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Introduction by the Organizers

This workshop was dedicated to the investigation of geophysical models for atmo-
sphere, ocean and sea-ice by means of mathematical analysis, numerical simula-
tions and physical reasoning. The mathematical investigation of geophysical flows
involves many modern techniques from analysis, stochastics and computation.

Of special interest are the regularity properties of solutions of the associated
systems of equations, the implications of convex integration method for fluid dy-
namical systems and turbulence and consequences for a suitable notion of solution
for geophysical equations. An active research topic is the rigorous mathematical
understanding of various sea-ice models. The analysis coupled atmosphere-sea ice-
ocean models remains a formidable challenge. New analytical and computational
tools are being developed in order to analyze models from moist atmospheric dy-
namics including phase transitions and particular geophysical phenomena such as
cyclones and Saturn’s hexagon.
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A key feature of this workshop was bringing together leading experts form vari-
ous communities and therefore from diverse scientific backgrounds such as analysis,
modeling, numerics and computations as well as stochastic analysis. The lectures
presented took 40 minutes which were followed by lively and interactive discus-
sions for about 15 minutes. Shorter presentations were provided, lasting around
15 minutes each. Evening sessions attracted special attention, where graduate
students as well as postdoctoral fellows gave excellent presentations about their
research work. The presence of early career participants and gender diversity was
very visible during the meeting. The workshop also aimed to encourage early ca-
reer participants to play an important role in this area of research. The meeting
ignited lively discussions and exchange of ideas. One plenary session gave rise to
animated discussions on fundamental matters regarding research on theoretical
fluid mechanics and geophysical models. We are convinced that the scientific ex-
change between the participants will lead to many exciting new developments and
collaborations.
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Abstracts

Triple-deck theory for the control of convection in idealized
axisymmetric tropical storms

RUPERT KLEIN
(joint work with Tom Dorffel, Sabine Doppler, Boualem Khouider)

Recent work by some of the authors [1] showed that the classical decomposition
of mid-latitude flows into the quasi-geostrophic bulk and Ekman layer flows (QG-
Ekman) cannot capture important diabatic effects in the lower 1-5 km associated,
e.g., with thermal convection or cloud processes. Their remedy is an extension of
QG-Ekman theory by a third “diabatic layer” (DL) of intermediate height (QG-
DL-Ekman theory).

The present work demonstrates that a similar asymptotic triple-deck expan-
sion for vortices in gradient wind balance enables the theoretical explanation of
several important observational features of tropical storms and incipient hurri-
canes and typhoons. For instance, super-gradient winds are naturally found in the
friction layer (FL), and the newly introduced intermediate layer hosts the lifting
condensation level (LCL) and the level of free convection (LFC) and, possibly, a
convective inhibition layer (CIN). Due to its significance for the onset of convec-
tive processes that feed back into the primary circulation, this intermediate layer
is labeled “convection controlling layer” (CCL) here.

As the most significant finding of this work, it is revealed how angular momen-
tum transport between the three layers induces vortex intensification. Addition-
ally, we give details on how multiscale convection and the associated entrainment of
mass in the transition zone between the CCL and the bulk tropospheric flow (bulk)
are the keys to spinning up the boundary layer flow. The hydrostatic and gra-
dient wind balances, upward (FL — CCL) control of angular momentum, sensible
heat, and moisture, and buoyancy instabilities with positive CAPE (convectively
available potential energy) throughout the middle troposphere all interact in con-
trolling vortex spin-up at the interface between the bulk vortex and the convection
controlling layer.

This work addresses upright axisymmetric vortices, while asymmetries, associ-
ated among other things with strong vortex tilt as in the bulk tilted vortex theory
of [2, 3], are deferred to future studies.
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Beyond linear decomposition: a nonlinear eigenspace decomposition
for the slow and fast components of a moist atmosphere with clouds

SAMUEL N. STECHMANN
(joint work with Antoine Remond-Tiedrez, Leslie M. Smith)

Decomposing a vector field, or a state vector, into several constitutive compo-
nents is ubiquitous in fluid mechanics and atmospheric science. For example, the
Helmholtz decomposition will split a vector field into its potential and divergence-
free components, and it is used throughout fluid mechanics. Another example is
the vortical-wave decomposition of a state vector which is used in atmospheric and
oceanic sciences to understand the fast rotation and strong stratification regime of
the Boussinesq equations, e.g., [3]. Crucially, both of these decompositions can be
viewed from multiple perspectives and share salient features such as reconstruc-
tion of the original field via elliptic partial differential equations (PDEs), a rich
geometric interpretation of the decomposition (involving orthogonality and pro-
jections), and a connection to slow and fast components of appropriate dynamical
systems.

In this paper we consider a moist Boussinesq system from atmospheric dynam-
ics, which brings additional realism and complexity due to clouds. We ask the
following question: does this moist, cloudy Boussinesq system also admit such a
decomposition?

While these decompositions have applications in slow—fast dynamical systems,
they can be investigated without reference to the dynamical evolution, by consid-
ering the associated operator. To see this from a general perspective, consider a
dynamical system written abstractly as

1
U + ~DoU + D1U =0,
€

where € is a small parameter, Dy is the leading-order operator, and D, is the next-
order contribution to the operator for the dynamical system. To leading order
with respect to e, it is the operator Dy that contains the essential information.
Understanding the dynamics can be tantamount to understanding the operator
Dy. Hence, in the remainder of the paper, we will seldom refer to the actual
dynamical evolution, and instead the main object of interest is the operator Dy.

In past cases, such as the Helmholtz decomposition or Boussinesq equations,
the leading-order operator is linear (Dy = L), and the decomposition involves a
linear operator and linear eigenmodes. On the other hand, for an atmosphere with
clouds, additional nonlinearity arises from phase changes of water, and Dy = N is
a nonlinear operator. Hence a substantial challenge in the present paper is from
nonlinearity, from the distinction

(1) Do =L versus Dy=N.

For a nonlinear operator, it is not clear if eigenmodes can be identified. Conse-
quently, a decomposition

(2) U=U;+Uxs+U3z+---
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into all of the eigenmodes is likely to be impossible.

Despite the challenges of nonlinearity in (1)—(2), here we forge ahead with a
decomposition in the spirit of (2) as the main aim and main theme.

The moist Boussinesq system, with stratification and rotation (i.e. the Coriolis
effect), is

1
(3) 8,5u—|—u-Vu—|—g(63><u—|—Vp—063):()7
T
(4) 8t9+u-V9+?01L3=C,
r
(5) ath +u-Vgq, — ?qug = —(C and
(6) Oq +u-Vq = C,

subject to V - u = 0. In comparison to the dry Boussinesq system, the moist
Boussinesq system includes additional evolution equations for the water vapor
mixing ratio, ¢,, in (5) and for the liquid water mixing ratio, ¢, in (6). It also
includes a source/sink term C' for condensation and evaporation, which represent
phase changes between the vapor and liquid phases of water, and associated heating
and cooling. The constants I'y and I'; correspond to parameters encoding the
strength of the background vertical gradients in potential temperature and water
vapor, respectively. While additional cloud microphysics processes will not be
considered here, the moist Boussinesq system above is valuable for more complex
scenarios as well, since it provides the starting point for extensions that include
rainfall, ice, other precipitation, and other complexities [1, 5, 6].

Next it is convenient to rewrite the moist Boussinesq system in a way that
the source terms C in (4)—(6) do not explicitly appear, through a convenient
change of variables. This reformulation has been used in several past studies and
has facilitated theoretical advances such as an energy decomposition [5, 4] and
conservation of potential vorticity [2], even in the presence of clouds and phase
changes.

For the convenient way of rewriting (3)—(6), we transform to a different set
of thermodynamic variables that is conserved. In particular, define the equivalent
potential temperature, 6., and total water mixing ratio, ¢, as 8. = 0+¢q, and ¢; =
¢v + q- The evolution equations of 6. and ¢; can be found by taking appropriate
linear combinations of (4)—(6). To complete the rewriting, the buoyancy term /e
from (3) must also be rewritten in terms of 6. and ¢;.

The end result of the rewriting is the moist Boussinesq system in the following
form:

1
(7) Ou+u - Vu + g(63 X u+ Vp — (0. —ming g)eg) = 0,
1
(8) 0i0. +u -V, = —gUg and

9) Oqr +u-Vg = uss
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subject to V-u = 0. An important feature is that the source term of condensation
and evaporation, C, has been eliminated. The nonlinearity due to clouds appears
now in the buoyancy term /¢ from (3) which has been rewritten in terms of
0. and ¢;. The notation mingg; = min(0, ¢;) has been introduced in (7), and
the saturation water vapor parameter ¢,s has been set to zero without loss of
generality, and for simplicity. Also we have now set the background gradient
parameters from (4) and (5) to be I'y = 2 and I'y = 1 without loss of generality
within the stably stratified regime, and for simplicity.

The key challenge with this system is that nonlinearities are present in the
leading order, Dy = N, at O(e~ 1), due to phase boundaries at cloud edge. There-
fore standard tools of linear algebra, relying on eigenvalues and eigenvectors, are
not applicable. The question we address in this paper is this: in spite of the
nonlinearities, can we find a decomposition for this moist Boussinesq system?

We identify such a decomposition adapted to the nonlinear balances arising from
water phase boundaries. This decomposition combines perspectives from partial
differential equations (PDEs), the geometry, and the conserved energy. This de-
composition may be important in applications because, like its linear counterparts,
it may be used to analyze observational data. Moreover, by contrast with previ-
ous decompositions, its formulation includes the nonlinearity from the presence of
clouds.
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Progress in the analytical and numerical studies of the Hibler model
of sea-ice dynamics

BouaLEM KHOUIDER

(joint work with Clint Seinin, Sofiane Chatta, Salim Bensasi,
Tahar Boulmezaoud)

1. INTRODUCTION

Sea ice dynamics has long been recognized as a critical component of the Earth’s
climate system, influencing global temperatures, ocean circulation, and atmo-
spheric patterns. Variations in sea ice extent are closely linked to climate change,
acting both as indicators and amplifiers of global warming. Numerical models
are used to capture sea-ice dynamics, predict its changes and understand their
interactions with the broader climate system.

The first comprehensive model for sea-ice flourished from the Arctic Ice Dy-
namics Joint Experiment (AIDJEX), where an elastic-plastic model for the ice
displacement and deformation is coupled to an integro-differential equation for
ice-thickness distribution [4], though with an open-ended plasticity yield curve.
However, due to its complexity the AIDJEX model was replaced by a simpler
version consisting of viscous-plastic equations for the momentum coupled to con-
servation equations for ice thickness and ice area-coverage (or concentration) based
on an elliptic rheology [6]. Unfortunately, Hibler’s system is severely stiff and an-
alytically intractable. Many regularized versions have been proposed for both
analytical studies and for numerical implementation, especially due to the abrupt
transition between the viscous and plastic flow regimes. Some state-of-the-art cli-
mate models use the elasto-viscous-plastic (EVP) version due to [7], where the
plastic deformation tensor is relaxed in time. But the EVP model introduces
undesired artificial elastic waves leading to practical inaccuracies. An appealing
alternative, consists in using a hyperbolic tangent to smoothen the viscous-plastic
transition [8, 10].

In this talk, new analytic results showing that the regularized Hibler equations
are linearly well posed, in both 1d and 2d [2, 3], and progress in using efficient
and accurate numerical scheme for these equations are reported [10]. The per-
formance of Crank-Nicholson and Backward differentiation-type schemes is also
demonstrated. Further, for efficiently solving the original elastic-plastic equations
for arbitrary yields is proposed [1].

