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Abstract. Many scientific and engineering problems exhibit complex inter-
actions over a wide range of inseparable scales in space and time. Direct
numerical simulations to solve such multiscale problems are often beyond
current computational capabilities. The difficulties are exacerbated by the
presence of uncertainty, randomness, and disorder and are hardly manageable
for multiscale inverse problems. Therefore, the simulation of novel phenom-
ena using multiscale models requires a new generation of multiscale compu-
tational methods. These must account for under-resolved scales, cross-scale
couplings, and stochasticity in a hierarchical and adaptive manner and be able
to integrate probabilistic, data-driven, and machine learning approaches. The
workshop enhanced the development of a new generation of efficient multi-
scale computational methods and their rigorous mathematical and numerical
analysis so that reliable and fast simulations of challenging multiscale prob-
lems from applications eventually become a reality.
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Introduction by the Organizers

This workshop concerned the algorithms and mathematics that underlie the com-
puter-aided simulation of complex multiscale processes. Interaction of effects
across multiple scales occurs in many applications such as the mechanical analysis
of composite and multifunctional materials, porous media flow, wave propagation
in heterogeneous media, or the simulation of condensed matter in the presence of
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disorder. The main characteristic of such problems is that the inherently complex
interplay of non-linear effects on various non-separable length and time scales es-
sentially determines the overall properties that may go far beyond the usual regime
in mono-scale problems, as discussed, e.g., in the talks of A. Målqvist, Y. Efendiev,
and C. Döding. Although mathematical physics supplies models of partial differ-
ential equations that implicitly describe the physical phenomena arising from these
microstructures, the problems are intractable for an analytical solution such that
their understanding and control depend on numerical simulation. From a compu-
tational point of view, however, a direct numerical treatment of such problems is
often not feasible due to the fact that the resolution of the full range of relevant
scales may result in an almost insurmountable number of degrees of freedom.

The observation and prediction of physical phenomena using multiscale models,
hence, require advanced numerical techniques that adaptively select the most rele-
vant scales based on a priori and a posteriori knowledge of the problem, effectively
represent unresolved scales, and quantify errors and uncertainty. We refer to such
algorithms as computational multiscale methods, and this Oberwolfach Workshop
Computational Multiscale Methods aimed at the understanding and advancement
of computational techniques for the efficient simulation of multiscale processes
and analytical or numerical techniques that can provide the effective properties
of unresolved scales and utilise such upscaled information to efficiently attain an
approximation of sufficient quality or even similar quality as a non-feasible fully
resolved simulation. Amongst the particular trends have been probabilistic as-
pects in both the models and the methods, data-driven and machine learning
approaches, and multiscale inverse problems.

The numerical homogenization methods beyond scale separation that have been
central to previous Oberwolfach workshops have further matured and can han-
dle now even more challenging linear and non-linear problems that seemed in-
tractable a few years ago. Striking examples were given in the talks by F. Legoll,
M. Khrais, A. Lozinski, and T. Sprekeler. Important questions in the design of the
methods, like higher-order methods and appropriate localisation strategies, have
been pushed forward and recent developments were presented by R. Maier and
M. Hauck, respectively. The intimate relation with domain decomposition meth-
ods and optimal local approximations via spectral problems enables very powerful
and robust algorithms that have been explained and rigorously analysed in talks
by R. Scheichl and E. Chung. As a consequence, multiscale methods also in-
spire new efficient and robust multigrid-type or domain decomposition-type solves
and preconditioners. Examples were shown in the talks by L. Zhao and G. Li.
The talk of D. Gallistl underlined how such ideas fertilise time-stepping schemes
that benefit from the finite propagation speed in wave equations. M. Lukáčová-
Medvidová added an analytical view on dissipative (very-weak) solutions of the
compressible Euler system, showing how structure-preserving Young measures and
K-convergence yield globally existing coarse-grained solutions.
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A previous workshop on Computational Multiscale Methods1 in 2019 has already
seen a shift in the community toward probabilistic aspects of both the mathemati-
cal multiscale models and numerical methods. This trend has ever increased then,
making randomness a central feature in the models and a crucial computational
tool in multiscale methods. F. Otto showed recent results in the macroscopic or
effective description of random media. The talks by A. Teckentrup and J. Fischer
highlighted recent results for the further development of multilevel Monte Carlo
methods as well as their use in challenging application problems. Randomness
as a computational tool for efficient model reduction was central to K. Smetana’s
talk, focusing on the challenges for nonlinear problems. The combination of ran-
domness and multiscale structures still poses severe challenges for computational
multiscale methods. A. Lang showed how to formulate and analyse a numerical
homogenisation scheme for SPDEs and D. Kolombage presented an offline-online
strategy for a class of random perturbations in multiscale materials.

There is an increasing interest in using the multiscale approach to solve in-
verse problems due to its ability to facilitate robust and efficient interpretation
of complex datasets, which often hold information across a variety of scales. In
that regard, M. Peter showed how to identify microstructure information in elas-
todynamics with the help of homogenisation. The identification of dynamical
systems was at the heart of J. Botvinick-Greenhouses’s talk, where he showed a
data-driven approach. In general, recent years have seen an incredibly growing
interest in data-driven methods, for instance, to learn effective or upscaled mod-
els. This trend was also clearly visible in the workshop. For instance, H. Owhadi
and R. Tsai discussed data-driven learning strategies for solution operators and
Hamiltonian flows, respectively.

Further recent hot topics are machine-learning methods and quantum comput-
ing, which were also reflected in the workshop. Using classic thoughts on adaptivity
for numerical methods, M. Feischl opened a new perspective on the hierarchical
training of neural networks. The talk by X. Liu showed how neural networks
can be used in the design of multigrid strategies. The incredible potential but
also current limitations of quantum computing strategies were highlighted in the
talks of J. Hu and M. Deiml in the context of multiscale problems and multilevel
preconditioning.

Ultimately, the workshop has discussed crucial algorithmic challenges and fun-
damental mathematical problems at the intersection of the scientific fields of mul-
tiscale modeling and simulation, scientific computing, computational (geo-)physics
and material sciences and, in particular, numerical and mathematical analysis of
partial differential equations. New bridges between these research communities
have been identified that promise future progress on Computational Multiscale
Methods.

There were 48 on-site participants from 10 countries, more specifically, 20 par-
ticipants from Germany, 10 from the United States, 5 from Sweden, 4 from China,

1Computational multiscale methods. Abstracts from the workshop held July 28–August 3,
2019. Organized by B. Engquist and D. Peterseim. Oberwolfach Rep. 16(3):2099–2181, 2019.



1082 Oberwolfach Report 22/2025

3 from France, 2 from Austria, one participant each from the UK, Canada, Saudi-
Arabia, and Singapore. Furthermore, there were 14 women and 18 young re-
searchers – with less than 10 years of experience since the PhD – among the par-
ticipants. In addition, 5 participants from the United States (3 of them female)
joined the workshop virtually. On behalf of all participants, the organizers would
like to thank the institute and in particular its staff for their great hospitality and
support before and during the workshop.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Finite element approximation of Fokker–Planck–Kolmogorov equations
with application to numerical homogenization . . . . . . . . . . . . . . . . . . . . . . . 1129

Eric Chung (joint with Xingguang Jin, Changqing Ye)
Robust multiscale methods for the Helmholtz equations in highly
heterogeneous media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1130

Robert Scheichl (joint with Christian Alber, Peter Bastian, Moritz Hauck)
Multiscale Spectral Finite Element Methods: Optimal Spectral
Approximation in the Overlaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131

Guanglian Li (joint with Shubin Fu, Shihua Gong, Yueqi Wang)
On Edge Multiscale Space based Hybrid Schwarz Preconditioner for
Helmholtz Problems with Large Wavenumbers . . . . . . . . . . . . . . . . . . . . . . . 1135

Roland Maier
A higher-order localized orthogonal decomposition strategy . . . . . . . . . . . . 1135

Moritz Hauck (joint with Philip Freese, Tim Keil, Daniel Peterseim)
Super-localized numerical homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138

Yalchin Efendiev (joint with Wing T. Leung)
Multicontinuum homogenization and applications . . . . . . . . . . . . . . . . . . . . 1141

Kathrin Smetana (joint with Charles Beall, Tommaso Taddei, Marissa
Whitby, Zhiyu Yin)
Randomized Multiscale Methods for Heterogeneous Nonlinear PDEs . . . . 1143
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Abstracts

Data-Efficient Kernel Methods for Learning Differential Equations
and Their Solution Operators: Algorithms and Error Analysis

Houman Owhadi

(joint work with Yasamin Jalalian, Juan Felipe Osorio Ramirez, Alexander Hsu,
Bamdad Hosseini)

We introduce a novel kernel-based framework for learning differential equations
and their solution maps that is efficient in data requirements, in terms of so-
lution examples and amount of measurements from each example, and compu-
tational cost, in terms of training procedures. Our approach is mathematically
interpretable and backed by rigorous theoretical guarantees in the form of quan-
titative worst-case error bounds for the learned equation. Numerical benchmarks
demonstrate significant improvements in computational complexity and robust-
ness while achieving one to two orders of magnitude improvements in terms of
accuracy compared to state-of-the-art algorithms. In comparison to equivalent
neural net methods, our approach is significantly more robust to the choice of
hyperparameters and does not require close human supervision during training.

References

[1] Y. Jalalian, J. F. Osorio Ramirez, A. Hsu, B. Hosseini, H. Owhadi, Data-Efficient Kernel
Methods for Learning Differential Equations and Their Solution Operators: Algorithms and
Error Analysis, arXiv:2503.01036 (2025).

Smoothed circulant embedding and applications in multilevel Monte
Carlo methods

Aretha L. Teckentrup

(joint work with Anastasia Istratuca)

Mathematical modelling and simulation are frequently used to inform decisions
and assess risk. However, the parameters in mathematical models for physical
processes are often impossible to determine fully or accurately, and are hence
subject to uncertainty. In practice, it is crucial to study the influence of this
uncertainty on the outcome of the simulations, in order to correctly quantify risk
and make decisions. By assigning a probability distribution to the parameters,
which is consistent with expert knowledge and observed measurements if they are
available, it is then possible to propagate the uncertainty through the model and
quantify the induced uncertainty in the model outputs.

A typical example problem is groundwater flow modelling, with potential ap-
plications in carbon capture and storage underground. In this setting, the precise
make-up of the environment, such as the location and conductive properties of
different layers of soil, is not fully known. Darcy’s law for a steady state flow in
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Figure 1. A range of meshes used in MLMC.

a porous medium, coupled with incompressibility conditions, results in a diffusion
PDE for the flow of water underground:

−∇ · (k(x, ω)∇u(x, ω)) = f(x), x ∈ D.

Here, u denotes the pressure head of the fluid, f represents the source or sink
terms, and k stands for the hydraulic conductivity, that is, the ease with which a
fluid can move through porous media or fractures under a given pressure gradient.
Due to the sparsity of measurements available, there is considerable uncertainty
in the value of k, and this is hence typically modelled as a random field.

The end goal is typically to compute quantities of interest E[Q] in the form
of expected values of functionals Q of the PDE solution u. An easily computed
example of physical interest is the pressure of the water at a given point x∗ ∈ D.
A much more challenging example is to quantify the risk of leaked particles from a
repository re-entering the human environment, which requires simulating particle
flow in the velocity field −k∇u and computing hitting times.

A standard computational method to propagate the uncertainties through the
model is to use Monte Carlo sampling (also known as ensemble methods): we
pick different realisations of our uncertain parameter k, simulate the model for
the different scenarios, and make inference on output quantities of interest from
the ensemble of simulations. This process can be notoriously time consuming,
especially when applied to complex models which result in expensive simulations.

Multilevel Monte Carlo (MLMC) methods [2] alleviate the simulation cost by
utilising different discretisations (or approximations) of the underlying model.
Most simulations are done with a low cost/low accuracy discretisation to capture
the bulk behaviour, while a few high cost/high accuracy simulations are added to
increase the overall accuracy. In the context of the PDE discussed above, this cor-
responds to using a hierarchy of meshes ranging from coarse and computationally
cheap to fine and accurate as illustrated in Figure 1.

A typical model used for k(x, ω) is a log-normal random field, i.e. k(x, ω) =
exp(Z(x, ω)) where Z is a stationary Gaussian field. Due to the typically large
physical extent of the spatial domain D (in the order of hundreds of kilometers),
the length scales of variations in Z are small compared to the size of the domain
and samples of Z, and hence of k, are highly oscillatory. A typical sample of Z is
shown in the left plot in Figure 2.
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Figure 2. Sample from the Gaussian field Z (left) and its

smoothed version Z̃ (right)

The highly oscillatory nature of k makes the application of MLMC methods
challenging, since very coarse meshes cannot resolve the oscillations. To circumvent
this issue, we propose to used smoothed versions of k on coarse meshes [3]. This
smoothing is illustrated in the right plot in Figure 2.

Our smoothing technique is based on the circulant embedding method [1] for
sampling from Gaussian random fields. Here, sampling from Z on the mesh points
used for the numerical solution of the PDE is performed by computing

Z = GΛ1/2ξ,

where ξ ∼ N (0, I) and S = GΛGT is an eigendecomposition of a cleverly chosen
extension of the covariance matrix of the random field evaluated at the mesh
points. On a uniform mesh, S is circulant for D ⊂ R and block circulant with
circulant blocks for D ⊂ R2, and this eigendecomposition can hence be computed
efficiently in log-linear time using the Fast Fourier transform.

To obtain a smoothed random field, we drop the τ smallest eigenvalues in a given
sample Z = GΛ1/2ξ, which correspond to the sharpest oscillations. The choice
of τ , and hence the amount of smoothing introduced, is based on the following
theorem [3].

Theorem 1. Let τ be the truncation index and Z̃ be the resulting smoothed sample.
Then, for any p ∈ N:

E

[
‖Z− Z̃‖p∞

]
≤ Cs−

p
2

(
max

j=s−τ+1,...,s

√
λj

)p

τp,

where s = dim(S) is the dimension of the embedding matrix S.

Choosing suitable truncation indices τℓ, linked to the mesh size hℓ on level ℓ, the
MLMC method then leads to orders of magnitude savings of MLMC over standard
MC in computational cost to obtain a given accuracy.
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Towards optimal hierarchical training of neural networks

Michael Feischl

(joint work with Alexander Rieder, Fabian Zehetgruber)

This talk is based on the preprint [5]. One of the most pressing problems in deep
learning is the question of how to design good networks for a given task and how
to train them efficiently. The design of network architectures is often driven by
intuition and/or experiment. This is particularly true for machine learning tasks
in language modelling or computer vision and hence automated methods are in de-
mand [8]. Particularly in mathematical applications of deep learning, we have the
unique advantage of constructive approximation results that show that a certain
architecture will, with the right weights, achieve a certain approximation quality.
However, even if we know the optimal architecture, it is still an open question of
how to find the optimal weights in reasonable compute time. The conventional
approach of employing variants of (stochastic) gradient descend is known to some-
times converge to weights that result in networks with much worse approximation
qualities than what is predicted from approximation theory. Examples of this gap
can be found everywhere in the literature, even with mathematical justification [6].
This is in stark contrast to classical approximation methods, such as interpolation,
spectral methods, or finite element/volume methods. There, for many problem
sets, algorithms are known that design optimal approximation architectures (e.g.,
the mesh for a finite element method) and also equip them with the optimal pa-
rameters (e.g., the coefficients of the polynomial on each mesh element). The
design of the architecture and the determination of the parameters go hand-in-
hand. One prominent example of this are adaptive mesh refinement algorithms
for the finite element method. The optimality results known for such algorithms
are of the following form: Assume that there exists a mesh (that, in general, can

not be computed practically) on which a good approximation uopth ≈ u exists,
then the algorithm will find a similarly good mesh with a comparable amount of
degrees of freedom as the optimal mesh on which it computes an approximation
uh of comparable quality, i.e.,

‖u− uh‖ ≤ C‖u− uopth ‖ and compute-time(uh) ≤ C compute-time(uopth ),

for some constant C > 0 that depends only on secondary characteristics of the
method but is independent of the solution u, its approximation and the number of
degrees of freedom. For examples of such results, we refer to the seminal works [1,
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7, 2] in which the Poisson problem was tackled. The ideas in these works were
generalized to many other model problems, and we refer to [3] for an overview.

The big advantage of this line of reasoning is that one does not need to know the
approximability of the exact solution u and can still guarantee that the approxi-
mation is (quasi-) optimal for a given computational budget.

The present work pursues whether similar results are possible for the training of
deep neural networks and gives some promising first answers. To that end, we pro-
pose an algorithm that hierarchically extends the network architecture by adding
new neurons in each layer. This is done in such a way that the realization of the
network is unchanged at first, i.e., the new weights are set to zero. Then, an opti-
mal initialization of the new weights is computed by solving a small optimization
problem. Under the assumption that a neural network of a certain size exists that
strictly improves the loss function, we can show that this optimal initialization
reduces the loss by a factor that is proportional to the optimal loss reduction if
the best possible (but in general unknown) initialization would be chosen.

To rigorously establish the loss reduction, we introduce the concept of stable
networks. The notion quantifies the amount of cancellation that is present in a
network with given weights. Roughly speaking, we show that the existence of
stable networks that achieve small loss guarantees that the proposed hierarchical
training algorithm will find networks of similar size with similar loss. We argue
that the notion of stability is necessary in the sense that if a certain loss functional
can only be made small by very unstable networks (i.e., a small change in the
weights results in a large change of the output), there is little hope for any training
algorithm to find the correct weights for such a network. Practical experience also
seems to suggest that this stability is inherent in many deep learning applications.
For example, it is common practice to do inference or training of large networks
in single precision in order the increase performance.

As a corollary, we obtain a computable quantity that can be used to judge
the training state of a given network. The quantity measures how far a network
of a given size is from optimality, i.e., the smallest possible loss for this network
architecture. This is similar to the well-known Céa lemma for Galerkin methods,
which states that a computed approximation is, up to a factor, as good as the best
possible approximation within the given setting. The difference to the present
setting is that we do not know the factor a priori, but compute a quantity that is
related to this factor. In that sense, we have an a posteriori type Céa lemma for
training neural networks.

Finally, we show that our hierarchical training algorithm results in improved
estimates on the generalization error compared to direct algorithms. Moreover, we
introduce the concept of optimal generalization which turns out to be necessary
in order to achieve small generalization error and allows us to make statements
about the generalization error without quantifying the distance of training data
and possible inputs of the network. This is particularly interesting as current ma-
chine learning applications such as Large Language Models (e.g.,[4]) demonstrate
remarkable generalization over inputs that are far away from the training data.
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Figure 1. Comparison of hierarchical and direct algorithm. The
dashed line represents O(n−2). Approximating of f(x, y) = (x +
y)2/2 (upper-left), f(x, y, z) = (x+y+z)2/3 (lower-left), f(x, y) =

(x+ y)2/3 (upper-right), and f(x) := (
∑10

i=1 xi)
2/10 (lower-right)

on the respective unit cubes.

