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Abstract. Discrete systems are ubiquitous in applications. Their analysis
and simulation call for taming their inherent multiscale character, as mi-
croscopic dynamics lead to the emergence of structures across scales. This
workshop brought together leading experts in the calculus of variations, dis-
crete systems, and materials science to explore cutting-edge topics at the
intersection of mathematics and physical modelling. Presentations spanned a
variety of themes, including dislocation dynamics, crystallization, micromag-
netics, fracture mechanics, and discrete-to-continuum transitions. Particular
emphasis was placed on the rigorous analysis of singular structures, nonlocal
interactions, and energy-driven pattern formation. Several talks also under-
scored emerging connections with data science.

Mathematics Subject Classification (2020): 35-XX, 49-XX, 74-XX.

License: Unless otherwise noted, the content of this report is licensed under CC BY SA 4.0.

Introduction by the Organizers

The workshop Singularities in discrete systems brought together 50 participants
(45 on-site and 5 online) from a diverse range of countries, including Austria,
France, Germany, Italy, Spain, the Netherlands, the UK, and the USA. Atten-
dees came from various scientific backgrounds, spanning mechanics, mathematical
analysis, and data science. Participants have been selected to ideally represent
the breadth of current research directions in the field, ranging from purely atom-
istic models to computational approaches, from energy-driven pattern formation to
aggregation phenomena emerging as long-time behaviour of aggregation-diffusion
equations, and from defects in materials science to models of flocking and crowd
dynamics. A significant number of young researchers joined the group.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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The purpose of the workshop was to bring together leading scientists and early-
career researchers working on various aspects of the mathematics of discrete sys-
tems. The organizers pursued a twofold goal: on the one hand, to provide a
forum for exchange among the community’s diverse research directions; on the
other hand, to foster new approaches to open problems through cross-disciplinary
dialogue.

The organizers believe these objectives were successfully achieved. The work-
shop featured a series of insightful talks showcasing the current state of research.
These consistently sparked stimulating scientific discussions, many of which
evolved and deepened over the course of the week and might well lead to new
collaborations.

The talks covered a wide range of topics. The emergence and stability of or-
dered large-scale structures have been discussed in various settings: within lattices
(Bétermin), in interaction with substrates (Kreutz), and in the context of objective
structures (Schmidt) and metamaterials (Ortiz). A central theme of the workshop
was the modelling and analysis of defects (Ariza, Briani, D’Elia, Garroni) and
dislocations in solids (Acharya, Bach, Hudson), across multiple material systems
and scales. Particle models and related methods were also covered (Bruna, Guo,
Orlando, Wolfram), including applications to mean-field games and opinion for-
mation. The interest in upscaled models of microscopic interactions was reflected
in the high number and variety of nonlocal variational problems discussed in the
meeting (Cristoferi, Daneri, Kreisbeck, Mora, Ponsiglione, Tolotti). Two applica-
tion areas received particular attention: atomistic and discrete fracture mechanics
(Braun, Buze, Kubin, Friedrich), and micromagnetism (Briani, D’Elia, Ginster,
Giorgio, Happ). In addition, the workshop presented new results on learning algo-
rithms (Bourdais, Bungert, Murray, Thorpe), image segmentation (Fischer), and
discrete optimal transport (Quattrocchi). Finally, several talks focused on dissipa-
tive evolution, covering a wide spectrum of mechanical and aggregation-diffusion
models (Chiesa, Fernandez Jimenez, Guo, Laux, Park, Sheldon).

The setting of the program was rather classical, featuring however a very well-
received session of lightning talks delivered by young participants on Wednesday
night. As organizers, we were very pleased with the high scientific level of the work-
shop, the quality and clarity of the talks, and the breadth of topics covered. This
collection offers a snapshot of the field’s current vitality and rapid development.
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Abstracts

Homogenization and continuum limit of mechanical metamaterials

Michael Ortiz

(joint work with J. Andrade, M. P. Ariza, S. Conti, J. Ulloa)

When used in bulk applications, mechanical metamaterials set forth a multiscale
problem with many orders of magnitude in scale separation between the micro
and macro scales. Direct numerical simulations of mechanical metamaterials are
prohibitively expensive due to the separation of scales between the lattice and the
macrostructural size. Hence, multiscale continuum analysis, specifically discrete-
to-continuum methods, suggests itself as a means of characterizing the effective
properties of metastructures at the macroscopic scale. However, mechanical meta-
materials fall outside conventional homogenization theory on account of the flexu-
ral, or bending, response of their members, including torsion. Notwithstanding, we
show [1] that homogenization theory based on calculus of variations and notions of
Gamma-convergence can be extended to account for bending. The great advantage
of these methods is that they determine, free of any ansatz, the functional form of
the limiting continuum energy. In this manner, the homogenized metamaterials
are shown to exhibit intrinsic generalized elasticity in the continuum limit. By ex-
ploiting the quadratic-form structure of the discrete energies, Gamma-convergence
additionally supplies closed-form expressions for all effective properties. Examples
of two and three-dimensional metamaterials, including honeycomb and octet-truss
lattices, are presented in [1]. The convergence of the discrete energy to the con-
tinuum limit is illustrated in [3] by means of numerical examples.

To zeroth order, the continuum limit of metamaterials is micropolar, with both
displacement and rotational degrees of freedom, but exhibits no size effect. To
higher order, the overall energetics of the metastructure can be characterized ex-
plicitly in terms of the solution of the zeroth-order continuum problem by the
method of Γ-expansion [2]. The analysis predicts that the discreteness of meta-
materials effectively shields crack-tips, resulting in lattice shielding. The theory
specifically predicts anti-shielding, i.e., coarser is weaker, in agreement with recent
experimental observations.

References
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Parametrising dislocation dynamics with quantified uncertainties

Thomas Hudson

(joint work with Geraldine Anis, Peter Brommer)

Dislocations are line defects whose response to external forcing is critical for deter-
mining the strength of crystalline materials, and particularly those of metals. One
class of alloys which are recognized for their strength even at high temperatures
are Nickel–Aluminum alloys. These alloys have a complex microstructure, and in
particular they separate into two phases, called the γ and γ′ phases. It is believed
that the interaction between dislocations and the precipitates is the mechanism
behind the strength of these materials. In the work presented here [1], we inter-
rogate this hypothesis using a reduced model, seeking to parametrise the model
using data generated from atomistic simulations and retaining the uncertainty in
these parameters so that such uncertainties can be propagated in models at larger
length–scales.

Starting with atomistic simulations based on a potential fitted to capture the
features of these alloys [2], we observe realizations of dislocation motion and ex-
tract time series data describing the motion of straight dislocation in the pure γ
phase. The dislocation is created by removing a half-plane of atoms, and the cell is
thermally equilibrated, after which the motion is driven by shear stresses induced
by forces applied on atomic planes at some distance above and below the disloca-
tion core. Snapshots of the atomistic configuration are stored and post-processed
using the dislocation extraction algorithm [3].

The reduced model we propose is a second-order linear ordinary differential
equation; by transforming the equation appropriately, we are able to formulate a
Bayesian inverse problem to find appropriate parameters and sample the poste-
rior using a Markov Chain Monte Carlo approach using the particular framework
outlined in [4]. The resulting ensemble of models shows good agreement with the
mean trajectory over around 10 dislocation trajectories obtained from atomistic
simulation. This approach also allows us to capture correlated uncertainties in
the parameters, information which is not captured by simpler fitting approaches.
Moreover, we can use our approach to show that across a wide range of stress
conditions, parameters in the model which are generally believed not to depend
on the applied stress condition do not vary significantly.

While the approach discussed above gives excellent agreement with the mean
trajectory over a number of realizations of the dynamics, there are fluctuations not
accounted for by our simple deterministic model. In particular, the data indicates
that in the low stress regime, thermal fluctuations may play a significant role in
determining the motion, and I discuss ongoing work where we use stochastic forcing
terms to account for these discrepancies, extending the deterministic approach.

Finally, to address the central challenge in determining the importance of pre-
cipitate interaction in the strength of the materials, I will present ongoing work
where we formulate a model accounting for the interactions between dislocations
and the different phases. Early indications suggest that our approach can indeed



Singularities in Discrete Systems 1171

be extended with success to this much more complex situation. Ultimately, the
interpretable approach taken allows us to lay out the physical assumptions in the
model, which we hope will allow us in future to translate these assumptions into
Discrete Dislocation Dynamics models for the study of these materials at much
larger length scales.
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On the minimization of nonlocal anisotropic interaction energies

Maria Giovanna Mora

(joint work with R. Frank, J. Mateu, L. Rondi, L. Scardia, J. Verdera)

Nonlocal interaction energies play a central role in describing the behaviour of
large systems of particles in a wide range of applications. In this talk we focused
on the minimization problem for an energy functional of the form

I(µ) =

∫

RN

∫

RN

K(x− y) dµ(x)dµ(y), µ ∈ P(RN ),

where the kernel K : RN → R ∪ {+∞} is even, lower semicontinuous, locally
integrable, and bounded from below. Here P(RN ) denotes the set of probability
measures on RN .

We are interested in modelling interactions that are repulsive at short range
and attractive at large distances. This behaviour corresponds to choosing K such
that it diverges both at the origin and at infinity. A model example is the isotropic
kernel

(1) Kiso(x) =
1

|x|s + |x|α with 0 < s < N, α > 0.

After reviewing the main results on the existence and uniqueness of minimizers,
we discussed their explicit characterization. In the isotropic case (1) with α = 2 it
is known that the unique minimizer (up to translations) is given by the measure

µs,iso =

{
c(r2 − |x|2) s−N+2

2 χBr
for N − 4 < s < N,

cHn−1 ∂Br for 0 < s ≤ N − 4,

where c, r > 0 are constants depending on s and N . As s decreases, the minimizer
undergoes a transition: from a diffuse measure with bounded density (for N − 2 ≤
s < N), to a diffuse measure with unbounded density (for N − 4 < s < N − 2),
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and finally to a more singular measure supported on an (N − 1)-dimensional set
(for 0 < s ≤ N − 4).

Now let Φ : SN−1 → R be a smooth, even, strictly positive function, and
consider the anisotropic Riesz kernel

Ws(x) =
1

|x|sΦ
(
x

|x|

)
with 0 < s < N.

For the kernel K(x) = Ws(x) + |x|2, with s ∈ [N − 3, N) ∩ (0, 5], we proved that
if the Fourier transform of Ws is strictly positive, then there exists an ellipsoid
E = RDB1, where R is a rotation and D is a positive definite diagonal matrix,
such that the unique minimizer (up to translations) is the push-forward f#(µs,iso)
of the measure µs,iso by the map f : x 7→ RDx.

It remains unclear whether the condition on s is purely technical or whether
the result fails for s near N − 4 or for s large. Our proof suggests that for s ∈
(N − 4, N − 3) the support of minimizers may collapse onto a lower dimensional
set. The upper bound on s is related to the integrability of the Fourier transform
of Ws ∗ f#(µs,iso), a property required to apply the Fourier inversion theorem and
to express the potential Ws ∗ f#(µs,iso) in a more convenient form.

Dynamics of screened particles towards equispaced ground states and

applications to misfit dislocations

Marcello Ponsiglione

(joint work with Lucia De Luca, Michael Goldman)

We analyse the dynamics – driven by the gradient flow of negative fractional
seminorms – of empirical measures towards equispaced ground states.

