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ABsTrRACT. — This paper establishes the Unique Continuation Property (UCP) for a suitably
overdetermined Magnetohydrodynamics (MHD) eigenvalue problem, which is equivalent to the
Kalman, finite-rank, controllability condition for the finite-dimensional unstable projection of
the linearized dynamic MHD problem. It is the “ignition key” to obtain uniform stabilization of
the dynamic non-linear MHD system near an unstable equilibrium solution, by means of finitely
many, interior, localized feedback controllers [Res. Math. Sci. 12 (2025), article no. 7]. The
proof of the UCP result uses a pointwise Carleman-type estimate for the Laplacian following the
approach that was introduced in [Nonlinear Anal. 71 (2009), 4967—4976] for the Navier—Stokes
equations and further extended in [Appl. Math. Optim. 84 (2021), 2099-2146] for the Boussinesq
system.
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1. INTRODUCTION, THE ROLE OF THE UNIQUE CONTINUATION IN UNIFORM
STABILIZATION, MAIN RESULTS, LITERATURE

1.1. Unique continuation properties (UCP) of overdetermined static problems: the
“ignition key” for uniform feedback stabilization

The dynamic MHD equations: After the initial work carried out by the Nobel laureate
Hannes Alfvén in 1970, magnetohydrodynamics (henceforth referred to as MHD) has
culminated as an emerging discipline in plasma physics. MHD refers to phenomena
arising in electrically conducting magnetic fluids. It is caused by the induction of current
in a conductive fluid flow due to a magnetic field and moreover by polarization of the
fluid and reciprocal changes in the magnetic field. MHD has been used extensively
in plasma confinement, liquid metal cooling of nuclear reactors and electromagnetic
casting (EMC). The system of MHD equations — below in (1.1) — consists of the Navier—
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Stokes equations of a viscous incompressible fluid flow suitably coupled by high-order
coupling with Maxwell-Ohm equations (of parabolic character) of an electromagnetic
field [2,25,26,33,34,36].

Uniform stabilization of fluids: Recent work by the authors has focused on the problem
of feedback stabilization (asymptotic turbulent suppression) of fluids such as Navier—
Stokes equations as well as Boussinesq systems, and MHD equations, on bounded
domains Q inRY, d = 2,3, by means of finite-dimensional, static, feedback controls.
These are either localized in the interior [14, 17,20] or else localized at the boundary
[16, 18]. More specifically, to illustrate, a 20-year-old open problem (introduced by A.
Fursikov around 2000 [10, 11]) as to whether the 3d-Navier—Stokes equation could be
stabilized by static, boundary-based localized feedback controllers which moreover are
finite dimensional was positively proved in [16]. Moreover, this reference established
minimal dimension. It required abandoning the usual Sobolev—Hilbert setting of the
literature in favor of a new Besov space setting with tight indices (“close” to L3(Q)
for d = 3).

Critical role of UCP: Following the strategy for feedback stabilization of parabolic
dynamics introduced in [27], and extensively used since in the literature, a first step
of the analysis consists in feedback stabilizing with an arbitrarily large decay rate, the
finite-dimensional unstable component of the full dynamics with static, state feedback
controls. The ability to do so requires the property of controllability of the finite-
dimensional unstable component, which in fact is equivalent to the needed ““spectrum
allocation property” [35]. Showing such controllability property (Kalman’s algebraic
rank condition) for PDE problems requires a fundamental UCP. Section 3 explains
how the present UCP of Theorem 1.2 is used to establish the needed Kaman algebraic
rank condition arising in the problem of uniform stabilization of the MHD system by
finite-dimensional interior, localized, static, feedback controllers. The corresponding
Kalman algebraic condition (in fact, for the adjoint problem, as usual) is given by
(3.19a). Establishing (3.19a) amounts to showing the following property. Let A; be an
unstable eigenvalue of the linear adjoint operator ;&; in (3.16), and let ®7;,..., ® ¢
be the corresponding eigenvectors, which are linearly independent on all of 2. Then
(3.19a) requires that <I>;‘1, e, <I>;‘ 0 remain linearly independent when restricted over
the (arbitrary) small interior subdomain w C 2. The proof of Theorem 3.1 shows that
this latter property amounts to proving the overdetermined eigenproblem (3.22) for
the operator A equivalently, in PDE form, the eigenvalue problem (3.23a—d) subject
to the overdetermined condition (3.23e) implies UCP (3.25). Numerous illustrations
from classical parabolic problems to fluid (Navier—Stokes, Boussinesq system) are
given in the extensive article [31], which employs UCP for fluids [28-30, 32]. Thus,
the mathematical focus of the present paper is to establish the required UCP of an
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eigenvalue problem for the MHD equations subject to an overdetermined condition.
Such UCP is the primary subject of the present paper. The proof (based on pointwise
Carleman-type estimate for the Laplacian) is a natural extension of those given in [29]
for the Navier—Stokes equations and in [32] for the Boussinesq system. As mentioned,
we refer to the paper [31] where the role of UCP in the case of parabolic dynamics is
extensively treated. The authors’ subsequent study of asymptotic turbulent suppression
of the MHD system first with localized interior control in Besov spaces is given in [20].
This is to be next followed by the localized boundary-type control case in Besov spaces.

1.2. Controlled dynamic MHD equations

As already noted, we wish to introduce the present unique continuation theorem in
the context of a uniform stabilization problem. Let, at first, {2 be an open connected
bounded domain in R?, d = 2, 3, with sufficiently smooth boundary I" = d2. More
specific requirements will be given below. Let w be an arbitrarily small open smooth
subset of the interior 2, w C €2, of positive measure. Let m denote the characteristic
function of w: m(w) = 1, m( \ w) = 0. We consider the following MHD equations
perturbed by forces f and g, and subject to the action of a pair u, v of interior localized
controls, to be described below, where Q = (0,00) x 2, X = (0,00) x I':

(1.1a)
ye—VvAy+(y- V)y‘FVJT-F%V(B -B)—(B-V)B =m(x)u(t,x)+ f(x)in Q,
(1.1b) B; +ncurlcurl B+ (y - V)B — (B - V)y = m(x)v(t,x)+g(x) in Q,

(1.1c) divy =0, divB =0 in Q,
(1.1d) y=0, B-n=0, (culB)xn=0 on X,
(1.1e) y(0,x) = yo, B(0,x) = By on .

