aps)(1 — 2ps) = 0
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We report the following result:

Theorem 1. For every fized a,v there exists €g(a,v) > 0 such that whenever
|A| 4+ |B| < €, the density fluctuation field around the triple point associated to
(n(t);t > 0) is tight and every limit point is an energy solution of the KPZ equation
on the interval [0, 1] with Dirichlet conditions. Conditioned on the uniqueness of
such energy solutions, the fluctuations of the density under the invariant measure
of the process (n(t);t > 0) are given by the process constructed in [3], [2], [1].

The proof of this theorem is based on a new methodology that we call quan-
titative hydrodynamics, which applies for a general class of weakly asymmetric
systems, and could be of independent interest.
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Reverse duality and applications
GUNTER M. SCHUTZ
(joint work with V. Belitsky, N.P.N. Ngoc)

Consider two Markov processes n(t) and £(¢) with (in general different) count-
able state spaces 2 and = and intensity matrices Q and W whose matrix ele-
ments Quy = q(n = N'), Weer = w(€ — &) are the transition rates define the
two processes. Reverse duality [6] is a relationship between two processes which
for countable state space is defined by a duality matrix R with matrix elements
R(&,m) = Re .y as the intertwining relation

RQ=WTR

If 4&(n) := R(€,n) defines a family of probability measures on © indexed by
£ € E, then reverse duality yields time-dependent measures uf = 1fS; of one
process in terms of the dual as asserted in the following theorem [1].

Theorem: For countable state spaces Q and Z let pé be a family of probability
measures on € indexed by & € E and let n(t) and £(¢) be Markov chains with
transition functions denoted by p:(-,-) and p(-,-) respectively. The following two
assertions are equivalent:
(1) m(t) and &(t) are reversely dual w.r.t. the duality function R(&,w) =
13
pt(w).
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(2) For an initial measure u§ = & the time evolution of this measure under
the semigroup S(t) is given by

i =" (€ e)uf

g'e=

for all £ € =.

Thus the time evolution of the initial measure MS under the semigroup Sy associated
with the Markov chain n(t) is fully encoded in the transition probability of the dual
process. For sufficiently simple dual processes this allows for obtaining detailed
microscopic information about the time-dependent measures uf.

In [6] we prove a duality between the asymmetric simple exclusion process
(ASEP) with non-conservative open boundary conditions and an asymmetric ex-
clusion process with particle-dependent hopping rates and conservative reflecting
boundaries. This is a reverse duality in the sense that the duality function re-
lates the measures of the dual processes rather than expectations. Specifically,
for a certain parameter manifold of the boundary parameters of the open ASEP
this duality expresses the time evolution of a family of shock product measures
with N microscopic shocks in terms of the time evolution of NV particles in the
dual process. The reverse duality also elucidates some so far poorly understood
properties of the stationary matrix product measures of the open ASEP given by
finite-dimensional matrices.

In [1] we introduce the headway exclusion process which is an exclusion process
with N particles on the one-dimensional discrete torus with L sites with spatially
asymmetric nearest-neighbor jumps and the jump rates that depend only on the
distance to the next particle in the direction of the jump and not on N and L.
For a finitely many particles that jump unidirectionally on the integer lattice it is
proved by reverse duality that a certain family of non-stationary measures with a
microscopic shock and antishock evolves into a convex combination of such mea-
sures with weights given by random walk transition probabilities. On macroscopic
scale this domain random walk is a travelling wave phenomenon tantamount to
phase separation with a stable shock and a stable antishock.

It turns out that also various earlier results on the time evolution of probability
measures of Markov chains can be understood in terms of reverse duality. In
particular, when in the branching coalescing random walk (BCRW) [2] defined in
a finite integer lattice the jump rate and the coalescence rate are equal and specific
open boundary conditions are considered, then the time-evolution of a microscopic
Fisher wave proved in [4] is an instance of reverse duality of the BCRW with a
biased random walk.

As is the case for conventional duality (defined for a duality matrix D by the in-
tertwining relation QD = DWT) reverse self-duality (where Q = W) is intimately
related to non-Abelian symmetries of the intensity matrix [5, 3]. An intriguing
open problem is the role of such symmetries for the ASEP with open boundaries.
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Decoupling and decay of two-point functions in a two-species TASEP
PATRIK L. FERRARI
(joint work with Sabrina Gernholt)

We consider a special case of an n-component lattice gas models on Z. These
consist of particles of types a € {1,...,n} with at most one particle per site
evolving with nearest-neighbor jumps. Let 1,(j,¢) = 1 if an a-particle is at site j
at time ¢t and 7,,(j,t) = 0 otherwise. We consider the case where the jumps rates
are local and translation-invariant. Assume that for any fixed p = (p1,...,p0n)
with p; € [0,1] and Y"1, p; < 1, there exists an ergodic, translation-invariant
stationary measure i, with B, (14)(j,t) = pa-

The main observable we study is the two-point function S = (S4,8)1<a,8<n,
with

(1) Se,5(5:t) = By, (11a (4, )15 (0, 0)) = paps-

The nonlinear fluctuating hydrodynamic theory (NLFH) gives a prediction on the
large time behavior of the two-point function (see [7, 9, 11, 12, 13, 14] for related
papers). Denote by j,(p) be the expected infinitesimal current of c-particles under
fp- Let C =CT = 22804, t) = 32, 5(4,0) be the susceptibility matrix and define
the matrix A with components A, g(p) = %ja(p). It is known that AC = CAT
and assume C > 0 to avoid having components that do not evolve over time.

In order to see something meaningful one needs to consider appropriate linear
combinations of the types of particles, the so-called normal modes. More precisely,
one needs to find a matrix R such that

(2) RAR™! = diag(v1,...,v,) and RCRT =1.

