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ABSTRACT. — In problems where a geometric object is the variable, the object can be identified
with the oriented distance function which can simultaneously deal with the smooth sets of classical
Differential Geometry and sets with a lousy boundary.

This paper reviews some properties of the distance function d4 to a set A, the oriented
distance function by = d4 — dp 4 (CA, the complement of A), and the associated notions of
skeletons, b-crack, and crack. It gives the respective partitions of the boundaries 04 and 9(dA)
and the partition of the singularities of Vb 4. It turns out that the notion of b-crack is possibly
too broad since it also includes corners in the core boundary dA N CA of the set A. On one
hand, this analysis leads to the notions of crack-free sets and strongly crack-free sets and, on the
other hand, to the notion of cracked sets in Image Segmentation and Mathematical Morphology.

Keyworbps. — distance function, algebraic distance function, skeleton, cracks, singularities,
imaging, mathematical morphology.
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1. INTRODUCTION

In problems where a geometric object is the variable, the object can be identified
with a family of functions parametrized by sets, such as the characteristic function in
Geometric Measure Theory, the distance function in Non-smooth Analysis, the support
function in Convex Analysis, or the oriented distance function which can simultaneously
deal with the sets of classical Differential Geometry with smooth boundary and sets with
lousy boundaries [5, 8]. Such functions are each identifiable with an equivalence class
of sets. They play the same role of a state variable in Control Theory. Natural metrics
can be constructed on spaces or subspaces of such functions to measure the distance
between two objects and to induce topologies from which existence and characterization
of optimal objects can be obtained for design, identification, or control purposes. The
choice of the function and the metric is problem dependent and corresponds to specific
technological, physical, or geometric entities associated with the problem at hand.
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The distance function from x € X to a subset A of a Banach space X is defined as

def | infgeq lla — x|, ifA# @,
da(x) = .
+00, ifA=@.

When A # @, d4 is Lipschitz continuous of constant one. The function d4 is identified
with the equivalence class

(A, €

and A is the nice closed representative in the class [4].
The oriented distance function from x € X to A is defined as

(BCX:B=A}

+oo, ifA=0g,
(1) ba(x) L dg(x) —dpy(x) = { e R, ifdd £ 2,
—o0, ifC4 =g,
where CA = X\ A. The function b4 (x) is finite in X if and only if dA4 # @. In that

case, by is Lipschitz continuous of constant one and b4 coincides with the following
algebraic distance function to the boundary of A:

da(x) = dyg(x), x €intCA,
@) ba(x) = { 0. ¥ €,
—dpy(x) = —dpa(x), x €intA.

The function b4 is identified with the finer equivalence class

[4], €

In general, there is no nice open or closed representative of A in [A]p. It provides a

{BCX:0B=0Aand B = A}.

level set description of the set A whose boundary dA4 coincides with the zero level set
of bs. Noting that bp 4, = —by, it means that we have explicitly chosen the negative
sign for the interior of A and the positive sign for the interior of its complement. So b4
is an increasing function from its interior to its exterior.

For subsets of the N -dimensional Euclidean vector space! RY with a C2 boundary,
the restriction of the gradient Vb4 to dA coincides with the outward unit normal to 04
and the Hessian matrix D2b4(x) is the second fundamental form with eigenvalues 0
for the subspace spanned by the normal Vb4 (x) and the N — 1 principal eigenvalues
for the tangent space to 04 at x.

() R¥ is endowed with the inner product (x, ) & ZzN—=1 x; y;i and norm || x || L v (x, x).
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Another big advantage of b4 over dy4 is for the constraint x € A. The equality
constraint d4(x) = 0 is equivalent to the inequality constraint b4 (x) < 0 which is
much less demanding (see [5, Egs. (5.19) and (5.20) and Thms. 5.7-5.9]) in the context
of constrained optimization since a theorem of the Kuhn—Tucker type for inequality
constraints can be used over a Lagrange multiplier theorem for equality constraints.

In this paper, we focus on the oriented distance function which can provide an ana-
lytical characterization of the whole range of subsets of the N -dimensional Euclidean
vector space RY from the smooth sets of classical Differential Geometry to the lousy
sets with irregular boundaries encountered in Mechanics and Image Processing.

Sections 2 and 3 recall some properties of distance and oriented distance functions
and the associated notions of skeleton, crack, and b-crack [8]. Section 4 gives the
respective partitions of the boundaries dA and d(dA). Section 5 gives the partition
of the singularities of Vb, in relation with the partition of d(dA). Section 6 relates
the oriented distance function to the broader partition of dA. Section 7 revisits the
notion of b-crack which is probably too broad since it also includes corners in the core
boundary A N ACA of the set A. From this we introduce two notions: crack-free sets
and strongly crack-free sets. In the later case, they are characterized by the property
that by, 4 = by = b 7. They are a generalization to sets with a non-empty boundary of
the notion of Carathéodory set for open sets introduced by Henrot [13] in 1994. For
a strongly crack-free set A, there is both a nice open and a nice closed representative
in the equivalence class [A],. At the opposite, we have families of cracked sets with
applications in Image Segmentation [7, Def. 3.2, p. 37] and Mathematical Morphology
(Riviere [19], Matheron [17], and Serra [20]), but this is beyond the scope of the present
paper.