‘We note the formula
curlcurl B = —-AB + VdivB

so that equation (1.1b) can be more conveniently rewritten as

(1.1b") B; —nAB + (y-V)B—(B-V)y =m(x)v(t,x) + g(x)

invoking div B = 0 in Q from (1.1c). Furthermore, we denote total pressure o in the

dynamic equation as o := 7w + %(B - B) and in the static case g, := 7, + %(Be - Be).
1.3. Stationary MHD equations

The following result represents our basic starting point. See [3].
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THeOREM 1.1. Consider the following steady-state MHD equations in 2:

(1.2a) —VAye + (ye - V)ye + Voe — (Be - V) B, = f(x) in€2,
(1.2b) —NABe + (e - V)Be — (Be - V)y. = g(x) in 2,
(1.2¢) divy, =0, divB, =0 in 2,
(1.2d) Ve=0, B.-n=0, (curlB,))xn=20 onT.

Let 1 < q < oo. Forany f,g € L4(Q), there exists a solution (not necessarily unique)
(Ve Be, 7o) € (W24 ()4 x (W>4(Q))? x W(Q), ¢ > d.

1.4. Translated MHD system

We return to Theorem 1.1 and choose an equilibrium triplet {y., B., 7.} to be kept
fixed throughout the analysis. Then, we translate by {y., p.} the original N-S problem
(1.1). Thus, we introduce new variables

(1.3a) Z=Y—Ye, B=B—B, p=0—0e
and obtain the translated problem given by
(1.3b) z; —vAz+(Ye-V)z+(z-V)ye+(z-V)z—(B.-V)B—(B-V)B,
—B-V)B+Vp=mu in(Q,
(1.3¢c) B; —nAB 4+ (z-V)Be + (ye - V)B—(B - V)y, — (B - V)z
+(z-V)B-—B-V)z=mv inQ,

(1.3d) divz=0, divB=0 inQ,
(1.3e) z=0, B-n=0, (curlB)yxn=0 onZX,
(1.3f) 2(0,x) = yo(x) — ye(x), B(0,x) = Bo(x) — Be(x) ong.

1.5. Translated linearized MHD system

The translated linearized problem is

(1.4a)
Wt —VAW+ (Ve - VIWH (W - V)ye— (W - V)Be — (B, - VYW +Vp=mu in Q,

(1.4b) W; =AW+ (w - V)B, — (B, - VYW (ye - V)W — (W - V) y, =mv in Q,
(1.4¢) divw=0, divWw=0in Q,
(1.44d) w=0, W-n=0, (culW)xn=0on2X,
(1.4e) w(0,x)=y0 — Ve, W(0,x)=Bg— B, on Q.
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1.6. The required unique continuation theorem to uniformly stabilize the linear problem
(1.4) by localized finitely many static feedback controls in [20]

As described in the introduction, the solution to the desired uniform stabilization
problem of the original, non-linear problem (1.la—e) in the vicinity of an unstable
equilibrium solution {y., B.} is given in [20]. A critical preliminary step is the uni-
form stabilization of the linear problem (1.4a—¢). To achieve it, the following unique
continuation result is critical. Its implication on the sought-after uniform stabilization
is shown in [20].

THeoreM 1.2 (UCP, direct problem). Let w be an arbitrary open, connected smooth
subset of 2, thus of positive measure, Figure 1. Let

(.6 pe (W29(Q)" x (W4(Q)" xW(Q), q>d,
solve the original eigenvalue problem

(1.5a) —vAP+(ye-V)p+(¢p-V)ye—(Be-V)E—=(§-V)B.+Vp =A4¢ inQ,

(1.5b) —NAE§+(p-V)Be —(Be - V)P + (ye - V)E—(§-V)ye = AE inQ,
(1.5¢) divp =0, divE=0 in 2,
(1.5d) =0, £€-n=0, (curlé)xn=0 onT,

along with the overdetermined condition

(1.6) =0, £€=0 inw.
Then,
1.7 =0, £€=0, p=const inQ.

Ficure 1. The localized interior set w within .
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In line with the literature of Navier—Stokes equations, it will be convenient to
introduce the following first-order operators:

(1.8a) L1p=%£,0 = (e V)P + (@ V)ye.
(1.8b) 26 =£F &= (Be-V)E+ (£ V)Be.
(1.9a) MiE =2, E = (e V)E— (- V)ye.

(1.9b) Map = L5,¢ = (Be-V)p — (¢ V)B,.

éﬁ;re and SC;E being the Oseen operators for y, and B,, respectively. For convenience
in the analysis below, we re-write the ¢-equation (1.5a) and the £é-equation (1.5b), by
use of (1.8), (1.9) as

(1.52) —VAp+ L1 — L2+ Vp =21 inQ,
(1.5b) —nAE + MiE— Map = AE in Q.

1.7. Literature

A comparison between the results on uniform stabilization of the MHD problem
(1.1a—e) in Besov spaces [20] and past results in the literature (all in Hilbert spaces) is
given in [20, Section 1.5]. In particular, [20] requires a new maximal L?-regularity
[15] (see also [19]) in the Besov setting, while by contrast in the Hilbert setting of [24],
only analyticity is needed (which is equivalent to maximal L2-regularity [9]), a less
challenging task. Paper [20] constructs explicitly the finite-dimensional, stabilizing
feedback controllers, and of minimal dimension r. Instead [24] simply asserts the
existence of a non-constructed feedback operator with a finite-dimensional range of
unspecified dimension. The finite-dimensional decomposition approach introduced in
[27], and followed in both [20, 24], requires a UCP result to assert Kalman algebraic,
finite-rank condition of the finite-dimensional unstable component of the overall system.
To achieve this end, [23, 24] establish a UCP for a dynamic coupled problem, by virtue
of Carleman-type inequalities for parabolic equations, coupled with elliptic estimates.
In contrast, we only need to establish a UCP for a static eigenvalue problem [(1.5),
(1.6) of the present paper] still by Carleman-type estimates [20], a much more direct
task. The original Carleman estimates, characterized by a suitable exponential weight
function, were introduced in [8] in 1939 to establish the uniqueness of solutions for a
PDE in two variables. The method of Carleman estimates was subsequently extended
to the study of uniqueness in inverse problems, as first introduced in [6, 7]. For further
developments and applications in this context, see also [13]. The subject has since
grown substantially, with a vast and rich body of literature.
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In the present paper, we shall make use of the pointwise Carleman estimates for the
Laplacian operator [21, Corollary 4.3, p. 254] or [22, Corollary 4.2, equation (4.15),
p- 73]. These, in turn, are obtained by specializing pointwise Carleman estimates for the
second-order hyperbolic equations [21] or Schrodinger equations [22]. See Theorem 2.1
in Step 6 below.