Specifically, we consider periodic empirical measures µ on the real line that are
screened by the Lebesgue measure, i.e., with µ− dx having zero average; to each
of these measures µ we associate a (periodic) function u satisfying u′ = dx − µ.
For s ∈ (0, 12 ) we introduce energy functionals

Es(µ) :=
1

2

∫ Λ

0

dx

∫

R

|u(x)− u(y)|2
|x− y|1+2s

dy,

that can be understood as the density of the s-Gagliardo seminorm of u per unit
length. For s ∈ [ 12 , 1) we define Es

ε (µ) := Es(µε), where µε is obtained by mollifying
µ on scale ε.

Particularly relevant is the critical case s = 1
2 , where the energy functional can

be seen as a “positive ε” version of the renormalized energy considered in [5] for a
(not necessarily periodic) distribution of screened charges lying on a straight line
in the plane, once the infinite self energy of each particle is removed.

We prove that the minimizers of Es and Es
ε are the equispaced configurations of

particles with lattice spacing equal to one. Then, we prove the exponential conver-
gence of the corresponding gradient flows to the equispaced steady states. Finally,
although for s ∈ [ 12 , 1) the energy functionals Es

ε blow up as ε→ 0, their gradients
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are uniformly bounded (with respect to ε), so that the corresponding trajectories
converge, as ε→ 0, to the gradient flow solution of a suitable renormalized energy.

The emergence of periodic structure as a result of minimization of convex func-
tionals has been much investigated in the last decades; in [1] the minimization
of the square of the L2 norm has been considered, among functions having two
opposite slopes. Such a result has been generalized in [2] to the case of two,
possibly different, slopes. The case of fractional 1

2 -Gagliardo seminorm has been
considered in [3], again for functions with equal opposite slope; their approach
relies on a technique referred to as reflection positivity for which such a symmetry
assumption is somehow required. In the aforementioned results, the functionals
under minimization contains also a term penalizing the jumps of the slopes, which
is multiplied by a certain (small) parameter that determines the periodicity scale.

In this paper we have adopted a more rigid approach: the slopes of the order
parameter u are either 1 or −∞ and, instead of a term penalizing the jumps of the
slope, we have assumed that the region where the slope is −∞ is quantized (the
Dirac delta’s have positive integer weights). Such a framework is very similar to
that analysed in [4], in which the case of two generic different (in modulus) slopes
has been treated with the aim of modelling misfit dislocations at semi-coherent
interfaces [6]; the main novelty of our analysis with respect to the results in [4]
is that here we also consider the dynamics of misfit dislocations driven by the
gradient flow of the induced elastic energy.
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On crystallization in the plane for pair potentials with arbitrary norms

Laurent Bétermin

(joint work with Camille Furlanetto)

In this talk, we consider an interaction energy E defined on N -point configurations
XN := (x1, ..., xN ) ⊂ R2 interacting through a potential V : R∗

+ → R such that

∀XN := (x1, ..., xN ) ∈ R2, E(XN ) =
1

2

∑

i6=j

V (‖xi − xj‖), ‖ · ‖ is a norm.



1174 Oberwolfach Report 23/2025

Part I. Finite crystallization for the sticky disk. For fixed N ≥ 2, we define
E‖·‖(N) = min

XN⊂R2
E(XN ), and for the Heitmann–Radin’s sticky disk V = VHR [5]

defined as VHR(r) =





+∞ if r ∈ [0, 1)
−1 if r = 1
0 if r > 1

, two cases hold according to the shape

of the unit sphere S‖·‖ = {x ∈ R2 : ‖x‖ = 1}, where A2 = Z(1, 0)⊕ Z(12 ,
√
3
2 ):

• if S‖·‖ is not a parallelogram, then E‖·‖(N) = −⌊3N−
√
12N − 3⌋ achieved

on a lattice being the image of the triangular lattice A2 by a linear map;
• if S‖·‖ is a parallelogram, then E‖·‖(N) = −⌊4N −

√
28N − 12⌋ achieved

on a lattice being the image of the square lattice Z2 by a linear map.

The proof given in [1] is based on Brass’ results [3] on the maximum number of
minimal distances on 2d configurations, but also on Heitmann–Radin’s crystalliza-
tion’s proof on A2 for ‖ · ‖ = ‖ · ‖2 and De Luca–Del Nin [4] crystallization’s proof
on Z2 for ‖ · ‖ = ‖ · ‖∞, the other cases following by a linear transform argument.

Part II. Lennard–Jones energy among lattices and p-norms Considering
now only infinite lattice structures and V (r) = 1

r12 − 2
r6 the Lennard–Jones poten-

tial (for which no optimality result is known for E‖·‖2
), one numerically observes

the following phase transition for the minimizer once chosen ‖·‖ = ‖·‖p, p ∈ [1,∞]:

Square (p = 1) → Rhombic (p ∈ (1, 1.25)) → Triangular (p ∈ (1.25, 2])
→ asymmetric (p ∈ (2, 3.85)) → Square (p > 3.85),

which seems very intriguing, where only the p = 2 case has been proven in [2].
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The Capacity of Data

Matthew Thorpe

(joint work with Jeff Calder, Dejan Slepčev, Adrien Weihs)

The semi-supervised learning problem is to find the missing labels from a partially
labelled set of feature vectors, Ωn = {xi}ni=1, with labels {ℓi}i∈In

. The set In ⊆
{1, . . . , n} indexes the labels, e.g. if In = {1, . . . , n} then every feature vector has
a label. The objective is to estimate labels for {xi}i∈{1,...,n}\In

.
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The idea behind Laplace Learning is to assume similar feature vectors have
similar labels. To define similarity between feature vectors we assume a graph
structure where we have weights wij that represent how similar xi is to xj (the
larger wij the more similar the feature vectors). This is represented as a variational
problem corresponding to minimizing

E(p)
n (un) =

1

Zn

n∑

i,j=1

wij |un(xi)− un(xj)|p

subject to un(xi) = ℓi for all i ∈ In and where Zn is a normalization constant.
This talk is about the asymptotics of the variational problem, i.e. what happens

when n→ ∞. Motivated by computational efficiency and between-class resolution
we scale the weights so that we get a local limit. In particular, assuming xi ∈ Rd,

we define wij =
1
εd
η
(

‖xi−xj‖
ε

)
and choose ε = εn. It’s an easy calculation to show

that, if u ∈ C2(Rd), xi
iid∼ µ ∈ P(Rd) and Zn = εpnn

2 that (almost surely)

E(p)
n (un) → E(p)

∞ (u) := ση

∫

Rd

|∇u(x)|pρ2(x) dx

where ρ is the density of µ and ση =
∫
Rd η(‖x‖)|x1|p dx is a constant. For the

variational problem we are interested in Γ-convergence, which was first done for
p = 1 (but the proof essentially holds for all p ≥ 1) in [1].

We see that, if we want to have pointwise constraints the problem: minimize

E(p)
∞ (u) subject to u(xi) = ℓ(xi) for all i ∈ {1, . . . , N}, that we need continuity. We

therefore see that, since we work in the Sobolev Space W1,p that we require p > d.

However, this is not sufficient as one can show E(p)
n (δx1

) ∼ 1
εpnn

(approximately

speaking the capacity of the point x1) and therefore un(xi) = ℓi for i ∈ {1, . . . , N}
and un(xi) = 0 otherwise forms a sequence of approximate minimizers if εpnn→ ∞.
Following [2], we will show that the scaling rate εn ∼ n−p is critical in the sense
that εn ≫ n−p leads to ill-posedness and εn ≪ n−p leads to well-posedness (with a
lower bound for graph connectivity). We show a similar result with the Fractional
Laplacian [3]. Finally, we make a connection between solutions of the Laplace
Learning problem and random walks on graphs to show that the problem, for
p = 2, is asymptotically well-posed if |In| ≫ nε2n and asymptotically ill-posed if
|In| ≪ nε2n [4].
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Stacking faults in the Γ-limit of a discrete model for partial

edge dislocations

Annika Bach

(joint work with Marco Cicalese, Adriana Garroni, Gianluca Orlando)

The mechanical properties of crystalline materials is highly influenced by the pres-
ence and interaction of defects in their atomistic structure such as impurities,
dislocations, stacking faults or grain boundaries. For example, dislocations have
a crucial impact on the plastic deformation behaviour of crystals, as they allow
atomic layers to slip past one another under stress. In this talk we are interested
in investigating the interplay of those defects with so-called stacking faults, which
typically appear in crystals with multiple stacking possibilities, in the passage
from a simple atomistic to a continuum model. Specifically, we consider a two-
dimensional discrete toy model introduced in [1] and we analyze its asymptotic
behaviour as the lattice spacing vanishes in terms of Γ-convergence.

Under the assumption that only horizontal displacements are allowed, the discrete
energies we consider are defined on scalar variables u : εZ2 → R (that can be
interpreted as a horizontal displacement) and are obtained by summing up three
key contributions: Elastic interactions between horizontal nearest neighbours of
the form (u(i + εe1) − u(i))2, 1/2-periodic interactions between vertical nearest

neighbours of the form dist2
(
u(i+ εe2)− u(i); 12Z

)
and scaled 1-periodic interac-

tions between second vertical neighbours of the form εdist2
(
u(i + εe2)− u(i);Z

)
.

The elastic horizontal interactions correspond to the assumption that only hori-
zontal displacements are allowed and hence no vertical slips are allowed, while the
choice of the vertical nearest-neighbour interactions is inspired by [2] and allows
for multiple stacking possibilities of atomic layers. Finally, the second-neighbour
interactions penalize non-homogeneous stackings. After removing a logarithmic
core contribution, we show that our discrete energies Γ-converge to a continuum
energy consisting of three contributions: A core energy concentrated on limiting
point singularities (corresponding to partial dislocations), a Coulomb-type inter-
action energy between those singularities, and a surface contribution. This last
contribution corresponds to the minimal length of horizontal line segments joining
the limiting point singularities and can be interpreted as the energetic contribution
of the stacking faults that are required to resolve the dislocations tension.
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A new monotonicity formula and a sharp lower bound on the energy

density for minimizers of the 2d Mumford–Shah functional

Julian Fischer

The minimization of the Mumfordi–Shah energy EMS : BV(Ω) → R ∪ {+∞},

EMS [u] :=

∫

Ω\Su

|∇u|2 dx+Hd−1(Su),(1)

(where Ω ⊂ Rd denotes a domain and where Su denotes the singular set of u)
is one of the most basic examples of a free discontinuity problem, a problem
class in which the discontinuity set of the solution is itself subject to optimization.
Proposed originally by Mumford and Shah [12] as a model for image segmentation,
the Mumford–Shah energy may also serve as a model problem for Griffith-type
energy functionals in fracture mechanics [11].

Existence of minimizers of the Mumford–Shah functional (1) was shown in [8, 4],
while in [1] a partial regularity result for minimizers was proved: The singular set
Su of any minimizer is shown to be locally a C1,α manifold, up to an exceptional
set of vanishing (d−1)-dimensional Hausdorff measure. Higher integrability of the
gradient ∇u of minimizers and improved dimension estimates on the exceptional
set were established in [7, 9].