2. HIGHLIGHTS

AIDJEX (https://nsidc.org/data/aidjex) is the first comprehensive field campaign
aimed at understanding sea-ice dynamics. The main result [4] of this experiment
was to suggest based on observational evidence that at large scale, sea-ice dynamics
can be modelled as an elasto-plastic material such as sands, gravels, clays, and
fragmented rocks while the highly variable ice-thickness, due to the abundance
of leads and ridges, can be modelled through a thickness distribution function
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which obeys a continuum Smoluchowski-like kinetic equation. The coupled sea-ice
momentum and ice-thickness equations take the form

dv Dv .
(1) E.—Ft——mekXV+Tw+V'J+Ta—mgv¢.
oG DG oG

where v is the ice velocity field and G(h,t,R) = ﬁ Jeer H(h = &(x,1)) da is
defined as the fractional area of ice thinner than A in a given ice-covered region
R at time ¢, and {(z,t) is the actual-randomly varying ice thickness. Here, m if
the mass density per unit area, f. is the Coriolis parameter, 7,, and 7, are the
ocean and atmospheric stresses, o is the vertically integrated internal ice stress, §
is the gravity acceleration and ¢ is the surface geo-potential while f is the rate of
melting and freezing and W is the ice ridging and opening function.

The tensor o is given in terms of the strain tensor é = %(Vv + VoT) and a
messure of ice strength p*, via Hooke’s law when the ice-flow is elastic and through
a normal-plastic flow rule during the elastic regime, when the maximum yield is
reached: F(o,p*) = 0; p* is related to the G(h) through an energy balance relation.
While the field work didn’t allow a definitive yield curve F', a few suggestions have
been made. It is for instance suggested that because sea-ice has zero resistance
to tensile stress, the yield curve should be contained in the third quadrant in the
plane of principle stresses (eigenvalues of o).

Hibler’s model [6] was suggested as a mathematically and numerically accessible
simplification of the AIDJEX model. It consists of an elliptic yield curve and a
coarse thickness distribution reduced to two ice categories: thin ice and thick ice.
The elliptic curve in particular allowed a closed form inversion of the plastic flow
rule:

E—mn, ,. .ot p* 4 . 1.
= t — iy, = — =2 A= [é2 4 Sépg2
o 2 I'(G) +776 2 d» 5 aX(A,Ao)’ n 627 €r< + 6611

Here, ¢ and 7 are the bulk and shear viscosities while é; and é;; are the normal and
shear strains, respectively and e the ellipticity constant. The max cutt-off in the
expression of ¢ is to avoid singular behaviour when the strain is zero and further
simplifies the model into a viscous-plastic system, avoiding carying through the
elastic regime which is deemed negligible. This cutt-off however led to another
challenge. The equations became numerically stiff and analytically intractable.
To improve the numerics, Lemieux et al. [8] introduced the tanh regularization:

1
(3) §—KPtanh(2KA>,
where K is a (large) dimensional constant, and suggested a Jacobian-free-Newton-
Krylov (JFNK) solver for the regularized Hibler sea-ice momentum equations,
which showed a lot of promise. An improved version of the JENK solver and a
validation against a synthetic solution is done in [10]. The improvement had many
levels including the use of second order time integration via a Crank-Nicholson
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(CN) scheme, instead of the backward Euler used in [8], and a better approxima-
tion of Jacobian-vector multiplication using a second order approximation of the
Gateaux derivative. Numerical tests showed an overall second order convergence
in both time and space and a faster convergence of the Newton solver, less than
10 iterations compared to 50 to 100 used in the previous works. Furthermore, the
superiority of the CN scheme compared to the backward Euler was demonstrated.

In terms of analysis, previous work showed that Hilber’s model is linearly ill
posed in 1d while in 2d existing results are inconclusive. In [2], it is shown that
in 1d, the tanh-regularized Hibler equations are linearly well posed, uniformly, for
all flow configurations while in [3], linear well-posedness for the same model is ob-
tained for the linear model with frozen coefficients, when the flow gradient is finite.
For infinite flow gradients (e.g. infinite convergence/divergence or shear), the well-
posedness of the linear system is inconclusive in some regimes; the parabolicity of
the system can be lost when the flow-gradient is infinite and the equations become
numerically ill conditioned. The numerical inversion becomes highly inaccurate
and the time integration becomes stiff.

Nonetheless, rigorous well-posedness results have been obtained for other forms
of regularized and modified Hibler’s model of sea ice [5, 9].

A new way of handling the original elastic-plastic model of sea ice, with any
convex yield curve, is suggested in [1], using convex analysis. The main idea was
to project the elasto-plastic equations onto the tangent and normal cones of the
yield curve, in the manifold of symmetric tensors, consistently with the normal
flow rule. The main result is an evolution equation for the stress tensor:

(4) o=H(e) —H (H(N(C(p*),g) (é — ZjH‘%a))) ,

where IT( y(c(p*),0) is the projection onto the normal cone of the yield curve C(p*)
at 0. Such projections for many yield curve prototypes, with and without sin-
gularities, have been readily obtained [1]. This equation can thus be solved in
together with the equations in (1) and (2) without the need for the inversion of
the flow rule. The numerical implementation for the elliptic yield curve of Hibler
and many others that have not yet been tested such as Tresca and Mohr-Coulomb
will be considered in future work.
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The primitive equations subject to deterministic and stochastic forces
MATTHIAS HIEBER

(joint work with A. Agresti, T. Binz, F. Brandt, A. Hussein, M. Saal,
T. Zochling)

In this talk we study first the primitive equations with non-isothermal turbulent
pressure and transport noise. They are derived from the Navier-Stokes equations
by employing stochastic versions of the Boussinesq and hydrostatic approxima-
tions. For such a model we prove global well-posedness in H', where the noise is
considered in both the Ito and Stratonovich formulations. The proof is based on
stochastic maximal regularity estimates.

Secondly, we investigate the primitive equations under the influence of stochas-
tic wind driven boundary conditions modeled by a cylindrical Wiener process. A
combination of deterministic and stochastic methods yield that these equations ad-
mit a unique, local pathwise solution within the anisotropic LY — H, 1’pL§y—setting.
Moreover, the solution is constructed in critical spaces.

Finally, we combine the above two results to investigate a coupled atmosphere-
ocean model due to Lions, Temam and Wang. It concerns a system of two fluids
described by two primitive equations coupled by fully nonlinear interface condi-
tions.
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Well-posedness of a non-local Ocean-Atmosphere coupling model
SOPHIE THERY

Interactions between the ocean and the atmosphere play an essential role in climate
modelling and weather forecasting. Oceanic and atmospheric models have been
built separately by two distinct communities and coupled via complex interface
conditions. We propose to translate this coupled system into a global mathematical
model in order to use the analysis tools and study its well-posedness. We present a
simplified but realistic model containing the main ingredients of numerical models.
This mathematical model is known as the coupled Ekman problem, taking into
account the vertical exchanges of horizontal currents and the effect of small scales
via turbulent viscosities. The special feature of this model is that it considers
the interface as a buffer zone between the two domains, with interface conditions
specific to the ocean-atmosphere coupling. These interface conditions lead to the
dependence of viscosity profiles on the trace of solutions around the interface and
make the global problem non-local.

To study the well-posedness of this system, a first method consists of rewriting
it as a fixed-point problem in order to deal with the non-local aspects. This strat-
egy is inspired by work [1] which considers a model with same kind of non local
behavior. A general study of the problem in its stationary and non-stationary
states leads to a sufficient condition to guarantee the uniqueness of the solutions.
This condition, applied to the ocean-atmosphere framework, i.e. with physically
realistic viscosity conditions, makes it possible to obtain a good resolution of the
problem. This condition applied to the ocean-atmosphere framework, i.e. with
viscosity profiles find in litterature for ocean and atmosphere application and or-
ders of magnitude, is too restrictive and does not guarantee the uniqueness of the
solutions. In the stationary case, a necessary and sufficient condition can be given
to ensure the existence and uniqueness of solutions. We will see that, once again,
in the context of ocean-atmosphere coupling, this condition is not met and there
is no uniqueness of solutions. In conclusion, we discuss the prospects for such a
model and the parameters that could be adjusted to obtain a mathematically well-
posed model. In particular, we point out the role of interface parameterisation and
the inconsistency between the numerical constraints and the physical constraints
acting on this parameterisation. The presented results are detailled in [2].

Discussions after this presentation highlighted possibilities for improvement.
First, more complex viscosity profiles need to be taken into account to reflect the
reality of the Ocean-Atmosphere models, especially in the unsteady state. That
said, even if our model is simplified, the criteria that we establish contain the same
ingredients and follow the same behavior as in [1] which consider more complex
viscosity profiles. It seems that it is the order of magnitude described by the
ocean-atmosphere framework that does not fall within the scope of this method.
Another point highlighted was the problem of testing the results, as there is no
simplified model that can be used as a test case for the results presented here. As
the model is a simplified version of the ocean-atmosphere model, it is of course
difficult to draw direct conclusions about realistic numerical models, but it does
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highlight the elements that could break the mathematical consistency of these
models.
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Scaling regimes for moist atmospheric flows and the
Clausius-Clapeyron relation

DANIEL BAUMER
(joint work with Rupert Klein, Norbert J. Mauser)

In the early 2000s, Rupert Klein proposed a general framework for understanding
model hierarchies in the fluid dynamics of the earth’s atmosphere. This frame-
work, comprehensively described in [1], was built on the basis of a distinguished
limit for the so-called universal characteristics of atmospheric motion, valid for
dry air. Obtaining an extension of said distinguished limit that includes the ther-
modynamic parameters of moist, cloudy air would be of considerable theoretical
and practical interest. In this talk, we learn about the difficulties arising in this
endeavor from incorporation of the fundamental Clausius-Clapeyron relation for
the saturation vapor pressure, and we present two contrasting approaches to their
resolution, based on the discussion in [2].
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Finite energy weak solutions to a multilayered 3D fluid-poroelastic
structure interaction problem
FELIX BRANDT
(joint work with Sunéica Cani¢, Boris Muha)

Fluid-poroelastic structure interaction (FPSI) problems have gained a lot of atten-
tion recently in numerical and mathematical analysis. This is also due to its broad
applications in fields such as biomedical engineering, geomechanics and petroleum
engineering, civil engineering, environmental engineering, aerospace and marine
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engineering or energy systems. For the investigation of a linearly coupled 3D-
“2.5D”-3D FPSI problem, we refer to [1]. The nonlinearly coupled case of a 2D-
1D-2D model has been addressed in [3].

In this talk, we discuss the existence of a finite energy weak solution to a
nonlinearly coupled multilayered 3D FPSI problem. At the top, we consider a thick
poroelastic Biot model, which is separated from the incompressible, viscous fluid
by a thin reticular plate. The latter acts as a moving interface with mass between
the two thick layers. The model is complemented by suitable kinematic coupling
conditions, including the Beavers-Joseph-Saffman conditions for tangential slip,
and dynamic coupling conditions.

The existence of a finite energy weak solution to a regularized version of the
model is obtained by means of semidiscretization and a splitting scheme. The
lack of Lipschitz regularity of the fluid domain poses significant challenges when
establishing weak and weak™ convergences of subsequences of the sequence of ap-
proximate solutions. The upgrade to strong convergence for the limit passage in
the nonlinear problem involves compactness results due to Dreher and Jiingel [2]
for piecewise constant functions as well as a generalized Aubin-Lions compactness
criterion for moving domains [4].

REFERENCES

[1] L. Bociu, S. Cani¢, B. Muha, J.T. Webster. Multilayered poroelasticity interacting with
Stokes flow. STAM J. Math. Anal. 53 (2021), 6243-6279.

[2] M. Dreher, A. Jiingel. Compact families of piecewise constant functions in LP(0,T; B).
Nonlinear Anal. 75 (2012), 3072-3077.

(3] J. Kuan, S. Cani¢, B. Muha. Fluid-poroviscoelastic structure interaction problem with non-
linear geometric coupling. J. Math. Pures Appl. (9) 188 (2024), 345-445.

[4] B. Muha, S. Canié. A generalization of the Aubin-Lions-Simon compactness lemma for
problems on moving domains. J. Differential Equations 266 (2019), 8370-8418.

