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ABsTrRACT. — The paper is devoted to the optimal control of a system with two time-scales,
in a regime when the limit equation is not of averaging type but, in the spirit of Wong—Zakai
principle, it is a stochastic differential equation for the slow variable, with noise emerging from
the fast one. It proves that it is possible to control the slow variable by acting only on the fast
scales. The concrete problem, of interest for climate research, is embedded into an abstract
framework in Hilbert spaces, with a stochastic process driven by an approximation of a given
noise. The principle established here is that the convergence of the uncontrolled problem is
sufficient for the convergence of both the optimal costs and the optimal controls. This target is
reached using Girsanov transform and the representation of the optimal cost and the optimal
controls using a Forward-Backward System. A challenge in this program is represented by the
generality considered here of unbounded control actions.

Keyworps. — two-scale system, climate model, optimal stochastic control, backward stochastic
differential equation.
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1. INTRODUCTION

In this paper, we are concerned with optimal control problems associated with stochastic
equations in abstract Hilbert spaces [6—8], and their convergence. More precisely, we
introduce a family of stochastic equations indexed by a parameter ¢ € (0, 1), driven by
a stochastic process obtained as the approximation of some given noise W via some
general approximation map I"®. Then, we solve a control problem for every ¢ € (0, 1)
and we are interested in understanding if the convergence of both the optimal costs and
the optimal controls holds true as ¢ — 0.

In order to answer this question, we develop a general framework for studying the
approximations of stochastic optimal control problems.

Apart from very natural technical assumptions, the only hypothesis on the approx-
imation maps I'? is the validity of some Wong—Zakai type of convergence. That is,
we assume that the solution of the uncontrolled equation driven by the approximation
of the noise ['*(W') converges in probability, as ¢ — 0, towards the solution of the
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uncontrolled equation driven by W (cf. Assumption 4.1). The key result of this work is
that the convergence of the uncontrolled problems is sufficient for the convergence of
both the optimal costs and the optimal controls (cf. Theorem 4.2)

In this paper, the above goal is achieved through the representation of the optimal cost
and the optimal controls using a Forward-Backward System of Stochastic Differential
Equations (FBSDEs5) (see e.g. the system (3.9) here). This technique has been widely
used in the last twenty-five years both in finite and in infinite-dimensional frameworks
(see for instance [28] or [12, Chapter 6] and references within). It has the advantage
to characterize not only the optimal state of a stochastic control problem but also the
optimal feedback law, without requiring the regularity of the value function. This is, in
extreme synthesis, the reason why we are able to obtain our main abstract convergence
result, see Theorem 4.2 and, in particular, the convergence of optimal controls stated
in it.

On the other hand, it should be stated from the beginning that the techniques we
employ rely heavily on non-trivial Girsanov transform methods, which in turn require
a specific structure of the controlled state equation. Roughly speaking, we must assume
that the control acts only in the directions of the state space influenced by the noise.
Moreover, the approximating operator I'® must act in the same way on both the noise
and the control. Nevertheless, several natural examples exhibit the required structure—
among them, the case in which both the noise and the control act on the boundary of a
domain (and on the same parts of the boundary), see [9], or the case of a state equation
with a delay in the state, see [17].

In this work, we consider the case in which the running cost is quadratic and coercive
with respect to the control variable, while exhibiting bounded behavior in the state
variable (cf. Assumption 2.5). This choice of allowing “unbounded” control actions
introduces significant technical challenges in the development of the FBSDE approach
to optimal control problems. First of all, it interacts with the necessity of adopting
a weak formulation for the control problem. Indeed, the final convergence argument
(cf. Section 2.4) works if uncontrolled state equations refer to the same stochastic
framework. Consequently, we are led to express the control problem in a weak form.
This implies that a rigorous formulation of the problem, along with the characterization
of the class of admissible controls, involves a change of probability that necessitates
the introduction of a localization argument (cf. Definition 2.7 and Proposition 2.11).

In addition, the Hamiltonian non-linearity v, introduced in Section 3.1, which drives
the backward equation in the FBSDE system (cf. equation (3.9)), is non-Lipschitz with
respect to its second variable, denoted by Z. To address this point, we adapt the
techniques developed in [3, 23], taking profit, in particular, of the specific properties of
BMO martingales (cf. Section 3.2 here and [22]). The appropriate use of this class of
martingales, along with the corresponding estimates, constitutes a crucial element in
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the proof of our main general result, cf. Theorem 4.2. In synthesis, the combination
of a coercive quadratic cost function and a non-Lipschitz Hamiltonian introduces
considerable complexities. These necessitate the use of advanced stochastic analysis
techniques, notably those concerning BMO martingales, to ensure the well-posedness
of the optimal control problems and their convergence, within the weak formulation
framework.

Our main motivation for studying general approximations of stochastic optimal
control problems comes from the desire of understanding the behavior of controlled
slow-fast systems of stochastic equations (X?, Q¢), depending on a small parameter
0 < ¢ < 1. Indeed, in certain prototypical situations, the slow component X ® of the
system converges as ¢ — 0 towards a limiting closed equation. Here, the term “closed”
refers to the fact that the equation for the limit X no longer depends on the fast variable.
In this case, we intend to study a control problem for the systems (X¢, Q¢) and for
the limit equation X . A natural question is whether the control problem for (X ¢, O¢)
can be solved at every € > 0, and whether or not the solutions of the control problems
converge as ¢ — 0 to a solution of the control problem for X . The relevance of this
problem becomes clear in view of the interpretation of slow-fast systems as general
models of climate-weather interaction (see next subsection for additional details). With
the lens of this interpretation, the convergence of control problems translates into the
following question: Is it possible to “control” the evolution of the climate by acting
only at meteorologic scales?

We believe this setting is robust enough to be amenable to further generalizations
of the control problems (1.3) and (1.4), cf. the discussion in Section 5.

1.1. A motivating example: Climatic model

Let us start with a motivating example. We consider a slow-fast system having the
following form:

dX® = AXSdt + b(X?)dt + o(X5)0%d1, 1 € [0.T],
X*(0) = xo,
(1.1) 1 1
deZ—ngdl—f—ngWt, t e [O, T],
0°(0) = 0.

