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ABSTRACT. — We begin with a brief overview of the most commonly used fractional derivatives,
namely, the Caputo and Riemann-Liouville derivatives. We then focus on the study of the fractional
time wave equation with the Riemann-Liouville derivative, addressing key questions such as
well-posedness, regularity, and a trace result in appropriate interpolation spaces. Additionally,
we explore the duality relationship with the Caputo fractional time derivative. The analysis is
based on expanding the solution in terms of Mittag-Leffler functions.
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1. INTRODUCTION

Although theoretical results concerning fractional differential equations are still being
studied by mathematicians — including well-posedness in Sobolev spaces, regularity
properties, asymptotic behavior of solutions, and so on — the modeling and consistency
with real phenomena drive the applications of fractional calculus. This is particularly
true in engineering and science, especially in fields like rheology, viscoelasticity, control
theory, bioengineering, and many others, see e.g. [6,27].

One of the fascinating aspects of this topic is that the definition of fractional
derivatives relies on non-local operators such as Riemann-Liouville integrals of the

type
I1%u(t) = ﬁfo (t — )% tu(s) ds,

where I is the Gamma function, see [14, 15,28]. The integral is well defined provided
that @ > 0 and u is a locally integrable function. The operator defined by the Riemann—
Liouville integral is non-local in nature. This means that the value of the fractional
integral at a point ¢ depends not only on the value of the function u at z, but also
on values of the function at all points s € (0, ¢). This non-local behavior is a direct
consequence of the kernel s*~1, which gives the integral a memory-like property. This
is in contrast to classical integer-order calculus, where the derivative or integral at a
point depends only on local values. The structure of the kernel s*~! plays a crucial role
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in defining the behavior of the fractional integral. For example, in the case o € (0, 1),
the kernel causes the fractional integral to be singular at s = ¢.

It is noteworthy to mention the paper [3], where G. Da Prato et al. address singu-
larities at the origin, which are just characterized by the singular kernel  ~#, where
0<pB<l.

The existing literature on fractional calculus primarily focuses on the Riemann—
Liouville derivative D® u and Caputo derivative €D® u [2, 5], defined for o € (1,2) as

DO[ u = (I2_au)tta CDa u = Iz_“u,,.

One of the key advantages of the Caputo fractional derivative is the more straightforward
formulation of initial conditions. In traditional fractional calculus, initial conditions
often involve fractional derivatives, which can be complex to interpret. However, the
Caputo derivative is defined in such a way that the initial conditions can be specified in
a more conventional manner, similar to integer-order derivatives, making it easier to
apply in practical problems.

The analysis of fractional PDEs mainly focuses on the fractional Caputo equation
due to its more regularity and simplicity in the formulation of the initial conditions.
Although a connection between the two problems can be established (see Remark 3.2),
we opt for a direct analysis due to the complications arising from the substitution.

We initiated our study of trace regularity for integro-differential problems in the
context of regular kernels, as discussed in [16, 1 7]. In these works, we establish a hidden
regularity result for wave equations that include a convolution-type integral term.

We introduce the concept of the trace of the normal derivative of the solution,
thereby extending well-known results from linear wave equations without memory to
integro-differential equations, even when nonlinear terms are present. Specifically, for
the case without memory, we refer to [10], where the authors found out a trace theory
interpretation for solutions of hyperbolic systems, and [11], where the term “hidden
regularity” was first introduced in the context of semilinear wave equations.

In [18], we prove a hidden regularity result for weak solutions of time fractional
diffusion-wave equations with the Caputo fractional derivative of order « € (1, 2).
Moreover, in [19], we introduce a notion of weak solution for abstract fractional
differential equations with Caputo derivative, also providing two examples of concrete
equations: time-fractional wave equations and time-fractional Petrovsky systems.

Important tools for representing the solutions of fractional differential equations,
already in the scalar case, are the Mittag-Leffler functions.

In [22, 23], the foremost mathematician G. M. Mittag-Leffler introduced for o > 0
the entire function

ad Z
(1.1) Ey(2) =Y ———.
— Tk +1)

k
z €C,



HIDDEN TRACE REGULARITY FOR RIEMANN—LIOUVILLE FRACTIONAL EQUATIONS 141

called after him as the Mittag-Leffler function. Subsequently, in the paper [24], he
extended the definition (1.1) to the case & € C with R > 0. The Mittag-LefHer function
can be considered a direct generalization of the exponential function, retaining some
of its properties.

In [32], A. Wiman also noted that analogous asymptotic results hold for the two-
parametric generalization E, g(z) of the Mittag-Leffler function defined as

oo z k
Eqp(2) ;;) Tatid °°© C.
In the 20th century, this function was virtually unknown to most scientists, as it was
ignored in most books on special functions. The recent growing interest in this function
is mainly due to its close relationship with fractional calculus and especially with
fractional problems arising from applications. For further reading about the Mittag-
LefHler functions, we refer to the book [4].
In this paper, we are interested in the fractional Riemann—Liouville problem:

D§ u=Au in(0,T)xQ,

(1.2)
u=2~0 on (0,7) x 0L2,

where @ € RV, N > 1, is a bounded open set with C 2 boundary 02 and the order
o€ (%, 2). We introduce a notion of weak solution and establish an existence result.
Foru; € L?(Q) and up € Hg (£2), the function

o0

u(t,x) = Y [(u1. €)1 Eaa(—Ant®) + (2. €n)1% > Eq o1 (=Ant®)]en (x)
n=1
is the unique weak solution of (1.2) written as series, belonging to L?(0, T'; Hj (2))
and satisfying
DET u(0,) =uy, DT u(0,7) = uy,

see Theorem 3.3. Assuming the condition « € (%, 2), our main results are the following.
First, we prove a regularity result when the initial data belong to interpolation spaces
connected to the Laplace operator: for u, Vu, € D((—A)**), g > 0, we have the
following:

(i) forf € (o, 22 + o).

