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Introduction by the Organizers

This workshop on Computational Group Theory was the ninth Oberwolfach work-
shop with this title. It had 47 participants, including 12 women. There were four
Oberwolfach Leibniz Graduate Students and several further young participants.

The program consisted of four 50-minute survey talks, a total of twenty 20-
minute research talks, and some 10-minute short talks. The short talks included
talks by all Oberwolfach Leibniz Graduate Students, allowing these young stu-
dents to present their current research to an international audience. To maximise
exposure and early engagement, the short talks were all on the first day of the
workshop.

The invited survey talks were designed to cover many of the most important
topics in computational group theory. The contributed talks showed how the
existing techniques of Computational Group Theory can be applied in various
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mathematical areas, and also how powerful algorithms can be developed by the
application of an increasing number of profound theoretical results.

The first survey was by Max Horn on The OSCAR computer algebra system.
This new system has the potential to significantly reshape the way in which com-
putational algebra (and other fields) develop. Horn gave an overview, including
descriptions of its many new features and an invitation to the computational group
theory community to both contribute and to request features. The power of com-
bining computational group theory with number theory, computational algebraic
and elementary geometry was demonstrated in Thomas Breuer’s talk, answering
a recent question of Serre.

The second survey was by Melissa Lee on Computation and the sporadic simple
groups. It reported on the longstanding project to determine all maximal sub-
groups of the sporadic simple groups. This has involved many researchers over
many years, and the final open cases were only recently completed by Dietrich,
Lee, and Popiel with the massive help of computational group theory. Relatedly,
Mikko Korhonen described his recent work on the classification of maximal solv-
able subgroups of finite classical groups. The two short talks by Eileen Pan and
by Linda Hoyer were related to this general area of research.

The third survey was by Youming Qiao On the complexity of isomorphism
problems for tensors, groups, polynomials, and algebras. Isomorphism problems
are central to many algorithms in computational group theory (and in theoretical
computer science), forming a significant complexity bottleneck for a range of other
problems, as well as being hard to solve in practice. This talk gave an impressive
overview of the recent achievements in this area by Qiao and others. Related this
this this general area, Pascal Schweitzer surveyed modern practical graph-theoretic
algorithms for computing the automorphism group of finite combinatorial objects.
Some thought-provoking categorical approaches to the isomorphism problem were
presented in James Wilson’s talk. Peter Brooksbank gave a talk on methods to
determine a change of basis matrix demonstrating that data stored as a tensor is
sparse. The family of finite groups for which the isomorphism problem seems hard-
est are the p-groups. Mima Stanojkovski reported on very recent work introducing
new geometric invariants which can often prove that groups are non-isomorphic.
The modular isomorphism problem for finite p-groups is a famously difficult prob-
lem: Leo Margolis presented a survey of known results, open problems, and new
algorithmic methods. Joshua Maglione described the construction of a unipotent
group scheme from an elliptic curve, and discussed the isomorphism problem for
these schemes. Further, the two early career short talks by Chris Liu and Oscar
Fernandez Ayala were related to this area.

The final survey was by Eamonn O’Brien on Algorithms for linear groups: where
to?. He reported on the matrix group recognition project, which was started at
the 1993 Oberwolfach computational group theory workshop. The project has
now reached many of its original aims, and the talk pointed to the remaining open
problems, while inviting young participants to join the programme. Steven Glasby
presented significant recent progress on algorithms for recognising classical groups
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using so-called stingray elements. Charles Leedham-Green spoke on applications
of the matrix group recognition project to the computation of intersections. Alla
Detinko described important generalisations of matrix group algorithms to infinite
domains. Willem de Graaf reported on methods to compute Galois cohomology
sets of linear algebraic groups.

Groups can be represented in various different ways and these have a significant
impact on algorithmic problems. This was reflected in the talk by Derek Holt who
presented a randomised algorithm to compute a smallest sized generating set of
a finite permutation group, based on work by Lucchini and Thakkar. Alexander
Hulpke spoke on his impressive new machinery for working with hybrid groups, a
generalisation of polycyclic presentations which he has used to remarkable effect,
successfully computing the character table of one of the maximal subgroups of the
Monster. Laurent Bartholdi reported on automatic actions of groups, where the
associated language is a set of infinite paths read in a graph. The short talks by
Peiran Wu and Saul Freedman were related to this area.

Finally, some participants spoke on problems originally inspired by computa-
tional group theory. Sean Eberhard presented recent work relating to Babai’s
famous 1992 diameter conjecture: it was shown that every transitive solvable sub-
group of S,, has polynomial diameter. Tommy Hofmann spoke on Wall’'s D2 prob-
lem, describing a new family of presentations of quaternion groups and explaining
how computer algebra software can be used to investigate these presentations with
respect to homotopy equivalence. Tobias Rossmann surveyed the symbolic enu-
meration of orbits related to a group scheme acting on a scheme. Daniele Dona
discussed for which n one can cover the alternating group A,, by a product of three
conjugacy classes. Gunter Malle reported on new properties of subnormalisers of
p-elements, which play a central role in a recent new character-theoretic conjec-
ture by Moreté and Rizo. Christopher Voll’s talk described a class of multivariate
generating functions that can solve enumerative problems in algebra, geometry,
and number theory.

Recognising the central role of practical computation, the organisers dedicated
a two-hour slot for presentating new computational tools. These included demon-
strations of Alexander Hulpke’s hybrid group framework and Chris Liu’s matrix
system solver, and a practical OSCAR presentation by Max Horn. Further, the
workshop featured a problem session which identified a variety of new challenges
for the computational group theory community.

Our schedule left plenty of discussion time, which was used by participants to
initiate new projects, develop new research ideas and discuss new collaborations.
This aspect of the workshop was a major highlight and will lead to many interesting
future projects in computational group theory. The Oberwolfach workshops on
Computational Group Theory have traditionally played a pivotal role in enabling
extensive research projects that have significantly shaped the field.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

The OSCAR computer algebra system
MaXx HORN

In this talk T present OSCAR [1], an Open Source Computer Algebra Research
system. It is an international project which was founded with generous support
by the German research foundation (DFG) through the Collaborative Research
Center TRR 195.

OSCAR is a tool for interdisciplinary research and computations in algebra,
geometry, and number theory. Its intended audience includes both experts in
computer algebra as well as users of it.

OSCAR is “new” but based on several existing systems, the four cornerstones:

ANTIC (Nemo, Hecke) [2] for number theory,

GAP [3] for group theory,

polymake [4] for polyhedral & tropical geometry,

Singular [5] for commutative algebra & algebraic geometry,

which are tied together and extended by code written in the Julia programming
language. The cornerstones are an integral part of OSCAR and many of their
creators or custodians are also OSCAR developers; development of OSCAR also
benefits the cornerstones.

OSCAR supports all functionality of its cornerstones and much beyond that.
For example, a full package for computing invariants of finite and linear reductive
groups is included; a library of generic character tables; capabilities in Galois
cohomology and group cohomology over “generic” modules; matrix groups over
number fields; and more.

Everyone is cordially invited to try our system, provide feedback on it or even
join our efforts in developing it further!

A good starting point for getting to know OSCAR is to work through [6], which
in 19 chapters discusses topics ranging from basics to advanced research problems
with worked out examples leveraging OSCAR.

REFERENCES

[1] The OSCAR Team, OSCAR — Open Source Computer Algebra Research system, Ver-
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Computing Galois cohomology sets of real linear algebraic groups
WILLEM DE GRAAF
(joint work with Mikhail Borovoi)

Let G C GL(n,C) be a linear algebraic group defined over R. We let 0 : G — G
be a conjugation (for example complex conjugation on the matrix entries of an
element). An element ¢ € G is called a cocycle if go(g) = 1. Two cocycles
c1,c2 € G are equivalent if there is an h € G with h=lcio(h) = c2. The set of
equivalence classes of cocycles is called the first Galois cohomology set of G and
denoted H'(G, ).

One of the applications of these Galois cohomology sets is the classification of
the orbits of the group G(R) = {g € G | 0(g) = g}. Here we suppose that G acts
on a complex vector space V and that there is a conjugation o : V. — V that is
compatible with the action of G, that is, o(g - v) = o(g) - o(v) for all g € G and
v € V. Then G(R) acts on V7 = {v € V | o(v) = v}. Furthermore, if v € V°
then the set H'(Zg(v), o) can be used to classify the G(R)-orbits contained in the
G-orbit G - v.

In joint work ([1]) with Mikhail Borovoi we have developed algorithms for com-
puting H'(G, o). The input to the algorithm is a basis of the Lie algebra of G
along with one element of each component of G. For connected reductive groups
we use a theorem of Borovoi relating H(G, o) to the orbits of a subgroup of the
Weyl group relative to a maximally compact torus 7' on the set H(T, o). For
nonconnected reductive groups we use the exact sequence

1-G—-G5C=G/G°—1

which yields a natural map 7. : H(G,0) — H'(C,o). Then by lifiting cocycles
from C to G we can compute the inverse image 7, !([¢]) for each element [c] €
HY(C,o). The lifiting procedure is based on a procedure for neutralizing a 2-
cocycle in the second Galois cohomology set.

The algorithms have been implemented in the computer algebra system GAP4.
It is a future project to implement them in the computer algebra system Oscar.

REFERENCES

[1] Mikhail Borovoi and Willem A. de Graaf. Computing Galois cohomology of a real linear
algebraic group J. Lond. Math. Soc. (2) 109 (2024), no. 5, Paper No. €12906, 53 pp.
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Geometric invariants for p-groups
MIMA STANOJKOVSKI
(joint work with Eamonn O’Brien)

Finite p-groups remain the principal obstacle to a polynomial time algorithm for
finite groups. Groups of exponent p and nilpotency class 2 form a clear bottleneck.
An easier task is to establish that two groups are non-isomorphic by exhibiting
distinguishing invariants. In my lecture I reported on recent work [1] which in-
troduces geometric invariants for these groups. The following example illustrates
related questions.

Example. Let p be an odd prime number and let o € {0,1,...,p—1}. Let G, be
the class 2 group of exponent p that is generated by elements a, b, ¢, d satisfying

[a,b] = [e,d], [b,d] =]a,c]*, [b,c]=1.
Then |G’,| = p? and |G| = p*>** = p7, and the commutator matrix of G, is

0 Y1 Y2 Y3

—U 0 0 QY2
—Y2 0 0 Y1 € Mat, (FP [yla Y2, y3])

—y3 —ayz —y1 0

Ba = B(X(ylvaayB) =

The Pfaffian of B, is fo = y? —ay3 € Fp[y1, y2, ys] and the zero locus of f,, defines
a variety V, in IE‘?, whose number of points is an invariant of the isomorphism class
of Gy. This number #V,(FF,) takes the following values:

p? if a =0,
#V,(F,) = 22 —p if o) =1,
P if % =—1.

From the list of the six isomorphism classes of 4-generated groups of order p7, class
2, and exponent p provided in [2, Sec. 7.4], the number of points of the associated
variety — constructed analogously — is the following:
Isomorphism class | 7.4.1 | 7.4.2 | 7.4.3 | 7.4.4 | 7.4.5 | 7.4.6
#V(Fp) | o | 0 [20°—p] p* | P | »p

Imposing #Va(Fp) = #V(F,) yields, when a # 0, that the isomorphism class of
G is 7.4.3, when « is a quadratic residue modulo p, or 7.4.6, otherwise. The
invariant #V, (F,) does not distinguish the isomorphism class of G between 7.4.4
and 7.4.5, but the addition of a single similar invariant does, as shown in [1, Tab. 1].

Generalizing this example, we listed some geometric invariants defined from the
determinantal ideals attached to the commutator matrix of a class 2 group of expo-
nent p. We then discussed their effectiveness in distinguishing among 5-generator
p-groups of exponent p and class 2.
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Hybrid Groups — Generalizing Polycyclic Groups
ALEXANDER HULPKE

PcGroups [4], which are groups given by a polycyclic presentation with elements
represented as words in generators in normal form, have been one of the success
stories of Computational Group Theory.

The reasons for this success are multiple:

(1) Group elements can be represented effectively, and there is good arith-
metic.

(2) Transition to factor groups is easily possible and provides the basis of
powerful algorithms in which calculations are reduced to linear algebra
and orbit/stabilizer calculations.

(3) Quotient algorithms (such as the p-Quotient [5]) and constructions [1]
provide groups in this format.