The proof of Section 2 below is a further extension of the pointwise Carleman
estimates-based proof originally introduced in [29] for the Navier—Stokes equations
(one vectorial variable), further extended in [32] to the Boussinesq system (involving a
vector—scalar variable coupling), and further extended for the MHD system (2.1a—b)
involving two coupled vector-variables {¢, £}. Now one needs to introduce a switching
operator § and deal with higher-order coupling

Ye ¢
~¢-V)s {B} ~ (B V)$ M

over the Boussinesq case. To this end, it is critical to invoke results from [28, equation
(5.21)] or [30, equation (3.24)] to assert (in (2.25b—c) below) that div £; and div £,
are first-order differential operators, one unit below than what appears at first sight.
These results here, in turn, have a critical implication on the order of the commutator
7% in (2.25¢).

2. Proor orF THEOREM 1.2
Orientation

We first rewrite the problem in the variable [?] more conveniently by use of the
switching operator § in order to fit into the strategy of [32], hence [29]. Next, in
Step 2, we introduce a suitable cut-off function y. Steps 3 and 4 consider the resulting
(x¢)-problem, (x&)-problem, hence the yu = [;‘g ]-problem. In this effect, we need
to extract two critical properties for the resulting commutators: (i) their order w.r.t.
variables ¢, &, p; (ii) the fact that their support falls inside Q2* (see (2.7¢c), (2.9b),
(2.25¢)). In Step 6, we invoke the pointwise Carleman-type estimate for the Laplacian
by specializing from [21] or [22]. This is then applied to the (yu)-problem in Step 7.
The bound on the RHS of the (yu)-problem (2.17) in Step 8 uses critically also the
two above mentioned properties of the commutators, leading to the final estimate
for the (yu)-problem in (2.23). This, of course, involves the pressure term p. Hence,
Step 10 considers the (yp)-problem given by (2.26a-b). Here, the critical property
(already mentioned at the end of Section 1) that the operators div £, and div £, are
of one degree less than “at first sight” is critically used to determine the order of the
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commutator T)? -1 in variables ¢, &, p. The final estimate of the (y p)-problem is then
achieved in Step 12, equation (2.31). Then, Step 13 combines the (jyu)-problem (2.23)
with the (yp)-estimate (2.31), leading to the final estimate of the original problem
(2.1a—b) in Lemma 2.2, equation (2.35), Step 14. It is then in Step 15 that the strictly
convex weight function ¥ (x) is selected, see Figure 5. This then yields to the final
estimates, originally on 21, for u(x) and p(x) in (2.40), (2.41), next in 2 in (2.44).

Step 0. Without loss of generality, we may normalize the constants v = n = 1. We
can rewrite equations (1.5a)—(1.5b) combined as in (2.1a) below, along with (1.5¢) and
(1.5d), and the over-determination (1.6)

¢ ¢ Ye
ww coft] oot rwnli]
e o | Be| i 3 Vel _ ., |?] .
¢é-V) |:yei| (Be - V) |:¢j|+|: 0 :| /\|:Ei| in Q,
(2.1b) div |:(§:| = |:8:| in 2, and |:(§:| = |:8:| inw.

Now we define a coordinate switching operator § such that [5)] — [‘g] which is clearly

bounded and continuous. Hence, rewrite the above equation as

¢ ¢ Ye
(2.2a) (=4) L} + (ye- V) L} +(¢-V) [BJ
Ve ¢ Vol _ ¢ .
Cewsfy ][t [7]-4[f] e
(2.2b) div |:(§:| = |:8j| in 2, and |:(§:| = |:8j| inw.

Case 1. We write initially the proof for the case where w is at a positive distance from
0Q2: dist (092, dw) > 0 (Figures 2 and 3).

Step 1. Henceforth, we introduce the state variable u = [g’] Sinceu = {¢,£} =0
in w by (2.1b), then (2.1a) yields Vp = 0 in w; hence, p = const in . We may, and
will, take p = 0 in w, as p is only identified up to a constant. Then, we have

du ap

(2.3) U =0, —| =0; plaw =0; 3
V0w

=0,
v 19w

where 3% denotes the normal derivative (v = unit inward normal vector with respect
to w).



UNIQUE CONTINUATION FOR OVERDETERMINED MHD EQUATIONS 11

D = 3[Q; UQ*]

FiGure 2. Case 1: G = Q1 U Q*.

=1

Q* | Qa

Figure 3. Case 1: the cut-off function y.

Step 2 (The cut-off function y). Let y be a smooth, non-negative, cut-off function
defined as follows:

1 iIlQan),
XE

2.4) supp ¥ C [21 Uw U Q7],

0 in Qg;
while monotonically decreasing from 1 to 0 in %, with y = 0 also in a small layer of
Q* bordering Q¢ (Figures 2 and 3). Here,
(i) €2 is a smooth subdomain of €2 which surrounds and borders w (Figure 2);

(i) in turn, * is a smooth subdomain of £ which surrounds and borders €2
(Figure 2);
(iii) in turn, ¢ is a smooth subdomain of Q : Q¢ = Q \ {w U Q1 U Q*}.
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SteP 3 (The (x¢)-problem). Multiply the ¢-equation re-written as in (1.5a") by y and
obtain

(2.5) (=D)(x9) + L1(xp) — L2(xE) + V(xp) = A(x¢) + F,;*%(¢.6.p) inQ,

or recalling (1.8a—b)

(2.6) (=D)(xP) + e - V)(x®) + ((x®) - V) ye
— (Be - V)(x8) — ((x§) - V) Be + V(xp) = A(x9) + F,;*%(¢. 6. p)in Q.

with forcing term expressed in terms of the resulting commutators

(27a)  Fy=Fp%%@.6.p) = [1. Al + [L1. x]d — [£2. xIE+ [V. x]p
(2.7b) = first order in ¢; zero order in £ and p;
(2.7¢) supp FXI’O’0 C QF.

Notice that (2.7¢) holds true since y = 1 on 1, on w, and on a small layer within %,
so that on the union taken over these three sets we have that F,, = 0. We recall that
the commutator [y, A] is defined by [y, Al¢ = yA¢ — A(y¢). Thanks to the Leibniz
formula, [y, A] is a linear combination of derivatives of order > 1 of y multiplied
by derivatives of order < 1 of ¢p. Consequently, the commutator [y, A] is of order
0+ 2 —1 = 1; the commutator [y, £;] isof order 0 +1—1=0,i = 1, 2; the
commutator [V, y] isof order | + 0—1 = 0.