In the remainder of this paper, RY is the N-dimensional Euclidean vector space
endowed with the Hilbertian inner product and norm as defined in Footnote 1.

2. DISTANCE FUNCTION
In this section, we recall definitions and some properties of the distance function.

2.1. Projection onto /T, skeleton, and cracks

For a non-empty subset A4 of RV, the set of singularities of the gradient of d4 can be
partitioned into the skeleton? and the set of cracks of A.

(® Our definition of a skeleton does not coincide with the one used in morphological

mathematics where it is defined as the closure Sk(A) of our skeleton Sk(A) (cf. for instance,
Matheron [17] or Riviere [19], and Serra [20] for the pioneering applications in mining engineering
in 1968 and later in image processing).
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DerinITION 1 ([8, Def. 2.1, pp. 279-289], [5, Def. 4.6, p. 1935]). Let A # T be a
subset of RV.

(1)  The set of singularities of the gradient of d
Sing(Vdy) £ {x € RV : Vdy(x) ).

(ii) Given x € X, a point p € A such that |p — x| = dy(x) is called a projection
onto A. The set of all projections onto A will be denoted by

Ma(x) E {p e A:|p—x|=da(x)}.

When I14(x) is a singleton, its unique element is denoted by p4(x).

(iii) The skeleton of A is the set of all points of X whose projection onto 4 is not
unique. It will be denoted by

Sk(4) &

{x e RY : M4(x)isnota singleton}.
(iv) The set of cracks is defined as the complement of Sk(A)

Ck(4) ¥ Sing Vd,4\ Sk(4).
Note that Sk(A4) = Sk(A4), Ck(A) = Ck(A), and Sing(A) = Sing(A) since dy = d.
Remark 1. Forall x € A, TT4(x) = {x} is a singleton and

Vx e RV\A, @ # Mu(x) c CA\CA = 34
We shall see in equation (3) of Theorem 1 (iii) that
Sk(A) = {x e R¥\A: Vd3(x)3} = {x e RN\ 4 : Vd(x) 3};

that is, Sk(A) coincides with the singularities of Vd? (resp. Vdy) in RN\ A.

ExampLE 1. Even for a set A with smooth boundary 04, the gradient Vd4 (x) may not
exist far from the boundary as shown in Figure 1, where Vd4 (x) exists and ||Vd4(x)] =
1 everywhere outside A except on Sk(A), a semi-infinite line. Here, Ck(A) = dA4. In
contrast for a square S in R?, Sk(S) = @ and Ck(S) = 9S.

2.2. Singularities of Vdyu, projections, and cracks

We first recall some results from [8, Thm. 3.3, Chap. 6, pp. 283-285].

THEOREM 1. Let @ # A C RV,
(1) If A # @, the set T14(x) is non-empty, compact,

Vx ¢ A, TI4(x) C 04, and Vx € A, TI4(x) = {x}.
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Sk(CA)

- ——

—_—— —————

Ficure 1. Skeletons Sk(A4), Sk(CA), and Sk(94) = Sk(A4) U Sk(CA).

(i)  The function
1
x> fa() E D[]~ da(?] - RY - R

is convex, finite, and Hadamard® semidifferentiable and hence d j is Hadamard
semidifferentiable:

dydj(x;v)= inf 2(x—p)-v and dgfa(x;v)= sup p-v.
PElls(x) pellg(x)

Vd3(x) exists if and only if T14(x) = {pa(x)} is a singleton. In that case,*
1
Pa) =V fa(x) = ¥ = SVd3()

and
Sk(4) = {x e RY : VdZ(x)3}.

(iii) Since Sk(A) c RN\ 4,
(3)  Sk(4) = {x e RM\A: Vd3(x) 2} = {x e RV\A: Vdu(x)3}.
IfVdy(x) exists at x € A, then Vdy(x) = 0. In general,
@) A={xeA:Vds(x)3} U{x € 4: Vdy(x) =0}

and Vdy(x) = 0 can occur at a boundary point x € dA (see Example 2 below).

(®) See the appendix for the definition of Hadamard semidifferentiability and differentiability
and some properties.

() This is only true when R” is endowed with the Hilbertian inner product and norm as
defined in Footnote 1 (see [0, Sec. 5, p. 1354] for a counterexample).
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(iv) The functions d j and d4 are differentiable almost everywhere and
my (Sk(4)) = my (Ck(4)) = my (Sing(Vdy)) =0,
where my is the N -dimensional Lebesgue measure. Moreover, the set Sk(A) is

countably N — 1 rectifiable.”

(v) FordA # @,
Sk(94) c RM\0A, Ck(dA) C 9(dA).

If0A = @, then A = RN . The case A = @ is ruled out by assumption.
(vi) Given A C RN, @ £ A (resp., @ # CA),
1A =1=|Vds(¥)|.  Kinga(x)=|Vda(x)| in RY\ Sing(Vdy)
(resp., th(x) =1- |VdCA )],  xmalx)= WdEA (x)| in RV\ Sing(VdEA))

and the above identities hold for almost all x in RN .

