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Introduction by the Organizers

The workshop Toric geometry, organized by Daniel Erman, Milena Hering, Nathan
Ilten, Hendrik Sifl had 48 in-person and 3 online participants. The participants
came from all over the world and represented a diverse group along several axes,
including gender, career stage, and subfields. This diversity was also reflected in
the list of speakers, with some of the more junior speakers bringing especially fresh
perspectives.

Toric varieties are special algebraic varieties that can be studied via combinato-
rial methods. Introduced by Demazure just over 50 years ago, toric geometry has
grown from a niche subject to a vibrant research area with strong connections to
numerous topics in algebraic geometry, commutative algebra, combinatorics, ap-
plied mathematics, and beyond. The combinatorial nature of toric varieties allows
them to be a rich testing ground for the development of theories (e.g., the minimal
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model programme) and of conjectures in algebraic geometry. Furthermore, many
interesting problems either have some kind of (sometimes hidden) intrinsic “toric”
structure, or can be reduced to a problem in toric geometry.

This workshop brought together researchers from various areas in algebraic ge-
ometry and related fields who have recently made use of toric methods. Many of
these areas are interconnected in their own right, but the focus of the workshop
was on one particular aspect of the connective tissue of this research: toric ge-
ometry. Despite this focus, we emphasize that the perspective of the workshop
was one looking outwards: how can toric methods lead to new results in and new
connections between these other areas?

Recent years have seen major breakthroughs in the study of free resolutions
and derived categories in toric geometry, due to new connections to symplectic
geometry via homological mirror symmetry. Hicks gave an introduction to this
connection, applying it to resolutions of toric subvarieties. Berkesch gave a combi-
natorial approach to these resolutions, and Hanlon built on these ideas by providing
a basis for a category closely related to the derived category of a toric variety.

Mirror symmetry and/or symplectic geometry formed the focus of several ad-
ditional talks, including those of Huang, Sabatini, and Tevelev. Tevelev used
mirror symmetry to construct non-commutative resolutions of cyclic quotient sin-
gularities. Huang discussed how a connection with mirror symmetry provided a
canonical noncommutative resolution for any toric variety (generalizing work of
épenko—Van den Bergh and Faber-Muller-Smith in the affine case). Sabatini re-
ported about progress on classifying a symplectic generalization of Fano manifolds.

The study of matroids through toric techniques was discussed in the talks of
Eur and Fink. Fink explained how both resolutions and multigraded commutative
algebra (namely Cartwright-Sturmfels ideals) played an essential role in his main
result, while Eur’s work established cohomology vanishing results for wonderful
varieties that were motivated by those from toric geometry.

Toric vector bundles were another central theme of the workshop. They played
a key role in the aforementioned talks of Eur and Fink, and they were the focus
of the talks of Altmann, Maclagan, Manon, and Smith. Altmann, Maclagan,
and Manon provided several new ways of thinking about toric vector bundles,
with each novel description suitable for applications to computing extensions of
line bundles, tropical vector bundles, and Cox rings of projectivised toric vector
bundles. Smith presented a new approach to computing cohomology of toric vector
bundles, leading to an exciting new cohomology vanishing theorem.

Another common theme was deformation theory and moduli spaces. Corti posed
a conjecture which would allow for the classification of smooth Fano varieties via
zero-mutable log structures. Robins discussed recent progress on versal deforma-
tions of smooth toric varieties, and Rana leveraged toric techniques to investigate
the boundary of the moduli space of Horikawa surfaces. Ablett’s talk extended
work of Gotzmann to the multigraded setting, allowing for explicit equations for
Hilbert schemes in toric varieties.
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In a related vein, degenerations played a role in many talks including those of
FEur and Fink. Degenerations also featured implicitly in the talk of Sano, who
discussed a formula for the Newton polytope of the Hurwitz form akin to that of
the classical A-discriminant and resultant.

Finally, Adiprasito’s talk proved the weighted version of Oda’s Strong Factor-
ization Conjecture, providing one of the highlights of the workshop.

The speaker list included a number of graduate student and postdocs, and
longer talks by a number of junior participants brought fresh perspectives to the
subject. On Tuesday evening, 19 speakers gave 5-minute introductions to their
work. This included every junior participant (excluding Ablett and Robins, who
gave longer talks) as well as many non-junior participants. This led to many lively
discussions which continued throughout the week. Speakers giving 5-minute talks
were:

(1) Diane Maclagan: Grébner fans of subschemes of toric varieties

(2) Ben Wormleighton: Five minutes on symplectic embeddings

(3) Juliette Bruce: Regularity of TP

(4) Karin Schaller: Seshadri constants on projective toric surfaces

(5) Adrian Cook: How can we detect (un-)stability of tangent sheaves of
Gorenstein-Fano toric varieties?

(6) Mahrud Sayrafi: Geometry of Syzygies of Truncations

(7) Jesse Huang: Homotopy path algebras on CW complezes

(8) Andrea Petracci: On Deformations of monomial schemes

(9) Sofia Garzon Mora: Fine Polyhedral Adjunction

10) Sonke Rollenske: Canonical rings of stable surfaces with K% = 1 and
x(Ox)=3

(11) Paul Gorlach: Intersection complexes from tautological systems

(12) Achim Napame: Prescription of singularities on stable sheaves

(13) Andrew Hanlon: Homological mirror symmetry for Batyrev pairs

(14) Leonid Monin: An example of Chow Quotient

(15) Jeff Hicks: Non Realizability of not a tropical curve

(16) Leandro Meier: Bounding minimal log discrepancy of complezity one T-
varieties

(17) Chris Eur: Riemann-Roch (Mock?) vs FSEC

(18) Alex Fink: Tropical cellular resolutions

(19) Simon Telen: The Segre cubic of a pentagon

A well-attended musical recital Thursday evening, followed by dancing, pro-
vided a chance for participants to relax and socialize.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

How do matroids behave like a smooth projective toric variety?
CHRISTOPHER EUR

Let K be an algebraically closed field. Let us sample a few “positivity” properties
that a smooth irreducible projective K-variety X satisfies.

(H) When K = C, the singular cohomology ring H*®(X) satisfies the so-called
“Kéahler package” — namely, Poincaré duality, hard Lefschetz property,
and Hodge-Riemann relations.

(S) For D an ample divisor on X, there is a large enough m > 0 such that we
have HY(X,Ox(mD)) =0 for all i > 0.

(K) When K = C, for D an ample divisor on X and Kx the canonical divisor
of X, we have H{(X,Ox(Kx + D)) =0 for all i > 0.

When X is a toric smooth projective variety, these positivity properties are known
to be strengthened as follows.

(H) The Chow ring A*(X) satisfies the “Kéhler package.” Both the Chow
ring of X and the K-ring of vector bundles on X admit a combinatorial
description.

(D) For D a nef divisor on X, we have H*(X,Ox (D)) = 0 for all i > 0.

(BB) For D an ample divisor on X, we have H(X,Ox(Kx + D)) = 0 for all
1> 0.

Here, H stands for Hodge, S for Serre, K for Kodaira, D for Demazure, and BB
for Batyrev—Borisov. We point to [6, Chapter 9] for a treatment of these facts.
We report on various progress on the following question.

Question 1. Do these strong versions of positivity for toric varieties hold for the
wonderful varieties of linear subspaces introduced by De Concini and Procesi [7]?

Let us begin by recalling the construction of wonderful varieties. Let L C K"
be a linear subspace of dimension r, not contained in a coordinate hyperplane.
Let PL C P! be the projectivization. Denote by 7' = (K*)" the standard torus,
and by PT := T'/K* its projectivization, i.e. the quotient by the diagonal K*.

Definition 2. The permutohedral variety X,, is the sequential blow-up of P?~1
obtained by blowing-up the n coordinate points, then the strict transforms of the
(g) coordinate lines, and so forth. Let m: X, — P"~! be the blow-down map.

The wonderful variety Wi, of the subspace L is the strict transform of PL under
the blow-up m. Its boundary OWy, is the complement Wi, \ (W NPT), which is a
simple normal crossing divisor on Wrp,.

Note that by construction X, is a smooth projective toric variety with PT" as
its open dense torus. We view X,, also as a T-variety via the surjection T' — PT'.

Recent remarkable developments in matroid theory showed that wonderful vari-
eties have the property (H') enjoyed by toric varieties: The Chow ring of Wy, has
a combinatorial description, depending only on the matroid that L C K" defines
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[7, 10], and this Chow ring of a matroid satisfies the Kéhler package [1]. However,
the other properties like (D) and (BB) remain less well-understood. Matt Larson
conjectured the following during the 2023 BIRS workshop Algebraic Aspects of
Matroid Theory.

Conjecture 3. For any nef divisor D on X,,, we have H (W, Ow, (D|w,)) =0
for all i > 0, and if further D|w, is big then H' (W, Ow, (Kw, + D|w,)) = 0 for
alli>0."

We highlight three partial results towards the conjecture currently available.

Theorem 4. [9] For a full-dimensional subcone C of the nef cone of X,, generated
by the “simplicial generators” (2], the conjecture holds for any D € C.

Theorem 5. [8] The log-canonical divisor Ky, + OWy, satisfies
H (W, Ow, (Kw, +0W5)) =0 for all i > 0.

Theorem 6. [4] Under a mild hypothesis (that the matroid of L is connected),
the anti-log-canonical divisor satisfies (—1)""1x(Wp, Ow, (—Kw, — 0Wp)) > 0.

A strengthening of Theorem 6 would be that H* (W, Ow, (—Kw, —0WL)) =0
for all i < dim Wy, but the validity of this stronger statement is open. Theorem 4
is an easy consequence of the result of Brion [5] on multiplicity-free subvarieties of
flag varieties; [9] contains a version of Theorem 4 for all matroids, not necessarily
realizable, whose proof requires further techniques. The other two theorems make
use of a pair of T-equivariant vector bundles on X,, associated with L, known as
“tautological bundles of matroids” introduced in [3]. We conclude by describing
these vector bundles and by indicating how they are used.

Let K™ denote the trivial vector bundle X,, x K", which is a T-equivariant bundle
via the inverse action of T on K", ie. t-z =t"la = (tflxl, conttay).

Definition 7. Let St to be the T-equivariant subbundle of K" whose fiber over
a point t € PT C X, is the linear subspace t 'L. Define Qp, to be the quotient
bundle K /Sy,

A key observation, already implicit in [11], is that the wonderful variety W7, is
the vanishing locus of a section of Qy, [3, Theorem 7.10], so we have a resolution

O—>/\"_TQX—>---—>/\2QX—>QX—>(’)XW—>(’)WL—>0.

Then, using the structure of the fibers in a toric morphism X,, — X,,_1, one shows
that the higher cohomologies of A* O and A" QY vanish [8, Theorem 1.5], and
thereby deduces Theorem 5. The approach for Theorem 6 is considerably more
involved, using Kempf collapsing for pairs of bundles of the form Sy; Alex Fink
explained this in more detail during his talk in the workshop.

LAfter the talk, Jenia Tevelev communicated to us an example showing that one cannot relax
the hypothesis of Conjecture 3 to allow replacing Dy, by a nef divisor D’ on Wy, (that is, not
necessarily pulled back from X»,).
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Resolutions in topology, algebra, and symplectic geometry
JEFF HICKS

Resolutions through mirror symmetry. Broadly speaking, a resolution is a
method for replacing an object in mathematics with a sequence of simpler objects
and gluing relations between them. Here are a few examples of resolutions that
occur within different areas of mathematics.

Algebra. Given a module over a ring (or more generally a sheaf on a variety)
we might replace the module with an exact sequence of “simpler” modules —
for instance, free modules or line bundles. For example, if we consider the point
z = [1: 1] € P}, the skyscraper sheaf O, is resolved by the following exact sequence
of line bundles:

0.+ 0 &L 0(-1).

Properties of O, can then be computed from the exact resolution instead.
Topology. Given a topological space X, we might try to glue together X as a

sequence of mapping cones of simpler objects. The first example to consider is the
circle, which can be presented as the mapping cone:

St 2 cone(e «— (e Lle)).

You can build any CW complex in this manner by iterating the mapping cone
operation.
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Differential geometry. A real smooth compact manifold M with metric can be
understood via a Morse function f : M — R. This data provides a “handle
decomposition” of M — a set of instructions for building the manifold in terms of
the critical points of f. The function sin : S' — R the circle tells us to build the
circle by starting with the minimum of the function f and then attaching it to an
edge corresponding to the maximum.

Mirror Symmetry. These three stories are related via mirror symmetry, a proposed
dictionary between symplectic and algebraic geometry. Working backward: Morse
functions f : M — R relate to resolutions of Lagrangian submanifolds in the
Fukaya category Fuk(T*M), which (when appropriately generalized) is derived
equivalent to the category of coherent sheaves on a mirror space X. This strategy
was employed in [1, 2] to produce results about the Rouquier dimension of the
derived category of toric varieties.