Step 4 (The (y&)-problem). Next, we multiply the £-equation re-written as in (1.5b")
by x and obtain

(—A)(X8) + Mi(x§) — Ma(x9) = A(x§) + G °(6.4) inQ,

or
28) (D)) + (e - VIXE) = ((x6) - V) ye

— (Be - V)(x9) + ((x$) - V) Be = A(x6) + G °(5,¢) inQ,
with forcing term expressed in terms of the resulting commutators

(2.9a) Gy = G (€.9) = [x. Al§ + [My, (1§ + [Mo, 119,
(2.9b) = first order in &; zero order in ¢; supp G}(’O C Q*.

Notice that (2.9b) holds true since as in the case for (2.7c) we have that G, = 0 on
® U Q7 U [a small layer within *] since y = 1 on such union.
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Step 5 (The (yu)-problem yu = {y¢, x£}). We combine Steps 3 and 4 and obtain

o e 0[] o2
o )R T ==

Moreover, let (Figure 2)
(2.11) D = dw U {external boundary of Q*} = 9[22, U Q*].

Since y = 0 on ¢ and in a small layer of * bordering ¢, then (yu) = {(x¢), (&)}
and (y p) have zero Cauchy data on the [external boundary of 2*] = [interior boundary
of Q¢]. Moreover, since ¥ = 0 in w and p = 0 in w by Step 1, then (yu) and (xp)
have zero Cauchy data on dw. Thus,

)y . 9(xp)
9 D—O, (xP)|so = 0; vl P

(2.12) (xuw)|p = 0; =0,

where v denotes a unit normal vector outward with respect to [2* U Q1] (Figure 2).

SteP 6 (A pointwise Carleman estimate). We shall invoke the following pointwise
Carleman estimate for the Laplacian from [22, Corollary 4.2, equation (4.15), p. 73].

TueoreM 2.1. The following pointwise estimate holds true at each point x of a bounded
domain G in R? for an H?-function w, where ¢ > 0 and 0 < 8¢ < 1 are arbitrary:

(2.13) 6 |:2,01'— ﬂez”ﬂ)‘)Ww(x){Z-i-[4pk2r3(1 — 50)-|-(9(t2)]492”/’()‘)|w(x)|2
1
< (1 + —)ezr"”(")iAw(xﬂ2 +divVy(x), xe€G.
€

Here, W (x) is any strictly convex function over G, with no critical points in G, to
be chosen below in Step 11 when G = Q1 U Q*; p > 0 is a constant, defined by
Hy(x) > pl, x € G, where Hy denotes the (symmetric) Hessian matrix of ¥ (x)
[22, equation (1.1.6), p. 45]; k > 0 is a constant, defined by inf |V (x)| = k > 0,
where infis taken over G [22, equation (1.1.7), p. 45]; and t is a free positive parameter,
to be chosen sufficiently large. For what follows, it is not critical to recall what div Vy, (x)
is, only that, via the divergence theorem, we have

(2.14) / div Vy (x)dx = / Vw(x)-vdo =0,
G G

whenever the Cauchy data of w vanish on its boundary 0G: w|sg = 0; Vw|sg = 0.
In (2.14), v is a unit normal vector outward with respect to G.
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SteP 7 (Pointwise Carleman estimates for (yu)). Next, we apply estimate (2.13) with

w = (yu) solution of (2.10). For definiteness, we select §o = %, &= % We obtain

2.15) [pr - %}e”‘“)‘)W(xu)(x)V +[20k27% + 0] O |G ()|
< 362ﬂ//(x)|A(XM)(X)|2 +div Vi (x), xe€G.

Next, we integrate (2.15) over the domain G = [©2; U Q%] (Figure 2), thus obtaining

(2.16) [,or — l} / 62“1’(")|V()(u)(x)|2dx
81 Ja,uex

+ [2pk213 + (9(1’2)]/ ezr‘”x)|()(u)(x)|2dx
QuQ*
2t (x) 2
< 3/ e |A(Xu)(x)| dx + / Vo(x) - vdD,
Que* [ UQ*]

where, on the RHS of (2.16), the boundary integral over D = 9[Q2; U Q*] = the
boundary of 21 U %, see (2.11) and Figure 2, vanishes in view of (2.14) withw = (yu)
having null Cauchy data on D, by virtue of (the LHS of) (2.12).

SteP 8 (Bound on the RHS of (2.16)). Here, we estimate the RHS of (2.16). Returning
to the (yu)-problem (2.10), we rewrite it over G = [2; U Q*] as

2.17) A (x {?D = (Ye V) (x {?D +((x¢)- V) [lygj
_ , Be| 3
((6)-v) H (B2 ) (X M)
V(xp) ¢ F;’°’°:|
~2 _
L))
and multiply across by e?¥ ™ to get
(2.18) €™ A (x [‘Q) =Wy - V) (x m) + (VY9 V) [H
9| | oo (o[ f])
LT [V(gp)i| P PR276)) (X |:§§i|) RIE) |:Fé1;;)0:|_
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Recalling (ye, B.) € (W%4(Q))¢ x (W?4(2))? by Theorem 1.1, as well as the embed-
ding W4 (Q) — C(Q) for g > d, [1, p. 97, for Q having cone property] [12, p. 79,
requiring C !-boundary], we have |Vy,(x)| 4+ |VBe(x)| < Cy, B,, x € Q, forq > d,
as assumed. In view of this, we return to (2.18) and obtain

CHE
<o ([¢])

2

(2.19) 2™

2
+ | (x)(x)?| + !(XE)(X)2|}

+ 7T (x [?} )(X) + 2OV (xp)?|
2
revo| | Fr 209,86, p)(x)
e { G ¢)(x) } : Xee

ce = a constant depending on y and B, ¢; = [A|> + 1. Thus, integrating (2.19) over
G = [ U Q*] as required by (2.16) yields with u = [‘g]

(2.20) / ezr'/’(x)|A()(u)(x)|2dx
QuQ*

<Gy / PV ) (02| + |G (02 [Jdx
QLUQ*

b VO w2l
QruUe*

2w | F (9.6 p) ()
+/Qlum" [ G P)() }

C) . = aconstant depending on A, ., and B,.

We now recall from (2.16) and (2.9) that F. ;’0’0 (¢, &, p) is an operator which is
first order in ¢ and zero order in p and &, while G ,1(’0(5 , @) is first order in £ and zero
order in ¢; moreover, their support is in Q* : supp F, C Q*, supp G, C Q™. Thus,

(2.20) becomes explicitly still with u = [‘g]:

2
dx,

2.21) / VO | A(yu)(x)|Pdx
QLUQ*

< Cre / AVO[V ()02 + [0 (o) ]dx
QuUQ*

+ / ezr”’(")W(Xp)(x){zdx
QuQ*

—I—CX/ ezr‘”(x)[|Vu(x)|2 n |u(x)|2 + |P(x)|2]dx,
Q*



I. LASIECKA, B. PRIYASAD AND R. TRIGGIANI 16

which is the sought-after bound on the last term of the RHS of (2.16). In (2.21), ¢y is
a constant depending on y.