Numerical examples. We compare the (classical) direct training with our hi-
erarchical approach. The direct approaches receive 4 · 105 training epochs, where
the hierarchical approach receives 2 · 103 epochs per iteration of the outer loop of
which there are not more than 102 in each example.
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Multiscale Finite Element Methods for reaction-diffusion problems

Frederic Legoll

(joint work with Claude Le Bris, Albéric Lefort)

The Multiscale Finite Element Method (MsFEM) is a finite element approach that
allows to solve partial differential equations with highly oscillatory coefficients on
a coarse mesh, i.e. a mesh with elements of size much larger than the characteristic
scale of the heterogeneities (see [7] and also [8, 4]). To do so, MsFEMs use pre-
computed basis functions, adapted to the differential operator, thereby taking into
account the small scales of the problem.

In this talk, we consider reaction-diffusion equations with oscillating coefficients.
The problem is phrased in terms of an eigenvalue problem, and is motivated by
applications in neutronics. It typically consists in finding the lowest eigenvalue λε,
along with the associated eigenvector uε (that we take of unit L2 norm), to the
problem

(1)
1

ε2
σε(x)uε − div (Aε(x)∇uε) = λε

ε2
uε in Ω, uε = 0 on ∂Ω,

where Ω is a bounded domain of Rd, σε is a positive and uniformly bounded
function and Aε is a uniformly elliptic, matrix-valued field which is such that Aε(x)
is a symmetric matrix for any x ∈ Ω (a typical case is when σε(x) = σper(x/ε)
for a periodic, positive and bounded function σper, and A

ε(x) = Aper(x/ε) for a
periodic, uniformly elliptic, matrix-valued field Aper). The equation of interest
may be scalar-valued, as in (1) (in neutronics, this corresponds to the case when
neutrons all have the same energy), or vector-valued (when several energy groups
are represented). In the latter case, the operator at hand is in general not self-
adjoint. In both cases, the reaction term magnitude is large, which implies that
this term and the diffusion term both contribute to the corrector equation.

Typical solutions of (1) are much more oscillatory than those of a purely diffusive
problem. For instance, in the periodic, scalar-valued case, the lowest eigenmode is
bounded in L2(Ω) but not in H1(Ω), and we have, at the leading order, uε(x) ≈
ψ(x/ε) v⋆(x) for two functions ψ and v⋆ independent of ε. A typical representation
of uε is shown on Figure 1.

We make use of theoretical homogenization results in a periodic framework (see
e.g. [1, 2]) to guide our intuition in order to define appropriate MsFEM basis
functions. A specific attention is devoted in order to make the basis functions as
insensitive as possible to the boundary conditions imposed on the local problems.
To that aim, we make use of filtering approaches, initially introduced in [5, 6] in
the context of molecular dynamics, and next used in [3] in the context of periodic
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Figure 1. A typical solution to (1) in Ω = (0, 1)2. Note the
clearly visible oscillations of uε.

homogenization of elliptic equations. We present several numerical results, both in
the scalar- and the vector-valued case, for periodic and non-periodic coefficients,
which illustrate the efficiency of the approach. We also provide some rigorous error
estimates, demonstrating the accuracy of the approach. We refer to [9] for more
details.
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Approximation of multiscale stochastic partial differential equations

Annika Lang

(joint work with Per Ljung, Axel Målqvist)

Let us consider the stochastic partial differential equation

(1) ∂tX(t, x)−∇ · A(x)∇X(t, x) = Ẇ (t, x), X(0, x) = X0(x),

on a sufficiently smooth domain D with a rapidly varying coefficient A and driven
by a Wiener process W with covariance Q. Then the L2(D)-valued noise has a
basis expansion, also known as Karhunen–Loève expansion, given by

W (t, x) =

∞∑

i=1

√
γi βi(t) ei(x),

where (ei, i ∈ N) is an orthonormal of L2(D) and eigenbasis of Q such that Qei =
γiei, and (βi, i ∈ N) denotes a sequence of independent real-valued Brownian
motions. Typically, this noise is approximated by the spectral truncation

W (L)(t, x) =

L∑

i=1

√
γi βi(t) ei(x),

and the speed of convergence depends on the spatial smoothness of W which
depends on the algebraic decay rate of the eigenvalues (γi, i ∈ N) of Q.

Let us set Λ = −∇ ·A∇ for abbreviation, then (1) is interpreted as the integral
equation

X(t) = X0 −
ˆ t

0

ΛX(s) ds+W (t)

on L2(D), which we approximate by a Galerkin finite element (FEM) approxima-
tion with mesh width h in space and a backward Euler scheme with step size k in
time given by

(2) (1 + kΛh)X
n
h = Xn−1

h + Ph(W (tn)−W (tn−1)).

We denote the finite element space of first order polynomials by Vh and the L2(D)-
orthogonal projection on Vh by Ph. It is known, see, e.g., [5, 10, 11], that the
approximation converges for µ ∈ [1, 2] asymptotically with strong error bound

(3) E
[
‖Xn

h −X(tn)‖2L2(D)

]1/2
. (kµ/2 + hµ)

(
‖X0‖Ḣµ(D) + ‖Λ(µ−1)/2Q1/2‖HS

)
,

where “HS” denotes the Hilbert–Schmidt norm and Ḣµ(D) is defined by fractional
powers of Λ. For all Lipschitz test functions, this yields weak convergence, since

∣∣E[ϕ(Xn
h )− ϕ(X(tn))]

∣∣ . E
[
‖Xn

h −X(tn)‖2L2(D)

]1/2
.

In simulations, these convergence rates can only be observed when the chosen mesh
width h resolves the fine oscillations of A but fails to be visible on coarse grids as
can be seen in Figures 1(a) and 1(b). To overcome this bottleneck, we modify our
finite element space such that the resulting space is suitable for highly oscillating
coefficients even on coarse grids. We use the localized orthogonal decomposition
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(a) Strong convergence. (b) Weak convergence.

(c) Running time.

Figure 1. FEM and LOD error simulations and running times.

(LOD) method as introduced in [9] and obtain the multiscale space V ms
ℓ with

patch size Nℓ by modification of the finite element space VH on the coarse grid
with mesh size H . Denoting by Λms

ℓ the Galerkin approximation of Λ and by Pms
ℓ,h

the orthogonal projection, the fully discrete approximation scheme reads

(4) (1 + kΛms
ℓ )Xn

ms,ℓ = Xn−1
ms,ℓ + Pms

ℓ,h(W (tn)−W (tn−1)).

In [6], we showed that the same convergence rates on coarse grids can be obtained
as asymptotically with standard FEM approximations. This is confirmed in sim-
ulations, see Figures 1(a) and 1(b). Furthermore, we get with suitably chosen
sample sizes the same rate of weak convergence with a multilevel Monte Carlo
method as pioneered in [2], which is computationally cheaper as observed in Fig-
ure 1(c).

In the suggested scheme (4), we need to compute the increments of W and
project them onto V ms

ℓ , i.e., we generate

Pms
ℓ,h (W (tn)−W (tn−1)) =

√
kPms

ℓ,hU,

where U ∼ N (0, Q). In practice, we used the truncated process W (L) for a suf-
ficiently large L and computed the projections. This is not very convenient. As
a possible idea for future research, I introduce an idea for FEM, where we gen-
erate U for special choices of Q directly on Vh using discrete white noise. More
specifically, we look at generalized Whittle–Matérn covariances that have become
popular in spatial statistics in the stationary setting, see [8]. These are given as
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solutions to special stochastic partial differential equations of the form

U = γ(L)W ,

where L = V −∇D∇, γ is a sufficiently smooth power spectral density, W spatial
white noise, and V and D are a sufficiently smooth potential and diffusion matrix,
respectively. These solutions can be approximated by finite element approxima-
tions and either a quadrature approximation of the Dunford–Taylor representation
in case γ is of the form x−β or a Chebyshev approximation, else. Convergence
results on spheres and hypersurfaces with surface FEM approximations were pre-
sented from [3, 4].

If we now combine such results with (2), i.e., using the finite element solution
to LβW (t) = W(t) instead of PhW , we obtain similar convergence results as in (3)
as shown in [1].

Finally, we looked at the transformation used in [7] to use SPDE solutions to
generate stochastic manifolds to give an outlook into future research.
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Linearized Localized Orthogonal Decomposition for Quasilinear
Nonmonotone Elliptic PDE

Maher Khrais

(joint work with Barbara Verfürth)

In this work we present a multiscale method in the framework of the Local Or-
thogonal Decomposition (LOD) for solving nonlinear nonmonotone elliptic PDEs.
Consider the following prototypical nonlinear nonmonotone model, find u ∈ H1

0 (Ω)
that solves

A(u;u, v) := (α(x, u)∇u,∇v) = (f, v) = F (v), ∀v ∈ H1
0 (Ω).

Where f ∈ L2(Ω) and Ω ⊂ Rd is a bounded domain with d ≤ 3. The coefficient α ∈
L∞(Ω;Rd) satisfies certain assumptions, including Lipschitz continuity, ellipticity,
and boundedness. The presented material is based on the detailed manuscript [3].
The goal of the LOD method is to incorporate the (spatial) fine-scale behavior of
the coefficient α into the basis of the coarse FE space resulting in a new modified
low-dimensional function space with good approximation properties. However,
these arguments cannot easily be transferred to the nonlinear case. For quasilinear
problems of monotone type, a multiscale method was proposed and analyzed in [1]
which uses a linearization of the problem to compute the correction operators.

1. Multiscale method and linearization techniques

We focus on the construction of the multiscale space and, in particular, on the lin-
earization techniques involved for our nonmonotone PDE. Consider a decomposi-
tion of the domain of interest Ω into a partition TH . Assume H := maxK∈TH HK ,
and let VH be the standard lowest-order conforming finite element subspace of
H1

0 (Ω). Let IH : H1
0 (Ω) −→ VH be a bounded local linear projective operator that

satisfies H1 stability and the approximation property. The fine-scale incorpora-
tion into the coarse FE space is obtained by using correction operators. Given
W = ker IH , we define the corrector operator

Q : VH −→W

that satisfies the following linear elliptic problem

AL(p
∗, uH −QuH , w) = (AL(x, p

∗,∇(uH −QuH)),∇w) = 0, ∀w ∈W.

For a suitable choice of linearization point p∗ ∈ H1
0 (Ω), two linearization techniques

are considered to convert the corrector problem into a linear elliptic problem:

• The first technique is known as Kačanov-type linearization, where we
freeze the nonlinearity of α(x, v)∇v to get the following linear form
AL(x, p

∗,∇v) = α(x, p∗)∇v.
• Second, Fréchet derivative linearization in the direction of (u−p∗) to obtain
the linear approximation form α(x, v)∇v ≈ AL(x, p

∗,∇v) = α(x, p∗)∇v+
(v − p∗)αu(x, p

∗)∇p∗.
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The correction operator is then computed in a localized fashion on small patches
of coarse mesh elements with oversampling parameter k. The multiscale space is
defined as

VH,k = (id−Qk)VH = {vH −QkvH : vH ∈ VH}.
This space is constructed only once and it is then employed to solve the nonlinear
multiscale problem with a Galerkin approach, which in practice of course uses an
iterative method.

2. Error Analysis and numerical example

The nonmonotone nature requires several changes in the error analysis in com-
parison to [1]. Our main contribution is thus to extend the ideas from [1] to the
problem of interest above, which is a non-trivial task.

Theorem 1. Let u be the analytical solution, and let uH,k be the multiscale solu-
tion. Then for sufficiently large patch, it holds that

|u − uH,k|1 . H‖f‖0 +G(u− p∗, uH,k − p∗),

where G(u − p∗, uH,k − p∗) satisfies the following inequalities:

(1) Kačanov-type linearization

G(u − p∗, uH,k − p∗) . ‖u− p∗‖∞‖∇u‖0 + ‖∇uH,k‖0‖uH,k − p∗‖∞.
(2) Fréchet derivative linearization

G(u− p∗, uH,k − p∗) . ‖u− p∗‖∞‖∇u‖0 + ‖∇uH,k‖0‖uH,k − p∗‖∞
+ ‖(αss(x, q

∗)∇q∗)‖∞‖u− p∗‖20,
where q∗ ∈ H1

0 (Ω) is an intermediate function, i.e., q∗ = p∗ + t(u− p∗), for some
t ∈ [0, 1].

Our a priori error estimate is of optimal order with respect to the mesh size
without any dependence on the spatial variations of α or (higher) regularity of
the exact solution. The estimates for the linearization error gives guidance for the
choice of the linearization point for the correction problems.

Practically, we consider the so-called exponential model α(x, u) = c(x) exp(2u)
in Ω = [0, 1]2 with heterogeneous spatial term c(x). The right-hand side f(x1, x2)
is defined as 0.1 for x2 ≤ 0.1 and 1 otherwise. For further numerical experiments
we refer to [3]. To study the convergence performance, we use the following relative

errors eLOD :=
|uh−uH,k|1

|uh|1
, uh is a reference solution solved on h = 2−7.

We compare the behavior of the convergence for different linearization tech-
niques and several linearization points:





uH , uh FEM solutions, H = 1
32 , and h = 1

128 ,

ulod LOD solution H = 1
16 and k = 4,

g(x) = 10xy(1− x)y(1 − y),

g1(x) = 0.5xy(1− x)y(1− y)e(5(x+y)).
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Figure 1. Convergence history of eLOD for Kačanov method
(left) and Fréchet method (right) with different linearization
points and fixed oversampling parameter k = 3.

The numerical experiments illustrate the impact of the choice of the lineariza-
tion points on the performance of the method. Some linearization points perform
better than others, depending on how close they are to the analytical solution.
For example, the linearization points p∗ ∈ {0, uH , uh, ulod} performs almost the
same as they are closed to u and uH,k. However, the linearization points that are
not close to both u and uH,k, we notice that the first order convergence is lost due
to the dominance of linearization error. The two linearization techniques espe-
cially differ when the linearization point is far from the solution. The linearization
technique that depends on Fréchet derivative exhibits greater sensitivity to the
chosen linearization point. An iteration of our multiscale method by updating the
linearization point improves the performance considerably. This indicates that
iterative multiscale methods may also be promising for nonmonotone quasilinear
problems, which is left for future research.
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Optimal artificial boundary conditions for random media

Felix Otto

(joint work with Jianfeng Lu, Lihan Wang)

Given a uniformly elliptic coefficient field a : Rd → Rd×d

ξ.aξ ≥ λ|ξ|2 and ξ.aξ ≥ |aξ|2 for all ξ ∈ R
d,

we will consider the solution u of the equation

∇.a∇u = ∇.g in R
d,(1)

where the right-hand side g is a vector field that is localized at a scale l, i.e.

g(x) = ĝ(
x

l
) with ĝ ∈ C2

0 (B1) and |
ˆ

ĝ| = 1.

We are interested in observables of the form
´

ω∇u where the average is taken on
a scale R, namely

ω(x) =
1

Rd
ω̂(
x

R
) with ω̂ ∈ C2

0 (B1) and

ˆ

ω̂ = 1.

The topic is on how well this observable can be predicted if the medium a is only
known on a large ball BL. Without any further structure,

´

ω∇u is determined

by a|BL only up to O(( l
L)

d) in the regime R ≪ l ≪ L, where this scaling arises
from the dipolar decay of u from the system size L and the source size l. This
scaling is saturated by imposing homogeneous Dirichlet boundary conditions:

ˆ

ω∇u =

ˆ

ω∇ũ+O
(
(
l

L
)d
)

where ũ solves the homogeneous Dirichlet problem

∇.a∇ũ = ∇.g in BL with ũ = 0 on ∂BL.

In certain situations one can do better, namely if one has the a priori information
that a is drawn from an ensemble (=probability measure) that

• is stationary, i.e. a(·+ y)
law
= a for all y ∈ Rd,

• has unit range, i.e a|D and a|D′ are independent for dist(D,D′) ≥ 1.

Loosely speaking, [2, 3] establishes that for 1 ≪ R≪ l ≪ L and with overwhelming
probability

ˆ

ω∇u is determined by a|BL up to O
(
(
l

L
)d(

1

L
)

d
2

)
,

yielding an improvement by the central limit theorem-type factor ( 1
L)

d
2 , involving

the system size L and the range 1. More precisely, we have that
ˆ

ω∇u =

ˆ

ω∇ũ+O
(
(
l

L
)d(

1

L
)

d
2−

)
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where ũ solves the inhomogeneous Dirichlet problem

∇.a∇ũ = ∇.g in BL
2

with ũ = ũD on ∂BL
2

(2)

for some computable Dirichlet boundary data ũD, see below.

This is the best that we can do information-theoretically:

Theorem 1. [2, Theorem 2] For “most” ensembles as above there exists R ∼ 1
such that

E
1
2

∣∣
ˆ

ω∇u− E
[ ˆ

ω∇u | a|BL

]∣∣2 & (
l

L
)d(

1

L
)

d
2 for all 1 ≪ l ≪ L.

Here E[·|a|BL
] denotes the expectation conditioned on the restriction of a onto

BL. For a generic class of ensembles, Theorem 1 is a consequence of the following
sensitivity result, which bounds from below how much the observable depends on
the medium in some ball BR(y).

Theorem 1’. [2, Lemma 7] For “most” ensembles as above there exists R ∼ 1
such that

E
1
2

∣∣E
[ ˆ

ω∇u | a|BR(y)

]
− E

[ ˆ
ω∇u

]∣∣2 & (
l

|y| )
d(
R

|y| )
d for all 1 ≪ l ≪ |y|.

In the sequel, we sketch the two ingredients for Theorem 1’.

General homogenization theory (cf. [4]). To a coefficient field a : Rd → Rd×d,
one associates a constant coefficient matrix ā ∈ Rd×d and fields

φi : Rd → R, σi : Rd → R
d×d skew symmetric

for i = 1, . . . , d, such that the following Helmholtz-type decomposition holds

a(ei +∇φi) = āei +∇.σi.

The correctors φi and flux correctors σi yield an intertwining relation between the
heterogeneous operator ∇.a∇ and the homogeneous ∇.ā∇ one:

∇.a∇(1 + φi∂i)ū = ∇.ā∇ū+∇.(φia+ σi)∇∂iū,
via what is known as the two scale-expansion1 (1 + φi∂i)ū, and with the error in
divergence form. In order for the error (φia+ σi)∇∂iū to be of higher order, the
potentials φi and σi should grow only sublinearly in x.

Fixing an exponent β with 0 < 1− β ≪ 1, one monitors this sublinearity around
a point z in terms of the minimal radius r∗(z) ∈ (0,∞] satisfying

1

r

( 

Br(z)

d∑

i=1

(φi −
 

Br(z)

φi)2 + |σi −
 

Br(z)

σi|2
) 1

2 ≤ (
r∗(z)

r
)β for all r ≥ r∗(z).

For the class of ensembles described above, it is known that r∗(z) . 1 with over-
whelming probability, [2, Lemma 4].