From property (4), Vd4(x) does not exist or Vdy (x) = 0 at points on the boundary
dA. The next example shows that Vd4 (x) = 0 can occur at a cusp x € dA.

ExampLE 2. Let By = B(1,0) and B_ = B;(—1,0)in R? and A= B, U B_. Then,
intA=A=B;yUB_., A=B.UB_, intA=B,;UB_,
CA=CB, NCB_=CA, 94=04= 03B, UJB_.

There is a cusp at the point (0, 0) where Vd4((0,0)) = 0. For directions such that
vl = 1land v # (0, %1) and ¢ > 0 small, (0,0) + tv € A, d4((0,0) + tv) = 0, and

- d4((0,0) + rv) — d4((0,0))
t\0 t

Forv = (0,£1) and ¢ > 0, (0,0) + tv = (0, £¢), da((0, £¢t)) = /12 + (££)2 — 1

and
 da((0.0) +10) —da(0.0) VP F2—1
lim = lim =0.
t\0 t t\0 t

Since d4 is Lipschitzian and v — dd4((0, 0); v) is linear, Vd4((0, 0)) exists [3,
Def. 3.4 (iii), p. 1048, Thm. 3.10, p. 1952]. Vd4(x) does not exist at other points of dA.

(®) This is a consequence of the results in L. Zajicek [22]. The topological structure of the
skeleton Sk(A) was studied in A. Lieutier [15]. His result was generalized (and improved) to
the Riemannian setting in P. Albano, P. Cannarsa, K. T. Nguyen, and C. Sinestrari [1] and P.
Cannarsa, W. Cheng, and A. Fathi [2].
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Therefore, Sk(A), Ck(A), and Sing(Vdy) are not closed subsets of R?
Sk(4) = {(x,0) : x # 0} C RV\A, Ck(A4) = 4\{(0,0)} C 94,
Sing(Vd4) = {(x,0) : x # 0} U (9A\{(0.0)})
and we have a neat partition of the singularities of Vd4.

If we change the definition of the skeleton Sk(A) to Sk(A) as in Morphological
Mathematics (see Footnote 2), we get

Sing(Vdy) = Sk(A4) U Ck(A4), Sk(4)NCk(A) = 2.
We could also use the closure of Ck(A)
Sing(Vdy) = Sk(A) U Ck(A4), Sk(A4) NCk(A) = @.

Is a cluster point of Sing(Vd4) also a cluster point of both Sk(A) and Ck(A) for an
arbitrary subset A?

3. ORIENTED DISTANCE FUNCTION
3.1. Properties

TueEOREM 2 ([8, Thm. 2.1, Chap. 7, pp. 337-338]). Let A and B be subsets of RV
Then, the following properties hold:

() A#@andCA+# o & 04 # @.
(i1) Given A and B,
ADB < by<bg < AD BandLA B,
by=bp < B=A and C4A=CB <= B = Aand dA = 3B.
In particular, bz < by < binc 4 and
bi=bs < A =04 and biws =bs < JintA = 0A.

(i) |ba| = da + dgq = max{da,dp,} = dys and 04 = {x € RV : by(x) = 0}.
(iv) by>05CADIAD A 04 = A
V) ba=04CA=04=4% d4=R".

From Theorem 2 (i), the function b4 is finite at each point if and only if 04 # @.
This excludes A = @ and A = R¥. The zero function b4 (x) = 0 for all x in RY

corresponds to the equivalence class of sets A such that 94 = RV:

ba=0 < dy=dp, — A=04 & A=04=04 < 94 =R".
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This class of sets is not empty. For instance, choose the subset A = Q¥ of points of
RY with rational coordinates or the set of all lines parallel to one of the coordinate
axes with rational coordinates.

3.2. Singularities of Vb4, projections onto 0A, and b-cracks

We also have a connection between the gradient of b4 and the projection onto dA and
the characteristic functions associated with dA, singularities of the gradients, and the
notions of skeleton and b-cracks.

DEFINITION 2 ([8, Chap. 7, Sec. 3, p. 344]). Let A C RN, @ # 3A, and the notation
Sing(Vha) £ {x € RY : Vhy(x) 3}
for the set of singularities of the gradient of bu,
Mpa(x) € {z €04 : |z — x| = dypa(x)} = {z € 94 : |z — x| = |ba(x)|}

for the set of projections of x onto 0A (when ITj4(x) is a singleton, the unique element
is denoted by pj4(x)), and for the skeleton of dA,

def

Sk(0A4) = {x e RY : My,(x) isnota singleton}.

Since dpq(x) = |ba(x)|, from Theorem 1 (ii), Vb3 (x) exists if and only if TTy4 (x) =
{pya(x)} is a singleton. In that case,

1
poa(x) = x — EVbﬁ(x).

In general, the functions b4 and djy,4 are different and Sing(Vby4) is smaller than
Sing(Vdy4) = Sk(dA) U Ck(0A). As a result, using the oriented distance function by
rather than djy4 requires a new definition of the set of cracks with respect to by4.