Solutions of (1.1) are pairs of stochastic processes (X ¢, Q¢), where the “slow” compo-
nent (X ?) takes values in a Hilbert space K and the “fast” component (Q?) takes values
in a Hilbert space H. We denote by | - |x and | - | the norms on these spaces, and by
(-,-Yk and (-, -) x the inner products. For simplicity we assume xo € K to be given and
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deterministic. In the lines above, (W) is a cylindrical Wiener process on a complete
probability space (€2, ¥, P) with complete and right-continuous filtration (37 W), and
G is a Hilbert—Schmidt operator on the Hilbert space H with Gv = Zl ilei,v)ge;
forevery v € H, where Zl -1 )Liz < ooand (e;);eN is an orthonormal ba51s in H . Finally,
A : K — K is linear continuous, b : K — K is Lipschitz and 0 : K — £(H; K)
is of class Cbz. The maps b and o can be expressed in terms of their coordinates
b(x); = (b(x). f;)k and (0(x)em); = 07" (x) := (0/(x)em, f;)x. where (f})jen
is an orthonormal basis in K and j,m € N.

This kind of slow-fast systems has been extensively studied in pure and applied
mathematics. Among other important question, one is naturally led to ask what the
behavior of this system is in the limit of infinite separation of scales & — 0. Heuristically,
the fast oscillations of the process Q¢ prevent it from converging as a genuine function,
and the convergence of Q¢ usually holds in a space of distributions with respect to
time. On the other hand, the slow component X? can converge as a function but its
limiting dynamics should retain information about the statistics of Q°. When the limit
X = lim,—.o X solves a closed equation, we say that the limiting equation for Xisa
stochastic model reduction of (1.1).

The first rigorous examples of stochastic model reduction of finite-dimensional
equations are due to Kurtz [24] and Majda, Timofeyev, and Vanden Eijnden [26]. In
particular, the latter successfully gave a stochastic model reduction of the truncated
Barotropic Equations, identifying the slow variable X as a quantity evolving on
climatic time-scale and the slow variable Q° as a quantity evolving on meteorologic
time-scale. The small constant ¢ > 0 represents the ratio between the speed of the
evolution at these different time-scales. A similar interpretation was given in [2].

Under the previous assumptions on (1.1) and assuming K finite dimensional, in [2]
it is proved that, as & goes to zero, the sequence (X ¢) converges in probability in the
C(J0, T], K) norm towards the solution ()? ) of the “reduced” equation

{ dX, = AX,dt + b(X,)dt + o(X,)GdW,, t€]0,T],
1.2) ~
X(0) = xo,

where

[eS) d
(b(x)), := (b(x)), Z Z oM (x)a’™(x), xeK,ieN.

l\.)l'—‘

Notice that under the present assumptions, b:K—Kis Lipschitz.

It is wort noticing that, differently to “standard” two-scale stochastic models where
the fast evolution equation is obtained by a simple change of the time-scale with ratio
& (for the controlled version of such systems see, e.g. [1, 18, 19,21, 27]), here, the
oscillations induced by the noise in the fast equation are magnified by a factor 1/4/.
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As a matter of fact, the two classes of slow-fast models show a very different behavior in
the limit. Here, a new noise term and a correction drift appear in the reduced equation,
while in the other case, the reduced equation is obtained by “averaging” the original
coeflicients with respect to a suitable “invariant measure”.

It should also be pointed out that equations of the form (1.2) have already appeared
in the study of climate since the seminal work of Hasselmann [20] on stochastic climate
models. Indeed, Hasselmann proposes a general stochastic model to predict the evolution
of quantity on climatic time-scales, without referring to any particular specification
of the coefficients A, I;, o of (1.2). The deep aspect of Hasselmann proposal is that a
(small intensity) noise should be taken into account for a more correct description of
the system.

In a second moment, the general theory of stochastic climate models has been spe-
cialized to particular systems, possibly adding ad hoc assumptions on the coefficients.
To mention a few works in this direction, let us cite [16] on sea-surface temperature
anomalies and thermocline variability, [1 1] on an energy balance model addressing tem-
perature fluctuations due to rising carbon dioxide levels, [4] on magneto-hydrodynamics
models, [15] on random attractors, and [25] on climatic tipping points.

1.2. Controlled climatic model

We wish to study a controlled version of this model, with control acting at the meteoro-
logic scale. Namely, fixing a Hilbert space U and given a progressively measurable
control process u taking values in U, we consider the system

dXE* = AXEdt + b(XEM)dt + o(XE*) Q5" dt t €0, T),

X(O) = Xo,

(1.3) e 1 .u 1 1

dQ;y" = —=0;"dt + —-Gr(u)dt + -Gd Wy, t €]0,T],
& & &

Q(0) =0,

where r : U — H is a Lipschitz map. We also introduce a controlled reduced equation;
namely,

14 dX"=AX,dt +b(X,)dt +0(X*)Gr(uy)dt +0(X)GdW,;, 1€[0,T),
| X0)=x.

The control problems above come with the two cost functionals: J#, related to
system (1.3), and J, related to equation (1.4), which we assume both quadratic and
coercive in u. In detail, the costs are given by

T
J%xmu)::E[/al(X?ﬁqus+JKX%%]
0
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and r
J(xo,u) :=IE|:/ l(XS”,us)ds—i—h(X}‘w)]
0

so that the functionals above are well defined.

For the precise assumptions on / and /, as well as for the definition of the class
of admissible controls, we refer to Assumption 2.5, Definition 2.7, and Theorem 3.6
below.

Our main result goes as follows, see also Theorem 4.2 for a precise statement. We
prove the following:

(i)  The control problems (1.3) and (1.4) admit an optimal control, denoted, respec-
tively, as u® and .

(i) The optimal controls are square integrable.
(iii)) As e — 0, the optimal costs converge: J¢(xg, u?) — J(xo, ).
(iv) As e — 0, the optimal controls converge: E fOT lué¢ —1,12dt — 0.

It is perhaps worth noticing that although we start by approximating problems with
control acting at meteorological time-scale, we end up with a limit reduced problem
with control acting at climatic time-scale.

We hope that this work, devoted to a simplified model, may serve as a useful starting
point for examining the behavior of optimal controls in related, more realistic, contexts.

2. A GENERAL FRAMEWORK FOR THE APPROXIMATION OF STOCHASTIC OPTIMAL
CONTROL PROBLEMS

We adopt a weak formulation of the problem, which is particularly well suited to
our framework, as it enables the definition of all control problems on a common
stochastic basis. This approach, combined with the representation of both the optimal
cost and the optimal control through the solution of a backward stochastic differential
equation (BSDE), allows us to establish the convergence, as ¢ — 0, of the optimal
costs, J¢(xg, u®) — J(xo, 1), as well as the optimal controls, u®* — . It is important
to note that, due to the unbounded nature of the controls, the weak formulation cannot
be obtained via a straightforward application of the Girsanov transform. Instead, we
must employ a localization argument.