1where we use Einstein’s summation convention of summation over repeated indices.
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Homogenization and defects (cf. [1]). Recall the elliptic problem in (1),
∇.a∇u = ∇.g and consider its homogenized variant ∇.ā∇ū = ∇.g. Given a
uniformly elliptic coefficient field a0, we insert a0 as defect in BR(y):

a′ = a0 in BR(y) and a′ = a else,

ā′ = a0 in BR(y) and ā′ = ā else

and consider the corresponding elliptic equations

∇.a′∇u′ = ∇.g and ∇.ā′∇ū′ = ∇.g.
The following proposition, which shows that the insertion of defects and homoge-
nization commute, is the main ingredient in the proof of Theorem 1’.

Proposition 1. [2, Proposition 2] There exist constants α(d, λ, β) > 0, C(d, λ, β)

< ∞ such that for all l, R, y with r∗(0) ≤ l and max{r∗(0), r∗(y)} ≤ R ≤ |y|
2 , we

have
( 

BR

∣∣∇
(
(u′ − u)− (1 + φi∂i)(ū

′ − ū)
)∣∣2

) 1
2 ≤ C(

l

|y| )
d(
R

|y| )
d
(
(
R

|y| )
β + (

r∗(y)

R
)α
)
.

Algorithm for artificial boundary data ũD. Recall the initial problem in (1)
and its homogenized approximation

∇.a∇u = ∇.g, ∇.a∇ū = ∇.g in R
d,

together with the local problem in (2)

∇.a∇ũ = ∇.g in BL
2

with ũ = ũD on ∂BL
2
.

For d = 2, we introduce the two-scale expansion of ū, corrected by a dipolar term

uD = (1 + φi∂i)ū + (

ˆ

g.∇φi)∂iḠ on ∂BL
2
,(3)

where Ḡ is the fundamental solution of ∇.ā∇. Since we have no access to φi and
ā, we use as proxy the solution φ̃i of

∇.a(ei +∇φ̃i) = 0 in BL and φ̃i = 0 on ∂BL

and the constant matrix ˜̄aei =
´

ωLa(e
i + ∇φ̃i). With the proxies φ̃i and ˜̄a at

hand, we define ũD as in (3).

Theorem 2. [2, Theorem 1] For d = 2 there exist constants C(λ, β) <∞, γ(λ, β)
> 0 such that for all r̃∗(0) ≤ R ≤ L

∣∣
ˆ

ω∇u−
ˆ

ω∇ũ| .
( 

BR

|∇(u − ũ)|2
) 1

2 ≤ C(
l

L
)d(

r̃∗(0)

L
)β=

d
2−

with probability 1 − exp(−Lγ

C ), and where r̃∗(0) is determined by (φ̃i, σ̃i) as r∗(0)

by (φi, σi).

In [3, Theorem 1.2], the construction of ũD has been extended to d = 3, also
achieving the near-optimal rate:



1104 Oberwolfach Report 22/2025

Corollary 2. For d = 2, 3 and β < d
2 , there exists a finite constant C(d, λ, β)

such that for ensembles as above and for all 1 ∼ R ≪ l ≪ L

E
1
2

∣∣
ˆ

ω∇u−
ˆ

ω∇ũ
∣∣2 ≤ C(

l

L
)d(

1

L
)β .
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LOD for heterogeneous Stokes equations

Alexei Lozinski

(joint work with Moritz Hauck)

We present the work from [1] on a multiscale method for a heterogeneous Stokes
problem in a bounded polytope Ω ⊂ Rn, n ∈ {2, 3}





− div(ν∇u) + σu+∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω

where the coefficients ν and σ are non-constant and can be highly oscilating. The
method is based on the Localized Orthogonal Decomposition (LOD) methodology
and has approximation properties independent of the regularity of these coeffi-
cients.

The basic idea of the LOD is to decompose the solution space into a fine-scale
space and its orthogonal complement with respect to the energy inner product
induced by the considered problem. By choosing the fine-scale space to consist
of functions that average out on coarse scales, one obtains a finite-dimensional
mesh-based complement space that is adapted to the problem at hand and has
uniform approximation properties under minimal structural assumptions on the
coefficients. It possesses exponentially decaying basis functions whose computation
can thus be localized to subdomains, resulting in a practically feasible method,
provided the basis functions are pre-computed on sufficiently fine meshes on these
subdomains.

For Stokes problems, the divergence-free constraint poses a major challenge
to LOD-type methods, since directly incorporating the constraint can lead to ill-
posed problems or slowly decaying basis functions. To overcome this problem, we
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reformulate the Stokes problem relaxing the divergence-free constraint, and work-
ing rather in the space of H1

0 (Ω)
n-functions with piecewise constant divergence

with respect to the coarse mesh. The divergence-free velocity is then recovered
using a piecewise constant Lagrange multiplier defined on the same mesh. We
choose the fine-scale space for the velocity as the functions whose averages vanish
on all faces of the coarse mesh, and consider its finite-dimensional orthogonal com-
plement as the prototypical LOD approximation space. This choice assures that
the natural projection on the prototypical LOD space preserves the divergence, so
that the approximation given by the resulting LOD method (with piecewise con-
stant Lagrange multipliers) is exactly divergence-free and thus pressure robust.
Our construction of the fine-scale space is inspired by the concept of “quantities
of interest” in [2] and by Operator-adapted wavelets in [3].

The a priori error analysis of the proposed method reveals optimal orders of
convergence. More specifically, for L2-right-hand sides we prove first- and second-
order convergence for the L2- and H1-errors of the velocity approximation. If the
right-hand side f is H1-regular, we can squeeze out an additional order of conver-
gence for the velocity. We also prove the exponential decay of the basis functions,
thus allowing for a feasible LOD method with localized basis functions that should
be computed on the subdomains whose size should increase logarithmically with
the desired accuracy. The error of this method is fully analyzed theoretically and
its convergence is demonstrated by numerical experiments. A first-order approxi-
mation for the pressure can be also easily recovered by post-processing.

We have also briefly outlined the ongoing work in two directions: (i) a better
localization strategy removing the 1/H prefactor from the localization error es-
timate, at the expense of more expensive calculation of the basis functions; (ii)
extension to higher convergence orders by enriching the approximation spaces us-
ing the polynomials weights on edges and elements of the mesh.
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Multiscale Hamiltonian simulations via deep learning and
parallel-in-time methods

Richard Tsai

(joint work with Rui Fang)

Hamiltonian systems with multiple timescales arise in molecular dynamics, classi-
cal mechanics, theoretical physics, etc. These systems are governed by

u̇(t) = f(u(t)) := J−1∇H(u(t)), J =

(
0 I
−I 0

)
, u = (p, q) ∈ R

2d,

and conserve energy and symplectic structure. Stable and accurate long-time
numerical integration of these systems demands very small time steps to resolve the
fastest dynamics, resulting in substantial computational costs. Moreover, many
practical applications involve simulating ensembles of trajectories for uncertainty
quantification, sensitivity analyses, or varied initial conditions, further intensifying
the computational demands. This work introduces two complementary strategies
to accelerate simulations of multiscale Hamiltonian systems:

(i) Neural network-based flow maps Φθ(u0, t) ≈ φt(u0) that approximate the
solution operator directly, bypassing classical time step constraints.

(ii) A Procrustes parareal algorithm that stabilizes the standard parareal al-
gorithm, a famous parallel-in-time method introduced in [1], for oscillatory
Hamiltonian systems through data-driven phase corrections.

1. Neural network-based flow maps

We first develop a learning framework to approximate the continuous-time flow
map φt : R2d 7→ R2d of Hamiltonian systems using deep neural networks. We
construct simple neural networks Φθ(u0, t)

Φθ(u0, t) ≈ φt(u0), u0 ∈ Ω ⊂ R
2d, t ∈ [0, T ],

by minimizing a residual-based loss functional. The neural network is trained by
minimizing the squared residual defined by a chosen convergent numerical scheme:

J [Φθ] =
1

2

ˆ

Ω

ˆ T

0

∥∥Rh[Φθ](u, t)
∥∥2 dν(t) dρ(u),

where ν and ρ are probability measures on [0, T ] and Ω respectively. For example,
the forward Euler scheme with step size h:

Rh[Φθ](u, t) :=
Φθ(u, t+ h)− Φθ(u, t)

h
− f(Φθ(u, t)).

Compared with the exact residual approach employed in many physics-informed
neural networks (PINNs), the scheme-based residual approach offers increased
computational and data efficiency and enhanced robustness.

To obtain a network model that is sufficiently accurate in short time intervals
and stable when used recurrently for long-time simulations, we address the follow-
ing design aspects:
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• Network architecture: Since there is no dissipation to damp out approxima-
tion errors in Hamiltonian dynamics, it is important to approximate the flow map
with a smaller error at the initial time. We propose using neural networks that are
consistent with the flow and its first few time derivatives at t = 0. For example,

Ψθ(u, t) :=
σ(w1t)

w1

(
f(u) +

σ(w2t)

w2

(
1

2
f ′(u)f(u) + σ(w3t)Rθ2(u, f(u), t)

))
,

with θ = {w1, w2, w3} ∪ θ2 denoting the trainable parameter set and σ(z) =
tanh(z), matches the Taylor expansion of φt up to the second order term, and
Rθ2 is a simple multilayer perceptron approximating the remainder term. This
approach provides inductive bias aligned with the system’s known dynamics for
small t while retaining expressivity for complex dynamical behaviors.

• Phase space data and sampling: Given the energy-conserving nature of
Hamiltonian dynamics, training data must respect the invariant measure on en-
ergy level sets corresponding to test trajectory energies. To this end, we propose
HMC-H0, a Monte Carlo algorithm based on Hamiltonian Monte Carlo that sam-
ples phase space states from the microcanonical ensemble corresponding to a fixed
energy H0. This approach significantly outperforms other ad hoc sampling ap-
proaches, both in data efficiency and long-term stability of the learned flow maps.

• Energy-based loss function: Multiscale Hamiltonian systems often feature
both stiff and nonstiff modes. A loss function measured with the l2-norm may
underweight fast dynamics. To address this, we construct energy-balanced norms
that properly weight different contributions to the loss, improving the accuracy
and robustness of the learned flow maps.

We apply our approach to several benchmark problems, including a nearly-
periodic coupled oscillators problem, the Fermi-Pasta-Ulam-Tsingou problem from
chaos theory, the non-integrable gravitational three-body problem, and the α-
particle problem, governed by a non-separable non-canonical Hamiltonian, rele-
vant to magnetic confinement fusion. For all problems other than the three-body
problem, the neural network flow maps can achieve exceptional short-term and
long-term accuracy. Remarkably, in cases with extremely large scale separations,
the network maintains high accuracy and demonstrates runtime performance su-
perior to classical symplectic solvers such as the Störmer-Verlet method. For the
α-particle problem, we additionally demonstrate the flexibility of our framework in
learning the dependence on the problem parameter ǫ, thereby facilitating further
studies on parameter sensitivity. The non-integrable three-body problem remains
a challenging test case, due to the extremely high stiffness in the dynamics during
close encounters of two bodies. The learned flow maps as trained without adap-
tivity in the step size h used in Rh or batch samples during training, exhibited
good numerical performance in terms of accuracy as long as the force is bounded
below some constant (as long as the particles do not get too close to each other).
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2. Stabilized parareal algorithm

As a second contribution, we develop a stabilized variant of the parareal algorithm
for multiscale Hamiltonian systems. The standard parareal algorithm splits [0, T ]

into N subintervals, ∆t = T/N , and computes the solution u
(k)
n at time tn = n∆t

iteratively by combining a coarse solver C∆t and a fine solver F∆t via:

u
(k+1)
n+1 = C∆tu

(k+1)
n +

(
F∆tu

(k)
n − C∆tu

(k)
n

)
,

with u
(0)
n+1 = C∆tu

(0)
n and u

(k)
0 = u0. While effective for dissipative problems, the

standard parareal algorithm suffers from instability and slow convergence for oscil-
latory systems due to phase mismatches between coarse and fine propagators (see,
e.g., [2, 3, 4, 5]). Following previous works [4, 5], we stabilize the parareal algo-
rithm for Hamiltonian systems by constructing correction operators using online-
generated data during parareal iterations. Introducing the data-driven correction

operator θ
(k+1)
n such that θ

(k+1)
n C∆t ≈ F∆t, we obtain the θ-parareal update

u
(k+1)
n+1 = θ(k+1)

n C∆tu
(k+1)
n +

(
F∆tu

(k)
n − θ(k+1)

n C∆tu
(k)
n

)
.

To correct for phase mismatches, we restrict θ
(k+1)
n to phase-aligned transforma-

tions. Specifically, we define a coordinate transform Λ that isolates oscillatory

modes, and determine θ
(k+1)
n by minimizing the discrepancy between coarse and

fine solvers across a collection of previous states:

θ(k)n = Λ†Ω(k)
n Λ, Ω(k)

n := argminΩ∈O(d)

∑

u∈D
(k)
n

‖ΛF∆tu− ΩΛC∆tu‖.

This problem is known as the orthogonal Procrustes problem, and the solution can
be efficiently computed via singular value decomposition of the correlation matrix
between fine and coarse solutions.

Numerical experiments demonstrate that the proposed phase correction can
successfully stabilize the parareal iterations, thereby accelerating the convergence
and extending the viable time window for accurate long-term predictions. This
underscores the importance of correcting phase errors in oscillatory systems.

Finally, we demonstrate that the neural network-based flow map Φθ can act as
a surrogate coarse solver C∆t within the parareal framework, leading to further
acceleration and improved performance.
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Invariant Measures for Data-Driven Dynamical System Identification

Jonah Botvinick-Greenhouse

(joint work with Yunan Yang)

Constructing accurate models of dynamical systems in the face of data-sparsity,
measurement errors, and uncertainty is a critically important task across a wide
range of scientific disciplines. In this talk, we introduce a variety of techniques,
based upon the comparison of simulated and observed invariant measures, which
are designed to be robust to such data imperfections. More specifically, we con-
sider the problem of reconstructing the unknown parameters θ∗ ∈ Θ ⊆ Rp of a
dynamical system, e.g., a parameterized differential equation ẋ = v(x; θ), based
upon observed trajectory data {x∗(tk)}Nk=1 ⊆ Rd. One notable method for this
task is given by the Sparse Identification of Nonlinear Dynamics (SINDy) algo-
rithm [1], which computes divided difference approximations along the trajectory
{x∗(tk)}Nk=1 to obtain a local estimate of the velocity and subsequently performs
sparse regression over the set Θ. Another class of approaches, given by Neural
ODEs and shooting methods [2], formulate the system identification task as an
optimization problem

(1) min
θ∈Θ

J (θ), J (θ) :=
1

N

N∑

k=1

‖x∗(tk)− x(tk; θ)‖22,

where {x(tk; θ)}Nk=1 denotes a simulated trajectory according to the vector field
v(θ). While these techniques have proven to be successful at recovering the un-
known parameters θ∗ ∈ Θ when the available data {x∗(tk)}Nk=1 is densely sampled
and noise-free, their effectiveness is known to diminish when the available data is
sparse, noisy, and chaotic.

Rather than seeking a pointwise matching with the observed trajectory data, or
its time-derivatives, we follow [3, 4] and instead consider the occupation measure

(2) ρ∗ :=
1

N

N∑

k=1

δx(tk),

where as N → ∞ mild assumptions of ergodicity ensure that ρ∗ weakly converges
to an invariant measure of the underlying system. The occupation measure (2)
quantifies the global time-invariant statistics of the underlying system and can
be well-approximated even in the presence of noise, chaos, and data uncertainty.
Thus, we recast the system identification task as the optimization

(3) min
θ∈Θ

J (θ), J (θ) := D(ρ∗, ρ(θ)),

where D denotes a metric or divergence on the space of probability measures, e.g.,
the KL divergence or Wasserstein distance, and ρ(θ) is an invariant measure of the
system ẋ = v(x; θ). While the objective (1) can be sensitive to chaotic dynamics,
noisy observations, and slow sampling of the dynamics, we observe clear robustness
when using (3) to reconstruct the parameters θ∗ ∈ Θ.
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In cases when the number of unknown parameters is large, e.g., for a neural
network parameterization of the velocity, one must solve the optimization (3)
using gradient-based methods. Rather than approximating ρ(θ) as an occupation
measure from a long trajectory simulation, which can make gradient computations
challenging, we follow [4] in constructing a time-independent partial-differential
equation surrogate model. That is, we approximate the invariant measure as a
time-invariant solution of the stationary Fokker–Planck equation

(4) ∇ · (ρv) = D∆ρ,

which we discretize using a first order upwind finite-volume scheme. After dis-
cretization, computing the stationary solution (4) amounts to solving the eigen-
vector problem Mρ = ρ, where M ∈ Rn×n is a Markov matrix approximating
the differential operator of the Fokker–Planck equation. To ensure uniqueness
and improve conditioning, we apply the teleportation regularization scheme from
Google’s PageRank algorithm to the Markov matrix [5]. When the computation
of θ 7→ ρ(θ) is achieved by solving (4), the gradient of (3) can be seamlessly com-
puted using the adjoint-state method, making the proposed approach of invariant-
measure based system identification compatible with large-scale parameterizations
of the velocity [7].

While we observe many benefits when using the invariant measure to model the
underlying dynamics, an outstanding challenge related to the uniqueness of the
parameter recovery still remains. In particular, infinitely many distinct dynamical
systems can all share the same invariant measure, i.e., the map θ 7→ ρ(θ) may
not be injective. To address this difficulty, we instead propose studying the in-
variant measure in a new coordinate frame that introduces crucial time-dependent
data back into the modeling problem. Motivated by Takens’ seminal embedding
theory [6], we consider the delay-coordinate invariant measure

(5) µ̂
(m)
(y,T ) := Ψ

(m)
(y,T )#µ, Ψ

(m)
(y,T )(x) := (y(x), y(T (x)), . . . , y(Tm−1(x))),

where µ is an invariant measure of the discrete-time dynamical system T : Rd →
Rd, which one can regard as the time-∆t flow of some vector field. In (5), m is
the so-called embedding dimension, y : Rd → R is a smooth scalar observation
function, and # denotes the measure-theoretic pushforward operation.

While there can be no theoretical guarantee for unique recovery of the un-
derlying dynamical system when using the invariant measure, we show that the
delay-coordinate invariant measure (5) can in fact distinguish between large classes
of dynamical systems. We present two key results along this direction. First, we
show that equality of two delay-coordinate invariant measures implies topologi-
cal conjugacy of the underlying dynamical systems. Moreover, we go on to show
that under mild assumptions finitely many delay-coordinate invariant measures,
corresponding to different observation functions, can be used to uniquely identify
the dynamical system. These two theoretical results resolve a significant challenge
of non-uniqueness arising in the invariant measure-based system identification ap-
proach (3) and pave the way for novel computational approaches for performing
data-driven system identification.
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We showcase the effectiveness of our methodologies on a variety of dynamical
systems subject to challenging data assumptions, including the Lorenz-63 sys-
tem, the Van der Pol oscillator, Hall-effect thruster dynamics, and the Kuramoto–
Sivashinsky equation. Across these examples, we demonstrate that the invariant
measure is a valuable modeling tool for obtaining robustness against chaos, noise,
data-sparsity, and slow sampling, when performing data-driven system identifica-
tion.
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The multiscale preconditioner for highly heterogeneous flow

Lina Zhao

(joint work with Shubin Fu, Eric Chung)

Subsurface fluid simulation through porous media has many practical applications,
such as reservoir simulation, nuclear water storage and underground water contam-
ination. In reservoir simulation, the media’s properties such as the permeability
and porosity have significant influence on the flow behaviors. These properties
usually vary several orders of magnitude and have complicated multiscale struc-
tures. To accurately capture these properties, it is quite necessary to develop
robust and efficient precondiitoner.