DErINITION 3 ([8, Def. 3.1, Chap. 7, p. 344]). Given A C RN, @ # 0A, the set of
b-cracks® of A is defined as

Cky(A) & Sing(Vb,)\ Sk(3A4)

def

and the core boundary of 94 as 3. A = dA N dCA.

(°) It may be interesting to get a fine upper bound of the Hausdorff dimension of Cky, (A4)
and some information on its topological structure. For instance, the topological structure of
the skeleton was studied in A. Lieutier [15]. His result was generalized (and improved) to the
Riemannian setting in P. Albano, P. Cannarsa, K. T. Nguyen, and C. Sinestrari [1] and P. Cannarsa,
W. Cheng, and A. Fathi [2].
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Intuitively, the boundary dA of a set A is made up of interior cracks and exterior
cracks where Vb4 (x) does not exist and the core boundary where Vb4 (x) may or may
not exist as illustrated in the next example.

ExampLE 3. The set A in Figure 2 consists of the disk minus the eyes, nose, an_d mouth
(interior cracks int A N dA) plus the rays outside the disk (exterior cracks int CA N 94).
The boundary 94 consists of the interior boundary int A N 34, the exterior boundary
intCA N 84, and the core boundary 4 N dCA where Vb4 (x)existsand || Vba(x)| = 1.
Note that int 94 = @& and hence A = 9(d4) = dA U dCA.

core boundary
dAnaCA 94 = 3(34) = 9A U oCA

FiGURE 2. Smiling sun A, internal and external boundaries, core boundary, and boundary 9A.

REMARK 2. (1) The set of b-cracks is larger than what would intuitively be perceived
as a set of cracks. For instance, for an open square in R?, the four corners are h-cracks.

(2) In general, Ckp(A) C Ck(0A), but Ckp(A) can be strictly smaller than Ck(dA).
Consider the open ball of unit radius 4 = B;(0) in RV :

X 1 Xi Xj
ba(x) = x| =1, Vba(x) = m, Dsz(x)ij = m(&j - mm),
Sing(Vb4) = {0}, Sk(dA) ={0}, and Ckp(4) = @.

For all x € 34, Vb4 (x) is the outward unit normal at x, and D?b4(x) is the second
fundamental form with eigenvalue O for the subspace spanned by the normal Vb4 (x)
and repeated eigenvalues 1 for the tangent space to dA at x which is orthogonal to
Vba(x). But dys(x) = |||x]| — 1], and

Sing(Vdy4) = {0} U dB,(0), Sk(d4) = {0}, and Ck(3A) = 3B;(0)

as compared to Cky (A) = @. Using b4 rather than dy4 removes artificial singularities.

(3) In general, Sk(04) C RV\JA. If 04 has positive reach i > 0 in the sense of
Federer [11], there exists # > 0 such that bj e C11(Uy(dA)) and the skeleton will
remain at least at a distance & from dA, where

E{x e RV : [ba(x)| < A,

Un(94) =
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In the sequel, the following technical lemma will be useful.

LemMa 3. Let A be a subset of RY.

() 3(d4)=dAUICA, intdA =int ANintCA, and 34 =[int ANintCA]U[dAUICA].
(i) A C 94, int(0A) = @, and A = A U (int A N JA).

(iii) 9CA C 94, int(3CA) = @, and A = 3CA U (intCA N 9A).

(iv) intd(dA) C intdA UintdCA = @.

(v)  In general, int A = int(int A). For an open subset Q, Q = intQ and Q = int(Q).

Proor. (i) By definition, d4 = int d4A U d(dA) and

5) 3(04) = 94 NCdA = AnCANCANCA)
— AnTAN (CAUCCA) = AnCan (CAUCTA)

= (AnCA) U (CANCCA) = da U aCA.

As for the interior of 94, int 94 = CCoA = CClA N C_A] and

intdd = C(CAuUC[CA]) = C(CAUCCA]) = CCANCL[CA] = int A NintCA.
(iii) Firstly, 04 = A N CAcAn C_A_= 0A. If int(0A) # @, there exists x € 04
and & > 0 such that B;(x) C 34 = A N CA and this yields the following contradiction:

Be(x) CintA = (CA and B:(x) C CA.
Finally, 04 = 0A N A = A N (A Uint A) = JA U (int A N 9A).
(iv) From (ii) with CA in place of A and the fact that 94 = dCA.
(v) From the definition int 3(d4) = CCa(d4) = CC[0A U BC_A] Then,

intd(d4) = C[CA] N [CaCA] c C[[CaA] N [CaCA]]

= C[C9A] UC[CACA] = intdA U intCA = @

from parts (ii) and (iii).
(vi) It is sufficient to prove it for an open set 2 and apply it to int A

_ (2500 = [Q>[Q = QcllQ —
(Qcle = Q>(la

and, after taking the closures, we get the equality of the closures. In particular, for an

open subset 2 of RY, Q = int Q and Q@ = int(Q). [
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4. PARTITION OF THE BOUNDARIES 0(JA) AND 04

We now introduce partitions of the boundaries d(dA) and dA, which reveals their
structure and the way the b-cracks are distributed. Recall from Lemma 3 (iv) that (dA),
dA, and int dCA as nowhere dense sets have an empty interior [10, p. 250].