Then the normal modes are given by £ = Rn and v,, is the speed of propagation
of the mode &,. The two-point function of the normal modes is given by

(3) 8750 t) = (RSR)a5(j,t) = By, (§a(h, 1)65(0,0)) — (Rp)a(Rp)s.
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The prediction (as stated in [7]) is the following: assume that vy,...,v, are all
distinct, then there exists some (explicit) constants A1, ..., A, such that
(4) ()‘Olt)Q/gngfy (U(J/t + w(Aat)Q/ga t) =~ 5ﬂ,a57,afKPZ (’LU)

ast — oo. Here, the scaling function fkpyz is the one of one-dimensional system [10]
and it is given by

2
(5) frpz(w) = i%/}RSQdFBR,w(S),

where FgR , is the Baik-Rains distribution with parameter w [4].
In our work [5] we consider a model with n = 2: a two-species totally asymmetric

simple exclusion process with first class particles 77 and second class particles 7.
The normal modes are given by

6 1 ~7 _ nl(j7t) 7 " _ nl(j7t)+772(j7t) 7
) @l pi(l—p1) el V(p1+ p2) (1 — p1 — p2)

and the speeds are v1 =1 —2p1, v2a = 1 — 2(p1 + p2).
Our main result is the following.

Theorem 1. Given a speed v, define
# — 1 -2/3 2/3 q# 2/3
(7) Sf(¢) = lim ¢ X;/Bf(w)t S (vt + wt*, 1)
wet—

for ¢ smooth test functions with compact support. Then we have the following

cases:
0 0
# —
81) (¢) - ( O 0 > ’
(b) if v =1, then

(0’) va ¢ {Ul,l}g};
SH(9) = ( X1 Jy o)A 35KPZ(A;2/3w>dw : )

with x1 = p1(1 — p1) and A\ = 24/2x1,
(c) if v =va, then

0 0
st = ( a0 i )
(@) 0 x2 [z d(w)A, 2/3fKPz()\2 Q/Bw)dw

with x2 = (p1 + p2)(1 — p1 — p2) and Ay = 2/2x3.

The weak convergence of the diagonal terms was shown in [3] building on [8, 10].
In our paper [5] we prove that the off-diagonal terms vanishes in the large time
limit. A similar result for ASEP under double scaling limit has been obtained
in [1].

In order to prove our result, we derived a new identity [5, Proposition 1.2]

(8) St @ +id)+SF (v +i,t) = iAcov (h1(@ +14,8), 12 (z +4,1))
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where h' (resp. h'*2) is the standard height function for first (resp. first plus
second) class particles and A is the discrete Laplacian. Then the main steps are
the following:

(1]
2]

[3]

[4]
[5]
[6]
[7]
(8]
[9]
[10]
[11]

[12]

[13]

[14]

(a) Suppose that Supp(¢) C [~L, L] and take x = wvot, i = wt?/?, & = 2L%/3
and t = 0. Using the properties of the stationary measure of the multi-
species TASEP, we first get an a-priori bound on SfQ(a? +1,1), so that we
need to consider only the second term.

(b) We perform summation by parts to move the discrete Laplacian to the
test function ¢: it remains to control Cov (R (Z + i,7), K" *2(z +4,1)).

(c) Using the queuing representation of the stationary measure [2, 6], we see
that h'((2L + w)t?/3,0) = h'((2L + w)t?/3,0) + R((2L + w)t*/?) where
h! is independent of h'*2 (thus the covariance is zero) and the remainder
term |R| < t'/3. By Cauchy-Schwarz one finally control the covariance
between R and h'*2.
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Rapid thermalization of toric codes through a log Sobolev inequalities
SIMONE WARZEL
(joint work with Angela Capel Cuevas, Cambyse Rouze, Sebastian Stengele)

Toric codes are prominent examples of quantum Hamiltonians that promise to
encode quantum information stably in their ground states. Their Hamiltonian
structure is simple because they are composed of a sum of local commuting many-
body interactions. In contact with a heat bath, the code’s quantum state will
eventually converge to a Gibbs state. In quantum mechanics, a standard Markov-
ian model of a heat bath is a Davis quantum Markovian semigroup [3, 6]. This
dynamics is the analogue of a Gauber dynamics for classical systems. As in the
classical case, the mixing time of the Markovian quantum dynamics is a central
quantity of interest.

In this talk, I sketched the argument for establishing a bound on the mixing
time in the high-temperature regime, which is logarithmically in the system’s size.
The high-temperature regime is thereby characterized by conditions of Dobrushin-
Shlosman type [4]. This improves on earlier bounds, which were polynomial in the
system’s size and proven relying on the gap of the quantum dynamics’ generator
[1]. It puts this class of quantum models on par with the classical results on
Glauber dynamics (see [5] and references therein). The technical core of the proof
is a modified logarithmic Sobolev inequality for the quantum relative entropy,
which we establish [2].
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An invitation to the cutoff phenomenon
JUSTIN SALEZ
(joint work with Francesco Pedrotti)

The cutoff phenomenon is an abrupt transition from out of equilibrium to equi-
librium undergone by certain Markov processes in the limit where the size of the
state space tends to infinity. Discovered four decades ago in the context of card
shuffling, this surprising phenomenon has since then been observed in a variety of
models, from random walks on groups or complex networks to interacting particle
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systems. It is now believed to be universal among fast-mixing high-dimensional
processes. Yet, current proofs are heavily model-dependent, and identifying the
general conditions that trigger a cutoff remains one of the biggest challenges in
the quantitative analysis of finite Markov chains. In this talk, I will provide a
self-contained introduction to this fascinating question, and then describe a recent
partial answer for non-negatively curved processes developed in [3, 1, 2], and based
on a new information-theoretic quantity called varentropy.
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