In the planar setting d = 2, in [10] we prove that any minimizer u of the
Mumfordi–Shah functional (1) is subject to the energy density lower bound

1

r

[∫

Br(x0)\Su

|∇u|2 dx+Hd−1(Su ∩Br(x0))

]
≥ 2

around any point x0 ∈ Su and for any 0 < r < dist(x0, ∂Ω). Our result improves
previous estimates by De Lellis and Focardi [6] and Bucur and Luckhaus [3], who
achieved the lower bound ≥ 1 for the energy density. Our new lower bound
is optimal, as examples of minimizers like the crack-tip [2] or a flat interface
demonstrate.

As a second main result and again in the planar setting d = 2, we establish
a monotonicity formula for minimizers u of the Mumford–Shah energy (1): We
prove that the David–Léger entropy [5]

F (r) :=
1

r

[ ∫

Br(x0)\Su

|∇u|2 dx+
1

2
Hd−1(Su ∩Br(x0))

]

is subject to the monotonicity property

min{F (R), 32} ≥ min{F (r), 32}+
∫ R

r

1
ρD(ρ) dρ

for any x0 ∈ Ω and any 0 < r ≤ R < dist(x0, ∂Ω). Here, D(ρ) ≥ 0 denotes a
suitably defined dissipation functional.
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Formation of microstructure and occurrence of vortices in a frustrated

spin system

Janusz Ginster

(joint work with Melanie Koser and Barbara Zwicknagl)

Given ε, α > 0 and a spin field u : εZ2 ∩ [0, 1)2 → S1, we consider the following
renormalized J1-J3 model:

Iα(u) = −α
∑

|x−y|=ε

u(x) · u(y) +
∑

|x−y|=2ε

u(x) · u(y).

As shown in [1], up to boundary effects, for α ∈ (0, 4) the four ground states of Iα
are helical spin configurations in which u rotates (clockwise or counterclockwise)
with an optimal angle δ, depending on α, along the rows and columns.

The aim of this work is to investigate the emergence of patterns formed by
different ground states due to incompatible boundary conditions. As a first step,
it is shown in [3], by means of Γ-convergence, that after suitable renormalization
the energies Iα converge as ε, δ → 0, with ε√

2δ
→ σ ∈ (0,∞), to the continuum

energy

Fσ(ϕ) =

∫

(0,1)2

(
1− (∂1ϕ)

2
)2

+
(
1− (∂2ϕ)

2
)2

+ σ2(∂11ϕ)
2 + σ2(∂22ϕ)

2 dx.

Here, ∇ϕ denotes the limit of the renormalized angular velocity fields associated
with the spin configurations u.
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Scaling laws for the minimal energy of functionals related to Fσ under incom-
patible boundary conditions (e.g., ϕ(0, y) = (1 − 2θ)y for θ ∈ (0, 1/2)) are proven
in [2, 4, 5]. These results suggest that for small values of σ, patterns tend to form
near the boundary segment {0} × (0, 1).

The analytical techniques developed for the continuum setting can be adapted
to the discrete model, leading to a partial scaling law result for infu(0,·)≡const. Iα,
see [3]. It is noteworthy that in the parameter regime leading to the limiting
energy Fσ , so-called vortices – singularities of the discrete angular velocity field –
are asymptotically excluded. In contrast, in [3] it is shown that in other parameter
regimes for ε and α, minimizers of Iα under the boundary condition u(0, ·) ≡ const
necessarily develop such vortices.
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Atomistic-to-continuum convergence for quasi-static crack growth in

brittle materials

Manuel Friedrich

(joint work with Joscha Seutter, Bernd Schmidt)

The passage from atomistic systems to continuum models in solid mechanics has
been a thriving field of research in the last decades. The underlying idea is to
bridge the microscopic description of matter with models on the continuum level
by passing to the limit of vanishing interatomic distance, e.g., grounded on the
variational tool of Γ-convergence. Among the vast body of literature, this ap-
proach has also been used to derive and validate continuum theories in brittle and
cohesive fracture. Yet, most available results are restricted to static settings and
the evolutionary nature of fracture processes has been largely neglected in this
context.

The goal of the paper [3] is to study an atomistic-to-continuum limit for a model
of a quasi-static crack evolution driven by time-dependent boundary conditions.
We revisit a two-dimensional atomic mass spring system [4] of the form

Eε(y) =
ε

2

∑

x,x′∈NNε(Ω)

W
( |y(x)− y(x′)|

ε

)
,
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where ε denotes the atomic distance, NNε(Ω) denote the nearest-neighbour inter-
actions in a portion of a triangle lattice contained in the reference domain Ω, and
W is a classical interaction potential of Lennard–Jones-type. As shown in [4], the
continuum Γ-limit is a Griffith-type functional of the form

E(u) =

∫

Ω

Q
(
1
2 (∇uT +∇u)

)
dx+

∫

Ju

φ(νu) dH1 ,

where Q denotes a quadratic form and φ is an anisotropic density depending on
the normal νu at the jump set Ju. We consider time-dependent boundary condi-
tions and supplement the atomistic model with a suitable irreversibility condition
accounting for the breaking of atomic bonding. In a simultaneous limit of vanish-
ing interatomic distance and discretized time step, we identify a continuum model
of quasi-static crack growth in brittle fracture, in the spirit of the seminal work by
Francfort and Marigo [2]. In particular, we identify a limiting pair t→ (u(t),Γ(t)),
associating to each time t a displacement u(t) of the reference configuration and
a crack set Γ(t), satisfying

• (a) irreversibility: Γ(s) is contained in Γ(t) for 0 ≤ s < t.
• (b) static equilibrium: for every t the pair (u(t),Γ(t)) minimizes the energy
E at time t among all admissible competitors.

• (c) nondissipativity: the derivative of the internal energy equals the power
of the applied forces.

The proof of the unilateral static equilibrium relies on a careful adaptation of the
jump-transfer argument by Francfort and Larsen [1] to the atomistic setting.
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Continuous symmetry breaking: a rigorous approach

Sara Daneri

(joint work with Eris Runa)

We introduce a rigorous approach to the study of the symmetry breaking and
pattern formation phenomenon for isotropic functionals with local/nonlocal inter-
actions in competition.

We consider a general class of nonlocal variational problems in general dimen-
sion in which an isotropic surface term favouring pure phases competes with an
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isotropic nonlocal term with power law kernel favouring alternation between dif-
ferent phases.

More precisely, for d ≥ 1, J > 0, L > 0 and E ⊂ Rd [0, L)d-periodic, let

F̃J,p,d(E, [0, L)
d) =

1

Ld
JPer(E; [0, L)d)

− 1

Ld

∫

[0,L)d

∫

Rd

∣∣∣χE(x+ ζ)− χE(x)
∣∣∣K(ζ) dx dζ,

where Per(·, [0, L)d) is the classical isotropic perimeter functional relative to [0, L)d

and K is an isotropic integrable kernel with p-power law decay at infinity.
If the kernel decays at infinity like a power p > d+1, there is a critical constant

Jc > 0 such that for J > Jc, F̃J,p,d ≥ 0 and it is minimized by the trivial sets
∅, Rd, while for J < Jc the trivial sets are not minimizers. The critical constant
Jc is given by

Jc =

∫

Rd

|ζ1|K(ζ) dζ, ζ1 = 〈ζ, e1〉.

Symmetry breaking and striped pattern formation was conjectured to hold for
J < Jc, |J − Jc| ≪ 1.

Our main result (see [1]) consists in proving such a conjecture when p ≥ d+ 3.
Close to the critical regime in which the two terms are of the same order, we

give a rigorous proof of the conjectured structure of global minimizers, in the shape
of domains with flat boundary (e.g. stripes or lamellae).

The natural framework in which our approach is set and developed is the one
of calculus of variations and geometric measure theory.

Among others, we identify a nonlocal curvature-type quantity which is con-
trolled by the energy functional and whose finiteness implies flatness for sufficiently
regular boundaries.

The power of decay of the considered kernels at infinity, i.e. p ≥ d+3, is related
to pattern formation in synthetic antiferromagnets.
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Finite crystallization via stratification

Leonard Kreutz

(joint work with Manuel Friedrich, Ulisse Stefanelli)

We present a new technique for proving two-dimensional crystallization results in
the square lattice for finite particle systems. We begin by introducing the finite
crystallization problem [1] and briefly reviewing relevant results from the litera-
ture. We then describe the model under consideration, featuring configurational
energies with two-body short-range interactions and three-body angular poten-
tials that favor square-lattice bond angles. A short overview of the bond-layer



1182 Oberwolfach Report 23/2025

induction method – originally used to prove crystallization for the sticky-disc po-
tential [6] – is given before presenting our new approach. In this new method, each
configuration is associated with a bond graph, which is then modified by identi-
fying chains of successive atoms. This technique, called stratification, reduces the
crystallization problem to a minimization task, corresponding to a slicing proof
of the isoperimetric inequality. Our approach recovers the classical crystallization
result on the square lattice from the literature [4, 7] and yields a new relative
crystallization result [5]. We then discuss the non-uniqueness of minimizers for
these edge-isoperimetric problems and provide optimal fluctuation estimates [2]
for the relative case. Depending on the interaction strength β between substrate
and crystal, we either recover the classical N3/4-law when β ∈ Q – which bounds
the difference between minimizers by N3/4 particles and is known from other edge-
isoperimetric problems (see e.g. [3, 8]) – or, when β ∈ R \Q is algebraic, we show
that minimizers differ by at most N1/3 atoms.
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Discrete-to-continuum convergence rates for graph-based learning

with singular PDEs

Leon Bungert

(joint work with Jeff Calder, Tim Roith)

In this talk we are considering the problem of semi-supervised learning using
graphs. The problem can be formulated easily: Given a large but finite set of
data points Ωn = {x1, . . . , xn} ⊂ Rd, and a small subset of labeled points O ⊂ Ωn

with labels g : O → R, the task is to find a function un : Ωn → R which extends the
labels, i.e., u = g on O. To select a reasonably “smooth” extension un, a common
approach consists in converting the data set into a weighted graph Gn = (Ωn, ωn)
and defining un to be the solution of a (nonlinear) mean value property on Ωn \O
subject to the labeling condition u = g in O. Here we are considering the graph
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infinity Laplace equation ∆n
∞un = 0 in Ωn \ O, where the graph infinity Laplace

operator arises as singular limit of p-Laplace operators as p→ ∞ and is given by

∆n
∞un(x) := max

y∈Ωn

ωn(x, y) (u(y)− u(x)) + min
y∈Ωn

ωn(x, y) (u(y)− u(x)) .

To understand and quantify the behavior of solutions to this semi-supervised learn-
ing model in the large data limit n→ ∞, we investigate its continuum limit which
is the partial differential equation (PDE) ∆∞u = 0 in Ω \ O subject to u = g in
O and Neumann boundary conditions on ∂Ω \ O. Here Ω is an open subset of Rd

and for the purpose of this talk we imagine Ω as being convex. Solutions have to
be understood in the viscosity sense, where the so-called infinity Laplacian of a
smooth function u is defined as ∆∞u(x) := 〈∇u(x), D2u(x)∇u(x)〉.