This success explains the wish to generalize this concept to nonsolvable finite
groups. For algorithms, the solvable radical paradigm [2] is already such a gener-
alization, for quotient algorithms; a generalization of quotients is provided by the
hybrid quotient algorithm [3]. In particular, the latter raises the wish to have a
good arithmetic in formal extensions.

Our process follows [3, Section 7]: We assume a factor group A, given as a
permutation group and with a confluent rewriting system; as well as a normal
subgroup B, given as a Pc group. To describe the extension structure, we extend
rules for A by “tails” in B, and write down, for each generator of A, the induced
automorphism of B. Formally this yields a confluent rewriting system for an
extension G = B.A. We denote the natural homomorphism v: G — A by v.

Arithmetic then represents elements in a normal form a-b with a being a normal
form word in the generators of A and b € B. Multiplication moves a-elements to
the left, as far as needed, and applies the rewriting rules with tail. Whenever
B-elements are adjacent, we immediately apply B-arithmetic.

We represent subgroups S < G, given by generators, by words in these gener-
ators that yield an IGS for S N B. This is done by computing kernel generators
for the restriction of v to S. Subgroup membership then first tests membership
in the factor (v(z) € v(5)?) and then expresses v(z) as a word in the genera-
tors of v(S). Dividing off this word reduces the problem to a membership test of
whether w™'z € B is an element in S N B. This also provides a method to apply
homomorphisms, given on arbitrary generating sets.
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This setup has been implemented in GAP; many solvable radical style algorithms
immediately become applicable. Performace is easily competitive with that of the
earlier approach in [7]. The code is available on github.

We applied this representation to construct, from scratch, all the groups that could
be possible candiates for the maximal subgroup 2!°+16.0,4(2) of the sporadic
Monster group, whose character table had hitherto not been known. Conjugacy
class information resulted in two candidate groups, both of which we conjecture
have minimal permutation degree about 1.2-107, and which thus cannot be handled
easily in such a representation.

We computed character tables for both candidates, using the implementation
of hybrid groups as described, and classical character theoretic tools (induction
from subgroups, lattice reduction). It turned out that one of the candidate groups
actually could not embed into M, and the other group had a unique embedding,
up to table automorphisms.

Independently, recently Pisani [6] used this same implementation to compute
the character table of the maximal subgroup 25710120 (S3 x L5(2)) of the Monster.

With this result, the (ordinary) character tables of all maximal subgroups of
the Monster are known.

The author’s work has been supported in part by Simons Foundation Grant 852063,
which is gratefully acknowledged.
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Some (primitive) coset actions in finite groups of Lie type
X. EILEEN PAN

The study of primitive group actions is a central topic in group theory with signif-
icant implications across several areas of mathematics, including algebraic geom-
etry, graph theory, and combinatorics. Primitive actions reveal crucial structural
information about both the group and the set it acts upon, often serving as a
key tool in the classification and understanding of these objects. For example,



1402 Oberwolfach Report 27/2025

primitive actions are fundamental in the classification of finite simple groups. The
study of primitive actions is also useful to analyse automorphism groups of math-
ematical objects, such as graphs and algebraic varieties. In particular, there has
been an extensive investigation of finite primitive distance-transitive graphs that
requires profound knowledge of primitive actions of certain families of groups; we
refer to [2] for a comprehensive survey on this topic. Distance-transitive graphs
are examples of coherent configurations introduced by Higman [6]. Related con-
cepts that stem from transitive actions have been studied by many other authors
under different terminology, such as association scheme and centraliser algebra
(also known as cellular algebra). We refer to Chapter 3 in the classic textbook by
Cameron [5] for the background and further discussion on coherent configurations
and their relations to transitive actions.

Informed by the Orbit-Stabiliser Theorem, the goal of finding suborbits and
subdegrees can be achieved by the computation of subgroup intersections, which
in general gives insights to the study of subgroup structure and group invariants.
In [4] the authors have determined the base size of the finite simple group Ga(q)
by showing that the primitive action on the cosets of its maximal subgroup of type
A Ay (here our notation indicates that the second A; factor is generated by the
short root subgroups) has a trivial two-point stabiliser.

The knowledge of a complete list of the suborbits and corresponding subdegrees
has direct applications in calculating the permutation characters, for which many
authors have been drawn to the coset actions of finite groups of Lie type. For
instance, Lawther and Saxl [9] determined the suborbits of Ba(q) on the cosets
of 2B3(q), and of Bs(g?) on Bz(q) (the latter only occurs when g is even). With
similar methods, Lawther [7] determined the suborbits of Ga2(q) on the cosets
of 2G3(q) (with ¢ a power of 3) and that of Ga(¢?) on Ga(q). We note that
these actions are not primitive but the methods employed in their papers still
shed lights on our project. In [8], Lawther also determined explicitly the suborbit
representatives and the subdegrees of the primitive action of Fy(g) on the cosets
of By(q), which is a maximal-rank subgroup in Fy(q). At the time of writing,
the general problem of finite exceptional groups of Lie type acting on cosets of
their maximal subgroups remains partially open; our goal is to contribute to this
discussion. Motivated and guided by the treatments of the coset actions of finite
groups of Lie type in the aforementioned works [7, 8, 9], our work determines
the suborbits and corresponding subdegrees of the primitive G2 (g)-actions on the
cosets of the subgroups of maximal rank.

We note that the subdegrees of the action of Ga(g) on the cosets of maximal
subgroups SL3(¢).2 and SU3(q).2 are given in [1, 10], using geometrical methods
that are different from ours. Moreover, since the authors considered the action in
the 2-closure of G2(g) whose point-stabiliser coincides with the maximal subgroups
of type A2.2 in Ga(q), their results do not consider explicit suborbit representatives
in Ga(q).

By the nature of our approach to the problem, some of the proofs are heav-
ily computational and we use MAGMA [3] and its existing constructions of finite
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groups of Lie type to assist these calculations. We aim to generalise the approach
to calculate some (primitive) actions of other finite groups of exceptional Lie type,
typically on the cosets of maximal-rank subsystem subgroups or involution cen-
tralisers. For example, we aim to investigate the groups Eg, F7, Eg of adjoint types
and some of their involution centralisers. Our calculation of the subdegrees given
explicit representatives written in its Bruhat normal form involves theoretic proofs
and brute force computation using computer algebra systems such as MAGMA.
We report on a preliminary implementation and its current bottlenecks.
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Orthogonal determinants of finite groups of Lie type
LinpA HOYER

Let G be a finite group and K C R be a field. Let n be a positive integer. An
orthogonal representation is a homomorphism p : G — GL,(K). An averaging
argument shows that there is a (in general non-unique) factoring

p:G — O(K™,B) = GLy(K)

for 8 a non-degenerate, symmetric bilinear form. In [1], the authors introduce the
notion of orthogonal stability: The representation p is called orthogonally stable
if and only if there is an element d € K* such that det(8) = d - (K*)? for any
such factoring. In that case, we say that det(p) := d - (K*)? is the orthogonal
determinant of p.

The orthogonally stable representations are exactly the orthogonal representa-
tions that decompose over R as a direct sum of irreducible R-representations of
even dimension.
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The notion of orthogonally stable representations naturally generalises to or-
thogonally stable characters: A character x of G is called orthogonally stable if
and only if it is afforded by an orthogonally stable representation. It is further
shown in [1] that orthogonal determinants det(y) € (Q(x)*)? can be defined as
an invariant of orthogonally stable characters.

An important class of orthogonally stable characters is given by the set

Ir™(G) == {x € Irr(G) | x orthogonal of even dimension}.

Indeed, the character table together with the orthogonal determinants of the
Irr ™ (G)-characters allows for a calculation of the orthogonal determinants of all
orthogonally stable characters of G.

Let x € Irr™ (@) and let p : G — GL,,(K) be a representation affording y. Let
t : KG — KG be the involution induced by t(g) := g~!. By [2], there exists an
element h € QG with ((h) = —h. For any such element, it holds that det(y) =
det(p(h)). This generalizes to monomial algebras, i.e., algebras with involutions
that have a well-defined notion of orthogonal determinants, see [4]. Examples of
monomial algebras include group algebras and Iwahori—-Hecke algebras.

Let now G = G(q) be a finite group of Lie type with ¢ a power of an odd prime.
Let B C G be a Borel subgroup and 7' C B be a maximal torus. We fix a character
x € It (G). One of the two following occurs:

(1) Res%(x) is an orthogonally stable character of B. Since B is solvable,
det(x) is easy to calculate, see [4].
(2) There is a character 6 € Irr(T) such that y appears in Ind%(6).

We will from now on assume we are in case (2); let § € Irr(T") be the corresponding
character. Let H := End(Ind$(6)) be the relative Hecke algebra. A condensation
argument now lets us reduce the calculation of det(x) to det(x’), where x' €
Irr™ (H). The structure of such relative Hecke algebras is completely known (see
[3]), so a further reduction to Iwahori-Hecke algebras is possible.

The orthogonal determinants of Iwahori—Hecke algebras of types A, and B,
have been fully determined, see [5] and [6]. Type D,, is an easy corollary of type
B,,. This leaves us with the exceptional types. The representation matrices of
the exceptional Iwahori-Hecke algebras are explicitely given in CHEVIE [7]; the
calculation of the determinants of the matrices of skew-symmetric elements is done
in OSCAR [8]. Currently, the only case left for calculations is for type Eg, which
proves a computational challenge due to the sheer size (> 1000 dimensions) of the
matrices involved.
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The maximum irredundant base size: found and formalised
PEIRAN WU
(joint work with Colva M. Roney-Dougal)

In this talk, I present a formula for the maximum irredundant base size of certain
wreath products in product action and report on my formalisation of the formula
in Lean.

An irredundant base of a finite permutation group G on A is a sequence of points
in A that produces a strictly descending chain of pointwise stabiliser subgroups in
G, terminating at the trivial subgroup. The maximum size of irredundant bases
is denoted by I(G, A). Kelsey and Roney-Dougal [4] showed that if G is primitive
on A, then either I(G,A) < 5log, |A| or the action is large-base. A large-base
action is, up to permutation isomorphism, the product action of degree (7]?) " by a
subgroup of S,,,1S,, containing (A,,)", for some m, n, and k. This motivated us to
study the maximum irredundant base size of wreath products in product action.
One of our main results is the following.

Theorem. Let H and K be finite permutation groups on ¥ and I", respectively,
with n .= |T'| = 2. If every point stabiliser in G has exactly one fized point, then

I(H1K,S") = nI(H,%) — (n - 1).

Combined with the maximum irredundant base size of the subset actions of S,
and A,,, found by Gill and Loda [3], this theorem yields tight lower and upper
bounds on the maximum irredundant base size of primitive large-base groups.

The theorem above is formalised in Lean [1], using the functional programming
language’s large mathematical library, mathlib [5]. Lean has seen very active use
in the formalisation of mathematics in the last few years. One high-profile project
featuring Lean is the formalisation of the proof of the polynomial Freiman-Ruzsa
conjecture [2].

In the talk, I describe the difficulties I was faced with when formalising the theo-
rem above and the definitions and known results that it relies on. These difficulties
include (a) dealing with the differences between set theory, which mathematicians
are familiar with, and dependent type theory, which Lean is based on and derives
its power and flexibility from; (b) stating and providing explicit proofs of facts that
are too obvious to mention in research article; and (¢) identifying and correcting
errors in the natural-language proof being formalised.
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Bases for primitive sporadic almost simple permutation groups
SAuL D. FREEDMAN
(joint work with Hong Yi Huang, Melissa Lee, Kamilla Rekvényi)

Let G be a permutation group on a finite set Q. A base for G is a subset of Q)
whose pointwise stabiliser in G is trivial, and the base size of G, denoted b(G), is
the smallest size of a base. In order to study groups of base size two, Burness and
Giudici [3] introduced the Sazl graph of G, whose vertices are the points of 2, and
whose edges are the bases of size two. They conjectured that if G is primitive with
b(G) = 2, then any two vertices in this graph have a common neighbour. While
this conjecture is open in general, they proved it in certain cases, including many
where G is a sporadic almost simple group. Additional work towards proving the
conjecture has been carried out in [4, 9, 11].

To facilitate a similar study of groups of arbitrary base size at least two, we
define in [6] the generalised Sazl graph %(G) of G: the vertex set is again 2, and
a 2-subset {«, B} of Q is an edge if and only if {«, 8} is a subset of a base for G
of size b(G). (The Sazl hypergraph, an alternative generalisation where the edges
are the bases of size b(G) > 2, was recently introduced and studied in [10].) We
extend the above conjecture in the obvious way, as follows.

