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ABSTRACT. — A study of the linear quadratic (LQ) control problem on a finite-time interval for a
model equation in Hilbert spaces which comprehends the memory of the inputs was performed
recently by the authors. The outcome included a closed-loop representation of the unique optimal
control, along with the derivation of a related coupled system of three quadratic (operator)
equations which was shown to be well posed. Notably, in the absence of memory, the above
elements — namely, formula and system — reduce to the known feedback formula and single
differential Riccati equation, respectively. In this work, we take the next natural step and prove
the said results for a class of evolutions where the control operator is no longer bounded. These
findings appear to be the first ones of their kind; furthermore, they extend the classical theory of
the LQ problem and Riccati equations for parabolic partial differential equations.
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1. INTRODUCTION AND MAIN RESULT

The question of attaining a full synthesis of the optimal solution in the finite-time
horizon optimal control problem with quadratic functionals for important classes
of linear partial differential equations (PDE) subject to boundary actions has been
extensively studied in the last forty-five years or so. Given that the unique (open-
loop) minimizer does exist, the actual sought-after goal is to attain a representation
of the optimal control in closed-loop form first of all, and then to identify the (linear,
bounded) operator that occurs in the feedback formula by solving uniquely a Riccati
equation — possibly for suitable subclasses of functionals only. For this reason, proving
the well-posedness of appropriate Riccati equations is a crucial step in the study of
the linear quadratic (LQ) problem for evolutionary PDE. Theoretical findings and
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significant PDE illustrations are provided by Lasiecka and Triggiani in [15, 16] dealing
with parabolic-like and hyperbolic-like evolutions. The works [6, 7] (by Lasiecka and
these authors) along with [3] develop a theory suited to deal with a class of control
systems which encompasses distinct coupled systems comprising both parabolic and
hyperbolic PDE components (such as e.g. some which describe thermoelastic systems,
acoustic-structure, and fluid-structure interactions).

It is well known that diverse physical phenomena such as viscoelasticity or heat
conduction as well as the evolution of population dynamics may bring about model
equations where the presence of memory terms accounts for the influence of the past
values of one or more variables in play. Consider now a simple, albeit relevant, example
such as a linear heat equation with finite memory in a bounded domain Q C R?,
supplemented with initial and boundary data, to wit,

we(t,x) = Aw(t, x) + fé N(o)Aw(t —o0,x)do in(0,T)x Q =: Or,
w(t,x) = u(t,x) on (0,7) x 02 =: X,
w(0, x) = we(x) in Q.

At the outset, let us think of the function ¥ = u(¢, x) as a given boundary datum.
Then, by using the renowned Fattorini—Balakrishnan method to attain an abstract
(re)formulation of the boundary value problem, one easily finds the integro-differential
equation

w' = A(w — Du) + /t N(G)A[w(t —0)— Du(t — G)]do, t€(0,T]
0

in the unknown w(¢) := w(¢, -) and with u(¢) := u(z, -), where A is the realization of
the Laplacian A in L2(2) with homogeneous Dirichlet boundary condition, while D
is the (so-called) Dirichlet mapping — namely, the map that associates with a boundary
datum its harmonic extension in the interior of the domain 2. Setting B = —A D, thus
with

B: L2(3Q) — [D(4")]

an unbounded operator, one arrives at the integro-differential equation
t
(1.1) w' = Aw + Bu + / N(t — 0)[Aw(0) + Bu(o)]do, t€(0,T];
0

see e.g. [19, Section 3.1]. It is apparent in (1.1) and is important to emphasise that the
very same operator control B pops up inside the convolution integral.

With the function u(¢, x) now interpreted as a boundary input on 9€2, allowed
to vary in an appropriate class of admissible controls, we note that the controlled
integro-differential equation (1.1) poses various technical challenges:



LQ CONTROL OF PARABOLIC-LIKE EVOLUTIONS WITH MEMORY OF THE INPUTS 169

+ the realization A of the differential operator occurs in the convolution term (and yet
MacCamy’s trick may help to remove it),

the control operator B is unbounded,

(last but not least) the past values of both the dynamics variable w and the control
u influence the evolution.

When it comes to the LQ problem for evolution equations with memory, the con-
trolled integro-differential equation

t
(1.2) w' = Aw + Bu —i—/ k(t —o)w(o)do
0

(in a Hilbert space #) has been the object of the first investigations; see the papers
[11,21]. Note that — in comparison to (1.1) — the dynamics operator A is absent in the
integral term of (1.2), and in addition, the past values of the control are not involved.

The line of argument which is pursued by Da Prato and Ichikawa in [11] includes a
reformulation of the equation (1.2) as a system with infinite memory and the introduction
of a suitable augmented state space; then, semigroup methods provide the tools to deduce
the optimal synthesis via well-posed Riccati equations. It is important to emphasize,
however, that the operator A is constrained to be the generator of an analytic semigroup
in J in spite of the fact that the control operator B is assumed to be bounded (between
the proper spaces). Pritchard and You [21] consider an evolutionary process described
by a Volterra integral equation which encompasses (1.2); they attain a feedback law
where a certain operator is shown to solve a Fredholm integral equation.