IVullz20.7:p—r)ey) < C (lu1llp=ayay + I Vuzl p=ayra))
(i) for6 € (35 — pa. 5 — Ha)s
DG+ ullz20.7:pa-0y) < C(Ilu1llp=a)ra) + V2l p(—ayma)).

for some constant C > 0, see Theorem 4.1.
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A key step in proving the trace regularity result (see Theorem 5.4) is to ensure that

the above estimates hold for the same value of 6. To guarantee that the intersection of

2a—3
20

< Uy < %, see Remark 4.2.

the intervals ({tg,

32—a)
4o

Finally, we prove the trace regularity result: for any u;, Vu, € D((—A)*),

3(2—0{)< -
4o Ho =7

we can define the normal derivative d,u of u such that for any 7 > 0, we have

+ i) and (32;: — g % — [Lg) is non-empty, we must choose

T
/ /asz |0vul® dodt < C (|lurlp=aye) + VUl pi—ayma)).
0

see Theorem 5.4. It is worth noting that the trace result is established under weaker
conditions on the initial data compared to the classical assumptions, see Remark 5.5.
The plan of the paper is the following. In Section 2, we list some preliminaries. Section 3
focuses on weak solutions. Sections 4 and 5 are devoted to our main results: regularity
in the interpolation spaces and trace regularity, respectively. Finally, in Section 6, we
study the decay rate of so-called energy for the Riemann-Liouville problem and the
duality existing between the Caputo problem and the Riemann-Liouville problem.

2. PRELIMINARIES

This section collects some known notations, definitions, and results that we will need
in the following.

Let @ ¢ RY, N > 1, be a bounded open set with C2 boundary 2. We consider
L?(2) endowed with the inner product and norm defined by

1/2
(u,v) =/Qu(x)v(x)dx, lullL2() = (/;2 |u(x)|2dx) . u,ve L¥(Q).

We denote the Riemann-Liouville fractional integral operators of order 8 > 0 by

@2.1) 1Eouq) = %ﬂ)/o (t — )P Yu(s) ds,

5 LT
(2.2) IT_u(t):Tﬂ)/t (s — )P Yu(s) ds,

whereu € L?(0,T)and I'(B) = fooo tB=1e~" dt is the gamma function. The semigroup
property of the fractional integral operators 7, f - 1s given by

(2.3) By =1l gy>o.
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The Riemann-Liouville fractional derivative D{, u of order o € (1,2) is defined as
follows:

2

o d
DB 400 = G 8570 = 5 g5

Asa—1¢€(0,1), we get

/ (t — ) ™ %u(s) ds.

d
2.4 DS u= El&;“u;
hence,
2.5) Dy u = EDS‘JI u.

Moreover, since @ — 2 € (—1, 0), we have
(2.6) DY u = I3 %u.

A kind of integration by parts is the well-known property:

T T
@7 /0 18, f()g(t) di = /0 F(O)IE_g(t)dr

(see e.g. [7]). The symbol A denotes the Laplace operator as usual. We consider
the operator —A in L2(2) with domain D(—A) = H?(Q) N Hg (). The fractional
powers (—A)? are defined for any # > 0, see e.g. [25] and [20, Example 4.34]. We recall
that the spectrum of —A consists of a sequence of positive eigenvalues tending to 400
and there exists an orthonormal basis {e, },en of L?(2) consisting of eigenvectors
of —A. Moreover, we assume that the eigenvalues are distinct numbers and denote by
An the eigenvalue with eigenvector e;,, that is, —Ae, = A,e,. For 6 > 0, the domain
D((—A)?) of (—A)? consists of those functions u € L2($2) such that

o0

> A2 (u.en)|” < 400

n=1
and
o
(=8)°%u =" A(u.en)en u € D((—A)°).
n=1
D((—A)?) is a Hilbert space with the norm given by

oo

1/2
2:8) lullpe=ayy = [(=2)7u|| 20y = (Zkieuu,emz) ueD((=4)7).

n=1

For any 0 < 6 < 6,, we have D((—A)%) c D((—A)%).
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We also have D((—A)?) ¢ H??(Q) and, in particular, D((—A)%) = H} (). 1den-
tifying the dual (L2(82))’ with L2(R2) itself, we have
D((-=A)%) c L3(2) c (D((-A)%))".
From now on we set
— !/
D((=8)7%) = (D((=4)"))"

hence, the elements of D((—A)~?) are bounded linear functionals on D((—A)?). If
¢ € D(—=A)"?)and u € D((—A)?), the value ¢(u) is denoted by

(2.9) o(u) = (@, u)_g4.

In addition, D((—A)~%) is a Hilbert space with the norm given by

oo 1/2
(2.10) lellpi=ay-6y) = (21220|<¢,€n)—9,9|2) 9 € D((-A)7?).

n=1

We also recall that
.11 (p.u)-00 = (p.u) forge L), ue D((=1)°),

see e.g. [1, Chapitre V].
The Mittag—Leftler function depending on arbitrary constants &, f > 0 is defined as

o0 k

z
(2.12) Eqp(z) =) ———— z€C.
= Tk +p)

The power series E, g(z) is an entire function of z € C. The symbol E,(z) usually
denotes Eq 1(2).

LemMma 2.1. Leta € (1,2) and f > 0.

(1)  There exists a constant C = C(a, B) > 0 such that

(2.13) |Eqp(—p)| <

, foran > 0.
“T+x for any ju

(i) Forany A € R,
(2.14) 15 (P Ey g (AT))(0) = 1" P Egn g p (A1),

The proof of (i) can be found in [26, Theorem1.6]. For point (ii), see e.g. [7,
formula (2.1.53)].
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Lemma 2.2, Ifa, A > 0, then we have

d
(2.15) EE,X(—M“) =AM Eyo(—At%), t >0,
d
(2.16) E(tk Egji1(=At%)) = tF 7V Eg 1 (—A1%), keN,t>0,
d
(2.17) E(z"‘_lEa,a(—)u“)) =1 2Eqq_1(=At%), t>0.