Conjecture 1. If G is primitive with b(G) > 2, then any two vertices of X(G)
have a common neighbour.

Moreover, we prove the conjecture for various families of groups.

Theorem 2. Suppose that G is primitive with b(G) > 2. Then G satisfies Con-
jecture 1 if one of the following holds:
(1) G is a sporadic almost simple group with b(G) > 3;
(2) G is almost simple with soluble point stabiliser;
(3) G has socle Gy := PSLa(q) for a prime power q, and if |G : G| is even,
then the point stabiliser is not of type GLy(q/?); or
(4) G lies in one of several families of groups of diagonal type.

In fact, when G is primitive with socle PSLy(q), we determine precisely when
¥(G) is complete. To do so, we complete the evaluation of b(G) for every such G.
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The proof of Case (1) of Theorem 2, where G is sporadic with b(G) > 3, relies
on computations in Magma [1] and GAP [7], as well as the results in [5, 13]
that specify b(G) for each G. When the degree of G is sufficiently small, it is
straightforward to construct G in Magma using the database of ATLAS groups,
and to show that G satisfies Conjecture 1 by checking sufficient conditions on the
suborbits of G. However, no permutation representations for G € {Ly, Th} (here,
the degrees are between 8.8 million and 280 million) are provided in any publicly
available Magma databases. To construct these permutation groups, we employ
the following method described in [8].

(1) Using Magma’s database of ATLAS groups, construct an irreducible matrix
group M < GLg4(q) (with d and g relatively small), such that M = G and
such that the maximal subgroup H of M corresponding to a point stabiliser
in G stabilises a (low-dimensional) proper nonzero subspace U of Fg.

(2) Counstruct H, using generators from [14], and then U.

(3) Construct G as the permutation group induced by the action of M on the
orbit UM of subspaces of Fg.

We note that this requires significant computational resources, e.g. 171 GB of
RAM, and a runtime in the order of a few days, for the group of degree 280
million.

Of course, the above methods are not feasible when the degree of G is signifi-
cantly larger. In the case where G = Fig3 with degree 1.3 billion or G = Fiyy with
degree 4.9 billion, we show that G satisfies Conjecture 1 via Magma computations,
carried out in the permutation representation for G of minimal degree, involving
double cosets G,xG, for x € G and a fixed a € ). For each of the remaining large
degree groups, we verify the conjecture via a probabilistic calculation performed
using the GAP Character Table Library [2]. This generalises a technique used in
[3] for sporadic groups of base size two, and relies on theory introduced in [12].
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Simultaneous Sylvester Systems and some applications
CHRIS LU
(joint work with Joshua Maglione, James B. Wilson)

For a bilinear map u * v := (t|u,v) described by a tensor ¢, its adjoint algebra,
Adj(t), consisting of operators « satisfying

au *x v = Uu*Qau,

encode substantial qualities of the tensor while remaining theoretically computable
[1]. However, computation is often out of practical reach. (At least O(n°) for cubic
tensors. )

The equations defining Adj(t) are closely related to equations defining module
homomorphisms, the centralizer/center of a matrix algebra, and the centroid of
a tensor. Succinctly, each reduces to solving a system of matrix equations of the
form

(Vl) XA; + B;Y =C;

for appropriately constructed A;, B;, C; in the unknowns X,Y. This we call Si-
multaneous Sylvester Systems.

For the center of a matrix algebra, methods of Eberly and Giesbrecht computes
generators within a logarithmic factor of the cost of solving n x n systems of linear
equations [2]. For module homomorphisms, the Meataxe [3] and condensation
based methods [4] break down the single large system of matrix equations to
many smaller pieces.

Yet there are bottleneck examples with Loewy length 3 where computing mod-
ule homomorphisms bottoms out to the brute-force solving of a Simultaneous
Sylvester System as a system of linear equations. In my talk, I described an algo-
rithm that compute solutions to these systems efficiently. It uses a solve and lift
paradigm that is agnostic of the underlying data interpretation. We observe both
practical and complexity improvements in our Magma implementation.
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Computing the breadths of algebras and 7-groups
OSCAR FERNANDEZ AYALA
(joint work with Bettina Eick)

In the talk, we reviewed the definitions of the breadth br(G) of a p-group G and
the class-breadth conjecture. For a p-group, the breadth of g € G is defined as the
size of its conjugacy class;

P = g% =[G : Calg)].
Then the class-breadth conjecture can be stated as follows:
cl(G) < br(G) +1,

where cl(G) is the nilpotency class of G. Leedham-Green, Neumann, and Wiegold
[1] proved the following:

Theorem 1. Let G be a p-group, then
(G) < % br(G).

They also proved that the conjecture holds when br(G) < p. In 1987, Felsch,
Neubiiser, and Plesken [3] found a family of 2-groups that break the conjecture,
but it remains open for odd primes. The breadth of an algebra L is the maximum
of dim(L) — dim(Cp(z)) for z € L and the class-breadth conjecture can be stated
as cl(L) < br(L)+1. In [1] it was proven that the conjecture holds for nilpotent Lie
algebras over infinite fields and for associative algebras over any field. It was also
given a nilpotent Lie algebra over Fy that refuted the conjecture; later, in 2006,
Eick, Newman, and O’Brien [2] proved that there are nilpotent Lie algebras over
any finite field that serve as counterexamples to the conjecture. In our work, we
describe an algorithm to compute the breadth of an algebra L given by structure
constants. Until now, computing the breadth for infinite algebraic objects has not
been possible. The algorithm exploits the fact that for given basis B of L the
left multiplication endomorphism £, : L — L defined as £,(y) = y -z can be
represented as a matrix Mp(z). Then

br(z) = rank Mp(x).

If B = {b1,...,b,}, then we can represent any element of L as the linear com-
bination X = X1b1 + --- + X,,b,, with indeterminates X; over the field where L
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is defined. We say that a polynomial f(Xj,...,X,,) vanishes over a field K if
f(k1,...,k,) =0 for all ky,...,k, € K. Then the following holds:

Theorem 2. Let L be an algebra over the field K with basis B. Then br(L) =m
if and only if for each Il > m all | x I minors of Mp(X) vanish over K and there
is an m X m minor that does not vanish over K.

For nilpotent algebras, we could prove the following

Theorem 3. Let L be a nilpotent algebra over a field K of class ¢ > 1 and
dimension n with basis B. Then Mp(X) has a (¢c—1) x (¢—1) minor f(X1,...,X,)
which is non-zero and,

(a) If K 1is infinite, then the class-breadth conjecture holds for L.
(b) If K is finite and there ezists a (¢ — 1) x (¢ — 1) matriz minor f with
|K| > md(f), then the class-breadth conjecture holds for L.

Finally, we give an application for finitely generated nilpotent groups, 7-group,
in short. The breadth of a polycyclic group G is the maximum of h(G) — h(Cg(x))
for x € G, where h(G) is the Hirsch length of G. Mann and Segal [4] proved that
the class-breadth conjecture holds for T-groups. We could prove the following;:

Theorem 4. Let G be a T-group and let A(G) be the rational nilpotent Lie algebra
associated to G via the Mal’tsev correspondence, then

br(G) = br(A(G)).

Combining Theorem 3 and Theorem 4 leads to a proof of the fact that the
class-breadth conjecture holds for T-groups.
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Hall-Littlewood polynomials, affine Schubert series, and
lattice enumeration

CHRISTOPHER VOLL
(joint work with Joshua Maglione)

In [1], Joshua Maglione and I introduced Hall-Littlewood-Schubert series, a new
class of multivariate generating functions. Their definition features semistandard
Young tableaux and polynomials related with the classical Hall-Littlewood poly-
nomials. Via judicious substitutions of their exponentionally many variabes, Hall-
Littlewood-Schubert series solve various enumerative problems in algebra, geom-
etry, and number theory. These include Hecke series associated with groups of
symplectic similitudes over local fields. In my talk, however, I put the spotlight
on the specialization of Hall-Littlewood—Schubert series to Hermite—Smith series.
These generating functions enumerate lattices in Z" simultaneously by two invari-
ants: their Smith normal form and the diagonal entries of the matrices representing
them in Hermite normal form with respect to a fixed ordered Z-basis of the ambient
lattice.
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Computation and the sporadic simple groups
MELISSA LEE

This talk explores the pivotal role of computation in the construction and analysis
of the sporadic simple groups, beginning with Gagen and Ward’s 1965 proof of the
existence of Janko’s first group [7]. Indeed, the existence of nine of the sporadic
simple groups involved the use of a computer (see [5, Section 2.5] for an overview
and techniques), and even today, there is no known computer-free construction of
the O’Nan sporadic simple group.

Conversely, the desire to explicitly construct the sporadic simple groups moti-
vated the development of several crucial techniques in computational group the-
ory, including bases [14], fundamental to algorithms for permutation groups, and
Richard Parker’s MeatAxe [10], used to determine irreducible modules.

The first publicly available database of representations of the sporadic simple
groups and related groups was produced by Wilson [15] and dubbed “Volume 3 of
the ATLAS”, after [2] and [8]. This database grew from the 600 representations
mentioned in [15], to today include over 5700 representations on over 700 groups
[1]. In particular, there are representations of all sporadic simple groups except
the Monster group, along with many related groups.

The Monster group M, the largest sporadic group, has proved to be the most
challenging to construct computationally due to the absence of a feasibly small
degree permutation or matrix representation. The first construction of generators
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of the Monster on computer was produced by Linton, Parker, Walsh and Wilson in
1998 [9], based on the 196,883-dimensional matrix representation of the Monster
over [Fo. This, along with a construction over F3 developed by Holmes and Wilson
[6] led to the discovery of several more maximal subgroups of the Monster (see
[16, Section 3.6]), and eventually reduced the list of remaining possibilities for
maximal subgroups to almost simple groups with socle one of PSLy(8), PSL2(13),
PSLy(16), or PSU3(4).

These cases were explored by [4], who discovered the final two classes of maxi-
mal subgroups, PGL2(13) and PSU3(4).4. This work was done using mmgroup, a
Python package implementing the Monster written by Martin Seysen [13]. This
package represents a large breakthrough in our ability to compute with M, as it
is the first publicly available implementation, it is open-source, and it is able to
multiply elements of M together (including a word reduction algorithm) in ap-
proximately 35 milliseconds, around 100,000 faster than was possible in earlier
implementations. Further developments using mmgroup include explicit construc-
tions of the maximal subgroups of M [3], the construction of the last unknown
character table of a maximal subgroup of M [11], and the determination of class
fusions from maximal subgroups to M [12].
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Finding exotic presentations of quaternion groups
ToMMY HOFMANN
(joint work with John Nicholson)

We report on an ongoing investigation of Wall’s D2 problem and the interactions
with computational group theory (and computer algebra in general). Given a
finitely presented group G, can we classify its collection of finite presentations?
To make this precise, we must first specify an equivalence relation on the class of
finite presentations. Examples of such equivalence relations can be obtained by
specifying transformations or moves on relations. Obtaining classification results
for such equivalence relations appears to be hard, as is witnessed by the open
Andrew—Curtis conjecture.

We instead consider the following equivalence relation, which is coming from
topological considerations. A finite presentation P for a group G has an associated
finite 2-complex Xp with fundamental group G. We say that two finite presenta-
tions are homotopy equivalent if their associated 2-complexes are. Our goal is a
classification of presentations up to homotopy equivalence, which is inextricably
linked to Wall’s D2 problem [1]. For a finitely presented group G, the question
is whether certain algebraic 2-complexes of Z[G]-modules are geometrically realiz-
able. In this case, we say that G satisfies the D2 property.

Our focus is on the quaternion groups Qg4,, which for small orders have been
investigated with respect to the D2 property. In particular, the group Qss was
independently proposed as a counterexample to the D2 problem by Cohen [2] and
Dyer [3].

A pair of finite presentations for a group G are said to be ezotic if they have
the same deficiency but are not homotopy equivalent. For n > 6, the existence
of exotic presentations is necessary for Qg, to have the D2 property. Except for
Qos, where the existence of exotic presentations has been established by the work
of Mannan—Popiel [4], no exotic presentations for larger quaternion groups have
been known.