For studying the continuum limit we first need to assume that the data set Ωn

approximates some continuum domain Ω as n→ ∞ and we measure the approxi-
mation quality by the Hausdorff distance δn := dH(Ωn,Ω). An important example
is data generated as i.i.d. samples from some probability distribution supported
in Ω with positive density with respect to the Lebesgue measure in which case

δn ∼
(
n−1 logn

) 1
d with very high probability. Another essential ingredient for the

continuum limit is the construction of the edge weights ωn where we assume that
ωn(x, y) = η

(
ε−1
n |x− y|

)
for some non-increasing function η : [0,∞) → [0,∞)

with support in [0, 1] and some scaling parameters (εn)n∈N. In this scenario we
prove in [1] that without further assumptions on Ωn and for every τ > 0 we have

max
Ωn

|un − u| ≤ C(Ω, η, u)

(
τ + 3

√
δn
εnτ

+
εn
τ2

)
.

By optimizing over τ this allows us to derive an explicit convergence rate of the
solution of the graph problem to that of the continuum PDE, for all graph scalings
which satisfy δn ≪ εn ≪ 1. Even more, under the condition that the data set
Ωn is a uniform i.i.d. sequence or a Poisson point process with intensity n and
for graph scalings just above the critical percolation threshold, meaning εn =

C(d)
(
n−1 logn

) 1
d ∼ δn with a large enough constant C(d) > 0 for the graph to

be connected, in [2] we improve these results to

max
Ωn

|un − u| ≤ C(Ω, η, u)

(
τ + 3

√
logn

δn√
εnτ3

+
εn
τ2

)
.

Optimizing over τ again produces a rate which (up to log factors) scales like δ
1
9
n .

For both results the critical ingredient is to use suitable comparison principles to
reduce the problem to the study of ratios of graph distance functions.
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On the Stability of Objective Structures

Bernd Schmidt

(joint work with Martin Steinbach, Augsburg)

Objective structures, introduced by James in [2], form a far reaching generalization
of crystal lattices. They are given as the orbit G · x0 of a single point x0 ∈
Rn under the action of a discrete group G of isometries on Rn. If particles are
assumed to interact via suitable pair potentials, such systems model a variety of
interesting systems including general crystals and lower dimensional structures
such as nanotubes.

Our goal is to provide a stability analysis for these structures. While the special
case of lattices has been analyzed (see, in particular, [1]), in our general case two
main difficulties arise:

(A) G may be non-abelian,
(B) G · x0 may not invade all of Rn.

This is in sharp contrast to the case of lattices, where G is group of translations
spanning all of Rn.

In view of (A), our first result is an efficient description of the dual space Ĝ
which allows us to apply Fourier analysis methods. We achieve this in [3] by
showing that representations of G can be characterized by finitely many ‘wave
vector domains’.

The difficulty that results from (B) is that our structures can be asymptotically
of lower dimension. In particular, a full stability result is not to be expected as
buckling in response to compressive loads may occur. We approach this problem
by carefully choosing seminorms that measure the deviations of deformations to
rigid motions, some of them only within the extended dimensions of the structure
itself.

A main step of our analysis is to establish Korn type inequalities with respect to
these seminorms, cf. [4]. Our main stability result in [5] then provides a characteri-
zation of the stability constants in terms of the representations of G. We formulate
it in such a way that it directly lends itself to an efficient numerical algorithm for
checking stability in terms of the underlying structure and interaction potentials.
We complement this by providing matching upper bounds for the energy. This, in
particular, also justifies our choice of seminorms.

Finally, we apply our analysis to a carbon nanotube with non-trivial chirality.
We prove stability (in a strong sense) within the tensile regime and (in a weaker
sense) even at equilibrium, cf. [5].
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Nonlocal gradients in variational problems: Heterogeneous horizons

and local boundary conditions

Carolin Kreisbeck

(joint work with Hidde Schönberger)

Nonlocal models offer advantages over classical ones, as they are often more accu-
rate, more general, and require less regularity. In continuum mechanics, peridy-
namics is a nonlocal framework well-suited for modeling discontinuous and singu-
lar effects, such as fractures. Our focus here lies on new models of hyperelasticity,
where the classical deformation gradient is replaced by a nonlocal analogue, an
averaged linear approximation that accounts for interactions within a finite range
called the horizon. A common issue with nonlocal models, however, is that they
usually require more computational resources and present difficulties in handling
boundary conditions accurately. To address this, local-to-nonlocal coupling com-
bines both modeling approaches, often by shrinking the horizon near the boundary
to ensure a seamless transition to a local description.

Following the set-up of the work in progress [2], we consider as a key object
the heterogeneous nonlocal gradient of a function u : Ω → Rm with Ω ⊂ Rn a
bounded Lipschitz domain given by

Dρ(·)u(x) = δ(x)−n

∫

Ω

u(y)− u(x)

|y − x| ⊗ y − x

|y − x|ρ
(y − x

δ(x)

)
dy for x ∈ Ω;

here δ : Ω → (0,∞) describes a space-dependent horizon with δ(x) ≤ dist(x, ∂Ω)
and ρ : Rn \ {0} → [0,∞] is a radially symmetric kernel with constant horizon,
supported in the unit ball of Rn and satisfying the properties of the general set-
ting in [1]. Particularly relevant examples of such homogeneous kernels include
the Riesz fractional gradient and its finite-horizon version obtained via truncation.
An important observation in handling Dρ(·) is that it corresponds to a restricted
pseudo-differential operator with Hörmander symbol, which allows the use of an-
alytical tools such as mapping properties and parametrices as almost inverses. In
particular, this enables to prove a powerful translation mechanism linking hetero-
geneous nonlocal gradients to classical ones, see [2]. Unlike in the constant horizon
case, this relation holds only up to controllable lower-order operators.

Our refined approach to nonlocal hyperelasticity gives rise to vectorial varia-
tional problems with energy functionals of the form

Fρ(·)(u) =

∫

Ω

f(x,Dρ(·)u) dx for u ∈ Hρ(·),p
g (Ω;Rm),

where p ∈ (1,∞) and f : Ω×Rn → [0,∞] is a Carathéodory function with standard
growth and coercivity behavior. The naturally associated function spaces are
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the heterogeneous nonlocal Sobolev spaces Hρ(·),p(Ω;Rm), for which we develop
a comprehensive theory in [2]. Besides embedding and regularity results, this
includes a trace theorem showing that Hρ(·),p(Ω;Rm) has the same traces as the
standard Sobolev space W 1,p(Ω;Rm). Thus, although nonlocal in nature, these
spaces admit classical traces, allowing to prescribe Dirichlet boundary data g in
the usual Sobolev trace space, i.e., g ∈ W 1−1/p,p(∂Ω;Rm). Another essential tool
in this framework is a Poincaré inequality, which is also established in [2].

The existence of minimizers for variational problems involving Fρ(·) in the case
of quasiconvex or polyconvex integrands f can then be obtained in view of the
weak lower semicontinuity of these functionals, the proof of which exploits the
aforementioned translation mechanism.
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Hidden Convexity of continuum theories of dislocations and plasticity

Amit Acharya

(joint work with Jacobo Bielak, Janusz Ginster, Udit Kouskiya, Robert Pego,
Siddharth Singh, Noel Walkington, Xiaohan Zhang)

We describe a dissipative dynamical theory of dislocations leading to plasticity
called Field Dislocation Mechanics. Some physical outcomes of the theory are
demonstrated for a ‘small deformation’ ansatz within the theory. These are the
potential existence of a stress threshold to the motion of a single dislocation in
a translationally invariant PDE model, the existence of stacking faults, and the
existence of supersonic dislocation motion in prestrained elastic strips consistent
with molecular dynamics simulations [1].

We then briefly discuss a technique for constructing dual convex variational
principles corresponding to general systems of physical governing equations, like
Field Dislocation Mechanics [2, 3, 4]. We illustrate the scheme by computing
results for the inviscid Burgers equation as a degenerate elliptic problem in space-
time domains [5], traveling wave solutions like solitons, dispersive solitons, and
disintegrated solitons, of a semi discrete Burgers equation [7], and elastodynamic
solutions for an elastic model with a double well nonconvex elastic energy [6]. In [6],
the existence of variational dual solutions to the elastostatic PDE corresponding
to the Euler–Lagrange equations of the non-quasiconvex energy functional for the
St.-Venant Kirchhoff material is rigorously shown.
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Replicator dynamics as the limit of Moran processes

Gianluca Orlando

(joint work with Marco Morandotti)

The replicator equation is the dynamical system

(1) λ̇i = bi(λ) := λi
(
(Aλ)i − λ⊤Aλ

)
, i = 1, . . . ,M , (with initial data),

in the unknown λ : [0, T ] → RM , where A ∈ RM×M is a fixed matrix of coefficients.
After noticing that the (M − 1)-simplex ∆M−1 ⊂ RM is invariant under the
action of the dynamical system, one interprets (1) as a model that describes, in an
averaged fashion, the typical evolution of proportions of strategies in a population.
Specifically, λi represents the proportion of agents in a population that choose to
adopt a given strategy ui from a set of possible strategies U = {u1, . . . , uM}. The
right-hand side in the equation favours the spread of strategies that outperform
the average, when expected payoffs are measured in terms of A.

In [5], we derive (1) as the large-population limit of a finite-population Markov
chain that describes the choice of strategies from the point of view of individu-
als. This is the so-called Moran process [4], a discrete-time (with time step τk)
birth-death process in a population of Nk individuals. At each time step: 1) An
individual is sampled in the population to reproduce with probability proportional
to the fitness of the strategy fi = (1 − wk) + wkπi, where wk ∈ (0, 1), and πi is
the expected payoff (computed in terms of A) for adopting strategy ui when in-
teracting with an individual met randomly in the population; 2) An individual is
sampled randomly uniformly to abandon its strategy. To derive the limit of the
resulting piecewise affine random paths t 7→ λk(t) ∈ ∆M−1 describing the propor-
tions of strategies in the finite population, we resort to an Eulerian formulation
of the process that describes the evolution of the law of the random proportions

https://arxiv.org/abs/2504.12171
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Λk
t = λk(t)#P ∈ P(∆M−1). This solves, in the distributional sense, a discrete

continuity equation

(2) ∂tΛ
k
t + div(bΛk

t ) = error(k) ,

where error(k)→ 0 as τk → 0 (continuous-time limit), Nk →+∞ (large-population
limit), wk → 0 (weak selection regime), under a precise assumption on the relation
between these three parameters. In the limit, (2) becomes precisely the Eulerian
version of (1). We mention [2, 3, 1] for strictly related results.

A crucial technical step in the result concerns compactness of the paths t 7→
Λk
t ∈ P(∆M−1) with respect to the 1-Wasserstein distance W1. Straightforward

estimates on the discrete stochastic process do not guarantee automatically equi-
continuity properties for these paths. Compactness has to be proven directly with
more refined estimates that rely on the PDE (2) and following the lines of the
original Arzelà–Ascoli Theorem.
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Axial symmetry of DMI-stabilized Skyrmions on the disk

Leon Happ

(joint work with Giovanni Di Fratta, Valeriy V. Slastikov)

In mathematical terms, magnetic Skyrmions (an eponym in tribute to theoretical
physicist Tony Skyrme) can be viewed as local minimizers of the micromagnetic
energy functional with a non-trivial topological degree (Skyrmion number)

Q(m) :=
1

4π

∫

D

m · (∂1m× ∂2m) dx ∈ Z.