Encoding topology via noncommutative neighborhoods. The above exam-
ple suggests that resolutions in algebraic geometry can be frequently encoded in
topology. One way to obtain this relation is through cellular resolutions. In the
given example, the subcategory of line bundles Pic%9 (P™) generate Coh® (P™) and
can be given the structure of a graded category. We then consider polyhedral com-
plexes which are labeled by objects of Pic® (P™) along with monomial morphisms
labeling each codimension 1 incidence between strata. We suggest the following
alternative approach which has the topology of the resolution “baked in”.

Definition 1 ([4]). Let C be a dg-category over C. A noncommutative neighbor-
hood of an object C € C is an augmented C-algebra € : R — C with a (derived)
functor
Ve : C — Perf(R)

satisfying the following properties:

e Ve is a localization of categories

o Vc(c ) ~C

o Vo is fully faithful on the object C, that is:

homvc (C, C) ~ hOmperf(R) ((C, C)

The definition is designed to mimic the definition of an affine neighborhood
Spec R of a point ¢ € X, where we let C = Cohdg(X), €e: R— R/m = C,
and C = O,. We say that this is a topological noncommutative neighborhood
if there exists a manifold L so that R is the dg-algebra of chains on the based
loop space of L. In computed examples the space L is usually aspherical (so that
7(L) = 0 for all k£ > 1); in this setting R = C[r1(L)]. The notation V is inspired
from Viterbo restriction functor from symplectic geometry associated with the
Weinstein neighborhood of an exact Lagrangian submanifold.

Example 2. Let Xy be any toric variety. Then we have an affine chart given by
the big torus (C*)™ C Xy, containing the identity point of the torus. It follows that
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there is a localization of categories
Coh™(Xx) — Coh8((C™)") =~ Perf(C[Z"]) ~ Perf(Z[m (T™)]).
This allows us to identify the torus from the resolution of L.

Example 3. Let H =V (zo+ -+ x,) CP*. The functor

(1) V:Coh™(P") ~ Perf (End ((Té O(l)) © LomOn+1)@ O(n)))
i=1

(2) — Perf(End (L@(n)(’)(n +1)® (’)(n)))
(3) — Perf(C[F},])

is an example of a noncommutative neighborhood of O, where F, = w1 (S V
-V SYY is the free group. In this example, we see that this noncommutative
neighborhood is compatible with restriction functors induced by the inclusion of the
coordinate hyperplanes P~ — P™,

Local and Global Realizability Problems in Tropical Geometry. Based
on the work of [2], we may expect the following:

Question 4. Can we associate to tropical curve given by X(1) C Ypn a nonpos-
itively curved cusped manifold Ly 1y whose boundary is a union of (n + 1) real
tori of dimension n — 17 Furthermore, what is the appropriate replacement P for
Perf(m1 (L)) when the space L has singularities so that we have a noncommutative
neighborhood Cohdg(Xg) — P for a line of P™ in general position?

Evidence from symplectic geometry suggests that P will only be defined after
picking an augmentation for the Legendrian link of the cusp locus of Ly ). This
inspires the following more general question:

Question 5. For a matroid M, does there exist a Legendrian Ay whose augmen-
tations correspond to realizations of M ?

The Donaldson divisor theorem in symplectic geometry suggests that NC neigh-
borhoods may arise via deformations.

Question 6. For a large class of subvarieties Y C X can we find:

o A deformation of categories Cy whose general fiber is isomorphic to
Coh™(X7y),

o An object Cy € Ob(Cp) deforming to Oy ;

o A (possibly singular) nonpositively curved space space Ly ; and

o A noncommutative neighborhood of Cqy given by Co — Perf(Clmi(Ly)])
(where the latter category may be appropriately modified to account for the
singularities of Ly )?
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Cellular resolutions of normal toric embeddings
CHRISTINE BERKESCH
(joint work with Lauren Cranton Heller, Greg Smith, Jay Yang)

The construction of families of explicit free resolutions is a central, long-standing
challenge in the field of commutative algebra, as such examples are key to under-
standing the geometry of syzygies. In [3], cellular resolutions are constructed in
the sense of [7, Definition 4.3] without a finiteness assumption on the underlying
complex. We generalize this construction via a stratification function.

Definition 1. For a lattice L C Z", a stratification is a pair of a map ¥: RL —
Z"™ and a cell structure on the torus RL/L satisfying the following three conditions.
(1) The map v is constant on open cells of the cell structure ¥ on RL induced by
the cell structure of the torus RL/L;
(2) The map ¢ is continuous with the standard topology on RL and the Alezandrov
topology on Z™ with poset structure induced by the component-wise order; and
(3) For all points p and q in RL such that p—q € L CZ™, we have (p) —(q) =
p—q.
Fix a stratification function : RL — Z". Then 1 is constant within each
open cell ¢ € ¥ by Definition 1.(1). Denote by (o) the value ¥(a) for a € o.
Then 9 can be used to assign the Laurent monomial x¥(?), making a labeled

cell complex from ¥. To define a cellular complex supported on ¥ from ), let
S =Kk[z1, 2, ..., z,] = k[N"] C Kk[Z"], where k is an algebraically closed field.

Definition 2. For an open cell o in W, let So denote the free Z"-graded S-module
with generator o in degree ¢(o). The cellular complex Fy, with underlying support
U is the free 7" -graded S-complex where

(Fp)i= P So= @ S(-v(0)

cew 24

dim o=1 dim o=1
and differential given by
Y(o)
_ AR
0o = Z (o, o )ww(g,)o .
TEY

dim =4
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Finally, define the module associated to v by
My =58 {z¥® |aecRL} Cklzi',... 2] = Kk[z").
Define the Z"-graded group algebra
S[L) = Sly* |ae L] C Sy vy oun '),

where deg(z%y®) = a +b € Z". As in [3, Section 3], there is an S[L]-module
structure on S given by the isomorphism S = S[L]/{(y* — 1| a € L) so that ap-
plying the functor — ®gz) S to Fy replaces each copy of S[L] corresponding to

a coset of cells ¢ with a copy of S twisted by the image (o) of ¥(c) under the
quotient map n: Z"™ — Z™/L:

Fyi®sp) S = @ S(=(0)).
ceV/L
dimo=1

Theorem 3. Let L C Z™ be a lattice and ¢: RL — Z™ a stratification. If

Uey ={acRL | Y(a) <u}

is contractable or empty for each w € Z", then the S-complex Fy is a Z"-graded
cellular resolution of the S-module My, and Fy ®g(r)S is a Z" | L-graded resolution
of the S-module My ®g(r] S.

To connect this work to toric embeddings, given a lattice L C Z",
Ip = (z"* —a’ |u—v€L>§S

is the toric ideal determined by L. If L defines a toric embedding of smooth
projective toric varieties p: Y < X, then S is the Cox ring of X and I;, defines
the image of Y in X.

The normalization of S/I, can be resolved using Theorem 3 by using the ceiling
stratification, which is defined by the coordinate-wise ceiling function

(1) Y: RL —Z" given by (v) = [v],

where the cell complex structure ¥ on RL C R" is determined by the intersection
of RL with the integral translates of the coordinate hyperplanes in R™.

Theorem 4. If ¢ = [v] and ¥ is given by the hyperplanes in RL parallel to
the coordinate azes of R™, then the complex Fy ®g(r) S is a resolution of the

normalization S/I;, whose length is equal to the rank of the lattice L.

Example 5. When X = ]P’((’)pl &) (’)ﬂm(—2)) is the second Hirzebruch surface,
whose fan has rays (1,0),(0,1),(—1,2),(0,—1), and Y is the identity point in the
torus of X, then S = K[xo, 1, x2, x3], the toric ideal is I, = <x0 — Ty, 125 — a:3>,
and Figure 1 shows the image of 1 on one fundamental domain of RL/L. The
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resolution of S/Iy, constructed in Theorem 4 is

—x0 1 0
I I N A
T Ty —T Ty —LHL; To—T 3(07_1) %o Ly
5(0,0) {7@ 7112 172 ~%0P1 T2 0] ® _103 o2 —acl1 &
& S(1,-1)% «—=22 0 12 §(0,~1) « 0.
S(1, —1) ®
S(—1,0) S(1,-1)
e ﬁ mnml.a:) 1"02112
.’L‘[)ZELZ'g
173 TOT1T2 T0T1T2
xr1xo ToT1T2 o1
xT1x2 ToT1 o1
o1

— ] Zo —

FIGURE 1. The monomial labeling on the fundamental domain
of RL/L in RL that is northeast of the origin in RL = R? for
Example 5. Colored lines indicate the intersection of RL with the
four types of coordinate planes in Z*, two of which coincide in the
horizontal red lines.

Theorem 4 generalizes the resolution of the diagonal of a unimodular toric
variety in [2, Section 6]. Further, the ceiling stratification resolution of Theorem 4
sheafifies the resolution of Hanlon-Hicks-Lazarev [6], and thus the minimal free
resolution of S/1, studied by Brown-Erman [4] embeds into that Fy,® sir)S- Other
choices of stratification yield the resolutions of the diagonal of Anderson [1] and
in some cases, Favero—Huang [5].
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Singular Log Structures and Smoothings of toric Fano 3-folds
ALESSIO CORTI
(joint work with Tim Gréfnitz, Helge Ruddat)

I report on joint work with Tim Gréfnitz and Helge Ruddat [CGR25].

Motivation and context. Our motivation is to prove a criterion for smoothing
a toric Fano 3-fold. In fact, more generally, we wish for criteria for deforming a
toric Fano variety to a mildly (terminal, klt, ...) singular one.

Sufficient conditions for the existence of a smoothing are given in [CHP24], but
we wish for necessary and sufficient conditions.

Method. We propose to construct smoothings by the following steps:

(1) Let P C N be a 3-dimensional lattice polytope. We assume that 0 € P
is a strictly interior point, and that the vertices of P are primitive lattice
vectors. We want to deform the toric Fano variety Xp whose fan is the
spanning fan of P.

(2) Let @ = P* C M be the polar of P. Denote by @ C M the central
subdivision. Then x@) is the moment complex of a reducible Fano variety
X, which, by a standard construction in toric geometry, is a degeneration
of Xp. Instead of deforming Xp, we deform X.

(3) Endow X with a (singular) log structure, thus promoting it to a log scheme
Xt

(4) Construct a log resolution f: YT — XT.

(5) Deform Y'T.

In summary, in this talk I talk about a class of singular log structures, called
zero-mutable log structures, defined in [CGR25]. We conjecture that these log
structures admit log crepant log resolutions. The conjecture implies an optimal
criterion for smoothing Gorenstein toric Fano 3-folds.

N.B. There are other approaches to smoothing, see the recent work [F25].

What is a log structure, Alessio? In this talk I don’t give the textbook defi-
nition of log structure because that would take up the whole time. Instead, I try
to give some feeling for the log structures that we actually work with.

A special case. A key special caise is when X = UX is a (simple) normal crossing
scheme with irreducible components X;. There is a naturally defined line bundle
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LS on Sing X such that for all 4,5 and D = X; N X

LS|p = (NpXi) ® (NpX;) ® Op( ) Xi)
ki, j
A (smooth) log structure is a never-vanishing section s € T'(LS). A singular log
structure is a section s € T'(LS) that is allowed to vanish somewhere. The locus
Z(s) where s vanishes is the singular locus of the log structure.
More generally, Helge Ruddat and I [CR23] have a notion of generic toroidal
crossing (gtc) space, a stratified scheme

x=]]x:

that at the generic point of each stratum looks like a toroidal crossing scheme.
(Decorated with additional data that satisfies conditions that we don’t discuss
here.) There is a sheaf £LS on X, constructed by gluing line bundles £, on the
closures of the codimension-one strata X, = X_,j. The gluing is specified by iso-
morphisms that exist on codimension-two strata X, = X2:

k
®w§p£p‘pxw = OX“,

Just as before, a smooth log structure is a never-vanishing section s € I'(LS). A
singular log structure is a section s € T'(LS) that is allowed to vanish somewhere.
The locus Z(s) where s vanishes is the singular locus of the log structure.

(In the paper [CR23] we don’t actually go as far as spelling out how to make a
category out of these log structures: we don’t spell out the sort of data that give
a morphism fT: Xt — YT in terms of these sections of LS.)

Zero-mutable log structures and their resolutions.
Definition 1. Let L =2 72 be a rank-2 lattice. A log datum on L is a finite set
S={(e;pi)|i€l}

of pairs (e;, ;) where
(i) For alli €I, e; € L, and we write e; = f;u; with u; primitive and ¢; € N
We assume that the e; are pairwise distinct.
(i5) For alli € I, u; - 4; is a partition. We write
k(3)
pi = (lix > Lig > >4 i) >0) where ;= Z&k
k=1
(i4i) The datum is subject to the condition:
0.

