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Abstract. – In problems where a geometric object is the variable, the object can be identified
with the oriented distance function which can simultaneously deal with the smooth sets of classical
Differential Geometry and sets with a lousy boundary.

This paper reviews some properties of the distance function dA to a set A, the oriented
distance function bA D dA � d{A ({A, the complement of A), and the associated notions of
skeletons, b-crack, and crack. It gives the respective partitions of the boundaries @A and @.@A/
and the partition of the singularities of rbA. It turns out that the notion of b-crack is possibly
too broad since it also includes corners in the core boundary @ xA \ @{A of the set A. On one
hand, this analysis leads to the notions of crack-free sets and strongly crack-free sets and, on the
other hand, to the notion of cracked sets in Image Segmentation and Mathematical Morphology.

Keywords. – distance function, algebraic distance function, skeleton, cracks, singularities,
imaging, mathematical morphology.
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1. Introduction

In problems where a geometric object is the variable, the object can be identified
with a family of functions parametrized by sets, such as the characteristic function in
Geometric Measure Theory, the distance function in Non-smooth Analysis, the support
function in Convex Analysis, or the oriented distance function which can simultaneously
deal with the sets of classical Differential Geometry with smooth boundary and sets with
lousy boundaries [5, 8]. Such functions are each identifiable with an equivalence class
of sets. They play the same role of a state variable in Control Theory. Natural metrics
can be constructed on spaces or subspaces of such functions to measure the distance
between two objects and to induce topologies from which existence and characterization
of optimal objects can be obtained for design, identification, or control purposes. The
choice of the function and the metric is problem dependent and corresponds to specific
technological, physical, or geometric entities associated with the problem at hand.
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The distance function from x 2 X to a subset A of a Banach space X is defined as

dA.x/
def
D

´
infa2A ka � xk; if A ¤ ¿;
C1; if A D ¿:

When A¤ ¿, dA is Lipschitz continuous of constant one. The function dA is identified
with the equivalence class

ŒA�d
def
D ¹B � X W xB D xAº

and xA is the nice closed representative in the class ŒA�d .
The oriented distance function from x 2 X to A is defined as

(1) bA.x/
def
D dA.x/ � d{A.x/ D

8̂̂<̂
:̂
C1; if A D ¿;
2 R; if @A ¤ ¿;
�1; if {A D ¿;

where {A D XnA. The function bA.x/ is finite in X if and only if @A ¤ ¿. In that
case, bA is Lipschitz continuous of constant one and bA coincides with the following
algebraic distance function to the boundary of A:

(2) bA.x/ D

8̂̂<̂
:̂
dA.x/ D d@A.x/; x 2 int {A;
0; x 2 @A;

�d{A.x/ D �d@A.x/; x 2 intA:

The function bA is identified with the finer equivalence class

ŒA�b
def
D ¹B � X W @B D @A and xB D xAº:

In general, there is no nice open or closed representative of A in ŒA�b . It provides a
level set description of the set A whose boundary @A coincides with the zero level set
of bA. Noting that b{A D �bA, it means that we have explicitly chosen the negative
sign for the interior of A and the positive sign for the interior of its complement. So bA

is an increasing function from its interior to its exterior.
For subsets of the N -dimensional Euclidean vector space1 RN with a C 2 boundary,

the restriction of the gradient rbA to @A coincides with the outward unit normal to @A
and the Hessian matrix D2bA.x/ is the second fundamental form with eigenvalues 0
for the subspace spanned by the normal rbA.x/ and the N � 1 principal eigenvalues
for the tangent space to @A at x.

(1) RN is endowed with the inner product .x; y/ def
D
PN

i�D1 xiyi and norm kxk def
D
p
.x; x/.



singularities of distance functions, skeletons, and the notion of cracks 67

Another big advantage of bA over dA is for the constraint x 2 xA. The equality
constraint dA.x/ D 0 is equivalent to the inequality constraint bA.x/ � 0 which is
much less demanding (see [5, Eqs. (5.19) and (5.20) and Thms. 5.7–5.9]) in the context
of constrained optimization since a theorem of the Kuhn–Tucker type for inequality
constraints can be used over a Lagrange multiplier theorem for equality constraints.

In this paper, we focus on the oriented distance function which can provide an ana-
lytical characterization of the whole range of subsets of the N -dimensional Euclidean
vector space RN from the smooth sets of classical Differential Geometry to the lousy
sets with irregular boundaries encountered in Mechanics and Image Processing.

Sections 2 and 3 recall some properties of distance and oriented distance functions
and the associated notions of skeleton, crack, and b-crack [8]. Section 4 gives the
respective partitions of the boundaries @A and @.@A/. Section 5 gives the partition
of the singularities of rbA in relation with the partition of @.@A/. Section 6 relates
the oriented distance function to the broader partition of @A. Section 7 revisits the
notion of b-crack which is probably too broad since it also includes corners in the core
boundary @ xA \ @{A of the set A. From this we introduce two notions: crack-free sets
and strongly crack-free sets. In the later case, they are characterized by the property
that bint A D bA D b xA. They are a generalization to sets with a non-empty boundary of
the notion of Carathéodory set for open sets introduced by Henrot [13] in 1994. For
a strongly crack-free set A, there is both a nice open and a nice closed representative
in the equivalence class ŒA�b . At the opposite, we have families of cracked sets with
applications in Image Segmentation [7, Def. 3.2, p. 37] and Mathematical Morphology
(Rivière [19], Matheron [17], and Serra [20]), but this is beyond the scope of the present
paper.

In the remainder of this paper, RN is the N -dimensional Euclidean vector space
endowed with the Hilbertian inner product and norm as defined in Footnote 1.

2. Distance function

In this section, we recall definitions and some properties of the distance function.

2.1. Projection onto xA, skeleton, and cracks

For a non-empty subset A of RN , the set of singularities of the gradient of dA can be
partitioned into the skeleton2 and the set of cracks of A.