2.1. Settings

Let us reprise the notation of the previous motivating examples although precise working
assumptions in the more general framework will be stated later. We fix H, K, and
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U real separable Hilbert spaces (in our motivating model, H hosts the fast variables,
K should host the slow variables of the system, and U will describe the actions of
the control processes). Also recall that (W;);s¢ is an H-valued Wiener process on a
complete probability space (€2, ¥, P), with complete and right-continuous filtration
F)ez0-

Given an arbitrary Banach space E and p € [1, 00), let us denote by Lﬁ}loc(Q X
[0, T], E) the space of (.?f}W)—progressively measurable stochastic processes in

T
Ly (@ x[0.T]; E) := {<I> Q[0 T] > E / EAVIIRSS P'a'&}'
0

We will need also the spaces L3, (2 x [0, T]; E) of square integrable progressive
measurable processes ® : Q x [0, T] — E verifying

T
|D| = IE/ |®,|%dt < 00
0

2
L2, (Qx[0,TIE) *
and, for p € [1, o0], the spaces L, (2; C([0, T]; E)) of progressive measurable pro-
cesses Y with continuous paths in E, such that the norm

YLz @:c gy = | sup [Ys[e
Ly, (2;C([0,TLE)) |s€[0,T] s |L1’(Q)

is finite, with the subspace of predictable processes ¥ with continuous paths in E.
We finally denote by I the space of H -valued continuous Itd-semimartingales of
the form

t t
2.1 I; :/ d>sds+/ Wed W,
0 0

with @ € Ly *(Q2 x [0, T]; H) and W € L3 (2 x [0, T]; Lo(H)) where Ly(H)
stands for the space of Hilbert—Schmidt operators from H to H.
We introduce a class of functionals (I'¥).~ from I to the class of cadlag processes

Qx[0,T] - K
and we assume the following.

AssumpTION 2.1. Forevery I € I, T[I]is an (¥V),>0-adapted process and its law
only depends on the law of I.

For the sake of the presentation, let us point out that one could think of the family
of processes (I'?[1])s~0 as some adapted approximation of the noise /, e.g., adapted
piecewise linear interpolation, convolution, or colored-in-time approximation a la
Ornstein—Uhlenbeck.
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2.2. State equations

The first class of state equations represents evolution equations with smoothed noises;
namely,
dX; = AX;dt + b(X})dt + o(X])[* [GW],dt, te€(0,T],
(Se) )
X (0) = Xo.

The second class corresponds to stochastic equations with white-in-time noises:

© dX, = (AX, + b(X))) dt + o(X)GdW,, € (0,T],
X(O) = Xo.

ExampLE 2.2. The motivating example of the introduction can be rephrased within
this general framework by defining

1 [t _
2.2) re[r], := -/ e =y
€ Jo

t t
— 1/ e_(t_s)e_quSdS 4 l/ e_(t_S)s_l‘l-‘sdI/Vs.
€ Jo & Jo

Indeed, the cost functionals J¢ and J only involve the slow component of the solution
to systems (1.1) and (1.2), so (1.1) and (1.2) can be replaced by (S;) and (S) without
loss of useful information.

In both (S;) and (S), the coeflicients satisfy the following.

AssumptioN 2.3. We assume the following:

(Hp 1-A) A : D(A) — K is a (possibly unbounded) linear operator with domain
D(A) C K that generates a Cy-semigroup (e'4);>¢.

(Hp 1-b) b and b are Lipschitz maps from K to K and we fix a constant Ly > 0 such
that

(2.3) b(x) =b(W)|g < Ly lx—ylx. Vx.y€K:

and the same holds for b.

(Hp 1-0) o is a Lipschitz map from K to L(H ; K) and we fix a constant Ly > 0 such
that

2.4) icr(x) _U(y)|L(H;K) < Lslx—y|g, Vx,y€K.

The following existence and uniqueness result is a consequence of straightforward
fixed-point arguments.
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THeOREM 2.4. Under Assumption 2.3, for every € > 0, there exists an adapted process
X ¢ with continuous trajectories solving equation (S;) in a mild-pathwise sense, that is,
such that for P almost every w € Q, it holds for all t € [0, T'] that

Xe() = xo + /0 I (b(XE @) + 0 (X @)TFIG W]y () )ds.

Moreover, there exists a unique mild solution X of equation (S) that belongs to
L1,(2:C([0,T): K)) forall p > 1.

2.3. Controlled equations

Next, let us introduce the controlled equations we are going to study in this general
framework. Let X ®* solve

AXE = AXEVdr + b(XEY)d1

(2.5) + U(Xf’”)(FS[G(W+/O.r(Xf’“,us)ds)]) dt, te(0,T],
X(0) = xo, t
and let X" solve
dX¥ = (AX* + b(X"))dt + o(X")G dW,
(2.6) +o(X/)Gr(X; u)dt, te(0,T],
X(0) = xo.

Formally speaking, our purpose is to minimize the cost functionals (formally written)
over all the admissible controls u

T
JE(xg,u) = E[/ I(XE", us)ds + h(X;’”)],
.7 0

T
J(x0,u) :E[/(; l(X;‘,us)ds—Fh(X%)]

However, a precise formalization of the control problem will be given later. For the
time being, let us state our main assumptions on the functions r, /, and /.

AssumMPpTION 2.5. We assume the following:

(Hp 2-r) r : K x U — H is measurable such that for some constants M, L, > 0,
(2.8) Ir(x. )|y < M, (1+ |uly). Vx €K, ueU;
2.9) |r(x.u)—r(y.w)|,; < Lr(Ix —y|lx A1)(lulu+1). Vx,yeK, uel.

Moreover, we assume that there exists u, € U such that r(x,u,) = 0forall x € H.
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(Hp 2-1) [ : K xU — R is a measurable map such that for some constants My, my, ¢; >0,

(2.10) miluly — e < 1(x,u) < My(1+ |ulg), Vxe K, uel;
(2.11) |l(x,u)—l(y,u)| < Li|x —yl|k, Vx,ye K, uel.