Mixing Estimates for Passive Scalar Transport by Sobolev and BV
Vector Fields

Lucas HUYSMANS

We study the rate at which small scale structures, or ‘mixing’, emerges in incom-
pressible fluids. We consider the linear passive scalar transport equation with a
divergence-free, vector field u(z,t). Denoting the transported passive scalar field
by p(z,t), we arrive at the classical transport partial differential equation:

dp

ot

In the mathematical literature one usually measures such mixing by the decay
of negative Sobolev norms, such as W, !, which measure the average length scale
present in the passive scalar [2]. One expects that the size of such length scales are

(x,t) +u(z,t) - Vp(z,t) = 0.
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bounded (from below) by an exponential in the time variable and the regularity
of the vector field. For instance in [5], using estimates from [7], it was proved that

T
oG Tl = Alpo) exp —C(po)/o IVul, )y dt |,

where A(po),C(po) > 0 are constants depending on the initial datum po(z) =
p(z,0). We improve on these results, using estimates from [6] to give in [9] new
expressions for these constants, with in particular C(pg) given by
lpoll 2
p—1
Clpo) = Cp— i
HPOHL}T

which has the correct units of length to the power —g (with d the dimension) to

ensure the exponent in the mixing rate is dimensionless. However, the constant
C)p blows up as p — 1. Finding any quantitative mixing rate in the case p =1
remains an important open problem, despite well-posedness in this class [3], [1],
and is the subject of a famous open conjecture by Bressan [8].
In this direction, we give in [4] the first bound in terms of the Wl norm of
Vu(z,t), or more generally the BV, norm of u(x):
-1

e

loC Ty > | e

where
T
N = Alp)exp ( Coo) [ Va0l dt)
0
for some constants A(po), C(po) > 0.

REFERENCES

(1] L. Ambrosio. Transport equation and Cauchy problem for BV  vector
fields. Invent. Math., 158(2):227-260, 2004. ISSN 0020-9910,1432-1297. URL
https://doi.org/10.1007/s00222-004-0367-2.

G. Alberti, G. Crippa, and A. L. Mazzucato. Exponential self-similar mixing by incom-
pressible flows. J. Amer. Math. Soc., 32(2):445-490, 2019. ISSN 0894-0347,1088-6834. URL
https://doi.org/10.1090/jams/913.

R. J. DiPerna and P.-L. Lions. Ordinary differential equations, transport the-
ory and Sobolev spaces. Invent. Math., 98(3):511-547, 1989. ISSN 0020-9910. URL
https://doi.org/10.1007/BF01393835.

L. Huysmans and A. R. Said. Mixing Estimates for Passive Scalar Transport by BV Vector
Fields. arXiv preprint arXiv:2504.03023, 2025.

G. Iyer, A. Kiselev, and X. Xu. Lower bounds on the mix norm of passive scalars advected by
incompressible enstrophy-constrained flows. Nonlinearity, 27(5):973-985, 2014. ISSN 0951-
7715,1361-6544. URL https://doi.org/10.1088/0951-7715/27/5/973.

M. Hadzié, A. Seeger, C. K. Smart, and B. Street. Singular integrals and a problem on
mixing flows. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 27(4):921-943, 2018. ISSN
0294-1449,1873-1430. URL https://doi.org/10.1016/j.anihpc.2017.09.001.

2

(3

[4

5

(6


https://doi.org/10.1007/s00222-004-0367-2
https://doi.org/10.1090/jams/913
https://doi.org/10.1007/BF01393835
https://doi.org/10.1088/0951-7715/27/5/973
https://doi.org/10.1016/j.anihpc.2017.09.001

Mathematical Advances in Geophysical Fluid Dynamics 1233

[7] G. Crippa and C. De Lellis. Estimates and regularity results for the DiPerna-
Lions flow. J. Reine Angew. Math., 616:15-46, 2008. ISSN 0075-4102,1435-5345. URL
https://doi.org/10.1515/CRELLE.2008.016.

[8] A. Bressan. A lemma and a conjecture on the cost of rearrangements. Rend. Sem. Mat.
Univ. Padova, 110:97-102, 2003. ISSN 0041-8994.

[9] L. Huysmans and A. R. Said. Quantitative Estimates in Passive Scalar Transport: A
Unified Approach in WP via Christ-Journé Commutator Estimates. arXiv preprint
arXiv:2402.11642, 2025.

Advection by turbulent velocity fields
LAszLO SZEKELYHIDI JR.
(joint work with Jan Burczak and Bian Wu)

A fundamental concept in turbulence is the idea of an energy cascade. Intro-
duced by Richardson in 1926, it refers to a self-similar process whereby energy is
continuously transferred to higher (or lower) wavenumbers, resulting in a forward
(or backward) cascade. Assuming such a self-similar mechanism to exist and is
complemented by a continuous input of energy at one end of the spectrum and a
continuous loss of energy at the other end of the spectrum, one is formally lead to
the concept of enhanced or anomalous dissipation.

Whilst the nature of the energy cascade in the Navier-Stokes system remains
elusive, considerable progress has been made on the analogous scalar problem.
Here one considers the transport-diffusion equation

Op+u-Vp=rAp,

in a spatial domain 2, which in the simplest settings would be a periodic box T?
or T? and complemented with an initial condition p(z,0) = pi,(x). For simplicity
we assume that the scalar p has vanishing spatial average, [ pdx = [ pin dz = 0.
Under very mild conditions on the velocity field there exists a unique global-in-time
solution. The energy identity reads

%%/Q“)(x,tﬂzdx:—/i/Q|VP($at)|2dx'

Using the Poincaré inequality we deduce the energy decay bound

[ ot 0P de < et [ .

where ¢y can be interpreted as the length-scale of the domain 2. However, this
bound is ignorant of the possible effect of advection by the velocity field u - for
instance, assuming that advection by u induces a transfer of the initial L2-energy
of p in Fourier space to higher wavenumbers at length-scale, say, ¢ < {g, we could
heuristically expect to replace £y in the above decay bound by /£, leading to faster
decay for the same value of x (equivalently, the same decay rate at smaller x).
A more formal way of saying this is to estimate the “diffusion time” associated
to the advection diffusion equation, that is the time it takes for the L? norm to
reduce by a fixed factor. The above estimate would lead to a diffusion time of
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the order Ty;r¢ ~ k1, which is precise for the heat equation without advection.
Assuming, as above, that advection induces a self-similar process (a cascade) of
the L? norm of p to move to larger and larger wavenumbers can, in principle,
lead to faster diffusion. If Tg;ry ~ k=% for some a < 1, one speaks of “enhanced
diffusion”; if Tyzif¢ ~ 1 (i.e. independent of k), one speaks of anomalous diffusion.
The heuristics of anomalous diffusion and its relation to a cascade mechanism
have been analysed in numerous works, in the talk we presented the heuristic
arguments of E. Lorenz [1] as well as Obukhov-Corrsin [2]-[3]. In particular it
is easy to see by a simple scaling analysis that C1® vector fields may lead to
enhanced but not anomalous dissipation, whereas C vector fields may lead to
anomalous dissipation, for any o < 1. The latter is of course relevant for the
context of 3D turbulence: as anticipated by Onsager [4], velocity fields in fully
developed turbulent flows away from boundaries are expected to behave like Holder
continuous vectorfields with exponent v ~ 1/3.

These heuristics have rigorous mathematical analogues. In the PDE literature
Onsager’s conjecture was resolved for physically meaningful weak solutions of the
Euler equations

du+u-Vu+ Vp =0,

div u =0,

i.e. those for which kinetic energy monotonically decreases, in [5]: for any o < 1/3
there exists weak solutions u = u(z,t) on T3 x [0, T, for which the kinetic energy
is strictly decreasing. The exponent 1/3 is optimal [9].

The issue of anomalous scalar dissipation has first been raised in [6], where an
example of anomalous dissipating flow was given. This was followed by several
other constructions, notably [7, 8]. The velocity field and the scalar are both
Holder continuous, with exponent «, 8 < 1, respectively, with a+28 < 1, the range
in agreement with the Obukhov-Corrsin scaling theory. The precise statement is
as follows: there exists 7 > 0 and c, > 0 such that for any sufficiently regular
initial data p;, the unique solution p, of the transport-diffusion equation satisfies

T,
liminf/i/ / |Vp,i|2dxdt > e,
o Ja

Kk—0

This is equivalent to saying that the diffusion time Tg;¢s ~ T is independent of
Kk — 0.

The basic mechanism leading to anomalous dissipation, which is the key point
in the constructions above, is mixing: strong mixing properties of the velocity
field are responsible for the cascade process described above. In a nutshell, mixing
in the context of refers to the (quantitative) decay of the negative Sobolev norm
llo(t)|| -1, which, taking the interpolation inequality ||p||r2 < C’||p||}ﬁ1 ||,o||}v1{12 as
heuristic, can be related to growth of H' norm, possibly leading to an enhanced
diffusion rate. We refer to [10] for the relationship between mixing and enhanced
dissipation. The examples [6, 7, 8] have a common feature in that anomalous
dissipation occurs at a single time 7). At this time the velocity field stops being
smooth. In fact, there is a sequence of times Ty < Tk41 < --- — T such that in
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each time interval the vector field mixes at finer and finer scales, in a self-similar
fashion. Thus, the cascade referred to above is a process happening “dynamically”
in time. On the other hand, the energy cascade in the context of turbulence is a
statistically stationary process, where anomalous dissipation is expected to occur
at every time. This can be seen in the following consequence of the fluctuation-
dissipation relation, derived in the setting of the (deterministic) transport-diffusion
equation as above in [11]:

T
“/ /|vpl§|2d$dt’\//El72|X§_‘l) _X®2 gy
o Ja o

for appropriate (random) initial datum p;,, where Xt(l), i = 1,2 are two inde-
pendent copies of the (random) Lagrangian flow map. In the turbulence lit-
erature the time evolution of the relative distance of two tracer particles is re-
ferred to as pair dispersion. The basic scaling law, due to Richardson 1926, states
|X7(}) — Xj(q2)|2 ~ T?/3 in an appropriate range of space and time.

In recent work [13], based on the technique of iterative homogenization in the
context of transport-diffusion equation pioneered by S. Armstrong and V. Vicol in
[12], we show that typical C*, a < 1/3, weak solutions of the 3D Euler equations
u lead to anomalous dissipation for the transport-diffusion equation in the form

T Ita
g, I—a
s [ [ (9p.Pdvde > .1 (E) 052 il

Kk—0

— llpin |l 12
n Vpinlly2
the cascade takes place at every time, and in the limit « — 1/3 we recover the
Richardson law “on average”. In the talk we discuss the basic idea of the proof
and comment on possible extensions as well as limitations of the approach.

where /; is a length scale associated with the initial data. Thus, here
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Numerical aspects of simulating large-scale sea-ice dynamics
CAROLIN MEHLMANN

This talk addresses recent advances in the numerical modeling of viscous-plastic
sea-ice dynamics. Starting from the classical Hibler-type sea-ice model [1], we
derive a formulation suitable for numerical analysis and the application of mod-
ern approximation techniques. We then present a novel finite element method
developed for use in climate models such as ICON [3].

GOVERNING EQUATIONS

In most current climate models, sea ice is treated as a two-dimensional viscous-
plastic material [1]. The sea-ice motion is described by three variables: sea-ice
concentration A(x,t) € [0,1] (the fraction of a grid cell covered with ice), mean ice
thickness h(z,t) € [0,00), and sea-ice velocity v(z,t) € R%. The concentration and
thickness evolve over time via transport equations, while the velocity is determined
from the momentum equation:

(1) phdv = Fey + div(e),

where p is the sea-ice density and Feyt collects the external forces, including wind
stress, ocean drag, and the Coriolis force. The viscous-plastic rheology defines the
relation between internal stress o and the strain rates:

1 1
(2) 5 (Vv + Uvl)=e=¢ + 5 tr(e)1.
We introduce the rheology in terms of the trace and deviatoric parts of the strain
rate tensor [5]:

1 P

o= §Cél(v) + Ctr(e(v)I — EI’

where the viscosity ¢ and the ice strength P are given by:

P
(= (A (V) Ao’ P := Hexp(20(1 — A)),

1
Ap(v) = Eé/ D€+ tr(e)?, Apin =2 x 1077,

To ensure a smooth transition between the viscous closure, Anin, and plastic
regimes, Ap(v), we follow [2] and define the regularized strain rate invariant:

(3) A(€) = \/Ap(€)2 + A2

min*
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This regularization enables the simulation of both viscous stresses and plastic
stresses [5]. We write the weak form of the stress tensor as:

. P .
(0.96) = 2(¢r(@), () + (5. u(e(@))
(@) .
—Aw)9) + (5 (el
where 7(€) := 1€ + Jtr(€)I. The operator A(v)(¢) has structural similarities
with the regularized p-Laplacian and time-dependent minimal surface problems
[5]. By exploiting the symmetric positive definite structure of the Jacobian [4], we
show that the time-discretized problem defines a convex functional bounded from
below [7]. This structure enables the design of efficient Newton solvers for finite
element and finite difference settings [4, 5, 7).