In this talk, we describe a new family of presentations of quaternion groups and
explain how computer algebra software like MAGMA and OSCAR can be used to
investigate these presentations with respect to homotopy equivalence, allowing us
to prove that Qso is not a counterexample to the D2 problem. In fact, we show
the following.
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Theorem.
(1) If 6 < n <8, then Qqy has the D2 property.
(2) If n = mk where 6 < m < 12 and k > 1 is odd, then Qu, has an exotic
presentation.

The case Qg was established previously in [5] using the exotic presentations of
Mannan—Popiel.
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Diameter bounds for soluble transitive permutation groups
SEAN EBERHARD
(joint work with Elena Maini, Luca Sabatini, Gareth Tracey)

If G is a finite group generated by a set X, we write £x for the length function with
respect to X, i.e., if g € G then £x(g) is the length of the minimal representation
of g as a product of elements of X U X!, For a subset S C G we write £x(S) =
maxges {x(g). The diameter of G with respect to X is diam(G, X) = x(G), and
we define

diam(G) = max diam(G, X).
(X)=G

There are at least two fundamental open conjectures about diameters of finite
groups.
(1) (Babai’s conjecture, 1992 [1]) If G is a finite simple group then diam(G) <
C1 (log |G|)¢? for some absolute constants C1, Co.
(2) (folklore) If G is a transitive permutation group of degree n then diam(G) <
C1n®> for some absolute constants C;, Co.

More aggressively, one might conjecture that Cy = 2. The best known bound for
the diameter of transitive permutation groups G < .S, is a quasipolynomial bound
of the form

diam(G) < exp((logn)*t°M)
due to Helfgott—Seress [3].

The inception of the present project (which is work in progress) was the question
of whether the folklore conjecture 2 above is really plausible for other transitive
permutation groups, particularly say soluble permutation groups, which may yet
be exponentially large and so could potentially have large diameter. Indeed we
did not seem to have a polynomial bound even for transitive p-subgroups such as
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Cpl---1Cy (the Sylow p-subgroup of Sy,n). This is a question that seems to have
been overlooked.

Our first main result is a general bound for the diameter of a finite soluble
group. Recall that the exponent exp(G) of a group G is the smallest integer e such
that g¢ = 1 for all g € G. The derived length L of G is the least integer L such
that G(F) = 1. We prove that if G is a finite soluble group of derived length L and

e = max{exp(G? /G . 0 < i< L} < exp(G)

then
diam(G) < 4F71e (log, |G|)?.

It follows that we have a good bound for the diameter of a soluble group when-
ever its derived length and exponent are controlled. There are several notable
corollaries.

First, if G is a finite soluble group of exponent exp(G) then

diam(G) < exp(G)(4log, |G|)®.

This follows from a result of Glasby [2] that L < 3log,log, |G| + 9.
Next, if G < S, is transitive and soluble then

diam(G) < nb16,
and furthermore if G is nilpotent then
diam(G) < n®.

In the case of primitive soluble groups, we prove a nearly linear bound, which is
optimal up to the logarithmic factors:

diam(G) < n(logn)°W.

It would be fascinating to know the optimal exponents in these bounds. It is not
known whether any transitive subgroup of S,, has more than quadratic diameter.
On the other hand, congruence quotients of the Grigorchuk group G give examples
of transitive 2-subgroups Gj, = (X) < S,, (where X = {a,b,¢,d} is the standard
generating set) n = 2", with

n'? <« diam(Gp,, X) < n'%4.

(Conjecturally, the lower bound is close to correct in this case.)
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On the Modular Isomorphism Problem
LEO MARGOLIS
(joint work with Taro Sakurai)

The Isomorphism Problem for group rings asks, whether an isomorphism of RG,
the group ring of a finite group G over a commutative ring R, to another group
ring RH, implies the isomorphism of the base groups G and H. While this has
clearly negative answers in general, e.g. any two abelian groups of the same
order have isomorphic group algebras over the complex numbers, some specific
formulations are much less obvious and received a lot of attention over decades.
After summarizing the main historic results, especially for the case that R is the
ring of integers, we concentrate on the so-called Modular Isomorphism Problem
(MIP): it asks if the isomorphism F'G = FH implies the isomorphism G = H in
case (G is a finite p-group and F a field of characteristic p. The question goes back
at least to a survey of R. Brauer [1].

If the coefficient field in the (MIP) is finite, so is the algebra F'G and it becomes
accessible to computer algebraic methods. Moreover, the augmentation ideal of
FG coincides with its Jacobsen radical and studying quotients by powers of the
Jacobsen radical allows to reduce the problem to the study of nilpotent algebras of
smaller dimensions. This gave rise to the development and implementation of two
algorithms [8, 3] which we recall along with other early applications of computers
to the study of the problem. We then summarize also the theoretical knowledge
on (MIP) which includes positive results, but also the recent negative solutions in
the class of 2-groups [4] and their slight generalization [5, 2]. From the positive
results we would like to highlight that though for the class of p-groups of exponent
p and nilpotency class 2, featuring prominently in other talks of this wokrshop,
the problem found a positive solution over the prime field already in the 1970’s [7]
it remains open over general fields.

Several open questions are then presented. This includes the most natural
question, if the (MIP) holds for odd primes, and also the question if it is possible
that the group algebras of two finite p-groups are non-isomorphism over F, but
become isomorphic over a bigger field of characteristic p. We mention a new result
that the 2-groups which provide the negative solutions for the (MIP) have non-
isomorphic group rings over the ring Z/47 [6]. This investigation led to a new idea
to study the (MIP) which in particular might allow a computer algebraic study
independent of the ground field. This involves a question in algebraic geometry
and ultimately asks to decide if a certain polynomial lies in the ideal generated in a
polynomial ring whose generators depend on the relations of the groups which are
compared. It still remains to see if this idea can lead to new results, in particular
using the tools available in singular or magma.
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Automatic actions
LAURENT BARTHOLDI

Automatic actions are actions of a group G on an w-regular language L C A% in
such a way that, for every g € G, the graph of the action {(&, g(§)) : £ € L} is an
w-regular subset of L x L C (A x A)¥.

(Recall that an w-regular language < A% is given by a finite graph (called
automaton) with certain vertices called initial, certain edges called recurrent, and
labels € A on every edge. The associated language is the set of infinite paths
read in the graph, starting at an initial vertex, and traversing infinitely often a
recurrent edge.)

More generally, a relation (say n-ary) on L is w-regular if it is a regular lan-
guage on the alphabet A™. For example, the equivalence relation Ey, relating all
sequences that eventually coincide, is w-regular: it has two vertices, one initial
with A x A loops and A x A edges to the other vertex; and {(a,a) : a € A}
recurrent loops at that other vertex.

Note that if G is finitely generated then it suffices to give an automaton per
generator, to describe fully the automatic action. Thus an automatic actions of
finitely generated groups are given by a finite amount of data.

This notion generalizes numerous examples: the automatic actions of [1], the
automata actions on rooted trees that lead to the first examples of groups of
intermediate growth [3], and the substitutional subshifts [2]. In my talk, I paid
particular attention to decidability questions related to these actions.

In particular, an automatic action is an example of an w-automatic structure: re-
call that a structure (X, p1, p2,...), consisting of a set X and operations/relations
pi, 18 w-automatic if there exists an w-regular language L, an w-regular equivalence
relation F with L/E = X, and operations relations R; on L that lift the operations
pi. A fundamental, if easy result is:

Theorem 1 (Khoussainov-Nerode [4]; Kuske-Lohrey [5]). If (X, p1,...) s w-
automatic, then its first-order theory is decidable.
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Thus for example the word problem for automatic actions of finitely generated
groups (“does g € G, given as a product of generators, act trivially?”) is decidable.

More can be said in certain cases. An w-regular relation R C L x L is bounded
if R\ Ey is finite, and an automatic action is bounded if its acts by bounded
relations; namely, for every g € G there are finitely many ¢ € L such that £ and
g(&) do not eventually agree. I can prove:

Theorem 2. If G has a bounded action on L, then its orbit relation {(§,g(&)) :
g € G, ¢ € L} is w-regular.

All substitional subshifts can be described by bounded automatic actions; and
most examples of automata groups fall is this class too. It follows that a large num-
ber of dynamically-relevant notions are decidable: minimality, topological transi-
tivity, etc.

In the case of Pisot substitutional subshifts, namely those for which the growth
rate of the substitution is an algebraic number all of whose Galois conjugates are
inside the unit disk, even more can be said:

Theorem 3 (joint with I. Mitrofanov). IfZ ~ X is a Pisot substitutional subshift,
then the action map itself is automatic: there is an automatic structure

(ZUX,O,l,fo,—l—,',d)

where & is a fized point of the substitution, '+': ZX7 — 7 is addition, ' : Zx X —
X is the group action, and d: X x X — Z is the logarithm of the distance function.

It follows, for example, that the proximality relation, equicontinuity relation
etc. are all decidable.
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On the Complexity of Isomorphism Problems for Tensors, Groups,
Polynomials, and Algebras
YOUMING QIAO
(joint work with Josh Grochow, Gabor Ivanyos, James B. Wilson, Peter A.
Brooksbank, Markus Blaser, Alexander Rogovskyy, Xiaorui Sun, Kate Stange,
Yinan Li, Chuanqi Zhang, Antoine Joux, Anand Narayanan, Zhengfeng Ji, Fang
Song, Aaram Yun...)

Two matrices are called equivalent if one can be transformed into the other by
multiplying with invertible matrices on the left and right. Extending this idea
to 3-tensors, it is natural to define two 3-tensors as isomorphic if they can be
transformed into each other by multiplication with three invertible matrices along
the three directions.

In the past few years, Tensor Isomorphism has been studied from the perspec-
tives of complexity, algorithms, and cryptography. We briefly report some main
messages from these works.

Complexity. In [1], it is shown that Tensor Isomorphism captures the complex-
ity of testing isomorphism for several algebraic structures, including polynomials,
certain families of groups, and associative or Lie algebras. Here “captures” can
refer to either polynomial-time equivalence or the containment relation between
orbit structures.

This prompts the introduction of a complexity class called Tensor Isomor-
phism. By varying the underlying fields/rings and group types and actions, Ten-
sor Isomorphism has connections to cryptography (Goldreich—Micali-Wigderson
zero-knowledge protocol for isomorphism problems) [2], quantum information [3],
number theory (Bhargava’s approach to Gauss composition law), and geometry
(classification of Calabi—Yau threefolds) [4].

Algorithms. Algorithms for Tensor Isomorphism have been studied intensively
in the past few years. The following algorithms are for n x n x n tensors over F,.

Algorithms with worst-case analyses: In [5], Xiaorui Sun presented the
first n°(°8")_time algorithm for testing isomorphism of p-groups of class
2 and exponent p. This was subsequently improved and simplified in [6].

O(n'*-log(n)_time algorithm for Tensor

The key of [6] is to develop a ¢
Isomorphism.

Algorithms with average-case analyses: By [7], Tensor Isomorphism
can be solved in time ¢©(") in the average-case sense.

Heuristic algorithms: In [8], a heuristic algorithm for Tensor Isomorphism

in time ¢"/2 - poly(n,log q) was presented.

Cryptography. Tensor Isomorphism is a candidate of the so-called pseudoran-
dom group action, which can support several cryptographic functionalities [2]. A
digital signature scheme, called MEDS, was implemented and submitted to the
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NIST’s call for post-quantum digital signature schemes [9]. The heuristic algo-
rithm for Tensor Isomorphism in [8] was motivated by evaluating the security of
MEDS.