Notice that the above implies that, for a suitable constant C; > 0,

(2.12) lxow)| < C(1+uly) VYxeK uel,

and hence we deduce that there exists a constant C > 0 such that

(2.13) [l(x.u) = I(y.u)| < C(lx —ylk A1) (1 + |uly) Vx.ye K, uel.
(Hp 2-h) h : K — R such that for some constant My, > 0,

(2.14) |h(x)| < My, Vx € K;
(2.15) |h(x) =h(y)| < Lalx —ylk. Vx.y € K.

REMARK 2.6. Notice that if (x, u) = ro(x)u with ro bounded and Lipschitz, then
assumption (Hp 2-r) holds with u, = 0.

2.4. Rigorous formalization of the control problem

We start by considering, for € > 0, the formal cost functional

T
Jé(xo,u) = E [/ (XY, us)ds + h(X;’")}.
0
If we assume the following boundedness condition on the controls
T
/ lus|3dt <c < oo, P almost surely,
0

then a straightforward application of Girsanov transform, together with the fact that the

law of the solution to equations (S;) does not depend on the specific stochastic basis,
yields

T
J(xg,u) = E[ST(r(Xe,u))(/O (X5, ug)ds + h(X?))],

where &;(r(X¢,u)) := exp{fot r(X& us)dWs — %fot |r(XE,us)|? ds} and, we recall,
(X®) solves the uncontrolled evolution equation (S;).
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However, while the condition u € L%V(Q x [0, T]; U) is necessary due to the
quadratic dependence of the running cost / on the control variable u (see Assump-
tion (2.10)), the additional requirement

T
/ el di < e
0

appears excessively restrictive in this setting. In fact, optimal controls within the
space L%V (2 x [0, T]; U) are not necessarily expected to satisfy such a bound. This is
illustrated, for instance, by the form of the optimal feedback control # in Example 3.3.

For this reason, we do not impose the condition of P-essential boundedness on the
L?([0, T]; U) norm of the control trajectories. This choice, along with our adoption of
a weak probabilistic formulation of the control problem, introduces several technical
challenges.

In particular, even the characterization of the class of admissible controls becomes
non-trivial. We now introduce the following definition, which we consider to be a
natural one.

DEeFINITION 2.7. For every u € L%V"OC(Q x [0, T]; U), we set the following.

(1) Let z,, n € N, be a sequence of stopping times defined by

t
7, := inf {t >0 :/ lus|z ds > n}-
0

(2) Let u, be such that r(x,u,) = 0 for every x € H (see (Hp 2-r) in Assumption
2.5) and let u™ denote the control

uy = Uslo<s<tyaT) + UsligaT<s<1}, 5 €[0,T].

(3) Let &;(r(X?®,u™)) be the exponential martingale

& (r(X®,u")) :=exp {/0

We define the space of admissible controls UZ, as the space:

t

1 t
ey aw =3 [ o u?)!zds}.
0

T A"
L= {u € L3, (Q2x[0,T];U) : sup ]E(ST(r(Xg,u"))/ lus|? ds) < oo}.
neN 0

Notice that UZ,, in the definition above, may in principle depend on xo.
ReMARrK 2.8. Notice that, in view of the fact that r(x, u,) = 0, we have

Er(r(X®,u")) = Erpen (r(X®,u")) = Epaen (r(X*,u)).
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ReMaRrk 2.9. The sequencen — E (&7 (r(X?®,u")) fTM |us |%] ds) is non-decreasing

in n. Indeed, if m < n, we have 7, < 7, almost surely, and therefore

T AT"
E(@T(r(Xs,u”))/ us|3 ds)
0
T AT
= E(ETMn (r(Xs,u"))/ |Hs|%] dS)
0
T AT
> E(sT o) [l ds)
0
T AT
E( (ngn (r(xe, n))/ |”S|Uds} rm/\T))
0
TAcm
]E(g .[m I"(AX“3 n))/ |Ms|%] dS)
0
T AT
= e (B (sraeroctam) [l asl7 g ) )
0

T AT™
=E(8T(r(Xg,um))/O lus|3 ds).

Thus, if u € U, then there exists finitely the limit

T At
lim IE(E;T(r(XS,u”))/ us|3 ds) e R.
0

n——+o0o

REMARK 2.10. To further justify the choice of the class UE; of admissible controls,
recall that if we define d P"* := &7 aen (r(X®,u"))d P and W” =W;— fo r(Xg,ul)ds,
then (X ) satisfies (2.5) with (W) replaced by the P Wiener process (W,?);>0. Namely,

dXE = AXEdt + b(XE")dt

+ a(Xf)(FS[G (W" + /.r(Xf,us)ds)]) dt, te(0,T],
0 t

X?(0) = xo,

and E(E7 aen (r (X &, u™)) fTM |us|?, ds) coincides with EF” (fT/\r us|3, ds) and

n, oTAT?
it seems natural to ask that sup, EP (fo " ug |7, ds) < oo.

We are eventually ready to rigorously introduce our cost functional J¢. Namely, we
set for any u € UL,

(2.16)  J®(xo,u) := hm E[ST (r(x®,u" (/ (XS, u s)ds—{—h(XT))]

Such functional is well defined; indeed, we can prove the following result.
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ProposiTioN 2.11. For any u € UZ,, the cost functional J®(xo,u) given in (2.16) is
well defined.

Proor. We show that E(&7 (r (X%, u™)) fo [(XE,u?)ds) is a (real-valued) Cauchy
sequence. Let m > n. By the martingale property of (&;(r(X?,u))); and (2.12), we
have

T
2.17) ‘IE(E;T(r(XE,um))/O I(Xf,u;")ds) (8T (r(X%u /l( ?)ds)

T Aty
E(STMm(r(Xs,u))/O I(XE, u s)ds)
T

+E(87,\,m(r(X8,u))/T
T Aty
—IE](STM”(r(Xs,u))/(;

T
—E(ETArn(r(Xg,u))/ (X5, ux) ds)

T Aty

T
_ 'E(E;Tmm (r(X®.u)) / 1(X2 ) ds)

T Aty

~E (8“," (r(X®,u)) /

T Aty
T Atm
< IE(E:TMm(r(Xs,u))/ l(Xf,us)ds)‘
T Aty

+ TC[(I + |H*|%])(E(8TAI,, (r(XS’ u))l{‘(n<T})
+ E(E7am,, (r (X5 w)) Iz, <1))-

We start from the last two terms. It holds, by the Markov inequality, that

E(ST/\-,;” (V(XE, u))I{,n<T}) (ST/\rn (F(X M)) T/\Tn [t |2 dszn})
1 T Aty
< ’—Z]E(STMn(r(XE,u))/ |us|3 ds),
0

and the same holds for E(&7 a,, (r (X*,u)) Iz, <7})- In particular, since u € Uyq, both
terms go to zero as n, m — 0o.