SPATIAL DISCRETIZATION AND ERROR ANALYSIS

To discretize the sea-ice momentum equation on a spherical geometry (e.g. the
Earth), T introduced a nonconforming vector-valued finite element: the surface
Crouzeix—Raviart (sCR) element [6]. This element places degrees of freedom at
the edge midpoints, which aligns well with ocean models using similar staggering
(e.g., ICON-O [3]).

We consider a triangulated surface I'y, approximating a smooth, closed surface
I' ¢ R?, where the vertices of the I'j, coincide with I'. The discrete sCR element
space on 'y, is given by

Vyian — {V Ty — R3 | v|k € Vi, continuous vector components at mE} ,

where mp denotes the edge midpoint of triangle K € I'y, and Vi is spanned by
tangential and normal components of locally planar basis functions. A detailed
description of the finite element space is given in [8]. Approximating the surface
Laplacian problem with the sCR element, I proved the following error estimates
between the finite element solution uy on I', and the extended exact solution u.
from I to I'y,:

(5) [ue — anl[n < bl L2y,
(6) [1P(ue = an)lreqr,y < ch?[f] L2,
where P denotes the orthogonal projection and || - |5 is a discrete energy norm.

The proof is given in [8].

These theoretical results are confirmed by numerical experiments conducted
in the framework of the climate model ICON [3]. Let x,y,z denote Cartesian
coordinates, and R is the Earth’s radius. We solve

. 1
(7) —ler (erv) + mv = f,
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where divpr and Vr are the surface divergence and gradient, respectively. The
viscosity, ¢, the forcing, f and the analytic solution v* are given by:

1
¢=275-10"3, f = —divp <gvpv*) + 1_00"*’ v* = (sin(107°Ry),0,0).

We discretize the sphere with triangles of edge lengths 316 km, 158 km, and 79 km.
The H'-error and L?-error between exact and numerical solutions are reported in
Table 1, showing first- and second-order convergence, respectively, consistent with
(5) and (6). A detailed discussion is given in [8].

TABLE 1. Error evaluation for (7) discretized with vector-valued
surface Crouzeix—Raviart elements.

Mesh size | L2%-error | Order | H'-error | Order
316 km | 1.6880 - 102 - 3.7166 - 10~ 1 -
158 km | 4.2288-1073 | 2.00 | 1.8613-10—1 | 1.00
79 km 1.0605-10—3 | 2.00 | 9.3103-10—2 | 1.00
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Analysis of a viscoplastic Burgers equation
MARITA THOMAS
(joint work with Xin Liu, Edriss Titi)

This contribution reports on our ongoing study of a viscous Burgers equation,
where the viscosity is governed by a positively 1-homogeneous, convex potential
and thus leads to a stress in terms of its set-valued subdifferential. This problem
is motivated by the so-called Hibler’s sea ice model, see [1] and e.g. [2] or [3] for
first analytical results on different regularized versions thereof. Hibler’s sea ice
model treats sea ice as a non-Newtonian fluid, where the stress tensor includes
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such a multi-valued term in order to account for the plastic response of the ice.
Our simplified model is formulated in one space dimension, on the whole real line;
more precisely, we are concerned with in the following Cauchy problem:

(1a) S+ o, <u2/2 - a) —0 in(0,00) xR, where
(1b) o(t,x) € OY(Oyu(t,x)) with ¢(a) =|a| fora e R,
complemented by the following far-field boundary condition

(1c) lim wu(t,z) =0 forallte[0,00),

|| =00
and by the following initial condition
(1d) w(0,2) = uin(z) for all x € R.

Above in (1b), the set-valued subdifferential of the convex, positively 1-homoge-
neous potential ¢ takes the form

={-1} ifa<0,
Pla) €]-1,1 ifa=0,
={+1} ifa>0.

For this simplified one-dimensional model (1) given by the viscoplastic Burgers
equation we introduce a suitable notion of solution in the framework of BV-
solutions, study their existence, and further investigate their properties in [4].

The viscous Burgers equation dyue + 0, (ug /2 —68mu) = 0 and the inviscid Burg-
ers equation Qyu. + d;u/2 = 0 as its vanishing viscosity limit are well-understood
in classical literature on first-order conservation laws using the notion of BV-
solutions. Instead, problem (1) in absence of the convection term amu?: /2 forms a
gradient flow. In [5] the authors succeeded to study it as an L2-gradient flow of the
total variation functional for functions of bounded variation on bounded domains.
The main challenge in the mathematical analysis of the viscoplastic Burgers model
(1) lies in the combined presence of the convection term and the stress o stem-
ming from the non-smooth potential 1, which thus couples the Hamiltonian part
and the non-smooth, dissipative part. It is well-known that shocks form in the
inviscid Burgers equation, which are still suppressed in the viscous version. In [6]
the authors studied a variant of the viscous Burgers equation, where the quadratic
viscous potential 13(a) := 3|a|* was replaced by

(2) Ye(a) = Vlal* + 2

with € = 1, and observed that large gradients lead to jumps. In other words, the
parabolicity of this problem is too weak to prevent shocks for near-shock data.
We observe a similar behavior for our less regular potential ). Therefore [4] in
particular investigates the interplay of shock waves with the non-smoothness.

In order to obtain the existence of BV -solutions for (1) we approximate (1) by a
sequence of regularized problems featuring a small parameter € > 0; in particular,
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the regularized version of (1la), (1b) reads

(3a) Opue + Oy (uz/2 — 0. — eamue) =0 in (0,00) xR, where
(3b) 0:(t,x) = Do (Opuc(t,x)) for 1. from (2),

again complemented by far-field boundary and initial conditions. In this way,
the multivalued subdifferential is replaced in (3) by the Fréchet derivative of the
smooth potential 1.. Additionally, the regularized model (3) features a viscous
regularization stemming from the quadratic viscous potential 15(a) = 5|al?. For
£ > 0 we obtain local-in-time H?2-solutions and a-priori bounds uniform in & from
the energy-dissipation balance of the regularized problems. Based on this, we
establish in [4] a suitable notion of BV-solution for problem (1) that arises from
a weak formulation of (3) in the limit ¢ — 0. In particular, the term o arises as
the limit of the sequence (Dt (9, uc))e and it can be related to an element of the
subdifferential of the total variation functional defined on a suitable subspace of
a Bochner space with values in the space of functions of bounded variation. We
derive the Rankine-Hugoniot condition at jumps and a suitable entropy condition
for piecewise smooth solutions.

This is joint work in progress with Xin Liu (Texas A&M University) and Edriss
Titi (Texas A&M University and University Cambridge), supported by the DFG
within project C09 Dynamics of Rock Dehydration on Multiple Scales of CRC 1114
Scaling Cascades in Complex Systems, project number 235221301.
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Eye formation in tropical cyclones
EMMANUEL DORMY

(joint work with Peter A. Davidson, Kerry A. Emanuel, Ludivine Oruba and
Andrew M. Soward)

The eye is probably the most striking property of a hurricane, yet its origin is
poorly understood. I have reported in this presentation the investigation of a
simplified mathematical model of the atmosphere: dry rotating Rayleigh-Bénard
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convection under the Boussinesq approximation. More precisely, the flow is gov-
erned by

Du 1
(1) — = ——Vp-2Q xu+vViu—abg, with V-u=0,
Dt Po
which is complemented by an advection diffusion equation for the temperature
perturbation 6. If we restrict our attention to an axisymmeric flow, which is a
sensible simplified model for a tropical cyclone (TC), the azimuthal component of
(1) then yields an evolution equation for the angular momentum I' = rug,
Dr
(2) Vi
Dt
where V2 is the ‘Stokes operator’, defined as V2 = r% (%%) + g—;. While the
curl of the poloidal components yields an evolution equation for the azimuthal
vorticity, wg = V X up,

2
(3) B(ﬂ):2<1)+&%_%@+ivz(m¢).
Dt \ r 0z \ r* r 0z r or 12

An isolated cyclone in a cylindrical domain is being investigated numerically.
The domain is bounded introducing an artificial outer wall, which is not present in
the geophysical setup. It is shown that the use of stress-free boundary conditions
on this wall results in the formation of a singularity [4], no-slip boundary conditions
therefore must be considered. Numerical simulations are performed on which eye
formation can be investigated [2, 3]. Different boundary conditions, of increasing
geophysical relevance, as well as a simplified model for radiative cooling are also
investigated [1].

Equation (3) is enlightening. The eyewall is characterised by a strong negative
azimuthal vorticity (associated with the rapid upwelling in the eyewall and the
slow subsidence within the eye). On the right-hand-side of (3) four terms are
present, from left to right, the so-called vortex tilting term, the Coriolis term, the
buoyancy term and the viscous term. Numerical simulations reveal that locally,
near the eye, both the Coriolis term and the buoyancy term are secondary. The
leading order balance involves the non-linear advection (on the left-hand side), the
vortex tilting term and the viscous stress. In the limit of low viscosity (relevant
to TCs away from boundary layers) it is easy to show that the vortex tilting term
cannot, in this model, cause any net negative azimuthal vorticity in the eyewall.

Indeed, (3) yields
We 0 FQ
(4) v () = 5 (7) ’

considering a flux tube F, bounded by two streamlines and by a fixed radius
re in the (r,z) plane, and integrating (4) over this tube, by Fubini, the right-
hand side involves an integral in z at fixed r of (0/9z) (I'?/r*). Because I' is
constant on each bounding streamline, this integral vanishes for each value of r
and so does the right-hand side of (4). This shows that the vortex tilting term
(involving axial gradients in I') has no net contribution to the azimuthal vorticity

= —2rQu, +vVi(T),
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in the eyewall. An eye formation mechanism relying on vorticity stripping from
the bottom boundary layer is thus identified. It does differ from earlier models
which either involve diabatic heating or rely on the vortex tilting term.

As an illustration, a standard discussion of the eye formation could consider the
cyclostrophic approximation in the radial direction together with the hydrostatic
balance in the vertical direction. This would correspond in our model to balancing
the first and the third term on the RHS of (3). We have however observed numer-
ically that the third term (buoyancy) was unimportant in the local dynamics, and
we have further observed that the (non-hydrostatic) vertical advection was very
significant near the eyewall.

A first attempt to derive an asymptotic solution (based on the small aspect
ratio of the domain) has been provided in [5]. While the asymptotic solution can
capture important features of the flow near onset, because the solution involves
separation of variables, it cannot allow the description of the eye. This mechanism
is thus currently lacking a formal mathematical description.

It is also important to stress that this mechanism has only been highlighted
in a dry model of TC. In our model, motions are solely driven by heat and the
atmosphere therefore needs to be unstably stratified. Models involving moist con-
vection are currently under development to test whether this mechanism could
still drive subsidence in the presence of diabatic heating, and if not, how the force
balance is modified by the release of latent heat via condensation.

REFERENCES

[1] E. Dormy, L. Oruba and K.A. Emanuel, Eye Formation and energetics in a dry model of
hurricane-like vortices, Journal of the Atmospheric Sciences, 81 (2024), 1565-1578.

(2] L. Oruba, P.A. Davidson, E. Dormy, Eye formation in rotating convection J. Fluid Mech.,
812 (2017), 890-904.