First observed experimentally in 2009 at TU Munich [1], such structures have by
now been extensively studied. It is believed that due to their size – in certain
materials, Skyrmions have diameters in the nanometer-scale regime –, their topo-
logical stability, and the ability to move, create and annihilate them, they hold
the key for a revolution in data storage devices, a research direction commonly
referred to as spintronics (cf. [2]). In recent years, similar vortex structures have
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also been detected in chiral liquid crystals, ferroelectrics and the polarization of
light, making a thorough mathematical understanding of such configurations even
more relevant (cf. [3], [4] and [5]).

Interestingly, there seems to be the conviction among physicists that magnetic
Skyrmions are always axially symmetric, i.e., they are determined by a radial
profile function, from which the whole Skyrmion can be recovered by rotating it
about a perpendicular axis. For example, in [2] one reads that Skyrmions are “ax-
isymmetric two-dimensional solitons” and “localized axisymmetric configurations
of a magnetization vector”. However, form a mathematical point of view, these
statements have the character of a conjecture; while all components of the micro-
magnetic energy (see below) are axial symmetric, a priori, this does not exclude
the possibility of symmetry breaking.

In my talk I present a recent unfinished joint work with Giovanni Di Fratta and
Valeriy Slastikov that supports the abovementioned hypothesis in the sense that we
prove the existence of axially symmetric local minimizers with topological degree
one in the small parameter regime. To be precise, on the disk D := B1(0) ⊂ R2

we study the energy (where m⊥ := (m1,m2) in Cartesian coordinates)

E(m) :=
1

2

∫

D

{
|∇m|2 − 2κm⊥ · ∇m3 + (Q− 1)|m⊥|2

}
dx,

with κ > 0, Q ≥ 1, over the class A := {m ∈ H1(D; S) : m = −ê3 on ∂D},
where we combine (from left to right) exchange energy with surface Dzyaloshinskii–
Moriya interaction (DMI) (going back to [6, 7]) and perpendicular anisotropy. The
second contribution, incorporating antisymmetric exchange effects due to spin-
orbit coupling and emerging in crystalline structures lacking inversion symmetry,
plays a pivotal role in the stabilization of magnetic Skyrmions (cf. [8], [2]). For
want of general techniques to deduce axial symmetry of minimizers, we make the
ad hoc axially symmetric ansatz (in polar coordinates)

m0(r, ϕ) := − sin(θ(r))êr − cos(θ(r))ê3

for an optimal profile function θ : [0, 1] → [0, π] with θ(0) = π, θ(1) = 0 uniquely
determined through the corresponding Euler–Lagrange equation, and prove that
this indeed constitutes a stable local minimizer of our energy functional. It is
easily validated that Q(m0) = 1, i.e., m0 represents a (Néel type) Skyrmion. Our
main result reads as follows.

Theorem. For κ > 0 and Q− 1 ≥ 0 sufficiently small there exists some constant
C > 0 and some ε > 0 such that for m ∈ A with ‖m−m0‖H1 < ε there holds

E(m)− E(m0) ≥ C‖m−m0‖2H1 .

Our findings complement a work of Li and Melcher [9], where the authors
demonstrate a related statement for the whole space R2. Our proof relies on
a Fourier decomposition of the Hessian of the energy and a fine analysis of the
monotonicity of the optimal profile function, motivated by [9] and using ideas from
[10] and [11].
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Dissipative Hamiltonian structure of the kinetic

Fokker–Planck equation

Sangmin Park

The short talk, based on the preprint [1], concerns the kinetic Fokker–Planck
equation (KFP) with the confinement potential U : Rd

x → R and friction α > 0

(1) ∂tµt + v · ∇xµt −∇xU · ∇vµt − α(∇v · (vµt) + ∆vµt) = 0.

The equation takes place in the phase space R2d = Rd
x × Rd

v.
Let (P2(R

2d),W2) be the 2-Wasserstein space on R2d and let H : P2(R
2d) →

(−∞,+∞] be the relative entropy functional with respect to the probability mea-

sure µ∞(dxdv) ∝ e−U(x)−|v|2/2 dxdv, which is the invariant measure of (1). Then
KFP (1) can be formulated as the dissipative Hamiltonian flow of H in the Wasser-
stein space in the following way:

(2) ∂tµt +∇ · (µt(J + S)gradH(µt)) = 0, where J =

(
0 1
−1 0

)
, S =

(
0 0
0 −α

)
.

Here, gradH(µ) ∈ L2(µ;R2d) is the Wasserstein gradient of the functional H at
µ ∈ P2(R

2d). Ambrosio and Gangbo [2] first rigorously studied Hamiltonian ODEs
in the Wasserstein space, corresponding to α = 0.

Motivated by the minimizing movements scheme and the symplectic Euler
scheme for Hamiltonian flows in R2d, we propose the following variational scheme
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for KFP: Given an initial datum µ0 ∈ P2(R
2d), a time step h > 0, and the number

of iterations N ∈ N, iteratively define the discrete solutions (µN
ih)

N
i=0 by

µ̄N
(i+1)h ∈ argminν∈P2(R2d)

W 2
2,v(µ

N
ih, ν)

2h
+

∫

R2d

∇U(x) · v dν(x, v) + αH(ν)

µN
(i+1)h ∈ argminν∈P2(R2d)

W 2
2,x(µ̄

N
(i+1)h, ν)

2h
−
∫

R2d

v · x dν(x, v).
(3)

The metric W2,v (resp. W2,x) is the geodesic distance induced byW2 on the linear
subspace of P2(R

d
x × Rd

v) with fixed x-(resp. v-)marginals (cf. Pezek and Poy-
ato [3]); by convention W2,v(µ, ν) = +∞ when their x-marginals do not coincide.

The energy functionals in each step of the algorithm are convex along geodesics
(and generalized geodesics) in the relevant metric; to our knowledge the variational
scheme is the first algorithm for KFP (and more generally, the Vlasov–Fokker–
Planck equation) with such geodesic-convexity properties.

A straightforward analysis using the convexity of (3) and the Euler–Lagrange
equation yields the following.

Theorem (Park, ’24 [1]). Let ∇xU be Lipschitz and H(µ0) < +∞. Then the
piecewise-constant interpolation between discrete solutions µN

t = µN
ihN

for t ∈
[ihN , (i+1)hN ) converges pointwise narrowly to the distributional solution of KFP
on the time interval [0, T ] as hN = T/N → 0.

The above theorem recovers the existence of a distributional solution of KFP
without relying on any known results; only the uniqueness of solutions is used to
obtain the convergence of the full sequence.
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Explicit minimizers of the anisotropic Riesz potential

Edoardo Giovanni Tolotti

(joint work with Maria Giovanna Mora, Luca Rondi, Lucia Scardia)

We consider the following interaction energy defined on probability measures

IΦs (µ) =

∫∫

Rd×Rd

1

|x− y|sΦ
(
x− y

|x− y|

)

︸ ︷︷ ︸
Ws(x−y)

dµ(x) dµ(y), µ ∈ P(E), s ∈ (0, d).
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Here, E is the closure of a non-degenerate ellipsoid, while Φ : Sd−1 → R is an
even, positive, and continuous function describing the anisotropy of the interac-
tions. Such functionals are the Γ-limit of the natural rescaling of discrete pairwise
interaction energies. In particular, they arise in the discrete-to-continuum limit of
dislocation models. We recall that a similar problem is considered in [1], where
the minimization is taken over probability measures over Rd and a quadratic con-
finement term ensures compactness of their support.

The existence of minimizers is classical. Moreover, when Φ ≡ 1 (namely, there
is no anisotropy), and E is a ball, the minimizer is unique and it is explicitly
known since the 30s (see [3]).

For a general anisotropy profile, a sufficient condition for uniqueness is that

Ŵs ≥ 0. In this case, being a minimizer is equivalent to solve the Euler–Lagrange
equations associated to the problem.

The objective of the talk is to show that it is possible to characterize the unique
minimizer for a broad class of anisotropies and Riesz exponents. Indeed, we show

that, for any Φ such that Ŵs ≥ 0 and s ∈ [d− 2, d), the unique minimizer of IΦs is
the pushforward onto E of the isotropic minimizer. In particular, the minimizer of
IΦs and I1s coincide. This result is obtained showing that the candidate minimizer
solves the Euler–Lagrange equations.

The range s ∈ (0, d − 2) behaves differently. In this case, we do not have
a characterization but we show that the minimizer depends on the anisotropy.
Indeed, we prove that for any exponent in this range there is an anisotropy Φ for
which the minimizer of I1s case does not minimize IΦs .

References

[1] R.L. Frank, J. Mateu, M.G. Mora, L. Rondi, L. Scardia, J. Verdera, Explicit minimisers for
anisotropic Riesz energies, preprint (2025).

[2] M.G. Mora, L. Rondi, L. Scardia, E.G. Tolotti, Explicit minimizers of the anisotropic Riesz
potential, in preparation.
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Competting effects in fourth-order aggregation-diffusion equations. A

gradient flow perspective

Alejandro Fernández-Jiménez

(joint work with José A. Carrillo, Antonio Esposito, Carles Falcó)

We are interested into understanding cell-cell adhesion, a phenomenon responsible
for tissue growth and patterning formation. The process combines the diffusion of
cells with aggregation due to chemical or physical pressure (e.g. protein binding)
to produce tissues. In [2], Falcó, Baker and Carrillo introduce the system

∂tρ = −div (ρ∇ (κ∆ρ+ α∆η + βρ+ ωη)) ,

∂tη = −div (η∇ (α∆ρ+∆η + ωρ+ η))
(1)



Singularities in Discrete Systems 1193

in order to understand this cell-sorting phenomena through a PDE model. The
work in [2] provides the modelling perspective. Afterwards, to improve our under-
standing of the model we study existence in [1]. As a first step, we consider the
corresponding one-species equation (with a more general local pressure) given by

(2) ∂tρ = −div(ρ∇(∆ρ))− χ∆ρm, in (0,∞)× Rd

where m ≥ 1 and χ > 0. We realise that (2) is the 2-Wasserstein gradient flow of

Fm =
1

2

∫

Rd

|∇ρ(x)|2 dx− χEm[ρ]

where Em[ρ] = 1
m−1

∫
Rd ρ

m ifm > 1 or Em[ρ] =
∫
Rd ρ log ρ ifm = 1. Thereby, using

the Gagliardo–Nirenberg inequality we find that there exists a critical exponent
mc := 2 + 2

d governing the behaviour of (2). If 1 ≤ m < mc (subcritical regime),

the free energy is bounded from below and we also have H1 compactness in space.
If m > mc (supercritical regime), the free energy is unbounded. If m = mc we
are on the critical regime. In this case, there exists a parameter χc such that
for 0 < χ ≤ χc the free energy is bounded from below in the set of probability
measures and if 0 < χ < χc we also have H1 compactness. However, if χ > χc

the free energy is unbounded. The critical parameter χc is identified by the sharp
constant of a suitable inequality [3]. Then, for the subcritical regime and critical
regime with 0 < χ < χc we show existence of weak solutions via the JKO scheme.

We can extend these techniques in order to cover (1) as well. System (1) is the
2-Wasserstein gradient flow of the free energy

F [ρ, η] =

∫
κ

2
|∇ρ|2 + 1

2
|∇η|2 + α∇ρ · ∇η − β

2
ρ2 − 1

2
η2 − ωρη.