We recall a result about the existence of solutions for fractional scalar differential
equations; for the proof see e.g. [7, Theorem 4.1].

Lemma 2.3. Fora € (1,2) and A,uy,us € R, the solution of the Cauchy type problem

D u(t) +Au(t) =0, >0,

(2.18) w1 w2
Do+ u(0) = uy, Doy u(0) = us,

is given by
u(t) = urt®* ' Eq o (—A1%) + ust* 2Eqq1(=A1%), ¢ >0.

RemMARK 2.4. We point out that the notation Dg‘;k u(0), k = 1,2, in (2.18) means
that the limit is taken at almost all points of the right-sided neighborhood (0, ¢), ¢ > 0,
of 0 as follows:

a—1 1 a—1 oa—2 I 2—a
Doy u(0) = z£%1+ Doy u(t), Doy u(0) = tl_l)l‘(l)l+ Io %u(t),

see [7, p. 136].

To conclude this section, we mention an elementary result useful for managing
estimates.

LemMmA 2.5. Forany B € (0, 1), the function x — % gains its maximum on [0, +o00[

at point % and the maximum value is given by

b B 1-8
(2.19) max - =prA-p)"", Pe(01).

The symbol ~ between norms indicates two equivalent norms.

3. WEAK SOLUTIONS OF RIEMANN—LIOUVILLE FRACTIONAL EQUATIONS

We begin by introducing a general notion of a weak solution that does not depend
on initial conditions (for an analogous definition in the case of classical differential
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equations, see e.g. [1, p. 136]). In Theorem 3.3 below, we give an existence and
uniqueness result in a particular case. Precisely, we prove the following: there exists a
unique series expansion that is a weak solution satisfying given initial conditions.

DeriniTION 3.1. Let @ € (1,2) and T > 0. We define u as a weak solution to the
boundary value problem
Doyu(t,x) = Au(t,x) (t,x)€(0,T)xQ,

3.1
u(t,x)=0 (t,x) € (0,T) x 092,

ifu e L?0,T; HL(RQ)), D{I'u € L?(0,T; L*(R)), and for any ¢ € H} (), one
has
/ D ut, x)p(x)dx € H'(0,T)
Q

and
d a—1
(3.2) 7 Doy u(t,x)p(x)dx + | Vu(t,x)-Vo(x)dx =0, ae.r€(0,T).
Q Q

REMARK 3.2. We observe that if u is the weak solution of (3.1), then v = I&;"‘u is
the weak solution of the Caputo fractional problem
CD8‘+ v(t,x) = Av(t,x) (t,x) € (0,T) x Q,

(3.3)
v(t,x) =0 (t,x) € (0,T) x 0L2,

where CD(‘;‘ . denotes the Caputo derivative. Indeed, v;; = Dy, u = Au and hence
P& v(t,x) = 127% = AIE"u = Av.

Keeping in mind Remark 2.4, we establish an existence and regularity result in the

case o > %

THEOREM 3.3. Assume o > %
(i) Foruy € L*(Q) and up € H} (), the function

oo

(3.4) u(t,x) =Y [(ur.en)t " Eq.o(=Ant®)
" (g en) 12 gt (—Ant®) Jen(x)

is the unique series expansion that is a weak solution of (3.1) satisfying the initial
data

(3.5) DY u(0.) =uy, DT u(0,7) = u,.



HIDDEN TRACE REGULARITY FOR RIEMANN—LIOUVILLE FRACTIONAL EQUATIONS 147

Moreover,

(3.6) D u(t,x) = Z [(u1,en) Eq(—=Ant®)
" A1, )1 B (—2nt®) Jen(x),

DgT u e C(I0. T): D(A79), 6 € (B2.3).

() Ifu; EHO (Q) and ur € H*(Q) N H0 (R2), then
u e L*(0,T; H*(RQ)), D§,u(t,)) e L*(0.T; L*(Q))

is given by
(37 DEyult.x) = ZA (ur. en)1*"" Eq.a(=Ant®)
+ (uz, en)t” 2E¢xo¢ 1(=4 Za)]en(x)
and
(3.8) Doy u(t,x) = Au(t,x) ae. (t,x) € (0,T) x Q.

Proor. (i) First, we show that
Z Uy, en Ea,a(_knta) + (u27 en)ta_zEa,a—l(_/\nta)]en ()C)
n=1

is the unique series giving the weak solution of (3.1) with initial data (3.5). For this
purpose, we seek the solution in the form u(r) = Y »2 | u,(t)e, where the functions
U, (t) = (u(t), e,) are unknown. We take ¢ = e, in (3.2) to get

d
7 / DS‘+1 u(t, x)e,(x)dx —/ u(t,x)Ae,(x)dx =0, te€l0,T];
Q
hence, by (2.5), we have

d . _
ED(‘;‘+1 U, + Au, = 0.