[3] L. Oruba, P.A. Davidson, E. Dormy, Formation of eyes in large-scale cyclonic vortices,
Phys. Rev. Fluids, 3 (2018), 013502.

[4] L. Oruba, A.M. Soward and E. Dormy, Spin-down in a rapidly rotating cylinder container
with mized rigid and stress-free boundary conditions, J. Fluid Mech., 818 (2017), 205-240.

[5] A.M. Soward, L. Oruba and E. Dormy, Bénard convection in a slowly rotating penny shaped
cylinder subject to constant heat fluxz boundary conditions, J. Fluid Mech., 951 (2022), A5.

The three limits of the hydrostatic approximation
AMRU HUSSEIN

(joint work with Ken Furukawa, Yoshikazu Giga, Matthias Hieber,
Takahito Kashiwabara, Marc Wrona)

The primitive equations are derived from the 3D-Navier-Stokes equations by the
hydrostatic approximation. Formally, assuming a vertically e~thin domain

Q.= (-1,1) x (=1,1) x (—e,¢e), where ¢>0,
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and anisotropic viscosities with vertical viscosity v.(e) and horizontal viscosity
vy = 1, one obtains the rescaled Navier-Stokes equations on €3 x (0,7) for T' > 0
(NS&B)

Opves + e s - Ve s — Apgve 5 — V‘;(QE) O2ves +Vapes = 0,
g2 (8tw€,6 +Ues - Vwe s — Agwe s — We—(ze)afwe,a) +0.pe5 = 0,
divuey(g = 0,

ue,5(0) = (uo)eys-

The formal limit equation for ¢ — 0 now depends crucially on the behaviour of
the term

v.(e)

0= =

For ¢ — 0 one hence has three cases: For § > 0 constant setting for simplicity
0 = 1, one has formally the primitive equations with full viscosity as VZE—(QE) =1.
If 6 — 0, one obtains the primitive equations with only horizontal viscosity as in
(NS, 5) also the term ”Ze(f) 0%v. — 0 for § — 0. In the case § — oo one obtains
the 2D-Navier-Stokes equations which can be seen heuristically when considering
the energy inequality. The convergence for § = 6. = €72 and ¢ — 0 for v > 2
has been proven recently by Li, Titi, and Yuan using energy estimates. Here, we
consider more generally v, = €26 and show how maximal regularity methods and
quadratic inequalities can be an efficient approach to the same end for £, — 0
in the strong setting. The flexibility of our methods is also illustrated by the

convergence for 6 — oo and € — 0 to the 2D-Navier-Stokes equations.

On the stationary triple-deck equations
YASUNORI MAEKAWA
(joint work with Sameer Iyer)

The triple-deck equations are a classical boundary layer model which describes the
asymptotics of a viscous flow near the separation point, and the Couette flow is
an exact stationary solution to the triple-deck equations. In this talk we see some
key mathematical structures of two-dimensional stationary triple-deck system in
the half space: the kinetic operator which is well known as hypoeliptic, nonlinear
transport effect away from the boundary, and the elliptic regularization of the order
4/3 for the unknown variable related to the pressure-displacement relation. These
structures lead to the local rigidity theorem of the Couette flow in the sense that
there are no other stationary solutions near the Couette flow in a scale invariant
space. This result provides a stark contrast to the well-studied stationary Prandtl
counterpart, and in particular offers a first result towards the rigidity question
raised by R. E. Meyer in 1983.
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Mathematical analysis of an inviscid Voigt regularisation of the
elastic-viscous-plastic sea-ice model

DANIEL W. BOUTROS
(joint work with Xin Liu, Marita Thomas and Edriss S. Titi)

We consider the elastic-viscous-plastic (EVP) sea-ice model, which was originally
introduced in [1] and is one of the most frequently used and standard dynamical
sea-ice models. In particular, we introduce an inviscid Voigt-regularisation (i.e. a
term —a?0;Ac) of the evolution equation of the stress tensor, which leads us to
consider the following (regularised) Voigt-EVP model

1) du=V-o+T,

P 2 2P

(3) ulg=o= ug, Oli=0= 00,

1 4DF 1 De DE
(2) Eat (0’ — ozon) + - <0’ — =Tr U]Ig) + — Troly + 7]12 = D(u),

where u : T? x [0,7] — R? is the velocity field, o : T? x [0,7] — R**? is the
stress tensor, 7 : T2 x [0,7] — R? includes the wind and ocean stresses, as well
as the Coriolis and gravitational forces. Moreover, P > 0 is the pressure, a > 0 is
the (Voigt) regularisation parameter and D, = /|D(u)|? + €2 is the (regularised)
strain rate, where D(u) = £[Vu + (Vu) '] is the symmetric part of the gradient
and € > 0 is the strain rate cutoff parameter.

First we observe that without the Voigt regularisation, the linearised 1D EVP
model (around a solution (7, 7)) is (locally) elliptic if at a space-time point (zq, to)

_i 70U _1 O, <0
2P\ Jlo,u> + e 2,/|0,u + &

This linear instability of the 1D EVP model will be studied in a forthcoming paper
and leads us to consider the Voigt-EVP model (1)-(3).

In [2] we prove the global well-posedness of the Voigt-EVP model. In par-
ticular, for ug € H?(T?) and oy € H3(T?) (and reasonable assumptions on the
drag forces) we show that there exists a unique global strong solution (u,o) €
C([0,T); H*(T?)) x C([0,T); H3(T?)). In particular, we are also able to prove the
global well-posedness of the system for the case of strain rates without cutoff (i.e.
when € = 0), which has been a major issue in the computational study and analysis
of the related Hibler sea-ice model.
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Analysis aspect of tropical climate model
DonNcjuaN N1u
(joint work with Huiru Wu, Robin Ming Chen, Houzhi Tang)

The study of large-scale atmospheric and oceanic flows is essential for understand-
ing tropical climate dynamics, where interactions between barotropic and baro-
clinic velocity modes and temperature variations play a significant role. To ad-
dress this, Frierson, Majda, and Pauluis [3] introduced the tropical climate model
(TCM), which was derived from the hydrostatic Boussinesq equations via Galerkin
truncation up to the first baroclinic mode for understanding key dynamical pro-
cesses in tropical climates.

In this talk, I will primarily present the mathematical theory of TCM, which
includes its well-posedness, large-time behavior, and nonlinear stability around the
shear flows. Precisely, I first introduce the global well-posedness and large-time
behavior of 2D TCM under smallness assumption of the initial data. To explore
the intrinsic relationship between the first baroclinic mode of the velocity and
temperature, we further investigate the stability around the steady-state solution
and the optimal time decay rates for 3D TCM. The key points here are that we
remove the smallness assumption on the lower-frequency part of the initial data
and establish both the upper and lower bounds of the time decay rate. Finally,
we prove the nonlinear stability around the Couette flow for 2D viscous TCM
by virtue of the enhanced dissipation generated by the non-self-adjoint operator
y0; — A. In this proof, we utilize the method of Fourier multiplier operators to
achieve additional regularity, which was first introduced by Deng-Wu-Zhang [2]
for Boussinesq equations and later developed by Wei-Zhang [6] for Navier-Stokes
equations.
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Variational Closures Of Composite Homogenised Fluid Flows
Ruiao Hu
(joint work with Theo Diamantakis, James-Michael Leahy)

Stochasticity arises naturally in the modelling of multiscale systems. Theoret-
ically, it emerges in the singular limits of systems with multiple temporal and
spatial scales. In applications such as geophysical fluid dynamics, stochasticity
can effectively represent unresolved turbulent fluctuations and their feedback on
resolved scales.

In this talk, based on the preprint [1], we apply homogenisation theory to derive
a Lagrange-to-Euler map of an ideal fluid flow, modelled by a stochastic flow of
diffeomorphisms, as the deterministic homogenised limit of a parameterised flow
map that decomposes into rapidly fluctuating and slow components in time. In
this limit, the rapidly fluctuating component becomes a prescribed stochastic flow
of diffeomorphisms that can introduce stochasticity into the dynamics of the slow
component, which are closed through Euler-Poincaré variational principles [3].

By constraining the variations to adhere to the composite structure of the sto-
chastic flow of diffeomorphisms derived from the homogenisation limit, we obtain
stochastic partial differential equations for fluid momentum and tracers with trans-
port noise agreeing with those derived in, e.g., [2]. We show that these stochastic
equations are equivalent to a system of random coefficient partial differential equa-
tions for the mean fluid momentum and tracers via a transform by the stochastic
flow of diffeomorphisms. Owing to its variational derivation, this result holds for
a large class of geophysical fluid models outlined in [3] and we illustrate it through
Euler’s equation.
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Stochastic geometric mechanics and its application to transport noise
in continuum dynamics

OLIVER D. STREET

Stochastic modelling approaches have the ability to provide a statistical represen-
tation of the influence of unresolved physical processes on those resolved within
computational simulations of large-scale fluid systems. The stochastic modelling
approach is most applicable to multiscale systems, such as the climate [2], which
have both slow and fast dynamics interacting nonlinearly.

When stochastic forcing terms are incorporated into the classical equations of
fluid mechanics, care must be taken to ensure that the mathematical structure of
the model is not destroyed. Using the geometric structures inherent to inviscid
fluid mechanics, it is possible to add transport noise to continuum models in such
a way that many conservation laws of the deterministic system are present in the
stochastic case [3]. For example, the vorticity form of Euler’s equation becomes

(1) dw-l—ﬁuwdt—f—z,/lginthi =0,

where & are arbitrary fixed vector fields, and {odW}};>1 denotes Stratonovich
integration with respect to i.i.d. Brownian motions. The Lie derivative operator
Lyw is u - Vw in 2D and includes the line stretching term in 3D. This equation
then conserves enstrophy (in 2D), helicity (in 3D), all Casimirs of the Lie-Poisson
bracket, has a Kelvin circulation theorem, but does not preserve energy. A variety
of geophysical models have since been derived using this approach.

This approach has recently been shown to provide a stochastic generalisation
of the key structures present in geometric mechanics [5], including reduction by
symmetry and Noether’s theorem, and be consistent with stochastic Hamiltonian
systems of the type studied in [1, 4]. Thus, it preserves many conserved quantities
of physical models which result from symmetries or degeneracy of the Poisson
structure. It remains to explore the breadth of the applicability of this work, and
understand which problems are most aided by its ability to preserve structure.

REFERENCES

(1] Bismut, J. -M. (1981) Mécanique aléatoire. Lecture Notes in Mathematics 866. Berlin,
Springer.

[2] Hasselmann, K. (1976) Stochastic climate models Part I. Theory. Tellus. 28, 473-485.

[3] Holm, D. D. (2015) Variational principles for stochastic fluid dynamics. Proceedings of the
Royal Society A. 471, 20140963.

[4] Lazaro-Cami, J. -A. and Ortega, J. -P. (2008) Stochastic hamiltonian dynamical systems.
Reports on Mathematical Physics, 61 (1), 65-122.

[5] Street, O. D. and Takao, S. (2024) Semimartingale driven mechanics and reduction by
symmetry for stochastic and dissipative dynamical systems. arXiv [Preprint].



1248 Oberwolfach Report 24/2025

Traveling water waves
JORG WEBER

In this talk, we give a short introduction to the traveling water wave problem in
two dimensions, one of the oldest problems in mathematics with a history of more
than two centuries. After presenting the original equations in the spirit of Euler,
we rewrite them in the stream formulation, which is more amenable to tools from
functional analysis. Here, a handful of key challenges are identified: the a priori
unknown fluid domain, making the problem a free boundary problem; the choice
of a change of variables to map the domain to a fixed domain; the nonlinear and
inherently nonlocal nature of the problem; allowing for various streamline pat-
terns and free surface geometries. Finally, we explain the established strategy of
applying abstract (local and global) bifurcation theorems to construct solutions
rigorously and discuss open questions in the field, such as characterizing the lim-
iting behavior of a bifurcation branch depending on the vorticity function. For
further details see, for example, [1, 2, 3, 4].
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On the nonlinear dynamics of Saturn’s hexagon
ADRIAN CONSTANTIN
(joint work with R. S. Johnson)

The amazing hexagonal structure that surrounds the North Pole of Saturn in a
zonal polar band has fascinated scientists since it was first glimpsed in the 1980s.
Although several phenomenological models have been able to reproduce such flow
patterns, a self-consistent model for how large-scale and high-speed polygonal jets
might form in the upper troposphere of is lacking.