Let S be a log datum on L, let M = L®Z, and write u = (0,1) € M. Consider
the fan ¥ in M with maximal cones the cones o; = (u;, u;y1,u)4, ¢ € I. We also
denote by p; = (u;, u)+ the walls of the fan (i.e., the codimension-1 cones), and by
w = {u)4 the (unique) joint (i.e., the codimension-2 cone). This fan is the moment
polyhedral complex of an affine 3-fold that we denote by Xg or simply X. Denoting
by k[X] the Stanley—Reisner ring of the fan, we have that X = Speck[X]. Note

ser € = 0; equivalently, >, Liu; =
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that X is reducible with irreducible components X; = Spec k[o; N M] intersecting
along the surfaces:
D; =Specklp,"M]=X,_1NX;

Finally note that kjw N M] = k[u], and the surfaces D; intersect along the curve
Al = Speck[u], the affine line with coordinate u.
It can be seen that the set LS, (X) of log structures on X over kf (compatible
with the gtc structure) is the set of data consisting of:

(1) For all i € I, a function f; € k[p; N M]* subject to the condition:

(2) [Lie,(filk[u])®™ = 1.
The functions f; € k[o; N M] are called wall functions. The condition is called the
joint compatibility condition.

Definition 2. Let L be a rank-2 lattice and S = {(e;, pi) | i € I} a log datum for
L. A log structure given by wall functions f; is subordinated to S if for all i

k(i)
fi=11 fir
k=1

where for all i,k:
(1) Zik = (fix =0) C D; is a smooth curve;
(i3) fix|klu] = ubir.

In this talk, I am not giving the formal definition of zero-mutable log structure.
To do that one first needs to define mutations. By definition, a zero-mutable log
structure is a log structure subordinated to a log datum that can be mutated to
a trivial log datum. We conjecture that zero-mutable log structures always have
log resolutions.

A simple example The simplest example of a zero-mutable log structure is the A;
log structure. Consider the vectors in L = Z2:

e1 =(1,0), ex2=1(0,2), e3=(-1,-2)
The A; log datum is the O-mutable log datum
S = {(elv (1))5 (627 (12)7 (635 (1))}
Let now L = Z? and S be the A; log datum. Writing
g =100y p(-L=20) o p(010) y  p(0-10) (00,1

in M =L &®Z, we have

X:{xy_w2 :8 C AS

w T,Y,2,W,U
and:
D, :Az,ua Dy :Az,ua D3 :Az,u
and X = X; U Xy U X3 where:

X, = A3 X, = A3

T, 2,0 Y,Z, U

X3 = (zy —w? =0) C A?

T,y,Ww,u
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The A; log structure is given by the wall functions:
fl(xau):uy fQ(Z,U):U2+CL1uZ+CLQZ2, f3(y7u):u

where a1, as are general constants; in particular, most importantly, fo has 2 dis-
tinct roots on P!,

Here are some concluding remarks. The generic log structure on X, namely the one
with fo = u?+az, is not smoothable. Gross and Siebert already observed this and
called this phenomenon the “denominator problem.” We can interpret this fact as
follows. The (log) deformation problem of the A; log structure is badly behaved:
it has two irreducible components, one consisting of smoothings and the other of
deformations to the generic log structure on X. However, the deformation problem
of the A; singularity is perfectly well behaved. Everywhere you go, there will be
good deformation problems doing good things and bad deformation problems doing
bad things, but it takes a log structure to make a good deformation problem do
bad things.

The solution for us is to take a log resolution fT: YT — XT and deform YT
instead.

REFERENCES

[CGR25] A. Corti, T. Grafnitz and H. Ruddat, Singular Log Structures and Log Crepant Log
Resolutions I, arXiv:2503.11610. doi: 10.48550/arXiv.2503.11610.

[CHP24] A. Corti, P. Hacking and A. Petracci, Smoothing Gorenstein toric Fano 3-folds,
arXiv:2412.06500. doi: 10.48550/arXiv.2412.06500.

[CR23] A. Corti and H. Ruddat, How to make log structures, arXiv:2312.13867. doi:
10.48550/arXiv.2312.13867.

[F25] M. Filip, Laurent polynomials and deformations of non-isolated Gorenstein toric sigu-
larities, arXiv:2504.04486. doi: 10.48550/arXiv.2504.04486.

Birational King’s Conjecture
ANDREW HANLON

(joint work with Matthew R. Ballard, Christine Berkesch, Michael K. Brown,
Lauren Cranton Heller, Daniel Erman, David Favero, Sheel Ganatra,
Jesse Huang)

The bounded derived category of coherent sheaves, D(X), on a complex algebraic
variety X is a powerful invariant that serves as a universal repository for homo-
logical algebra on X. A foundational result of Beilinson [2] shows that D(P") is
generated by the Serre twisting sheaves O(—n),...,O(—1), 0. The computations
(1) RHom(O(—j),0(—j)) = C

(2) RHom(O(—j),0(—i)) =0 for i > j

(3) RHom?(O(—4), O(—i)) =0 for d > 0
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make the line bundles O(—n),...,O(—1),0 a full (generation) strong (3) excep-
tional (1, 2) collection, which we will abbreviate to FSEC. The presence of a FSEC
of line bundles is a statement on the computability and finiteness of D(P™).

King’s conjecture [10] posited that Beilinson’s result extends to smooth projec-
tive toric varieties. More precisely, he conjectured that if X is a smooth projective
toric variety then D(X) has a FSEC of line bundles. Unfortunately, King’s conjec-
ture is false [8] (see also [11, 4]) and derived categories of toric varieties can be more
complicated. Kawamata [9] proved that D(X) has a full exceptional collection of
objects, but it is desirable to have a more explicit and computable description.

In an influential Oberwolfach report [3], Bondal proposed that D(X) for a toric
X should be described in terms of a stratification on the real torus Mg/M where
M is the character lattice of X. If ¥ is a fan for X, then every ray p € X(1) induces
a function f,: Mr/M — R/Z given by pairing with the primitive generator u, of
p, that is, f,(m) = (m, u,). The Bondal stratification is the stratification induced
by the toric hyperplane arrangement of the level sets f~ L(0) for all p € X(1).
Moreover, for every point § € Mg /M, we can assign a line bundle Ox (Dy) given
by

(4) Do= Y |-{0.u,)]D,

pPEX(1)

Note that (4) is well-defined up to linear equivalence and is constant on strata of
the Bondal stratificaton. We call

(5) @Z{Ox(Dg) ZGEM]R/M}

the Bondal-Thomsen collection of X to recognize Bondal’s geometric definition
and earlier work of Thomsen [12] realizing © as the summands of the pushforward
of the structure sheaf under the toric Frobenius morphism.

When X = P, the Bondal-Thomsen collection coincides with the Beilinson
collection. Although one cannot hope for © to be or contain a FSEC in general,
Bondal claimed that © generates D(X), which was proved in [5, 6]. Moreover,
[6] gave an explicit short resolution of the diagonal for any smooth toric X using
products of elements in © built geometrically from the Bondal stratification and
generalizing Beilinson’s resolution for P™. Although the resolution of the diagonal
gives a concrete description of D(X), we can go further.

A curious feature of the Bondal stratification, the Bondal-Thomsen collection,
and the construction from [6] is that they only depend on X(1). The rays of the
fan do not determine X but rather a finite set of toric varieties parameterized by
the secondary fan. We let

X1 =X,..., X

be the toric varieties corresponding to the top-dimensional cones I'; of the sec-
ondary fan. For example, when X = P™ kis 1. When X is the Hirzebruch surface
of type 3, k = 2 and Xo = P(1,1,3) is a weighted projective space. As illus-
trated in this latter example, the X; may not all be smooth, but there is always
an associated smooth toric Deligne-Mumford stack X;.
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Now, let X be any smooth toric Deligne-Mumford stack with proper birational
toric morphisms m;: X — AX;. These conditions imply that the derived pullbacks
m; are fully faithful and their adjoints ;. are localizations. We define the Cox
category Dcox(X) C D(f) to be the full subcategory generated by all of the
7mf D(X;). Further, one can show that for any § € Mr/M, Dy is anti-effective
and thus —Dy € T'; for some i. Thus, for every § € Mg/M, we can define
Ocox(Dg) = 7} Ox,(Dg) where i is such that —Dy lies in I';. By varying 6 as in
(5), we obtain a Bondal-Thomsen collection © C D¢ox(X).

The Cox category was introduced in [1] where we prove a birational realization
of King’s conjecture:

Theorem. If X is a smooth projective toric variety, © is a full strong exceptional
collection for Dcox(X)

Note that since each derived pushforward m;, preserves elements of ©, this
computable and explicit description of the Cox category can be used to uniformly
describe the derived categories of the X;. In addition, we show that the resolution
of the diagonal from [6] lifts to a resolution of the diagonal of the Cox category
providing an explanation for its dependence only on X(1).

As an outline and the details of the proof are both given in [1], we will spend
the remainder of this note on the combinatorial structure of the FSEC. In [1], it
is shown that

(6) HOHI(OCOX(DG), OCOX(Dcp)) = C<P9 N (M - 90)>

where
Py ={x € Mp: (x,u,) > |—(0,u,)] for all p e X(1)}

is the polytope of the nef divisor —Dy on the corresponding toric stack in the
secondary fan.

This gives a purely combinatorial description of the generators and morphisms
for the Cox category as follows. Given some collection of primitive integral vectors
u, indexed by a set X(1), we call a lattice polytope P in Mg a Bondal-Thomsen
polytope if the defining half-spaces of P are all of the form (z,u,) > a, for p € 3(1)
allowing for some to be virtual and there exists a point § € Mg such that

a,+1>(—0,u,) > a,

for all p € ¥(1). More colloquially, Bondal-Thomsen polytopes are those with
normal vectors u, containing a point that is as integrally close as possible to
all the facets, including virtual ones. This is equivalent to P = Py from above.
Whenever the set of integral vectors contains a real basis, there are finitely many
Bondal-Thomsen polytopes and these polytopes determine the Cox category pre-
cisely through (6). Given the role of the Bondal-Thomsen collection in derived
categories of toric varieties, we expect these polytopes to have interesting combi-
natorial structure.

Question. What are the combinatorial properties and significance of the Bondal-
Thomsen polytopes? For example, can they and their lattice points be enumerated
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or these numbers estimated? How does this finite set of polytopes fit more generally
in the theory of lattice polytopes?

One result towards this vague question, giving an upper bound on how big of a
denominator one needs to allow in rational 8 to obtain all of the Bondal-Thomsen
polytopes, appears in [7].
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Gotzmann’s persistence theorem for smooth projective toric varieties
PATIENCE ABLETT

The Hilbert scheme hilbp(P") is a widely studied object in algebraic geometry.
From an algebraic perspective this scheme parameterises homogeneous saturated
ideals with a given Hilbert polynomial. In [1] Haiman and Sturmfels extended
these ideas to the multigraded setting, where the Hilbert scheme parameterises
homogeneous ideals with a given Hilbert function in a polynomial ring graded by
some abelian group. A case of particular interest is when the multigraded ring
in question is the Cox ring, denoted cox(X), of a smooth projective toric variety
X. In this case the Hilbert function of a homogeneous ideal in cox(X) eventually
agrees with a polynomial for degrees sufficiently far into the nef cone of X. We
can therefore define hilbp(X) in an analogous manner to hilbp (P™). We consider
the parameter space of homogeneous ideals in cox(X) which are saturated with
respect to the irrelevant ideal of X and have Hilbert polynomial P.
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It is natural to ask what properties of standard-graded Hilbert schemes have an
extension to the smooth projective toric variety case. Of particular interest are two
theorems of Gotzmann, regularity and persistence, which are used in the explicit
construction of the Hilbert scheme. Gotzmann’s regularity theorem gives a bound
on the Castelnuovo-Mumford regularity of a standard-graded ideal as introduced
in [4]. Gotzmann’s persistence theorem can be informally restated in the following
way. For a homogeneous ideal I in a standard-graded polynomial ring, a Hilbert
polynomial P(t), and sufficiently large d € N, checking that H;(d) = P(d) and
H;(d+ 1) = P(d+ 1) guarantees that P;(t) = P(t). Here, H;(d) denotes the
Hilbert function of S/I and Pr(t) denotes the associated Hilbert polynomial. The
surprising aspect here is that by checking the value of H;(d) in just two points
we have identified the polynomial P;(t), as opposed to the expected deg(Pr) + 1
points. Combining this result with Gotzmann’s regularity theorem allows us to
obtain explicit equations for the Hilbert scheme hilbp (P™).