Consider the following steady state single-phase incompressible flow in a mixed
formulation:

κ−1v +∇p = 0 in Ω,

∇ · v = f in Ω,

v · n = 0 on ∂Ω,

(1)
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where Ω ⊂ Rd, d = 2, 3 is the computational domain and n is the unit outward
normal vector of the boundary of Ω, the source function f satisfies

´

Ω
f = 0, κ is

a scalar permeability field of the porous media.
Let TH be a usual shape regular, conforming partition of Ω into quadrilaterals

or tetrahedrons Ki with diameter Hi so that Ω = ∪N
i=1Ki, where N is the number

of coarse elements. We further partition each coarse element Ki into a finer mesh
with mesh size hi. Let Th = ∪N

i=1Th(Ki) be the union of all these partitions, which
is a fine mesh partition of the domain Ω. We use Fh to represent the union of all
the edges of Th and use F0

h to denote the union of all the interior edges.
Let Vh ⊂ H(div,Ω) and Qh ⊂ L2(Ω) represent the lowest-order Raviart-

Thomas finite element spaces with respect to the prescribed triangulation Th for
the approximation of (1). Then, the discrete formulation for (1) reads as follows:
Find (vh, ph) ∈ V 0

h ×Qh such that
ˆ

Ω

κ−1vh ·wh −
ˆ

Ω

∇ ·whph = 0, ∀wh ∈ V 0
h ,

−
ˆ

Ω

∇ · vhqh = −
ˆ

Ω

fqh, ∀qh ∈ Qh,

(2)

where V 0
h := {v ∈ Vh : v · n = 0 on ∂Ω}.

The above system can be written in terms of matrix representations as
[
M BT

B 0

] [
vh

ph

]
=

[
0
F

]
.

If we use the trapezoidal rule to compute
´

Ω κ
−1φiφj , then M will become a diag-

onal matrix (cf. [1]) and thus can be inverted easily. Therefore we can eliminate
vh in (2) and obtain (

BM−1BT
)
ph = F,

where BM−1BT is a symmetric and semi-positive definite matrix.
Generalized multiscale space based two-grid preconditioner. The local snapshot

W i,snap
I is simply the restriction of Qh to Ki, i.e., W

i
I = Qh(Ki). In each coarse

element Ki, we solve the following spectral problem in the snapshot spaceW i,snap:

(3) ai(p, w) = λsi(p, w) ∀w ∈ W i,snap,

where ai(p, w) and si(p, w) are defined as

ai(p, w) =
∑

e∈Fh(Ki)

κ̃e[p][w] and si(p, w) =

ˆ

Ki

κpw,

where [·] is the jump operator. Here Fh(Ki) denotes the union of all the fine-grid
edges that lies inside the coarse element Ki. In addition, κ̃e := 2/(κ−1

1 + κ−1
2 ) is

the harmonic average of κ1 and κ2 with κi, i = 1, 2 being the permeability κ on
the fine-grid elements τ1 and τ2, respectively. After (3) are solved numerically, we
sort the eigenvalues in a increasing order, that is,

λi1 ≤ λi2 ≤ · · · ≤ λiMi,snap ,
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Algorithm 1 Two-grid preconditioner for solving (BM−1BT )x = F
Given initial guess x0, do
1: x1 = x0 + S

(
F − (BM−1BT )x0

)
{ Pre-smoothing, S is a smoother}

2: r1 = R
(
F − (BM−1BT )x1

)
{Compute coarse grid residual}

Solve
(
R(BM−1BT )RT

)
xc = r1 {Coarse grid correction}

x2 = x1 +RTxc {Project coarse grid correction to fine grid}
3: x3 = x2 + S

(
F − (BM−1BT )x2

)
{ Post-smoothing, S is a smoother}

Table 1. An illustration of the two-grid preconditioner

where λil is the l-th smallest eigenvalue for each coarse element Ki. Denote the

eigenvectors corresponding to λil as ζ
i
l = (ζilj)

Mi,snap

j=1 with ζilj being the jth compo-

nent of the discrete eigenvector ζil . Then we select the first Li eigenfunctions whose
eigenvalues are less than a preset value δ to form the local generalized multiscale
(GMs) space. Specifically, the generalized multiscale functions can be constructed
as

(4) Ψi,GMs
l =

Mi,snap∑

j=1

ζiljΨ
i,snap
j , l = 1, 2, · · · , Li.

Then the global GMs space is defined by

QGMs = span{Ψi,GMs
l : 1 ≤ l ≤ Li, 1 ≤ i ≤ N}.

Let R be the restriction matrix composed by all multiscale bases, i.e., R = [Ψ1;
Ψ2; · · · ; ΨMGms ], then RT is the projection matrix. The proposed two-grid pre-
conditioner consists of two components, i.e., a smoother to remove high-frequency
errors and a coarse preconditioner to exchange global information. With the re-
striction matrix R and projection matrix RT , we summarize the main steps of our
two-grid preconditioner in Algorithm 1.

Analysis. The key is to show the smoothing property and the approximation
property. We construct the interpolation operator IH : Qh → QGMs, which is
defined by

IHq =

N∑

i=1

Li∑

l=1

(ˆ

Ki

κqΨi,GMs
l dx

)
Ψi,GMs

l ∀q ∈ Qh,

where Ψi,GMs
l is defined in (4). For an arbitrary K ∈ TH , then there exists a

positive constant C1 independent of the meshsize and κ such that
ˆ

Ω

κ(q − IHq)
2 dx ≤ C1

1

λA
a(q, q) ∀q ∈ Qh,

where C1 > 1.
We define the Galerkin projection P0 : Qh → QGMs satisfying

a(P0q, χ) = a(q, χ) ∀q ∈ Qh, ∀χ ∈ QGMs.



1114 Oberwolfach Report 22/2025

Let a(·, ·) be the bilinear form of the reduced system, then we have

a((I − P0)K1p,K1p) ≤ (1− 1

C1
)a(K1p, p)

≤ (1− 1

C1
)a(p, p) ∀p ∈ Qh.

We can define the error propagation operator for the two-grid algorithm by

E1 = K1(I − P0 + E0P0)K1.

Moreover, we let

‖E1‖A := sup
q∈Qh

a(E1q, q)

a(q, q)
.

Then the following estimate is satisfied (cf. [2])

‖E1‖A ≤ (1− η)‖E0‖A + η,

where η = 1− 1
C1

. Therefore, it holds ‖E0‖A < 1 implies that ‖E1‖A < 1.
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Integral Representations of Sobolev Spaces via ReLUk Activation
Function and Optimal Error Estimates for Linearized Networks

Xinliang Liu

(joint work with Tong Mao, Jinchao Xu)

This paper presents two main theoretical results concerning shallow neural net-
works with ReLUk activation functions. We establish a novel integral represen-

tation for Sobolev spaces, showing that every function in H d+2k+1
2 (Ω) can be ex-

pressed as an L2-weighted integral of ReLUk ridge functions over the unit sphere.
This result mirrors the known representation of Barron spaces and highlights a
fundamental connection between Sobolev regularity and neural network represen-
tations. Moreover, we prove that linearized shallow networks–constructed by fixed
inner parameters and optimizing only the linear coefficients–achieve optimal ap-

proximation rates O(n− 1
2−

2k+1
2d ) in Sobolev spaces.
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1. Introduction

The following shallow neural networks function class serves as a fundamental build-
ing block of artificial intelligence technology:

Σσ
n =





n∑

j=1

cjσ(θj · x̃) : cj ∈ R, θj ∈ R
d+1



 ,

Among various activation functions, the Rectified Linear Unit (ReLU) has emerged
as the dominant choice in modern deep learning. In this paper, we focus on ReLU
activation function, ReLU(x) = max(0, x), and its variants, σk(x) = ReLUk(x) (k
is a nonnegative integer). Due to the homogeneity of σk, we assume the parameters

lie on the unit sphere Sd. The corresponding function class of shallow ReLUk

neural networks, denoted by Σk
n = Σσk

n , is then

Σk
n =





n∑

j=1

cjσk(θj · x̃) : cj ∈ R, θj ∈ S
d



 ,

where x̃ =

(
x

1

)
and θj =

(
wj

bj

)
. To ensure encodability and numerical stability, it

is essential to impose restrictions on the size of the parameters in a neural network.
Consequently, given a parameter M , which essentially determines the complexity
of the function class, the stable shallow neural network function class is defined as

(1) Σk
n,M =



f ∈ Σk

n :

n∑

j=1

|cj | ≤M



 .

In the early works, qualitative convergence has been extensively investigated
since the 1990s (see, e.g., [1, 2]).

1.1. Shallow neural networks, Barron spaces and Sobolev spaces. Given
an activation function σ : R → R and G ⊂ Rd+1, we denote the dictionary

Dσ := {±σ(θ · x̃) : θ ∈ G} ,
and the L2-closure of its convex hull B1 := conv(Dσ). We denote the Barron space
Bσ(Ω) as follows:

Bσ(Ω) := {f ∈ L2(Ω) : ‖f‖Bσ(Ω) <∞},
where

‖f‖Bσ(Ω) = inf {t > 0 : f ∈ tB1} .
In particular, when σ = σk, we take G = Sd as σk is homogeneous. In this case,

we denote

Bk(Ω) = Bσk(Ω).

The Barron spaces can be characterized by some qualitative approximation prop-
erty of the following compact subset of the (ReLUk) neural networks (1) in [4, 3].
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In this paper, we establish an approximation rate of O(n− r
d ) for functions in

the Sobolev space Hr(Ω) under the condition that these parameters are well-
distributed on Sd.

Definition 1 (Well-distributed and quasi-uniform). Let d ∈ N, a set of points
{θ∗j }nj=1 ⊂ Sd is said to be well-distributed if

(2) max
θ∈Sd

min
1≤j≤n

ρ(θ, θ∗j ) . n− 1
d ,

Moreover, a well-distributed collection {θ∗j }nj=1 is said to be quasi-uniform if

max
θ∈Sd

min
1≤j≤n

ρ(θ, θ∗j ) . min
i6=j

ρ(θ∗i , θ
∗
j ).

The corresponding constants are independent of n.

1.2. Main results. We now present the main results of this paper. The first the-
orem focuses on analyzing the approximation properties of the ReLUk activation
function with predetermined parameters {θ∗j }nj=1.

Theorem 1. Let d, n ∈ N, k ∈ N0, Ω ⊂ Rd be a bounded domain with Lipschitz

boundary, and {θ∗j}nj=1 ⊂ Sd. Then for any f ∈ H d+2k+1
2 (Ω), with some

M ≃ ‖f‖
H

d+2k+1
2 (Ω)

,

inf
fn∈Lk

n,M

∥∥f − fn
∥∥
L2(Ω)

. h
d+2k+1

2 ‖f‖
H

d+2k+1
2 (Ω)

.

where

h = max
θ∈Sd

min
1≤j≤n

ρ(θ, θ∗j ).

More generally, let r ≤ d+2k+1
2 and s ≤ min{k, r}. Then for any f ∈ Hr(Ω), with

some M ≃ h−
d+2k+1−2r

2 ‖f‖Hr(Ω),

inf
fn∈Lk

n,M

∥∥f − fn
∥∥
Hs(Ω)

. hr−s ‖f‖Hr(Ω) .

If the collection {θ∗j}nj=1 ⊂ Sd is well-distributed, then for any f ∈ H d+2k+1
2 (Ω),

with some M ≃ ‖f‖
H

d+2k+1
2 (Ω)

, we have

inf
fn∈Lk

n,M

∥∥f − fn
∥∥
L2(Ω)

. n− 1
2−

2k+1
2d ‖f‖

H
d+2k+1

2 (Ω)
.

All the corresponding constants are independent of n, {θ∗j }nj=1, and f .

Interestingly, it leads to an important function space embedding result, previ-
ously established in [5]:

H d+2k+1
2 (Ω) →֒ Bk(Ω),

Corollary 1 (Theorem 1. [5]). Let k, d,Ω be as in (2), then there is the continuous
embedding

H d+2k+1
2 (Ω) →֒ Bk(Ω).
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Proof. Let f ∈ H d+2k+1
2 (Ω) and fn ∈ Lk

n,M be the approximants of f in Theorem
1. Then

fn ∈ Lk
n,M ⊂ Σk

n,M .

Notice that lim
n→∞

‖fn − f‖L2(Ω) = 0 implies

f = lim
n→∞

fn ⊂
∞⋃

n=1

Σk
n,M =Mconv(Dσk

).

It means
‖f‖Bk(Ω) ≤M . ‖f‖

H
d+2k+1

2 (Ω)
.

�
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A quantum gradient descent algorithm for optimizing Gaussian
Process models using hierarchical matrices

Junpeng Hu

(joint work with Shi Jin, Jinglai Li, Lei Zhang)

Gaussian Process Regression (GPR) is a nonparametric supervised learning
method, widely valued for its abilit to quantify uncertainty. Despite its advantages
and broad applications, classical GPR implementations face significant scalability
challenges, as they involve matrix operations with a cubic complexity in relation
to the dataset size. This computational challenge is further compounded by the
demand of optimizing the Gaussian Process model over its hyperparameters, ren-
dering the total computational cost prohibitive for data intensive problems. To
address this issue, we propose a quantum gradient descent algorithm to optimize
the Gaussian Process model.

The hyperparameters play an important role in determining the flexibility, ex-
pressiveness of the kernel (covariance) function, and overall performance of the
GP model. As such an essential step in GPR is to optimize the covariance kernel
with respect to these hyperparameters, and this is often done by a maximum like-
lihood estimation approach to ensure the kernel accurately models the underlying
data. We assume a general covariance function kθ, parameterized by a vector
of hyperparameters θ. Given training points (X,y), We shall find the optimal
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values for θ by maximizing the marginal likelihood p(y|X, θ) – it is called “mar-
ginal” likelihood because it is considered to be obtained by marginalizing the joint
distribution p(f∗,y) over f∗. It can be found that the logarithm of the marginal
likelihood (LML), a more convenient form for optimization, is given by:

(1) log p(y|X, θ) = −1

2
y⊤K−1y − 1

2
log |K| − N

2
log 2π,

where K = Kf + σ2
nI is the covariance matrix of the noisy observations y, and

Kf = K(X,X). The gradient of LML can be formally derived as,

(2)
∂

∂θj
log p(y|X, θ) = 1

2
y⊤K−1 ∂K

∂θj
K−1y − 1

2
tr

(
K−1∂K

∂θj

)
,

for j = 1, ...d (assuming θ is d-dimensional). One can see from Eq (2), the compu-
tational complexity for evaluating the LML derivatives is the same (i.e. O(N3))
as evaluating LML itself (Eq. (1)), which is primarily determined by inverting the
N ×N matrix K.

To work on a quantum computer, we must first construct a block-encoding of
the matrix K, which must be unitary, as quantum computers operate only through
unitary transformations (i.e., quantum gates). The general complexity of block-
encoding a matrix A is O(s ‖A‖max), where s represents the sparsity and ‖·‖max

represents the max norm. To reduce this cost, we adopt the method proposed in
[2]. Specifically, we decomposeK into a hierarchical structure of admissible blocks,
where each block corresponds to a pair of clusters whose separation exceeds the
sum of their radii:

K =

L∑

l=2

K(l) +Kad.

Assuming the kernel function exhibits polynomial decay, each admissible block–
being a dense matrix with elementwise decay–is block-encoded via a two-step ap-
proach: first using the standard procedure for dense matrices, followed by the
procedure for block-sparse matrices. Summing across all hierarchical levels yields
a complete block-encoding of K. The total complexity of the encoding is given by

α = 3 + 3

L∑

l=2

2(L−l)(1−p),

where p denotes the decay rate. When p ≥ 1, the overall complexity becomes
polylog(N).

Provided with the oracles Oy, OK and OdK , several quantum linear system
solvers can be employed to obtain a block encoding of K−1, such as QSVT and
HHL. In this context, we define the procedure as an oracle OK−1 . To calculate
the derivative of LML, we first reformulate it into:

∂

∂θj
log p(y|X, θ) = 1

2
y⊤K−1 ∂K

∂θj
K−1y − 1

2
tr

(
K−1∂K

∂θj

)

=
1

2
y⊤K−1 ∂K

∂θj
K−1y − 1

2

∑

j∈[2n]

e⊤j K
−1 ∂K

∂θj
ej
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The quantum states are defined as

|ỹl〉 =
1

Nl
ỹl =

∑

j∈[2n]

1

Nl
|0〉i1 |j〉i2 |j〉w +

‖y‖
Nl

|1〉i1 |0
n〉i2 |y〉w ,

|ỹr〉 =
1

Nr
ỹr =

∑

j∈[2n]

−C0

Nr
|0〉i1 |j〉i2 |j〉w +

‖y‖
Nr

|1〉i1 |0
n〉i2 |y〉w ,

where the subscripts i1, i2 indicate ‘index register’, w indicates ‘work register’,
and Nl, Nr are the normalization factors. The initial states are prepared as

|ϕl〉 = |ỹl〉
∣∣0a+1

〉
a1

∣∣0a+1
〉
a2

∣∣0b
〉
b
|θ〉 , |ϕr〉 = |ỹr〉

∣∣0a+1
〉
a1

∣∣0a+1
〉
a2

∣∣0b
〉
b
|θ〉 ,

where a1, a2 and b indicate ‘ancilla register’ used for the oracles. The unitary
operator is defined as

U = [OK−1 ]w,a2,θ
[OdK ]w,b,θ [OK−1 ]

i1
w,a1,θ

,

where the subscript denotes the target register and the superscript denotes the
control register. Finally it can be verified that

〈ϕl|U |ϕr〉 =
2C2

0

NlNr

∂

∂θ
log p(y|X, θ),

which implies that the derivative of the log marginal likelihood (LML) can be
computed through the inner product 〈ϕl|U |ϕr〉. This quantity is subsequently es-
timated using the Hadamard test, enhanced by quantum phase estimation (QPE)
for improved efficiency. In a standard gradient descent iteration, the design pa-
rameter θ is updated as,

θt+1 = θt − ηt
∂

∂θ
log p(y|X, θ)

= θt −
ηtNlNr

2C2
0

〈ϕl|U |ϕr〉

= θt −
µt

2C2
0

〈ϕl|U |ϕr〉 ,

where ηt is the step size and µt = ηtNlNr. Since θ = O(1), ηt should be chosen
small enough to satisfy µt = O(1).

The overall complexity of the method across multiple iteration steps, as stated
in the following corollary.