(2) Our definition of a skeleton does not coincide with the one used in morphological
mathematics where it is defined as the closure Sk.A/ of our skeleton Sk.A/ (cf. for instance,
Matheron [17] or Rivière [19], and Serra [20] for the pioneering applications in mining engineering
in 1968 and later in image processing).
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Definition 1 ([8, Def. 2.1, pp. 279–289], [5, Def. 4.6, p. 1935]). Let A ¤ ¿ be a
subset of RN .

(i) The set of singularities of the gradient of dA

Sing.rdA/
def
D
®
x 2 RN

W rdA.x/ À
¯
:

(ii) Given x 2 X , a point p 2 xA such that jp � xj D dA.x/ is called a projection
onto xA. The set of all projections onto xA will be denoted by

…A.x/
def
D
®
p 2 xA W jp � xj D dA.x/

¯
:

When …A.x/ is a singleton, its unique element is denoted by pA.x/.

(iii) The skeleton of A is the set of all points of X whose projection onto xA is not
unique. It will be denoted by

Sk.A/ def
D
®
x 2 RN

W …A.x/ is not a singleton
¯
:

(iv) The set of cracks is defined as the complement of Sk.A/

Ck.A/ def
D SingrdAnSk.A/:

Note that Sk. xA/ D Sk.A/, Ck. xA/ D Ck.A/, and Sing. xA/ D Sing.A/ since dA D d xA.

Remark 1. For all x 2 xA, …A.x/ D ¹xº is a singleton and

8x 2 RN
n xA; ¿ ¤ …A.x/ � { xAn{ xA D @ xA:

We shall see in equation (3) of Theorem 1 (iii) that

Sk.A/ D
®
x 2 RN

n xA W rd2
A.x/ À

¯
D
®
x 2 RN

n xA W rdA.x/ À
¯
I

that is, Sk.A/ coincides with the singularities of rd2
A (resp. rdA) in RN n xA.

Example 1. Even for a set A with smooth boundary @A, the gradient rdA.x/may not
exist far from the boundary as shown in Figure 1, whererdA.x/ exists and krdA.x/kD

1 everywhere outside xA except on Sk.A/, a semi-infinite line. Here, Ck.A/ D @A. In
contrast for a square S in R2, Sk.S/ D ¿ and Ck.S/ D @S .

2.2. Singularities of rdA, projections, and cracks

We first recall some results from [8, Thm. 3.3, Chap. 6, pp. 283–285].

Theorem 1. Let ¿ ¤ A � RN .

(i) If A ¤ ¿, the set …A.x/ is non-empty, compact,

8x … xA; …A.x/ � @ xA; and 8x 2 xA; …A.x/ D ¹xº:
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Sk.A/

Sk.{A/

A

Figure 1. Skeletons Sk.A/, Sk.{A/, and Sk.@A/ D Sk.A/ [ Sk.{A/.

(ii) The function

x 7! fA.x/
def
D
1

2

�
kxk2 � dA.x/

2
�
W RN

! R

is convex, finite, and Hadamard3 semidifferentiable and hence d2
A is Hadamard

semidifferentiable:

dHd
2

A.xI v/ D inf
p2…A.x/

2.x � p/ � v and dHfA.xI v/ D sup
p2…A.x/

p � v:

rd2
A.x/ exists if and only if …A.x/ D ¹pA.x/º is a singleton. In that case,4

pA.x/ D rfA.x/ D x �
1

2
rd2

A.x/

and
Sk.A/ D

®
x 2 RN

W rd2
A.x/ À

¯
:

(iii) Since Sk.A/ � RN n xA,

(3) Sk.A/ D
®
x 2 RN

n xA W rd2
A.x/ À

¯
D
®
x 2 RN

n xA W rdA.x/ À
¯
:

If rdA.x/ exists at x 2 xA, then rdA.x/ D 0. In general,

(4) xA D
®
x 2 xA W rdA.x/ À

¯
[
®
x 2 xA W rdA.x/ D 0

¯
and rdA.x/ D 0 can occur at a boundary point x 2 @ xA (see Example 2 below).

(3) See the appendix for the definition of Hadamard semidifferentiability and differentiability
and some properties.

(4) This is only true when RN is endowed with the Hilbertian inner product and norm as
defined in Footnote 1 (see [6, Sec. 5, p. 1354] for a counterexample).
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(iv) The functions d2
A and dA are differentiable almost everywhere and

mN

�
Sk.A/

�
D mN

�
Ck.A/

�
D mN

�
Sing.rdA/

�
D 0;

where mN is the N -dimensional Lebesgue measure. Moreover, the set Sk.A/ is
countably N � 1 rectifiable.5

(v) For @A ¤ ¿,
Sk.@A/ � RN

n@A; Ck.@A/ � @.@A/:

If @A D ¿, then A D RN . The case A D ¿ is ruled out by assumption.

(vi) Given A � RN , ¿ ¤ A (resp., ¿ ¤ {A),

� xA.x/D1 �
ˇ̌
rdA.x/

ˇ̌
; �int {A.x/D

ˇ̌
rdA.x/

ˇ̌
in RN

nSing.rdA/�
resp., �

{A
.x/D1 �

ˇ̌
rd{A.x/

ˇ̌
; �int A.x/D

ˇ̌
rd{A.x/

ˇ̌
in RN

nSing.rd{A/
�

and the above identities hold for almost all x in RN .

From property (4), rdA.x/ does not exist or rdA.x/D 0 at points on the boundary
@ xA. The next example shows that rdA.x/ D 0 can occur at a cusp x 2 @ xA.