Maclagan and Smith define Castelnuovo-Mumford regularity for the multi-
graded case [2] and generalise Gotzmann’s regularity theorem [3] to any smooth
projective toric variety. Their generalisation recovers Gotzmann’s original result
when X = P”. In this talk we discuss a generalisation of our earlier informal
restatement of Gotzmann’s persistence theorem to any smooth projective toric va-
riety. We begin with the case of the product of projective spaces, before extending
to the more general setting.

We introduce some terminology that will allow us to state Theorem 1. Let X
be a smooth projective toric variety of Picard rank s. For a homogeneous ideal
J C cox(X), we have an associated Hilbert polynomial Py (¢1,...,ts). We say that
P(ty,...,ts) € Q[t1,...,ts] is a Hilbert polynomial on cox(X) if there exists some
ideal J C cox(X), homogeneous with respect to the Z*-grading, such that P; = P.

Theorem 1. Let S be the Cox ring of P" x -« x P let I C S be an ideal,
homogeneous with respect to the Z°-grading, and let P(t1,...,ts) € Q[t1,...,ts] be
a Hilbert polynomial on S. Then there exists a point (dy,...,ds) € N® such that if
Hy(by,...,bs) = P(b1,...,bs) for all points (by,...,bs) € N° with b; € {d;,d; +1},
then Pr = P.

Theorem 1 says that for an ideal I in the Cox ring of the product of s pro-
jective spaces we can confirm Py(tq,...,ts) = P(t1,...,ts) simply by checking
Hi(by,...,bs) at the vertices of an s-dimensional hypercube in N*. This is there-
fore a natural s-dimensional generalisation of our earlier informal restatement of
Gotzmann’s original persistence result. Note that the proof of Theorem 1 is con-
structive, allowing us to find appropriate (ds,...,ds) for a given I and P. As
outlined in [3](Algorithm 6.3), P;(t1, ..., ts) can have as many as (" ["*%) co-
efficients, so we would naively expect to check H(dy, ..., ds) in this many points to
verify Pr(t1,...,ts). Even when setting n; = 1 for all ¢ we have ("1+”':ns+s) > 28
for all s € Z>;. Further, (”1+'”:"5+5) grows significantly faster than 2% as s
increases, meaning our theorem is a significant improvement.

We can extend Theorem 1 to more general smooth projective toric varieties. In
particular, our result still depends solely on the Picard rank of the variety.
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Theorem 2. Let X be a smooth projective toric variety of Picard rank s. Let
R = cox(X), with a Z°-grading resulting from the identification pic(X) = Z°. Let
J C R be an ideal, homogeneous with respect to the Z°-grading. Let P(ty,. .., ts)
be a Hilbert polynomial on R. Then there exists at most 2° points (r1,...,7s) € N*
such that checking Hy(r1,...,15) = P(r1,...,7s) for all of these points guarantees
that Py = P.

The 2° points of Theorem 2 form a zonotope, generalising the hypercube seen
in Theorem 1. Again, the Hilbert polynomial of a subscheme of a d-dimensional
smooth projective toric variety X of Picard rank s can have up to (Szd) coeflicients.
This means that naively we have to check (Szd) points to find this polynomial.
Theorem 2 ensures that we only have to check 2° points to find the Hilbert poly-
nomial for any smooth projective toric variety. For d > s, we have (S'gd) > 2% for
all s > 1, and the binomial coefficient also grows faster as s increases. The key
contribution is that the complexity of finding the Hilbert polynomial no longer
depends on the dimension of X, and only depends on the Picard rank.
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Oda’s strong factorization conjecture (and relatives)
KARIM ADIPRASITO

Consider two smooth, birational toric varieties; or in other words, consider two
smooth simplicial fans with the same support. What can be said about their
relation? Oda conjectured conjectured that the two varieties were related by a
sequence of smooth blowups and blowdowns (this is known as the weak factoriza-
tion conjecture) and stronger that these operations could be reordered so that the
blowups precede the blowdowns. This is the strong factorization conjecture, and
it is still open, in contrast to the weak conjecture that was resolved by Morelli and
independently Wlodarzyk [Mor96, Wto97].

In another direction of relaxation, one can relax the location of the blowups,
and instead allow for blowups (and blowdowns) at rationally smooth points. This
could be called the rational strong factorization conjecture. Further, one can in-
vestigate this question entirely in the combinatorial category, and one arrives at
the Alexzander conjecture [Ale30].

We have the following result:
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Theorem 1 (Adiprasito-Pak, [AP24]). The rational strong factorization conjec-
ture, and in particular the Alexander conjecture, are true.

We presented a proof of this result. The algorithm developped by the authors
is not immediately easy to modify to restrict to smooth blowups and blowdowns.
Still, it seems worthwhile to try. Indeed, in the weak factorization conjecture, the
rational version was known before, see for instance [Pac91] and was smoothing
was a comparatively easy step. We proposed one possible route, that leads to a
reasonable conjecture that, if true, would imply the strong factorization conjecture.
To state this conjecture, it is useful to remind ourselves of the Knudsen-Mumford-
Waterman theorem.

Theorem 2 (Knudsen-Mumford-Waterman, [KKMS73]). Given any lattice poly-
tope P, there exists a positive integer n such that the dilation nP has a unimodular
triangulation.

Let us now consider a general polytope d-dimensional polytope P, and a set of
points V' that lies in P and contains its vertices. Assume V is totally ordered in
some way, i.e. we have a list (v1,- - v,,) enumerating the vertices of V.

The placing triangulation associated to this total order is obtained as follows:
Tp is the lexicographically least d-dimensional simplex of the order.

And T; is obtained from the T;_; by considering the minimal vertex of v of V'
not in 7;_1. Consider further the minimal subcomplex H; of 9T;_; so that if v+ H;
denotes the cone over H; with apex v, the support of

vx H; UT; ¢

is convex. Define then T; := v« H; UT;_1. This process terminates with a triangu-
lation of P. The following conjecture implies the strong factorization conjecture:

Conjecture 3 (Refined Knudsen-Mumford-Waterman). Consider a lattice poly-
tope P. There is a positive integer n and a total order on the lattice points of nP
so that the placing triangulation of nP given by the order is unimodular.
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Toric sheaves and polytopes
KLAUS ALTMANN
(joint work with Andreas Hochenegger and Frederik Witt)

Over a smooth projective toric variety X we describe and construct toric sheaves,
that is, reflexive sheaves with a linearised action of the torus, in terms of polytope-
valued Weil decorations. As an application, we discuss (i) the universal extension
of nef line bundles and (ii) sheaf cohomology. The talk is based on [3].

Divisors and virtual polytopes. Let k be an algebraically closed field of char-
acteristic zero, and X = P(A) be the toric variety over k defined by the ample and
smooth lattice polytope A. We denote T its torus, ¥ = N(A) its underlying fan
normal to A, and M its character lattice.

We first consider toric sheaves of rank one, i.e., line bundles O(D) = Ox (D) C
k[M] given by a toric divisor D in Divy = Divy(X), the free abelian subgroup
generated by the closures D, of the torus orbits corresponding to the rays p of X.

Further, let Polt = Pol* () be the semigroup of compatible polytopes, namely
the lattice polytopes V C Mg whose normal fan N (V) is refined by ¥ so that the
associated line bundle

O(V) := Ox (div(V)) C k[M]
given by the toric divisor div(V) = =3~ ;) min(V, p)D,, is nef. The resulting
map Polt — Divy extends to the Grothendieck group Pol — Divy where it defines

a group isomorphism for X is projective. We can therefore write any toric divisor
D as the formal difference V* — V= of two compatible polytopes.

Theorem [1], [4]. The cohomology in degree 0 is given by
H(X, VT - V7)o =H "1V~ \VH k),
where H denotes reduced singular cohomology.
Corollary. The global sections of O(V*—V ™) correspond to the lattice points of
(VI:V)i={ue Mg |u+V_CV,}
Remark. Passing to a “common denominator” of two given elements inside the
Grothendieck group of Pol™ allows us to extend the usual binary relations and
operations such as C and N. In particular, V: Divy — Pol, V(D) = V¥ -V~

defines a meet semi-lattice isomorphism between the semi-lattices (Div, A, <) (with
D A D" =} min(a,,a),)D,) and (Pol,N, C); see also the table below.

Divy invertible sheaves C k[M] Pol
D<D o(D) € O(D) V(D) € V(D)
D+D'"|OD)-OD)=0(D)20(D")| V(D)+ V(D)

-D O(D)™! = Homo(O(D),0) -V(D)
DAD O(D)NnoO(D") V(D)NnV (D)
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‘Weil decorations. Now consider a toric sheaf £ of arbitrary rank. Let j: T — X
be the open embedding of the torus, and E be the torus invariant sections of j.&|r
over T'. We can then consider £ as a subsheaf of j,.&|r = E®xk[M]. For e € E\{0}
we define the subsheaf

Ele):=EN (k-e® (jr)«Or) CE
which is reflexive and of rank 1. The isomorphic subsheaf £(e) of (jr).Or = k[M]

resulting via
E(e) —— e-k[M]

e =|1/e

L(e) —— k[M]

R

induces a well-defined Weil divisor D(e) with O(D(e)) = L(e). Adding formally
the divisor D(0) = (00) yields the Weil decoration

D ="D¢: E’—)DIVT(AX)7 e»—)D(e)
that actually determines £ and satisfies
D(e) > D(e') AD(e")

for all e € span{e’,e”’}. We usually tacitly identify toric divisors with (virtual)
polytopes and consider D to be Pol-valued.

One can prove that the image of D¢ is finite. Pooling together the elements
with equal divisor yields a stratification {S} of E defining a finite join semi-lattice;
here, ' < S if and only if §' is in S, the closure of S. In fact, the Weil decoration
defines an anti-semi-lattice isomorphism onto its image, that is,

Dg(SI vV S) = Dg(SI) A D¢ (S)

Remark. We can also consider Weil decorations for reflexive sheaves over non-
toric varieties. These are now maps D: &, — Div(X) defined on the generic stalk
in the same way as before. In particular, Dg(e + €’) > Dg(e) A Dg(e) still holds.
Yet, &, is a K(X)-vector space; for f € K(X) we have D(f - e) = div(f) + D(e).
However, we can always choose a framing E, a k-vector space inside &, with
&, = FE ® K(X). The image of D|g is finite giving again a stratification on E.

Next, toric morphisms A: £ — F translate into linear maps A: £ — F between
the spaces of invariant sections together with the condition Dg(e) < Dx(A(e)) for
all e € E. Regarding D(e) as a virtual polytope V(e), &€ — F is surjective if and
only if £ — F'is surjective, and for all f, V#(f) = U= Ve(e).

Universal extensions. As a first application of Weil decorations, we revisit the
toric universal extension sheaf of nef line bundles [2].

For V1, V— € Pol" we consider the virtual intersection Q := VNV ~. Making
VT, V™ and @ simultaneously nef yields the connected components C,, of VT\V ™~
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as well as the compatible polytopes V,, := QU C,, in Pol™. By the theorem above
Ext!(V™,V*), = H{(X, V" - V7)), = H (V™ \ V*) @k v,].

This yields the exact sequence

LD el 0.

0 — Ext'(V",VH)y —— @;_k[V"]
Translated to toric sheaves this induces the exact sequence
0 —— Ext/(V-,VH)Y ® O(VH) —— E(V-,VF) —— O(V-) —— 0,

where £(V~, V1) is the desired toric universal extension. It is defined by the Weil
decoration sending the strata

S, =k[V,]\ {0} = V,, S;=ker(l,...,1)\ {0} =Vt and n— Q,
where 7) stands for the generic stratum.

Cohomology of toric sheaves. Choosing A sufficiently ample we assume that
the Weil decoration Dt of £t = £ @ O(A) is amply, i.e., int(Pol™)-valued. We
then define a constructible subsheaf F(£) C E on A C Mg by

FE)U):={eeE|UCDt(e)} CE for UC A open.

Theorem [3]. The cohomology in degree 0 is given by
HY(X,€)o = H' (A, F(£)).
Furthermore, we have the spectral sequence

B =P P S HT A\ inta DH(T)) = HHA, F(E)).
S<T S=Sp<...<S=T

In particular, this shows that every nefly decorated toric sheaf &£, that is, D(e) is
nef for all e € E'\ {0}, is automatically acyclic.
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Cryptomorphisms of toric vector bundles
DIANE MACLAGAN
(joint work with Bivas Khan)

The goal of this talk, which was based on [KM], was to present several different
descriptions of toric vector bundles. The word “cryptomorphism” comes from
matroid theory, and means a “complicated isomorphism”.

A toric vector bundle F on a toric variety Xs with dense torus T' = (K*)" is a
T-equivariant vector bundle on Xs;.

Klyachko [Kly89] gave an equivalence of categories between the category of
toric vector bundles with equivariant morphisms and a certain category of filtered
vector spaces, which allows classification to be reduced to combinatorics and linear
algebra.