Corollary 1. Given sparse accesses to the s-sparse kernel matrix K = Kf + σ2
NI

and its derivative dK
dθ , the (s, log2(s) + 1)-block-encodings OK and OdK can be

constructed. The proposed quantum gradient descent method for T ≥ 0 steps
prepares a solution |θT 〉 to final accuracy ε′ in cost

Õ
(
sT (1 + C2)

Tµpolylog(N)/δσ6
Nε

′
)
,

with some logarithmic terms ignored. When K is a dense kernel matrix with
polynomial decay, the cost is

Õ
(
T (1 + C2)

Tµκpolylog(N)/δσ6
Nε

′
)
,
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The entire gradient descent procedure is embedded within the quantum circuit.
By incorporating recent advancements in quantum linear algebra algorithms, and
through rigorous runtime and error analyses, our method achieves an exponential
speedup in computing the gradients of the log marginal likelihood. This approach
markedly enhances the scalability of Gaussian Process Regression (GPR) model
optimization, rendering it computationally tractable for large-scale problems.
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Quantum Multilevel Preconditioning

Matthias Deiml

(joint work with Daniel Peterseim)

Quantum computers can provide exponential speed-ups in many applications of
computational mathematics. One exciting area where this might be possible is
the numerical solution of partial differential equations (PDEs). In particular,
the analysis of [1] concluded that certain elliptic PDEs could be solved up to an
error of ε > 0 in time almost linear in ε−1 independent of the spatial dimen-
sion d ∈ N, whereas classical computers require ε−d operations in general. This,
however, requires preconditioning of the linear system of equations resulting from
discretization of the PDE, which is addressed in our work [2].

As a prototypical example, we consider the steady-state diffusion equation

(1) − div(A∇u) = f,

in a bounded domain D ⊂ Rd, along with homogeneous Dirichlet boundary condi-
tions u = 0 on ∂D. This equation has been the focus of many previous efforts. The
high dimensionality of the domain D or the multiscale features encoded in the dif-
fusion coefficient A can make numerical methods on classical computers extremely
expensive, but quantum algorithms have the potential to solve this problem. Ex-
isting quantum algorithms for this class of problems include Schrödingerization
[4, 5] where (1) is transformed into a Schrödinger equation, which can be solved
efficiently on a quantum computer. Another popular strategy, as discussed, for
example, in [6, 7], is finite element or finite difference discretization, followed by
the use of a quantum linear system solver. However, either approach suffers from
the condition number of the system, which is of order h−2 where h > 0 is the
mesh width. In the absence of strong regularity assumptions, the mesh size is
at best proportional to the error tolerance ε, leading to a conditioning-induced
multiplicative factor in the computational complexity of order ε−2 and a total
runtime of order ε−3. Note that this can be even worse for very rough coefficients
in multiscale problems.
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Figure 1. Results of a model problem with varying numbers of
solver steps J with simulated noise, as well as real hardware (×).

We follow the approach of a typical finite element discretization, specifically
using d-linear finite elements, followed by the application of a quantum linear
system solver. This allows us to use the vast amount of existing literature on
preconditioning of finite element systems. Within the context of linear computa-
tions on quantum hardware, we find that block encodings [10] are a useful tool of
abstraction: the state of a quantum computer can be represented by a C-linear
combination of the classical states |0〉, . . . , |2n−1〉 where n is the number of qubits
in the machine. Any operation or program of the computer is then determined
by a unitary matrix acting on this state space, and we aim to encode the stiffness
matrix of our problem within a block of this unitary, thus the name block encoding.

The resulting block encoding can then be passed to a quantum linear system
solver. These solvers have an asymptotically optimal runtime of O(γ̃κ log ε−1),
which matches the characteristics of classical Krylov solvers up to the factor γ̃
called subnormalization. Here we run into a problem. The multiplication oper-
ation of a stiffness matrix S and preconditioner P leads to an encoding with a
subnormalization of γ̃P ·S ≥ min{κ(S), κ(P )}. Since the condition of S can only
be improved if the condition number of P is large, specifically κ(PS) ≥ κ(S)/κ(P ),
this proves that the runtime of the linear solver is not improved by this multiplica-
tive preconditioning.

We instead resort to assembling S in an already preconditioned basis. For this
we use the well-known BPX preconditioner [8] along with the machinery of frames
[9]. The condition of the resulting matrix is then independent of h; however,
it might scale exponentially with the dimension d. Still, this shows asymptotic
quantum advantage for solving PDEs even for dimension d = 2, whereas previous
methods are faster only for d ≥ 4.

For details we refer to the [2], in which the full preconditioned quantum FEM
algorithm and its analysis are presented. We have also tested our method on a
model problem with 15 degrees. Figure 1 shows computational results on simulated
and real hardware building on and extending the ones in [2, Sec. 7.1], specifically
the IBM quantum computers ibm fez and ibm marrakesh (with two-qubit gate
errors of 7 · 10−3 and 3 · 10−3 respectively). These results suggest that the next
generation of machines will be able to accurately solve our model problem. More
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significant speedups are expected for high-dimensional problems, particularly in
settings where A includes randomness with short correlation length, which is the
subject of our current work in progress. Additionally, we are addressing nonlinear
problems in [3].

Acknowledgment. This work is part of a project that has received funding from
the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (Grant agreement No. 865751 – RandomMul-
tiScales).
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Dissipative solutions of compressible flows: multiscale viewpoint

Mária Lukáčová-Medviďová

(joint work with Eduard Feireisl)

In this talk we have reviewed recent results on generalized solutions of compressible
flows, the so-called dissipative solutions, putting the focus on their multiscale
features. The dissipative solutions are obtained as a limit of suitable structure-
preserving, consistent and stable numerical schemes [1, 2, 3]. Roughly speaking,
dissipative solutions satisfy the weak formulation of the underlying PDE system,
say the Euler equations of gas dynamics, modulo defect measures. Dissipative
solutions are the observable quantities (the density, momentum and the entropy)
and can be seen as coarse-grained quantities. In fact, they are the expected values
with the respect to the underlying Young measure, the space-time parameterized
probability measure. Fine scale oscillations are governed by the defect measures
arising in the momentum equation and the energy balance.
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In the case that the strong solution to the above equations exists, the dissipative
solutions coincide with the strong solution on its life span [1].

If the consistent approximations only converge weakly and not strongly, the
limit is not a weak solution. This means the defects are nonzero. We can apply a
newly developed concept of K-convergence and prove the strong convergence of the
empirical means of numerical solutions to the observable quantities, the dissipative
solution [4], [5].

We have also discussed a relation between numerical approximations of oscil-
latory solutions and the Dafermos criterion on maximization of the entropy pro-
duction. Indeed, if we select a dissipative solution that is maximal with respect to
the entropy production rate, then the defects vanish. Consequently, the selected
solution is a weak solution. On the other hand, if solutions are oscillatory nu-
merical simulations with standard structure-preserving numerical methods yield
truly dissipative solutions with nonzero defects. In our recent work [6] we have
formulated the following conjecture:

Conjecture: If a numerical scheme converges to a weak solution of the Euler
system, the limit is a maximal computable dissipative solution. If the same nu-
merical scheme is oscillatory, the maximal (computable) dissipative solution does
not exist.

Theoretical results were illustrated by a series of numerical simulations.
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A multilevel Monte Carlo method for the Dean-Kawasaki equation
from fluctuating hydrodynamics

Julian Fischer

(joint work with Federico Cornalba)

Many PDE models in continuum mechanics arise as the continuum limit of an
interacting particle system. On microscopic scales, thermal fluctuations due to
the finite number of particles may become important, leading to a breakdown
of the deterministic continuum description. Fluctuating hydrodynamics [12, 13]
provides a framework to incorporate thermal fluctuations in continuum models via
an SPDE approach, substantially enhancing the regime of validity of continuum
models.

The Dean-Kawasaki equation [5, 10]

∂tρ = 1
2∆ρ+N−1/2∇ ·

(√
ρξ
)

(1)

is one of the most basic equations of fluctuating hydrodynamics, describing den-
sity fluctuations in a system of N ≫ 1 independent diffusing particles. Here,
ρ(x, t) ≥ 0 denotes the particle density and ξ denotes vector-valued space-time
white noise. Like many SPDEs from fluctuating hydrodynamics, it has suffered
from a lack of a rigorous mathematical justification: In its formulation (1), it is a
highly singular SPDE that is not renormalizable by regularity structures or para-
controlled calculus. For smooth initial data ρ0, it has even been shown to not
admit any martingale solutions [11]. In recent years, it has been understood that
SPDEs of fluctuating hydrodynamics typically require a regularization to become
meaningful; we refer to [1, 3, 4, 7] for the Dean-Kawasaki equation and to [6] and
[8] for analogues in the case of the symmetric simple exclusion process respectively
the zero range process.

In the recent works [1, 3], the Dean-Kawasaki equation (1) and its version for
weakly interacting particles ∂tρ = 1

2∆ρ+∇ · (ρ(∇V ∗ ρ)) +N−1/2∇ · (√ρξ) have
found a justification as a “recipe for coarse-graining” of the underlying particle
dynamics: Formal discretizations of the Dean-Kawasaki equation have been shown
to accurately predict statistical properties of density fluctuations in the underlying
interacting particle system, up to a numerical error. These results are valid in the
regime of a large number of particles per grid cell, i. e. as long as the numerical
discretization is indeed an attempt at coarse-graining of the particle system.

In particular, under the aforementioned assumption statistical quantities like
E[(N1/2

´

Td(ρh(·, T )−E[ρh(·, T )])η dx)p] (where ρh denotes the solution to a suit-
able discretization of (1), p ≥ 2 is an integer, and η is a sufficiently smooth
test function) approximate the corresponding quantity for the particle system
E[(N1/2

´

Td η d(µ(·, T )−E[µ(·, T )]))p] (where µ is the empirical measure), up to a
numerical error.

Building on ideas from the analysis in [1, 3], in [2] we have proposed and an-
alyzed a multilevel Monte Carlo method [9] for the Dean-Kawsaki equation (1).
Employing a central finite difference discretization on a family of uniformly spaced
grids Gℓ := {0, hℓ, 2hℓ, . . . , 1− hℓ}d ⊂ Td with hℓ := 2−ℓ and an Euler-Maruyama
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scheme for discretization in time with ∆tℓ := h2ℓ , the scheme for a single level ℓ
reads

ρt+∆tℓ
ℓ − ρtℓ

∆tℓ
= ∆hℓ

ρtℓ +∇hℓ
·
(√

ρtℓξ
t
ℓ

)
.

Here, the discrete white noise ξtℓ : Gℓ → R corresponds to the rescaled increments

ξtℓ(x) := h
−d/2
ℓ (βℓ

x(t+∆t)− βℓ
x(t)) of independent Brownian motions (βℓ

x)x∈Gℓ
.

To achieve a variance reduction in the multilevel Monte Carlo scheme, an ef-
fective coupling between the noises ξtℓ and ξtℓ+1 is needed. In [2] we propose and
analyze two coupling schemes, one being the nearest-neighbor coupling in space

ξtℓ(x) :=
∑

y∈{0,1}d

∑

k∈{0,1,2,3}

ξ
t+k∆tℓ+1

ℓ+1 (x+ hℓ+1y)

and another coupling scheme defined in terms of spatial Fourier modes.

Figure 1. A solution to the discretized Dean-Kawasaki equa-
tion (1) for a coarse spatial discretization (left) and for a fine
spatial discretization (right). One clearly observes an increase in
strength of the fluctuations on finer grids, leading to an even-
tual breakdown of positivity of solutions on even finer grids. This
illustrates the origin of the N -dependent lower bound on the dis-
cretization parameter h required in [1, 2, 3].

We then prove the following result for our multilevel Monte Carlo method [2]:
Suppose that we aim to approximate a statistical quantity of the particle system
like E[(N1/2

´

Td η d(µ(·, T )− E[µ(·, T )]))p] for an integer p ≥ 2 and a smooth test
function η (where again µ denotes the empirical measure), up to a mean-square
error ε2 > 0. In the regime of large particle numbers Nεd+2 ≥ 1, the multilevel
Monte Carlo method for the Dean-Kawasaki equation achieves this approximation
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at a computational cost of

CMLMC ≤





ε−2−d/2 for the nearest-neighbor coupling,

ε−2 for the Fourier coupling in d = 1,

ε−2| log ε|2 for the Fourier coupling in d = 2,

ε−1−d/2 for the Fourier coupling in d ≥ 3.

Note that a standard Monte Carlo method based on the same discretization has a
cost of order ε−3−d/2.
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Identification of subwavelength microstructural information from
macroscopic boundary measurements in elastodynamics

Malte A. Peter

(joint work with Tanja Lochner)

For durability assessment of structures in use, which have a microstructure, e.g.
building structures such as concrete bridges, it is of vital importance to obtain
information about the condition of the microstructure, e.g. thinning of reinforce-
ments due to corrosion or the existence of (microscopic) cracks. On the other
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hand, measurements of quantities allowing conclusions about the state of the mi-
crostructure can typically only be obtained macroscopically and at the surface
of the structure. We derive a method for the identification of the geometry of
the microstructure, from probing with macroscopic (long) waves, having in mind
that the wavelength regime is much larger than the characteristic length of the
microstructure. This has the potential of monitoring the structure while in use.
The idea is to exploit the macroscopic anisotropy induced by the microstructure to
identify microscopic geometrical information, in order to draw conclusions about
the state of the structure.

In mathematical terms, we present an inverse homogenisation method for lin-
early elastic wave propagation allowing the identification of parametrised mi-
crostructural geometrical parameters from macroscopic surface displacement data.
The derived inverse homogenisation method relies on constraining the parameter-
identification technique using mappings from fine-scale parameters to effective pa-
rameters obtained by (forward) homogenisation.

The results on the inverse problem are derived under the assumption that the
periodicity cell Y ⊂ R3 consists of two solids and we investigate the minimisation
problem

(1) argmin
τ∈K

J (τ) :=
1

2
‖u[τ ]− um‖2[L2(S×∂Ω)]3

where the parameter vector τ ∈ K, K ⊂ RN compact, parameterises the geometry
of the microstructure, u[τ ] : S × Ω → R3 is the spatio-temporal displacement
field for a given τ and um is the time evolution of the displacement measured on
∂Ω = ΓD∪̇ΓN.

The displacement field satisfies the upscaled linear elastodynamics problem,
which is given by






∂t(MY (ρ)∂tu)− div(Ahome(u)) = f in S × Ω,

u = 0 on S × ΓD,

Ahome(u)n = g on S × ΓN,

and appropriate initial conditions, where the linearised strain tensor e(u) is the
symmetric gradient of the displacement field, i.e.

e(u) :=
1

2
(∇u+ (∇u)T )

and Ahom = (Ahom
ijkl )1≤i,j,k,l≤3 given by

Ahom
ijkl (x) =

1

|Y |

ˆ

Y

B(x, y)eij(ekl − ey(w
kl)(x, y)) dy

for a.e. x ∈ Ω describes the elastic properties of the homogenised material, where
B is the unfolded elasticity tensor (before homogenisation) and the ekl constitute
the canonical basis of symmetric matrices. The functions wkl, k, l ∈ {1, 2, 3}, are
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the unique solutions in [L∞(Ω, H1
per,0(Y ))]3 of the cell problems

ˆ

Y

B(x, y)
(
ey(w

kl)(x, y)− ekl
)
ey(v)(y) dy = 0

for all v ∈ [H1
per,0(Y )]3, where the subscript “per, 0” denotes periodicity and van-

ishing mean. Moreover,

MY (ρ) :=
1

|Y |

ˆ

Y

ρ(x, y) dx

is the local average of the (unfolded) density. The derivation of this upscaled sys-
tem of equations from the classic linear elastodyamics problem follows by standard
periodic homogenisation techniques, see e.g. [1]. In particular, for given data, the
solution u[τ ] is uniquely determined.

In the talk, based on [2, 3], we present a method for finding the structure of the
unit cell for given f, g and some measured data um. For this purpose, we define
the linear and continuous input–output operator

Lτ : [L2(S × Ω)]3 ×H1(S; [L2(ΓN)]
3) → [L2(S × ∂Ω)]3

with (f, g) 7→ u[τ ]|∂Ω, where u[τ ] is the solution of the homogenised problem above
for given τ . We then consider the inverse problem of finding τ ∈ K such that for
given measured data um ∈ [L2(∂Ω)]3, when forces (f, g) are applied, τ is the
solution of the minimisation problem (1).

We prove the existence of at least one solution of the inverse homogenisation
problem. Furthermore, to facilitate the use of gradient-based algorithms, we derive
the Gâteaux derivative of the functional of the inverse problem making use of shape
calculus, where the Gâteaux derivative of the homogenised tensor is computed
based on the Lagrangian method of Céa, see [4]. Moreover, we present some
numerical experiments for ellipsoidal microstructures showcasing the functioning
of the method and showing its robustness with respect to noise.
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Finite element approximation of Fokker–Planck–Kolmogorov
equations with application to numerical homogenization

Timo Sprekeler

(joint work with Endre Süli, Zhiwen Zhang)

In the introductory part of the talk, we consider periodic homogenization of the
prototypical elliptic nondivergence-form problem

−A
( ·
ε

)
: D2uε = f in Ω, uε = g on ∂Ω,(1)

posed on a bounded convex domain Ω ⊂ R
n, and with a discontinuous diffusion

coefficient A ∈ L∞
per(Y ;Rn×n

sym ) satisfying the Cordes condition. Here, Y := (0, 1)n.
We present a convergence result for the sequence of strong solutions (uε)ε>0 of
(1) to the solution u of an effective constant-coefficient problem, and we discuss
corrector bounds as well as optimal convergence rates. See [1, 2] for more details.
In particular, the effective diffusion matrix A :=

´

Y
Ar can be obtained from an

invariant measure r ∈ L2
per(Y ), that is, the solution to a stationary Fokker–Planck–

Kolmogorov (FPK) equation on Y subject to periodic boundary conditions and a
unit integral constraint.

In the main part of the talk, we study the well-posedness and the finite ele-
ment approximation of “very weak” solutions r ∈ L2

per(Y ) to the stationary FPK
problem

−D2 : (Ar) +∇ · (br) = 0 in Y, r is Y -periodic,

ˆ

Y

r = 1,(2)

where the pair of coefficients (A, b) ∈ L∞
per(Y ;Rn×n

sym )× L∞
per(Y ;Rn) is assumed to

satisfy the Cordes-type condition

∃ δ ∈ (δ0, 1] :
|A|2 + |b|2
(tr(A))2

≤ 1

n− 1 + δ
a.e.

with δ0 := 0 if ‖b‖L∞(Y ) = 0, and δ0 := 1
1+4π2 otherwise. Here, |A|2 := A : A.

The coefficient b in (2) arises in periodic homogenization when the nondivergence-
form operator in (1) is modified to include a large drift term 1

εb(
·
ε ) · ∇. We show

existence and uniqueness of a very weak solution r ∈ L2
per(Y ) to the FPK problem

(2), and that the solution is given by

r = C
tr(A)

|A|2 + |b|2 (1−∆ψ)

for some constant C > 0 and some function ψ that solves a Lax–Milgram-type
problem in H2

per,0(Y ) (subscript 0 denotes zero mean). Using a mixed approach
with a (curl, curl)L2 -type stabilization, we will see that ∆ψ = ∇ · ρ with ρ being
the solution of a Lax–Milgram-type problem in H1

per,0(Y ;Rn). This allows for

approximating r via an H1-conforming finite element approximation of ρ. See [3]
for more details.