TueoreM 4. Let A C RY such that 04 # @.
(1)  The set 0(0A) is partitioned as follows:

(6) 3(d4) = [3(d4) Nint A] U [3(d4) NintCA] U [84 N 9CA]
= [(int A U intCA) N 3(84)] U [34 N dCA.
(ii)  The set 0A is partitioned as follows:
(1) 94 =[(int AUintCA) N 94] U [94 N aCA]

— int A NintCA U [(int A U intCA) N 9(34)] U [94 N 9CA].
—_—————
int 04

3(04)=04uUdCA

(iii) For an open subset Q of RN, int 0Q = @, 9(0Q) = 9K, and

®) IQ = [0Q NintQ] U [02 N int(CQ)] U [0 N d(CQ)]
=[P nintQua. ~? —3%

(iv) 0A = A ifand only ifintdA = @ and 0A D 9(dA); IA = dint A if and only if
intdA = @ and dCA D 0(dA); in both cases, 0A = d(0A).

Proor orF THEOREM 4. (i) Consider the following identity:
8(34) = [8(94) Nint A] U [8(94) N intCA] U [9(8A4)\(int 4 U intCA)].

def
=X

Itis a partition of d(dA) since intC_A NintA = @, X NintA=g,and X N intE_A - .
By direct computation,

X = 3(34)\(int A U intCA) = 9(34) n [CA N CCA].

Note that 94 = AN CA and 3CA = C4 N CCA yields

9AN3CA=04NCANCCA
and
9AN 3(4) = AnNCAN3IANCIA = a4 nCoa = 3(0A).
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Finally, from Lemma 3 (i), d(94) = (04 U 8[:_A),

9(34) N AN A = 04 NCANCCA
— X =0(04)N3dAN A= @AUILA) NIAN LA =04naCA.

(i1) The second equation is a direct consequence of part (i) and Lemma 3 (i). For
the first equation,

(int AU intCA) N 94 = (int A U intCA) N [8(9A4) U int dA]
= [(int A U intCA) N 3(84)] U [(int A U intCA) N int JA].

But since int 94 = int A N intC_A,
(int A UintCA) N 94 = [(int A U intCA) N 8(34)]
U [(int/fﬂ intE_A)] N [int A U intE_A]
= [(intA U intCA) N 3(dA)] U (int AN intC_A).
N — —
=int JA
(iii) From (ii) since int 0Q = int @ Nint(CQ) = intQ N (Q = 2.
(iv) For the first assertion. (<) From Lemma 3 (i) and (ii),

9A C 94 = intdA UIAUICA = a4 U dCA = d(0A) C 94
N—— ~— ——
=9 by assumption

and, as aresult, 04 = 94 = 0A U A= 9(dA). (=) From Lemma 3 (ii), int(04) = &,

9(04) = d(0A) Uintd4d = 94 = 04 = int A U 3(3A).
— =g by assumption

9A=03A by assumption

This implies that int 04 = & and 3(d4) D dA. The same proof holds for the other part
since dint A = dCA and 04 = dCA. ]

5. PARTITION OF THE SINGULARITIES OF Vby4

Tueorem 5. Let A C RY be such that A # @.
(1)  The skeleton and the b-cracks can be characterized as follows:
Sk(34)={x € RN : Vb5 (x) 3} = {x eRV\0A4 : Vby(x) B and Vb3 (x) 3},
Sing(Vby) = Sk(d4) U {x € 3(3A) : Vba(x)32},
Ckp(A) = Sing(Vby)\ Sk(0A) = {x € 3(dA4) : Vb (x)2}.
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(i1)  The set of singularities of Vb, can be decomposed as follows:

Sing(Vha) = Sk(d4) U {x € (int AU intCA) N 3(3A4) : Vbu(x) B}
U {x € 94N 3CA : Vhy(x)3)

and
(intCA U int 4) N 3(9A) = {x € (intCA U int 4) N 8(A) : Vha(x) 3}

U {x € (intCA Uint 4) N 9(dA) : Vbu(x) = 0},
where the second set corresponds to cusps such that Vda(x) = Vdp4(x) = 0.
Proor. (i) By (3) in Theorem 1 (ii) with 04 instead of A and the fact that d azA = bfv
Sk(34) = {x e RV : Vb3 (x) 3}.
But, since if Vb4 (x) exists, then bel (x) = 2b4(x)Vby(x) exists,
Sk(34) = {x e RV : Vb3(x) 3} = {x € RV : Vby(x) B and Vb;(x) 3}.
The set of singularities of Vb4 can be decomposed as

Sing(Vba) = {x € R : Vbu(x) 2 and Vb3 (x) 3}

=Sk(dA)
U {x e RY : Vby(x) A and Vb3 (x) 3}.

In the second term, if be1 (x) # 0, then by(x) # 0 and Vby(x) exists. From this
contradiction, Vd, (x) = Vb(x) = 0 and x € 9A. Therefore,

Sing(Vb4) = Sk(dA) U {x € 04 : Vby(x) 3}.
Furthermore, 4 = d(dA) U int 04 and Vb4(x) = O for x € int dA. Hence,

Sing(Vba) = Sk(dA) U {x € 3(dA) : Vba(x) 3},
Ckp(A) = {x € 3(3A) : Vba(x) 3}.