We summarize this in the affine case. Consider an affine toric variety U, =
Spec(R), where R = K[o¥ N M]). A toric vector bundle F on U, is the sheafi-
fication P for a locally free R-module P. The T-equivariance implies that P is
M = Z™-graded, and free:

P = @?LlR(O&i)
for some a; € M. Set E = @2, K, which we may regard as the fiber over the
identity of the torus. Evaluating a section in P at the identity of the torus gives
an element of F, and Klyachko’s formulation records the subspaces obtained by
evaluating M-homogeneous components of P. It is only necessary to record the
subspaces when o is a ray of the fan of X, when they are indexed by Z, and we
write E'(j) C E for the subspace indexed by j on the ith ray.

Example 1. An important example of a toric vector bundle is the tangent bundle
on P2, which is toric with rays spanned by vo = (—1,—1), vi = (1,0), and vy =
(0,1). In this case E = K?, and the filtrations are:

E j<0
E'(j) = ¢ span(v;) j=1
{o} j>2

for 0 <i<2.
Polymatroids and matroids.

Definition 2. A polymatroid on a set H is a function 2" — N satisfying
(1) rk(0) =0,
(2) tk(A) < rk(B) when A, B € H with A C B, and
(3) tk(AN B) +1k(AU B) <r1k(A) 4+ rk(B) for all A,B € H.

Example 3. When H = {0,1,2}, the function
rk(0) = 0,rk({0}) = rk({1}) = rk({2}) = 1,
rk({0,1}) = rk({0,2}) = rk({1, 2}) = rk({0,1,2}) = 2

s a polymatroid.
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A collection of subspaces H gives a polymatroid, which we call realisable, if

rk(A) = dim (Z V) .
VeA
Definition 4. The polymatroid of F is the realisable polymatroid H = {M; E*(j:)},
where the intersections range over all rays of X..

A flat of a polymatroid is A C H maximal for a given rank. In the realizable
case flats are the subspaces spanned by the given subspaces. The collection of all
flats forms a poset under inclusion, with smallest element (), and largest element
H.

A toric vector bundle can be described by giving a realisation of a polymatroid,
and for each ray of the fan a descending filtration of flats of the polymatroid in-
dexed by Z satisfying certain compatibility constraints. This description separates
the combinatorial from the linear algebra aspects of toric vector bundles, and is
the foundation of the tropical approach in [KM].

Example 5. In the case of the tangent bundle on P2, the polymatroid is the one
of Example 3, which has realisation given by the subspaces

span((—1,—1)),span((1,0)),span((0,1)).
The flats of this polymatroid are:

@; {0}7 {]‘}’ {2}7 {O’ 17 2}'
The chains of flats are O C {i} C {0,1,2} for i = 0,1,2, with the indexing as in
Ezxample 1.

Cox module. Since F is a locally free sheaf on Xy, by work of Cox [Cox95] we
have F = P for a module P over the Cox ring S = K[xy,...,xs] of X5 (where
s = |2(1)]. The T-equivariance of F implies that P is Z*-graded. A presentation
of P can be derived from a choice of surjection

(1) ©i210(Dw,;) = F,

where the Dy, are torus-invariant divisors, as we now describe.

For a torus invariant divisor »_ a;D; we write a € Z° for the coefficient vector,
which we use to denote the grading. The surjection (1) induces a linear map
¢: K™ — E = K" by taking the fiber over the identity. A circuit of ¢ is an
element of ker(¢) of minimal support supp(c) = {i : ¢; # 0}. The support of a
circuit is a circuit of the matroid corresponding to ¢. For a collection of vectors
{d1,...,d;} we write min(d;) for the vector with min(d;); = min((d;);). For a
circuit ¢, we define uc; = dw, — min(dw, : ¢; # 0).

Theorem 6. Given a surjection
@i2,10(Dw;) = F,

set
P=am,5(dw,)/R,
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where R is the submodule of ®S(dw,) generated by

m
E cix'ie;
i=1

for circuits c € Z°. Then F = P.

Example 7. For the tangent bundle on P?, we have an equivariant surjection
coming from the Euler sequence:

O(Dy) ® O(D1) ® O(D3) — TP? - 0.
The Cox ring of P? is S = Clzo, z1,¥2], and we have TP? = P for
P =5(Dy) ®S(D1)®S(D1)/{zoeo + x1€1 + T2€2).

Restrictions of toric vector bundles. An advantage of toric vector bundles
is that their invariants can be computed using the combinatorics. To extend this
advantage to an arbitrary vector bundle £ on a variety Y, one method would be
to choose a good embedding i: Y — Xy of Y into a toric variety Xy for which
there is a toric vector bundle F on Xy with & = i*F.

Question 8. For which vector bundles is this possible?
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Locally trivial deformations of toric varieties
SHARON ROBINS
(joint work with Nathan Ilten)

Deformation theory is a vital tool for understanding the local structure of a moduli
space around a fixed object X. A systematic approach to studying infinitesimal
deformations of X involves defining a functor, Def x , that associates, for every
local Artin ring, the set of deformations over that ring up to equivalence. Despite
a theoretical understanding of Defx , explicit computations with examples are
challenging. This work investigates the deformation theory of a smooth complete
toric varieties X = Xy using the combinatorics of its defining fan X.

The study of deformation of smooth complete toric varieties was initiated by
N. Tlten [2]. Tt has been shown that smooth complete toric varieties may have
obstructions to their deformations ([3]). However, the homogeneous first-order
deformations of smooth complete toric varieties are unobstructed ([5]). This posi-
tions smooth complete toric varieties in a unique middle ground within deformation
theory: they are not as well behaved as Calabi-Yau varieties (which have unob-
structed deformations) but they are also not as poorly behaved as varieties that
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follow Murphy’s law [4] (which can have very bad singularities in their deformation
spaces).

Let X = X5 be a smooth complete toric variety with the corresponding fan X
with character lattice M and dual lattice N. Given a ray p, the primitive lattice
generator is denoted by n, and evaluation of n, at u € M is denoted by p(u). For
a given ray p and u € M, we define the simplicial complex

/ 3 /
Vou = U Conv {np/ '?(1(;;)<<_01 i p/ i P }
ocED P P p p'EX()No

CN®R.

As shown in [2, 3], the sheaf cohomology of the tangent sheaf mathcalTx satisfy
the isomorphisms

H* (X, Tx) = P H (V0. K),
PyU

for every k > 1. This approach allows us to compute many examples where either
HY(X,Tx) or H*(X, Tx) vanishes. As a consequence, we obtain the unobstruct-
edness result for toric varieties of lower Picard rank.

Let X be a smooth complete toric variety of Picard rank one or two. Then X has
unobstructed deformations. Furthermore, X is rigid unless it is the projectiviza-
tion of a direct sum of line bundles on P! such that the largest and smallest degrees
differ by at least two. For smooth complete toric surfaces, H?(X, Tx) is always
zero ([2, Corollary 1.5]). However, in general, one cannot expect either H'(X, Tx)
or H?(X,Tx) to vanish for all higher-dimensional toric varieties. Thus, to better
understand obstructions, a detailed study of the deformation functor Def x is re-
quired. Using the same simplicial complexes V,, ,,, we extend the correspondences
between sheaf cohomology of the tangent sheaf and simplicial cohomology in a
functorial way by defining a combinatorial deformation functor Defsy;.

Theorem 1 ([1, Corollary 5.1.5]). Let X = X5 be a complete toric variety smooth
in codimension 2 and Q-factorial in codimension 3. Then the functor Defx of
deformations of X is isomorphic to the combinatorial deformation functor Defs,

where 3 be a any simplcial subfan of X containing all three dimensional cones of
3.

For smooth complete toric varieties of Picard rank 3 it is possible for both
HY(X,Tx) and H*(X,Tx) to be non-zero. We obtain the following reduction,
which will appear in future work.

Theorem 2. Let X be a smooth complete toric variety of Picard rank three. Then
X is unobstructed unless it is a projective bundle over the Hirzebruch surface

F, = Ppi (O @ O(r)).

In dimensions 3, we classify all obstructed cases among smooth complete toric
varieties of Picard rank three. The minimal obstruction in those case are always
quadratic or cubic. For some specific examples, we are also able to completely
compute the hull.



914 Oberwolfach Report 19/2025

Theorem 3. There are toric varieties with the following hulls:
(1) K[[t1,t2,t3,t4)/(t3ts) (|1, Example 6.4.2])
(2) K[[tl, .. ,t7]]/(t1t4 + tQtG) ([1, Example 644])
(3) K[[tl, ‘e ,tgrfl]]/<t1> . <t2,t4, ‘e ,t2T72> fOT‘ r 2 2 ([1, Example 645])

Thus, there exist examples where the hull has a generically non-reduced compo-
nent, or is irreducible but singular at the origin, or has a pair of irreducible compo-
nents whose difference in dimension is arbitrarily large. None of these phenomena
had previously been observed for deformation spaces of smooth toric varieties.

In all the obstructed examples for which we were able to compute the hull, we
observe that the deformation space is equal to its tangent cone. It is natural to
ask the following questions:

Question 4. Is the deformation space of a smooth complete toric variety deter-
mined by the tangent cone?

Question 5. Is there any relation between the number of irreducible components
of the deformation space and the number of distinct simplicial complexes that cor-
respond to first-order deformations?
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Positive monotone Hamiltonian spaces and reflexive GKM graphs
SILVIA SABATINI

Given a compact symplectic manifold (M, w), we say that it is positive monotone
if there exists A > 0 such that ¢; = A[w], where ¢; denotes the first Chern class of
the tangent bundle of M endowed with an almost complex structure compatible
with w. Therefore the symplectic form can be rescaled so that

(1) a = [w],

condition that will be henceforth assumed. If (M,w) is a Kéhler manifold with
Kéhler form satisfying (1), then it can be proved that (M, w) is indeed a Fano va-
riety. Hence positive monotone symplectic manifolds can be regarded as a natural

generalization of Fano varieties, the latter giving a large pool of examples. Then
the following is a natural

Question: How far is a positive monotone symplectic manifold from being
(homotopy equivalent /homeomorphic/diffeomorphic/symplectomorphic to) a Fano
variety?
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We recall that all Fano varieties are simply connected, their Todd genus is
one, for each n the set of n-dimensional Fano varieties forms a bounded family
and their volume ¢}'[M] is bounded above by a constant that only depends on
n (see [8]). In dimension 12 and higher, Fine and Panov [4] construct positive
monotone symplectic manifolds that are not simply connected, thus implying that
not all positive monotone symplectic manifolds are homotopy equivalent to Fano
varieties.

Our goal is the study of positive monotone symplectic manifolds in the presence

of Hamiltonian torus actions, namely (effective) symplectic actions of a compact
torus T that admit a moment map ¢: M — t*.
Their analysis and the methods used strongly depend on the topology of the fixed
point set M7, the dimension of the manifold dim(M), as well as the complexity of
the action (defined as dim(M)/2 — dim(7T’)). Note that such methods, which rely
solely on the symplectic structure and the existence of the action, will generally
differ from those used to study Fano varieties. However, they can also be employed
to classify Fano varieties when these are endowed with a holomorphic action of a
complex torus.

Mirroring facts that hold for Fano varieties we ask the following
Questions:

(A) Under which conditions on the complexity and/or the topology of the fixed
point set are they simply connected and their Todd genus is one?

(B) Are there finitely many of them up to (equivariant) homotopy equivalence/
diffeomorphism/symplectimorphism or complex cobordism?

(C) Is a classification (up to a suitable notion of equivalence) possible?

First steps toward answering the above questions.
Henceforth we assume that the Hamiltonian T-space is positive monotone with
c1 = [w)].

(A) In [3], Fine and Panov conjecture that all positive monotone Hamiltonian
Sl-spaces of dimension 6 are diffeomorphic to Fano varieties. In [9], Lindsay and
Panov prove that such spaces are all simply connected and have Todd genus one;
the same result holds in arbitrary dimension, if the complexity is assumed to be
one [10]. The methods used in these two papers are very different: In the first,
where the authors deal with complexity two spaces, “hard symplectic topology”
(inter alia Seiberg-Witten theory) as well as equivariant methods are used. In the
second, the properties of the Duistermaat-Heckman function play an essential role.

Questions (B) and (C) have been completely answered in [2], if the complex-
ity is one and the space is tall, namely no reduced space is a point. Here the
authors analyze the invariants of complexity one tall Hamiltonian T-spaces in
the Karshon-Tolman classification to deduce that in the positive monotone case
all such invariants “come” from smooth toric Fano varieties. It follows that all
such spaces are equivariantly symplectomorphic to Fano varieties endowed with
suitable torus actions and that there are finitely many of them up to equivariant
symplectomorphism.
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(Smooth) toric Fano varieties have a well known combinatorial object associated
to them, namely a (smooth) reflexive polytope. In the symplectic setting this could
be indeed defined as the moment map image of a positive monotone symplectic
toric manifold satisfying (1), suitably translated so that the unique interior point
is the origin.