Observations show that an assortment of smaller vortices that are caught up in
the hexagon’s jet-stream rotate clockwise. A strong eastward jet is located within
the warm belt between 72°N and 78°N, and the zonal velocity of this sheared
jet increases from about 80 ms™! at 72°N to nearly 120 ms™! at 78°N (see [6]).
The poleward directional shear induces vorticity tubes within the belt, veering
particles between the boundaries in a clockwise motion. On the other hand, due
to the high latitudes, the jet trajectories along the boundaries of the belt are more
accurately described as being counterclockwise circular, instead of the straight-
line-flow model adequate for equatorial regions. This makes hypotrochoids — paths
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mapped out by the movement composed of the rotation of two circular motions
in opposite directions — dynamically relevant. Note that a purely circular motion
captures the salient features of Jupiter’s Great Red Spot, while the composition of
a straight-line motion and a circular motion describes the filamentary zonal flow
that is observed on the southern boundary of the Great Red Spot (see [1]).

We now describe the approach pursued in [2]. It starts with the general equa-
tions of motion for compressible, inviscid flow, written in local rectangular coor-
dinates and with the f-plane approximation invoked. We non-dimensionalise and
apply a systematic thin-shell asymptotic procedure to derive a consistent set of
nonlinear governing equations for the dynamics of flows confined to a thin layer in
a narrow, zonal, cloud band. Then we show that the governing equations admit so-
lutions with particles moving on paths shaped like regular polygons with rounded
corners, which arise as trajectories of the movement of two circular motions in
opposite directions. The available data links the specific number of corners to the
internal heat forcing and to the location of the pattern. The obtained solution
captures the following observed features (for data see [2, 4, 6]):

(1) size of the hexagon;
(2) speeds within the hexagonal jet stream (maximal/minimal zonal speeds of
about 118/82 ms~! and meridional speeds of about 18 ms~1);
3) the hexagon is a heat sink (heat flows towards the hexagon);
4) the hexagonal band’s excursions in latitude are approximately 41°;
5) there is a poleward temperature increase within the hexagonal jet* of about
5°K.
On the basis of the results that we have obtained, it is reasonable to conclude
that the hexagon is sensitive to, and is controlled by, the internal heat sources. If
the heat forcing changes only slightly over a period of Saturnian years — and we
have evidence so far for only a little over one Saturnian year — then we can expect
that the dynamical structures that we observe at the surface of the atmosphere
will remain essentially unaltered. And there is more. Our approach, based on the
construction of particle paths, shows that we can not only describe the spectacular
hexagonal pattern, but also other structures that are typical of zonal flows on
Saturn. Hypotrochoidal paths arise naturally in the sheared zonal flows confined
to narrow circumpolar bands that are typical for Saturn, if there is a suitable heat
forcing. However, only rounded polygonal patterns (like the hexagon) are easy
to track, while other paths present a large number of self-intersections. This also
means that under a period change of the internal heat forcing, Saturn’s hexagon
will most likely become a transient phenomenon: even a small deviation will, with
the passage of time, lead to an intensification of the self-intersections, eventually
causing the pattern to depart from its current polygonal shape.

Finally, let us note that only an internal heat forcing that persists for a long time
can sustain hypotrochoidal paths. This is relevant for the absence of a polygonal
pattern in Saturn’s southern polar troposphere, despite the presence of a strongly
sheared circumpolar jet flowing eastward in the zonal band between 66°S and 70°S,

(
(
(

!The North Pole is a hot spot in Saturn’s upper troposphere.
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with a poleward speed increasing from about 30 ms™' to a maximal speed of 100
ms~! at 70°S. The crucial difference to Saturn’s northern polar troposphere is the
absence of a persistent internal heat forcing associated with this southern jet.
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Critical Drift-Diffusion equations: Intermittent behavior
FeLIX OTTO
(joint work with Sefika Kuzgun, Peter Morfe, Christian Wagner)

We are interested in the drift-diffusion equation

(1) Ot —b-Vu—Au=0 in the whole n-dimensional space
with a time-independent and divergence-free drift b, i.e. 9;b = 0 and
(2) V-b=0.

More precisely, we are interested in the Lagrangian coordinates, that is, the initial
data u(t = 0,2) = x, and the drift b sampled from a stationary and isotropic
Gaussian ensemble. The theme of the work is that Gaussian b induces an inter-
mittent (and thus strongly non-Gaussian) behavior on the level of u. We are able
to establish this in the scaling-critical setting

(3) b(u-) = %b in law for all p > 0,

in which convection and diffusion balance at every scale.

It is well-known that this setting is too rough: By the scale-invariance in law (3),
the regularity of b is no better than C~!, so that in view of (1), u is at best! in
C! which is insufficient to define the product b - Vu = V - ub. To remedy this, we
consider a small-scale cut-off, w.l.o.g. at scale 1 and implemented on the level of
the Fourier transform:

(4) Fb(k) = 0 for every wave number |k| > 1.

1n fact our result (5) shows that w is worse than Lipschitz continuous by the quartic root of
a logarithm.
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This fixes b up to a single constant which we describe in terms of E[b]? = €%n,
where € < 1 can be interpreted as the Péclet number.

We discover the intermittency on the level of the particle pair distance d
1 [T t t,0)?
dQ(T, Z‘) — _/ dt|u( 7x) ( )|
T Jo

—u
|| ’
where w.l.o.g. we put one particle at the origin. We monitor d? in terms of the
effective single particle diffusivity which is given by

AT) = \/1+§ln(1+T),

as was established with increasing precision in [5, 2, 3, 1].

Theorem 1 (Kuzgun, Morfe, O., Wagner; see [4] for n = 2). For 2\(|z|?) < 1,

(5) Ed*(T, z) ~ max { )\/Eg"z) , 1}

while for p > 1,

2
AT) 1+525 (1)
(6) Ed* (T, x) >, (max{ , 1}) .
A(lz[?)
In view of the positive number WL-%Q in the exponent, the pth moments of the

squared particle pair distance feature anomalous behavior in p, which amounts to
intermittency.

We now give the main idea behind the proof of Theorem 1. If we momentarily
neglect the diffusion in (1) by replacing it with

du+b-Vu=0,
then the Jacobian matrix F; := Viu(t,0) satisfies
dF
(7) E = FtVb(u(t, O)) and Ft:() =1d.

Since by (2), Vb € sl(n) := {trB = 0} one has F' € SL(n) := {detF = 1}.
In fact there is a unique Brownian motion {B;},>o on the Lie algebra sl(n) and
a corresponding diffusion {F;}.>o on the Lie group SL(n) such that

(a) Ito=Stratonovich: dF = F odB = F.dB,

(b) Isotropy: OF; = F;O in law for all O € O(n),

(c) Normalization: dE|F|? = 1E|F,|%dr.

In view of (a), F' can be considered a tensorial version of the stochastic exponential
and as such displays intermittency:
BIEL [ ey o1 0T

Note that the exponent in (6) arises from the linearization of the above exponent
at p=1.
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The main ingredient for Theorem 1 is that after a time change t <+ 7 given by
T(t) = In A(¢)
one has, even in the presence of diffusion,
‘quenched noise’ Vb(u(t,0))dt ~ ‘thermal noise’ dB-.

Theorem 2 ([4]). There exists a coupling b <+ B such that for all (x,T) we have
I + 2 o 2
7/ dtE [Viu(t,0) — Fromy|” S €E|Fy ).

More precisely,

IR
x L _ ot 2 < 2 2
IET/O dt|x|2 lu(z,t) = u(0,t) = F2) r(ry2l” S €EFo (1)

where Fr. - is as in (a) started at time T+.

The proof is based on the method of scale-by-scale homogenization introduced in

[3]-

Our result shows that the intermittency of the drift-diffusion equation depends
less on topology (stream lines of the diverge-free b are closed iff n = 2) and more
on geometry (SL(n) has less curvature as n increases).
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What are good solution concepts for the PDEs of fluid mechanics?
SIMON MARKFELDER
(joint work with Valentin Pellhammer, Christian Klingenberg, Emil Wiedemann)

The quest for a good solution concept for the PDEs arising in mathematical fluid
mechanics is an outstanding open problem. In this talk we consider both the
incompressible

(1)

and the isentropic compressible Euler equations
) Oro + div(ou) =0,
) 9 (ou) + div(ou ® u) + V(o) = 0.

It is well known that the study of weak solutions is unavoidable because strong
solutions can blow up in finite time (in the compressible case (2) shocks may
evolve; in the incompressible case (1) an example for finite time blow-up was
given in [5]). Moreover, we rule out weak solutions which do not comply with the
energy inequality, and call the remaining weak solutions admissible. Interestingly,
with the help of convex integration one has been able to prove non-uniqueness
of admissible weak solutions [4, 1]. This non-uniqueness seems to be related to
turbulent behaviour of the flow.

The main purpose of this talk is to address the question of how to deal with
the fact that admissible weak solutions are not unique. We discuss two kinds of
approaches to overcome the lack of uniqueness.

Firstly, one tries to preserve the concept of weak solutions by imposing a selec-
tion criterion in order to identify the “right” admissible weak solution. To explain
this we look at the compressible case (2). The strategy is to consider 2-D Riemann
data (i.e. 1-D Riemann data which are trivially extended to the second dimension)
as a test case, and check whether a certain criterion at hand selects the solution
which one expects to be the “right” one. More precisely, such a 2-D Riemann
problem may be solved by classical means, which yields a solution consisting of
shocks, contact discontinuities, and rarefaction waves. One usually expects that
this solution (which is also called the 1-D solution) is the “right” one. However,
as shown in [1], there exist infinitely many other admissible weak solutions to the
same initial data.

In this talk we consider selection criteria regarding maximal energy dissipation
(as suggested in [3]), and criteria concerning the action (as suggested in [6, 7]).
We explain why these criteria fail to select the 1-D solution as shown in [2] (for
the global mazimal dissipation criterion), [9] (for the local mazimal dissipation
criterion) and [10] (for the least action criterion). Consequently, one either has
to reconsider one’s intuition that the 1-D solution is the “right” solution, or these
criteria must be discarded.

The second direction of how to overcome the problem of non-uniqueness of weak
solutions is just to accept it as a matter of fact, and develop generalized solution

dive =0,
dw+v-Vu+Vp=0,
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concepts which capture the non-uniqueness of weak solutions. In this talk we
explain the notion of mazimally turbulent solutions to the incompressible Euler
equations (1), which was introduced recently in [8]. We sketch how existence and
uniqueness (which has to be understood in a certain sense) of such solutions is
proven. Moreover, we demonstrate by considering an example that this notion of
solution represents the most spread out collection of weak solutions. Consequently
this solution concept endorses the non-uniqueness at the level of weak solutions
but still yields a unique object.
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Inertial Manifolds for Regularized Navier-Stokes Equations
YANQIU GUO

(joint work with Mohammad Abu Hamed, Ciprian G. Gal, Michael Ilyin,
Edriss S. Titi)

One of the central problems in the study of dissipative systems governed by PDEs
is whether their long-term dynamics are effectively finite-dimensional and can be
captured by a system of ODEs. To address this, Foias, Sell, and Temam intro-
duced the concept of inertial manifolds—finite-dimensional, Lipschitz-continuous,
invariant manifolds that attract all trajectories of the associated dynamical system
exponentially fast. The existence of an inertial manifold for an infinite-dimensional
evolution equation provides the best analytical reduction of such a system to a
finite-dimensional one. However, it remains an open question whether the Navier—
Stokes equations (NSE) admit an inertial manifold.