So u,(¢) is the solution of problem (2.18) with A = A, where, thanks to (3.5), the
initial conditions are given by

Doy Un + Aptty =

DT un(0,) = (ur,en), DI un(0,) = (U2, en).
Therefore, by Lemma 2.3, we get
(3.9) un(t) = (”1, en)ta_lEa,a(_knta) + <u2,en>ta_2Eoc,o¢—l(_Anta)7 t>0;

hence, the uniqueness follows.
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Now, we show that, taking uy € L?(Q) and u € H} (Q), u(t,) = > oo un(t)en,
with u,, () given by (3.9), is a weak solution of (3.1) satisfying the initial conditions
(3.5). First, we note that u(z,-) € HJ (Q) for ¢ € (0, T]. Indeed,

[u.) @y = D2 Anlun @]
n=1

oo
<2 Z )Ln|(u1» €n>la_1Ea,a(_Anta){2

n=1

00
— 2
+2 Z )Ln|<u27 en)t” 2Eot,az—l(_)Lnlw)|
n=1

and thanks to (2.13), we have

2 Apt® _ 2
} a_f_;—ta)ZECta 2|(”1’€n>

An |(u2’ en)[a_zEa,a—l(_/\nla) |2§ Ct** %1, | (uz, en) |2;

An| (101, €019 Eg (= 2nt®) P < C172| (1, €)

El

hence,

2 -2 2 20—4 2
(310) ||U(Z,) ||H(%(Q) = Ct* ”ul”LZ(Q) + Ct * ”uZHH(%(Q)

Asa > % we obtain u € L?(0, T'; H{ (R2)) and

T
2 -1 2 203 2
/0 ||Ll(l‘,')“Hé(Q)dl‘ SCT“ ||M1||L2(Q)—|-CT * ”uZHHé(SZ)'
Moreover, thanks to (2.14), we have
(3.11) 157 %un (1) = (U1, en)tEqp(—Ant®) + (U2, en) Eq(—Ant®);

hence, being u € L?(0, T; Hy (R2)), by the dominated convergence theorem, we get

o0
(3.12)  IE*u(t,) = Z [(u1, en)t Eqp(—Ant®) + (Ua, €n) Eq(=Ant®)]en.
n=1
The series Yy, 15+ un(t)ey is convergent in L2($2) uniformly inz € [0, T]. As a
consequence, we have Ig7%u € C([0, T]; L*(2)) and

oo

DEFu(0,) = lim IGTou(t,) =) (uz, en)en = w2,
n=1

taking into account that E »(0) = %2) and E,(0) = ﬁ =1.

~|
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We have to show that DS‘;I u is given by (3.6) and belongs to C([0, T]; D(A~?)),
for 0 € (32, 1). First, we note that, thanks to (3.11), (2.16) for k = 1 and (2.15), we

202
get
d 2—o o a—1 o
G Un () = {1, €n) Eac(—2nt®) = {142, €0) At ™" B (~Ant®).
Since
i d 2 2 i 260 d 2 2
— 15 % un(t)e, = A == I M un (1)
n—1 dt D(A—e) n—1 n dt

due to (2.13), (2.19) and 0 < 6 < 1, we obtain

1,20 (2, €n) nt® ! Eq o (=Ant®)|?

(Ant®)z 0

< Ct2a9+a—2kn’(u2’en)‘2( T
n

2
) < Cr20Fe2), |us, e0)]

. . 2—
Therefore, taking into account that 6 > =¥, for any ¢ € [0, '], we get

o0

d —a
Z EIOZJF uy(t)ey

n=1

2

= C”ul ”iZ(Q) + CT2a9+a_2||u2“iI& Q)"

D(A—?)

Furthermore, the series Y ,o ; c‘f—tl()z;‘"un (t)ey is convergent in D(A~?) uniformly in
t € [0, T]. For that reason, the function /3 “u is differentiable, so keeping in mind
(2.4), we get

_ d 5 o
D u(t,) = EI"2+ u(t,-)

o0
= Z [(u1.en) Ea(—Ant®) — (U2, €n)Ant® " Eqa(—Ant®)]en.

n=1

that is, (3.6). Since Dg‘;l u € C([0, T]; D(A~Y)), from (3.6), it follows that
o0
Dy u(0.) = lim DE u(r.) =) (ur.enen = ur.

n=1

Using again (2.13), we obtain
_ 2 _
HDg—i-l u(t, ) ||L2(Q) = C””l”iz(g) + Ct* 2”“2”?_16(9),
and hence,
T
- 2 -
/(; “ Dg-i-l M(Z, ) HLZ(Q) dt S C”Ml ”iZ(Q) + CTa 1”“2”?{3(9)’

thatis, D7 u € L2(0, T; L*(Q)).
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Afterwards, if ¢ = Y 72| (¢, en)e, belongs to Ho1 (£2), then due to (3.6), we have

/Q DS‘;I u(t, x)p(x) dx

= Z [(”1, en) Eq(=Ant®) — An (”2,en)ta_lEa,a(_knta)](‘p’en>~

n=1

We observe that (2.15) and (2.17) yield

d
—(Dg3  u(t. ). en)

3.13
(3.13) T
= _)tn[(ul, en)[a_lEa,oz(_knla) + <u2aen>ta_2Ea,a—l(_lnla)]a
and hence
. d a—1

(3.14) Zd— Doyt u(t, ). en)(@. en)

X1
=_Zkr%[(uhen)ta_lEa,a(_Anza)+(UZ,en)ta —2E Eqo-1(=2 ta)] (QD en).

n=1

Thanks to (2.13) and (2.19), we get

o0
3" Anl(ur.en)t T Eqa(=Ant®) + (U2, e0)1* 2 Eq g1 (~Ant®)|”

00 » /\%Z% 2 > 2
<Cr*2 ) [(ur.en) (m) +Cr2 Y A2 en)|
n=1 "

n=1

= Cta_2||u1||22(g) + Ctza_4||u2“2

H}(Q)
Since a > 3 from (3.14), we deduce
T | d
/ 3 GilDE ue . alt e
0 t

that is, 300 | (D& u(t. ). en) (@, en) belongs to L'(0, T). Therefore, for any
t € [0, T], we have

/ Zd (Dot u(s. ). en)(@. en dS—Z/ (D& u(s, ). en){@. en)ds

=/D8‘;1u(t,x)ga(x)dx—/ u(x)e(x)dx.
Q Q
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As a consequence, the function 1 — [ Dg‘j_l u(t, x)e(x) dx is absolutely continuous
and, thanks to (3.14), its L'— derivative is given by

d

- a—1
dt/QD(H' u(t, x)e(x)dx

oo

1 1
= —Z Az [(ul, en)t® VEq o (—Ant®) +(uz, en)t“_zEa,a_l(—/\nt“)])L,% (p,en).
=1
On the other hand, by (3.4), we get
/ Vu(t,x) - Vo(x)dx
Q
X1 1
= Z Ai [(ul, en)[a_lEa,a(_)Lnla) + (u2, en>ta_2Ea,a—1(_knta)])‘r% (@, en),

and hence, for a.e. t € (0, T), we have

d

—/ Dg;lu(t,x)ga(x)dx—l—/ Vu(t,x) - Vo(x)dx = 0;
dt Q Q

that is, (3.2) holds and % Jo D& u(t, x)p(x)dx € L2(0,T).