With focus on a basic integro-differential equation in R4 (that is, (1.2) with A = 0),
the work [18] of Pandolfi infers a coupled system of three quadratic (matrix) equations
associated with the optimal control problem; solving it provides the matrices that occur
in the feedback formula in a univocal manner. This result has clarified a question not
fully figured out in [21], thus remaining open for more than two decades. A subsequent
extension to a more general class of control systems and to tracking-type functionals is
found in [20].

Spurred by the aforesaid more recent advances in a finite-dimensional context, in the
absence of that kind of results in the PDE literature and with various distinct technical
challenges to be tackled, the authors pursued a strategy where the difficulties are taken
one at a time. In a first work [4] on the very same model (1.2), we followed [18] for
the choice of the state space at time 7 € (0, T'), along with the variational approach to
the LQ problem recalled below, to achieve the optimal synthesis via certain quadratic
operator equations which are shown to be well posed, thereby extending to the PDE
realm and enhancing the findings of [18]. Subsequently, in [5], we focused on the LQ
problem for a control system where the memory of the control function u is brought



P. ACQUISTAPACE AND F. BUCCI 170

into the picture, whereas the memory of w is neglected, that is,

t

(1.3) w' = Aw + Bu +/ k(t —o)Bu(o)do, t€(0,T].
0

We note that in both [4, 5], it is assumed that B is a bounded operator; however, the
respective outcomes are distinct and the studies overcome specific technical hurdles.

In this article, we expand the reach of our work to deal with the latter model equation
in the case when B is unbounded, while A is the generator of Cy-semigroup in a Hilbert
space #¢, which in addition is analytic — these two features being consistent with the
full integro-differential equation (1.1) — and ascertain the findings of [5] in this more
complicated setting.

As we have done successfully in our recent works [4, 5], we adapt to the problem at
hand the general line of argument carried out in the study of the LQ problem for relevant
classes of memoryless infinite-dimensional control systems that describe boundary
value problems for PDE [15, 16]. The major steps of this path involve

the existence of a unique minimizer (the open-loop optimal control),
+ the optimality condition, which in particular brings about

an operator P (¢) which enters the feedback formula 11(z) = —B* P(t)w(t) as well
as the optimal cost;

whether P () does solve the differential Riccati equation (RE) corresponding to the
optimal control problem, which establishes the property of existence for the RE;
then the key issue is

uniqueness for the RE,

thereby achieving the closed-loop synthesis of the optimal control. The precise func-
tional analytic setting, the main results, and an outline of the paper are provided in the
next subsections.

We conclude this introductory part including some bibliographical references (the
list is by no means exhaustive). Suggested monographs are [19,22,23], along with the
references therein. Still in the context of optimal control for deterministic evolution
equations with memory, for more general frameworks than the LQ one for the controlled
dynamics and/or the functionals to be minimized — in particular, semilinear PDE and/or
non-quadratic costs — see [9, 10], where the optimal strategies are characterized via
first- and second-order optimality conditions, respectively. Although there does not
seem to be an overlapping with our present and earlier work, we point out the following
works pertaining to stochastic model equations: [1,2,8,12,13,24,25].

Due to space limitations, it is not possible to give an account of the various contri-
butions to the other great questions of control theory for integro-differential PDE such
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as reachability, controllability, unique continuation, observability and inverse problems
via Carleman estimates, stability, and uniform decay rates. We remark, however, that
most of the aforementioned studies concern PDE with infinite memory of the evolution,
which is not our case.

1.1. Setup

Consider the control system (1.3), supplemented with an initial condition w(0) =
wq € #; the function u(-) —having arole of a control action — varies in U := L2(0, T; U).
The function spaces # and U, the operators A and B, and the kernel k are assumed to
satisfy the following properties.

AssumpTions 1.1 (Abstract setup). Let #, U be separable complex Hilbert spaces. It
is assumed that

(A1) the linear operator A: D(A) C H — J is the infinitesimal generator of a strongly
continuous semigroup {eA’ }+>0 on J, which is also analytic; hence, the fractional
powers (A9 — A)%, a € (0, 1), are well defined for some A9 > 0;

(A2) the control operator B satisfies B € £(U, [D(A*)]'), and
(1.4) Jy € (0,1): (Ao—A)7'B e LU, ¥),

(A3) the kernel k() satisfies k € L2(0, T; £(#)), along with the commutativity
property ef4k = ke'4.

ReMARK 1.2 (On the values Ag and y). We will set Ay = 0 and denote the fractional
powers A% (in place of (—A)%) throughout this work for simplicity. Furthermore, in
the sequel, focus will be placed on the values y > 1/2 of the parameter in (A2) of
Assumptions 1.1. On one side, the range (1/2, 1) for the values of y brings about
a worse regularity of relevant functions/operators; and in addition, motivation for
the consideration of this range comes from the optimal boundary control of the heat
equation with memory and Dirichlet boundary input, for which we have y = 3/4 + ¢,
¢ € (0,1/4) —besides, in fact, Ag = 0.