If κ > α2 we can prove that F [ρ, η] ≥ CρF2[ρ] + CηF2[η]. Hence, we can work
analogously to the one-species case. We recover that the free energy is bounded
from below and we have H1 compactness in space for ρ and η. Thus, we are able
to show existence of weak solutions for (1) using the JKO scheme.
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Nonlocal analysis of energies in Micromagnetics

Rossella Giorgio

(joint work with Elisa Davoli, Giovanni Di Fratta, and Luca Lombardini)

Considering the micromagnetic energy functional

(1)

∫

Ω

|∇m|2 dx+

∫

Ω

curlm ·mdx+

∫

R3

|hd[mχΩ]|2 dx,

defined for m ∈ H1(Ω;S2), where Ω ⊂ R3 is a bounded Lipschitz domain, we
study conditions under which a nonlocal analysis of micromagnetic energies can
be formally justified. The energy (1) comprises the classical Dirichlet energy, an
antisymmetric exchange term and the magnetostatic-self energy which is a non-
local contribution determined by hd[m] ∈ L2(R3;R3) such that

(2) div(mχΩ + hd[m]) = 0, curlhd[m] = 0 in R3.

First, relying on [1], we consider a nonlocal-to-local approximation of the two
exchange energy functionals∫

Ω

|∇m|2 dx+

∫

Ω

curlm ·mdx

using nonlocal functionals of the form
∫∫

Ω×Ω

(
ρε(x − y)

|m(x)−m(y)|2
|x− y|2 +

νε(x − y)

|x− y| ·
(
m(x)×m(y)

))
dx dy,

with (ρε)ε and (νε)ε suitable families of localizing kernels. The key points are a
pointwise convergence result and a Γ-convergence argument.

After the nonlocal approximation, we neglect the antisymmetric contribution
and study the existence and qualitative properties of minimizers for the simplified
nonlocal energy

(3)

∫∫

Ω×Ω

j(x− y)|m(x)−m(y)|2dx dy +
∫

R3

|hd[mχΩ]|2dx,

defined for m ∈ L2(Ω;S2). This energy functional combines a more general non-
local symmetric interaction with the magnetostatic self-energy satisfying (2). To
obtain strong compactness, we require that j is symmetric, Lévy-integrable, and
singular at the origin. Furthermore, for spherical domains, we generalize [2] by
identifying critical radii R∗ and R∗∗ delineating distinct regimes of minimizers: for
R ≤ R∗ uniform configurations are energetically preferable (small-body regime),
while for R ≥ R∗∗, non-uniform magnetizations become dominant (large-body
regime). These transitions are analyzed through a nonlocal Poincaré-type in-
equality and explicit energy comparisons between uniform and vortex-like states.
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Viscoelasticity and Growth

Andrea Chiesa

(joint work with Ulisse Stefanelli)

We present a model for the evolution of a viscoelastic compressible solid undergoing
phase change [1]. We assume that the material presents two phases, of which one
grows at the expense of the other by accretion. In particular, the phase-transition
front evolves in a normal direction to the accreting phase, with a growth rate
depending on the deformation. This behavior may be observed in swelling in
polymer gels, where the swollen phase accretes in the dry one and cause a volume
increase, and in some solidification processes. The focus of the modelization is on
describing the interplay between mechanical deformation and accretion. On the
one hand, the two phases are assumed to have a different mechanical response,
having an effect on the viscoelastic evolution of the medium. On the other hand,
the time-dependent mechanical deformation is assumed to influence the growth
process. The mechanical and phase evolutions are thus fully coupled.

The state of the system is described by the pair (y, θ) : [0, T ]×U → Rd× [0,∞),
where T > 0 is some final time and U ⊂ Rd (d ≥ 2) is the reference configuration of
the body. Here, y is the deformation of the medium while θ determines its phase.
More precisely, for all t ∈ [0, T ] the accreting (growing) phase is identified as the
sublevel Ω(t) := {x ∈ U | θ(x) < t}, whereas the receding phase corresponds to

U \ Ω(t). The deformation y satisfies the viscoelastic evolution equations

−div
(
∂FW

a(∇y)+∂ḞRa(∇y,∇ẏ)−divDH(∇2y)
)
= f in

⋃

t∈[0,T ]

{t}×Ω(t)

−div
(
∂FW

r(∇y)+∂ḞRr(∇y,∇ẏ)− divDH(∇2y)
)
= f in

⋃

t∈[0,T ]

{t}×(U\Ω(t))

and θ solves the generalized eikonal equation

γ
(
y(θ(x), x),∇y(θ(x), x)

)
|∇θ(x)| = 1 in U \ Ω0

and θ = 0 on Ω(0) ⊂⊂ U . We show that the coupled system above admits a
weak/viscosity solution, where the viscoelastic evolution is solved weakly, whereas
the growth dynamics equation in the viscosity sense. We moreover prove that
solutions fulfill the energy equality, where the energetic contribution of the phase
transition is characterized.

Despite the vast engineering literature on growth mechanics (see in particular
[3]), to the best of our knowledge, no existence result for finite-strain accretive-
growth is currently available. In the linearized case, an existence result for the
model [3] has been obtained in [2].
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Propagation of chaos for multi-species moderately interacting particle

systems with attractive Coulomb potentials

Shuchen Guo

(joint work with José Antonio Carrillo, Alexandra Holzinger)

We consider a class of multi-species aggregation-diffusion systems on Rd (d ≥ 3):

(1) ∂tf̄α =

n∑

β=1

div(f̄α∇Vαβ ∗ f̄β) + σα∆f̄α,

for fixed number of species n ∈ N, and for indexes of species α, β = 1, 2, . . . , n,
with f̄α(0) = f̄0

α ∈ L1∩L∞(Rd). The interaction potential is given by Vαβ = aαβV
with the following assumptions:

(i) the constants aαβ ∈ R, especially aαβ > 0 and aαβ < 0 corresponding to
repulsive and attractive regimes between α-th and β-th species;

(ii) the potential V (x) = 1/|x|s and 0 < s ≤ d− 2, which covers sub-Coulomb
and Coulomb interactions.

Under the smallness condition on the initial data, we prove the global well-posed-
ness result of (1) in the space f̄α ∈ L∞(0, T ;L1 ∩ L∞) ∩ L2(0, T ;H1), α =
1, 2, . . . , n.

The another object is the generalised moderately interacting particle dynamics:

(2) dXε
α,i(t) = − 1

N

n∑

β=1

N∑

j=1

∇V ε
αβ(X

ε
α,i(t)−Xε

β,j(t)) dt +
√
2σα dBα,i(t),

where the potential V ε
αβ = aαβV ∗ χε with mollifier χε(x) = ε−dχ(ε−1x) and

radially symmetric χ ∈ C∞
c (Rd). There is an algebraic connection between ε and

N such as ε = N−ℓ. The distribution of the particles can be described by the
Liouville equation on RNnd:
(3)

∂tfN,ε =

n∑

α,β=1

N∑

i=1

divxα,i

(
fN,ε

1

N

N∑

j=1

∇V ε
αβ(xα,i − xβ,j)

)
+

n∑

α=1

N∑

i=1

σα∆xα,i
fN,ε.

Our main result is to derive the aggregation-diffusion systems (1) from the
stochastic interacting particle systems (2) via relative entropy method with quan-
titative bounds. More specifically, we show an algebraic L1-convergence between
the joint distribution (3) and the limiting PDE (1). For any n-tuples K =
(K1, . . . ,Kn), it holds for some suitable ζ that

(4) sup
t∈[0,T ]

∥∥f (K)
N,ε −

n∏

α=1

f̄⊗Kα
α

∥∥
L1 ≤ C(T )

N ζ
, α = 1, 2, . . . , n.

In the proof, the first step is to make use of the relative entropy between the joint
distribution (3) and an approximated limiting aggregation-diffusion system. A cru-
cial argument is to show convergence in probability by a stopping time argument
which is developed in [2]. To overcome the difficulty of the attractive Coulomb
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case, an auxiliary function constructed in [3] has been used. The second step is to
obtain a quantitative convergence rate to the limiting aggregation-diffusion sys-
tem (1) from the approximated PDE system in the first step. This is shown by
evaluating a combination of relative entropy and L2-distance.
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Discrete-to-continuum limits of optimal transport with linear growth

on periodic graphs

Filippo Quattrocchi

(joint work with Lorenzo Portinale)

As discovered by Jordan, Kinderlehrer, and Otto [5], one remarkable property of
Wasserstein distances is that they induce geometries on spaces of measures under
which some common PDEs – such as the heat equation – can be seen as gradient
flows. To deal with evolution equations in discrete settings, dynamical transporta-
tion functionals [2, 6, 7] have been introduced by adapting the Benamou–Brenier
formulation of Wasserstein distances [1].

Let G = (X , E) be a graph. Given a curve of measures (mt)t∈(0,1) on the

vertices X , discrete vector fields (Jt)t∈(0,1) ⊆ RE , and a cost function F , we define

the action A
(
(mt, Jt)t

)
:=
∫ 1

0 F (mt, Jt) dt. The analogue of Wasserstein distances
is the dynamical transportation minimal action functional [4]

(1) MA(m0,m1) := inf
(mt,Jt)t∈CE(m0,m1)

A
(
(mt, Jt)t

)
, m0,m1 ∈ M+(X ) ,

where the infimum is taken among all solutions to a suitably defined discrete
continuity equation, with (mt)t∈(0,1) connecting m0 and m1.

The subject of this talk is the discrete-to-continuum limit of dynamical trans-
portation functionals. One of the main results in this regard, due to Gladbach,
Kopfer, Maas, and Portinale [4] establishes the Γ-convergence in the large-scale
limit for periodic graphs embedded in Rd, under an assumption of superlinearity
for the cost function. While such an assumption includes many interesting cases,
it excludes, e.g., discrete counterparts of the 1-Wasserstein distance. In a joint
work with Portinale [8], we extend the aforementioned result to the case where
the cost function is asymptotically linear.

Theorem ([8]). Let Gǫ = ǫG be the rescaling of a Zd-periodic graph G in Rd,
and let Fǫ be an appropriate rescaling of a convex, lower semicontinuous, and
asymptotically linear function F . Then, as ǫ → 0, the corresponding rescaled
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action functionals Aǫ Γ-converge to a functional Ahom which can be expressed
through a cell formula in terms of F , and MAǫ Γ-converge to the minimal Ahom-
action MAhom (i.e., the continuous counterpart of (1) holds in the limit).

Another natural question is whether the classical p-Wasserstein distances can
be recovered as limits of their discrete counterparts. For p = 2, the answer is
conditional on a geometric property of the periodic graph, cf. [3, 4]. In [8], we
instead answer negatively for p = 1 in dimension ≥ 2. In this case, although the
limit is a 1-Wasserstein distance constructed from some underlying norm on Rd,
such a norm – which depends on the graph – has a polytope as unit ball, and
therefore cannot be the Euclidean norm (if d ≥ 2).
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Finite-difference approximation of Griffith energy

Anna Kubin

(joint work with Stefano Almi, Elisa Davoli, Emanuele Tasso)

We consider a continuous finite difference approximation of the linearized Griffith
energy. Our aim is to extend the results obtained in [3] for the Mumford–Shah
functional to the vectorial framework.