A desirable feature of digital signature schemes is the quantum random oracle
model (QROM) security [10]. For MEDS to have the QROM security, it is enough
to show that a random n x n x n tensor over F, has the trivial stabiliser group.
This was shown to be the case in [11]. The techniques were then used to answer
some open questions on enumerating p-groups of class 2 and exponent p in [12].
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Some groups coming from elliptic curves
JOSHUA MAGLIONE
(joint work with Mima Stanojkovski)

We define a unipotent group scheme Gg p coming from an elliptic curve E given
by a short Weierstrass formula and a point P on E different from (0 : 1 : 0).
We characterize when two such (abstract) groups are isomorphic over finite fields,
and we determine the cardinalities of their automorphism groups. We use this
to constructively recognize such groups and return the possibly empty coset of
isomorphisms to such a group Gg,p. Additional results, details, and examples can
be found in [4]

Let K be the finite field with ¢ = p® elements for a prime p > 5 and e € N.
Let a,b € K such that 4a® + 27b% # 0, so that y?z = 2% 4+ azz? + bz3 defines an
elliptic curve E in variables z,y,z. Let P = (A : u: 1) be a projective point on E,
written P € E(K). Weset O = (0:1:0) € E(K). To define Gg p we use the
Baer correspondence [1]. Let y1,y2,y3 be variables and set

Y1 — Y3 Yo — HY3 0
Copp=|y2+uys Mp+(a+X)ys y1 | € Mats(K[yr,y2,s))-
0 Y1 —Ys3

0o C . .
Let Bgp = (70;3 R %’P ), so Bg, p defines an alternating K-bilinear map. Thus,

let G p be the associated Baer group scheme over K; see [4, Sec. 1.5 & 2.4]. The
following theorem characterizes when two such abstract groups are isomorphic.
Theorem 1. Let E and E' be elliptic curves over K with P € E(K) \ {O} and
P’ e F'(K)\ {O'}. The following are equivalent.
(1) Gp.p(K) = Gp p(K).
(2) There exists 0 € Gal(K/F,) and an isomorphism of elliptic curves ¢ :
E' — o(E) such that P' — o(P).

Theorem 1 provides a way to enumerate the isomorphism classes within the set

B a,beF,, E:y*>=2%+azx +0b,
6= {rr(e | P e B(F,) '
See the author’s problem presentation and [4, Conj. 6.9] for a conjecture concerning
|Gq /|-

The ingredients to prove Theorem 1 are also used to count the cardinalities of
the automorphism groups of the Gg p(K). For m € N, we denote by E[m](K) the
m-torsion subgroup of the abelian group E(K).
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Theorem 2. There exists a subgroup S < Gal(K/F,) such that

[Aut(Gr,p(K))| |Auto (E)]| ,{IGLz(K)I if P € ERI(K)\{0},

G220 _ 5. 1ot - et

2(p—1) otherwise.

As a consequence of Theorem 2, the function p — |[Aut(Gg p(F,))| is almost
never a polynomial on residue classes. See [4, Cor. 1.5] for details. Therefore, the
phenomenon observed in [2] is very common.

The next theorem states that we can both constructively recognize the groups
GE,p(K) and construct the coset of isomorphisms. We significantly improve upon
the running time of deciding isomorphism between such groups.

Theorem 3. There are algorithms that, given a group G of order p™,
(1) decide if there exists an elliptic curve E over Fpm and P € E(Fpm) \ {O}
such that G = Gg,p(Fpm), and if so,
(2) return the coset of isomorphisms G — Gg,p(Fpm).
The first algorithm is Las Vegas and runs in time polynomial in log|G|. The second
algorithm runs in time O(|G|'/?).

The bottleneck for the second algorithm is that it runs through all the points
on the elliptic curve E. We have implemented the algorithms from Theorem 3 in
Magma which is publicly available [3].
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Isomorphism Strategies via Categories
JAMES B. WILSON

(joint work with Peter A. Brooksbank, Heiko Dietrich, Joshua Maglione,
Eamonn A. O’Brien)

A central tool in isomorphism testing of groups is to locate an isomorphism invari-
ant such as a characteristic structure [3]. However, examples for Rotldnder [4] and
others shows that some groups have characteristic structures that are indistinguish-
able from those of other subgroups and thus as a tool for reducing isomorphism
testing this inserts a new problem of first solving the matching problem of char-
acteristic structures, which can be as hard as isomorphism testing directly. The
problem is in the definition of characteristic structures as a property of individual
groups.

We introduce a category-wide characterization of characteristic structures. With
this definition the matching problem becomes more tractable. Furthermore, this
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characterization allows for a study of the source of characteristic subgroups through
a categorical lens. Examples include adjoint functors pairs and more generally
relies on the introduction of a representation theory for categories. The imple-
mentation of such a representation theory is made possible by reducing categories
to ordinary algebras by dropping the objects and treating them as essentially
algebraic structures similar to monoids.

Reports on joint work [1, 2] with P.A. Brooksbank, H. Dietrich, J. Maglione,
and E.A. O’Brien.
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Detecting structure in tensors using algebraic invariants
PETER BROOKSBANK
(joint work with Martin Kassabov, James Wilson)

An /-tensor is a multilinear function ¢ : Uy X --- x Uy — K, where each U, is a
K-space called an azis of ¢. Fixing for each a € {1,...,¢} abasis €41, .., €q,d, for
U,, one can represent ¢ as an f-way array I', where I'(i1,...,%7) = t(e1,i1,---»€0,i,)-
Applying a tuple X = (X1,..., X,) of invertible matrices, one can change ¢ for an
equivalent tensor t*, where tX(u1,...,us) = t(Xiu1,..., Xeus). This operation
transforms the array I' representing ¢ to a new array I'* that records ¢ evaluated
at the new axis bases determined by X.

Broadly speaking, the computational problem addressed in this talk is whether,
given a tensor recorded as an array I' relative to some arbitrary basis, one can
compute a basis change X such that the resulting array I'* is “sparse”. More
precisely, we ask whether the existence of certain null patterns can be detected
within the given array I' and revealed by the array I'X. In the case of a matrix
(2-tensor) I, for example, it is easy to find a pair (X,Y") of invertible matrices so
that T5Y) = XTYT is the diagonal matrix 1, & 0,,_,, where r is the rank of T'.
Variants that capture additional symmetries—such as Jordan normal form—are
also easy to compute for matrices.

The problem is much harder—not to mention less clearly defined—for tensors
of higher valence, but a great many applications benefit from the discovery of null
patterns in tensor data. For instance, block diagonal structures are sought in blind
source separation [5], where higher-order statistics such as moments or cumulants
of independent events occur as distinct clusters on the diagonal. Another com-
mon type of decomposition focuses on a pair of axes and seeks decompositions
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along their common face. Applications of face block decompositions include poly-
nomial and algebra factorization [7, 9], outlier detection [1], simultaneous block
diagonalization of matrices [4, 8], and low-rank approximation problems [6].

Based on work in [2], this talk outlines a new strategy to detect and reveal null
patterns in tensors. First, a computable family of null patterns is defined using
a matrix parameter C called a “chisel”. This family includes the diagonal and
face block decompositions of the previous paragraph, and a whole lot more. For
instance, there is a chisel that parametrizes patterns where data in a 3-tensor con-
gregates around a surface, a curve, or a tube. Secondly, an algorithm is presented
that, given an array I" representing a tensor ¢ and a chisel matrix C, finds a change
of basis that reveals a null pattern parameterized by C (or determines that no such
pattern exists). The methods we present are to a great extent field agnostic, and
in preliminary testing are tolerant of a certain amount of noise.

The talk also includes demonstrations of the algorithm in action using an im-
plementation in the Julia system that is publicly available on GitHub [3].
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IR-Algorithms for graph isomorphisms and automorphisms
PASCAL SCHWEITZER
(joint work with Markus Anders)

In the talk, I surveyed techniques used by modern practical algorithms for the auto-
morphism group computation of graphs. These tools can also be used to compute
automorphisms of any other explicitly given finite combinatorial object. Indeed,
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I highlighted that there is a polynomial time reduction from automorphism prob-
lems of general, explicitly described combinatorial objects to graph isomorphism.
This justifies a focus on graphs.

This algorithmic problem is known to be in the complexity class NP, but neither
known to be NP-complete nor known to be in the complexity class P. With the
appearance of Babai’s quasipolynomial time algorithm for the graph isomorphism
problem, focus has shifted to group isomorphism as a special case. Specifically,
the group isomorphism problem for groups, given by multiplication table, reduces
in polynomial time to the graph isomorphism problem. In turn, the graph isomor-
phism problem reduces to the permutational group isomorphism problem.

A problem related to the graph isomorphism problem is that of canonization. In
the talk, T also surveyed what is currently known about the relationship between
isomorphism problems and canonization problems. For example, a polynomial
time reduction from the graph isomorphism problem to the canonization problem
is immediate, but no polynomial-time reduction in the other direction is known.

The main part of the talk focused on modern practical techniques. The foremost
technique, pioneered by Brendan McKay in his tool nauty, is the individualization-
refinement framework (IR). The framework is widely used by almost all existing
tools for symmetry computation. I presented theoretical and practical develop-
ments of recent years in this area [1]. They show that randomized search traversal
techniques are provably superior to deterministic techniques. This is corroborated
by a new practical software tool DEJAVU freely available at automorphisms.org,

Finally, I emphasized that despite recent breakthroughs, it is still an open prob-
lem whether there is an algorithm for the group isomorphism problem that runs in
time polynomial in the orders of the given groups. It is generally believed that the
question is both a major bottleneck to find a better graph isomorphism algorithm,
and also to find faster group isomorphism algorithms, even when considered in
encoding models other than multiplication tables.
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Maximal solvable subgroups
MIKKO KORHONEN

A subgroup of a group G is said to be mazimal solvable if it is maximal among
the solvable subgroups of G, with respect to inclusion. One basic motivation for
considering maximal solvable subgroups comes from the fact that for various classes
of groups, the following property holds: if H < G is solvable, then H < M for
some mazimal solvable subgroup M of G. (This property is obviously true for finite
groups, and more generally for linear groups by a classical result of Zassenhaus
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[15].) For such a group G, one can thus try to understand the solvable subgroup
structure of G by first examining the maximal solvable subgroups of G.

Although in general classifying all solvable subgroups of a given group G is a
hopeless problem, for some families of groups one can get very precise information
about their maximal solvable subgroups, and in some cases even a complete classi-
fication is feasible. This then provides at least some partial information about the
solvable subgroup structure of G. This sort of approach has been used for various
problems related to solvable subgroups, see for example [10], [8], [4], [9], [1].

In his 1870 Traité [5], Jordan gave a classification of the maximal solvable sub-
groups of symmetric groups. The classification reduces to the primitive case, which
is equivalent to the problem of classifying maximal irreducible solvable subgroups
of GL4(p), where p is a prime. In GL4(p), the problem is reduced to the case of
primitive irreducible solvable subgroups. These subgroups are then constructed
in terms of maximal irreducible solvable subgroups of general symplectic groups
GSpyy (r) (r prime) and orthogonal groups O3 (2).

Jordan’s results on maximal solvable subgroups seem to have received little
attention compared to some of his other results. Later, properties of maximal
solvable subgroups have been studied by many authors, perhaps most notably by
Suprunenko in the 1950s and 1960s [12], [13]. In [13, Section 18 — Section 20],
Suprunenko describes the general structure and construction of maximal solvable
subgroups of GL,,(IF) over an arbitrary field F, thus generalizing some of the results
of Jordan. For the most part, Suprunenko does not attempt to study when the
subgroups given by the construction are maximal solvable in GL, (F), although
he does illustrate the construction by giving a complete classification of maximal
irreducible solvable subgroups of GL,.(g) for r prime [13, 21.3]. Further analysis of
the prime degree case for classical groups was done by Detinko, see for example [2].
For other previous work related to maximal solvable subgroups, see for example
3, [14], [11).

In our talk, we reported on our recent work [6] that considers the classification
of maximal solvable subgroups of finite classical groups. In [6] we provide the
first modern exposition of the classical results of Jordan, and more generally, we
provide a complete classification of the maximal irreducible solvable subgroups of
the following groups:

e GL,(q) (general linear groups)

e GSp,(q), Sp,,(g) (symplectic groups)
o GO, (q), On(q) (orthogonal groups)
e Q,(q) (n even, q even)

In the orthogonal and symplectic case, we also classify more generally the met-
rically completely reducible maximal solvable subgroups, where metrically com-
pletely reducible means that the group has no nonzero invariant subspaces which
are totally isotropic.

In all cases, the classification provides an explicit recursive construction that
allows one to write down generators for the maximal solvable subgroups. This
can then be implemented on a CAS such as Magma or GAP. In a Magma package
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(MIRS on Github [7]), we have implemented the generators for maximal irreducible
solvable subgroups of GL,(q) for certain degrees n and arbitrary q. Here “certain
degrees” means that the exponents in the prime factorization of n are not too big —
in particular the implementation works for all 1 <n < 127, and also for arbitrary
squarefree n. Using the results from [6], with further work this implementation
could be extended to arbitrary n, and for the other classical groups considered in
our work.
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Zeros of S-characters
THOMAS BREUER
(joint work with Michael Joswig, GunterMalle)

In [6], Zhmud’ defines an S-character of a finite group G to be an integral linear
combination of the irreducible complex characters of G that takes only nonnegative
real values and that contains the trivial character 14 exactly once. For example,
every transitive permutation character of G is an S-character. Each non-trivial
S-character vanishes on some group element. By [3], each non-trivial transitive
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permutation character vanishes even on some element of prime power order. J-
P. Serre asks in [5] whether this holds more generally for S-characters.