(XS, ull) ds)

l(Xf,us)ds)

T

I(XE uy) ds)

Regarding the first term, we notice that it is smaller than

E(ST/\‘L'm (I‘(XS, u)) /

|us|%] ds)
T Aty

T At T Aty
= ]E(é:mm (r(X®,uw)) / lus|? ds) — IE(STM,, (r(X®,u) / lus|? ds).
0 0

T At



F. FLANDOLI, G. GUATTERI, U. PAPPALETTERA AND G. TESSITORE 48

Since u € UE,, the sequence (E(E7aq, (r(X®, u)) fOTM” |us|%] ds)), is a Cauchy
sequence, see also Remark 2.9. Therefore, the difference above as well converges to
zeroas n,m — 0.

In a similar way, we show that E(E7 (r (X®,u"))h(X7)) is a Cauchy sequence. m

We can define the admissible controls U¢ and the cost functional of the limit control
problem (2.6) in a similar way.

. BSDE REPRESENTATION OF THE VALUE FUNCTION AND OF THE OPTIMAL CONTROL

3.1. Hamiltonian function associated with the cost functional

We introduce the Hamiltonian function :

Yv:KxH" >R, ¥(xz):= 1161{] {I(x.u) —(Z,r(x,u))},

where (z, r(x,u)) denotes the duality between H and H *. Thanks to Assumptions 2.5,
we have the following.

CoroLLARY 3.1. The function  has the following properties (for suitable constants
Mv, and L,/,).‘

(3.1 [¥(x,2)| <My (1 + |z]3+) VxeK, VzeH
(B2) [Y(x.2)—¥(x.2")| <Ly (1+|zlg=+|2'|p*)|z—2'|u* Yx€K, Vz,2/ e H",
(3.3) |1ﬁ(x’,z)—¢(x,z)|5L,,,(1+|Z|12L1*)(|x—x’|1</\1) Vx,x'eK, VzeH".

Proor. By (2.12) and (2.8), we easily get that
Y(x,z) < I(x.ue) — (2, r(xun)) < Cr(1+ Juslg).

On the other hand, there exists a finite constant ¢ such that, for every u satisfying
luly = c(1 + |z|g*), it holds that, recalling that m; > 0,

I(x,u) = (z.r(x,w)) = —c; + mylulyy — My |z|g= (1 + |uly) =0,
while for u satisfying |u|y < c¢(1 + |z|g~*), we have

I(x,u) — (z.r(x,u)) = —c; + mylull — Me|z|g= (1 + |ulv)
> —(c1 + My + My)(1+ |z]3+).

Hence, we deduce that there exists a constant My, such that

(W (x,2)] < My (14 |23+).
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Proceeding as above, we notice that
[(x,u)— (Z,r(x,u)) > —c;+mylull — M, |z| g+ (1+uly) = 1(x.u.) — (z,r(x,u*))
whenever |u| > ¢(1 + |z|) for a suitable constant c. Thus,

Y(x,z) = {l(x,u)—(z,r(x,u))}.

inf
uel, |u|<c(1+]z])

Next, the difference |y (x, z) — ¥ (x, z’)| is controlled from above with
(1(x,u) = (z.r(x, )
(G u) = (2 r(x, u)))‘

< sup |z —2'|g*
luly <c(1+|z|g*+|z/| r*)

< M, + M)(1+ |zl + ||z — 2 |are
< Ly (1+ lzlae + 12 1+) |z — 2/l

inf
[uly <c(I+|z|g*+|z/| g*)

— inf
luly <c(U+1z| g+ +1z/| g *)

r(x,u)}

Finally, in view of (2.9) and (2.13), the difference | (x, z) — ¥ (x/, z)| is controlled
from above with

. _ _ . / _ /
|u|Usc1<111fL|z|H*) (o) =z r(x.0) |u|Uscl<lllfr|z|H*) () = {z.r(x ’u)))|
< sup [1(x,u) = 1(x" u)| + sup |z a | r (x,u) — r (X" u)|

luly <c(1+|z|g=*) [uly <c(1+|z]g=)
<2cCi(|x —x'lg A 1)(1 + |Z|H*)2 +cLy|zlg= (1 + |z|m+)(Jx — x|k A 1)
< Ly(1+ |z15+) (Ix = x'|g A 1).

In the following, we assume that the infimum of the definition of ¥ is indeed achieved.

AsSUMPTION 3.2. There exists a measurable function u(x,z) : K x H* — U such
that

(D) ¥(x,2) = infyeyl(x,u) = (z,r(x,u))} = I(x,u(x, 2)) = (2,7 (x, u(x, 2)));

(2) there exists a constant Ly > 0, such that

(3.4) |g(x,z) —g(x’,z’)|U < Ll[|z —Z|g + (1 + |Z|1-1*)(1 A x —x’|K)]
Vx,x' e K, Vz,z/ ¢ H*.
ExampLE 3.3. Assume that U = H and let /(x,u) := lo(x) + |u|% and r(x,u) :=

ro(x)u with ly and ry bounded continuous functions K — R and K — £(H ), respec-
tively. In this case, if one identifies H* with H by the canonical Riesz isomorphism,
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one gets

V(e.2) = o) — glro() 2 and u(x.2) = Jro(0)"z.

Thus, Assumptions 3.2 are verified.

3.2. BMO martingales

For the reader’s convenience and in order to fix the notation, we report here a few basic
facts on BMO martingales, following [3,22].

Let T € (0, 00) be given. A continuous (€2, (¥7)¢[o,7], P) local martingale is a
BMO, martingale on the time interval [0, T'] if

1/2
(ot = w2 17) g

I/ZH

| M ||smo, := sup
teT

sup
teT

E((M)r = (M)e|52) | <00

where 7 in the supremum varies in the class 7 of all stopping times satisfying t < T'
almost surely. If (W) is a process in L%V’IOC(Q x [0, T]; H*) and M; = fot Wd W;, then

T
IE(/ |\Ds|%,*ds’37,)
T

whenever the right-hand side is finite.