It is natural to introduce the concept of mild solution to the Cauchy problems
associated with the control system (1.3), namely, the one that corresponds to a given
initial datum wq € # at the initial time # = 0 and to a control action u(-) € L2(0,T;U),
which reads as

t
(1.5) w(r) = efwy —I—/ eA=D By(q)dg
0

t q
+ /0 (ACD) /0 k(g — p)Bu(p)dp dg
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and whose regularity properties (in time and space) will be clarified combining

the well-known regularity results pertaining to the (so-called) input-to-state map
L defined for any s € [0, T) by

(1.6) Ls:u() — (Lsu)(t) = /t A1 By (r)dr,

N

as well as the ones for its adjoint

T
1.7 LY f() — (LEf)@) = / B*eA D f(5)do
t
(see e.g. [7, Proposition 3.4] or Proposition A.l at the end), which are both key in
the memoryless case, along with

the regularity properties of the novel operator H; (as well as K) brought about by
the memory, discussed and proved in the next section; see Proposition 2.3.

With the model equation (1.3) we associate the following quadratic functional over
a given (finite) time interval [0, T']:

T
(1.8) J(u) = Jr(u, wo) =f0 (lcw@ |5 + [u®])dr,

where the weighting operator C simply satisfies
(1.9) C e £(H).

The simplified notation J(u) should be self-explanatory and will be used throughout.
The optimal control problem is formulated in the usual classical way.

ProsLEM 1.3 (The optimal control problem). Given wy € #, seek a control function
() = 1(-,0, wp) which minimizes the functional (1.8) overall u € L?(0, T; U), where
w(-) is the mild solution to (1.3) (given by (1.5)) corresponding to the control function
u(-) and with initial datum wy (at time 0).

1.2. Main results

A foundational point of our line of argument — known in the literature as the dynamic
programming approach, dating back to the work of Richard E. Bellman in the fifties —
is the embedding of the optimal control problem in a family of similar optimization
problems, depending on suitable parameters, here the initial time s € [0, T') — besides
the initial state, whose actual structure will be clarified below; see (1.10).
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Following an approach pursued e.g. in the works [4, 5, 18,20], with the initial time
s allowed to vary in the interval [0, T"), we consider as initial data the elements

Wo s =0,
(1.10) Xo = {

(,;”(O)) 0<s<T,

where 7(-) is a given function in L2(0, T'; U); we accordingly define the state space as
H s =0,

(1.11) Yy =
H xL?*0,5;U) 0<s<T.

Consistently, the mild solution to the control system (1.3) supplemented with the
initial datum X (defined in (1.10)) at time s is rewritten as

(1.12) w(t) = e wo + [(Ly + Hou](1) + Ksn(@),

with the operators Ly, Hy, and K defined by

(1.13a) Lyu(t) = (Lsu)(1) = / A0 Bu(g)d,

(1.13b) Hyu(t) = (Hsu)(t) = /t A=) /G k(o —q)Bu(g)dq do,

(130 Ko = e = [ A [ ko~ a1@dq do
s

N t
= [ 2= [ ko - a)Ba@)dq do.
0 K
By setting
t
(1.14) At.q,s) = / Ao —q)Bdo, 0<s<gqg<t<T,
S

the terms Hgu/(¢) and JCsu(¢) (in (1.13a) and (1.13c), respectively) are rewritten readily
and neatly as follows:

t
(115) Hyu(t) = / At 4. u(@)dq.

(1.16) Kyn(t) = /0 A(t.q. 9)n(@)da.

We introduce the family of functionals

T
(1.17) Js(u) = Jr,s(u, Xo) :/ (lcw® |3, + Ju®]|)dt:

the relative optimal control problem is formulated in a natural way.
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ProBLEM 1.4 (Parametric optimal control problem). Given X € Y, seek a control
function 7 = #i(-, s, Xo) which minimizes the functional (1.17) overallu € L?(s, T;U),
where w(-) — given by (1.12) —is the solution to (1.3) corresponding to a control function
u(-) and with initial datum X (at time s).

In the following result, we gather the principal findings of this work, namely, the
specific representation of the unique optimal control in closed-loop form, but also
that the three linear and bounded operators which occur in the said formula do solve
uniquely a system of coupled quadratic equations.

TraeOREM 1.5 (Main results). With reference to the optimal control problem (1.12)—
(1.17), under Assumptions 1.1 and hypothesis (1.9), the following statements are valid
foranys € [0, T).

(S1) For each Xg € Y5 (X¢ and Y defined in (1.10) and (1.11), respectively), there
exists a unique optimal pair (U (-, s, Xo), W(-, s, Xo)) which satisfies

(1.18) (s, Xo) € C([s, T, U), (., Xo) € C([s, T], #).