We show that this is not the case, by constructing counterexamples. In order
to compute the set of S-characters of a group G, we proceed as follows. Take
the real matrix of orbit sums of the complex irreducible characters of G under
complex conjugation, and omit duplicate columns, call the resulting n x n matrix
A, and consider the polytope {v € R";vA € R%,,v1 = 1}. The coordinates
of the S-characters of G are exactly the lattice points of this polytope. The
computer algebra system OSCAR [4] provides the necessary functionality for the
enumeration of these lattice points. In particular, it supports polytopes defined
by inequalities over a number field embedded into the field of real numbers, and it
supports the conversion of real character values to elements of such number fields.

Since we are interested only in those S-characters which are nonzero on all
elements of prime power order, we can a priori consider the in general smaller
polytope obtained by replacing the inequality (vA); > 0 by (vA); > 1 whenever
the i-th column of A has only rational values and corresponds to elements of prime
power order.

The alternating group on eight points is the group with the smallest number
of conjugacy classes which has a non-trivial S-character that is nonzero on all
elements of prime power order. This group is also the group of smallest order with
this property whose character table is in the ATLAS of Finite Groups [2].

Many more examples occur for larger ATLAS groups, they are listed in the
paper [1]. The OSCAR code for reproducing these results can be found at
https://github.com/oscar-system/S_characters. jl.
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Towards an algorithm for recognizing classical groups
STEPHEN GLASBY
(joint work with Alice C. Niemeyer and Cheryl E. Praeger)

A paradigm for analyzing subgroups of a finite matrix group GL4(F) involves first
constructing a composition tree whose leaves are quasisimple groups. The most
common quasisimple groups that arise in practice are the finite classical groups, so
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there is much interest in fast constructive recognition algorithms of such groups.
Ideas for previous algorithms for this task are due to Brooksbank, Kantor, Seress,
Neunhoffer, Leedham-Green, O’Brien, .... We build on their ideas.

In joint work with Alice Niemeyer and Cheryl Praeger, we sought to design and
analyze algorithms to recognize classical groups acting on their natural module.
We call an element g € GL(V) a stingray element if g acts irreducibly on U =
V(1 — g), and hence fixes pointwise a complement to U in V. We proved in [5]
that two random non-degenerate subspaces of a classical group, of complementary
dimensions, span the natural module with high probability. In [3] with Thringer
and Mattheus, we improved these bounds to 1 — 3/(2|F|) where |F| is the size of
the underlying field. This allowed us to prove in [4] that a random pair (g,g’) of
stingray elements in a classical group on V' with high probability has U = V(1 —g)
disjoint from U’ = V(1 — ¢') and (g, ¢’) is a nondegenerate classical group.

The above probability has the form 1 — ¢/|F|. To bound ¢, we need an upper
bound for the probability of non-generation. This leads us to consider various As-
chbacher classes. Non-generation (for type X = L) is dominated by the reducible
case: in [2] we prove that (g, ¢’) is reducible with probability less than ¢=1 + ¢=2.
(This required graph-theoretic ideas involving the ¢-Kneser graph.) Bounding the
probability that (g, ¢’) is a Cy9-group requires intricate representation theory, and
was done with Alex Zalesski in [1]. The remaining Aschbacher classes Ca, .. .,Cs
are handled in [6]. Nongeneration occurs with a very low probability, in many
cases ¢/q% where e = dim(V (1 — g)), ¢ = dim(V (1 — ¢')) and ¢ is ‘small’.
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Orbits: tame and wild

ToBIAS ROSSMANN

This talk was devoted to recent developments in the symbolic enumeration of
orbits. Let G be a group scheme acting on a scheme X. (Schemes are assumed to
be separated and of finite type in the following.) For example, G < GL,, could be
a linear group scheme acting naturally on affine n-space or on itself by conjugation.
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Our goal is to determine the number of orbits h(G ~ X q) := |X(F,)/G(F,)| as
a “symbolic function” of the prime power q. Let Y be the scheme representing
the functor R ~ {(x,9) € X(R) x G(R) : g = x}. Burnside’s lemma shows that
IX(Fq)/G(Fy)| = |Y(F,)|/|G(Fy)|.- Hence, h(G ~ X;q) is expressible in terms
of the numbers of F -rational points of schemes—this is an archetypal example of
a function which depends geometrically on q. We regard such functions as tame
when they are (close to being) polynomial in g; otherwise, they are wild.

It is natural to ask just how wild the functions ¢ — h(G ~ X;q) can be if G
and X are themselves restricted to be geometrically tame. By [8, Thm A], we can
approximate (in a suitable sense) the number of Fy-rational points on an arbitrary
scheme by means of (a) numbers of linear orbits of commutative unipotent groups
or (b) by means of class numbers of Baer group schemes, all uniformly in ¢. This
combines a deep result due to Belkale and Brosnan [1] and recent techniques
surrounding so-called ask zeta functions (introduced in [5]). We conclude that
symbolically enumerating linear orbits and conjugacy classes of unipotent groups
is a fundamentally hopeless task in the sense that it is as hard as enumerating
solutions to arbitrary Z-defined systems of polynomial equations over F,.

On the other hand, for many specific families of groups of interest, we can of
course do much better. Let k(H) denote the number of conjugacy classes (“class
number”) of a group H. Let O be a compact discrete valuation ring with maximal
ideal 3, e.g. the p-adic integers Z,, or a power series ring F,[z]. The class-counting
zeta function of a group scheme G over O is the generating function

Zk (O/B*NT

The second half of the talk focused on recent developments surrounding class-
counting zeta functions of graphical groups. Given a graph I' and (commutative)
ring R, the graphical group Gr(R) is a certain nilpotent group of class at most 2
whose commutator structure encodes adjacency in I'. For precise definitions, see [7,
Section 3.4] or [6, Section 1.1]. For example, the graphical group scheme associated
with a complete graph K,, is a group scheme version of the free class-2-nilpotent
group on n generators. By [7, Thm A], given any T, there exists an explicitly
computable rational function Wr(X,T) € Q(X,T) (denoted Wy (X,T) in [7])
such that for each compact discrete valuation ring ) with residue field size ¢, we
have Zg o (T) = Wr(q,¢™T); here, m denotes the number of edges of I'. We
conclude that the class numbers k(Gr (9 /%B*)) depend tamely on O and also on
the congruence level k.

In the talk, I reported on two further recent results that both establish forms
of tameness with respect to natural graph-theoretic operations:

e The join 'y VI's of graphs I'; and I'; is obtained from their disjoint union
I'; & I's by adding an edge connecting each vertex of I'y to each vertex
of I'y. By [9, Thm A], the rational function Wr,yr,(X,T) is expressible
as an explicit “distorted sum” of translates of Wr, (X,T') and Wr, (X, T).
This result relies on a description of Wp(X,T') in terms of p-adic integrals
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involving what we call animations. By an animation of a graph T’ = (V| E),
we mean a partial function from V' to V which, whenever defined, sends a
vertex to one of its neighbours.

o It is easy to see that Wr,er, (X, T) is the Hadamard product of Wr, (X, T)
and Wr,(X,T). In general, predicting properties of Hadamard products
of rational generating functions from properties of the factors seems to be
very difficult. Building upon and extending work of Gessel and Zhuang [4],
in [3] (see also [2]), we obtained explicit formulae for Hadamard prod-
ucts of certain rational generating functions. As an application, in [3,
Section 5.3], we recorded several instances of explicit formulae for zeta
functions enumerating linear orbits and conjugacy classes. In particular,
our findings show that, given n, there exists an explicit rational function
Wa(X,Y1,...,Y,,T) such that, up to an explicit translation, the rational
function Wk, @..ak,, (X,T) coincides with W, (X, X%, ..., X4 T).

Both results have direct applications to explicitly computing Wr(X,T) and
hence to symbolically enumerating conjugacy classes of graphical groups.
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Alternating groups as products of three conjugacy classes
DANIELE DoNaA

In 2021, Garonzi and Mar6ti [5] proved a result about normal subsets of Alt(n)
that in particular implies the following.

Theorem 1 ([5], Thm. 1.1). For any e >0, any n >, 1, and any four conjugacy
classes C1,C4a,Cs,Cy of G = Alt(n) with |C;| > |G|%+5, we have C1C2C3Cy = G.
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In particular, since every element of a given class in Alt(n) has the same cycle
structure, for any g € Alt(n) and any four such cycle structures there is a way to
write ¢ = ajasagay with o; having those structures.

It is easy to show that, for any § > 0 and n large enough, there are classes C1, Co
of size > |Alt(n)|' =% such that C;Cy does not cover Alt(n), or even Alt(n) \ {e}.
In light of [5], the next question is: can we cover Alt(n) with three such classes?
This is Problem 20.23 in the Kourovka Notebook [6], and the answer is “yes”.

Theorem 2 ([2], Thm. 1.2). There is 6 > 0 such that, for any n > 1 and any
three classes Cy,Ca, C3 of G = Alt(n) with |C;| > |G|'~°, we have C1C2C3 = G.

A few facts from the literature:

e the same statement is trivial for G abelian or sporadic and ¢ small enough,
and was already known for all finite simple groups of Lie type [8];

e stronger statements, asking for approximately the same number of solu-
tions to ¢ = ajasag for every g € G, are known to be true for G of Lie
type [4] but false for G = Alt(n) [9];

e explicit counterexamples [1] show that we must have § < 1.

Theorem 2 allows every g to be written as g = ajasas for a; having a fixed cycle
structure yielding a large enough class: in practice, the condition |C| > |Alt(n)|'~°
corresponds approximately to having at most dn cycles. However, having a solution
to g = a1asag does not necessarily mean that we have a constructive way to build
the appropriate «;. As a matter of fact, many papers dealing with products of
conjugacy classes are not constructive: at least since the paper by Liebeck and
Shalev on diameters of finite simple groups [7], character theory has been used
as a powerful but non-constructive tool to prove similar statements. Character-
theoretic techniques might be necessary to deal with problems on groups of Lie
type, but problems on alternating groups should be within the reach of elementary
and constructive arguments.

The proof of Theorem 2 is one such case. It relies on the following intermediate
result, entirely self-contained in the paper.

Theorem 3 ([2], Thm. 1.4). There is 6 > 0 such that, for any n > 1 and any
three classes Cy,Ca,C3 of G = Alt(n) with |C;| > |G|'~°, we have C1Cy D Cs.

To give a little taste of the arguments involved, let us see a baby example.
Suppose we want to build elements «; € C; C Sym(10) such that ajas = asg,
where C is the class of elements made of a 4-cycle and a 6-cycle, and Cy = C3 is
the class of 10-cycles.

First, we might try and manipulate the cycles in order to simplify the problem,
subdividing it into more manageable pieces. We confide for now in our ability to
walk back our simplifications in the future. For instance, we might take:

Cri (oo ) U G ) -0
Cot (oo oo ) — (oo aoo ) — -0
o ) S TR ) -0
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Solutions for the simplified problem on the right are immediate, by putting to-
gether (123)? = (132), (4)? = (4), and so on.

Now we need to go backwards. After a few attempts, we can figure out that,
using only the elements 3,4, 9,10, we may perform the following:

M: (123)(4)(56789)(10) 1(34)(910):  (1243)(5678109)
vyt (123)(4)(56789)(10) — (394)72(3104) : (12104)(567893)
Y172 ¢ (213)(4)(68579)(10) 71(4910)72(3104) : (21103)(684579)

One important thing to notice is that it does not really matter what the rest of the
strings of elements in the ~; look like: for any triple of v, = (¥;1 3)(4)(%i2 9)(10),
the manipulation above would work just as well. Moreover, since by hypothesis the
classes are large, the cycles are on average quite long, so there are many elements
to play with. In our example, even if the elements 3,4,9,10 have been moved
around, making some of them unusable, we might still use 2,8 to do the following:

Bi: (4312)(8109567) Br: (4312)(8109567)
Bo: (10412)(893567) —  [2(28): (10418935672)
BifBa: (11032)(845796) B1B2(28): (11038457962)

and solve at last the original problem.