Finally, we conclude the talk with some remarks regarding ongoing work on
time-dependent FPK problems.
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Robust multiscale methods for the Helmholtz equations in highly
heterogeneous media

Eric Chung

(joint work with Xingguang Jin, Changqing Ye)

We consider the following Helmholtz equation for heterogeneous media in the
bounded space domain Ω ⊂ Rd where d = 2 or 3:

(1)





−∇ · (A∇u)− k2u =f in Ω,

u =0 on ΓD,

A∇u · n− iku =0 on ΓR,

where Γ = ΓD ∪ ΓN ∪ ΓR is a Lipschitz continuous boundary where ΓD,ΓN ,ΓR

represents the Dirichlet, Neumann and Robin boundary conditions respectively, n
is the unit outward normal vector to the boundary, k ∈ R is a positive wavenumber,
f ∈ L2(Ω) represents a harmonic source, i denotes the imaginary unit and the
scalar diffusion coefficient A is a piecewise constant with respect to a quadrilateral
background mesh Tε with mesh size O(ε) and 0 < ε < 1. On each quadrilateral,
A takes either the value ε2 or 1.

The aim of this paper is to explore an efficient method to solve Heterogeneous
Helmholtz problems by using the novel multiscale model reduction skills coming
from CEM-GMsFEM, which beyond the need of periodic coefficients or other re-
quirements of the coefficients structures. In the analysis section, we establish a
resolution condition and build the inf-sup condition of both global problem and
multiscale problem to secure their well-posedness. Subsequently, the exponential
decay properties of basis functions are demonstrated, and ultimately, we obtain
the error estimate of our multiscale method with the desired the convergence rate.
For the first time, we present the evidence supporting of the convergence of CEM-
GMsFEM for the Helmholtz equations in heterogeneous media. The numerical
simulation section displays the three experiments correspond to three kinds of me-
dia, which supports the effectiveness of CEM-GMsFEM and the pollution effect
is resolved by using the coarser mesh size to achieve the quasi-optimal conver-
gence. We evaluate the relative error of the CEM-GMsFEM method with respect
to different coarse mesh sizes and different oversampling layers. The oversampling
layers refer to additional layers of elements or degrees of freedom surrounding the
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coarse mesh, which capture the fine-scale details and improve the accuracy of the
approximation. The results of the experiments indicate that the relative errors
are influenced by the choice of oversampling layers, which distinguishes the CEM-
GMsFEM method from traditional FEM. This suggests that the oversampling
layers play a significant role in capturing the fine-scale information and reducing
the approximation error. We also compare the relative errors obtained with dif-
ferent oversampling layer configurations to demonstrate the impact of these layers
on the accuracy of the method.

By highlighting the influence of oversampling layers on the relative errors, we
emphasize the advantage of the CEM-GMsFEM method over traditional FEM in
capturing fine-scale information and improving the accuracy of the solution. This
finding further supports the effectiveness and efficiency of the proposed method in
solving Helmholtz equations in heterogeneous domains.

In the following, we use Vms and V ∗
ms as the new test space and trial space

of Petrov-Galerkin method to find the approximated solution, namely, we find
ums ∈ Vms such that

(2) B(ums, v) = (f, v), ∀v ∈ V ∗
ms.

We proved the following theorem.

Theorem 1. Let u be the solution of the problem (1) and ums be the solution of
the multiscale problem (2). Then we have

‖u− ums‖a ≤ 1

ε0
√
Λ
‖f‖s−1 +C(Λ)

√
Colβ

m/2(m+1)d/2(Cinv‖uglo‖a + ‖πuglo‖s).
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Multiscale Spectral Finite Element Methods: Optimal Spectral
Approximation in the Overlaps

Robert Scheichl

(joint work with Christian Alber, Peter Bastian, Moritz Hauck)

Multiscale Spectral Generalized Finite Element Methods (MS-GFEM) [2, 7, 6, 5]
are powerful tools for approximating solutions to general variational problems that
satisfy a G̊arding-type inequality, including strongly non-Hermitian or indefinite
problems. The construction of optimal approximation spaces is localised and re-
quires no a priori regularity assumptions on the solution or on the coefficients.
The global approximation error is controlled by the local errors, which are rigor-
ously shown to decay nearly exponentially. The optimality hinges on a singular
value decomposition of the local restriction operator in a suitable, coefficient-
dependent inner product on an oversampled patch. Compactness of this operator
in the space of a-harmonic functions guarantees spectral accuracy akin to the Weyl
asymptotics for the Laplace eigenvalues. As such, MS-GFEM can be seen as an
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Figure 1. Subdomain ωi with oversampling region ω∗
i (left);

overlap Ri with neighbours and oversampling region R∗
i (right).

‘hp-version’ of Localized Orthogonal Decomposition [8]. Within the generalized FE
framework, the optimal local approximation spaces can be used for multiscale dis-
cretisation, with links to localized model order reduction method [3]. They can
also be used as the coarse space in an overlapping Schwarz preconditioner [9].

However, the construction of the local approximation spaces requires the so-
lution of local eigenproblems, which typically dominate the overall cost of the
method, even though they are completely independent and can be solved in paral-
lel without communication. But unless the coarse space is reused multiple times,
e.g. in a nonlinear iteration, for multiple right hand sides or for uncertainty quan-
tification, the high cost can make the method less attractive than alternatives.

In [1], we significantly improve the efficiency of the approach for elliptic prob-
lems, by restricting the eigenproblems to the vicinity of the overlap while still being
able to rigorously prove the nearly exponential decay of the local approximation
error. Using ideas in [4], we define a restriction operator to a ring around the sub-
domain overlap, as shown in Fig. 1, and then solve a modified eigenproblem which
provides the best n-dimensional subspace of all a-harmonic functions on this ring.
By a-harmonically extending this subspace to the interior of the subdomain we
can compute a novel MS-GFEM space. For small overlap and small oversampling
the construction is up to 8× cheaper than the optimal MS-GFEM space and still
converges with the same nearly exponential rate.

Theoretical results. To give some details, let us consider the model problem

a(u, v) = (f, v)L2(Ω) ∀ v ∈ H1
0 (Ω),(1)

with a(u, v) =

ˆ

Ω

A(x)∇u · ∇v dx.

where Ω ⊂ R
d, d = 2, 3, is bounded and Lipschitz. The only regularity assumptions

we make is that f ∈ L2(Ω) and A ∈ L∞(Ω) is a coercive tensor with eigenvalues
bounded between αmin > 0 and αmax <∞, uniformly over x ∈ Ω.

To define the MS-GFEM we consider an overlapping partition {ω∗
i }Mi=1 of Ω such

that each x ∈ Ω belongs to at most κ ∈ N subdomains, as well as a partition of
unity (PoU) {χi}Mi=1 ⊂W 1,∞(Ω) with supp(χi) =: ωi ⊂ ω∗

i with overlap width δi
and ‖∇χi‖ = O(δ−1

i ). Given local approximation spaces Sni(ωi) ⊂ H1(ωi) of
dimension ni ∈ N, the global MS-GFEM approximation un ∈ Sn(Ω) ⊂ H1

0 (Ω)
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to (1) is sought in the n =
∑

i ni dimensional generalized FE subspace

Sn(Ω) :=
{∑

i
χiφi : φi ∈ Sni(ωi)

}
.

such that a(un, vn) = (f, vn)L2(Ω) for all vn ∈ Sn(Ω). The following is shown in [7].

Theorem 1 (Global MS-GFEM error). Let ‖v‖a,ω∗

i
:= aω∗

i
(v, v) and aω∗

i
(·, ·) be

the bilinear form restricted to ω∗
i . Suppose there are functions φi ∈ Sni(ωi) with

‖χi(u − φi)‖a,ω∗

i
≤ εi‖u‖a,ω∗

i
, for i = 1, · · · ,M.

Then

‖u− un‖a ≤ κ
(
maxi εi

)
‖u‖a.

To find the optimal ni-dimensional subspace Sni(ωi), which minimises εi, let
ψi ∈ H1

0 (ω
∗
i ) be the local solution with artificial homogeneous Dirichlet conditions

on ∂ω∗
i , i.e. aω∗

i
(ψi, v) = (f, v)L2(ω∗

i )
for all v ∈ H1

0 (ω
∗
i ). Then u|ω∗

i
− ψi is a-

harmonic on ω∗
i . The key observation in [7] is that the restriction of a function on

ω∗
i by multiplication with the PoU function χi to a function in H1

0 (ωi) is compact
as an operator from the space of a-harmonic functions Ha(ω

∗
i ) to H

1
0 (ωi). Using

classical approximation theory for compact linear operators and a suitably defined
Kolmogorov n-width we arrive in [7] at the following local approximation result.

Theorem 2 (Optimal local approximation). Let ψi be as defined above and let

(2) Sni(ωi) := span
{
ψi|ωi , v1|ωi , · · · , vni−1|ωi

}
,

where vk denotes the eigenfunction belonging to the kth smallest eigenvalue λk of

(3) aω∗

i
(χiv, χiϕ) = λaω∗

i
(v, ϕ), ∀ϕ ∈ Ha(ω

∗
i ).

Then, there exists a φi ∈ Sni(ωi) such that ‖χi(u− φi)‖a,ω∗

i
≤ λ

1/2
ni ‖u‖a,ω∗

i
.

In [1], we show that we can replace ωi and ω∗
i with Ri and R∗

i (see Fig. 1).
We define a new cut-of-function χR

i := χi − χ◦
i by partitioning ωi into Ri and

a suitable chosen interior subdomain ω◦
i , such that {χR

i , χ
◦
i }Mi=1 is still a PoU

satisfying similar conditions as the original PoU. Exploiting the compactness of the
new restriction operator leads again to a local approximation result [1, Thm. 5.1].

Theorem 3 (Optimal local approximation on the overlaps). Let vRk be the eigen-
function belonging to the kth smallest eigenvalue λRk of the new eigenproblem

(4) aR∗

i
(χR

i v, χ
R
i ϕ) = λR aR∗

i
(v, ϕ), ∀ϕ ∈ Ha(R

∗
i ).

Furthermore, we define vk ∈ Ha(ω
∗
i ) by setting vk = vRK on ω∗

i \ω◦
i and by extending

vRk |∂ω◦

i
a-harmonically to the interior ω◦

i of ω∗
i . Then, with Sni(ωi) as defined

in (2), there exists a φi ∈ Sni(ωi) such that ‖χi(u− φi)‖a,ω∗

i
≤

(
λRni

)1/2 ‖u‖a,ω∗

i
.

Using the same arguments as in [5] based on Weyl asymptotics, we show an
analogous nearly exponential convergence result for the local error in [1, Thm. 5.3].
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Theorem 4 (Subexponential decay of eigenvalues). Assume that Ri and R
∗
i are

concentric rings with dist(Ri, ∂R
∗
i ) ≥ δ∗i > 0. There exist constants Cd,δ∗i

, cd,δ∗i > 0
and n0 ∈ N (explicit) such that

λRni
≤ Cd,δ∗i

e
−cd,δ∗

i
n
1/d
i ∀ni ≥ n0.

Similar results to Theorems 3–4 can also be proved for more general boundary
conditions, other elliptic PDEs or fully discrete MS-GFEM restricted to the over-
laps, following [6, 5]. The results also carry over to the analysis of MS-GFEM as
a coarse spaces within a restricted additive Schwarz (RAS) preconditioner [9].

Numerical results. Within an iterative method the number of iterations with
the new MS-GFEM coarse space are almost identical to those with the original
MS-GFEM [1, Table 1 & 2]. But due to the simpler connectivity pattern of the
resulting matrices and (to a lesser degree) also their size, the eigenproblems in (4)
can be solved much faster than (3), up to 8× for an example on a 3D cubic domain
[1, Fig. 7.3]. However, even though the subexponential convergence rate in general
is the same, roughly 2× as many eigenfunctions are required to achieve the same
approximation error [1, Fig. 7.2].
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[8] A. Målqvist, D. Peterseim, Localization of elliptic multiscale problems, Math. Comp. 83

(2014), 2583–2603.
[9] A. Strehlow, C. Ma, R. Scheichl, Fast-convergent two-level restricted additive Schwarz meth-

ods based on optimal local approximation spaces, arXiv:2408.16282 (2024).



Computational Multiscale Methods 1135

On Edge Multiscale Space based Hybrid Schwarz Preconditioner for
Helmholtz Problems with Large Wavenumbers

Guanglian Li

(joint work with Shubin Fu, Shihua Gong, Yueqi Wang)

We develop a novel hybrid Schwarz method, termed as edge multiscale space based
hybrid Schwarz (EMs-HS), for solving the Helmholtz problem with large wavenum-
bers. The problem is discretized using H1-conforming nodal finite element meth-
ods on meshes of size h decreasing faster than k−1 such that the discretization
error remains bounded as the wavenumber k increases. EMs-HS consists of a one-
level Schwarz preconditioner (RAS-imp) and a coarse solver in a multiplicative
way. The RAS-imp preconditioner solves local problems on overlapping subdo-
mains with impedance boundary conditions in parallel, and combines the local
solutions using partition of unity. The coarse space is an edge multiscale space
proposed in [2]. The key idea is to first establish a local splitting of the solution
over each subdomain by a local bubble part and local Helmholtz harmonic exten-
sion part, and then to derive a global splitting by means of the partition of unity.
This facilitates representing the solution as the sum of a global bubble part and a
global Helmholtz harmonic extension part.

We prove that the EMs-HS preconditioner leads to a convergent fixed-point
iteration uniformly for large wavenumbers, by rigorously analyzing the approxi-
mation properties of the coarse space to the global Helmholtz harmonic extension
part and to the solution of the adjoint problem. Distinctly, the theoretical con-
vergence analysis are valid in two extreme cases: using minimal overlapping size
among subdomains (of order h), or using coarse spaces of optimal dimension (of
magnitude kd, where d is the spatial dimension). We provide extensive numeri-
cal results on the sharpness of the theoretical findings and also demonstrate the
method on challenging heterogeneous models. The development of a coarse prob-
lem with dimension grows only linearly with respect to the wavenumber k is beyond
this current work.
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A higher-order localized orthogonal decomposition strategy

Roland Maier

In this contribution, we discuss the extension of the localized orthogonal decompo-
sition (LOD) method (see, e.g., [6, 1]) to a higher-order multiscale method, making
use of key properties of the LOD approach and adopting ideas from the technique
known as gamblets, cf. [7].
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Elliptic multiscale problem. First, we consider an elliptic setting in weak form.
In a Lipschitz domain Ω ⊂ Rd, d = 1, 2, 3, we seek the solution u ∈ H1

0 (Ω) to

(1) a(u, v) :=

ˆ

Ω

A∇u · ∇v dx =

ˆ

Ω

fv dx =: (f, v)L2(Ω)

for all v ∈ H1
0 (Ω). Here, A ∈ L∞(Ω) denotes a rough and potentially strongly

varying diffusion coefficient that is bounded from above and below by positive
constants and f is a given right-hand side. It is well-known that classical finite
element methods perform poorly for such problems if the scale on which A varies is
not sufficiently resolved. To overcome this issue, many multiscale strategies have
been developed and we aim at constructing a multiscale approach that achieves
higher-order convergence rates under minimal regularity assumptions.

The main ingredient to derive a higher-order multiscale method is the defini-
tion of appropriate coarse-scale quantities that a discrete solution should preserve.
More precisely, we aim at constructing a discrete space ṼH ⊂ H1

0 (Ω) such that

the Galerkin approximation ũH ∈ ṼH to (1) fulfills ΠũH = Πu, where u is the
unique solution to (1) and Π: L2(Ω) → VH the L2-projection into a discontinu-
ous piecewise polynomial space VH . For simplicial meshes TH with coarse mesh
size H , the space VH is given by piecewise polynomials of total degree p, whereas
piecewise polynomials of partial degree p are considered if the mesh elements are
d-rectangles. Moreover, we want to have that dim(ṼH) = dim(VH). If the above
conditions are satisfied, we directly calculate using the Galerkin orthogonality

(2)

‖∇(u− ũH)‖2L2(Ω) . a(u− ũH , u− ũH) = a(u, u− ũH)

= (f, u− ũH)L2(Ω)

= (f −Πf, (u − ũH)−Π(u− ũH))L2(Ω).

With classical approximation results of the L2-projection, we can estimate

‖(u− ũH)−Π(u− ũH)‖L2(Ω) . H‖∇(u− ũH)‖L2(Ω)

and
‖f −Πf‖L2(Ω) . Hp+1|f |Hp+1(TH)

provided that f is (piecewise) regular enough. Therefore, we obtain an error bound
of the form

(3) ‖∇(u− ũH)‖L2(Ω) . Hp+2|f |Hp+1(TH).

That is, we achieve higher orders of convergence from (piecewise) regularity of
the right-hand side only. In particular, we do not need the coefficient A or the
solution u to fulfill higher-order regularity assumptions. Nonetheless, the error
estimate (3) is only useful if we are able to construct the space ṼH with the desired

properties explicitly. It turns out that ṼH can be built with the basis functions

Λ̃j = argminv∈H1
0 (Ω) : Πv=Λj

a(v, v),

where {Λj}j is a basis of VH . Practically, these basis functions are approximated
in a fine finite element space and their computation is restricted to local patches
due to favorable decay properties, see [5] for details. Moreover, the method can
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be formulated in the framework of the LOD, which is particularly useful to obtain
improved localization results, cf. [2].

Parabolic multiscale problem. As a second step, we apply the higher-order
approach to time-dependent problems. For simplicity, we restrict ourselves to an
idealized setting, excluding aspects regarding localization and fine-scale discretiza-
tion. Exemplary, we consider a parabolic problem that seeks u ∈ L2(0, T ;H1

0 (Ω))∩
H1(0, T ;H−1(Ω)) such that

(4) (u̇, v)L2(Ω) + a(u, v) = (f, v)L2(Ω)

for almost all t ∈ (0, T ] and all v ∈ H1
0 (Ω) with an appropriate right-hand side f

and a rough and potentially strongly varying coefficient A as before. Unfortu-
nately, the space ṼH constructed above turns out to not be a suitable approxi-
mation space for the spatial discretization of (4). This is related to the fact that
the estimate derived in (2) is tailored to the elliptic case. That is, even for the a-

orthogonal projection of u at any time t into the space ṼH we obtain a suboptimal
rate of order two only. This has been observed in [4] for the wave equation, but the
same observations can be made for the parabolic problem (4) as well. To illustrate

the issue, let P : H1
0 (Ω) → ṼH be the a-orthogonal projection onto ṼH . Further,

we note that v−Pv ∈ W := ker(Π|H1
0 (Ω)) for any v ∈ H1

0 (Ω) and a(ṼH ,W ) = {0}
by construction. Then for any time t (omitting the explicit time dependence in
the following estimates), we have analogously to (2)

(5)

‖∇(u− Pu)‖2L2(Ω) . a(u− Pu, u− Pu) = a(u, u− Pu)
= (f, u− Pu)L2(Ω) − (u̇, u− Pu)L2(Ω)

= (f −Πf, (u− Pu)−Π(u − Pu))L2(Ω)

− (u̇ −Πu̇, (u− Pu)−Π(u− Pu))L2(Ω).