(ii) Recall from Theorem 4 (i) the partition of 3(dA):
9(d4) = [(int A U intCA) N d(34)] U [34 N aCA],
which implies that
{x € 0(3A) : Vby(x) 3}
= {x € (int AU intCA) N 3(dA4) : Vba(x)B} U {x € 94N ICA : Vha(x)3).
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For the first term,
(int A U intCA) N 9(d4) = (int A N 9CA) U (intCA N 3 A).

Ifx €int AN dCA and Vb4(x) exists, then Vd4(x) = 0 and Vd 4(x) exists. But from
the characterization of dCA in (4),

9CA = {x € 3CA : Vdp,4(x)3} U {x € T4 : Vdp4(x) = 0}.
Then, Vdp 4(x) = 0 and
{x €intANdCA: Vby(x)3) = {x €int AN 3CA: Vdp,(x) = 0 and Vds(x) = 0}.
Similarly, for the other term intC_A N oA,
{x €intCANIA: Vby(x)3} = {x €intCAN DA Vdy(x) = 0 and Vdg,(x) = 0}
and combining the two identities,
(intCA U int A) N 3(3A)
= {x € (intCA Uint A) N 9(dA) : Vba(x) 3}
U {x € (intCA Uint A) N 9(dA) : Vda(x) = Vg, (x) = 0}
= {x € (intCA U int A) N 3(dA4) : Vbu(x) B}
U {x € (intCA U int A) N d(A) : Vba(x) = 0}.
Finally, the set of singularities of Vb4 can be decomposed as follows:
Sing(Vby) = Sk(d4) U {x € 9(3dA) : Vba(x)2}
— Sk(34) U {x € (int A U intCA) N 3(dA) : Vbu(x)3B)
U{x €dANaCA: Vha(x)3). -
To illustrate Theorem 5, we conclude with the following example.

ExampLE 4. Let By = Bi(1,0) and B_ = B;(—1,0)and A = Q%> N (B4 U B_) as
shown in Figure 3. Then, we have the following properties:

intA=@, A=B;UB_, CA=R% 94=A4,
3(04) = 04 = 9B, UIB_, intA=intB, UintB_, intCA =R
= 3(34) N (int AU intCA) = 04 = 9B, UIB_ and 94 N LA = @.
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B_ = Bi((-1,0)) : By = B1((1,0))

(0.0)

Sk(34) through :(0, 0)
FiGure 3. Tangent sets B1(1,0) N Q2 and By (—1,0) N Q? at (0, 0) showing part of Sk(9A4) =
{(0.x2) 1 x2 # 0} U{(=1.0), (1,0)}.

Moreover, dpy =0, by = dy = dB+uB_, Vd(0,0) = Vdp 4(0,0) = 0, and
Sk(34) = {(0,x2) : x2 # 0} U {(—1,0),(1,0)}, Sk(3dA4) = Sk(d4) U {(0,0)},
Ckp(A) = {x € 8(3A) : Vba(x) 3} = (B4 U IB_)\{(0,0)}.
Sing(Vba)\Sk(dA4) = (B4 U dB_)\{(0.0)}.

To be compared with,
3(0A) N (int A UintCA) = 94 = 9B, U dB_,
{x € 9(34) N (int A U intCA) : Vhy(x)3} = {(0,0)},
{x € 8(d4) N (int AU intCA) : Vby(x) 3} = (8B4 UIB_)\{(0.0)} = Cky(A).

6. RELATIONS TO THE ORIENTED DISTANCE FUNCTION

The partitions of d4 in Theorem 4 indicate that the two potential candidates for the
definition of the set of cracks of a subset A of RV could be

) (intAUintCA) N34 or (int AU intCA) N 3(0A).

In general, the first one is strictly larger than the second which will not be a good
candidate.

ExaMPLE 5. Let B be the open unit ball of center 0 in R?> and 4 = B N Q2. Then,
A=B, CA=R? 9A=B, 00A) =B, intA=B, intCA=CB
(intAUintCA) N34 = (BUCB)N B = B # o,
{(inufu intCA) N 3(34) = (BUCB)NIB = 2.

This is a pathological case where int 04 = B # O.
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It will turn out that the candidates (9) are both too large and that the right choice
for the set of cracks is

{x € (int AU intCA) N 3(DA) : Vba(x)3).

Yet for a closed or an open set, the three coincide.

Nevertheless, what is specially interesting is that when the first one is empty, the
set can be completely characterized in terms of the oriented distance function.
LemMa 6. Let A C RY such that A # &. Then,

(i) intA CintAand A C 94,
(i) 94 =09CAand 9A = 3CA.
Proor. (i)intA =intAUJA = A=intAU A, intA C int A, and A C 9A.