Let A be a smooth reflexive polytope in R™ with lattice Z™. Consider the set
E of edges of A and let m(e) be the magnitude of E, namely the affine length
of e € E (the length measured with respect to the lattice Z™). It turns out that
this integer corresponds to the symplectic area of the sphere S? that is mapped
through the moment map to e. We call the collection Uee {S?} of these spheres
the toric one skeleton of the corresponding symplectic toric manifold.

In [7] the authors prove that

(*) > ocer m(e) only depends on the f-vector, or equivalently on the h-vector of A.

We recall that the h-vector of A corresponds to the vector of even Betti numbers
of the manifold M so that /(M) = A. The above phenomenon is just a manifes-
tation of a much broader fact regarding Hamiltonian torus actions with isolated
fixed points. In this case, the combinatorial object of interest is a multigraph,
where the edges should be thought of as the images of the spheres corresponding
to the toric one skeleton, the Poincaré dual to the union of these spheres being the
Chern class ¢,—1 (see [6, 7]). In this multigraph the edges are directed and each of
them is labeled by the weight of the T" action at the initial point of the edge, which
corresponds to a fixed point. A very special case of the above is that of Hamil-
tonian GKM spaces, where the weights at each fixed point are pairwise linearly
independent; the corresponding graph is called GKM graph. If the corresponding
manifold is positive monotone, then the GKM graph is called a reflexive GKM
graph. The examples in the picture correspond to the GKM graphs of some spe-
cial coadjoint orbits endowed with a symplectic structure satisfying ¢; = [w] (for
more details see [7]).

The following strategy was used in [6, 1, 5] to classify all the possible labeled
multigraphs (or reflexive GKM graphs) arising from a manifold of a given dimen-
sion and given Betti numbers:

e From a generalization of (*), the sum of the magnitudes is constant. Since
each of them is a positive integer, the set of possible magnitudes is finite.

e The magnitudes satisfy more complicated relations; for instance each of
them must be divisible by the index of the manifold.

e From the set of magnitudes satisfying these extra relations, in [6] the
authors developed an algorithm and a computer program that compute
the set of possible weights.

e The weights determine many equivariant topological invariants: the (equi-
variant) Chern numbers, Chern classes and cohomology ring, as well as the
reflexive GKM graph.
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Collapsing tautological bundles
ALEX FINK
(joint work with Andrew Berget)

This talk is based on [3].

Let [L] € Gr(r,k™) be the point of the Grassmannian representing a linear
subspace L C k™. The torus orbit closure T - [L] is normal [14] and projective, so
it is the toric variety X p(z) of its moment polytope P(L). Such P(L) are examples
of matroid base polytopes P(M) [8], polytopes in R™ whose vertices lie in {0,1}"
and whose edges are in directions e; — e;. The condition on edges is equivalent
to the existence of a toric surjection X,, = Xp(ps) from the permutahedral toric
variety.

Subdivisions of a matroid polytope into matroid polytopes have arisen multiple
times in the algebraic geometry literature. For David Speyer in 2005 [11] they arose
as the objects classifying tropical linear spaces. Speyer conjectured there a tight
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upper bound on the number of faces in each dimension in a matroid polytope
subdivision. Later [12, 7] he constructed a matroid function h(M) € Z[t] and
reduced his original conjecture to showing that the coefficients of h(M) were of
alternating sign, which he proved (using Kawamata—Viehweg vanishing) when all
matroids involved are representable over C. The speaker with Shaw and Speyer
[6] further reduced the conjecture to showing that the leading coeflicient w(M)
of h(M) was of the expected sign. It is this last conjecture that is proved for all
matroids in [3].

Let fr be the composite map X,, — Xpr) < Gr(r,C"), and let S, and Qf
be the pullbacks along fr of the tautological sub- and quotient bundles S, Q on
Gr(r,C™). When the matroid M has no representation L, there still exist equi-
variant K-classes [Sy], [Qnm] € K$(X,,) which play the role of the classes of the
bundles Sg, and Qy, [2], although they are not the classes of any line bundles with
the hoped-for positivity properties. The original definition of h(M) is equivalent

to

. k k

h(M) _ (_1)cod1mP(1W) Z(l _ t)kX (/\ [SM] ® /\ [QJVI]V) :
k

observe that all the operations on vector bundles invoked here do descend to K-

theory. Thus if M is connected of rank r we have

w) = —x (A" 1@i e A'1eX)) -

A new proof of Speyer’s conjecture for the C-representable case is given in [3].
This proof exposes a simplicial complex, the titular external activity complex of a
pair of matroids, which we use to make the connection between our apparatus for
general matroids and the definition of A(M). As this suggests we may replace the
two instances of M in the definition of w(M) by a pair of matroids My and M.

Our C-representable proof is based on two key geometric transformations. We
start with the vector bundle Sy, @ Sy, sitting inside the trivial bundle C?". First
we perform a Kempf collapsing [9], replacing this bundle by the union ?Lh L, of
all its fibres within a single copy of C?*. We then take a Grobner degeneration
of the collapsing, arriving at the Stanley—Reisner scheme of the external activity
complex.

We convey a free resolution through these transformations and observe that
w(M) remains recoverable in each setting. The vector bundle A"~ "[Q} @ A"[Q],],
which yields w(M) when Ly = Ly = L represents M, is a bigraded component of
a module in the Koszul complex resolving Sy, ® Sr,. When the Koszul complex is
pushed forward along the Kempf collapsing map, it remains a resolution. This uses
Binglin Li’s computation [10] of the multidegree of the image of }/}L17L2 in (PY)",
which is multiplicity-free; Brion’s theorem [4] that multiplicity-free varieties are
normal with rational singularities; and to finish Weyman’s geometric technique for
syzygies [13].

Next, }/}Ll .L, has the same multigraded generic initial ideal as }/}D( L1,L»),c1 Where
D(L1,Ls) is an auxiliary linear space (whose matroid is the diagonal Dilworth
truncation) and C1 is a generic line. Conca, de Negri, and Gorla’s results [5] on
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Cartwright—Sturmfels star ideals show that the Grobner degenerations of ?Lu Lo
and ?D(LLLQ)’@ have the same multigraded Betti table. Ardila and Boocher [1]
explicitly constructed a free resolution of the latter Grobner degeneration, whose
Betti table matches the pushforward of our Koszul complex. The ultimate con-
sequence is that w(M) can be recovered from the free resolution of the external
activity complex.
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A-resultants, Hurwitz forms, and energy functionals of toric varieties
YUuir SANO

This note focuses on the weight polytopes of the multivariate resultants and the
Hurwitz forms as their variants in the context of toric geometry, following the
framework of Gelfand-Kapranov—Zelevinsky [3].

Let A = {wo, - ,wn} C Z" be a point configuration generating the lattice
My, :=7Z"™. A point w; € A corresponds to the monomial t* := [, t;‘.“j where
wj = (wij, -+ ,wp;) . Let CA = {Z;.V:O a;t*7 | w; € A}. Then, A-resultant

R4 is the defining polynomial of the closure of the hypersurface

N0 2 0}.

=1

n+1

Vai= {(fh'" far) € [ C4

=1
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This coincides with the Chow form that is the defining polynomial of the hyper-
surface in the Grassmannian

Zn-n1(X)={LEGIN—n—1LP") | LNX £0}

of the toric variety

X4 = {[t“’o : ...:t‘*’N] e PN t:(tl,...,tn) S ((Cx)n}

whose momentum polytope is the convex hull @ of A.
One of the main results of [3] is the combinatorial characterization of the weight
polytope W(R4) of R4. It states the following:

Theorem. [4, 3] The weight polytope W(R4) coincides with SecPoly(Q, A).

Here, the polytope SecPoly(Q, A) is called the secondary polytope that is the
convex polytope whose vertices 7 are calculated with respect to regular triangu-
lations T of (Q, A):

Nrn = (77T7n(°’0)a e 777T(wN)) € ZN+17

Z Volz(O').

w; €o:n-simplex

nrn(Wwi)

Recently, as a variant of R4, Sturmfels named the Hurwitz form Huy in [7]
the defining polynomial of

Zn-n(X4) = {L €GN —n,PN) | 5(LNX4) < deg(Xa)l.

In Kéhler geometry, Paul [5] discovered that the resultants and the Hurwitz forms
appear in Mabuchi’s K-energy in the context of the existence problem of canonical
Kahler metrics on polarized manifolds.

With this motivation, in [6], we obtained a counterpart to the secondary poly-
topes for the Hurwitz forms of toric varieties to the secondary polytopes of the
resultants. For a triangulation T" of @), we define the corresponding vector

Er = nnTn — NTn—1,

Nrpm—1(wi) = Z Volz (o).

wi€o:(n — 1)-simplex
Theorem. [6] The weight polytope W(Hux,) coincides with the convex hull of
the vectors & for all regular triangulations T of (Q, A).

Our proof uses an alternative method to [3] that employs some recent results
[2, 5, 1] from Kéhler geometry. These connections suggest further questions related
to K-stability, which I hope to explore in future work.

On the other hand, there is a pure combinatorial approach to compute W(Huy ).
The Cayley Trick allows one to reinterpret the Hurwitz form (and also the resul-
tant) as a discriminant. More precisely, the Hurwitz form coincides with the
discriminant W(A x ypn-1) of X x P"~! under the Segre embedding PV x P*—1 <
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P(V+Dn=1 " Hence, one can compute W(A yypn-1) instead of W(Huy), follow-
ing [3].

Problem. Can we (re)-prove the coincidence between W(A x ypn-1) and W(Huy)
in a combinatorial way?

Acknowledgment. This work was supported by JSPS KAKENHI Grant Num-
ber 22K03325.
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Standard stable Horikawa surfaces
JULIE RANA
(joint work with Sénke Rollenske)

Smooth, minimal surfaces with invariants on the Noether line were completely
described by Horikawa and so are known as Horikawa surfaces. When the volume
K? is a multiple of 8, the moduli space of these surfaces consists of two disconnected
components. We show that the closures of these two components intersect in
a divisor parametrizing explicitly described semi-smooth surfaces. This is the
content of the following theorem.

Theorem 1. Let ﬁge and 53}52 denote the two components of the moduli spaces
described by Horikawa in [4]. The intersection of $Hlgy with HMg; for (€ > 1) con-
tains a divisor © parametrising explicitly described non-normal (but semi-smooth)
surfaces. The intersection is not normal crossing at the general point of ©.

For any value of K? along the Noether line, our methods give rise to new,
generically non-reduced, irreducible components of increasing dimensions in the
same connected component of the classical moduli space of Horikawa surfaces:
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Theorem 2. Let k > 5. The connected component of Dok containing classical
Horikawa surfaces contains

Dok D Har U LJ ESS%
k>m>¥
m=k mod 2
where the ES,:) are generically non-reduced, irreducible components of dimension
5k + 4m + 19 > dim Ho.

Figure 1 illustrates these theorems in the case that K2 = 32.

1 —II

532 '632

O~
D

FIGURE 1. Standard components in $32

1. BACKGROUND

Horikawa surfaces are all double covers of Hirzebruch surfaces IF,,,. These are ruled
surfaces with Pic(F,,) generated by the class of a fiber " and the so-called “infinity
section” oo with 02, = —m. The Hirzebruch surface has a useful description as
the toric variety (Cl[to, t1,z0,z1]\V (1))/((C*)?) with irrelevant ideal I = (to,t1) N
(o, x1) and weights are given by the matrix

t() tl Zo T
1 0 a a—m
0 1 1 1

for any choice of a € Z. Under this representation, the fibers of I, are given by
zeros of linear polynomials in ty and ¢, while the positive section og is given by
{zp = 0}, and the negative section o by {z1 = 0}.

Smooth surfaces of general type with K2 = 2p, — 4 have invariants on the so-
called “Noether line”, and were fully classified by Horikawa in [4]. They are now
known as Horikawa surfaces. For example, when K2 = 32, Gieseker’s moduli space
32 consists of two connected components, each of dimension 140, which we denote
by YJ:(}(;) and 37):(3120). Surfaces in the first component are generically double covers of
P! x P! = Fy branched over a smooth curve in the linear system |60+ +20T|. This
component also contains higher-codimension strata parametrising double covers of
Fsy, Fy, Fg, and Fg. The component 37):(3120) consists of type (10) surfaces; these are
double covers of F1¢ branched over a smooth reducible curve: oo and a smooth
curve in the linear system |50 + 50T
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It’s an open question, and the spark of our initial interest in this project, as to
whether surfaces in the two components are diffeomorphic [2].