Following the approach of [3], we analyze the sequence of functionals

(1) Fε(u,Ω) :=
1

ε

∫

Ω−Ω
ε

(

∫

Ω∩(Ω−εξ)

arctan

(

((u(x+ εξ)− u(x)) · ξ)2

ε

)

dx

)

e
−|ξ|2dξ

defined for measurable functions u ∈ L0(Ω;Rn). We prove that this sequence
Γ-converges in L0(Ω;Rn) to the Griffith functional

G(u,Ω) = π
n
2

2

∫

Ω

(
|e(u)|2 + 1

2
div(u)2

)
dx+

π
n+1
2

2
Hn−1(Ju).
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The main challenge in analyzing (1) lies in establishing compactness for se-
quences uε with equibounded energy Fε(uε). Compactness results in GSBD are
not applicable here, as the functionals Fε are defined on the space of measur-
able maps, without assuming any differential structure or a priori integrability.
Remarkably, compactness can still be recovered via the Fréchet–Kolmogorov the-
orem, which reduces to proving the equicontinuity of translations. This technical
step shares common ideas with [1], where the compactness result of [2] was re-
visited, avoiding the use of Korn- or Korn–Poincaré-type inequalities. However,
due to the lack of a symmetric gradient and the additional integration over direc-
tions ξ ∈ Rn in the structure of (1), we cannot select a preferred basis to control
translations, as done in [1]. Nevertheless, the fine properties of the functionals Fε

allow us to control translations and apply the Fréchet–Kolmogorov theorem.
The final step in the proof of compactness consists in showing that the limit

function u belongs to GSBD(Ω), thereby identifying the domain of the Γ-limit
of Fε. Broadly speaking, the additional integration over directions ξ ∈ Rn in
(1) leads to a limiting function space consisting of measurable vector fields that
exhibit generalized bounded deformation in a “L1-sense”. Our arguments consist
in deriving fine properties of the limiting space and then proving that it coincides
with GSBD via an integral-geometric argument.
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Discreteness makes you think

Riccardo Cristoferi

(joint work with Marco Bonacini, Ihsan Topaloglu)

What is the effect of taking a discrete group of symmetries in a minimization
problem over sets?

We consider three prototypical examples where, on the one hand, discreteness
makes us re-think about tools and strategies at our disposal, and on the other hand,
it shakes classical beliefs that arose when considering all possible symmetries.

The first case is that of a Riesz type of non-local energy. When maximizing it
over the class of measurable sets having a fixed volume, spherical rearrangements
give us that the unique (up to rigid motions) solution is given by the ball. Namely,
the most symmetric object in the class of admissible competitors. Is the same true
even if we restrict our attention to polygons in two dimensions? Namely, is the reg-
ular polygon the unique solution? By using a sequence of Steiner symmetrizations,
in [1] we prove this claim for the case of three and four sides.
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What happens when we investigate the critical points? By using a suitable class
of variations, in [1] we show that, as for the continuum case, only the regular tri
and four-gons are the only critical points.

How to generalize those techniques for a larger number of sides? Moreover,
what happens when we move to three dimensions, where, in general, a regular
polytope does not exist? What is the correct notion of ‘most symmetric object’ in
such a case?

Finally, we consider the problem of minimizing the sum of an anisotropic
perimeter and the Riesz non-local energy over sets with a fixed mass. In the
case of the isotropic perimeter, for small masses, the unique minimizer is given by
the ball, namely, by the Wulff shape of the perimeter term. Is it then true that
the Wulff shape is the minimizer for small masses? Surprisingly, this turns out
to be false for any non-constant smooth anisotropy, but true for a large class of
crystalline anisotropies. This is achieved in [2] by proving a quadratic control of
the non-local term with respect to the natural distance between sets.
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Upscaling an atomistic model of anti-plane near-crack-tip plasticity

Maciej Buze

(joint work with Patrick van Meurs)

In a cracked crystalline solid, near-crack-tip plasticity refers to the rearrangement
of atoms in the vicinity of the crack tip due to stress concentration [1]. This process
is primarily governed by the nucleation and motion of dislocations – topological
defects that carry irreversible (plastic) deformation [2]. As such plasticity can
inhibit further crack growth [3, 4], a precise mathematical understanding of the
underlying mechanisms is essential for assessing material structural integrity.

In our work [5, 6], we formulate and study a minimal anti-plane atomistic bond-
energy model that is sufficiently rich to capture interaction between a Mode III
crack opening and screw dislocations.

We show that the model is well defined over a suitable class of atomistic displace-
ments. We establish existence and non-existence results for optimal configurations
accommodating dislocations at prescribed locations. We prove discrete regular-
ity results quantifying how fast atomistic effects decay compared to the far-field
leading order contributions from continuum linearised elasticity. To achieve our
results, we introduce a novel geometric and functional framework of the lattice
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manifold complex, in which a cracked crystal is described by a CW complex struc-
ture defined on the Riemann surface S = {(z, w) ∈ C2 | w2 = z}, thus extending
the celebrated Ariza–Ortiz model [7] to a spatially inhomogeneous discrete domain.

The above results about the atomistic model allow us to we further establish a
rigorous atomistic-to-continuum limit in which jointly the lattice spacing vanishes
and the number of dislocations grows unboundedly. The limiting continuum inter-
action energy aligns with known linearised elasticity models for Mode III crack and
screw dislocations interaction [4]. Finally, in the upscaled description we study the
notion of the energetically optimal density of dislocations. We prove that there
exists a critical value of the stress intensity factor, which is a measure of how
”wide” a crack opening is, beyond which the optimal density has support bounded
away from the crack, thus pointing to the formation of the so-called plastic-free
zone ahead of the crack, which was reported in several TEM experiments [8, 9].
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Stochastic homogenization in micromagnetics

Lorenza D’Elia

(joint work with Elisa Davoli, Jonas Ingmanns)

Magnetic skyrmions, a small swirling vortex-like topological defects in the magne-
tization texture [3], have recently attracted extensive attention in many fields of
research due to their potential as carriers of information for future storage devices.

In this talk, we present effective theories for composite chiral magnetic mate-
rials with a microstructure encompassing random effects. Extending [2] in sto-
chastic framework, under the assumptions of stationarity and ergodicity, we carry
out a variational analysis of a micromagnetic energy functional defined on mag-
netizations taking value in the unit sphere, and including both symmetric and
antisymmetric exchange contributions. The latter determines the specific chirality
of magnetic skyrmions.
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Using the notion of quenched stochastic two-scale convergence [1, 4], we fully
characterize the Gamma-limit of the micromagnetic energies. Moreover, we pro-
vide explicit formulas for the effective magnetic properties of the composite mate-
rial in terms of homogenization correctors.

Eventually, we specify our analysis to the case in which the micromagnetic
specimen is a multilayer with random microstructure. In particular, in this case,
we present an explicit characterization of minimizers of the effective symmetric
and antisymmetric exchanges. Such a characterization shows the emergence of
chiral structures, providing quantitative evidence of Dzyaloshinskii’s predictions
on the emergence of helical structures in composite ferromagnetic materials with
stochastic microstructure.
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Graphene: from point defects to tunable twins

Pilar Ariza

(joint work with F. Arca, J.P. Mendez, M. Ortiz)

Graphene has been widely investigated as a basis for post-silicon generation na-
noelectronics, owing to its outstanding mechanical and electronic properties. We
present an application of the theory of discrete dislocations of [1] to the analysis of
topological defects in graphene [2]. We present numerical evidence that twinning
operates as an accommodation and relaxation mechanism in graphene [3]. We
show that twins may arise spontaneously in graphene layers containing arrays of
dislocations and that twinning results in a significant reduction in energy.

Material engineering techniques such as coupling graphene layers to a hexagonal
boron nitride substrate, introducing doping elements, or cutting graphene layers
into narrow nanoribbons, can induce from small to medium transport gaps (0.1-0.6
eV) required for nanoelectronic applications. In addition, techniques that combine
different graphene domains with varying electronic structures can open higher
transport gaps. For instance, asymmetric grain boundaries and twin structures
can induce transport gaps as large as 1.54 eV and 1.15 eV [4], respectively.

We show, through the use of the Landauer–Büttiker (LB) formalism and a
tight-binding (TB) model, that the transport gap of twinned graphene can be
tuned through the application of an uniaxial strain in the direction normal to the
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twin band [5]. Remarkably, we find that the transport gap Egap bears a square-
root dependence on the control parameter ǫx− ǫc, where ǫx is the applied uniaxial
strain and ǫc ∼ 19% is a critical strain. We interpret this dependence as evidence
of criticality underlying a continuous phase transition, with ǫx − ǫc playing the
role of control parameter and the transport gap Egap playing the role of order
parameter.
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Macroscopic limits of systems with excluded-volume interactions

Maria Bruna

I discussed macroscopic limits of strongly interacting particles, which diverge sig-
nificantly from those of weak (mean-field) or moderately interacting particles, es-
pecially in scenarios involving multiple species. These models are important for un-
derstanding many-particle systems in applications where strong excluded-volume
effects and confinement are dominant. A simple model for diffusive pairwise-
interacting particles at positions X1, . . . , XN ∈ Rd, d ≥ 2, is:

dXi =
√
2 dWi − χN

N∑

j=1
j 6=i

∇u
(
Xi −Xj

ℓN

)
dt

where Wi are N -independent Brownian motions in Rd, u : Rd → R is a repulsive
interaction potential, and χN , ℓN > 0 are the strength and range of the interaction,
respectively. The mean-field scaling is χN = 1/N and ℓN = O(1), while the strong
scaling corresponds to χN = O(1) and ℓN ≪ 1.

We are interested in the limit behavior as N → ∞. For indistinguishable parti-
cles, the weak scaling results in the McKean–Vlasov PDE in the limit. Localizing
the interaction leads to an equation

∂tρ = ∇ · [∇ρ+ ρ∇ρ] ,
which coincides (up to constants) with the limit equation having taken the mod-
erate scaling, χN = Nβ−1, ℓN = N−β/d with β ∈ (0, d

d+2 ) studied in [1], or the

strong scaling [2]. However, this commutativity of the limits breaks down for
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multi-species or anisotropic interactions. I explore a possible connection with ex-
clusion processes in lattice gases, where this commutability “breakdown” is better
understood in the context of non-gradient type systems [3].
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On models for opinion formation

Marie-Therese Wolfram

(joint work with Andrew Nugent and Susana Gomes)

The development and analysis of opinion formation models has become a very ac-
tive area of research in the last year with contributions from mathematics, physics,
sociology, and computer science. An important class of models are agent-based
models in which individuals update their opinions via binary interactions. In par-
ticular, ’bounded confidence’ interactions, which were first proposed by Hegsel-
mann and Krause in [1], capture how agents interact only with others whose
opinions lie within a given confidence threshold. These type of models exhibit rich
emergent behaviors including consensus and cluster formation.
This talk focuses on the development and analysis of models for opinion forma-
tion in static and dynamic (social) networks, see [2]. I will start with the classic
bounded confidence models and discuss how one can include underlying network
structures. Furthermore, I will touch on the respective mean-field limits – non-
linear partial differential equations, which often have a gradient flow structure.
A central theme of the presentation will be on opinion control: how can one modify
the underlying network structure to steer the collective opinion towards a desired
outcome or prevent consensus, see [3]. I will present controllability results and
discuss various control strategies. The analytical insights will be complemented
by numerical simulations that illustrate the practical implications and limitations
of different control mechanisms.
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Surface tension for grain boundaries

Adriana Garroni

(joint work with Sergio Conti, Vito Crismale, Martino Fortuna, Annalisa Malusa,
Emanuele Spadaro)

A sharp interface model for grain boundaries should incorporate two important
features. It should be well posed in the space of configurations that represent the
polycristals and should account for the lattice invariance.