The proof of Theorem 3 is simply a much more laborious version of the straight-
forward strategy above. In particular, it produces an explicit algorithm solving
the problem of finding triples of «; of given cycle structure satisfying ajas = a.
Then, using also results of Dvir [3], there is an algorithm to find ajasas = g for
any given g, yielding an elementary proof of Theorem 2. It is quite surprising that
a proof of these theorems was not found in the 1980s: the technology involved is
essentially the same.

The constant § and the lower bound on n for which Theorems 2-3 hold are not
explicitly stated in the paper, but they can be recovered easily. They are likely to
be outside the realm of practical applications, but also likely to be improvable to
that point, modulo a reasonable amount of effective work.

Most importantly, the proof suggests that problems of this sort on G = Alt(n)
can be solved by elementary means, and they can be turned into explicit algo-
rithms. The dream goal would be to determine whether C;Cs D C3 (or equiva-
lently whether aaa = ag has solutions with «; € C;) for any three given classes.
It might prove problematic to reach an exact answer in some extreme cases, for
instance when |Cs| is very close to |C1||Ca|, but Theorem 3 is still quite modest
in comparison to what may reasonably be hoped for.

For instance, can we constructively prove that C1Cy O C5 whenever |C1 ], |Ca| >
|G|*=% and |C3] > |G|'%, say? Or even more, can we do it for |C;| = |G|" with
|m —n2| + 6 < m3 <y + 12 — 57 Can we settle the case G = Alt(n) of Problem
19.12 of the Kourovka Notebook, namely, for every normal subset S C G and every
class C' C G the product SC' contains at least as many classes as S? Or can we
disprove any of the above by families of explicit counterexamples?
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Algorithms for matrix groups over infinite domains: methods
and applications

ALLA DETINKO
(joint work with Dane Flannery, Alexander Hulpke)

We present recent developments of our ongoing work on algorithms for practical
computation with linear groups over infinite domains [1]. Special consideration is
given to new techniques for groups over number fields based on the strong approx-
imation property and residual finiteness of the groups. We illustrate applications
of our algorithms to the solution of a variety of problems.

1. Strong approximation algorithms. Given a finitely generated group H C
SL(n,P), where P is a number field, our aim is to test whether H is (Zariski)
dense in SL(n), and if so, find the set Lynqaz(H) of congruence quotients of H
modulo all maximal ideals I of R; here R C P is the integral domain generated
by entries of elements of H. This requires a characterization of subgroups of
SL(n,p*). In the talk we consider a method based on classification of irreducible
subgroups of SL(n,p*), p > 2, k > 1, generated by transvections. An advantage of
the method is its computational efficiency. Applying this approach to a group H
containing a transvection t, we design practical algorithms both for testing density
of H and computing the set L4, (H). In contrast to the previously studied case
of matrix groups over rationals, dense groups over P # Q may not surject onto
SL(n, R/I) for infinitely many maximal ideals I of R. We provide a criterion of
congruence of H and SL(n, R) modulo all maximal I < R. As an application we
construct (countably many) free subgroups of SL(n, R) satisfying this property. A
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motivation of the construction is long-standing open problems on the subgroup
structure of SL(n, R) [4].

2. Exploiting the congruence subgroup property. As another application of
our methods, we develop an alternative approach to a long standing open problem
of (non)-freeness of Mobius groups G(m) = <[(1) T} , [7}1 ﬂ >, for rational
m = ¢ € (0,2). Our approach is based on the congruence subgroup property of
SL(2,Z[$]) [2]. This enables us to obtain a group-theoretical characterization of
G(m) in terms of the extended congruence subgroup cl(G(m)) containing G(m).
Non-freeness of G(m) can be decided via arithmeticity testing of G(m) in the
ambient group SL(2,Z[1]). The latter is based on algorithms constructing a pre-
sentation of SL(2,Z[1]) [3]. Our experimental output provides new examples of
non-free groups G(m), as well as a justification of arithmeticity of known non-free
groups G(m). We are not aware of any examples of thin (i.e. infinite index) groups

G(m).
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Algorithms for linear groups: where to?
EAMONN A. O’BRIEN

At the 1988 inaugural MFO meeting on Computational Group Theory, Joachim
Netibuser asked for an algorithm to decide whether a group G = (X) < GL(d, q)
contains SL(d, ¢). This prompted the “matrix group recognition” project, a re-
search program which generated much activity, drew on the outputs of many re-
searchers, and led to excellent outcomes. In this lecture, we reviewed the project,
identifying both its successes and outstanding theoretical and practical questions.

Neumann and Praeger [7] proposed, as a first step, using the classification by
Aschbacher [1] of maximal subgroups of classical groups. Exploiting this classi-
fication often offers reductions via homomorphisms onto smaller structures, and
provides the basis for a recursive algorithm which ultimately constructs compo-
sition factors. We can now decide computationally that a matrix group is in a
specific Aschbacher category. Membership of the “tensor product” and “tensor
induction” categories are not known to be decidable in polynomial time; Ryba’s
recent algorithm [8] relies on a solution to the “pure tensor” problem which is not
known to be solvable in polynomial time.
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The first step yielded COMPOSITIONTREE [2]. Its central components are:

e Algorithms to realise effectively the Aschbacher classification.

e Constructive recognition of composition factors. This relies on many con-
tributions, including those of Brooksbank, Kantor and Seress. Csaba
Schneider and Don Taylor provide the “rewriting” machinery to realise ex-
plicitly the isomorphisms between the standard copy and the user-supplied
copy of a simple group. An important base case is SL(2, ¢): in odd charac-
teristic, we lack a constructive recognition algorithm which does not rely
on a discrete log oracle.

e Verification of the construction by using short presentations for the com-
position factors.

This algorithm provides as output the equivalent of the Schreier-Sims data struc-

ture for permutation groups: we learn the order of the input matrix group G, its

composition factors, and can solve the constructive membership problem for G.
Holt, Leedham-Green and O’Brien [6] proved the following.

THEOREM: There is a Las Vegas polynomial-time algorithm that takes as input
G = (X) < GL(d,q) and, subject to the existence of a discrete log oracle for
GF(q") and an oracle to factorise integers of the form ¢t — 1 for 1 < i < d,
and to the availability of polynomial-time constructive recognition algorithms and
short presentations for the mon-abelian composition factors of G, it constructs a
composition tree for G.

Polynomial-time constructive recognition algorithms and short presentations
are available for most finite simple groups. However, we lack such algorithms
for defining characteristic absolutely irreducible representations of the following
exceptional groups: 2B2(228*1) 2Gy(q), 2Dy (2%), and 2Fy(22++1).

A finite group G has a characteristic series C of subgroups:

1< 0x(G) < 5%(G) < P(G) <G,
where O (G) is the soluble radical of G,
S*(G)/Ox(G) =Ty X ... X Ty,

where T; is non-abelian simple, ¢ : G —— Sym(k) is the representation of G
induced by conjugation on {T1,...,Tx}, and P(G) = ker ¢.

The second stage of the project is the development of the infrastructure to
apply the soluble radical model: a general framework for computation developed
by Cannon, Holt and their collaborators (see for example [4]). They refine C to
obtain

1=Nog< N1 <--<d N, =0,(G) <S*(G) < P(G) <G
where N;/N;_; is elementary abelian. This refinement can be constructed using
the output of COMPOSITIONTREE. The general paradigm to solve a problem in G
using this model is the following: solve the problem first in H := G/N,, and then,
successively, solve it in G/N;, fori =r—1,...,0.

We can often reduce the problem for H to its constituent almost simple groups.
We considered two cases where some of the requisite information is available. The
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maximal subgroups of almost simple classical groups are described in [3]. The
conjugacy problem for (quasi)simple groups is solved in [5] and some progress has
been made on this problem for finite exceptional groups, but as yet we lack a
solution for the almost simple groups.

Finally, we identified some hard problems where this model does not immedi-
ately seem applicable. These include constructing the normaliser of a subgroup,
the intersection of two subgroups, and the stabiliser of a subspace.
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Subnormalisers and picky elements
GUNTER MALLE

The subnormaliser of an element x of a group G was defined by Casolo in 1990
as Subg(x) := (Sg(x)), where Sg(z) := {g € G | (x) < (zx,g)}. It plays a central
role in a recent new conjecture by Moreté and Rizo on character correspondences
in finite groups. In our talk we presented some new basic properties of subnor-
malisers of p-elements x, where p is a prime, in finite groups, showing that such
subnormalisers control the fusion “around the element z” and which also give a
good handle to an efficient algorithmic method for their computation.

A special case is that of p-elements lying in a unique Sylow p-subgroup P of G,
which are then called picky. In this case Subg(z) is the normaliser Ng(P).

We reported on our determination of all picky p-elements in simple groups of Lie
type, as well as partial results on subnormalisers in these groups. The latter turn
out to be quite a bit more subtle and varied than in the ambient algebraic groups,
which we also considered. In all cases that we could consider, the conjecture of
Moreté and Rizo turned out to hold.
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Computing a smallest sized generating set in a finite group
DErREK HOLT
(joint work with Gareth Tracey)

For a finitely generated group G we define d(G) to be the size of a smallest gener-
ating set of G, that is

d(G) :=min{|X|: X C G, (X) =G}.

As well as being of theoretical interest, knowledge of a smallest sized set is useful
in many computations involving G, such as searching for homomorphisms from G
to another group. But until recently, computing d(G) in finite groups was thought
to be very difficult in general. There were, for example, implemented algorithms
that performed recursive calculations on members of the set of all subgroups of G.
For non-cyclic groups, we have the easily computed lower bound

d(G) = max(2,d(G/[G, G))),

and we can attempt to check whether d(G) = max(2,d(G/[G,G])) by choosing
a small sample of random subsets of G of size max(2,d(G/[G,G])) and testing
whether they generate GG. This approach works in a substantial proportion of
finite groups, including all nilpotent groups, in which the bound is known to be
exact. It works, for example, in 108 of the 150 small groups of order 900, but it is
not hard to find examples in which it fails:

1. G = A2°. We have d(G) = 3, but max(2,d(G/[G, G])) = 2.

2. G=p":2:=(z1,...,2p,t | 20 = [ws,2;] =t? = 1, t Loyt = z; '), for an odd
prime p and k > 2. We have d(p*: 2) = k + 1 but max(2,d(G/[G,G))) = 2.

Then in 2024, Lucchini and Thakkar [5] proposed a new method for computing
d(G) for a finite group G. Tts complexity is polynomial in |G| (O(|G|*3/°) generat-
ing tests, which are tests whether a given set of elements generates a group), which
is not ideal (polynomial in log|G| would be preferable for large groups), but it is
far more effective in practice than all previously proposed general algorithms.

The Lucchini—-Thakkar algorithm is deterministic. But there is an alternative
randomized version of the algorithm for subgroups of Sym(n) with expected run-
ning time polynomial in n. This is joint work with Gareth Tracey [2].

The first step of the (Lucchini-Thakkar) algorithm is to compute a chief

1=No<N;<---<N, =G

of G. This can be done in polynomial time in permutation groups and in solvable
groups defined by a PC presentation.

The algorithm proceeds by computing smallest sized generating sets of the
quotients G/Ny, for each k, starting with k¥ = u — 1, and using these to do the
same for G/Ny_1. More precisely, for k = u—1,u —2,...,2,1, we find elements
91,92, - - -, 94, of G that map onto smallest sized generating sets of G/Ny.

Since the top quotient G/N,_ is simple, it is either cyclic or non-abelian and
2-generated, and we easily find a smallest generating set by choosing random
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elements. The probability that two random elements generate a given finite nonabelian
simple group is at least 53/90, which is the probability in the simple group As.

For the inductive step of using a smallest generating set of G/Nj to find one
of G/Nj_1, we simplify notation by redefining G := G/Ny_1 and N := N /Ny_1.
So N is a minimal normal subgroup of GG, and we assume that we have already
computed d = d(G/N), and that we have found elements g1, ..., g4 € G such that
G/N = (g1N,...,gaN).

The algorithm makes use of a number of earlier results, including the following
crucial result of Gaschiitz [1], which is proved by a quick but ingenious counting
argument.

Proposition 1. Let N <G with N finite. If G/N = (1N, ...,g9aN) and G can be
generated by d elements, then there exist ny,...,ng € N with G = (gin1,..., gind)-

In our situation, it turns out that either d(G) = d, which is the case if and only
if G = (gin1,...,g4nq) for some n; € N, or d(G) =d + 1.