(S2) There exist three linear bounded operators, denoted by Py(s), P1(s, p), and
Py (s, p,q) — defined in terms of the optimal evolution and of the data of the
problem (see expressions (3.13) and (3.14)) — such that the optimal cost is given
by

(1.19) J(@) = (Po(s)wo. wo) , + 2Re /0 (P1(s, )n(p), wo) 5 dp

+ / / (P2(s. p.)n(p). 1(@))y dp dg= (P(5)Xo, Xo)y, .
0 JO

Py(s) and P, (s, p,q) are self-adjoint and non-negative operators in the respective
functional spaces 3 and L*(0, s; U); in addition, it holds that

P2(S7 p> Q) = PZ(S’ q, p)
(83) The optimal control admits the following representation:

(1.20) (.5, Xo) = —[B*Po(t) + P1(t.1)*](z, s, Xo)

_/O [B*Pi(t, p) + Pa(t. p.1)]0(p)dp,

with
() in [0, 5)
0¢) =1 . ,
u(,s, Xo) inls,1)
and the operators P; are given by the formulas (3.14) (originally, (3.13)), 1 €
{0,1,2}.
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(S4) The operators Py(t), P1(t, p), P2(t, p,q) — as from (S3) — satisfy the following
coupled system of equations, for every t € [0,T), p,q € [0, t], and for any
x,yeD(A),v,uecl:

(1.21)
%(Po(f)X,Y)Jg + (Po(t)x. Ay) 5 + (Ax. Po(t)y) 4 + (C*Cx., y) 5
—([B*Po(t) 4+ Pi(t.1)*]|x.[B*Po(t) + P1(t.1)*]y), = 0.
2 (P1(t. p)v.y) 4 + (P1(t. p)v. Ay) 4 + (k(t = p)Bv, Po(1)y)
—([B*P1(t. p) + Pa(t. p.t)|v. [ B* Po(t) + P1(t.1)*]y), = 0.
2(P2(t. p.)u.v) + (P1(t, p)u.k(t—q) Bv),,+ (k(t—p)Bu, P1(t.q)v),,
—([B*Pi(t. p) + P2(t, p.1)|u. [B*P1(t.q) + P2(t.q.0)]v), =0

with final conditions
(1.22) Po(T) =0, P(T.p) =0, P(T,p.q)=0.

(S5) There exists a unique triplet (Po(t), P1(¢, p), P2(t, p,q)) that solves the coupled
system (1.21) and fulfils the final conditions (1.22), within the class of linear
bounded operators (in the respective spaces), the former and the latter being
self-adjoint and non-negative.

REmaRK 1.6. We remark at the outset that despite the fact that statements (S1)—(S5) of
Theorem 1.5 are the same as those in [5, Theorem 1, Section 1.1], additional technical
challenges are present and need to be overcome at several key steps of the respective
proofs, in view of the unboundedness of the control operator B.

1.3. An outline of the paper

The paper is organized as follows. In the next section, we pinpoint certain regularity
properties of the operators brought about by the memory and which occur in the
representation of the mild solutions to the control system. These preliminary results
allow us to accurately assess the regularity in time of the w-component of the state
variable (see Corollary 2.4); in addition, they are utilized in the study of the optimization
problem.

Section 3 focuses on the statements (S1), (S2), and (S3) of Theorem 1.5. In order
to prove (S1), our starting point is once again the optimality condition. We note here
that unlike the case when the control operator is bounded, the continuity in time of
the optimal solution #(-) cannot be taken for granted; see Corollary 3.4. The three
operators P; (i =0, 1,2) which are building blocks of the quadratic form representing



P. ACQUISTAPACE AND F. BUCCI 176

the optimal cost are singled out in Proposition 3.6. A distinct reformulation of these
operators achieved in Lemma 3.7 is called for in order to ascertain that they actually
occur in a representation of the optimal control in closed-loop form, which eventually
will be (1.20).

The proof of the statements (S4) and (S5) of Theorem 1.5, namely, of the fact that
the operators P; (i = 0, 1, 2) solve uniquely the coupled system of three quadratic
differential equations (1.21), is laid out in Section 4. In comparison with our earlier
work [5], the analysis needs to be supplemented with additional preliminary steps, as a
consequence of the unboundedness of the control operator B; see Proposition 3.8 and
Proposition 3.10 — the latter addressing the delicate issue of boundedness of the gain
operators — in turn based on the novel Lemmas 3.3 and 3.5.

A short appendix recalls a few instrumental results pertaining to the regularity of
the input-to-state map in the memoryless parabolic case, and to convolution integrals.

2. PREREQUISITE REGULARITY RESULTS

Aiming at establishing the regularity of any mild solution (1.12) and since the regularity
of the map L; is well known, we pinpoint in this section the regularity properties of the
operators Hy, K (brought about by the memory) and the respective adjoints H;", K.
We need to explore the one of A(¢, g, s) as well as to produce appropriate estimates
of certain differences, to accomplish this; the outcomes of this analysis are stated in
two separate Lemmas. (These are not trivial, due to the presence of the unbounded
operator B.)