Example 2. Let BCDB1.1; 0/ and B�DB1.�1; 0/ in R2 and ADBC [ B�. Then,

intA D A D BC [ B�; xA D BC [ B�; int xA D BC [ B�;

{A D {BC \ {B� D {A; @A D @ xA D @BC [ @B�:

There is a cusp at the point .0; 0/ where rdA..0; 0// D 0. For directions such that
kvk D 1 and v ¤ .0;˙1/ and t > 0 small, .0; 0/C tv 2 A, dA..0; 0/C tv/ D 0, and

lim
t&0

dA

�
.0; 0/C tv

�
� dA

�
.0; 0/

�
t

D 0:

For v D .0;˙1/ and t > 0, .0; 0/C tv D .0;˙t /, dA..0;˙t // D
p
12 C .˙t /2 � 1

and

lim
t&0

dA

�
.0; 0/C tv

�
� dA

�
.0; 0/

�
t

D lim
t&0

p
12 C t2 � 1

t
D 0:

Since dA is Lipschitzian and v 7! ddA..0; 0/I v/ is linear, rdA..0; 0// exists [3,
Def. 3.4 (iii), p. 1048, Thm. 3.10, p. 1952]. rdA.x/ does not exist at other points of @A.

(5) This is a consequence of the results in L. Zajíček [22]. The topological structure of the
skeleton Sk.A/ was studied in A. Lieutier [15]. His result was generalized (and improved) to
the Riemannian setting in P. Albano, P. Cannarsa, K. T. Nguyen, and C. Sinestrari [1] and P.
Cannarsa, W. Cheng, and A. Fathi [2].
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Therefore, Sk.A/, Ck.A/, and Sing.rdA/ are not closed subsets of R2

Sk.A/ D
®
.x; 0/ W x ¤ 0

¯
� RN

n xA; Ck.A/ D @ xAn
®
.0; 0/

¯
� @ xA;

Sing.rdA/ D
®
.x; 0/ W x ¤ 0

¯
[
�
@ xAn

®
.0; 0/

¯�
and we have a neat partition of the singularities of rdA.

If we change the definition of the skeleton Sk.A/ to Sk.A/ as in Morphological
Mathematics (see Footnote 2), we get

Sing.rdA/ D Sk.A/ [ Ck.A/; Sk.A/ \ Ck.A/ D ¿:

We could also use the closure of Ck.A/

Sing.rdA/ D Sk.A/ [ Ck.A/; Sk.A/ \ Ck.A/ D ¿:

Is a cluster point of Sing.rdA/ also a cluster point of both Sk.A/ and Ck.A/ for an
arbitrary subset A?

3. Oriented distance function

3.1. Properties

Theorem 2 ([8, Thm. 2.1, Chap. 7, pp. 337–338]). Let A and B be subsets of RN .
Then, the following properties hold:

(i) A ¤ ¿ and {A ¤ ¿, @A ¤ ¿.

(ii) Given A and B ,

A � B ” bA � bB ” xA � xB and {A � {B;

bA D bB ” xB D xA and {A D {B ” xB D xA and @A D @B:

In particular, b xA � bA � bint A and

b xA D bA ” @ xA D @A and bint A D bA ” @ intA D @A:

(iii) jbAj D dA C d{A D max¹dA; d{Aº D d@A and @A D ¹x 2 RN W bA.x/ D 0º.

(iv) bA � 0, {A � @A � xA, @A D xA.

(v) bA D 0, {A D @A D xA, @A D RN .

From Theorem 2 (i), the function bA is finite at each point if and only if @A ¤ ¿.
This excludes A D ¿ and A D RN . The zero function bA.x/ D 0 for all x in RN

corresponds to the equivalence class of sets A such that @A D RN :

bA D 0 ” dA D d{A ”
xA D {A ” xA D @A D {A ” @A D RN :
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This class of sets is not empty. For instance, choose the subset A D QN of points of
RN with rational coordinates or the set of all lines parallel to one of the coordinate
axes with rational coordinates.

3.2. Singularities of rbA, projections onto @A, and b-cracks

We also have a connection between the gradient of bA and the projection onto @A and
the characteristic functions associated with @A, singularities of the gradients, and the
notions of skeleton and b-cracks.

Definition 2 ([8, Chap. 7, Sec. 3, p. 344]). Let A � RN , ¿ ¤ @A, and the notation

Sing.rbA/
def
D
®
x 2 RN

W rbA.x/ À
¯

for the set of singularities of the gradient of bA,

…@A.x/
def
D
®
z 2 @A W jz � xj D d@A.x/

¯
D
®
z 2 @A W jz � xj D

ˇ̌
bA.x/

ˇ̌¯
for the set of projections of x onto @A (when…@A.x/ is a singleton, the unique element
is denoted by p@A.x/), and for the skeleton of @A,

Sk.@A/ def
D
®
x 2 RN

W …@A.x/ is not a singleton
¯
:

Sinced@A.x/D jbA.x/j, from Theorem 1 (ii),rb2
A.x/ exists if and only if…@A.x/D

¹p@A.x/º is a singleton. In that case,

p@A.x/ D x �
1

2
rb2

A.x/:

In general, the functions bA and d@A are different and Sing.rbA/ is smaller than
Sing.rd@A/ D Sk.@A/ [ Ck.@A/. As a result, using the oriented distance function bA

rather than d@A requires a new definition of the set of cracks with respect to bA.

Definition 3 ([8, Def. 3.1, Chap. 7, p. 344]). Given A � RN , ¿ ¤ @A, the set of
b-cracks6 of A is defined as

Ckb.A/
def
D Sing.rbA/nSk.@A/

and the core boundary of @A as @cA
def
D @ xA \ @{A.

(6) It may be interesting to get a fine upper bound of the Hausdorff dimension of Ckb.A/

and some information on its topological structure. For instance, the topological structure of
the skeleton was studied in A. Lieutier [15]. His result was generalized (and improved) to the
Riemannian setting in P. Albano, P. Cannarsa, K. T. Nguyen, and C. Sinestrari [1] and P. Cannarsa,
W. Cheng, and A. Fathi [2].



singularities of distance functions, skeletons, and the notion of cracks 73

Intuitively, the boundary @A of a set A is made up of interior cracks and exterior
cracks where rbA.x/ does not exist and the core boundary where rbA.x/ may or may
not exist as illustrated in the next example.