Step 9 (Final estimate for (yu)-problem (2.10), u = [?]) We substitute (2.21) into
the RHS of inequality (2.16) and obtain

(2.22) |:p‘E - l} / ezr‘/’(x)|V()(u)(x)|2dx
81 Ja,ua*

+ [2,0sz3 + (9(,’:2)]/ eZl’W(X)|(Xu)(x)|2dx
QUQ*

1

<G [ @O + |G lax
Q,UQ*
+ 3/ e2t‘”(x)|V()(p)(x)|2dx
QLUQ*

+cy /Q* 32“/’(")[‘V1,¢(x)|2 + |u(x)‘2 + |p(x)|2]dx.

Moving the first integral term on the RHS of inequality (2.22) to the LHS of such
inequality then yields for t sufficiently large

(2.23) {[pr— 1} —Ca,e} / VO (qu)(x) [ dx
8 Q,uQ*

+ [2pk2t3 + 0% — C,x,e]/ 62”/’(")|()(u)(x)|2dx
Q*

QU

<3 / VOV (yp)(x) | dx
Q,uQ*

+ ¢y /;2* ezm(’“)[wu(xﬂ2 + |u(x)|2 + |p(x)|2]dx.

Inequality (2.23) is our final estimate for the (yu)-problem in (2.10), (2.7), (2.9).

Step 10 (The () p)-problem). We need to estimate the first integral term on the RHS
of inequality (2.23). This will be accomplished in (2.31) below. To this end, we need to
obtain preliminarily the PDE-problem satisfied by (yp) on G = € U Q*. This task
will be accomplished in this step. Accordingly, we return to the ¢-equation (1.5a”), take
here the operation of “div” across, use div¢ = 0 and div & = 0 from (2.1b) = (1.5¢),
and obtain, recalling &£1(¢) in (1.82) and £,(§) in (1.8b),

(2.24a) Ap = —divEi(¢p) + divE,(E) in Q,
where, actually [28, equation (5.21)], [30, equation (3.24)],

(2.24b) divLy(¢) = 2{(axye : V)¢} = 2{(8x¢ : V)ye},
(2.24¢) div £2(§) = 2{(0x Be - V)E} = 2{(3x£ - V) Be},
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are first-order differential operators in ¢ and &, respectively. The proof of (2.24b) uses
divgp = 0 and div y, = 0 in Q2 from (2.1b) = (1.2c) and (1.1c). Next, multiply (2.24a)
by y. We obtain

(2252)  A(xp) = —divLi(x¢) + divL2(x§) + T (9.6, p) in

9
(2.25b) % L =0 (»lp=0. D =02 uQ"].

(2.25¢) T)?’O’l(¢, & p)=[A, xlp + [div £y, x]¢ — [div £2, x]€ = zero order in ¢
and & by (2.24b) and by (2.24c); first order in p; supp 7% C Q*,

while the B.C.s (2.25b) on the boundary D defined by (2.11) follow for two reasons:
(i)  the RHS of (2.12) on (yp) on dw; actually, the RHS of (2.3) since y = 1 on w;

(i)  x = 0 up to the external boundary of Q* and a small layer of 2* bordering 2,
so that (yp) = 0, % = 0, on such external boundary of Q*.

Thus, (2.25b) is justified. In (2.25b), the reason for supp T)?’O’l C Q* is the same as in
(2.25¢) and (2.9b).

Next, we apply the pointwise Carleman estimate (2.13) to problem (2.25a)—(2.25b),
that is, for w = (yp). We obtain with G = Q; U Q*

(2.26)

5 [2pr - g]ezf‘“">|wxp)(x>|2 + [4pk7 T3 (1 = 80) + O )]V O (p) (o)
< (1 + %)eﬂ‘/’(")wxp)(x)f +div V) (x), x€G.

Again, it is not critical to recall what div V(,,)(x) is, only the vanishing relationship
(2.14) (for w = (xp)) on an appropriate bounded domain G. Indeed, we shall take
again G = Q; U Q¥, integrate inequality (2.26) over G (after selecting again §o = %,
e = %), and obtain

(2.27) [pr—li| / VDV (yp)(x)[Pdx
81 Ja,uax

+ [20k%23 + 0 (x?)] / 2| (yp)(x)[*dx
QuUQ*

< 3/ VO |A(rp)(x)[dx + VieprxT-vdD,
QuUQ* 1

IR UQ*

where, on the RHS of (2.27), the boundary integral over

D = 0[Q; U Q*] = [dw U external boundary of Q*],
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see (2.11) and Figure 2, again vanishes in view of (2.25b) for w = (yp). Thus, the
vanishing of the last integral term of (2.27) is justified.

Step 11. Here, we now estimate the last integral term on the RHS of (2.27). We
multiply equation (2.252) by e*¥®), thus obtaining

(2.28) eV A(rp) = =D div £1(x¢) + ™Y div £ (x£)
+eVOTYON . p),
229) VONAp))|” < e[ div £ () (0] + [ div L2 (xE) ()]
+[70N @6 D). xeG.

We now integrate (2.29) over G = [©2; U Q*]. In doing so, we recall from (2.24b),
(2.24c¢) that [div £ 1] and [div £, ] are first-order operators and accordingly, from (2.25¢),
that T)? 0,1 (¢, &, p) is an operator which is zero order in ¢ and &, and first order in p,
and that T)? 0.1 (¢, &, p) has support in Q*. We thus obtain from (2.29)

(2.30)
/ PVD|A(rp) () [2dx
QLUQ*

scye,BefQ ETOIVED @+ G+ VO + (e ) Jax

+Cy /Q VOV + [p)) + [¢(0)]) + () ]dx
with constant C,, depending on y.

Step 12 (Final estimate of the (yp)-problem). We now substitute (2.30) into the RHS
of (2.27), divide across by [pt — %] > (0 for t large, and obtain

(2.31)

2 k2 3 O 2
/ ezr'”(x)|V(Xp)(x)|2dx+[ ok t°+0(t )]
QLuUQ*

[T — 5]
C
< y—Bl) / VOV () ) [+ () )|+ [V ) )|+ | (x6) ()| ]dx

~ (pr—3) /o uax

L 2ty (x) 2 2 2 5
(o= 1) /Q*e (V)" + [P + |60 + [E()]]dx.