LemMma 2.1. Let Assumptions 1.1 with y > % be valid, and let A(t,q, s) be the operator
defined in (1.14). Then, withr = 2 e have for0 <q <s <t <T

=1
2.1a) |AC. a9 e o 120,30 S 1K NL20,:2000))-
(2.1b) 1A L o.s: 2.0y < NEllL20, 7320500
2.1¢) q+— |At.4.0)| g5 € L (5. T,

with | At )| L1 s 1oz w.aey < 1Kl 12200

Prookr. In order to establish (2.1a), we rewrite A(¢, g, s) as
t
Mt.q.5) = [ 47eA k(o — A Bldo,
S

which gives

! 1
1260.9:9 00 = € [ =57 1400 =)z 0
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for some positive constant C. Then, (2.1a) follows by using [ 14, Theorem 383]. Con-
cerning (2.1b), we write

s - s t 1 r
[o ”’\(”‘1’5)||$(U,Je) dq 5/0 [/s (o) ”k(a_‘Z)”x(,;'e) d(’] dq,

and setting p =0 — ¢, T = 5 — ¢, we get

K} ; s T+t—s 1 r
[ reaslowmdns [ [ s e g do]

Using again [14, Theorem 383], we conclude that

S
r
/0 |29 [ g .30y 9 < 1K1 L2075 30y
The estimate (2.1c) is shown in a similar way. ]

We now estimate the increments of A (¢, g, s) with respect to each variable.

LemMMA 2.2. Let Assumptions 1.1 with y > % be valid, and let A(t, q, s) be the operator
defined in (1.14). Then,

(i) forT=t>t>5,
22) A9 =A@ )| 20sew.ey < CU— Y, 0<b<1-y;

(i) forT >s>q>p,

(2.3) HA("q’s)_A("p’s)“Lz(s,T;i(U,Jé‘))
< Clk()=k(-+q—p) ||L2(0,T—q;:C(U,J€));

(i) forT >s >0 > ¢,
2.4 ”/\(-,q,s) —A(,q,0) ”Lz(s,T;éC(U,Jf)) <C(s—o)'7.
Proor. (i) ForT >t > 7 > 5 > ¢, we write
At,q,s) —A(t,q,s)
t T t—o
= / A= (o — q)B do + / [f Aedr dr}k(o —q)Bdo
T N T

—0

t
= / AY A= (o0 — q)[A7Y Bldo

T

T t—o
+/ [/ A1+VeA’dri|k(o—q)[A_VB]do,

—0
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SO

1
(t —o)

T t—o dr
+C/s /H Ak = @) g o

The L2(0,s; £ (U, #))-norm of the first term in the right-hand side of (2.5) is estimated
via the Holder inequality, to find

t 1 5
([ a2 e =)y ]
< C(t — 7)20n / ’

thus, by [14, Theorem 383], we get

N t 1 2 )
/(; |:[E (t _ O—)y ||k(O' - Q)”.f(]f) da} dq S C([ — ‘[)2(1 y)”k”%}((),T;Jg)-

As for the second term in the right-hand side of (2.2), we have, for any 6 € (0,1 — y),

T opt-o g 2 T (t— )0 2
[ / /H s ||k(o—(1)||£w)do} 5[ / o Hk(o—q)“x(mda}

and we deduce as before

s T ot=o g, 2
/0[// r1+y||k(“_Q)”$(J€)d“] = C =0 Ikl 7.0y

—0

t
@) [4.0.9) = 22.0.5) | g = € [ [k = )] g0 40

1
(t —o)”

| k(o _‘1)”?5(36)‘10;

(i1) Similarly, fort > s > 0 > ¢,
o
MEq.5) = A(tq.0) = = [ 47Nk = (a7 By
S
which yields

1
(t —o)

t
26) [4(t:4.5)-.p.5) | 00 <€ | k(0 —4) k(@ =) 420 o

proceeding as above, we obtain the desired estimate.

(iii)) ForT >t > s > 0 > ¢, the estimate

1
(t=ry

QD M) = A0 g =€ [ [k = )] g, 47

holds true. The estimate for the L2(s, T; £(U, #))-norm of the right-hand side of
(2.7) is quite similar to the preceding ones; hence, we omit it. n
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We now use the previous results to pinpoint the regularity of the maps brought
about by the memory.

ProposITION 2.3. Let Assumptions 1.1 on the operators A, B, k(-) hold true, with
y > % Then, the following regularity results pertain to the operators Hg, K defined
by (1.13a) and (1.13c) and to their respective adjoints H, K :

(2.8) Hs € £(L*(s.T;U), C([s, T, %)),
(2.9) Ky € £(L*(0,5:U),C([0, 5], ¥)),
(2.10) Hf € £(L*(s,T; ¥),C([s,T].U)),
(2.11) Ky € £(L*(0.s:3).C([0,5].U)),

foranyo <1 —1y.