Example 3. The setA in Figure 2 consists of the disk minus the eyes, nose, and mouth
(interior cracks int xA\ @A) plus the rays outside the disk (exterior cracks int {A\ @A).
The boundary @A consists of the interior boundary int xA \ @A, the exterior boundary
int{A\ @A, and the core boundary @ xA\ @{AwhererbA.x/ exists and krbA.x/kD 1.
Note that int @A D ¿ and hence @A D @.@A/ D @ xA [ @{A.

A

core boundary
@ xA \ @{A @A D @.@A/ D @ xA [ @{A

Figure 2. Smiling sun A, internal and external boundaries, core boundary, and boundary @A.

Remark 2. (1) The set of b-cracks is larger than what would intuitively be perceived
as a set of cracks. For instance, for an open square in R2, the four corners are b-cracks.

(2) In general, Ckb.A/ � Ck.@A/, but Ckb.A/ can be strictly smaller than Ck.@A/.
Consider the open ball of unit radius A D B1.0/ in RN :

bA.x/ D kxk � 1; rbA.x/ D
x

kxk
; D2bA.x/ij D

1

kxk

�
ıij �

xi

kxk

xj

kxk

�
;

Sing.rbA/ D ¹0º; Sk.@A/ D ¹0º; and Ckb.A/ D ¿:

For all x 2 @A, rbA.x/ is the outward unit normal at x, and D2bA.x/ is the second
fundamental form with eigenvalue 0 for the subspace spanned by the normal rbA.x/

and repeated eigenvalues 1 for the tangent space to @A at x which is orthogonal to
rbA.x/. But d@A.x/ D jkxk � 1j, and

Sing.rd@A/ D ¹0º [ @B1.0/; Sk.@A/ D ¹0º; and Ck.@A/ D @B1.0/

as compared to Ckb.A/D ¿. Using bA rather than d@A removes artificial singularities.
(3) In general, Sk.@A/ � RN n@A. If @A has positive reach h > 0 in the sense of

Federer [11], there exists h > 0 such that b2
A 2 C

1;1.Uh.@A// and the skeleton will
remain at least at a distance h from @A, where

Uh.@A/
def
D
®
x 2 RN

W
ˇ̌
bA.x/

ˇ̌
< h

¯
:
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In the sequel, the following technical lemma will be useful.

Lemma 3. Let A be a subset of RN .

(i) @.@A/D@ xA[@{A, int@AD int xA\int{A, and @ADŒint xA\int{A�[Œ@ xA[@{A�.
(ii) @ xA � @A, int.@ xA/ D ¿, and @A D @ xA [ .int xA \ @A/.

(iii) @{A � @A, int.@{A/ D ¿, and @A D @{A [ .int {A \ @A/.
(iv) int @.@A/ � int @ xA [ int @{A D ¿.

(v) In general, intAD int.intA/. For an open subset�,�D int� and x�D int.x�/.

Proof. (i) By definition, @A D int @A [ @.@A/ and

@.@A/ D @A \ {@A D xA \ {A \ {. xA \ {A/

D xA \ {A \
�
{ xA [ {{A

�
D xA \ {A \

�
{ xA [ {{A

�
D . xA \ { xA/ [

�
{A \ {{A

�
D @ xA [ @{A:

(5)

As for the interior of @A, int @A D {{@A D {{Œ xA \ {A� and

int @A D {
�
{ xA [ {Œ{A�

�
D {

�
{ xA [ {Œ{A�

�
D {{ xA \ {{Œ{A� D int xA \ int {A:

(iii) Firstly, @ xA D xA \ { xA � xA \ {A D @A. If int.@ xA/ ¤ ¿, there exists x 2 @ xA
and " > 0 such that B".x/ � @ xAD xA\ { xA and this yields the following contradiction:

B".x/ � int xA D {{ xA and B".x/ � { xA:

Finally, @A D @A \ xA D @A \ .@ xA [ int xA/ D @ xA [ .int xA \ @A/.
(iv) From (ii) with {A in place of A and the fact that @A D @{A.
(v) From the definition int @.@A/ D {{@.@A/ D {{Œ@ xA [ @{A�. Then,

int @.@A/ D {Œ{@ xA� \ Œ{@{A� � {
�
Œ{@ xA� \ Œ{@{A�

�
D {Œ{@ xA� [ {Œ{@{A� D int @ xA [ int @{A D ¿

from parts (ii) and (iii).
(vi) It is sufficient to prove it for an open set � and apply it to intA

� � x� H)

8<:{� � {x� H) {� � {x� H) ��{{x�

{x��{x� H) x��{{x�

9=; H) � � {{x�„ƒ‚…
Dint x�

� x�

and, after taking the closures, we get the equality of the closures. In particular, for an
open subset � of RN , � D int� and x� D int.x�/.
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4. Partition of the boundaries @.@A/ and @A

We now introduce partitions of the boundaries @.@A/ and @A, which reveals their
structure and the way the b-cracks are distributed. Recall from Lemma 3 (iv) that @.@A/,
@ xA, and int @{A as nowhere dense sets have an empty interior [10, p. 250].

Theorem 4. Let A � RN such that @A ¤ ¿.