In conclusion, u given by (3.4) is the weak solution of (3.1) satisfying the initial
data (3.5).

(ii) We assume u; € Hy () and u, € H*(2) N Hy (). We prove the regularity
results about the weak solution u arguing as before and using again (2.13) and (2.19).
First, we obtain

T
2 — —
[ Iy 4t = €T il g+ €T izl

thatisu € L2(0, T; H?*(2)).
To prove the regularity of Dg_ u, taking into account (2.5), we have to differentiate
formula (3.6). Indeed, from (3.13), we deduce

T 00 d 2
(3.15) / —(Dg‘_1 u(t,-), enle dt
0 ’; dt + nn L2(Q)
5 CTa_l ||u1 ||§{6(Q) + CTza_?,”uZ”ZZ(Q).

Therefore, the function Dﬁ‘;l u(t, -) is absolutely continuous and, also because of
(3.13), its derivative is given by

d
EDg-‘rl u(ta )

o0
= - Z An[(“l, en)ta_lEa,a(_ln[a) + (u2, en)ta_zEa,a—l(_Anta)]en-
n=1
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Since Dy, u = % D(‘;‘J:l u, the formula (3.7) is true. Finally, the inequality (3.15)
guarantees Dg U € L?(0,T; L?(2)) and (3.8) follows from (3.2) and the regularity
of the solution u. ]

3

4. REGULARITY IN THE INTERPOLATION SPACES WHEN ¢/ > 5

We establish a result on the regularity of weak solutions by assuming that the data 1,
and u, belong to interpolation spaces connected to the Laplace operator.

THEOREM 4.1. Assume o > % Forui,Vu, € D((—A)*), ug > 0, the unique weak
solution u to (3.1)—(3.5) given by (3.4) satisfies the following:

(i) for0 € (e, 25> + ta),

@41 Vulr2.r:p1-a)y < C(luillp=ayma) + IVuzllpi-ayma)).
(i) for6 € 5t — tas 3 — [ta),

4.2) ID§; ullL20.7:D(-a)-0y) < C(lurlpayme) + 1 Vuzllp(-ayma)).

for some constant C > 0.

Prookr. (i) In virtue of the expression (3.4) for the solution u, we have

@3) |Vult.) 5 am

oo
= Z /\,11+20’<u1a en>ta_1Ea,a(_Anta) + (u2, €n>ta_2Ea,a—l(_/\nza)|2
n=1

o0
< 20272 57 A2 () ey) B (— 2t ™)

n=1
> 2
+ 2124 Z )L,l1+29 | (ua, en>Ea,a—1(_)ana)| .
n=1

To estimate the first sum, we use (2.13) and keep in mind that u; € D((—A)*2), so
we get

N 0 . 0o 5 A1+2(9—Mo¢)
n
2 A2 en) Bua(=2ut )| = € A3 nen) [ s
n=1 =l
Since

A,I,H(e_“”) (An;a)%”—““ > —a—2a(0—pa)
= t ¢ ’
(I + A2 ( L+ Ant® )
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assuming e < 6 < % ~+ [Lq, we can apply (2.19) to have

@4) Y A2\ en) Eaa(—Ant®)|?

n=1

o0
—_— _ 2 e B
< Cro20@mned N2 (4 e,) T = Co70 21 |y |12 -

n=1

To evaluate the second sum in (4.3), we again use (2.13). Bearing in mind that Vu, €
D((—A)*), we have

Aﬁ(e_ﬂa)

o~ o0
SO AN 2| (s, €0) Bt (—Ant®)|” < € ZA},+2ua|(uz,en)|2m.

n=1 n=1

We note that

A%(G—Ma) (kn[a)é’—ua 2 206 N
= (eI ),
(1 + Apt%)? ( [+ Ant® )

Thanks to g < 6 < % + o and (2.19), we obtain

o0
2 _ —_
D AT (s en) B a1 (—Aat®)|” < Ct722CH | Van |3 gy

n=1

Plugging the previous estimate and (4.4) into (4.3) yields

| Vu(.) ||2D((—A)9)

< Crom 272007 na) |y ||2D((—A)Ma) + Ct2a_4_2a(9_ua)||VU2||%((_A)M)-

Fora —1—2a(0 — ,ua) >0and 20 — 3 — 2a (0 — pg) >0, we obtain that Vu belongs

to L2(0, T; D((—A)?)). Since o < 2, we have 2"‘ 3 < W’ and hence we must take

0 < 2“ 3 | lie, which is consistent with the preV10us condition 0 < —I— Ue- In

conclus1on (4.1) follows.
(ii) In proving the estimate, we follow the same lines of reasoning used above.
Thanks to (3.7), one has

4.5 || Dgy u(,-) ||21)((—A)—0)

)
= Z Aﬁ_ze | (ul,enﬁa_lEoe,a(_knta) + (u2, en)l‘m_ont,ot—l(_)tn[o‘)|2

[e.e]
<2072 3" 2272 (uy ) Eqa(—Ant®)|”

n=1

(o.¢]
+202274 372272 1y ) Bt (—Ant )|

n=1
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The first sum can be evaluated as follows:
/‘\2_2(9+Ma)
n