(ii) By definition,

9A=ANCA =CCA) NCA = aCA.
Similarly, 94 = dCA. "
TueoreM 7. Let A C RY such that 0A # @.
(1)  The following statements are equivalent:
(@) intANJA=a.
(b) 0A = A (which is equivalent to int A = int A).
(¢) dpy =dpg
(d) by=bg
(i)  The following statements are equivalent:
(a) intCA N oA = @.
(b) 0A = dint A (which is equivalent to ICA = SC_A).
(c) da = dinca (Which is equivalent to dp 4 = dﬁ)'
(d) bg = binca.
(iii) The following statements are equivalent:
(a) (intAU intE_A) NoA = @.
(b) 84 =94 = dint A (= 3CA).
(¢) dpg=dpyanddg = dig 4.
(d) bina =bs=by.

Remark 3. From (iii) (b), 94 = 94 = LA =04Nn3CA = d(dA). Open or closed
subsets of RY with a smooth boundary satisfy the conditions of part (iii).
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ProOF. (i) (a)=(b) 04 = dA N A = dA N (JA Uint A) = dA N (0A) = JA.
(b)=(c) 34 = 94 implies dy 7 = dy4 and

di+dpg=dyg=doa=da+dpy = dpg=dpy.
©=>Mbg=ds—dpg=ds—dpy =bs = bg=by. ~
(d)=(a) by = bz implies dyy = |bs| = |bz| = dy7 and A = JA. Then,
intANJA=intANIA=@.
(i) The same proof follows as in part (i) with A replaced by CA using the fact that

04 = dCA.
(iii) is a consequence of the equivalences in (i) and (ii). ]

TueoreM 8. Let A C RY such that 04 # @.
(i)  The following statements are equivalent:
(a) (intAU intE_A) NoA = @.
(b) (int AU intCA) N 3(34) = @ andint AN intCA = 2.

(ii) If A is open or closed, then int A N intCA = @ and the following statements are
equivalent:

(a) (intAU intE_A) NoA = a.
(b) (intA UintCA) N 3(34) = 2.

Proor. (i) Clearly, (b)=>(a). In the other direction, from Lemma 3 (i), int 04 =intAN
intCA and

(intAUintCA) N 94 = (int AUintCA) N intdA4 U (int A U intCA) N 3(3A)
intgﬂinta
= (int A NintCA) U (int A U intCA) N 3(0A).

(i) If A =  is open, CQ = CQ and
intCQ = intCe = CCTQ = CTCQ = (&
intQNintlQ =int@NCE c &NCQ = 2.
If A is closed, CA is open and from the previous case applied to CA:
@ =intCANintCCA = intCA Nint 4.

Therefore, (a) is equivalent to (b). ]
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7. THE SET OF CRACKS AND CRACK-FREE SETS

The terminology crack-free can be intuitively associated with a set A that does not have
pieces of its boundary that can be erased by the closure of the set and the closure of its
complement. For instance, an open set Q in RY whose boundary is a C° submanifold
of dimension N — 1 is crack-free. That intuitive property rules out pathological sets
whose boundary has a non-empty interior and, a priori, sets whose boundary has a
non-zero volume.

From Theorem 5 (i) and (ii),

Cky(A) = Sing(Vhya)\ Sk(0A4)
= {x€dANICA : Vby(x)B)U{x € (int AUintCA) N (IA) : Vha(x)3).

The set 94 N dCA is the core boundary of d(dA) which can contain singularities at
corners. This means that Ckp(A) is too large as a candidate for the notion of crack.
The other potential candidate from Theorem 7 (iii)

(int A U intCA) N 94

is even larger but, when it is empty, it can be characterized by oriented distance functions
and 04 reduces to the core boundary

94 = 3(0A) = 94 = 0CA = 94 N aCA.
This brings up the following notions.

DeriNiTioN 4. Let A C RY such that 94 # @.

(i)  The set of cracks of A which splits into the interior cracks and the exterior cracks:
{x € (int AU intCA) N 3(DA4) : Vby(x)3)
= {xeintAN3CA: Vhy(x)3 U {x eintCANA: Vhy(x)3).
(i) The set A is crack-free if
{x € (int AUintCA) N (9A) : Vha(x)3} = 2.
(iii) The set A is strongly crack-free if
(int AUintCA) N34 = @.

Necessary and sufficient conditions for a strongly crack-free set are now given by
any of the equivalent conditions of Theorem 7 (iii) which simplifies for open or closed
sets by Theorem 8 (ii).



SINGULARITIES OF DISTANCE FUNCTIONS, SKELETONS, AND THE NOTION OF CRACKS 83

THEOREM 9. Let Q be an open subset of RN such that 0Q # @. Then, the following
conditions are equivalent:

(a) K is strongly crack-free;

(b) 02 = 0Q;

() Q=intQ;

(d) bg = bg inRYN.

Moreover, int 02 = @, 0(02) = 02, and the set of b-cracks corresponds to the set
{x € 02 : Vbgo(x)3A}.

REMARK 4. In 1994, Henrot [13] introduced the terminology Carathéodory set for
open sets which are strongly crack-free (in our terminology).

It was later adopted by Tiba [21], Neittaanmaki, Sprekels, and Tiba [18], and Henrot
and Pierre [14]. However, this terminology does not seem to be standard.

For instance, in the literature on polynomial approximations in the complex plane C,
a Carathéodory set is defined as follows.