The last line in (5) now leads to suboptimal rates, as spatial regularity of u̇ beyond
H1(Ω) cannot be expected in the general case where A ∈ L∞(Ω). In particular,
the argument to derive higher orders in (2) is not fully applicable. To still retain

optimal rates, we require an appropriate enrichment of the space ṼH . To this end,
we define the operator D : L2(Ω) →W by

a(Dv, w) = (v, w)L2(Ω)

for all w ∈ W . One can show that replacing Pu by Pu − Du̇ in (5) cancels
the problematic term on the right-hand side. That is, optimal rates in the sense
of (3) can be obtained. These observations motivate the use of ṼH ∪ DṼH as
an enriched multiscale space for the spatial discretization of (4). This essentially

corresponds to an approximation of u̇ in the discrete space ṼH , which appears to
be reasonable. However, choosing ṼH ∪ DṼH as the spatial discretization space
combined with a suitable time-stepping scheme does not remove the reduced rates
completely. Instead, one obtains that the reduced rates are now of order four
and the relevant threshold where reduced rates are observed is lowered as well.
Practically, this is sufficient as the threshold is small enough to not be problematic.
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From a theoretical point of view, one can extend the above argument and further
enrich the space with D2ṼH , D3ṼH , etc. until the convergence rate of order p+ 2
is retained.

A thorough theoretical analysis of this idea (including a suitable localization
strategy) and a set of numerical experiments will be presented and discussed in [3].
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Super-localized numerical homogenization

Moritz Hauck

(joint work with Philip Freese, Tim Keil, Daniel Peterseim)

On a polygonal Lipschitz domain Ω ⊂ Rd, d ∈ {1, 2, 3}, we consider the prototyp-
ical elliptic multiscale problem − div(A∇u) = f subject to homogeneous Dirichlet
boundary conditions, with a coefficient A ∈ L∞(Ω) such that α ≤ A(x) ≤ β for
all x ∈ Ω and a source term f ∈ L2(Ω). No additional structural assumptions are
imposed on the coefficient; in particular, smoothness, periodicity, and scale sepa-
ration are not required. This report, which is based on the works [1, 2], presents a
numerical homogenization method for the considered elliptic model problem that
achieves uniformly optimal approximation rates, regardless of the roughness of the
coefficient. For this, the method utilizes problem-adapted basis functions whose
supports grow mildly with the desired accuracy. Specifically, to obtain an ap-
proximation error of O(H), the diameter of the supports of the basis functions
practically need to be increased as O(H | logH |(d−1)/d). This represents a sig-
nificant improvement over the best-known localization results for the Localized
Orthogonal Decomposition (LOD) method [3], which require supports of diameter
O(H | logH |). Other notable methods that also achieve optimal approximation
rates independent of coefficient regularity include, e.g., the AL basis [4] and gen-
eralized finite element methods [5, 6], which yield qualitatively similar results.
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1. Optimal operator-dependent approximation

The weak formulation of the elliptic model problem is based on the bilinear
form a(u, v) :=

´

Ω(A∇u) · ∇v dx, which defines an inner product on the Sobolev

space H1
0 (Ω) with induced norm ‖ · ‖2a := a(·, ·). For any f ∈ L2(Ω), the unique

weak solution u ∈ H1
0 (Ω) satisfies a(u, v) = (f, v)L2 for all v ∈ H1

0 (Ω), and we
denote by A−1 : L2(Ω) → H1

0 (Ω) the corresponding solution operator. To con-
struct optimal approximation spaces, we introduce a coarse mesh TH over Ω,
which typically does not resolve the fine-scale variations of A. The space is given
by VH := A−1P0(TH), where P0(TH) denotes the space of TH -piecewise constant
functions. The discrete solution operator A−1

H : L2(Ω) → VH , which we define as
the Galerkin projection onto VH , satisfies the error bound

(1) sup
f∈L2(Ω)

‖A−1f −A−1
H f‖a

‖f‖L2

≤ α−1/2π−1H ;

see, e.g., [1, Lem. 3.2]. On the contrary, classical finite elements would require
H2-regularity of the solution, typically unavailable for rough coefficients.

2. Novel localization strategy

The canonical basis functions {A−11K :K ∈TH} of the operator-adapted space VH
are inherently non-local, with only algebraic decay. As a result, their direct lo-
calization introduces large errors, rendering this naive method computationally
impractical. To address this, we introduce a novel localization strategy that se-
lects TH -piecewise constant source terms yielding rapidly decaying (or even local)
responses under the solution operator A−1. Given an element K ∈ TH and over-
sampling parameter ℓ ∈ N, we denote by ωK,ℓ the patch of ℓ coarse layers aroundK.
The associated ideal basis function ϕK,ℓ ∈ VH is defined as ϕK,ℓ := A−1gK,ℓ with
gK,ℓ ∈ P0(TH ∩ ωK,ℓ) to be determined. A localized approximation of it is ob-

tained by applying the localized solution operator A−1
K,ℓ : L

2(ωK,ℓ) → H1
0 (ωK,ℓ),

giving ϕloc
K,ℓ := A−1

K,ℓg. Although ϕ
loc
K,ℓ in general is a poor approximation to ϕK,ℓ, a

suitable choice of gK,ℓ yields a highly accurate approximation in the energy norm.
To characterize such a gK,ℓ, we introduce the trace operator γK,ℓ : H

1(ωK,ℓ) →
H1/2(∂ωK,ℓ) and its right inverse γ−1

K,ℓ : H
1/2(∂ωK,ℓ) → H1(ωK,ℓ), given by the

A-harmonic extension. Using the definition of ϕK,ℓ, the A-harmonic extension
property, and the locality of gK,ℓ, we obtain, for all v ∈ H1

0 (Ω), the key identity

a(ϕK,ℓ − ϕloc
K,ℓ, v) = (gK,ℓ, v)L2(ωK,ℓ) − aωK,ℓ

(ϕloc
K,ℓ, v) = (gK,ℓ, γ

−1
K,ℓγK,ℓv)L2(ωK,ℓ).

It shows that the localization error is characterized by the L2-orthogonality of gK,ℓ

to the space Y := im γ−1
K,ℓ of A-harmonic functions on ωK,ℓ, i.e.,

(2) gK,ℓ ∈ argmin
q∈P0(TH∩ωK,ℓ) : ‖q‖L2(ωK,ℓ)

=1

sup
v∈Y : ‖v‖H1(ωK,ℓ)

=1

(q, v)L2(ωK,ℓ)
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represents an optimal choice of the local source term. The function gK,ℓ can
be computed via a (random) singular value decomposition of the L2-projection
operator onto piecewise constants, restricted to Y . The corresponding localization
error, which is the minimal value associated with gK,ℓ in (2), is denoted by σK,ℓ.

3. Super-localized orthogonal decomposition

The localized approximation space of the proposed method, referred to as the
super-localized orthogonal decomposition (SLOD), is defined by

VH,ℓ := span{ϕloc
K,ℓ : K ∈ TH}

with associated Galerkin projection A−1
H,ℓ : L

2(Ω) → VH,ℓ. To estimate the approx-
imation error, we define the maximal localization error as σ := maxK∈TH σK,ℓ. A
key assumption to ensure the stability of the method is that {gK,ℓ : K ∈ TH}
forms a Riesz basis of P0(TH). That is, there exists a constant Crb > 0, depending
algebraically on H and ℓ, such that, for all (cK)K∈TH , it holds that

(3) C−1
st

∑

K∈TH

c2K ≤
∥∥∥∥

∑

K∈TH

cKgK,ℓ

∥∥∥∥
2

L2

≤ Cst

∑

K∈TH

c2K ,

where we recall that the local source terms gK,ℓ are L
2-normalized by construction.

In [1, Thm. 6.1] we proved the following error estimate for the localized method

sup
f∈L2(Ω)

‖A−1f −A−1
H,ℓf‖a

‖f‖L2

≤ C
(
H + C

1/2
st (H, ℓ)ℓd/2σ(H, ℓ)

)
,

where the first term on the right-hand side is the error of the ideal method given
in (1). The second term on the right-hand side, denoted by ε, decays rapidly
with increasing oversampling parameter ℓ. Numerical experiments in Figure 1 for
d ∈ {2, 3} suggest a super-exponential decay of the form exp(−cℓd/(d−1)), which
appears linear under the chosen axis scaling. In contrast, classical LOD methods
exhibit only exponential decay and significantly larger errors. While a rigorous
proof of this super-exponential behavior remains open, classical LOD arguments
guarantee at least exponential decay of σ; see [1, Lem. 6.4]. Regarding the stability
constant Cst, we have proposed an algorithm that ensures a robust selection of the
local source terms in the sense of (3) which works for a wide range of multiscale
problems. However, numerical experiments in [2, Sec. 7] reveal its failure in cases
with high-contrast channeled coefficients. To address this, we have introduced a
method combining the present approach with partition of unity techniques. It
retains the super-localization properties and achieves LOD-like error estimates
without requiring Riesz stability of the basis; see [2, Thm. 5.3 & Thm. 6.1].
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Figure 1. Decay of ε in two (left) and three (right) spatial di-
mensions. The dashed lines indicate the respective LOD errors
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Multicontinuum homogenization and applications

Yalchin Efendiev

(joint work with Wing T. Leung)

Many problems in nature have complex multiscale nature and high contrast. Their
numerical solutions pose significant challenges due to resolving scales and contrast
via subgrid models. Many approaches are developed to account for subgrid effects.
These approaches, e.g., [3, 6, 4, 5, 9, 1, 8] include the construction of multiscale
basis functions that are supported in domain larger than the target coarse block.
Among these approaches, the CEM-GMsFEM [5] is related to the multicontinuum
approach presented here.

Multicontinuum homogenization is formally introduced in [7, 2]. In this method,
several macroscopic variables at each macroscale point are defined and the result-
ing multicontinuum equations are formulated. The main idea of multicontinuum
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approach is to develop macroscopic models using smoothly varying macroscopic
variables. The derivation of multicontinuum approach consists of several main
parts. In the first part, we propose a general expansion, where the solution is ex-
pressed via the product of multiple macro variables and associated cell problems.
The second part consists of formulating the cell problems. The cell problems are
formulated as saddle point problems with constraints for each continua. Defining
the continua via test functions, we set the constraints as an integral representation.
Finally, substituting the expansion to the original system, we obtain multicontin-
uum systems.

The motivation for the derivation comes from previously developed approaches
such as GMsFEM, NLMC, CEM-GMsFEM. If we denote U to consist of all macro-
scopic variables and ΠCEM is a projection of macroscopic variables, then

ΠCEM (u) ≈ ΠCEM (ψiUi).

If we consider Ui are smooth and ΠCEM to be local, then we further obtain

ΠCEM (u) ≈ ΠCEM (ψi1Ui(x
∗
0) + ψi(x− x∗0) · ∇Ui(x

0))

≈ ΠCEM (ψi1)Ui(x
∗
0) + ΠCEM (ψi(x− x∗0)) · ∇Ui(x

∗
0)

= φiUi(x
∗
0) + φmi ∂mUi(x

∗
0),

in the region near x∗0 where φi := ΠCEM (ψi1) and φ
m
i := (ΠCEM (ψi(x− x∗0)))m.

Multicontinuum homogenization is applied for different problems, where new
macroscopic models are derived. In the talk, we discussed an example of poroe-
lastic problem consisting of coupled flow and mechanics problems. We derive the
corresponding multicontinuum displacement and pressure equations using multi-
continuum expansions. As a result, we obtain a general multicontinuum poroe-
lasticity model for an arbitrary number of continua, which generalizes existing
multinetwork poroelasticity models.

One of our goals with the proposed approach is to derive multicontinuum mod-
els for complex nonlinear problems, such as two-phase flow and so on, where con-
tinua evolves according to some physical laws. The main idea is to use dynamic
multicontinua concept, where one of the unknowns define the multicontinua. A
simple example consists of flow and transport, −∇ · (λ(c)∇p) = q, ct + v∇c = 0,
v = −λ(c)∇p. The problem is set up such that the concentration defines continua
(which is smooth), e.g., ith continua is defined when the value of concentration
belongs to a certain interval. With this definition of the continua, we can derive
new macroscopic models, where microscale heterogeneities are hidden in macro-
scopic variables. Using dynamic multicontinua concept, we plan to derive various
models that are not been known before.

References

[1] R. Altmann, P. Henning, D. Peterseim, Numerical homogenization beyond scale separation,
Acta Numer. 30 (2021), 1–86.

[2] E. Chung, Y. Efendiev, J. Galvis, W. T. Leung, Multicontinuum homogenization. general
theory and applications, J. Comput. Phys. 510 (2024), 112980.



Computational Multiscale Methods 1143

[3] E. Chung, Y. Efendiev, T. Y. Hou, Adaptive multiscale model reduction with generalized
multiscale finite element methods, J. Comput. Phys. 320 (2016), 69–95.

[4] E. Chung, Y. Efendiev, T. Y. Hou, Multiscale Model Reduction, Springer, 2023.

[5] E. T. Chung, Y. Efendiev, W. T. Leung, Constraint energy minimizing generalized multi-
scale finite element method, Comput. Methods Appl. Mech. Engrg. 339 (2018), 298–319.

[6] Y. Efendiev, J. Galvis, T. Y. Hou, Generalized multiscale finite element methods (gmsfem),
J. Comput. Phys. 251 (2013), 116–135.

[7] Y. Efendiev, W. T. Leung, Multicontinuum homogenization and its relation to nonlocal
multicontinuum theories, J. Comput. Phys. 474 (2023), 111761.
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Randomized Multiscale Methods for Heterogeneous Nonlinear PDEs

Kathrin Smetana

(joint work with Charles Beall, Tommaso Taddei, Marissa Whitby, Zhiyu Yin)

For linear elliptic problems it was shown e.g., in [1, 12, 18] that the local ansatz
basis functions for multiscale methods can be chosen as the leading left singular
vectors of a linear compact so called transfer operator that acts on the space of all
local solutions of the partial differential equation (PDE). This operator maps arbi-
trary functions on the boundary of an oversampling domain that is strictly larger
than the target subdomain for which we wish to construct our multiscale ansatz
space, to the corresponding (local) solution of the PDE restricted to the target
subdomain. It can then be shown [1, 12, 14, 18] that these local ansatz spaces
are optimal in the sense of Kolmogorov [11] and minimize the local approximation
error among all spaces of the same dimension. Optimal local approximation spaces
for parabolic problems have been derived in [15, 16].

For nonlinear PDEs we also consider a transfer operator that maps arbitrary
admissible boundary data on the boundary of the oversampling domain to the re-
spective (local) solution on the target subdomain [19]. As the concept of optimality
used for linear PDEs is only defined for linear operators, we try to approximate
the set of all local solutions on the target subdomain. Interpreting the boundary
data as some input parameter, we can view this set of local solutions as a set of
solutions depending on a parameter. This motivates using methods from model
order reduction such as the proper orthogonal decomposition (POD) [9, 17] or
the Greedy algorithm [22] to approximate this set. As several results (see e.g.,
[4, 7, 9, 10]) show that these algorithms can provide a quasi-optimal approxima-
tion to this set, we can hope that this approach might lead to multiscale methods
that converge at a quasi-optimal rate.

However, both the POD and the Greedy algorithm rely on a training set of finite
cardinality that is chosen such that every point in the admissible parameter set is
close to a point in the training set. Therefore, both algorithms suffer from the curse
of dimensionality [2, 3] requiring a potentially computationally prohibitive large
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training set if the dimension of the parameter set is high. This is the case in our
setting as the dimension of the parameter set equals the dimension of the finite
element space on the boundary of the oversampling domain. We thus employ
randomization and consider the parameter (here: boundary data) as a random
variable with values in a Hilbert space. By choosing a suitable distribution we can
then exploit the concentration of measure phenomenon (see e.g., [13, 5]) that is also
sometimes called the “blessing of dimensionality” to break the curse. One example
of the concentration of measure phenomenon that we are using is that a Lipschitz
function of a standard Gaussian random vector has a sub-Gaussian distribution
(see e.g., [5]), meaning that the tails of the probability density function decay at
least as fast as that of the Gaussian, resulting in many favorable properties.

In [19] we suggested to use a randomized POD to construct the local multiscale
ansatz spaces for nonlinear elliptic problems. Here, we use (as usual) a Monte-
Carlo approximation of the correlation operator. Numerical results for a para-

Figure 1. Benchmark local ansatz

space is computed from global solu-

tions of problem.

metric nonlinear diffusion problem in Fig. 1
show an exponential convergence of the approx-
imation error for the randomized POD; for de-
tails on the test case see [19]. Moreover, we
derived an a priori error bound for the ran-
domized POD that shows that the expectation
of the projection error for the POD using the
Monte-Carlo approximation converges (nearly)
with the same rate as the eigenvalues of the
randomized POD which uses the exact correla-
tion operator (integral in the expectation) and
thus (quasi-)optimally; see [20] and references
therein. One drawback of the randomized POD is that it does not allow us to assess
whether the distribution of the random variable on the boundary of the oversam-
pling domain was chosen well enough. Therefore, we have also been investigating
a randomized Greedy algorithm.

We were able to derive a randomized Greedy algorithm that provides a certi-
fication for the whole parameter set rather than only for the parameters in the
training set, which, to the best of our knowledge, sets our result apart from existing
approaches. The basic idea of the Greedy algorithm [22] is that in each iteration
we search for the parameter in the training set whose corresponding solution is
worst approximated by the current reduced space. Having some way of measuring
the error or estimating it via an a posteriori error estimator is thus crucial. In our
setting, we face the problem that we cannot compute the projection error in the
standard norm as this would require us to compute the supremum of the error over
the whole parameter set, which is, except for very rare special cases, not possible.
As for linear problems [6, 8] we are thus trying to estimate the supremum norm
by the maximum over the evaluations of the error for certain parameter values
exploiting so-called Marcinkiewicz inequalities (see e.g., [21]).
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Numerical simulation of beam network models

Axel Målqvist

(joint work with Morgan Görtz, Moritz Hauck, Fredrik Hellman, Andreas Rupp)

Many applications in science and engineering involve geometrically complex struc-
tures composed of slender, effectively one-dimensional objects. A prominent exam-
ple is fiber-based materials [5], see Figure 1 for an illustration. For such problems,
resolving all microscopic details in a three-dimensional computer simulation is
computationally demanding. Therefore, it is appropriate to describe the geometry
by a spatial network represented by a graph G = (N , E) of nodes and edges which
is embedded into a domain Ω ⊂ R3. The resulting spatial network model then

Figure 1. Fiber network model of paper at the millimeter scale.

involves one-dimensional systems of ordinary differential equations on each edge,
coupled by algebraic constraints at the graph nodes. Here we considers the elastic
deformation of fiber-based materials, such as paper or cardboard, as a model prob-
lem. The spatial network underlying this problem is constructed as follows: Nodes
are placed at the intersections of fibers, and an edge connects two nodes if a fiber is
connecting them. Depending on the intersection area of the two fibers, additional
nodes and edges may be added to strengthen the connection between the fibers.
To obtain a spatial network model, we equip each edge with a Timoshenko beam
model, cf. [1], describing the elastic deformation of the corresponding fiber. On
each edge e in the network we solve

−C~n(∂x~ue +~ie × ~re) = ~ne, −C~m∂x~re = ~me,

∂x~ne = ~fe, ∂x ~me +~ie × ~ne = ~ge.