Proor. (1) Starting from (1.15), withk € L?(0, T; £(#)) and givenu € L?(s, T;U),
we have

1) e = [ 130000 0,0 @)

t 1/2 t 1/2
= ([ Peaoluwunda) ([ Jolian) =

for some constant C > 0 as a consequence of the Holder inequality, which proves
Hgu € L®(0, T; #). The above basic regularity can be actually enhanced: in order to
prove the claimed Holder continuity property (2.8), we evaluate || Hsu(t) — Hsu(7)|| 5
for given ¢, 7 > s > 0 as follows, using the estimate established in (2.6):

(2.12) || Hsu(t) = Hsu()| 4

=

/l(t,q,q)u(q)qu +”/ [/\(t,q,q)—k(t,q,q)]u(q)qu
T H K] H

= HA(Z’ *y ) ”L"(t,t;I(U,Jf)) (l - 1)1/2—1/r ”u”Lz(s,T;U)
v [ [ o ke =) g @] o da
s Jq (t—o)(rt—o) L) v

<c(t ="V Nkl 2012y 1l 2.0

T T 1
+C(l—f)“/s /q m“k("—‘J)Hz(yz)””(‘I)HUdqu’

52

where r =2/(2y — 1) and @ € (0, 1 — y). We move on with the estimate of the second
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summand s, in the right-hand side, to find

T g 1
(2.13) s, fc(t—t)“/ / Hk(a—q)||£(ﬂ)||u(q)“qum do

T o 1/2
a 2 1
<c(t—1) /s [/s k(@ —=a) | £z dCI} ||u||L2(s,T;U)m do

< c(t=0)*kllL20.7: 200 14l L2¢s,7:0)-

Once we have the estimate (2.13), we return to (2.12): thus, since 1/2 — 1/r =
1 — y while ¢ < 1 — y, we have min{1/2 — 1/r, @} = o which establishes Hsu €
C*([s,T], #) (forany o < 1 — y).

(2) Similarly, starting from (1.16), with k € L?(0,T; £(J¢)) and given n€ L?(0,s;U),
we first find Ksne L°°(0, s; #). As before, the regularity can be actually improved to
the Holder continuity: with o < 1 — y, we get

@18 [ Hon@ — Ko
= H/ [*(l,q,S)—l(r,q,S)]n(q)qu
0 e
s t 1
56/0 /f (t —a) [k =D 2o In@ ]|y do dq
s pt f— 1)
H/o / (z—fr)y(?—o)y [k@ = D)l 2y 1@ ]y do da
t 1 s
SCL (I—U)V/ Hk(a_‘I)Hx(%)||’7(‘1)||udqd0

T (t — a)y—i-tx/ Hk(U ‘DH;@(;{)”U(Q)”qudU

N

t
1
< C/ o) dollklL20.7:2@en Il L200.5:0)

—|—C([—T)a/ WdO'HkHLZ(()Tx(]())”n”LZ(OS U)

<c[t ="+ =]kl 20.7:2000 11 L2 0.5:0)-
Asa <1 —y, Ksne C¥Is, T], F).
(3) The adjoint operator of Hy is found computing — for any pair u(-) € L?(s, T;U)
and z(-) € L?(s, T; #) — the scalar product
T
(Hsu.2)p25,1:90) = / (/ A= ")/ k(o —q)Bu(g)dq do, Z(t)) di

/ / / (u(@). B*k(0 — g)*e*" “=V2(1)), dg do d;
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by using the Fubini—Tonelli theorem, we find

T t t
(Hgu, 2)p2(5,7,90) =/ / [ (u(q),B*k(a—q)*eA*(’_")z(t))U do dq dt

[7 [ [ w0 —aret oo, do v

* _ \* A% (t—0)
/S (u(q),/q /;B k(c —q)¥e Z(t)dOdt)qu,

T pt
Hz(q) = / / B*k(o —q)*e?" D z()do dt, g € [s,T).
a Jq

which establishes

Then, since owing to Assumptions 1.1 k* commutes with e we get

|72y

T
| /an(o DLz =gy 170 Ly o de

T
- C/ [/ (- 0)1’ G q)*“we) d(’} |z)] dt

U [ et ortamee] "‘}12[/;||z<z>||zdtr2

<cllkliz2o, ;202200 Yq €[5, T,

IA

I/\

where in the last estimate we used once again [ 14, Theorem 383]. This established H S* zZ€E

L®°(s, T; U). That this regularity (in time) can be enhanced to H;z € C([s, T]: U)

can be shown in the absence of particular challenges and hence the proof is omitted.
(4) Tt is readily seen that

T
K:E(q)zf [tB*k(o—q)*eA*(’_")é(t)dadt, g €[0,s].
so that
|KE@ ]y

T t 1 2 1/2 T 12
Ec(/s [/ (t—o)ka(“_")*“:em)d"} d’) (/ ||¥(f)||§edt)

<clklizz,r:2enl€llL20.5:0) V4 € [0, 5]

and K& € L°°(0,s;U). As above, the L°-in time can be actually enhanced to C°-in
time regularity; the proof is omitted. ]
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On the basis of the regularity results (2.8) and (2.9) pertaining to the operators H
and K, combined with the first of the memberships (A.1) for Ly, we see that the lower
regularity (in time) of L prevails.