Assume, as above, that N is a minimal normal subgroup of the finite group G
with d(G/N) =d and G = (g1 N, ...,gaN). Then either N is elementary abelian
of order p® for some prime p and I > 0, or N is a direct product of isomorphic
nonabelian simple groups. For the elementary abelian case we have the following
result of Lucchini and Menegazzo [4].

Proposition 2. If N = (ey,ea,...,¢es) is abelian of order p' for a prime p then
either
(1) d(G) < d and either G = (g1,...,94), or there exist 1 < i < d and
1 <j </l suchthat G =(g1,...,9i-1,9i€j; Ji+1s---,9d); OT
(2) d(G)=d+1 and G = {(g1,...,94,x) for all 1 #x € N.

This result makes the case when N is abelian fast, and of complexity polynomial
in n for subgroups of Sym(n).

The nonabelian case is more difficult but, by the following result of Lucchini [3],
d(G) is again equal either to d(G/N) or to d(G/N) + 1.

Proposition 3. If N is nonabelian, then either

C1 there exist n1,...,ng € N with G = (gin1,...,gdand); or
C2 there exist ny,...,ng,ngr1 € N with G = (g1n1, ..., gdNd, Nd+1)-

The problem is to determine which of the two cases we are in, but assume for
the moment that we know that.

In the deterministic version, we search systematically through all d-tuples or
(d + 1)-tuples of elements of N until we find a generating set of G.

In our randomized version, we try randomly selected d- or (d + 1)-tuples of
elements of N until we find a generating set of G. We can prove that the expected
number of tuples that we need to test is polynomial in n.

We have been focusing on a single nonabelian chief factor of a group but, as the
examples below indicate, it turns out that Case C1 occurs for a large proportion of
the nonabelian chief factors of a group, so we proceed by assuming initially that we
are in Case C1, but eventually give up and systematically try all d-tuples if we fail
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to find a d-element generating set. The low proportion (logarithmically small) of
Case C1 chief factors enables to establish expected polynomial-time performance
for the whole group.

Here are some timings of our Magma implementation on a selection of examples.

Group | Degree | d(G) | Time

AL 95| 2 0.6

A2 100] 3 3

A0 | 500 3| 252

Ls(257 | 399| 2 75

Ls(2% | 506| 3| 236

3302 90 31 0.51

3%0:2 150 ol 8

((24)° : As) x (L3(2)%8) 456 31259, 77
(310:9) x (L3(2)%) | 436 | 11224, 34

The two timings given for the final two examples are for two different choices of
chief series. The first and slower time is for Magma’s default choice, which has
abelian chief factors as low down in the series as possible. The second faster time
is for a series with the nonabelian chief factors as low as possible. We wrote some
Magma code that computes such a series, which is slightly slower than the default,
but worthwhile in this context.

The reason for this is that the large number of generators that are necessary
for G arise from the abelian chief factors, and it is preferable that these are found
earlier in the computation (i.e. from the factors near the top of the series), because
that results in Case C2 not occurring in the nonabelian chief factors at the bottom
of the series.
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Finding G-submodules
CHARLES LEEDHAM-GREEN
(joint work with Eamonn O’Brien, with help from Derek Holt)

This work is a contribution to the matrix group recognition program [1], which
was started over 30 years ago, and has now given us the same kind of functionality
for matrix groups over finite fields that we have for permutation groups. We
can, in general, compute with reasonable facility, with matrices of degree up to
about 250 over fields of that may be rather large. This work has been the central
focus of some of the Oberwolfach workshops in computational group theory, and
is well represented at the present meeting. Some of the ongoing work is aimed at
improving existing algorithms to enable us to work in bigger matrix groups, but
the present paper has a different aim. There are some general problems that arise
in computation in finite groups, be they permutation or matrix groups, that are
intrinsically hard. That is to say, we see no hope of a polynomial time algorithm,
and our ambition is limited to relatively small examples. Two such problems
are the intersection problem - given generating sets for subgroup G and H of a
universal group U find a generating set for G N H - and the normaliser problem -
given generating sets for subgroups G and H of U, with G > H, find a generating
set for Ng(H). Our primary motive with the present paper is with advancing the
intersection problem.

It is essential when working on the intersection problem to concentrate on the
geometry, and to avoid black box algorithms as far as possible. As a result the
algorithm we are developing will be very complex, and we have first to deal with
many special cases. One such case, which is already solved, reduces to the following
problem. Given a set S of subspaces of the finite dimensional space V' over some
finite field, find a generating set for the subgroup G of GL(V') that preserves all the
subspaces in S [2]. It then seems desirable to solve the following problem. Given
a generating set for a subgroup G of GL(V), find the set of G-submodules of V.
However, consideration of the case when G is the trivial group already suggests
that this is the wrong problem. Rather we seek to find a set S of G-submodules of
V that is dense in the set of all G-submodules of V, in the sense that the subgroup
of GL(V) consisting of those elements that fix every element of S fixes every G-
submodule of V. Such a set S is sufficient for our needs, and may be taken to have
cardinality at most log, |G|, whereas the number of G-submodules of V' need not
be polynomially bounded.

If V' is semi-simple, not withstanding the case when G = (1), there is a simple
solution to the problem. The number of subspaces required is at most twice the
composition length of V.

If V has Loewy length 2, so that the Jacobson radical J(V) of V' is semi-simple,
matters are not so easy. One reduces at once to the case when V/J(V) and J(V) are
homogeneous. So let A and B be irreducible G-modules, and suppose that V/J(V)
is 300 ) A; and that J(V) is 3°7_, Bj, and that G-module isomorphisms from A to
each A; and from B to each B; are given. It is now easy to see that required set S
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of G submodules may be constructed as the union of three sets. One set consists of
subspaces that contain J(V'), one of subspaces that are contained in J(V'), and the
third consisting of subspaces X satisfying the two conditions (X +J(V))/J(V) = A
and J(V)/(X NnJ(V)) = B. Sets of the first two kinds are constructed as in the
semi-simple case. There are exponentially many subspaces of type three, and a
polynomially bounded set of such subspaces must be selected. This reduces to
finding suitable elements of Extg, (A, B). The details depend on whether A and B
are absolutely irreducible, and on whether A is isomorphic to B. Finding these
elements reduces to solving certain simultaneous quadratic equations over GF(p),
where p is the characteristic of the underlying field, in two sets of unknowns, the
equations being linear in either set separately.

We see no prospect of finding a reasonable algorithm for bad cases when V
has Loewy length 3. The critical case is when each of V/J(V) and J(V)/J?(V)
and J2(V) are all reducible and homogeneous. However the modest expectation
of our ability to compute intersections suggests that this will not give rise to a
bottle-neck.
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Summary of the Problem Session

A problem session was held on 5 June, 2025. The following problems were pre-
sented.

Melissa Lee.

Problem 1. Let p be a prime such that p — 2 is also prime. Does there exist a
faithful irreducible representation of A, over a field in any characteristic > 0
such that all elements of orders p and p — 2 act fixed-point-freely? It is easy to
show this is not the case if r > p.

Problem 2. Prove that if G < Sym(Q) has exactly two orbits of size %|Q| > 1, then
G has a derangement (i.e., a fixed-point-free element). This was first conjectured
by Ellis and Harper [1], who prove it when G is simple, nilpotent, has order at
most 1000, or acts primitively on an orbit, or if %|Q| is a prime power. Lee, Popiel
and Verret [2] have also verified the conjecture for || < 60 and 1|Q| a product of
distinct primes.
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Mima Stanojkovski.

Let p be an odd prime number and let w be a primitive element of IF,,. For the
following two groups assume the additional constraints that the exponent is p and
the nilpotency class is 2:

G1 = {(a,b,c,d,e | [¢,b],[d,b],[e, d], e, d], [d, c] = [b,qa],[e,b] = [c,a],e,a] = [d,a]*),
G2 = {(a,b,c,d,e | [d,a],[e, a],[c,b],[d,b], e, cl,[d,c] = [b,a],[e,b] = [c,al).

In [3] these groups are labeled 8.5.14 and 8.5.15, respectively, and their automor-
phism group sizes are computed and shown to be different. Is there a “simpler
invariant” for non-isomorphism testing of these groups? The Magma [1] code for
G1 and G5 is available at [2].

REFERENCES

[1] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language.
J. Symbolic Comput., 24(3-4):235-265, 1997.

2] E. A. O’Brien and M. Stanojkovski. Geometric invariants for finite p-groups.
https://github.com/eamonnaobrien/Invariants-class2-pgroups.

[3] M. Vaughan-Lee. The automorphisms of class two groups of prime exponent, 2015.
https://arxiv.org/abs/15601.00678.

Stephen Glasby.
Let n be a positive integer, and suppose that k € {1,2,...,n} where n/ged(n, k)
is odd. Let Fan denote the finite field of order 27, and Fj, = Fan \ {0} its

multiplicative group. If x,y € F2, satisfy (y + x)(ka + x’4k) =1, then is it true
that y = z=1 + 22" for some z € F},?

Joshua Maglione.
We write Gg p for the unipotent group scheme arising from an elliptic curve E
and a point P on the curve; see the author’s abstract and [2, Sec. 1.5].

a,beF,, E:y?>=2az°+ax+Db,

Let N, = |G4/~| which counts the number of isomorphism classes of the groups
arising from the above construction.

Conjecture 1 ([2, Conj. 6.9]). For all primes p > 5, we have

N, =p* +p—ged(p —2,3) + ged(p — 1,4).


https://arxiv.org/abs/2408.16064
https://arxiv.org/abs/2506.11396
https://github.com/eamonnaobrien/Invariants-class2-pgroups
https://arxiv.org/abs/1501.00678
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Conjecture 1 has been verified for primes up to 100. It would be of further
interest to know which pairs (F, P) yield an immediate descendant, namely, for
which pairs (E, P) does there exist the following central extension

11— Z/pZ — G — GEJD(FP) — 17

Here, G is a group with nilpotency class 3 and cardinality p'°. In [1], du Sautoy
and Vaughan-Lee show that Gg_p(F,), for E given by y*> = 2 —z and P = (0,0),
has a non-PORC! number of immediate descendants. It would be remarkable if
the sum of all the numbers of immediate descendants of all groups in G,, up to
isomorphism, yielded a PORC function.
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Bettina Eick.
Let A, B € GL(n,Z). Is it decidable if (A, B) is free on { A, B}? If yes, then devise
an algorithm for this purpose. Some notes:

e Successively listing words in the generators will eventually determine a
relation in the generators if there exists one. This approach will not ter-
minate if the group is free.

e [t is not known if this problem is decidable and there is a strong suspicion
that it may be undecidable in general. It would still be of interest to
consider this problem in special cases.

e Of course, this question would also be of interest for rings and fields other
than Z.

Tommy Hofmann.

For n > 3, there exists a polynomial time algorithm that given ¢ and n determines
a presentation of SL,, (Fy). This follows from a simplified version of the Steinberg
presentation due to Chiaselotti.

Question: Does there exists a polynomial time algorithm, that given ¢ finds a
presentation of SLa(Fy)?

Note that complexity condition implies that (i) the bit-length of these presenta-
tions must be polynomial in log(g); (ii) the generating set of such a presentation
is not allowed to contain elements of the form (¥ °.), where (w) = F. Condi-
tion (i) excludes the standard Steinberg presentation and condition (ii) excludes

presentations on “standard generators” by O’Brien-Leedham-Green.

1A function f from the set of primes to the integers is PORC if there exists an integer /N and
polynomials go, 91, ...,9n—1 such that f(p) = gx(p) where p =k (mod N).
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Klaus Lux.

Find a finite group G of minimal order, which is the nonsplit extension of a group
@ by a group N with all composition factors of Q and N being nonabelian. See
also the discussion in [1].

REFERENCES

[1] D. Madore, Ezamples of extensions of non-solvable groups by one another, MathOverflow,
https://mathoverflow.net/q/301784, June 2, 2018.

Leo Margolis.

We say that a finite group G has the nilpotent decomposition property, if for every
nilpotent element n € ZG in the integral group ring of G and every primitive
central idempotent e € QG in the rational group algebra of G the product ne lies
in ZG. We ask, if this property holds for groups of shape C}, x Cy» where p and ¢
are primes, k a natural number and the action of Cyx is not faithful. In particular,
a group of interest is given by C17 x Cg with the action by inversion. We refer to
[1] for the motivation of the problem and background.

REFERENCES
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Reporter: Saul D. Freedman
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