2. A NOVEL APPROACH TO HORIKAWA SURFACES

Inspired by [1], we realize Horikawa surfaces as hypersurfaces in toric ambient

threefolds. For example, the general surface in 53:(3%) is defined by a polynomial of
the form 22 — f(to,t1, @0, 1) of bidegree (—40, 6) inside the threefold

(Clto, tr, zo, 21, 2]\V(I))/((C*)?)
where the weights are given by the matrix

to t1  xo 1 z
1 0 —-10 —-10 -20
0 1 1 1 3

with irrelevant ideal I = (¢o,t1) N (z0, 21, 2)-

To obtain the canonical surfaces desired by Horikawa, the branch divisor can
have no more than ADE singularities. Our crucial insight is that because we are
interested in KSBA-stable surfaces, we may relax this condition. To this end,
we define a standard stable Horikawa surface of type (m) to be a surface with
ample canonical class and semi log canonical singularities which is constructed
as a double cover of F,, branched over a curve in the linear system 60, + 2al’|.
Observe that a standard stable Horikawa surface of type (m) is KSBA-stable, has
invariants on the Noether line, and satisfies K? = 4a — 6m — 8. When 2a > 5m,
the general branch divisor is smooth, and these surfaces are precisely Horikawa’s
original surfaces. When 5m > 2a > 4m+-4, the general branch divisor is reducible,
non-reduced, and singular; in particular the general such surface has 2(a — 2m)
pinch points.

3. CONNECTING THE COMPONENTS

The divisor ® described in Theorem 1 parametrizes standard stable Horikawa
surfaces with 2(a — 2m) pinch points. We illustrate this for K2 = 32. To begin,
we degenerate a smooth type (0) surface to a surface in the boundary of the type
(10) component as follows: define a family T of surfaces over A} as the complete
intersection

T)\ = (22 - f(tovtlv Z, X0, xl) = 0) N ()\yO = t?xo - tgxl)
in the fourfold
((C[t()a tla Yo, To, L1, Z]\V(I))/((C*)2)

where the weights are given by the matrix

to 1 Y T @ T1 z

1 0 -5 —-10 —-10 -20

0 0 1 1 1 3
with irrelevant ideal I = (to,¢1) N (zo, 1, 2). Here, f is a polynomial of bidegree
(—40,6). When X is nonzero, we eliminate yo and obtain a general surface in ﬁgg),
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as described above. When A = 0, we can define a new variable of bidegree (—15,1),

namely y; = %2 = ZL  and observe that the bidegree of f forces each term in f to

gty
be divisible by y?. Thus, the special fiber is indeed a double cover of F1q branched
over 204 + B where B € |40 + 50T
Note that the singular surface just describe is easily deformed to a smooth
surface of type (10) by again deforming the branch divisor in a similar manner.
More generally, we define such a family for general Horikawa spaces consisting
of two connected components. See [5, Section 4] for complete details.

4. FINAL REMARKS

The construction given in the previous section provides a set-theoretic description
of the divisor ©. To obtain a scheme-theoretic description of ©, we study defor-
mations of these surfaces using the general framework described in [3]. We also
exploit the notion of a standard stable Horikawa surface, together with our novel
description of Horikawa surfaces as hypersurfaces inside toric threefolds, to real-
ize new components of the KSBA-moduli spaces containing Horikawa’s original
components, leading to Theorem 2.

In keeping with the theme of this workshop, our project exemplifies the powerful
insights that may be gained by reframing classical objects using modern language
of toric geometry.
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Birational Coherent Constructible Correspondence
JESSE HUANG
(joint work with David Favero)

In recent years, continuous progress has been made in understanding the birational
geometry of toric varieties and multigraded syzygies using homological mirror sym-
metry (HMS), notably the novel discovery of birationally uniform resolutions of the
diagonal coherent sheaf of toric varieties by line bundles in the Bondal-Thomsen
collection [2, 6, 16, 8, 13], and the subsequent proof of a reformulated version of
King’s Conjecture [4] based on these resolutions. These recent results are heav-
ily inspired by a microlocal sheaf-theoretic version of HMS called the Coherent
Constructible Correspondence (CCC) originally suggested by Bondal [3].


https://arxiv.org/pdf/2207.06845.pdf
http://jde27.uk/blog/horikawa-surfaces.html
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Although CCC is proved for toric varieties [10, 11, 12, 18], how the correspon-
dence resonates with various guiding principles of mirror symmetry remains a
subtle problem: classically, mirror symmetry predicts a mirror map, which identi-
fies the (globally undefined) “stringy” Ké&hler moduli space of a toric variety Xx
and the (globally defined) complex moduli of coefficients of a superpotential Wy,
that only depends on rays, whose regular fiber tropicalizes, over various chamber
regions far away from the GKZ discriminant locus, to different polyhedral com-
plexes dual to simplicial subdivisions of ¥ using ¥(1), as explained in [14]. The
pullback of the mirror map that identifies these moduli parameters is meant to in-
duce an equivalence of certain constructible cosheaves of categories which enhances
the stalkwise homological mirror symmetry.

It is fair to say that, although the ultimate mathematical statement of the above
has not been made, the idea has been taken as a guiding principle in many works
on toric mirror symmetry [1, 5, 7, 15]. We would like to adapt this principle into
the context of CCC, which means the A-side geometry must be promoted to a
global family of mirrors. Moreover, this family must simultaneously capture not
only the derived category in each phase and the combined Cox category of all
phases (see [4]), but also wall crossing functors among them, monodromy functors
around discriminant loci, semiorthogonal components of various types along Mori
trees etc., all simultaneously along a single conical Lagrangian over a real moduli
parameter space separated into various regions, rather than a finite overlapping
collection of conical Lagrangians over the same torus Mg/M with stop removal
functors from their union. Previous attempts to build this global family use nice
description of window categories on the B-side in very limited cases [19, 17]. The
Bondal-Thomsen collection, however, is an intrinsic A-side construction using a
natural cubic stratification of the real vector space R*(!), from which multigraded
modules over the Cox ring can be identified as representations of exit paths, making
it a natural candidate to use to construct a conical Lagrangian L, := Lg C
T*R>W) /M that best approximates the desired continuous family of mirrors.

This work in preparation [9] studies properties of the cosheaf of microlocal sheaf
categories pnShy’  and wrapped kernels of various structural functors forming the
cosheaf, and prove that pShy’  provides a desired birationally uniform enhance-
ment of the results in FLTZ and Kuwagaki which naturally complements the B-side
results in recent work [4]. We summarize our results in this report.

1. HHL RESOLUTION REVISITED

Consider a toric GIT problem A1 //G with G = GF, acting linearly, where
the weights of the action span the character lattice G. This gives a short exact
sequence

O—>kerq—>ZE(1)1>§—>O

Write M := kerq. Let © C G be the Bondal-Thomsen collection. Recall that, the
terms in the Hanlon-Hicks-Lazarev resolution of the diagonal are given by image of
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the composition of maps along the first and second rows in the following diagram:

My iy gD LU
(1) l<71><~>

rEW L ey 9 @A

7= 1, G

where the first row is the map considered by Bondal in [3], and the differentials
are given by the exit paths in the CW refinement of T = Mg/M with a chosen
orientation, whose cells are labelled by © x O.

The HHL resolution can be understood directly as giving a description of the
wrapped diagonal sheaf that can be read off directly from the conical Lagrangian

A
Ao U —Ag along the diagonal torus Tao < T x T, where Ag is the union of
microsupports of Bondal-Thomsen strata sheaves. First, the constant sheaf kr,
can be resolved by a complex of stalk corepresentatives with respect to Ag U
—Ag. The right-wrapped diagonal sheaf w%eU*AeA*kTA is then a complex of
stalk corepresentatives that goes to the HHL resolution after applying a mirror
functor.

2. KEY LEMMA: WRAPPED DIAGONAL SHEAF

Notice that each ordered tuple of signs s € {4, —}/*(Ml induces a cube stratification
of R¥() by translations of [0,1)%+ x (—1,0]*-, each providing a collection ©, of
cubes intersecting Mg = g5 '(0). When s, = () (or s_ = ), the vertices of these
cubes are precisely ¢~1(0) (or ¢~!(—0)). When s consists of mixed signs, it gives
the Bondal-Thomsen collection for a different GIT problem s*(q) : Z=(1) — G.
(Although this does not look like a natural operation algebraically, considering
all signs turns out helpful in getting a CW stratification to simplify the structure
along the diagonal). We define

L= |J  ss(Qu@)/ kerg C T /lerg)
deq=1(0,)

where QS(CT) is the closed orthant sheaf at d in the direction prescribed by s, and
consider the diagonal

R /71 A H(Rz(l)/M)s — (RZM) /ppy2 =
S

The product skeleton [], L, restricts to L = [, L along this diagonal (R¥()/M) .
On a sufficiently small closed e-neighborhood of the zero fiber g Y(B,), the La-
grangian LL is a CW stratification skeleton. Furthermore, right wrapping the con-
stant sheaf on gz ' (Be) to L gives the constant sheaf on R*() /M by noncharac-
teristic deformation lemma as € — oo, since the microsupports of the isotoped
sheaves never intersect IL°°.

This allows one to write down an explicit presentation of the wrapped diag-
onal in [[,(R*M /M), with respect to [[,Ls in terms of a complex consisting
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of products of sheaves of the form Qs(d). The wrapped diagonal with respect
to Ly x L_ can then be obtained by pulling back the complex to the factor
(R¥M) /M)y x (R¥M) /M) _. This sketches the proof of the following theorem

Lemma 1. The right-wrapped diagonal sheaf to Ly x L_ is quasi-isomorphic to
an explicit complex of box-product Bondal-Thomsen orthant sheaves labeled by the
cellular decomposition and entrance path data on qﬂgl(Be) prescibed by L|q£1(§€).

This gives an immediate corollary

Corollary 2. The category Sh®(ILy) is compactly generated by @, co mQ°(d)
where 7 : R*W) — R¥M) /M is the covering map and d is an arbitrary lift of d.

Moreover, one can now use the diagonal to study local and global properties of
the sheaf of categories puShy’ .

3. MAIN RESULTS

We summarize our main results into one theorem.

Theorem 3. The cosheaf of categories uShﬁf’+ has the following list of properties:

(1) The cosheaf q]R*,uS’hﬁf+ is constructible with respect to a stratification on

éR induced by O-translations of the GKZ fan. On any deep chamber
C, the cosheaf of categories qR*MShﬁ,\C is locally constant, whose stalk at
each character lattice point in C is the wrapped constructible sheaf category
Sh*(Ls,), where Lx,, is the FLTZ skeleton mirror to the GIT quotient
stack Xs,.

(2) The extension of sections from a small e-neighborhood of any fiber to the
global section

WL Jz,el /‘Shﬂ_ (L+|q]R_1(Bm‘e)) - /‘Shﬂ_ (L)

is fully-faithful. In particular, this together with (1) implies that extension
of sections from any deep chamber C' is fully faithful.

(3) (Corollary 2) The global section nShy’ (L) is equivalent to the homotopy
category of Bondal-Thomsen monads Kg.

(4) By (2), there is a window skeleton We = Upegpuo, |o) $S(WLjz,c1 F)

associated to each C, with Sh*(W¢) = Sh*(Ls,) = D*(Xs.). We have

Ly = |JWe, with SB*(We) <=5 Sh*(Ly).
C

The sheaf of categories uShy’ carries information about all birational models
and transformations among them. Our result naturally complements the B-side
described in [4] which glues D*(Xs,) into Ke, hence “birational CCC”.

It would be interesting to investigate the relation between the jumping locus of
QxS hfﬁ’+ and the GKZ discriminant locus.
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An exercise in homological mirror symmetry
JENIA TEVELEV
(joint work with Yanki Lekili)

There will be two players in this talk. The first one is an affine toric surface X,
aka cyclic quotient singularity A?/u,., where the primitive root of unity ¢ € pu,
acts on A% with weights (¢,(%), and a and r are coprime. The second player is an
r-dimensional algebra R with a basis {w;} for ¢ € Z, and multiplication table

wj4; if a certain condition is satisfied,

Wiw; =

j Wi .
0 otherwise.

To explain the condition, let b = a~! mod r and let v : Z? —

mathbbZ, be a homomorphism (i, j) — j—bi mod r. We plot points in the lattice
I' = Ker(v) in orange. Consider the biggest Young diagram in the first quadrant
with the bottom left corner at (0,0) that does not contain orange dots in its
interior. We fill every box of this Young diagram with the number (i, j) € Z,,
where (7, j) is the bottom left corner of the box. For example, if r =9 and a = 2
then b =5 and we get

8
7
6
)
4

DN W T =

8372615

We locate the box filled with j (resp., with i) in the bottom row (resp., left
column) of the Young diagram. If the smallest rectangle containing these boxes is
contained in the Young diagram, then wjw; = wj4;. Otherwise, wjw; = 0.