CoROLLARY 2.4. Let Assumptions 1.1 on the operators A, B, k(-) hold true, with y > %
Then, the mild solutions w () to the Cauchy problems associated with the control system
(1.3) that correspond to initial data X (at initial time s € [0, T')) and control functions
u € L?(s, T;U), given by (1.12), are such that

(2.15) w e L5 (s, T; H).

3. TOWARDS THE FEEDBACK FORMULA.
ProoF oF STATEMENTS (S1), (S2), aND (S3)

In this section, we retrace the major steps leading to the closed-loop representation of
the optimal control in its final form (1.20), which displays the very same building-blocks
P; (i =0,1,2) of the quadratic form which yields the optimal value of the functional
(see (1.19)), thereby establishing the statements (S2) and (S3) of Theorem 1.5. First,
we derive certain formulas for the optimal pair (i (¢, s, Xo), w(z, s, X)), which follow
from the optimality condition; these lead in particular to establish the statement (S1)
of Theorem 1.5. Owing to the unboundedness of the control operator B, there are
suitable regularity properties of the key operators ¥; and Z;, i = 1,2 (involved in
these formulas), that will be needed later; thus, they are discussed and pinpointed here
in Lemma 3.3. Some of the proofs are essentially the same as the ones of analogous
results in [5, Section 2] instead: when it will be that case, they will be omitted.

3.1. The optimality condition

An easy computation provides a first rewriting of the cost functional; see also [5,
Section 2.1]. This is a very first standard step in the theory of the LQ problem in the
memoryless case, even in the presence of non-coercive functionals.

LemMa 3.1. We make reference to the optimal control problem (1.12)—(1.17), under
the standing Assumptions 1.1 and (1.9). Given X¢ € Y, the optimal cost admits the
representation

(3.1) Js(u, Xo) = (MsXo, Xo)y, + 2Re(NsXo, )25, 7.0y + (Astt, W) p2¢5. 7.0
with

T
(M Xo. Xo)y, ::/ (C*CE(t,5)Xo, E(t,5)Xo) , d1,

©2) [NeXol() 1= [(L + H})C*CE(-,5)Xo] (),

As =1+ (L5 + H)CC(Ls + Hy),
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and where I denotes the identity operator in L?(s, T; U), while we set
E(t,5)Xo = e D wg + Ksn(t).
The operator Ay is boundedly invertible in L*(s, T; U), with | A7 < 1 for all .
Having introduced the operators M, Ny, A above, the optimality condition
Asti + Ny X9 =0
brings about the following result.

ProrosriTioN 3.2. We make reference to the optimal control problem (1.12)—(1.17),
under the standing Assumptions 1.1 and (1.9). Given X € Y, the unique optimal pair
(u(t,s, Xo), w(t,s, Xo)) admits the following representation:

fi(t.5. Xo) = Y1(t.8)wo + / Ya(t. p.s)n(p)dp.
(3.3) 0

w(t,s, Xo) = Z1(t,5)wg +/ Z>(t, p,s)n(p)dp,
0

where we have set

(3.4) Yi(t,s) i= —[AJH (LY + H)C*Ce ™9 (),
(3.5 Ya(t, p,s) i= =[ATH(LY + H)CFCA(, p,9)](0),
(3.6) Zy(t.5) 1= e + [(Lg + H)¥1(.5)] (@),
3.7) Zs(t, p.s) == At, p,s) + [(Ls + Hy)¥a (-, p, $)](0).

In the following lemma, we pinpoint the regularity of the operators Z; (¢, s) and
Z5(t, p,s) with respect to the first variable.

Lemma 3.3. Let Z1(t,s) and Z,(t, p, s) be the operators defined in (3.6) and (3.7),
respectively. Then, we have

(3.8)  Zi(,s) € C([s, T), £(HK)), Zz(- p,s) € LY@V (s, T; L(U, ¥)).

Proor. From definition (3.6) of Z;, we see that its regularity strictly depends on the
one of 1 (-, s), so we discuss this one first. Starting from definition (3.4) of v, we
recall the well-known property

Ly € L(L®(s. T; £(H#)).C([s. T]. £(U)))

recorded in the appendix (see (A.3)), along with the regularity pertaining to H;
established in Proposition 2.3 to infer ¥ (-, s) € C([s, T], £(U, #)). Then, in view of
Propositions A.1 and 2.3, the very same membership for Z(-, s) holds true.
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Similarly, we start from the definition of Z,(-, p, s) and see that its regularity
is determined by the ones of A(:, p, s) and of ¥, (-, p, s). In this case, we combine
A(, p,s) e L2/Cr=D(s T: £ (U, #)) —that is, the regularity result (2.1a) of Lemma 2. 1
— with

L5 (5, T: (U, X)) y > 3/4,
Ya(-, p,s) € Lq(s,t;l’(U, J(’)) Vg<oo y=23/4,
C([s.T]. £(U, 3)) y <3/4
— coming from (A.3) — to find that
L& (5. T: (U, X)) y > 5/6,
(Ls + Hy)Ya (-, p,s) €  L9(s, T: £(U, ¥)) Vg <00y =5/6,
C([s.T], £(U, 3)) y < 5/6.