Z}Li_ze“ul,en)Ea,a(_lnta)P =C ZA’%M“M’%”ZW.

n=1 n=1

Since

2—2(0+pnqa) — o 2
kn . _ (/\nta)l Ot pa) t2a(9+ua)—2a
(1 + A,t)2 1+ Apte ’
we have
o0
@6) > 2272 (ur en) Eqa(—Ant®)|* < Cr22OFRO=2 )y 2

n=1

Regarding the second sum in (4.5), we note that

. 9 . oo ) AI—Z(G—HJ«&)

- n
D4z en) Baer (nt®)] = € A2 ) PG
n=1 =

and

1-2(0+ ey 1_ O\ 2

I 20T Ot )2 OEON ot
(1 + X,1%)2 14 A,t® '
Taking 6 < % — o, WE get

[e.e]
pa— 2 -
2 A2 (2 en) Eaat (= Ant®)|” = C¥ OO Vuta | g

n=1

By inserting the previous estimate and (4.6) into (4.5), we obtain

| DG (. ) Hi)((—A)—")
< Cr2Hna) 2|y, ||2D((—A)Ma) + Cl‘za(eﬂ/““)_m_“||Vu2||2D((_A)ua)-

So, DY, u(t,) € L2(0, T; D((=A)~?%)) if 2a(0 + pg) — 1 > 0 and 20(0 + pq) +
o —3 >0, thatis, 6 > 32;;‘ — g In conclusion, (4.2) is proved. ]

REMARK 4.2. In Theorem 4.1, we can take Mo = 0. In that case we have ui, Vuy €

L?(S2), (4.1) holds for 8 € (0, 2 , ). We note that
2a 3 20{ 3 < 3—a
2a

the intervals (0,
thanks to o < 2.
To prove the trace regularity result, it is essential that the estimates (4.1) and (4.2)

~>) and (=1 s 2) have no common points because

hold for the same value of 6. For this reason, we must choose a suitable value of g >0
such that the intersection of the intervals (j4, =5 2“ 3 + e)and ( — g % — llg) i
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1

3 5~ Ha

§ 200 — 3

3 2 + Ha

3—

i 2a Ha

| uc.

13 ) a

2 !

(a)£=07 ®) & =097
Figure 1. Non-empty intersections.

not empty. Consequently, we have to 1mpose — Ua < 20‘ 3+ g and g < 1 — ptg;
hence, we obtain the following condition % < Ug < %.

To provide further clarification, we consider the expression

_32-a)f | 1§
=" 2

with £ € (0, 1).

04

As shown in Figure 1, we can observe the non-empty intersection of the intervals for
two distinct values of &.

5. TRACE REGULARITY RESULTS

In this section, we follow arguments similar to those implemented in [8] for wave
equations. First, we single out some technical results that we will use later.

LemMA 5.1. Foru € H?(Q) and a vector field h : @ — RN of class C*, one has

1
6.1 /Auh-Vudx:/ [8,,uh~Vu——h'v|Vu|2]do
Q Ble} 2

—Z/Bh dudjudx + = fZah |Vul® dx.

i,j=1

Proor. We integrate by parts to get

5.2) /Auh-Vudx:/ avuh~Vudo—[Vu~V(h~Vu)dx.
Q Q2 Q
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Since
N
/w.v(h.w)dx= > / d;u d; (h;dju) dx
Q iio1/9
N N
=Y / 0iu d;hjojudx + Y / h; 9;ud; (d;u) dx,
ij=1"% i,j=1"%

we evaluate the last term on the right-hand side again by an integration by parts, so we
obtain

N 1 N N
> / hj Biuaj(aiu)dx=—2/ h; aj(Z(ai“)z)dx
Q 2o i=1

i,j=1
1 1 &
== h~v|Vu|2da——/ dih; |Vu|®dx.
2/39 2 Q; 7

Finally, combining the previous two identities with (5.2) yields (5.1). |

Let us keep in mind the symbol (-,-)_g 9, 8 € (0, 1), denoting the duality defined
in (2.9).

LemMma 5.2. Assume a € (1,2) and the weak solution u of
(5.3) Doy u(t,x) = Au(t,x) in(0,T)xQ

belonging to L*(0, T; H?(2) N H} () with Doy € L%(0,T; L*(RQ)). Then, for a
vector field h - @ — RN of class C' and 0 € (0, 1), the following identity holds true:

(5.4) / [avu(t,o)h~Vu(t,cr)—lh~v|Vu(t,cr)|2]dU
Elo} 2 N
:(Dg+u(t,.),h.Vu(t,-))_&e+ Z / 0ihj(x)0;u(t,x)dju(t, x)dx
ij=1"%

N
1
- 5/928,-11,- |Vu(l,x)|2dx, ae. t € (0,7).
Jj=1

Proor. Fix 6 € (0, 1); by means of the duality (-,-)_g,9, see (2.9), fora.e. t € (0,T),
we evaluate each term of the equation (5.3) in & - Vu(z, -) to get

(D8‘+u(t, ), k- Vul(t, -))_0,9 = (Au(l, ), k- Vul(t, '))—9,0'

Thanks to the regularity of the weak solution u and (2.11), the term on the right-hand
side of the previous equation can be written as a scalar product in L?(£2), so we have

(5.5) (Dg+u(t,-),h~Vu(t,-))_959 = /Q Au(t,x)h-Vu(t,x)dx.
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By evaluating the term [, Au(t,x) h- Vu(t, x) dx with Lemma 5.1, from (5.1), we
deduce

/ [avu(r,o)h-w(z,o)—lh-v|w(z,o)|2]da
90 2

N
=/ Au(t,x)h-Vu(t,x)dx + Y / dihj (x)d;u(r, x)dju(t, x) dx
Q Q

ij=1
1 N

__/ 33k [Vut, ) dx.
2Jo &

We conclude from (5.5) that (5.4) is proved. ]

THEOREM 5.3. Letuy € H} (), uz € H*(Q) N Hy (Q), and u the weak solution of

5.6) Doy u(t,x) = Au(t,x) (t,x) €(0,T)xQ,
' u(t,x) =0 (t,x) € (0,T) x 92,

satisfying the initial data

(5.7) D§F u(0.) =uy, DT u(0,7) = u,.