(i) The set @.@A/ is partitioned as follows:

@.@A/ D
�
@.@A/ \ int xA

�
[
�
@.@A/ \ int {A

�
[ Œ@ xA \ @{A�

D
�
.int xA [ int {A/ \ @.@A/

�
[ Œ@ xA \ @{A�:

(6)

(ii) The set @A is partitioned as follows:

@A D
�
.int xA [ int {A/ \ @A

�
[ Œ@ xA \ @{A�

D int xA \ int {A„ ƒ‚ …
int @A

[
�
.int xA [ int {A/ \ @.@A/

�
[ Œ@ xA \ @{A�„ ƒ‚ …

@.@A/D@ xA[@{A

:

(7)

(iii) For an open subset � of RN , int @� D ¿, @.@�/ D @�, and

@� D Œ@� \ int x�� [
�
@� \ int.{�/

�„ ƒ‚ …
D¿

[
�
@x� \ @.{�/

�„ ƒ‚ …
D@x�

D Œ@� \ int x�� [ @x�:

(8)

(iv) @A D @ xA if and only if int @A D ¿ and @ xA � @.@A/; @A D @ intA if and only if
int @A D ¿ and @{A � @.@A/; in both cases, @A D @.@A/.

Proof of Theorem 4. (i) Consider the following identity:

@.@A/ D
�
@.@A/ \ int xA

�
[
�
@.@A/ \ int {A

�
[
�
@.@A/n.int xA [ int {A/

�„ ƒ‚ …
def
DX

:

It is a partition of @.@A/ since int {A \ int xA D ¿,X \ int xAD¿, andX \ int {A �¿.
By direct computation,

X D @.@A/n.int xA [ int {A/ D @.@A/ \
�
{ xA \ {{A

�
:

Note that @ xA D xA \ { xA and @{A D {A \ {{A yields

@ xA \ @{A D @A \ {A \ {{A
and

@A \ @.@A/ D xA \ {A \ @A \ {@A D @A \ {@A D @.@A/:
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Finally, from Lemma 3 (i), @.@A/ D .@ xA [ @{A/,

@.@A/ \ @ xA \ @{A D @A \ {A \ {{A

H) X D @.@A/ \ @ xA \ @{A D .@ xA [ @{A/ \ @ xA \ @{A D @ xA \ @{A:

(ii) The second equation is a direct consequence of part (i) and Lemma 3 (i). For
the first equation,

.int xA [ int {A/ \ @A D .int xA [ int {A/ \
�
@.@A/ [ int @A

�
D
�
.int xA [ int {A/ \ @.@A/

�
[
�
.int xA [ int {A/ \ int @A

�
:

But since int @A D int xA \ int {A,

.int xA [ int {A/ \ @A D
�
.int xA [ int {A/ \ @.@A/

�
[
�
.int xA \ int {A/

�
\ Œint xA [ int {A�

D
�
.int xA [ int {A/ \ @.@A/

�
[
�
int xA \ int {A„ ƒ‚ …
Dint @A

�
:

(iii) From (ii) since int @� D int x� \ int.{�/ D int x� \ {x� D ¿.
(iv) For the first assertion. (() From Lemma 3 (i) and (ii),

@ xA � @A D int @A„ƒ‚…
D¿

[ @ xA [ @{A D @ xA [ @{A D @.@A/ � @ xA„ ƒ‚ …
by assumption

and, as a result, @ xAD @AD @ xA[ @{AD @.@A/. ()) From Lemma 3 (ii), int.@ xA/D¿,

@.@A/ D @.@ xA/„ƒ‚…
@ xAD@A by assumption

[ int @ xA„ƒ‚…
D¿

D @ xA D @A„ ƒ‚ …
by assumption

D int @A [ @.@A/:

This implies that int @A D ¿ and @.@A/ � @ xA. The same proof holds for the other part
since @ intA D @{A and @A D @{A.

5. Partition of the singularities of rbA

Theorem 5. Let A � RN be such that @A ¤ ¿.

(i) The skeleton and the b-cracks can be characterized as follows:

Sk.@A/D
®
x 2 RN

W rb2
A.x/ À

¯
D
®
x2RN

n@A W rbA.x/ À and rb2
A.x/ À

¯
;

Sing.rbA/ D Sk.@A/ [
®
x 2 @.@A/ W rbA.x/À

¯
;

Ckb.A/ D Sing.rbA/nSk.@A/ D
®
x 2 @.@A/ W rbA.x/À

¯
:
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(ii) The set of singularities of rbA can be decomposed as follows:

Sing.rbA/ D Sk.@A/ [
®
x 2 .int xA [ int {A/ \ @.@A/ W rbA.x/ À

¯
[
®
x 2 @ xA \ @{A W rbA.x/ À

¯
and
.int {A [ int xA/ \ @.@A/ D

®
x 2 .int {A [ int xA/ \ @.@A/ W rbA.x/ À

¯
[
®
x 2 .int {A [ int xA/ \ @.@A/ W rbA.x/ D 0

¯
;

where the second set corresponds to cusps such that rdA.x/ D rd{A.x/ D 0.

Proof. (i) By (3) in Theorem 1 (ii) with @A instead of A and the fact that d2
@A
D b2

A,

Sk.@A/ D
®
x 2 RN

W rb2
A.x/ À

¯
:

But, since if rbA.x/ exists, then rb2
A.x/ D 2bA.x/rbA.x/ exists,

Sk.@A/ D
®
x 2 RN

W rb2
A.x/ À

¯
D
®
x 2 RN

W rbA.x/ À and rb2
A.x/ À

¯
:

The set of singularities of rbA can be decomposed as

Sing.rbA/ D
®
x 2 RN

W rbA.x/ À and rb2
A.x/ À

¯„ ƒ‚ …
DSk.@A/

[
®
x 2 RN

W rbA.x/ À and rb2
A.x/ 9

¯
:

In the second term, if rb2
A.x/ ¤ 0, then bA.x/ ¤ 0 and rbA.x/ exists. From this

contradiction, rd2
@A
.x/ D rb2

A.x/ D 0 and x 2 @A. Therefore,

Sing.rbA/ D Sk.@A/ [
®
x 2 @A W rbA.x/ À

¯
:

Furthermore, @A D @.@A/ [ int @A and rbA.x/ D 0 for x 2 int @A. Hence,

Sing.rbA/ D Sk.@A/ [
®
x 2 @.@A/ W rbA.x/ À

¯
;

Ckb.A/ D
®
x 2 @.@A/ W rbA.x/ À

¯
:

(ii) Recall from Theorem 4 (i) the partition of @.@A/:

@.@A/ D
�
.int xA [ int {A/ \ @.@A/

�
[ Œ@ xA \ @{A�;

which implies that®
x 2 @.@A/ W rbA.x/ À

¯
D
®
x 2 .int xA [ int {A/ \ @.@A/ W rbA.x/ À

¯
[
®
x 2 @ xA \ @{A W rbA.x/ À

¯
:
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For the first term,

.int xA [ int {A/ \ @.@A/ D .int xA \ @{A/ [ .int {A \ @ xA/:

If x 2 int xA\ @{A andrbA.x/ exists, thenrdA.x/D 0 andrd{A.x/ exists. But from
the characterization of @{A in (4),

@{A D
®
x 2 @{A W rd{A.x/ À

¯
[
®
x 2 @{A W rd{A.x/ D 0

¯
:

Then, rd{A.x/ D 0 and®
x 2 int xA\ @{A W rbA.x/9

¯
D
®
x 2 int xA\ @{A W rd{A.x/D 0 and rdA.x/D 0

¯
:

Similarly, for the other term int {A \ @ xA,®
x 2 int {A\ @ xA W rbA.x/9

¯
D
®
x 2 int {A\ @ xA W rdA.x/D 0 and rd{A.x/D 0

¯
and combining the two identities,

.int {A [ int xA/ \ @.@A/

D
®
x 2 .int {A [ int xA/ \ @.@A/ W rbA.x/ À

¯
[
®
x 2 .int {A [ int xA/ \ @.@A/ W rdA.x/ D rd{A.x/ D 0

¯
D
®
x 2 .int {A [ int xA/ \ @.@A/ W rbA.x/ À

¯
[
®
x 2 .int {A [ int xA/ \ @.@A/ W rbA.x/ D 0

¯
:

Finally, the set of singularities of rbA can be decomposed as follows:

Sing.rbA/ D Sk.@A/ [
®
x 2 @.@A/ W rbA.x/À

¯
D Sk.@A/ [

®
x 2 .int xA [ int {A/ \ @.@A/ W rbA.x/ À

¯
[
®
x 2 @ xA \ @{A W rbA.x/À

¯
:

To illustrate Theorem 5, we conclude with the following example.

Example 4. Let BC D B1.1; 0/ and B� D B1.�1; 0/ and A D Q2 \ .BC [ B�/ as
shown in Figure 3. Then, we have the following properties:

intA D ¿; xA D BC [ B�; {A D R2; @A D xA;

@.@A/ D @ xA D @BC [ @B�; int xA D intBC [ intB�; int {A D R2

H) @.@A/ \ .int xA [ int {A/ D @ xA D @BC [ @B� and @ xA \ @{A D ¿:
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B� D B1..�1; 0//

Sk.@A/ through .0; 0/
.0; 0/

BC D B1..1; 0//

Figure 3. Tangent sets B1.1; 0/ \Q2 and B1.�1; 0/ \Q2 at .0; 0/ showing part of Sk.@A/ D
¹.0; x2/ W x2 ¤ 0º [ ¹.�1; 0/; .1; 0/º.

Moreover, d{A D 0, bA D dA D dBC[B� , rdA.0; 0/ D rd{A.0; 0/ D 0, and

Sk.@A/ D
®
.0; x2/ W x2 ¤ 0

¯
[
®
.�1; 0/; .1; 0/

¯
; Sk.@A/ D Sk.@A/ [

®
.0; 0/

¯
;

Ckb.A/ D
®
x 2 @.@A/ W rbA.x/ À

¯
D .@BC [ @B�/n

®
.0; 0/

¯
;

Sing.rbA/nSk.@A/ D .@BC [ @B�/n
®
.0:0/

¯
:

To be compared with,

@.@A/ \ .int xA [ int {A/ D @ xA D @BC [ @B�;®
x 2 @.@A/ \ .int xA [ int {A/ W rbA.x/ 9

¯
D
®
.0; 0/

¯
;®

x 2 @.@A/ \ .int xA [ int {A/ W rbA.x/ À
¯
D .@BC [ @B�/n

®
.0:0/

¯
D Ckb.A/:

6. Relations to the oriented distance function

The partitions of @A in Theorem 4 indicate that the two potential candidates for the
definition of the set of cracks of a subset A of RN could be

(9) .int xA [ int {A/ \ @A or .int xA [ int {A/ \ @.@A/:

In general, the first one is strictly larger than the second which will not be a good
candidate.

Example 5. Let B be the open unit ball of center 0 in R2 and A D B \Q2. Then,

xA D xB; {A D R2; @A D xB; @.@A/ D @B; int xA D B; int {A D { xB

H)

´
.int xA [ int {A/ \ @A D .B [ { xB/ \ xB D B ¤ ¿;

.int xA [ int {A/ \ @.@A/ D .B [ { xB/ \ @B D ¿:

This is a pathological case where int @A D B ¤ ¿.
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It will turn out that the candidates (9) are both too large and that the right choice
for the set of cracks is®

x 2 .int xA [ int {A/ \ @.@A/ W rbA.x/ À
¯
:

Yet for a closed or an open set, the three coincide.
Nevertheless, what is specially interesting is that when the first one is empty, the

set can be completely characterized in terms of the oriented distance function.

Lemma 6. Let A � RN such that @A ¤ ¿. Then,

(i) intA � int xA and @ xA � @A,

(ii) @A D @{A and @ xA D @{ xA.