A typical polycristal configuration is indeed described by an order parameter
which is (essentially) piecewise constant taking values in the set of rotations (rep-
resenting the orientation of the single grain). Precisely, it should be a field in
SBV(Ω; SO(d)), with gradient equal to zero.

The well posedness in this space is guaranteed by an energy of the form

∫

JA

ϕ(A+, A−, ν)Hd−1, A ∈ SBV(Ω, SO(d))

where ϕ is super-quadratic if |A+ − A−| ∼ 0. A second feature is to require
invariance under the group G of the symmetries of the underlying lattice. In a
paper in collaboration with Fortuna and Spadaro [2], we obtain such a model in
dimension 2, as the asymptotic limit of the Lauteri–Luckhaus model [1]. The
result is a surface tension which satisfies the Read and Schockley law for small
angle grain boundaries. Nevertheless, this derivation does not incorporate lattice
invariance.

A second approximation of the Ambrosio–Tortorelli type, with a phase-field

model which is defined on Sobolev fields with values in Md×d

/G is obtained in
collaboration with Conti, Crismale, and Malusa. This result produces a sharp
interface model with the required features and find application to the image seg-
mentation of policrystals.
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Energy concentration in a two-dimensional magnetic skyrmion model:

variational analysis of lattice and continuum theories

Luca Briani

(joint work with Marco Cicalese, Leonard Kreutz)

In this talk, I am interested in models for the appearance of Skyrmions in mag-
netic thin films stabilised by Dzyaloshinskii–Moriya (DMI) interactions. In these
models, the leading energy is as follows:

Fh,κ(u) =

∫

R2

|∇u|p dx+ h

∫

R2

|u− e3|2 dx+ κ

∫

R2

u · ∇ × u dx,

where the vector field u : R2 → S2 represents the density of dipole moments in
the material and the energy Fh,κ is the energy per film thickness. The first two
terms of the energy, known as Exchange interactions and the Zeeman term fa-
vor the alignment of the vector field u to a preferred background state while the
third term, representing the DMI interaction, plays the role of an anti-symmetric
exchange term that disfavors aligned configurations. Mathematically, a Skyrmion
can be viewed as a spin configuration that locally minimizes the energy Fh,κ among
configurations with a fixed topological degree. Such a topological constraint intro-
duces significant technical difficulty to the variational problem. The problem of
existence of Skyrmion in a DMI-driven models was first addressed in by C. Melcher
in [2].

Our analysis concerns the diverging anisotropy regime (h → ∞) of the energy
Fh,κ. We show a weak compactness result, in terms of the topological charge
density of the vector field u, defined by the measure q(u) := u · (∂xu × ∂yu) dLn.
In particular, we characterize the structure of the weak* limit of the measures q(un)
for a sequence of energetically bounded vector fields un as an atomic measure with
quantized coefficients. We also determine the Γ-limit of the energies in terms of
the total variation of such a limit measure. Additionally, we present a lattice-
type analogue of Fh,κ and we define a notion of discrete topological charge for
an S2-valued map defined on a lattice. This allows us to bridge the discrete and
continuum theories. The results presented are based on the preprint [1].
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Incompleteness of the Sinclair expansion for the elastic field around

the crack tip in atomistic fracture models

Julian Braun

(joint work with Maciej Buze)

The elastic field around a crack opening is known to be described by continuum
linearised elasticity in leading order. In this talk, I will present the next term in
a rigorous atomistic asymptotic expansion in the case of a Mode III crack in anti-
plane geometry. The aim of such an expansion is twofold. First, it shows that the
well-known flexible boundary condition expansion due to Sinclair is incomplete,
meaning that, in principle, employing it in atomistic fracture simulations is no
better than using boundary conditions from continuum linearised elasticity. And
secondly, the higher order far-field expansion can be employed as a boundary
condition for high-accuracy atomistic simulations. To obtain the results, I will
show an asymptotic expansion of the associated lattice Green’s function. In an
interesting departure from the recently developed theory for spatially homogeneous
cases, this includes a novel notion of a discrete geometry predictor, which accounts
for the peculiar discrete geometry near the crack tip.

More explicitly, in polar coordinates the linear elastic prediction has the form

u0 = Kr1/2 sin( θ2 ),

where K ≥ 0 is the stress intensity factor. We then prove that the next order is
given by

u1 = C1(K)r−1/2 sin(− θ
2 ) +

C2K
3

64
r−1/2

(
log r sin θ

2 +
1

6
sin 5θ

2

)
,

where C1(K) is a real constant depending onK and C2 is a real constant depending
on the interatomic potential both with characterizing formulas. The first term is
a Sinclair type term though classically there is no characterization of the constant
C1. However, the second term is quite different. It comes from the nonlinearity of
the problem and shows the incompleteness of the Sinclair expansion.

This expansion is rigorous as we prove that for large r

Dū = Du0 +Du1 +O(r2−δ)

for any δ > 0. Here D denotes a local finite difference stencil and ū is the solution
of the full nonlinear, atomistic problem.

Geometric variational problems from dimension reduction algorithms

in data science

Ryan Murray

(joint work with Adam Pickarski)

Dimension reduction algorithms, such as principal component analysis (PCA),
multidimensional scaling (MDS), and stochastic neighbor embeddings (SNE and
tSNE), are a widely used tool for data exploration, visualization, and subgroup
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identification. These algorithms are typically posed as an optimization problem
over a finite family of particles involving attraction and repulsion energies. While
these algorithms see broad application across many scientific fields, our theoretical
understanding of non-linear dimension reduction algorithms remains limited.

This talk describes recent work which builds theoretical foundations for these
algorithms. In particular, we consider energies of the form

J(T ) :=

∫∫
c(x, x′, T (x), T (x′))dµ(x)dµ(x′),

where T : Rd → Rm with m ≪ d. The costs we consider are of the form
c(〈x, x′〉, 〈T (x), T (x′)〉) or c(‖x − x′‖2, ‖T (x) − T (x′)‖2), and which are convex
in their second argument. Such energies cover a wide range of algorithms, such as
multi-dimensional scaling and Sammon mappings, and have also been previously
identified [1] in the computer science literature as a scaling limit for SNE.

This talk discusses three main results [2] pertaining to these energies: 1) The
existence of relaxed minimizers, in the sense of measures on the product space as
in optimal transportation; 2) First-order necessary conditions associated with any
minimizer to the relaxed energy, which take the form of a parametrized, finite-
dimensional optimization problem; 3) The fact that relaxed minimizers must ac-
tually be supported on the graph of a function using second-order variations. In
some cases such solutions can also be demonstrated to be finitely parametrizable,
and in some cases to be necessarily discontinuous on a finite number of surfaces.

We illustrate examples of numerical solutions to these problems obtained by
standard libraries do not satisfy such necessary conditions, which calls for the de-
velopment of new algorithms which can leverage these necessary conditions. Sim-
ilar analysis in the context of the tSNE [3] and the Gromov–Wasserstein distance
(in progress) is also discussed.
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The gradient-flow structure of the Verigin problem and its natural

time discretization

Tim Laux

(joint work with Anna Kubin and Alice Marveggio)

The Verigin problemmodels the flow of two immiscible, compressible fluids through
a porous medium. We define weak solutions described by a (mass) density ρ and
a phase indicator function χ satisfying the continuity equation

(1) ∂tρ+∇ · (ρu) = 0 in the sense of distributions,
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encoding conservation of mass, and the Gibbs–Thomson law

(2) ρu = H∇χ−∇(ρ− cχ) in the sense of distributions,

encoding both the balance of forces on the free boundary as well as Darcy’s law in
the bulk. Here H denotes the mean curvature of ∂{χ = 1} and u the fluid velocity.

The total free energy of the system is given by E(ρ, χ) =
∫
ψ(ρ, χ) dρ+

∫
|∇χ|,

where ψ(ρ, χ) = log ρ + χ
ρ

(
ρ − c). Our first observation is that (1)–(2) is the

Wasserstein gradient flow of E, as suggested by the free energy dissipation

(3)
d

dt
E(ρ, χ) ≤ −

∫
|u|2 dρ.

Starting from arbitrary initial conditions with finite free energy, our main result
establishes the existence of distributional solutions (ρ, u) satisfying (1)–(3) and

(4) χ ∈ {0, 1} ρ-a.e. in space-time.

This result is obtained by the JKO scheme [1] that builds time-discrete approx-
imations (ρh, χh) with time step size h > 0. Note that our problem is quasi-static
in χ; i.e., the metric is completely degenerate in χ-direction. This has two con-
sequences: (i) Unlike in many other free boundary problems, we unconditionally
obtain sets of finite perimeter in the limit h→ 0. Inspired by [3], we show that the

phase boundary is an almost minimizer of the area functional and |∇χh| ∗
⇀ |∇χ|

as measures on space-time. Reshetnyak’s continuity theorem then allows us to
pass to the limit in the Euler–Lagrange equation and obtain (2). (ii) While it fol-
lows from a version of the Aubin–Lions lemma that ρh converges strongly in L1,
the compactness in time of χh is challenging. Nevertheless, the Kantorovich po-
tential φh (transporting a time step to the previous one) allows us to transfer
time-compactness from ρh to χh via

(5) log ρh − χh − φh = const. ρh-a.e.,

which in turn implies (4). Indeed, we show that the nonlinear splitting ρ 7→ (φ, χ)
into a smooth (H1(ρ)) function φ and a pure jump function χ according to (5) is
unique and stable: For any two such splittings, we show (with p = d

2(d−1))∫
|χ− χ̃|min{ρ, ρ̃} ≤ C

∫
|ρ− ρ̃|+ C

(∫
|ρ− ρ̃|

)p(∫
|∇φ|2 dρ+

∫
|∇φ̃|2 dρ̃

)p
.
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Università di Roma ”La Sapienza”
Piazzale Aldo Moro, 2
00185 Roma
ITALY



1212 Oberwolfach Report 23/2025

Dr. Janusz Ginster

Weierstrass Institute for Applied
Analysis and Stochastics
Mohrenstraße 39
10117 Berlin
GERMANY

Rossella Giorgio

Institute of Analysis and Scientific
Computing,
TU Wien
Wiedner Hauptstr. 8 - 10
1040 Wien
AUSTRIA

Shuchen Guo

University of Oxford
The Queen’s College
The High Street
Oxford OX1 4AW
UNITED KINGDOM

Leon Happ

Institut für Diskrete Mathematik
und Geometrie
TU Wien
Wiedner Hauptstr. 8 - 10
1040 Wien
AUSTRIA

Dr. Thomas Hudson

Mathematics Institute
University of Warwick
Gibbet Hill Road
Coventry CV4 7AL
UNITED KINGDOM

Prof. Dr. Hans Knüpfer
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