In this talk, I discuss the existence of inertial manifolds for certain regularized
versions of the Navier—Stokes equations.
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In the work [1], in collaboration with Abu-Hamed and Titi, we established the
existence of inertial manifolds for two subgrid-scale a-models of turbulence: the
simplified Bardina model and the modified Leray-a model, on the two-dimensional
periodic domain T2. These models were derived by weakening the convection term
in the NSE. We verified a spectral gap condition and employed a number-theoretic
result by Richards concerning large gaps between sums of two squares. It remains
of interest to investigate the existence of inertial manifolds for other a-models of
turbulence.

Alternatively, one can regularize the NSE by strengthening its diffusion term.
In the work [2], in collaboration with Gal, we proved the existence of inertial
manifolds for the hyperviscous Navier—Stokes equations:

(1) ou+ (—A)Pu+ (u-Viu+Vp=f, with V-u=0,

on T? or T3, provided 8 > 2. In particular, when 8 = 2 on T?, the spectral
gap condition fails, and we applied the spatial averaging method developed by
Mallet-Paret and Sell.

To further reduce the value of 3, which represents the strength of hyperviscosity
in (1), we studied the sparse distribution of integer lattice points in annular regions
in R? and R3-a topic of independent interest in number theory. In collaboration
with Ilyin [3], we established an optimal result concerning the asymptotic thickness
of annuli within which lattice points are sparsely distributed. Building on this
property, we proved the existence of an inertial manifold for the hyperviscous

NSE (1) on T? when 3 > 1L [4].
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The Dynamics of Stochastically-Forced Beta-Plane Zonal Jets
LAura COPE
(joint work with Peter H. Haynes)

Zonal jets are strong and persistent east-west flows that arise spontaneously in
planetary atmospheres and oceans. They are ubiquitous, with key examples in-
cluding mid-latitude jets in the troposphere, multiple jets in the Antarctic Cir-
cumpolar Current and flows on gaseous giant planets such as Jupiter and Saturn.
Turbulent flows on a beta-plane lead to the spontaneous formation and equilibra-
tion of persistent zonal jets [3]. However, the equilibrated jets are not steady and
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the nature of the time variability in the equilibrated phase is of interest both be-
cause of its relevance to the behaviour of naturally occurring jet systems and for
the insights it provides into the dynamical mechanisms operating in these systems.

1. MATHEMATICAL MODEL

This work discusses aspects of zonal jet variability using insights from a frame-
work of barotropic beta-plane models in which stochastic forcing £ generates an
idealisation of turbulence. The overarching nonlinear (NL) model can be described
using the stochastically-forced, linearly-damped, beta-plane vorticity equation:

(1) e IO+ AT =€~ VG,

ot
where ( is the relative vorticity, ¥ is the streamfunction, £ injects energy at rate e,
1 is the rate of energy dissipation and /3 is the potential vorticity gradient. Note
that J is the Jacobian determinant, defined by J(A, B) = A, B, — AyB,.

This system admits a variety of solutions as the parameters (g, i, 8) are varied.
Notably, jets are observed to randomly wander, merge and nucleate, and also to
systematically migrate north or south (see figure 1). Whilst jet migration has
previously been observed in more complex systems in which there is spherical
geometry [1], it has never been observed in a model where there is no obvious
latitudinal symmetry breaking mechanism. Numerical data highlights a striking
relationship between the jet migration speed, V, the dissipation rate, u, and the
Rhines scale, Lgy, ~ /4 /(8Y/?u!/*) (associated with the jet spacings):

(2) Ve~ NLRh-
2. QUASILINEAR AND GENERALIZED QUASILINEAR MODELS

In order to elucidate aspects of variability, this study uses a hierarchy of model
reductions by systematically eliminating nonlinear interactions in the NL model.
For simplicity with notation, the NL vorticity equation can be written as

3) a¢/ot = L[¢] + NTC. ],

where £ represents linear operators and N includes nonlinear terms of quadratic
order. To proceed, a generalisation of a standard Reynolds decomposition is ap-
plied to the vorticity field to separate it into two parts: one that is associated

ks
E
P 2
T o0
£
i |

- i ‘

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000
Time (2)

FI1GURE 1. A latitude-time plot illustrating the zonal mean zonal
flow from the NL model. A pair of jets equilibrate and system-
atically migrate either north or south, occasionally and sponta-
neously changing their direction of migration.
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. =L . . . .
with low zonal wavenumber modes, ¢ , and one that is associated with high zonal

—H L —H
wavenumber modes, (', where ( = (¢ +( . This decomposition separates the low
modes, with zonal wavenumbers |k,| < A, from the high modes, in which |k,| > A:

(4) )= Y Y ket

[kz| <A Ky

(5) Mty = Y Sk e,

|kw|>A ky

thereby introducing a new parameter, A, which is a partition wavenumber repre-
senting the largest zonal wavenumber retained in the low modes.

Equations of motion for the low and high modes can be derived, and nonlinear
interactions are systematically neglected, as described in [4], such that the system
retains the original conservation laws:

OC" by —eLH —H) | Lol <Ly Ll
(6) - R e I el R g et
——
Neglect
aZH H H —~L —H H ~L —L H—~H —H
(7) —= =L+ NN I+ N
Neglect

This is known as the generalised quasilinear (GQL) approximation. In the limit

A — o0, the high modes disappear, ZH = 0, and we recover the NL model, whilst
in the opposite limit, A = 0 is known as the quasilinear (QL) approximation [5].

Data from a large number of numerical simulations employing the GQL and
QL approximations are compared with equivalent NL simulations. Randomly
wandering and merging and nucleating behaviours are observed for all A values,
whilst migrating behaviour only occurs when A > 1.

3. THE IMPORTANCE OF ZONONS

These findings highlight the importance of the zonal wavenumber &, = 1 modes,
which are a generalization of Rossby waves known as zonons. To highlight their
importance more widely, it is possible to construct a simple relationship between
the jet strength, sometimes referred to as the zonal mean flow (zmf) index [5], and
the dimensionless zonostrophy parameter, defined as Rg ~ g1/2031/10 / pt/4:

10/3
(8) zmf = LM’
6+ Ry
plotted in figure 2. In simulations where the jet strength is defined to be the zonal
mean flow (i.e. zmf), figure 2(a) shows that the jets are weaker than predicted, i.e.
the data lie below this curve, and there is a systematic dependency on the type of
variability. However, by including the k, = 1 wavenumbers associated with zonons
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in a generalization of this index (gzmf) in figure 2(b), all data closely follow the
expected relationship. Further details and references can be found within [2].

(a) 1.0 ; ’ ; ; : (b) 1.0
0.8+ 08+ o J
0.6 - 0.6 4
E g
'0
04+ 04+ b 4
@ Randomly wandering & @ Randomly wandering
0.2 ® Merging and nucleating 02t & @ Merging and nucleating| |
@ Migrating @ Migrating
@ No jets @ No jets
(] L L T 1 T () L L T 1 I
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Rd R,‘j

FIGURE 2. The relationship between the zonostrophy parameter,
Rg, and (a) the zmf index and (b) the gzmf index for 629 NL
simulations. Each point represents a single simulation in which
the type of variability is denoted by the colour. The black curve
plots the theoretical relationship (8).
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Global bifurcation for corotating vortex patches
SUSANNA V. HAziOT
(joint work with Claudia Garcia)

We will consider solutions to the two dimensional incompressible Euler equations,
which in the velocity-vorticity formulation, take the form
(1) Ow + (v-Vw) =0, v=V=Iy, —AT = w.

Here, w denotes the vorticity in the fluid, v the fluid velocity and ¥ the stream-
function. Throughout, we will identify (z,y) € R? with 2 = 2 + iy € C.
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Vortex patches are solutions D(t) to (1) consisting of a region of constant vor-
ticity, submerged in an irrotational fluid. Mathematically, these are expressed
by

w(z,t) =1 for z € D(t), and w(z,t) =0 for z ¢ D(t).
Due to the structure of the Euler equations, although the boundary of the patch
D(t) evolves in time, the area remains fixed. Here, we will focus on vortex pairs,
where D1 = — D5, and the goal will be to find solutions which satisfy the initial
data

wo(2) = - (XD1(0)(2) + XD2(0) (2))-

The reason behind the rescaling of the vorticity is precisely because these pairs of
vortex patches will be constructed as a desingularization of point vortices, mathe-
matically represented by delta distributions, and hence we need to allow for patches
of different sizes, specifically, of size £2.

Moreover, we will focus on solutions which are steady, in the sense that they are
patches of permanent shape which rotate around each other at constant angular
velocity €). These are referred to as corotating vortex patches. By studying these
patches in a frame of reference which rotates at the same speed §2, in this frame of
references, the patches will appear to be stationary, or steady. Hmidi and Mateu
[4] proved the existence of a curve of infinitesimally small such solutions by means
of an implicit function argument. These bifurcate from a pair of point vortices
where the bifurcation parameter is the radius of the patches e.

The aim is the extend this local curve of solutions to a global one by means
of a global bifurcation argument. The solutions obtain through this process will
be far away from these infinitesimally small ones on the local curve, and the goal
is to reach patches of more interesting shapes. The first, and only other, global
bifurcation result for vortex patches was carried out by Hassainia, Masmoudi and
Wheeler [3] for the single patch setting.

By expressing (1) in terms of the relative stream function ¥ = ¢y — %Q|z|2 for
¥ € C'(C) we then get

1 1
(2a) AV = 2 XD + 2 XD 20,
(2b) V(¥ +1Qz[*) = 0, as |z~ oo, and U =c¢y,, ondD,,

for some constants ¢,,, m = 1,2. Since both the D,, and the function ¥ are
unknowns, this is a free boundary problem. We obtain the following result.

Theorem 1. [1] There exists a continuous curve C of corotating vortex patch
solutions to (2), with graphical boundary R(0)e, parameterized by s € (0,00)
along which:

i) (Bifurcation from point vortex) As s — 0 the solution limits to the point

vortex pairs.
ii) (Limiting configurations) As s — o0

min {R’(G),%nén eV (z) mi% 21 — z2|} -0

’
Zm€
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iii) (e bounded away from 0) The parameter £(s) is bounded away from 0 for
all s away from the local curve.
iv) (Analyticity) For each s > 0, the boundary OD,, is analytic.

The first limiting configuration indicates that the polar graph condition fails,
suggesting star-shaped patches. The second limiting configuration suggests the
presence of corners along the boundary of the patches, and the third one means
the boundaries of the two patches intersect. Numerics [5] suggest that the only
limiting configuration which can take place is the two patches intersecting, with a
corner at the point of intersection. This is known as Overman’s conjecture, and
the proof is still a major open problem in the field.

The third point in the theorem is a very important result. It guarantees that
the global curve cannot end at a pair of point vortices anywhere other than along
the local curve of solutions. The core of the proof relies on the following rigidity
theorem.

Theorem 2. [1] If wy = (7))~ (xp, + Xp,) is a solution to the vortex pair
problem then Q € (0,1/(27we?)). Moreover, if ¢ < 1/10 then |Q] < |I|72, where [ is
the distance of the center of the patch Dy to the y-axis.

The first part of the theorem is an adaptation of the result in [2] to the two-
patch setting. The second part is new with the striking property that it provides
uniform bounds on {2 regardless of where along the global curve the solution lies.
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Two-dimensional turbulence above topography: condensation
transition and selection of minimum enstrophy solutions

BASILE GALLET

Two-dimensional turbulence above topography is a fascinating system to test the
predictive skill of large-scale organizing principles for high-Reynolds-number flows.
Among those principles are the statistical physics of two-dimensional flows, and the
selective decay assumption. In the present context, the latter principle states that
enstrophy should be minimized while conserving the initial value of the energy [1].

In the present study we focus on a 2D turbulence in a doubly periodic domain,
above smaller scale topography, within the quasi-geostrophic approximation. The
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topography is at a scale strictly smaller than the domain size, although no scale
separation is required. We revisit selective decay for this setup and highlight
a new branch of solutions to the variational problem, which corresponds to a
large-scale ‘condensate’, that is, a large-scale circulation arising at the domain
scale. For weak initial energy, we predict that the flow organizes at the scale of
the topography, with no large-scale condensate. When the initial energy exceeds
a threshold value, a large-scale condensate emerges. At large initial energy, the
system thus displays the typical large-scale condensates that have been reported for
two-dimensional turbulence without topography [2]. We compare the theoretical
prediction for the amplitude of the condensate with numerical simulations of the
system using pseudo-spectral methods and a small hyperviscosity. Very good
quantitative agreement is obtained.