In our example, the non-trivial products are wiw; = ws, Wawe = Wg, WawWs =
wr, and w? = ws. The unit of R is wp. The reader can check that R is associative.
It is not commutative with two exceptions,a =b=r —1and a =b=1.

In the talk, I will use homological mirror symmetry to explain why X and R
have the same category of singularities in the sense of Buchweitz and Orlov. This is
a byproduct of an investigation in [1], where we describe explicitly how the defor-
mation space of X (given by the classical Kollar—-Shepherd-Barron correspondence)
embeds into the deformation space of R (using a construction from [2]).

The main idea is to transform the multiplication table of R into a union of
curves in R?, as illustrated here for r = 16, a = 3, b = 11:
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Taking the quotient of R? by the lattice Z? of orange dots, and adding punctures
in the orange and gray region, gives a 2-punctured torus and an exact Lagrangian
K on it (we represent a 2-torus as a rectangle with opposite sides identified.)

>

—

It is straightforward to check that R, as defined above, is an endomorphism
algebra of K in the Fukaya category of the 2-punctured torus.

On the other hand, one can compactify the affine toric surface X by a projective
(non-toric) surface X in such a way that toric coordinate axes of X meet in an
additional smooth point of X and their union F is an anticanonical divisor of X.

A
LD, SIS S -t

Homological mirror symmetry for F, established by Lekili and Polishchuk, is
an equivalence between the perfect derived category of E and the derived Fukaya



Toric Geometry 931

category of the 2-punctured torus. Under this equivalence, the Lagrangian K cor-
responds to the restriction to E of a remarkable vector bundle F on X introduced
by Kawamata as the maximal iterated extension of the ideal sheaf O(—A) by
itself. Consequently, homological mirror symmetry gives an isomorphism of the
endomorphism algebra R of K in the Fukaya category with the endomorphism
algebra of F'|g on E. The latter can be easily seen to be isomorphic to the algebra
of endomorphisms of F' on X, which is known as the Kalck-Karmazyn algebra.

Using the results of Karmazyn, Kuznetsov and Shinder on categorical absorp-
tion of singularities, we have a semi-orthogonal decomposition of the bounded
derived category of X into the bounded derived category of R and a subcategory
of the perfect derived category of X. It follows easily that X and R have the same
singularity category, as originally proved by Kalck and Karmazyn.
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Cox rings of projectivized toric vector bundles
CHRISTOPHER MANON

I’ll describe some results on the Cox rings of toric vector bundles obtained by
utilizing tools from computational commutative algebra and representation theory.

Let X be a smooth, projective variety with finitely generated Picard group
Pic(X) over an algebraically closed field k. Recall that the Coz ring of X is the
sum of the global section spaces taken over all line bundles £ € Pic(X), with
product given by the multiplication of sections:

Cox(X)= €p HX,L).

LEePic(X)

The space X is said to be a Mori dream space when Cox(X) is finitely generated
over k. A notable example given by the normal toric variety Xy associated to a
smooth, projective fan X. In this case Cox(Xy) is a polynomial ring on a set of
generators indexed by the rays p € X(1).

A toric vector bundle £ over the toric variety X is a vector bundle in the usual
sense, equipped with a linear action by the torus 7', making the projection map
m: & — Xy a T-map. We let r be the rank of £. The associated projectivized
toric vector bundle P is defined as the bundle of rank 1 quotients. The space
P& is smooth and projective with a free Picard group of finite rank. As a sort of
linear thickening of Xy, one might expect that PE exhibits similar behavior to its
toric base. This makes it reasonable to ask: when is P€ a Mori dream space? This
question originates in a paper of Hering, Payne, and Mustata [6].

The first work along these lines appears in papers by Hausen and Sifi [5],
where torus quotient techniques are used to show that projectivizations of tangent
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bundles and bundles with rank 2 are always Mori dream spaces. The latter result
was also obtained by Gonzilez [3]. Non-examples were produced in a paper by
Gonzélez, Hering, Payne, and Siifl [4] using conditions on the Klyachko filtrations
of £ ([8]). In particular these authors use the quotient construction pioneered by
Hausen and Siif§ to show that the Cox ring of P€ can be realized as a polynomial
ring over the Cox ring of a certain blow-up of projective space, in the case that
the Klyachko filtrations of £ have one intermediary step. This blow-up can be
arranged to be spaces known to not be a Mori dream space by work of Castravet
and Tevelev [1].

In joint work with Kiumars Kaveh, we introduce combinatorial and computa-
tional techniques to the study of Cox(PE). The goal is to organize the Mori dream
space condition as a wall crossing phenomenon in an appropriate fan. To prepare,
we recast the Klyachko data of £ as a pair (L, D), where L C Kk[y1,...,¥ym] is a
linear ideal of height m —r, and D is a structured n x m matrix, where n = |X(1)].
We refer to D as a “diagram” if each row w; of D is a point on the tropical variety
Trop(L), and if for every face o € X, all of the rows corresponding to the rays of o
lie in a distinguished subspace of Trop(L) called an apartment ([7, Definition 4.8]).
The set of diagrams is denoted A(X, L). We then have an over-parametrizations
of toric vector bundles on Xs;.

Theorem 1. Every integral point D € A(X, L) NZ™"*™ determines a toric vector
bundle £, p on Xx. Moreover, every toric vector bundle over Xx can be realized
in this way for some L and D.

Each row w; of an integral diagram D determines a graded filtration of the
quotient ring k[yi, ..., ym]/L. The pieces of this filtration are the spaces

EP(d) = {) | Cay® | deg(y®) = d. (wi, a) > r}.
These spaces then fit together to give an expression for the Cox ring of P&y, p:

Cox(PErp)= € F¥(d)n---nNF(d).
T1yeeesTm,d

As a result, the Cox ring of Py, p is expressed as an iterated Rees algebra of
a polynomial ring. In [7], this expression is used to define a procedure which
constructs a finite generating set of Cox(PEr, p), provided one exists. The same
expression is used to give a necessary and sufficient condition for a given set B C
Cox(PEr,p) to be a generating set, phrased in terms of the primeness of a certain
set of ideals ([7, Proposition 5.8]).

For any linear form ¢ = Y C;y; € L there is an associated linear Cox equation
g = > C;z4Y;. The linear Cox equations always define a subset of the relations
which hold in the Cox ring. We say a bundle £ p is CI (for “complete inter-
section”) if there is a set ¢1,...,¢;,—,» € L so that the corresponding linear Cox
equations g1, . .., gm—r present Cox(P€r p). The following is [7, Proposition 6.17].

Theorem 2. Let 3, L, D be as above, then there is a fan F(X, L) supported on
A(X, L) along with a distinguished subfan F*(X,L) C F(X,L) such that £ p s
CI if and only if D € |[F*(X,L)|.



Toric Geometry 933

All previous known classes of Mori dream space projectivized toric vector bundles
belong to the class of CI bundles. In contrast with previous known examples, CI
bundles may have many steps in their Klyachko filtrations.

Now I will discuss joint work with Courtney George, introducing techniques
from representation stability into the study of Cox(P€) [2]. Suppose we have
two toric vector bundles £, F over Xy, where both P€ and PF are Mori dream
spaces, is the same true for P(€ @ F)? We can even dial down our expectations,
and ask this question when & = F, unfortunately the answer can be “no.” In
particular, a non-example is given by the tangent bundle T Z of a certain toric
3—fold introduced in [4].

Regardless, we are still able to characterize when there is a positive answer to
this question. To do so, we introduce the flag bundle FL;(E) for a dimension set
I C [r —1]. We rephrase the (-fold sum £ @ - -- @ € as the tensor product k' ® €.
The following is [2, Theorem 1.3].

Theorem 3. The following are equivalent:

(1) P(V®E) is a Mori dream space for all V with dim(V') < £.
(2) FLi(E) is a Mori dream space for all I with max(I) < £.

The link between these two classes of spaces is provided by invariant theory.
This theorem has a number of corollaries. Let FL(E) denote the full flag bundle,
ie the case I = [r —1].

Corollary 4. The following are equivalent:

(1) P(V®E) is a Mori dream space for all V with dim(V') < r.
(2) P(V®E) is a Mori dream space for all V.

(8) FL(E) is a Mori dream space.

(4) FLV ®E) is a Mori dream space for all V.

(5) FL(EY) is a Mori dream space.

Some examples of a bundle £ with these properties are any rank 2 bundle, the
tangent bundle of a product of projective spaces, and any irreducible bundle of
rank n on P". The full flag bundle FL(E) should correspond to an interesting
blow-up of the full flag variety under the quotient construction of Hausen and Siifl
in these cases. It would be interesting to have a characterization of those fans X
whose associated toric variety has tangent bundle with these properties.

Notably, the full flag bundle FL£(E) exhibits much more “functorial” Mori dream
space behavior than the projectivization. The first part of the corollary can be
strengthened in the sense that, provided £ satisfies the conditions above, the degree
necessary to generate Cox(P(V ® £)) stabilizes at the case dim(V) = r. It would
be interesting to have a presentation of Cox(P(V ® £)) which is functorial in V.
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TBD: Toric Bundles Duh!
GREGORY G. SMITH
(joint work with Michael Perlman)

How does the projectivization of a (toric) vector bundle behave like a smooth pro-
jective toric variety? Inspired by Christopher Eur’s talk at this workshop, we focus
on two intertwined challenges for this class of projective varieties: (1) formulating
an effective form of Fujita vanishing [4, Theorem 1.4.35] or generalizing Demazure
vanishing [1, Theorem 9.2.3], and (2) strengthening Kawamata—Viehweg vanish-
ing [4, Theorem 4.3.1] or extending Mustata vanishing [1, Theorem 9.3.7]. The
goal is to better understand the cohomology of torus-equivariant vector bundles.

To elaborate, consider the smooth d-dimensional projective toric variety X.
Enumerate the irreducible torus-invariant divisors D1, Do, ..., D, on X and let ¥
be the fan associated to X. A toric vector bundle £ is a locally-free Ox-module
of rank r with a torus action such that the canonical map Spec (Sym(é’)) — X is
equivariant and the torus acts linearly on the fibres. According to the equivalence
of categories [3, Theorem 2.2.1], a toric vector bundle £ corresponds to compatible
filtrations C" 2 --- D B (k) D E/(k+1) 2 --- 2 0 where j € [n] and k € Z. For
each character u € M = Z¢ and any i € Z, the related strategy for computing
cohomology identifies a C-complex C'(£, u) such that Hi(C(é', u)) = H'(X,E)y as
shown in [3, Theorem 4.1.1]. Another approach uses the Cox ring of X, namely
the Pic(X)-graded polynomial ring S := Clz1, xa, . . ., x,] with deg(z;) = Ox (D;).
Assume that the square-free monomial ideal B is the irrelevant ideal of X and let
P be an graded S-module such that £ = P. For any positive integer i, the map
Exti ! (S/BIM, P) — Dreric H(X,E®L) is an isomorphism in all sufficiently
positive degrees; see [2, Theorem 0.2]. However, neither of these methods identify
the toric vector bundles £ with vanishing higher cohomology.

We address this significant shortcoming by simultaneously generalizing these
earlier techniques. Set \; := max{k € Z | E’(k) # 0}, for any j € [n], and
choose an integer m such that m > max{\;(£)|j € [n]}. For each 0 € X, set
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Elu, = @;:1 Ox(u,,;). For any integer ¢, we construct an explicit free S-complex

T
éi(é',m) = @ @S(ugﬁj —m1lz)
ocex(d—i) j=1
such that Hi(é(é', u)) = P, H(X,€ ® L) is an isomorphism for all sufficiently
positive line bundles £. Notably, the colimit (over m) of the complexes C(E,m)
is essentially the Cech complex arising from the torus-equivariant open covering.
Curiously, the cohomology group Ho(é(é’ , u)) is independent of m, thereby distin-
guishing a special presentation (or parliament of polytopes) for £.

Building on these new computation tools, we describe toric vector bundles £
with no higher cohomology. Following [1, Definition 5.1.5], a primitive collection
is a subset {j1,j2,...,j¢} C [n] that indexes a minimal nonface in the fan 3. Its
relation is vj, +vj, + -+ Vj, = ;e (1) ¢ Vi where v; is the primitive lattice
generator of the jth ray in ¥ and 7 is the smallest cone in ¥ containing the vector
on the left side of this equation. The divisor D := a1 D14+ a2 Do+ - - - a, Dy, is nef if
and only if, for all primitive collections, we have a;, +a;, +---+a;, > ZieT(l) C; Qg5
see [1, Theorem 6.4.9]. For any j € [n], set p1; := max{k € Z | E7(k) = C"}. When
the torus-equivariant divisor D satisfies

@y gy + Qg g g, g, =Y cilai )
ier(1)

for any primitive collection, we establish that H*(X,E(D)) =0 for all i > 1.
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