Then, for any T >0, there exists a constant C = C(T') such that for any .y € (B(i;“) , %),

u satisfies the inequality

T
2
(5.8) / /{;Q |8vu| dodt < C(”u]”D((_A)Ma) + ||Vu2||D((_A)ua)).
0

Prookr. First, we note that by Theorem 3.3 (ii), the weak solution u to (3.1) given by
(3.4) belongs to L>(0, T; H*(Q) N Hy ()) and D, u(t,) € L*(0,T; L*(RQ)). In
particular, the normal derivative d,u is well defined.

We employ the identity in Lemma 5.2 with a suitable choice of the vector field /.
Indeed, we take a vector field 4 € C'(Q2;RY) satisfying the condition

h=v onadQ

(see e.g. [8] for the existence of such vector field /). First, we consider the identity
(5.4). Since
Vu = (dyu)v on (0,7T) x 9Q

(see e.g. [21, Lemma 2.1] for a detailed proof), the left-hand side of (5.4) becomes

1 2
E/{m |8Vu(t,0)| do.
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If we integrate (5.4) over [0, T'], then we obtain
T 5 T
| [ oo dodr =2 (g, u. b Vuto)y, de
0 Q2 0 ’

N T
+2 Z/O /Qaihj(x)aiu(z,x)aju(z,x)dxdz

i,j=1
T N

—[ [Zajhj|Vu(t,x)|2dxdt.
o Jaim

Since h € C1(Q;RY) from the above inequality, we get

(5.9 ldvull20.r:200) < CIDSL ull20.7:pa-0y) + IVUullL20.7:D(40)))-

for some constant C > 0.

To apply Theorem 4.1, since pq € (3(3&“), i), we can choose

0 c 200 — 3 n ﬂ 3—« 1
/"Ldﬂ Z(X /"L(Z 2(X /"Lllvz /La

see Remark 4.2. So, we get D§, u € L2(0, T; D(A~%)) and Vu € L2(0, T; D(4%));
hence, from (5.9), (4.2), and (4.1), we deduce (5.8). ]

THEOREM 5.4. Let uy, Vup € D((—A)*) with 3(3&“) < Ug < %. If u is the weak

solution of (5.6)—(5.7), then we define the normal derivative d,u of u such that for any
T > 0, we have

T
10y [ [ o dodr = € (nlloespe) + 1V2lp-syee)
0
for some constant C = C(T) independent of the initial data.

Proor. Foru; € Hy(2) andup € H?(Q2) N H{ (), denoted by u the weak solution
of problem (5.6)—(5.7), thanks to Theorem 5.3, the inequality (5.10) holds for any
T > 0. By density, there exists a unique continuous linear map

£ D((=A)*@) x D((—A)3HHe) — .2

loc

((0, 00); L*(3S2))
such that
Luruz) = du  VY(ur,uz) € Hy(Q) x (H*(Q) N Hy (Q))

and

T
| [ 2 Pdoa < ¢ (lunllospe + 19uzlosyee).
0
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for any uy, Vup € D((—A)*). Consequently, we adopt the standard notation d,,u in
place of £(u1, uz), which leads to (5.10) holding. [

REMARK 5.5. We observe that the assumption u1, Vi, € D((—A)H*) with % <

Mo < § is weaker than assuming u; € Hg (Q) and up € H*() N H} (), due to

HL(Q) = D((=A)?) € D((=A)#) C D((—A)").

6. FURTHER PROPERTIES

In this section, we establish the decay rate of so-called energy for the Riemann—Liouville
problem.

Next, we investigate the duality existing between the Caputo problem and the
Riemann-Liouville problem following an approach similar to that of J.-L.. Lions [12,13]
for the case of the wave equation.

6.1. Decay rate of energy

The analysis of the decay rate in L2-norm started from the case & € (0, 1) for the problem
involving the Caputo fractional derivative instead of the Riemann-Liouville fractional
derivative, see [31] and also [9]. In [30], the authors established the decay rate in L2-
norm when « € (1,2). This result was improved in [33], in the case o € (0,1) U (1, 2).

Acting similarly to [33], we prove the decay rate for the weak solution of the problem

Dyyu(t,x) = Au(t,x) (t,x)€(0,T)xQ,
6.1) u(t,x) =0 (t,x) € (0,T) x 99,
Dg‘;l u(0,-) = uy, DS‘;Z u(0,-) = us.

TueorREM 6.1. The weak solution

(6.2) u(t,x)= Z[(ul s en)ta_lEa,a (_/\nta) + (uz, en)ta_zEa,oc—l (_kn[a)]en (x)

n=1

of (6.1) satisfies
C C
(6.3) Hu(t, ) ”H2(9) < T||u1|| + [—2||u2||, foranyt > 0.

Proor. Since

2
’

o0
ez, ) quz(m = ng [(u1, en)1% " Eqa(—Ant®)+ (U2, €5)1% 7 Eq a1 (—Ant®)
n=1
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thanks to (2.13), we have for ¢t > 0,

> S ad > /\%l&a 4 o > /\%l&a
||u(tv')“H2(Q)§Ct Z|(ulven)| l—|—12t2°‘ +Ct Z|(u236n)| 1+A.2t2a'
n=1 n n=1 n
Therefore,
2 C C
||u(t7')||Hz(Q) < t_2||u1||2 + t—4||M2||27 for any 7 > 0,
that is, (6.3). [ ]

We observe that the estimate (6.3) does not depend on «.