DeriniTION 5 (Dovgoshey [9] or Gaier [12]). A bounded subset A of C is said to be a
Carathéodory set if the boundary of A coincides with the boundary of the unbounded
component of the complement of A. A Carathéodory domain is a Carathéodory set if,
in addition, A4 is simply connected.

In V. A. Martirosian and S. E. Mkrtchyan [16], A is further assumed to be measurable.
This definition excludes not only interior cracks but also bounded holes inside the set
A as can be seen from the example of the annulus A = {x € R? : 1 < |x| < 2} in R
So, it is more restrictive than 94 = JA.

To avoid ambiguities, we chose the intuitive terminology strongly crack-free.

TueorREM 10. Let A be a closed subset of RN such that A # @. The following
conditions are equivalent:

(a) A is strongly crack-free;

(b) A = dCA (= d(int A));

(¢) intCA = intCA;

(d) biwa =bsa:RY >R

Moreover, int 0A = @, 0(0A) = 0A, and the set of b-cracks corresponds to the set
{x € 04 : Vby(x) A}.

To complete the picture, we provide a last example which further illustrates some
of the subtleties of the various notions introduced in this paper.
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T <—x€dB ~— x € 3(dA)\int A

FiGurE 4. Open set B (left) and set A = B N Q2 of points of B with rational coordinates (right).

ExampLE 6. Let B be the open subset to the left in Figure 4:

—3<x<0, 2<y<?2
BE !l y):0<x<1, 24+(y-12<1
O<x<1, x>+ +1D2<1
Vdp(x) exists everywhere except at the corners (—3, £2). This is obvious except at
the point x = (0, 0) € 0B where the boundary dB has a cusp. Indeed, for v # (1,0)
and ¢t > 0 small,
dg((0,0) + tv) — dp(0,0)
t
for v = (1,0), and ¢ > 0 small,
dp((0,0) +1(1,0)) —dB(0,0)  dp((1,0)) VT+1Z2—1

= -0
t t t

— ddg((0,0):(1,0)) = 0and Vdg(0,0) = 0

=0 = ddp(0,0;v) =0;

since dp is Lipschitzian and v — ddp((0, 0); v) is linear [3, Def. 3.4 (iii), p. 1048,
Thm. 3.10, p. 1952]. But Vd( (0, 0) does not exist since
(0,0) £1(0,1)) — dg((0,0))

d
ddgp((0.0): £(0. 1)) = lim e ( [ _

Define A as the set of points of B with rational coordinates, thatis, A = B N Q2.
It is readily seen that

intA=92, A=B, A=A = B, 3(0A) = A = 3B, intA = int B,
intCA =CB, CA =R?, 94 = 2, intC4 = R?

= dpy=0anddy =dp = by =dp

—> Vd4(0,0) = Vdp(0,0) =0 = Vby(0,0) = 0.
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The boundary 9(dA) has a cusp at (0, 0) where Vb4(0,0) = 0. Therefore, (0,0) ¢
Ckp(A) but the two corners (—3, £2) € Ckp(A). Moreover, (0,0) € 9(dA) N int CA
where Vb4(0,0) = 0 (since CA = R?), 3C4 = @, and 9AN A = @. Finally,

Sk(34) = {(-2,y): 1<y <2and —2 <y < -1} U{(x,0): x > 0},

Ckp(A) = Sing(Vby)\ Sk(d4) = {(—2,2) U (=2, —2)} since Vb4(0,0) = 0,
Sk(94) = {(-2,y): 1<y <2and =2 <y <1} U{(x,0): x > 0},
Sing(Vb,)\Sk(34) = 2.
IANLA =0 = {x € AN ICA: Vhy(x)2} = 2,
3(34) N (int A U intCA) = 0B N (B UR?) = 0B,

where at (0,0) € 0B, Vd4(0,0) = Vd 4(0,0) = 0. Since by = dp, Vba(x) = Vdp(x)
does not exist at x € dB\ (0, 0).

APPENDIX: HADAMARD SEMIDIFFERENTIAL
Recall the following equivalent definition of the Hadamard semidifferential.

DeriNniTION 6 ([3, Defs. 3.3 and 3.4, and Thm. 3.6 (ii)]). Let X and Y be Banach
spaces and f : X — Y a function.

(i)  f is Hadamard semidifferentiable at x € X in the direction v € X if

fx +r1w) — f(x)

def . . .
(10) dy f(x;v) = 1;1%1:;) ; exists in Y.

(i)  f is Hadamard semidifferentiable at x € X if it is Hadamard semidifferentiable
at x € X in all directions v € X.

(iii) f is Hadamard differentiable at x € X if f is Hadamard semidifferentiable at
x € X and the function v — Df(x)v &ef dg f(x;v) : X — Y is linear.

In finite dimension, the Hadamard differentiability coincides with the Fréchet
differential (see [4, Thm. 3.2, p. 97]), but in infinite dimension, it is weaker and yet
retains all the properties of the classical differential calculus.

A (finite) convex function f : RV — R is Hadamard semidifferentiable (see [4,
Thm. 4.8, p. 136]).
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