Here ~ue denotes centerline displacement, ~re is crosssection rotation, and ~ie is the
unit vector in the direction of the edge. The stresses resulting from normal and
shear forces are denoted ~ne and the moments resulting from torsion and bending
is denoted ~me. Material parameters are represented by the matrices C~n and C~m

and, finally, ~fe and ~ge denotes the distributed forces and moments.
A well-posed problem is obtained by enforcing the continuity of displacements

and rotations and the balance of forces and moments at the nodes of the spatial
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network. The displacements and rotations are prescribed in Dirichlet nodes and
balance conditions ensure an equilibrium of forces and moments at non-Dirichlet

nodes. This means that for concentrated forces and moments at the nodes ~fn, ~gn ∈
R3 it should hold that

−[[~neνe]]n = −~fn, −[[~meνe]]n = −~gn,
where [[·]]

n
is a sum over all values that are attained at n and νe = ±1 represents

the normal.
We propose a hybridizable discontinuous Galerkin (HDG) method to discretize

the spatial network model. The use of such discretization is motivated by the
study in [6], where the authors discretize diffusion-type problems on networks of
hypersurfaces. In the special case of graphs, the nodes at which the equations
are coupled are zero-dimensional objects, whence the spatial network problem
can be equivalently reformulated as a symmetric positive definite system of linear
equations posed on the network nodes. For such problems, an HDG discretization
can achieve arbitrary convergence orders without increasing the number of globally
coupled degrees of freedom. Following the paradigm of HDG methods that local
solves are essentially for free since the corresponding problems are small and they
can be solved in parallel, cf. [2], the proposed method can achieve arbitrary orders
of convergence at (almost) constant computational cost. We prove the following
a priori error bound for the HDG method, see [4]. The bar notation refers to the
quantities computed using the HDG method.

Theorem 1 (Convergence of HDG method). Suppose that for any edge e ∈ E it
holds that ~ue, ~re, ~ne, ~me ∈ Hp+1(e). Then, given a stabilization parameter which
scales like hs

e
for some s ∈ {−1, 0, 1}, the HDG approximation converges to the

solution of the Timoshenko beam network model with the error estimates
[∑

e∈E

[
‖~ue − ~̄ue‖2e + ‖~re − ~̄re‖2e

] ]1/2
≤ Chp+1−s+ ,

[∑

e∈E

[
‖~ne − ~̄ne‖2e + ‖~me − ~̄me‖2e

] ]1/2
≤ Chp+1−|s|,

where we denote s+ := max(s, 0).

Due to the complex geometry of the spatial network and possibly highly vary-
ing material coefficients, the linear system of equations obtained by the HDG
method is typically very poorly conditioned. Numerical experiments demonstrate
that standard black-box preconditioners, such as many algebraic multigrid variants
(see, e.g., the review article [7]), can typically not significantly speed up conver-
gence. This is because they do not sufficiently consider the underlying problem’s
geometry. To overcome these difficulties, this paper employs a preconditioner
based on the observation that the network can be treated essentially as a con-
tinuous object at sufficiently coarse scales. This allows one to place an artificial
coarse mesh over the network and use finite element techniques on this mesh to
introduce a two-level overlapping Schwarz preconditioner similar to [3]. We prove
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Figure 2. The network before (blue) and after (red) deformation
(left). Relative residual as a function of the iteration number for
constant (black) and realistic (orange) material parameters (right).

that the global system matrix is spectrally equivalent to an edge-length weighted
graph Laplacian (in each component). Under certain network connectivity as-
sumptions, this allows us to prove the uniform convergence of the corresponding
preconditioned conjugate gradient method.

Finally, we present numerical experiments where our methodology is applied to
a realistic example. We consider the elastic deformation of a 4 mm x 4 mm piece
of paper. The spatial network consists of about 615K edges and 424K nodes. We
consider the stretching of the paper caused by inhomogeneous Dirichlet boundary
conditions at nodes at the lateral boundary, see Figure 2 (left). We use a HDG
discretization with polynomial degree 5 and penalty 1 for all edges. The resulting
linear system of equations is then solved by the preconditioned conjugate gradient
method with the domain decomposition preconditioner. The results are presented
in Figure 2 (right). We detect rapid convergence both for constant (orange) and
realistic (black) constant material parameters.
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Localized implicit time stepping for the wave equation

Dietmar Gallistl

(joint work with Roland Maier)

The Crank–Nicolson discretization of the acoustic wave equation

∂2t u−∇ · (A∇u) = f

over a suitable domain Ω of Rd with right-hand side f and initial and boundary
conditions is an implicit scheme that involves solving the linear system

(1) (uk+1
h , vh)L2(Ω) +

τ2

4
(A∇uk+1

h , vh) = G(vh)

where τ is the time step size and uk+1
h is the discrete solution at time step k + 1,

while G is some linear functional involving data and the discrete solution from
prior time steps.

Figure 1. Values of the inverse system matrix of the Crank–
Nicolson scheme in two dimensions on a uniform and lexicograph-
ically ordered mesh with logarithmic color coding; mesh size (and
time step) h = τ = 2−4 (left) and h = τ = 2−6 (right).

The left-hand side of (1) is a discrete elliptic problem, whence the discrete
solution will have global support even if G is supported locally. Since the Crank–
Nicolson scheme is a convergent method, the finite propagation speed of the wave
equation suggests that the artificial amplitudes outside the cone of propagation
must be of negligible magnitude. This is illustrated in Figure 1, where the entries
of the inverse system matrix are displayed in logarithmic color coding. The obser-
vation that there is some exponential decay away from the diagonal can be made
rigorous. The result from [1] states that for data supported in a subset ω ⊆ Ω,
the estimate

|||un+1/2
h |||Ω\Nℓ(ω) ≤ (ℓ+ 1)n/2γℓ max

k≤n
|||uk+1/2

h ||| for all n, ℓ ∈ N
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holds. The norm |||·||| is the energy norm corresponding to the left-hand side of
(1) and Nℓ(ω) is the domain arising from adding ℓ layers of neighbouring elements
from the finite element triangulation to ω. The constant γ satisfies

0 < γ =
√
(Cτ,h + 1

2 )/(1 + Cτ,h) < 1

for some Cτ,h h βα−1(τ/h + h/τ), where α ≤ β are the positive lower and up-
per bounds of the diffusion coefficient A. This means that the solution decays,
exponentially in ℓ, away from the region ω where the sources are supported. The
proof of this result is inspired by techniques from [2, 3]. A conclusion of this result
is that, although the matrix inversion related to each time step of the implicit
scheme transports information globally over Ω, relevant information decays fast
and can be captured by solving a system over a smaller sub-domain, which implies
less computational cost. Global initial data and sources can be localized through a
partition of unity on some coarser spatial scale H and the discrete solution can be
defined by superposition of the solutions to local subproblems that can be solved in
parallel. After some reset time T , this procedure is then repeated. This procedure
involves the additional artificial scales T , H . The approach may be understood as
a domain decomposition strategy in space on successive coarse time intervals that
does neither require multiple iterations nor a sophisticated definition of boundary
conditions between the different sub-regions. It is proven in [1] that such a su-
perposition method produces an approximation that has an overall approximation
error comparable to that of the classical Crank–Nicolson, provided ℓ is chosen ap-
propriately, where the involved overhead is logarithmic compared to the natural
local domain occupied by the expanding wave until the local time horizon T .
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Offline-Online Approximation of Multiscale Eigenvalue Problems with
Random Defects

Dilini Kolombage

(joint work with Barbara Verfürth)

Multiscale materials, such as metamaterials, derive their unique mechanical, acous-
tic, or electromagnetic properties from finescale structural features. However, real
world manufacturing introduces random defects, leading to uncertain material be-
havior. This gives rise to elliptic eigenvalue problems with multiscale, randomly
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perturbed coefficients. Such problems arise in modeling the response of materi-
als and structures where randomness and finescale features are intertwined. The
presented material is based on the detailed manuscript [1].

We consider the variation elliptic eigenvalue problem: Find (λ, u) ∈ R×V such
that

a(u, v) = λm(u, v), ∀v ∈ V,

with a(u, v) =
´

Ω

A∇u · ∇vdx, and m(u, v) =
´

Ω
uvdx. The coefficient A is defined

such that A := A(x, ω) = Aε(x) + bp(x;ω)Bε(x), with Aε, Bε deterministic peri-
odic coefficients with periodic length ε, and bp a random Bernoulli perturbation
modeling random defect inclusions.

Standard finite element methods become computationally infeasible in this con-
text because they require extremely fine meshes to resolve the smallest scales.
Moreover, when one needs to compute eigenpairs for many random samples, the
cost multiplies significantly.

To address these challenges, we develop an efficient offline-online computational
multiscale strategy based on the Localized Orthogonal Decomposition (LOD)
method. Our approach leverages precomputed local quantities from reference de-
fect configurations, enabling rapid assembly of the system matrices for new random
realizations. We also introduce a heuristic modification in the online phase which
enhances the performance, particularly in scenarios with high defect probabilities.
We provide rigorous a priori error estimates for both eigenfunctions and eigenval-
ues.

1. The LOD based Offline-online strategy

We use the LOD method to construct a low-dimentional, problem-adapted multi-
scale space V ms

H,k, where finescale corrections are localized on patches Uk(T ) ⊆ Ω.
Our formulation employees a Petrov-Galerkin variant of the LOD for the stiffness
matrix, while the mass matrix is taken from the standard finite element method.

A key challenge is that the multiscale space V ms
H,k depends on the realization

A. Our offline-online strategy addresses this by avoiding the need to re-compute
the multiscale basis for every realization, thereby significantly reducing the overall
computational cost. While the offline phase remains costly, it is only performed
once for a single patch and is independent of the realization. In contrast, the
online phase – which assembles the global stiffness matrix in real time for any
given realization A – is highly efficient.

• Offline phase: On a patch Uk(T ), construct a basis of reference coeffi-
cients Ai using single-defect configurations. Then, for each Ai, precompute
and store the corresponding LOD stiffness matrix contributions.

• Online phase: Given a random realization A, decompose it locally as
A =

∑
i

µiAi, with
∑
i

µi = 1 and µi ∈ {0, 1}. Next, combine the precom-

buted stiffness matrix contributions from the offline phase to assemble the
global stiffness matrix.
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Moreover, for certain coefficients, the constraint
∑
i

µi = 1 can be gener-

alized to
∑
i

µi = s for s ∈ R+. A heuristic strategy for selecting s to

minimize the consistency error has been proposed and is further detailed
in [1].

2. Error Analysis

We derive a priori error estimates using spectral perturbation theory following the
Babuŝka-Osborn framework. Denoting by (λ, u) the continuous eigenpairs, and

(λ̃H , ũH) the offline-online approximations, we show in [1] the following holds:

• Eigenfunction error (energy norm):

||u − ũH ||A . H2 + g(k) +
(
max
T

ET

)
kd/2,

• Relative eigenvalue error:

∣∣∣∣∣
λ− λ̃H
λ

∣∣∣∣∣ . H2 + g(k) +
(
max
T

ET

)
kd/2 +

(
max
T

ET

)2

k2,

where g(k) ≈ H2 for sufficiently large patch size k, and ET is a computable error
indicator that quantifies the local consistency error due to offline-online strategy.

3. Numerical Experiments

We validate the method on one- and two-dimensional models with random checker-
board coefficients, where finescale random defects are inserted on a constant back-
ground Cartesian grid. As shown in Figure 1, both methods perform almost sim-
ilarly, yielding less than 2% RMSE for defects probabilities below 10%. However,
for moderate to high defect probabilities, the heuristic approach – which adapts s
to the defect probability – demonstrates significantly improved accuracy.
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Figure 1. The RMSE against probability variation over 200
samples, using a patch size of 3 element layers around a central
element, for 1D (left) and 2D (right) settings. The discretizations
Huty and Hs correspond to the sum-constraint-one model and the
probability-adaptive-s heuristic model respectively.

Resolution of Ginzburg-Landau energy minimizers using
multiscale techniques

Christian Döding

(joint work with Maria Blum, Benjamin Dörich, Patrick Henning)

Superconductivity is the physical phenomenon by which certain materials lose all
electrical resistance when cooled to very low temperatures. A superconductor of
convex domain Ω in two or three space dimensions is modeled by a minimizing
pair u ∈ H1(Ω,C) and A ∈ H1(Ω,Rd) of the Ginzburg-Landau (GL) free energy
(cf. [4, 6])

EGL(u,A) =
1

2

ˆ

Ω

∣∣ i
κ
∇u+Au

∣∣2 + 1

2

(
1− |u|2

)2
+ |curlA−Hext|2 + |divA|2dx

where Hext is a suitable externally applied magnetic field. The first component,
u, known as the order parameter, characterizes the superconducting state of the
material (|u| = 1 superconducting, |u| = 0 non-superconducting) and the second
component, A, denotes the electromagnetic vector potential inside of the super-
conductor. A key parameter in the model is the Ginzburg–Landau parameter
κ > 0 which is typically large (for type-II superconductors) and gives rise to the
exhibition of characteristic vortex structures in the minimizing order parameter –
the Abrikosov vortex lattice – see Figure 1. As κ increases, the number of vortices
grows while their size decreases and hence κ can be seen as multiscale parameter.
From a numerical perspective, this raises two central questions:

• What mesh resolution is required, in terms of κ, to resolve the vortex
lattice?

• What are efficient approximation spaces for capturing vortex structures?
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Figure 1. Density |u|2 of minimizing order parameters for the
GL-parameter κ = 8 (left), κ = 16 (middle) and κ = 32 (right).

To address these questions, we consider a simplified model where a divergence-free
vector potential A ∈ L∞(Ω,Rd) is give. The energy functional reduces to:

E(u) =
1

2

ˆ

Ω

∣∣ i
κ
∇u +Au

∣∣2 + 1

2

(
1− |u|2

)2
dx.

It is known, cf. [3, 4], that a minimizer u exists, is H2-regular, and satisfies
‖u‖Hk . κk for k = 0, 1, 2. While global uniqueness is unclear, local uniqueness
is plausible under phase invariance. More precise, we assume local uniqueness of
the minimizer in the subspace H1 ∩ (iu)⊥, where (iu)⊥ denotes the L2-orthogonal
complement of the neutral mode arising from the phase symmetry. Under this
quasi-uniqueness assumption, the second derivative of the energy is coercive on
this subspace, cf. [1, 3]:

〈E′′(u)v, v〉 ≥ ρ(κ)−1‖v‖2H1
κ

∀v ∈ H1 ∩ (iu)⊥

where ‖v‖2H1
κ
= κ−2‖∇v‖2L2 + ‖v‖2L2 and ρ(κ) is the inverse coercivity constant,

which typically grows with κ. Coercivity of the second derivative is crucial for
analyzing minimizers; however, the smallness of the coercivity constant poses chal-
lenges regarding the approximation properties of minimizers in discrete spaces and
their computation with iterative methods.

Resolution condition in classical finite element spaces

The approximation of minimizers using classical finite elements has been studied
in [3], emphasizing κ-dependent error estimates. Let Vh be the first-order H1-
conforming Lagrange finite element space over a mesh of size h > 0, and define
V ⊥
h = Vh ∩ (iu)⊥. Then the best-approximation error satisfies (cf. [3]):

inf
v∈V ⊥

h

‖u− v‖H1
κ
. κh.

This implies a basic resolution condition of h . κ−1. However, the actual require-
ment is more restrictive, as established in the following result:
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Theorem 1. [3, Theorem 3.3] For h sufficiently small let uh ∈ Vh be a discrete
minimizer of E, i.e., E(uh) = minv∈Vh

E(v). Then there is a unique exact mini-
mizer u ∈ H1 of E in a neighborhood of uh such that uh ∈ (iu)⊥ and

‖u− uh‖H1
κ
. (1 + ρ(κ)κh) inf

v∈V ⊥

h

‖u− v‖H1
κ
. κh+ ρ(κ)κ2h2.

Thus, a stronger resolution condition h . ρ(κ)−1/2κ−1 is required, which aligns
with numerical observations.

Multiscale approximation spaces

To overcome these limitations, we employ multiscale techniques to construct ap-
proximation spaces that relax the resolution condition and better capture vortex
lattice structures. Consider the bilinear form

aβ(u, v) = ( i
κ∇u+Au, i

κ∇v +Av)L2 + β(u, v)L2

which is induced by the kinetic part of the GL energy and where β ≥ 0 is a
stabilization parameter. While aβ(·, ·) is not coercive on all of H1 for β = 0, it is
coercive on the kernel of the L2-projection Ph : H1 → Vh, allowing us to define a
multiscale space in the spirit of the Localized Orthogonal Decomposition (cf. [5])

V ms
h = (id− Cβ)Vh, where Cβ : H1 →W solves aβ(Cβv − v, w) = 0 ∀w ∈W.

Note that dimVh = dimV ms
h and we proved in [1] the best-approximation estimate

inf
v∈(V ms

h )⊥
‖u− v‖H1

κ
. (1 + β)κ3h3

with (V ms
h )⊥ = V ms

h ∩ (iu)⊥ by using only the H2-regularity of the minimizer. In
addition, we proved in [1] the following estimate for the discrete minimizer in the
multiscale space:

Theorem 2. [1, Theorem 3.1] For h sufficiently small let ums
h ∈ V ms

h be a discrete
minimizer of E, i.e., E(ums

h ) = minv∈V ms
h
E(v). Then there is a unique exact

minimizer u ∈ H1 of E in a neighborhood of ums
h such that ums

h ∈ (iu)⊥ and

‖u− ums
h ‖H1

κ
. (1 + ρ(κ)κh) inf

v∈(V ms
h )⊥

‖u− v‖H1
κ
. (1 + β)(κ3h3 + ρ(κ)κ4h4).

This significantly improves the resolution condition to h . (1+β)−1/4ρ(κ)−1/4κ−1

and the choice β = 0 is preferable. The multiscale framework allows higher-order
accuracy and relaxes the resolution condition without requiring additional regu-
larity or adding degrees of freedom. Numerical experiments in [1] confirm that
this approach captures the vortex lattice efficiently.
These ideas have been extended to the full GL model in [2], where similar error
estimates hold for discrete minimizers (u,A) using a multiscale space for u and
standard finite elements for A (first or second order). The vector potential is ob-
served to exhibit smoother behavior without strong vortex features, so a standard
FEM treatment suffices. For solving the full coupled problem, we propose an iter-
ative scheme with an adaptive updating strategy for the multiscale space based on
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the current iteration of A, leading to promising computational and approximation
results for Ginzburg-Landau energy minimizers in numerical simulations.
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