Inequality (2.31) is our final estimate on the (yp)-problem (2.25a).

/ PVD| (1) ()| dx
QLUQ*

+



UNIQUE CONTINUATION FOR OVERDETERMINED MHD EQUATIONS 19
Step 13 (Combining the (yu)-estimate (2.23) with the (yp)-estimate (2.31)). We
return to estimate (2.23) and add to each side the term
[2pk213 + (9(12)]
[pr - 3]

/ VD |(rp) ) [2dx
QLuUQ*
to get

(232) {[pr - 1] - Cx,e} / 20|V (u) ()| dx
8 QUQ*

+ [2pk21'3 +0(?) - C;k,e]/ ezw(x)|()(u)(x)|2dx
Q*

QU
[20k?T® 4+ O(z?)]
[ — 5]

<3 VO |V (yp)(x)|Pdx
QuQ*

/ AVD| (1) () Pdx
QuQ*

N [2pk213 + (9(‘[2)]
[pr — 5]

+ ¢y /SZ VO Vu()[* + [u)]* + | p(x)]*]dx.

/ AV (1) () Pdx
QuUQ*

Next, we substitute inequality (2.31) for the first two integral terms on the RHS of
(2.32) and obtain

(2.33)
_l _ 27 (x) 2
{[pf 8i| Ck’e}/szlusz*e ‘V()(u)(x)} dx

+{[20k27 + O] - Cre) / VO () () Px
Que*

[20k?T3 + O(z?)]

[oT — g]

C
< YeBe /Q VOV () 0) [+ () ) P+ |V () 0|+ (1) (1) *]dx

/ ATV (p) ()P
Q,uQ*

(pr—5) Ja,ua-
+ L/ SVOVp [ + [ + o] + [E)[ dx
(bt —5) Jor

+cx /Q FVOVu@) [+ u @ + [p)[Fax.
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Recalling that u = [? ], we re-write (2.33) explicitly as

(2.34)
1
17 5]~ Coef [, . TGO + VG0 Pl
1+ {[20k37> + 0(?)] - Cre) / VO ()P + () (0[P dx

[20k?T 4+ O(z?)]
J.

[o7 — 5]

C
< (pf_Bj) /Q L ETONVED@ A OH VOO +H o) ] T

C
: f VOV + [p] + o) + 500 ]dx

(pr —5) Jo
+ oy /Q VOV ) |* + |[VEW| + [¢0)] + |50 + | px) [ ]dx

VO | (xp)(x)[dx
uQ*

+

Step 14 (Final estimate of problem (2.1a)—(2.1b)). Finally, we combine the integral
terms with the same integrand on the LHS of (2.34) and obtain the final sought-after
estimate which we formalize as a lemma.

LemMA 2.2. The following inequality holds true for all T sufficiently large:

(2.35)

_l _ _ Cyg,Be 27 (x) 2 2
{[P‘L’ 8j| Ce (Pf—l)}/ﬂlug*e [|V(X¢)(x)| +|V(X§)(x)| |dx

C
o o)~ m}f LETOlaa@ o Jax
8 1

2V |(xp)(x)[Pdx
Q*

[2pk2t3 + (9(12)]
A

[or — 5]

C
X /* VOV p0)F + [p) + [60F + 600 Jdx

NOEDL
+ ¢y /Q VOV () |* + |VEW| + [p0)] + £ + | p(x) [ ]dx

We note explicitly two critical features of estimate (2.35): the integral terms on its
LHS are over [27 U Q%*], while the integral terms on its RHS are over Q*. As already
noted, (2.35) is the ultimate estimate regarding the original problem (2.1a)—(2.1b).
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FiGURE 4. Construction of the domains 21 and ™* in Case 1.

Ficure 5. Choice of i in Case 1.

Step 15 (The choice of weight function ¥ (x)). We now choose the strictly convex
function v (x) as follows (Figures 4 and 5, as well as Figure 3):

(2.36) ¥ (x) > 0on Qq, where x = 1 by (2.4), so that e2*¥™ > 1 on Q;,
2.37) ¥ (x) <0on Qg UQ* where y < 1, so that e2*¥® < 1 on Q*,

in such a way that ¥ (x) has no critical point in € \ w, as required by Theorem 2.1
(¥ has no critical points on G = 1 U Q%): that is, the critical point(s) of ¥ will fall
on w, outside the region G = 27 U Q* where we have integrated.

Having chosen ¥ (x) as in (2.36), (2.37) with no critical points in Q \ v — i.e.,
no critical points on G = Q; U Q* — we return to the basic estimate (2.35), with t
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sufficiently large (Figure 5). On the LHS of (2.35), we retain only integration over €21,
where ¢ > 0; hence, e2™ > 1 and x = 1by (2.4), so that (yu) = u on 21; that is,
(x¢) = ¢ on Q; and (y&) = £ on Q21. On the RHS of (2.35), we have ¢ < 0 on Q*;
hence, e2*¥ < 1 on Q*. We thus obtain from (2.35) for 7 sufficiently large

CBeJe

1
2. — = =Cje—
(2.38) {[pr 8] Cy, (pr—%)

}/Q [[Vo )| + [VE®)|*]dx

#{oee? + 0] o= TR [ (1000 + e s
8 1

2 kz 3 1) 2

ML [;:l](r )]/ o)
8 1
Cy , . . ]
=< (pf—_l)/m [[VP)|” + |[p()]” + [¢(0)|” + [E(x)] ]dx
8

+ oy /Q [V @) + [VE® | + [0 + |6 + [p(x)|*]d.

For 7 sufficiently large, inequality (2.38) is of the type

(2.39a) (r — const — %) /91 HV¢(X)|2 + |V§(x)|2]dx

+(r3—const—l)/ [|¢(x)|2+|S(x)|2]dx+(r2)/ |p(x)}2dx
Q] Q1

T

=< [ 1P + [peol + o + e Jax
T Jox*

+ COHSt/Q*[|V¢(x)|2+ ’VS(x)’2+ ]¢(x)‘2—|— |§(x)|2+ }P(X)|2]dx

or setting as usual u = {¢, h}, we re-write (2.39a) equivalently as
(2.39b) |t — const — — / ’Vu(x)| dx + [ t° —const — — / ’u(x)| dx
T Q4 T Q4
+ (12)/ \p(x)|2dx
Q1
c
<= /Q* [|Vp(x)|2 + |p(x)|2 + |u(x)|2]dx