(3.5) M |30, = sup
€T

’

Le2(Q)

Moreover, again in the particular case M; = fé W,d Ws, by [22, p. 26] (see also
[3, formula (13), p. 831]), one has that for all p > 1,
such that

there exists a finite constant ¢(p)

T )4
(3.6) E(/O I\Psliy*ds) <c(p)IMIz0,-

Finally, the exponential martingale

t 1 t
&), :=exp (/ Wed W, — —/ |\Ifs|1211*ds)
0 2 Jo

is uniformly integrable and, by [3, formula (6), p. 824], there exists ¢* > 1, depending
only on ||M ||gmo,. such that for all ¢ € (1, ¢*), there is a suitable finite constant
C(q, || M |lBmo,) such that for every stopping time v < T, it holds that

3.7 E(E(M)7]F:) = C(q. M [lBmo,) € (M)
In particular, taking T = 0, one gets

(3.8) E(6(M)%) < C(q. | M|lsmos,)-
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3.3. BSDE representation
We are in the position to prove the following.
THEOREM 3.4. Under Assumptions 2.3 and 2.5, there exists a unique triple of stochas-
tic processes (X®,Y?, Z%) adapted to the filtration (f(’VtW)ze[o,T] such that X°® has

continuous trajectories, Y® € Ly (Q2: C([0, T];R)), Z¢ € L%V(Q x[0,T]; H*), and
(XE,Y%, Z%) is a solution to the following system:

%Xf = (AX; + b(X])) + o(X))(T°[GW]), 1€ (0T,

(3.9 —dYf =y(XE, Z8dt — ZEdW,
X6(0) = xo. YE=h(X5).

Moreover,

<k
BMO,

’

(310) sup |Y |L°°(Q ;C([0,T;R)) =+ H Z dW
t€[0,T]

where k > 0 is independent of ¢.
Proor. By Theorem 2.4, the forward equation has a unique solution
X e Ly (Q:C([0.T]: K)).

Following [3, Proposition 11], see also [23, Proposition 2.1], there exists a unique
(Y?, Z#), such that

(3.11) sup Y7l so(icqo.riry) < Mp + My T,
t€l0,T]

T
(3.12) E/ |Z8|%. dt < C
0

for a constant C > 0 depends only on My, My, T'.

Let us check the uniform bound for the BMO, norm of the martingale term in
(3.10). We follow again [3].

We apply the Itd formula to ¢ (Y; + m), where m is chosen so that Y, + m > 0
and ¢(x) = (€2* —2Cx —1)/(2C?), so that for all x > 0, ¢’(x) > 0 and 1¢" (x) —
C¢’(x) = 1 are satisfied, for some C > M, given in Corollary 3.1. Then, taking the
conditional expectation with respect to ¥, for any stopping time T < 7', we have the
following (we avoid the subscript in the norms for simplicity):

1 T
o0t +my+ 387 ([ e mlzif as)

T
=E¥ ¢(Yr +m) + E¥* (/ &' (Ys +m)y(Zs) ds).
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Thus, forevery 7 < T,

T
B(Ye+m) + SET (/ |Zs|2ds)
’ T
_EFip(Yy + m) + B ( f & (¥ + my(Zy) - C|Z,] ds)
T
<EF ¢(Yr + m) + MyE” (/ @' (Ys + m) ds). -

THEOREM 3.5. Under Assumptions 2.3, 2.5, and 3.2, we have that

(3.13) Yy = inf J°(u) = J*(u(X®, Z°)).

ueUsy
where (X%,Y%, Z?) is given in Theorem 3.4 and u is defined in Assumption 3.2.

Proor. We need to get a fundamental relation for a generic u € U, or at least for its
approximations.
Proceeding as in Remark 2.10, we apply Girsanov transformation to ensure that

t
W) = —/ r(XZul)ds + W,
0

5o Us
is a cylindrical Wiener process under the probability d P” := &7 (r(X?,u"))dP. Thus,
—dYf =y (X;.Z;)dt — Z; dW; = [W(Xs, Z7) - Zr(X{, u’t’)] dt —Z; dw/.

Adding and subtracting the current cost and integrating between 0 and 7', we have
Y$ :]E(ST(r(XE, u”))/o
where J " (u) := E[&7 (r(X?, u”))(fOT(l(Xf, ui))ds + h(X53))].

The definition of y yields J"-*(u) > Y for every n and consequently, by definition
(2.16),

T
[w(X?, Z8)— ZEr(XE,ul) —1(XE,u)] dt) +J5" (),

(3.14) Jé(u) = lim J*"(u) > Yy Vue U,
n—o00

Now we define u®(s) = u(X?, Z¢), where u is given in Assumption 3.2 and (X?, Z?)
is the solution of (3.9). From Assumption 3.2, we have that

(3.15) u(s)| < Cu(1 +|Z3])

for some constant Cj;.
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We have to show that u® € U, and Y§ = J¢(u®). To this purpose, we define (see
Definition 2.7) the following:

() T =inf{l0 <t <T: [ |ub(s)|?ds > n},
(2) u"(s) = u®(s)10,7,1(s) + u* Iz, 11(5),
(3) W/ i — [o r(XE, u"(s))ds + W,.

The backward component in (3.9) can be rewritten as
—dYf = [V(X{. Z9) — Zir (X7 " (1)) |dt — Z5d W, t €[0.T],
Y7 = h(X7).
Thus, recalling point (1) in Assumption 3.2,
(3.16) Yy =E(67(r(X®, u"h(X7)))
+ E(ST (r(x*.a") /0 ") ds).
By (2.8) and (3.15), we have, P-a.s.,
|r(XE a"(s))| < Mr(1 4 Cu) + M, Cy|ZE].

Thus, by (3.10),

< 40
BMO»

sup
e>0,neN

/' r* (X5 " (s))d Wy
0

and finally the above estimate together with (3.8) yields that there exists ¢ > 1 such that

(3.17) sup E(&r(r(X&, u")?) < cc.