Proof. (i) int xA D int xA [ @ xA D xA D intA [ @A, intA � int xA, and @ xA � @A.
(ii) By definition,

@A D xA \ {A D {.{A/ \ {A D @{A:

Similarly, @ xA D @{ xA.

Theorem 7. Let A � RN such that @A ¤ ¿.

(i) The following statements are equivalent:

(a) int xA \ @A D ¿.

(b) @A D @ xA (which is equivalent to intA D int xA).

(c) d{A D d{ xA.

(d) bA D b xA.

(ii) The following statements are equivalent:

(a) int {A \ @A D ¿.

(b) @A D @ intA (which is equivalent to @{A D @{A).

(c) dA D dint A (which is equivalent to d{A D d{A
).

(d) bA D bint A.

(iii) The following statements are equivalent:

(a) .int xA [ int {A/ \ @A D ¿.

(b) @A D @ xA D @ intA (D @{A).

(c) d
{ xA D d{A and dA D dint A.

(d) bint A D bA D b xA.

Remark 3. From (iii) (b), @A D @ xA D @{A D @ xA \ @{A D @.@A/. Open or closed
subsets of RN with a smooth boundary satisfy the conditions of part (iii).
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Proof. (i) (a))(b) @A D @A \ xA D @A \ .@ xA [ int xA/ D @A \ .@ xA/ D @ xA.
(b))(c) @ xA D @A implies d@ xA D d@A and

d xA C d{ xA D d@ xA D d@A D dA C d{A H) d
{ xA D d{A:

(c))(d) b xA D d xA � d{ xA D dA � d{A D bA ) b xA D bA.
(d))(a) bA D b xA implies d@A D jbAj D jb xAj D d@ xA and @A D @ xA. Then,

int xA \ @A D int xA \ @ xA D ¿:

(ii) The same proof follows as in part (i) with A replaced by {A using the fact that
@A D @{A.

(iii) is a consequence of the equivalences in (i) and (ii).

Theorem 8. Let A � RN such that @A ¤ ¿.

(i) The following statements are equivalent:

(a) .int xA [ int {A/ \ @A D ¿.

(b) .int xA [ int {A/ \ @.@A/ D ¿ and int xA \ int {A D ¿.

(ii) If A is open or closed, then int xA\ int {A D ¿ and the following statements are
equivalent:

(a) .int xA [ int {A/ \ @A D ¿.

(b) .int xA [ int {A/ \ @.@A/ D ¿.

Proof. (i) Clearly, (b))(a). In the other direction, from Lemma 3 (i), int@AD int xA\
int {A and

.int xA [ int {A/ \ @A D .int xA [ int {A/ \ int @A„ƒ‚…
int xA\int {A

[ .int xA [ int {A/ \ @.@A/

D .int xA \ int {A/ [ .int xA [ int {A/ \ @.@A/:

(ii) If A D � is open, {� D {� and

int {� D int {� D {{{� D {{{� D {x�

int x� \ int {� D int x� \ {x� � x� \ {x� D ¿:

If A is closed, {A is open and from the previous case applied to {A:

¿ D int {A \ int {{A D int {A \ int xA:

Therefore, (a) is equivalent to (b).
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7. The set of cracks and crack-free sets

The terminology crack-free can be intuitively associated with a set A that does not have
pieces of its boundary that can be erased by the closure of the set and the closure of its
complement. For instance, an open set � in RN whose boundary is a C 0 submanifold
of dimension N � 1 is crack-free. That intuitive property rules out pathological sets
whose boundary has a non-empty interior and, a priori, sets whose boundary has a
non-zero volume.

From Theorem 5 (i) and (ii),

Ckb.A/ D Sing.rbA/nSk.@A/

D
®
x2@ xA\@{A W rbA.x/ À

¯
[
®
x2.int xA[ int {A/\@.@A/ W rbA.x/ À

¯
:

The set @ xA \ @{A is the core boundary of @.@A/ which can contain singularities at
corners. This means that Ckb.A/ is too large as a candidate for the notion of crack.

The other potential candidate from Theorem 7 (iii)

.int xA [ int {A/ \ @A

is even larger but, when it is empty, it can be characterized by oriented distance functions
and @A reduces to the core boundary

@A D @.@A/ D @ xA D @{A D @ xA \ @{A:

This brings up the following notions.

Definition 4. Let A � RN such that @A ¤ ¿.

(i) The set of cracks ofAwhich splits into the interior cracks and the exterior cracks:®
x 2 .int xA [ int {A/ \ @.@A/ W rbA.x/ À

¯
D
®
x 2 int xA \ @{A W rbA.x/ À

¯
[
®
x 2 int {A \ @ xA W rbA.x/ À

¯
:

(ii) The set A is crack-free if®
x 2 .int xA [ int {A/ \ @.@A/ W rbA.x/ À

¯
D ¿:

(iii) The set A is strongly crack-free if

.int xA [ int {A/ \ @A D ¿:

Necessary and sufficient conditions for a strongly crack-free set are now given by
any of the equivalent conditions of Theorem 7 (iii) which simplifies for open or closed
sets by Theorem 8 (ii).
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Theorem 9. Let � be an open subset of RN such that @� ¤ ¿. Then, the following
conditions are equivalent:

(a) � is strongly crack-free;

(b) @� D @x�;

(c) � D int x�;

(d) b� D bx� in RN .

Moreover, int @� D ¿, @.@�/ D @�, and the set of b-cracks corresponds to the set
¹x 2 @� W rb�.x/Àº.

Remark 4. In 1994, Henrot [13] introduced the terminology Carathéodory set for
open sets which are strongly crack-free (in our terminology).

It was later adopted by Tiba [21], Neittaanmaki, Sprekels, and Tiba [18], and Henrot
and Pierre [14]. However, this terminology does not seem to be standard.

For instance, in the literature on polynomial approximations in the complex plane C,
a Carathéodory set is defined as follows.