6.2. Duality

Let T > 0 and £ be a bounded domain of class C2 in RV, N > 1, with boundary 9€2.
We consider the Caputo fractional diffusion-wave equation with o € (1, 2):

6.4) CD8‘+u(t,x) = Au(t,x) (t,x) € (0,T) x Q,
with null initial conditions

(6.5) u0,x) =u;0,x) =0 x e,

and boundary conditions

(6.6) ut,x) =g, x) (t,x)e0,T)x0Q.

We are interested in determining the dual system of the fractional differential problem
(6.4)—(6.6) also due to the uniqueness properties of the dual system.

For the meaning and study of duality in the context of control theory, we refer to
the seminal works [12, 13,29] and references therein.

In relation to the fractional differential case, one of the main difficulties is deter-
mining the function spaces in which to set the problem and an appropriate meaning for
the solution.

We introduce the adjoint system of (6.4)—(6.6) as

(6.7) {DT— w(t,x) = Aw(t,x) (t.x)€(0,T)xQ,

w(t,x) =0 (t,x) € (0,T) x 092,
with final data

(6.8) DE ' w(T,) = wi, D 2w(T,") = ws.
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Setv(t,x) = w(T —t, x), for any 8 > 0, we have
T
/ (s — )P w(s, x) ds
t

T T—t
=/ (s—z)ﬂ_lv(T—s,x)ds=/ (T —t —0)P (0, x) do.
t 0
Therefore,
15w, x)y =18 v(T —1t,x) B>0,
and hence,
D7_w(t,x) = Dyy v(T —1,x),
D' w(T, ) = D' (0, ),
D2 w(T,) = D2 v(0,).
The above considerations ensure that the backward problem (6.7)—(6.8) is equivalent
to a forward problem of the type (5.6)—(5.7). Thanks to Theorem 5.4, by appropriately
choosing the regularity of the final data w; and ws, the solution w of (6.7)-(6.8) will be
sufficiently smooth to guarantee that d,,w is well defined, allowing us to take g = d,w
in (6.6).
The nonhomogeneous problem (6.4)—(6.6) can be written in the form
CDS‘+ u(t, x) = Au(t, x) (t,x) e (0,T) x Q,
(6.9) u(0,x) =u;0,x) =0 x e Q,
u(t,x) = dyw(t, x) (t,x) € (0,T) x 022.

In a similar way to [12, 13], we show duality by introducing a suitable operator.

THEOREM 6.2. Let W be a linear operator defined as
(6.10) W(wr.wa) = (u(T. ), —us(T.)),

for wy, Vw, € D((—A)H) with 3(3‘—;“) < Mg < %, where u and w are the solution
of (6.9) and (6.7)—(6.8), respectively.
Then,

T
(6.11) (W (w1, ws), (wr, ws)) = / /m |8,w(t, x)|* dx dt.
0

Proor. We multiply the equation in (6.9) by the solution w(#, x) of the adjoint system
(6.7)—(6.8) and integrate on (0, T') x €2, that is,

T T
(6.12) / /CDg+u(t,x)w(t,x)dxdt=/ /Au(t,x)w(t,x)dxdt.
0 Q 1] Q
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Applying (2.7), we obtain for any x € €2,
T
(6.13) /CD8‘+u(t,x)w(t,x)dt
0
T T
:/ Ig_zautt(t,x)l,l)(l,x)dt = f Mtt(l,x)l%v:aW(t,x)d[.
0 0
Integrating twice by parts and taking into account that u(0, -) = u,(0,-) = 0, we have
T
(6.14) / Uz (2, x)I “w(t,x)dt
0
T ad
=ut(T,x)I%:°‘w(T,x)—/ u(t, x) 12 “Yw(t,x)dt
0
T
= u, (T, x) [2-%w(T, x) — u(T, x)—I “w(T, x)—i—/ u(t,x)D5_w(t,x)dt.
0

Since —1 < o — 2 < 0, we have I%:"‘w(T, X) = D%:z w(T, x), see (2.6). Moreover,
0 <a—1<1,s0by (2.4) we have

0
EI%Z"‘w(T, x) = DY  w(T, x).

Combining (6.13) with (6.14) yields
T
(6.15) / D, u(t, x)w(t, x)dt
0
T
= u, (T, x) D3> w(T, x) — u(T, x) DE_" w(T, x)+/ u(t,x)Dy_w(t, x)dt.
0
On the other hand, integrating twice by parts with respect to the variable x, we have
(6.16) / Au(t,x)w(t,x)dx = / u(t,x)Aw(,x)dx — [ u(t,x)o,w(t,x)dx.
Q Q Glo)
Putting (6.15) and (6.16) into (6.12), we get
T
/ f u(t,x)DF_w(t, x)dx dt
0o Ja

+ [ u0ps2wo dx— [ uTopg (. dx
Q Q

T T
:/0 /Qu(t,x)Aw(t,x)dxdt—/O Agu(f’x)avw(t,x)dxdt.
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We recall that w is the solution of the adjoint problem (6.7): keeping D7_ w = Aw
in mind, from the above equation, we have

/ u (T, x) D> w(T, x) dx — / u(T, x) D% w(T, x) dx
Q Q

T
= —/ / u(t, x)dyw(t, x)dxdt.
0 Q2

By the final data (6.8) of w and the boundary conditions satisfied by u, see (6.9), we
deduce that

(W(wr, wa), (wy, wy))
T
:/Qu(T,x)wl(x)dx—/Qut(T,x)wz(x)dx=/0 fag|8vw(z,x)|2dxdt;

hence, (6.11) is proved. [ ]
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