£>0,neN

Again, by (3.10) and (3.6), we obtain that, for every p > 1,

T p/2
(3.18) supIE(/ |Z;‘|2ds) < 00.
0

e>0

Summing up, we have that lim, , 1 oo 4 = u§ = u(X?, Z{) forall s € [0, T], P-a.s.
Moreover, for all p > 1,

T p/2 T )
E( [ |ﬁ;’|2ds) sc(p)TP/2|u*|P+c<p)E( / (X2, Z5)| ds)
1] 1]

o T p/2
C—i—C]E(/ |z;‘|2ds) < 4o00.
0

p/2

IA
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In view of (3.17) and of the above estimate, the sequence

T
(ST(r(XE,ﬁ”))/O |ag|2ds)

. . T - T
turns out to be uniformly integrable. Moreover, [, |i} |?ds — Jo 1us |2 ds P-a.s. and

T

T
& (r(X®,u™)) —>exp{/ r(XE, ub)dw; —l/ Ir(X¢,ub)| ds} P-a.s.
0 0

Thus, the limit lim, o0 E(E7 (r (X%, u™)) fOT €| ds) exists in R and we can conclude
that u$ € UL,
In a similar way, taking into account (2.12) and (2.14), we get that both

T
(€r (F(X®. @")h(XE))), and (sT(r(xs,an)) /0 [(XE 7 (s)) d )

are uniformly integrable and P-a.s. converging sequences of random variables. Letting
n — oo in (3.16), we have that

Yy = hm E[ST (r(x®,u™) (/ I(X¢, "")ds—i—h(XT))] = J(u)
and the claim follows. ]

Following exactly the same argument as in the proof of Theorem 3.5, we have the
following result, whose proof is omitted for the sake of brevity.

TuaeOREM 3.6. Under Assumptions 2.3, 2.5, and 3.2, there exists a unique solution
(X Y Z)wzthXeL (2;C(J0,T]; K)), YelL? w (2 C([0, T]; R)), Zel? w (82
[0,T]; H*) to

dX, = (AX, + b(X,)) dt +o(X)GdW,. 1€ (0,T],
(3.19) —dY, =y (X, Z))dt — Z, dW,,

X(0) =xo, Yr =h(X7).

Moreover,

(3.20) sup |Yt|L°°(Q ;C([0,T;R)) T+ H/ Z,d Wy < k.
t€[0,T] BMO,

Finally, if

(3.21) iy = u(X,. Zy),

where u is given in Assumption 3.2, then, Ui is admissible (that is, belongs to U,q) and

Yo = inf J(u) = J@),
ue‘uad
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where
T

J(u) = lim E[@T(r()?,ﬁ"))(h()?T)+/
0

n—>oo

(I(Xy.0")) ds):|

and T, = inf{0 <t < T : [y [a(s)? ds > n}, 47 (s) = 01(s)I19.3,1(5) + u* Iz, .77 (5).

4. LIMIT PROBLEM AND CONVERGENCE

We have now developed all the necessary tools to address the convergence of the control
problems. Naturally, such convergence can only be expected when the approximating
maps (I'?) provide sufficiently accurate representations of the noise. Remarkably, it
turns out that it is sufficient to assume the convergence of the forward equation alone—
no additional assumptions on the control problems themselves are required. More
precisely, let us assume the following natural condition.

AssuMPTION 4.1. Let X and X be the solutions to (3.9) and (3.19), respectively. We
assume that for every t € [0, T], X; — X, in probability as ¢ — 0.

We are now in a position to prove our main convergence result.
TuaeoreM 4.2. Under Assumptions 2.3, 2.5, 3.2, and 4.1, we have that

“.1) lim inf J%u) = inf J(u).

e—0 ue‘ufd ue‘uad

Moreover, if u® and 1 are the optimal admissible controls introduced in the previous
section, then as we know J®(u®) = infyey,, J°(u); J (1) = infyeu,, J (u); moreover,

T
4.2) 8113%1[«:/0 lué —iig|*ds = 0.
Proor. Let us consider the equation for the difference Y, — Y = )7,8. It solves
@3) T =heh) ~hEn)+ [ (pezh -y Zo)ds + [ Zeaw.,
t t
where Z ¢ = Z{ — Z;. Equation (4.3) can be rewritten as
~ A~ T A~ A A~
= bt = (B + [ (0 20— p(Re20) ds
t

T - T~
+/ K§Z§ds+/ Zedw,,
t

t
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where

Y (x,2)—¥(x,2) A ’
~ VLIZVRI ) (2 — 7)) if |z —Z/| #0,
K{=1v(X;,Z;, Zs) and v(x,z,2') = T ) if] 7
0 if|z—2'| =0.

Notice that, by (3.2), K& < Ly (1 + |Z¢| + | Z,|): thus, in view of by (3.10) and (3.20),

sup / Kid W < +o0.

>0 0 BMO>
Moreover, if f := ¥ (X¢, 25) — 1//()?s, Zs), then in view of Corollary 3.1,
(4.4) 51 < Ly (L1 Z6P) (1A 1X] — Kol).-
By (3.6) and (3.20) applied to fo 25 d Wi, we have that

T q
4.5) supIEl(/ |fsg|ds) < 400, forallg > 1.
>0 0

Thus, Assumption A3 in [3] is verified for any p > 1. Consequently, we can apply
estimate (7) in [3] with p* = 2p

o 1p T _ 5 p/2\1/p
4.6) (E sup |Yf|P) +(E(/ | Z¢| dt) )
0

t€f0,T]

T 2p1/2
< C{[E(ih(X?)—h()?r)l)z”]”z” + [IE(/O |f;|ds) ,,] ,,}

3p/21/3
X (1+ []E(/TleFds) ’ } p)
’ T 2pq1/2p
f5{[E(|h<x;>—ho?T)|)2"]‘/2"+[E( / | fsqu) ] }

where C depends on || fo K:d Ws|lgmo,, see again [3].

Moreover, recalling that fOT |Zs|2ds € L forall g > 1, we readily deduce that the
sequence ( fOT | /£ ds)?? is uniformly integrable. To prove that E ( fOT | fE|ds)*P — 0,
it is therefore enough to prove that fOT | ££]ds converges to 0 in probability.

We start by showing that, for almostevery s €[0, T'], E| £7|—0. By (4.4), itis enough
to show that E(1 + | Z|*)(1 A |XE— X,|) = 0. Indeed, in view of Assumption 4.1,
1+ |2s|2)(1 A |X§—)?S |) converges to 0 in probability and is dominated by (1 + |ZS|2).