Definition 5 (Dovgoshey [9] or Gaier [12]). A bounded subset A of C is said to be a
Carathéodory set if the boundary of A coincides with the boundary of the unbounded
component of the complement of xA. A Carathéodory domain is a Carathéodory set if,
in addition, A is simply connected.

In V. A. Martirosian and S. E. Mkrtchyan [16],A is further assumed to be measurable.
This definition excludes not only interior cracks but also bounded holes inside the set
A as can be seen from the example of the annulus A D ¹x 2 R2 W 1 < jxj < 2º in R2.
So, it is more restrictive than @A D @ xA.

To avoid ambiguities, we chose the intuitive terminology strongly crack-free.

Theorem 10. Let A be a closed subset of RN such that @A ¤ ¿. The following
conditions are equivalent:

(a) A is strongly crack-free;

(b) @A D @{A (D @.intA/);

(c) int {A D int {A;

(d) bint A D bA W RN ! R.

Moreover, int @A D ¿, @.@A/ D @A, and the set of b-cracks corresponds to the set
¹x 2 @A W rbA.x/ Àº.

To complete the picture, we provide a last example which further illustrates some
of the subtleties of the various notions introduced in this paper.
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x 2 @B x 2 @.@A/n int xA

B A D B \Q2

Figure 4. Open set B (left) and set AD B \Q2 of points of B with rational coordinates (right).

Example 6. Let B be the open subset to the left in Figure 4:

B
def
D

8̂<̂
:.x; y/ W

� 3 < x � 0; �2 < y < 2

0 < x < 1; x2
C .y � 1/2 < 1

0 < x < 1; x2
C .y C 1/2 < 1

9>=>; :
rdB.x/ exists everywhere except at the corners .�3;˙2/. This is obvious except at
the point x D .0; 0/ 2 @B where the boundary @B has a cusp. Indeed, for v ¤ .1; 0/
and t > 0 small,

dB

�
.0; 0/C tv

�
� dB.0; 0/

t
D 0 H) ddB.0; 0I v/ D 0I

for v D .1; 0/, and t > 0 small,

dB

�
.0; 0/C t .1; 0/

�
� dB.0; 0/

t
D
dB

�
.t; 0/

�
t

D

p
1C t2 � 1

t
! 0

H) ddB

�
.0; 0/I .1; 0/

�
D 0 and rdB.0; 0/ D 0

since dB is Lipschitzian and v 7! ddB..0; 0/I v/ is linear [3, Def. 3.4 (iii), p. 1048,
Thm. 3.10, p. 1952]. But rd{B.0; 0/ does not exist since

dd{B

�
.0; 0/I˙.0; 1/

�
D lim

t&0

d{B

�
.0; 0/˙ t .0; 1/

�
� d{B

�
.0; 0/

�
t

D 1:

Define A as the set of points of B with rational coordinates, that is, A D B \Q2.
It is readily seen that

intA D ¿; xA D xB; @A D xA D xB; @.@A/ D @ xA D @B; int xA D int xB;

int {A D { xB; {A D R2; @{A D ¿; int {A D R2

H) d{A D 0 and dA D dB H) bA D dB

H) rdA.0; 0/ D rdB.0; 0/ D 0 H) rbA.0; 0/ D 0:
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The boundary @.@A/ has a cusp at .0; 0/ where rbA.0; 0/ D 0. Therefore, .0; 0/ …
Ckb.A/ but the two corners .�3;˙2/ 2 Ckb.A/. Moreover, .0; 0/ 2 @.@A/ \ int {A
where rbA.0; 0/ D 0 (since {A D R2), @{A D ¿, and @ xA \ @{A D ¿. Finally,

Sk.@A/ D
®
.�2; y/ W 1 � y < 2 and � 2 < y � �1

¯
[
®
.x; 0/ W x > 0

¯
;

Ckb.A/ D Sing.rbA/nSk.@A/ D
®
.�2; 2/ [ .�2;�2/

¯
since rbA.0; 0/ D 0;

Sk.@A/ D
®
.�2; y/ W 1 � y � 2 and � 2 � y � �1

¯
[
®
.x; 0/ W x � 0

¯
;

Sing.rbA/nSk.@A/ D ¿;

@ xA \ @{A D ¿ H)
®
x 2 @ xA \ @{A W rbA.x/À

¯
D ¿;

@.@A/ \ .int xA [ int {A/ D @B \ .B [ R2/ D @B;

where at .0;0/2 @B ,rdA.0;0/Drd{A.0;0/D 0. Since bAD dB ,rbA.x/DrdB.x/

does not exist at x 2 @Bn.0; 0/.

Appendix: Hadamard semidifferential

Recall the following equivalent definition of the Hadamard semidifferential.

Definition 6 ([3, Defs. 3.3 and 3.4, and Thm. 3.6 (ii)]). Let X and Y be Banach
spaces and f W X ! Y a function.

(i) f is Hadamard semidifferentiable at x 2 X in the direction v 2 X if

(10) dHf .xI v/
def
D lim

w!v
t&0

f .x C tw/ � f .x/

t
exists in Y:

(ii) f is Hadamard semidifferentiable at x 2 X if it is Hadamard semidifferentiable
at x 2 X in all directions v 2 X .

(iii) f is Hadamard differentiable at x 2 X if f is Hadamard semidifferentiable at
x 2 X and the function v 7! Df.x/v

def
D dHf .xI v/ W X ! Y is linear.

In finite dimension, the Hadamard differentiability coincides with the Fréchet
differential (see [4, Thm. 3.2, p. 97]), but in infinite dimension, it is weaker and yet
retains all the properties of the classical differential calculus.

A (finite) convex function f W RN ! R is Hadamard semidifferentiable (see [4,
Thm. 4.8, p. 136]).

Acknowledgments. – The author thanks the referee for bringing up the material in
[1, 2, 15, 22] to his attention.
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