+ const/m [|Vu(x)|2 + |u(x)|2 + |P(X){2]dx

(2.39¢) < ECl(p,u;Q*) + const Co(p, u; Q%).
T
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In going from (2.39b) to (2.39c), we have emphasized in the notation that we are
working with a fixed solution {u, p} of problem (2.1a)—(2.1b), so that the integrals on
the RHS of (2.39b) are fixed numbers Cy (p, u; Q*) and C»(p, u; Q*), depending on
such fixed solution {u, p} as well as Q*, u = {¢, £}. Inequality (2.39) is more than we
need. On its LHS, we may drop the Vu-term over €2;; and alternatively either keep only
the u-term over Q1, and divide the remaining inequality across by (> — const — %) for
7 large; or else keep only the p-term over €2, and divide the corresponding inequality

across by 72. We obtain, respectively,

C1 t
(2.40) / luo)[fdx < (—3—)cl(p,u;sz*) + 2220 (pous ) — 0,
Q 37 T
2 Cl1 .. const .
(2.41) / p(x)|"dx < 5= |Ci(p.u: Q%) + —5-Ca(p.u: Q%) - 0
Q 21 T
as T — +o0o. We thus obtain
(2.42) ux) = {qﬁ(x),é(x)} =0in Q2q; p(x)=0inQq,
and recalling (2.1b) and Step 1,
(2.43) u(x) = {¢(x),6(x)} =0, p(x)=0inwU Q.

The implication: Step 1=(2.43) is illustrated by Figure 6, with u = [? I

FiGURE 6. Case 1: from {u, p} = 0onw to {u, p} = 0on Q.

Finally, we can now push the external boundary of €2; as close as we please to the
boundary 02 of €2, and thus we finally obtain

(2.44) u(x) = {p(x).(x)} =0inQ, p(x)=0inQ.
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Indeed, we have u={¢, £} € (W24(Q) N Wy 1(Q))? x (W24())? and pe W4(Q).
Moreover, W4(Q) < C(Q) for ¢ > d [12, p. 78] as assumed, and more generally
wWma(Q) «— CK(Q) forgm > d, k =m — % [12, p. 79]. A fortiori, u € (C(Q))?,
p € C(Q), q > d, as assumed. Thus, if it should happen that u(x;) # 0 at a point
x1 € Q near 02, hence u(x) # 0 in a suitable neighborhood N of x1, then it would
suffice to take €2; as to intersect such N to obtain a contradiction. Theorem 1.2 is
proved at least in Case 1 (Figures 1, 2, and 3).

Casg 2. Let w be a full collar of boundary I' = 92 (Figures 7 and 8). Then, the above
proof of Case 1 can be carried out with sets 1, 2%, and o, as indicated in Figure 7.

(ane=
“

FiGUure 7. Case 2: wis acollar of I'; G = Q1 U Q*; 0G = D = [internal boundary of w] U
[internal boundary of Q*].

D

r=1

-— W —>|= Q]

FiGure 8. Case 2: the choice of ¥ for Figure 7.

Let now w be a partial collar of the boundary I' = d2. Then, the above proof of
Case | can be carried out with sets Q7, %, and Qy, as indicated in Figure 9.
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/’-\\v N

V/

Ficure 9. Case 2: w is a collar of a portion of the boundary.

3. IMPLICATION OF THEOREM 1.2 ON THE SOLUTION OF THE CORRESPONDING UNIFORM
STABILIZATION PROBLEM OF THE MHD SYSTEM BY FINITE-DIMENSIONAL INTERIOR
LOCALIZED STATIC FEEDBACK CONTROLLERS

As is by now well known [31], a result such as Theorem 1.2 is the “ignition key” to solve
a corresponding stabilization problem. Because of space constraints, we can only report
here, in a very concise form, the direct implication of Theorem 1.2 in establishing
(in the adjoint version) the Kalman algebraic condition for the finite-dimensional
unstable component of the linearized dynamics (1.4a—e). The solution of the full local
uniform stabilization problem of the original non-linear problem (1.1a—e) in the Besov
space setting, by means of two finite-dimensional localized static controllers {u, v} in
feedback form and of minimal dimension, is given in [20, d = 2, 3].

3.1. Preliminaries

We preliminarily assume that the space L?(£2) can be decomposed into the direct
(non-orthonormal sum for ¢ # 2)

(B.1a)  LI(Q) = LI(Q) & G'(),

I-lg

(3.1b)  LL(Q) = {y € C(Q) : divy = 0in Q}
={geL!(Q):divg=0; g-v = 0o0ndQ},
for any locally Lipschitz domain @ ¢ RY, d > 2,
B.lo) GUQ)={yeLUQ):y=Vp, peWLi(Q)} wherel <gq < o0,
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of the solenoidal vector space L () and the space of gradient fields (Helmholtz
decomposition). Both of these are closed subspaces of 9. This is a mild assumption
in the bounded domain € in R?, d = 2,3. Let P, be the Helmholtz projection, the
unique linear, bounded, idempotent (qu = P,) projection operator P, : L4(2) onto
LZ (), having GY(R) as its null space. Introduce the operators

(3.2) Arqw = —PjAw,
D(A14) = WH(Q) N Wy (Q) NLL(Q),
(3.3) Ay ,W =—-AW,
D(Az,q)={WeW>9(Q) NLL(Q), (curl W)xn=0o0nT},
(BA4) Aoyeqw = Py w = Py[(ye- VIw + (w-V)ye].
1
D (Ao y,q) = D(A/2) CLLQ),
(3.5) Ao.B,.qW = PyLy W = Py[(B.- V)W + (W - V)B,],
1
D(A0,8,.q) = D(4,2) CLL(Q),
(36) Lzw=~&pw=][(Be-V)w—(w-V)Be].
1
D(Lp,) = D(4,2) CLL(Q).
G7 Ly, W=X W= (y V)W —(W-V)y,,
1
D(L;,) = D(4]2) C LL(RQ).