A second question of interest is whether such variational principles can be ex-
tended to out-of-equilibrium systems. Indeed, real flows are often forced and dissi-
pative, whereas the variational principles have been designed for energy-conserving
systems. How to extend selective decay to the forced-dissipative situation? We
provide an answer to this question in the regime where the forcing and damping
(linear friction) are small, using a perturbative expansion. To lowest order, we
recover the energy-conserving system. Leveraging selective decay, we predict that
the system is on the condensed branch, the amplitude of the condensate being
undetermined at this stage. Through a solvability condition arising at next or-
der in the expansion, we obtain a governing equation for the slow evolution of
the amplitude of the condensate, akin to the normal form of a standard bifurca-
tion. We first solve this equation for a forcing that is spatially correlated with
the structure of the bottom topography, predicting a continuous transition to con-
densation as the forcing strength exceeds a threshold value. We then consider
the situation where the forcing is at the domain scale, predicting a discontinuous
transition to condensation as the forcing strength increases. We have performed
pseudo-spectral simulations of the forced-dissipative system, obtaining very good
quantitative agreement with the predictions for both types of forcing. Some slight
discrepancy arises very near the instability threshold. This discrepancy seems to
stem from the presence of isolated vortices pinned to the topography, which are
not predicted by selective decay.

This work suggests a large-scale organizing principle for some weakly out-of-
equilibrium systems [3]. However, many questions remain, among which:

e The present numerical simulations were performed with single-scale topog-
raphy, but the theory holds for any topography. It would be interesting to
investigate whether the observed agreement between theory and numerics
remains for more complex topography.

e [t would also be desirable to understand the physical origin of the vortices
that are pinned to the topography. Can the theory be extended to predict
their strength and location?
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Optimal Balance — A black-box method for fast-slow decompositions
of fluid flow

MARCEL OLIVER

Many equations of geophysical fluid dynamics can be considered as a fast-slow
system of the form

(1a) q=F(q,p)

(1b) ep=Jp—Gla,p)

where J is a skew operator. In many cases, it is possible to show existence of a slow
manifold p = ®(g) such that the reduced equation ¢ = F(gq, ®(¢)) approximates
a solution of the full system with well-prepared initial data. This type of slow
manifold is typically neither invariant nor unique, but can often be constructed by
asymptotic expansion to arbitrarily high order [4]. For finite dimensional Hamil-
tonian examples, an optimal truncation of the associated asymptotic series gives
exponential accuracy over long times.

Optimal balance is a method that constructs one point on the slow manifold
computationally to high accuracy, without the need to compute and implement
asymptotic expansions. It requires a modification of the fast-slow system, where
the nonlinear terms can be gently turned on by way of a “ramp function” p(7) that
satisfies p(0) = 0 and p(1) = 1. For accuracy at order O(e™), we further require
that all derivatives up to order n vanish at the two endpoints of the ramp. Optimal
truncation even requires that all derivatives of p vanisch at the two endpoints.
Then, p can be at best in some quasi-analytic class of functions.

Given p, we solve the boundary value problem in time,

(2a) ¢ =p(t/T) F(q,p)

(2b) ep=Jp—p(t/T)G(q,p)

with the “linear end” boundary condition p(0) = 0, which indicates that at the
initial time, when the system is linear, the system state is exclusively slow, and the
“nonlinear end” boundary condition ¢(7") = ¢* which fixes the base point at which
we want to compute the slow manifold. Then ®(¢*) ~ p(7T') is an approximation
to the slow manifold.

The idea behind optimal balance is the adiabatic invariance of slow manifolds
under slow homotopies, which goes back to ideas developed in the early days of
quantum mechanics (e.g. [1]), appeared many times in different field of mechanics
and was introduced in the present context as “optimal vorticity balance” by [6].
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We have the following theorem, proved in [3] in finite dimensions for systems
with a particular Hamiltonian structure.

Theorem 1. Suppose F,G are analytic, p € G* with p(0) = 0, p(1) = 1, p(0) =
pW(1) =0 fori>1. Then there exist constants ¢ and d so that for all € > 0

3) Ip(T) - B(q")] < d p(——/)

where (q,p) solve the boundary problem (2) and ® denotes the mapping that rep-
resents a slow manifold obtained by asymptotically optimal truncation.

This result raises two questions: Is the optimal balance formulation (2) even
well-posed, and if so, how can we compute the solution. An obvious strategy, al-
ready used in the numerical implementation of [6], is “backward-forward nudging”.
Here, the optimal balance differential equation is solved alternatingly as a forward
resp. backward initial value problem between ¢t = 0 and ¢t = T. At the linear end,
p(0) = 0 is imposed before changing direction of integration, at the nonlinear end,
q(T) = ¢* is imposed before again changing direction of integration. The following
theorem, proved in [5] in the same framework as the previous theorem, shows that
this process converges up to an exponentially small remainder:

Theorem 2. Under the same conditions as Theorem 1, for every T there are
constants C' and D so that

(4) lim sup [lp7, (T) — ®(¢") < D eXP(—%)

for all € sufficiently small, where m denotes the count of nudging iterations, and
pt(T) is the final value of the p-component in the forward integration.

This theorem shows that the boundary value problem is well posed up to pos-
sibly an exponentially small residual. Further, it shows that the nudging error is
asymptotically as small as the optimal balance error of Theorem 1.

The main advantage of optimal balance is that it can be implemented in exist-
ing computational models with only minor modifications: we need to insert the
time-dependent ramp function before all nonlinear terms, and we need to be able
to reverse the direction of integration. (Typical eddy viscosities do not make a
significant difference in practice due to the small time horizon of the integration,
but of course viscosities need to be dissipative in the time direction of integration.)
Practical tests show, in the context of the f-plane shallow water equations that
optimal balance is highly effective and competitive with high-order asymptotic
methods. Moreover, for actual numerical code, the notion of balance is closely
tied to the concrete numerical scheme at this level of accuracy [2].

Current work is progressing toward using optimal balance in more realistic
settings, namely three-dimensional equations, fluid dynamics on the mid-latitude
[B-plane, on the equatorial g-plane, and on the sphere. Initial results show that
in order to avoid the need to formulate a projection onto the linear slow modes,
which may be very difficult in general settings, we can extend the idea of adiabatic
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invariance by also changing the linear operator adiabatially, such that slow modes
at the linear end of the ramp are always stationary, thus easily computable.
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Inviscid incompressible convection in porous media: nonlinear
Helmholtz decomposition, combinatorics and relaxed equations

YANN BRENIER

In the simplest case, incompressible convection in a porous medium D C R¢ may
be written in Lagrangian coordinates:

%(a) = G(a) — (Vp)(t, X¢(a)), a € D.

Here X; is a volume-preserving map of D, V¢ > 0, and G is a "buoyancy” force
(typically G(a) = (0,0, po(a)) as d = 3).
The Eulerian version (a.k.a. incompressible porous medium or Muskat equations)
easily follows when X; is assumed to be a diffeomorphism and Xy(a) = a. Indeed,
let us define implicitly the velocity field v and the "buoyancy” field g

dX;

dt
We easily get (0; +v - V)g = 0. Since X; is volume preserving, v is automatically
divergence free and parallel to dD. Finally, v = g — Vp. This exactly means that
v is the Helmholtz L? projection of g onto divergence-free fields parallel to d.D.

(a) =v(t, Xe(a)), g(t, Xe(a)) =G(a), a€D.

Time discretization by polar factorization. Let us recall the polar factoriza-
tion theorem for maps (Y.B. 1987/91-Euclidean case, R. McCann 2001-Riemannian
case) that can be seen as a nonlinear version of the Helmholtz decomposition the-
orem.

Theorem 1 ([1]). Let D C R? be a compact domain. Then, any non degenerate
T € L*(D,R?) (i.e. YN C R, vol(N) =0 = vol(T~*(N)) = 0) admits a unique
factorization T = VU o X, where U : RY — R is convex and X : D — D s
volume-preserving (i.e. vol(X Y (W)) =vol(W), YW C D). In addition, asd = 1,
VU is just the increasing rearrangement of T
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To discretize the Muskat system

d

5 Xt(a) = G(a) = (Vp)(t, Xi(a)) ,
with time step dt, we polar factorize, at each time step n, the ”predictor”
X"+ 0t G as VU o X"l with X"t : D — D volume preserving, U"+!
convex.
This ”predictor-corrector” scheme still makes sense in 1D and can be trivially
coded using permutations [2] while 2D simulations have been very recently per-
formed (Bruno Lévy, personal communication) thanks to Quentin Mérigot’s semi-
discrete optimal transport solver.

Multiphasic (“Young’s measure”) reformulation. (Y.B. Chin. Ann. Math
’09, hidden convexity book ’20 https://hal.science/hal-02928398)

P (@) = Ga) ~ (D)1 X (a)

translates in terms of ¢(¢,z,a) = §(x — X;(a)) into a pseudo-differential system of
conservation laws:

Ore(t, v, a) = Vo - (c(t, 2, a)[=G(a) + Vp(t, 2)])

Ap(t,z) = Vg - ([, c(t, #,a)G(a)) . This is somewhat surprising since the Muskat
equations are often considered as a gradient flow (as in Otto’s work)!

Note that ¢(-,-,a) > 0 is the concentration of phase a which can now be a
DISCRETE label. In 1D, the 2-phase case a € {0,1} corresponds to the invis-
cid Burgers equation (a.k.a Buckley-Leverett equation, as in Otto CPAM 99 or
Székelyhidi Ann. ENS ’12), while the 3 phase case a € {0, 1,2} gives the Le Roux
equations
(a not so known 2 x 2 system of hyperbolic conservation laws cf. D. Serre’s book),
which can be also derived from a stochastic model as in J. Fritz-B. Téth '04:
Oip+0.(pu) =0, Opu+ 0, (u?+p) =0 (N.B. u? not u?/2!). These formulations
are well suited for standard upwind finite difference schemes that we may therefore
compare with the ”permutation scheme” discussed above (and based on the polar
factorization theorem for maps).

Entropy conservation and local well-posedness. The multiphasic formula-
tion of the Muskat system

Oc(t,x,a) = Vi - (c(t,z,a)[-G(a) + Vp(t,x)]), Ap(t,xz) = /Vm-(c(t,x,a)G(a))

admits an extra conservation law for the Boltzmann entropy fTa clogc , which is
strictly convex in ¢. This essentially suffices for local Well—posedﬁess (cf. Dafermos’
book on systems of conservation laws and work in progress with E. Stampfli, to
deal with the pseudo-differential part when d > 1.)
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Toward a “gradient flow” formulation? We have,

[ Gla)Pe(t,za) = 2/ (@ — G(a)) - m(t,, a)

dt T,a T,a

_ 2/ (Vp(t, z) — Gla)) - m(t, z, a)

)

m T, a 2
:/ _%—|G(a)—Vp(t,ﬂ?)|2C(tv$va)

n |m(t,z,a) — (G(a) — Vp(t,z))c(t, x, a)|2.
c(t,z,a)

s

for ANY smooth
(t,x,a) — (c(t,x,a),m(t,z,a), Vp(t,z)) € Ry x (RY)?
such that
/c(t,x,a) =1, Owc(t,z,a)+V -m(t,z,a)=0, (= /V -m(t,z,a) = 0).

This suggests the ”gradient flow” formulation of the multiphasic Muskat equa-
tions:
d 2
|z — G(a)["c(t, z,a) +

dt T,q T

x,

Im(t, z,a)|?
o C(t,z,a)

s.t. /c(t,x,a) =1, Ow(t,z,a)+V -m(t,x,a) =0,

+1G(a) — Vp(t,z)c(t,z,a) <0

which is convex in (¢, m) but unfortunately not in (¢, m, Vp).
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