Then, again by dominated convergence,

T
IE/ | flds — 0
0

and consequently, fOT | £Z|ds — 0 in probability.
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In the same way, taking into account assumption (Hp 2-h), we get that
S N2
E(|h(X§) — h(Xr)])™” — 0.
Thus, by (4.6),
_ T _ r/2
4.7) limE sup |[YE? =0 lim ]E(/ |Z¢|? dt) =0
£—0 t€l0,T] e—>0 0

and we deduce (4.1).
It remains to prove (4.2). Recalling that u§ = u(X?, Z¢) and 11, = u(Xy, Zy) by
(3.4), we have

T T
]E/ luf — 152 ds < LgE/ |ZE — Zs|*ds
0 B 0
T 5 S N2
+L§E/ (L+1Zs?) (1 A |XE — X,]) ds.
0

Then, (4.2) follows by Assumption (4.1) and relation (4.7) exactly as in the above
detailed proof that IE(fOT |fss|ds)21’ - 0. -

Remark 4.3. By [2, Theorem 2.2], our motivating example (1.1)—(1.2) satisfies
Assumptions 2.3 and 4.1 when K is a finite-dimensional Hilbert space. Therefore, our
Theorem 4.2 applies as soon as the cost functional satisfies Assumptions 2.5 and 3.2,
and we have the convergence of the optimal costs and the associated control problem
(1.3) towards those of (1.4).

5. EXAMPLES AND FURTHER DEVELOPMENTS
5.1. Wong—Zakai type approximations
Let us consider a simple finite-dimensional stochastic equation

(5.1 {th, =o0(X;)dB;, t€l0,T],

X(0) = xo,

where (B;);e[o,7]1s an R -valued standard Brownian motion, and o : R” — L(R?,R")

is a regular map. We define the usual [t6—Stratonovich correction map o, : R” —
L(R? x R?,R") by

o2 (x) (v, w) = Vi (o (x)v)(c(x)w), forallx € R", v,w € RY.

Following [5], we assume that o and o, are of class C > with bounded first, second,
and third derivative.
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Concerning the regularization of noise, let p : R — [0, +00) be a smooth function
o with compact support satisfying p(s) = 0, for s < 0 and ffoo p(s)ds = 1. For all
e > 0,let pe(s) := e Lp(e7Ls).

Given a continuous semimartingale / in the class I introduced in paragraph 2.1, let

I8 = (p° x I), and T®[I], = I¥; in particular, Bf = (o® ), and I'*[B], = B¢,

where I has been extended to O before 0 and after 7'. Notice that Assumption 2.1 is
satisfied due to the asymmetry of the mollifier p.

Concerning the control problem, let (1) ;e[0,7] € L%([O, T1;R™)andr, [, h satisfy
Assumption 2.5 with K = R” and U = R™. We consider the approximating controlled
equations

d X" = a(X;"E)FS[/ r(Xy,ug)ds + Bl,dt, tel0,T],

5.2) 0

X(0) = xo,
which can be rewritten as
di X} =0(X{")pe * r(X. W) dt + 0 (X,*)Bfdt, 1€l0.T],
{ X(0) = xo.

and the limit controlled equation
d: X} = Trloa(X)] + o (X)r(X{, u;)dt + o(X})dB;, t€]0,T],
{ X(0) = xo,
together with the cost functionals J¢ and J defined as in (2.7). In [5], it is shown that,
under the present assumptions, if X solves
{thf = o(X?)Bédt, 1€l0,T],

5.3
e X(0) = xo,

and X solves

(5.4) {dlft = Tr[o2(X)]dt +0(X)dB,. 1 €[0.T)

X(0) = xo,

then X¢ — X , P-a.s. in a suitable Holder norm and in particular X; — X ¢, P-a.s. for
allt > 0.
Thus, if Assumption 3.2 holds, we are in a condition to apply Theorem 4.2 and
conclude that
lim inf J%u) = inf J(u),
e=>0ucUs, u€Uag

where the definition of UZ; and of U,q is given in Section 2.4.
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Moreover, there exist optimal controls u® in UZ, and i in U,q such that
JEw®) = inf J%u) and J(@) = inf J(u).
ue‘uid ue‘uad

Finally,
T
limE/ lué —dis|* ds = 0.
0

e—>0

5.2. Quadratic fast-fast interaction

A possible extension of our results could take into account climatic systems with
fast-fast interaction at meteorologic scales, replacing (1.1) with

dX; = AX dt + b(X))dt +o(X])Q5dt, t€][0,T],
X#(0) = xo,
(5.5) 1 1
dQf = (0], )t — ~Qfdt + ~GdW,, t&[0.T]
0°(0) = 0.

In the equation above, g : H x H — H is a continuous bilinear map. For simplicity, we

suppose that K is finite dimensional. Hereafter, we shall implicitly assume conditions
on g guaranteeing the existence and uniqueness of solutions to (5.5) for a sufficient
class of noises W'.

Technically speaking, the results in [2, 26] do not cover the case of quadratic
self-interaction for the fast variable and therefore require ¢ = 0. In view of their
geophysical interpretation, assuming g = 0 is a restrictive modeling assumption (cf.
[26, equation (2.4)]) since most equations of geophysical fluid dynamics do have
quadratic non-linearities. These difficulties have been recently overcome in a series of
papers [10, 13, 14].

A stochastic model reduction of (5.5) is performed in [10], where convergence in
probability towards a reduced equation is proved. The reduced equation has the form

dX, = AX,dt + b(X,)dt + o(X)GdW, + o(X,)gdt, t€[0,T],
X(0) = xo,

where ¢ is the average of the fast-fast interaction with respect to the centered Gaussian
measure with covariance Q := %G* G; namely,

§= / 4w, w)N (0, 0)(dw).
H
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In view of the results of this paper, one can introduce the controlled fast-slow system
with quadratic fast-fast interaction

dXF" = AXEdr + b(XE")dt + o (XE") Q8 dr, reo. 1],
X(()):)CQ,

(5.6) &,u gU EU 1 &u 1 1

do;" =q(Q,", 0y )dt—th’ dt+EGr(u,)dt+EGth, [0, 7],
0(0)=0,

and the controlled reduced equation

dX" = AX*dt + b(X,)dt + o(X*)Gr(u;)dt
(5.7) +0(XGdW, +o(X*)gdt, t€[0,T],
X(0) = xo.
Convergence of the optimal control problems falls into our general theory by
considering the maps
re(1):= 0.

where Q is the unique solution of

1 1
dQ; = q(Q:. Qr)dt — ;Q,dz + gdlt.

The analogue of Theorem 4.2 follows.
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