Invoking (3.5), (3.6), we rewrite (1.4a—b) more conveniently as

(3.8) w,—vAw+$;(w)—i§e(W)+Vp =mu inQ,
3.9 W, —nAW + £7 (W) + L5, (w) =mv in Q,

to be accompanied by the divergence free contribution (1.4c) and the B.C. (1.4d). We
next invoke the Helmholtz projection P, : L?(2) onto LZ () to eliminate the pressure
term Vp in (1.9a), taking advantage of the divergence free conditions divw = 0,

divW = 0in Q, and the conditions w = 0 and W - n = 0 on X, which are intrinsic
conditions in the LZ (£2)-space. We obtain

(3.10) wr —v(PgA)w + (Pg L )(w) + (PgL3 )(W) = mPyu in Q

as P,V p = 0, which along with equation (3.9) for W yields the following first-order
PDE system

iy Llw| BgA 0w | =Py Pqizg—e w | [mPau|
| W 0 pAl|W]|T| —Z5 %L, ||W]| |mPy
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along with (1.4c—d). Thus, in view of (3.2)—(3.5), the abstract version of the PDE-
coupled problem (1.14a—d) is

dw]_[-vae 0 ([w], [-40seq dosa] [w], [mPeu
3.12) —| |= 4 vea Ao.Beq au |
¢ ) dt [W] [ 0 —r;Az,qj| |:W]+ LEF —L;, | |W + mPgu

finally,

i wl ~ |w mPgu __w 4 1q 4
(313 — [W}_Aq [W}{mpqv}’ n= W] on YZ(Q) =L () xLL(Q),

~ —VA; 0 -4, Ao,B
A, =A + 11 = q + l)’e,q > iaq
@c14 1 [ 0 —nAz,J [ Ly, Ly,

LI(Q) x LL(Q) D D(A,) = D(A14) x D(A24) — YL(RQ).

The operator &q is the generator of a strongly continuous (s.c.) analytic semigroup
et on LL(Q) x LL(Q) = YZ(Q) [20].

3.2. Introduction to the stabilization problem

For the problem of stabilization to be relevant, the assumption is that: the generator
A, of as.c. analytic compact semigroup is unstable on LE (Q) x LE(Q) = Y& (), in
the sense that there are N unstable eigenvalues A1, A2,...,Ax of A, (see Figure 10),

-+ <ReAnyys <ReAnyyi <0 <ReAy <---<Reld, <Rely,

where the eigenvalues of ;&q are numbered in order of decreasing real parts. Let M be
the number of distinct unstable eigenvalues of A, (or A;). Foreachi =1,..., M, we

L * ¢
{(I’ij}fizl = { |:(pij:| } ) {(I’;k] €,=1 = { |:¢iii| }
1/fij . J 1//,',‘ .
J=1 - J=1
\ N A’l

AN+1 o o

/

Ficure 10. The eigenvalues of Aq.

denote by
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the normalized, linearly independent eigenfunctions of Aq, respectively 1&*, say, on
YI(Q) =LL(Q) x LL(Q) and

* , , 1 1
(15 (Yi@)" = (L4Q) x (L5@) =L@ xL{ @), _+ =1,
corresponding to the M distinct unstable eigenvalues A1, ..., Ay of Aq and Xl, e A M

of 1&;, respectively,

(3.16) Ay®;; = 1;®;; € D(A,) = D(A14) x D(42,)

= [W29(Q) N Wy/(Q) N LL(Q)] x [WH9(Q) NLL(RQ)],
(317 A;®f =19}, € DAY

= [W>7' (@) nWH? (@) NLE (Q)] x [W> (@) N L (Q)].

7N

o*  &* * Linearly independent in (YZ(S2))*,
i1 2 v it

and ¢; is the geometric multiplicity of A;.

The critical consequence of Theorem 1.2 (actually, its adjoint version whose proof is
essentially the same) is the following theorem.

Tuaeorem 3.1. Consider the above presentation in Section 3.1.

(i)  With reference to (3.17), we have, for each i,

(3.18) the vectors ®7, ..., Q;}Zi remain linearly independent in
/ / , 1 1
LY (@) xL§ (@) = (Y§(@)" = Y5 (@). _+ 5= 1.
(i) Consequently, it is possible to select vectors uy, ..., ug € LL(w) x LL(w),

u = [u},u?l,g>1, K =sup{l; :i =1,..., M}, such that
(3.19a)

(u17¢;<1)a) (uK’q’;k])w

(ul,(I)’.") (uK,(I)fk)
rank .12(1) ) 12 ={;; {;ixK foreachi=1,..., M,

(u19q);'k[l-)w (qué;kZl-)a)
(3.19b)

1 *
(uj, 7))o= ([ ]2j| ) |:(pli i|) , £; = geometric multiplicity of A;.
1 LYl g emg @
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Proor. (i) By contradiction, let us assume that the vectors {®7;, ..., ® ;kéi} are instead
/ 7
linearly dependent on LY (w) x L (), so that

£i—1
(3.20) =D @, inLY () x LY ().

Define the following function (depending on i) in LZ/(Q) X Lg/(Q)
Li—1

(321) ®* = [Z o @7, — ;kl,} eLL(Q)xLL(Q), i=1,....M,
i=1

so that ®* = 0 in w by (3.20). As each <I>;“j is an eigenvalue of 1&; (or (Z‘SZ’N)*)
corresponding to the eigenvalue Ai, see (3.17), so is the linear combination @ *. This
property along with ®* = 0 in w yields that ®* satisfies the following overdetermined
eigenvalue problem for the operator 1&; (or (AZ L

(322) Al®*=10%, dive* =0inQ; @*=0inw (by(3.20).

(ii) But the linear combination ®* in (3.25) of the eigenfunctions ® z*, € JD(A;)
satisfies itself the Dirichlet B.C ®*|3q = 0. Thus, the explicit PDE version of problem
(3.22) with ®* = {p*, £*} is

(3.23a) —VAQ* + LFp* — LIE* + Vp = Ao*  inQ,
(3.23b) —NAE* + MFE* — Mip* = AE* InQ,
(3.23¢) dive* =0, dive* =0 inQ,
(3.23d) *=0, £ -n=0 culé*xn=0 onT,
(3.23¢) p* =0, £ =0 inw,
(3.24) e DAY Lo* = (e V)" + (0" V) Ve,

with overdetermined conditions (3.23¢), where (f.V)*y,. is a d-vector whose ith
component is 27:1 (Diye;) fj- The adjoint version of Theorem 1.2 (essentially with
the same proof) implies

(3.25) p* =0, " =0, p* =constin Q; or ®* = 0in LI (Q) x LL(Q);

that is, by (3.21),

(3.26) =@ +o®f + -+ oy, 9], inLY (Q) x LY (Q),

ie. theset{®7,..., ‘I’?Ei } in linearly dependent on Lg,(Q) X Lg/(Q). But this is false,

by the very selection of such eigenvectors, see (3.26) and statement preceding it. Thus,
the condition (3.20) cannot hold. [ ]
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RemARrk 1. Condition (3.19) is the Kalman algebraic condition for asserting the
controllability of the finite-dimensional unstable component 5 of the [y | = 7-
dynamics, § = ny + . It is then equivalent to the arbitrary spectrum location
property [5] and hence it implies that such originally unstable finite-dimensional
dynamics can be stabilized with an arbitrary large decay rate by a (finite-dimensional)
state feedback control.

Some relevant references are [4,36].
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