The above shows that Z, (-, p, s) inherits the very same regularity of A(-, p, s), i.e.,
the latter membership in (3.8), thus concluding the proof. |

In view of Lemma 3.3, we infer the statement (S1) of Theorem 1.5.

CoroLLARY 3.4. Under the standing Assumptions 1.1 and (1.9), for every X¢ € Y,
we have the regularity in time of the optimal control 1i(t, s, Xo) and the component
w(t,s, Xo) asserted in (1.18).

Proor. We use the first of the representation formulas (3.3): as shown in the proof
of Lemma 3.3, we have 1 (-, s) € C([s, T], £(U, #)); moreover, by (3.5) with 6 €

(07 1- 7/),

“ ZZ([’ ) S) - ZZ(T’ )

s)HLz(o,s;x(U,Je)) < C[A@, - 5) = Az, 9) “LZ(o,s;z(U,Je))

<C(t—1)°,

which implies readily # (-, s, Xo) € C([s,T], U).
Next, using the basic relation (1.12), as well as (2.9), we immediately obtain

B (-5, Xo) = eACDwo + [(Ls + Ho)i (s, Xo)| + Ken € C([s. T]. J). =

We need now appropriate estimates of the increments of Z; and Z, with respect to
their other variables.

LeEMMA 3.5. Let Z1(t,s) and Z,(t, p, s) be the operators defined in (3.6) and (3.7),
respectively. Then, we have fort > o > s

(3.9) |Z1(2.0) = Z1(t,9) || g gy = 0(0 = 5):
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Sfurthermore, fors > p > q,

(3.10) |22, p.5) = Z2(.0.9) | Lo 0y = @2 = D).

and for s >r > p,

@11 |22 p.5) = Za (. 2.1 | 2 o gy = 05 = 1)

here, w is a continuous, positive function on (0, T], such that w(t) — 0 as T — 0.
Proor. The proof of (3.9) is a straightforward consequence of definition (3.6) of Z,
and of the fact that all the operators involved in its definition clearly depend continuously

ons.
Concerning (3.10), starting from (3.7), fort > s > r > p, we have

|Z2(2, p,5) = Za(t,q.5) ||L2(s,T;:C(U,J€))
<A@ p.s) =249 | 2 120,509

+ [[(Ls + HOATHLS + H)C*C[AC, pos) = A 0] o e .90y
< CAC po9) = 209 oo 720909

By (2.3), we establish (3.10).
To prove the estimate (3.11), we compute fort > s >r > p

Zz(t,])’s) - ZZ(t’p’ }") = [/\(t! p,S) _k(l‘?p’r)]
+ [(Ls + H)AJH (LY + H)C*CAC, p,5)](0)
—[(Lr + HO)AN(LE + HY)C*CAG, p,1)](0);

then, as Ly + H,* does not depend on s, we have

| Z2(2, p.s) = Z1 (2, p, r)HL2(s,T;:£(U,J€))
< A6 2o = AP 2 7w,

+ [(Ls + HOATHLS + H)C*C[AC, pos) = A6 20| 2o ez w.0))

+ |[(Ls + HOAT = (Lo + HAT JLE+HOCHCAC p0) | 2 1wy
=:81 + §2 + §3.

The summand s, is estimated by (2.4), while s, can be bounded by a constant times sy ;
thus, it remains to estimate the third summand s3, for which a further decomposition
leads to

$3 = ” (LS + HS)AS_I[Ar - AS]A:I(L: + H:)C*Cl(, b, r)”LZ(s,T;JC(U,Jf))
+ [[(Ls + Hy) = (Lr + HDJATN(LY + H)C*CAC po1)| 12 20,500
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It can be easily seen that the quantities in the right member behave all as w(s — r),
with w(t) — 0 as t — 0. This proves (3.11). |

3.2. The optimal cost operators

This section is devoted to prove that a representation of the optimal control in closed-loop
form can be obtained, with gains that involve the very same linear bounded operators
that are building blocks of the optimal cost. The line of argument is essentially the one
pursued in [5, Section 2], whose trickier step was to develop different representations
for the operators that are displayed in the optimal cost; these allow us to identify the
presence of the optimal cost operators in a first feedback formula that follows from the
optimality condition (see Lemma 3.7 below).

Since B is unbounded, novel regularity results are called for: in particular, to give a
meaning to the gain operators. These are provided later in Propositions 3.8 and 3.10,
which in turn exploit the novel Lemmas 3.3 and 3.5.

We begin by providing a more precise and explicit formulation of the statement
(S2) of Theorem 1.5.

ProrosiTioN 3.6. We make reference to the optimal control problem (1.12)—(1.17),
under the standing Assumptions 1.1 and (1.9). Given Yy € Y, the optimal cost is a
quadratic form in Y, which reads as

(3.12) Js(@t) = Js(1, Xo) = (Po(s)wo. wg)ﬂ,+2Re (/0 Pi(s, p)n(p)dp, wo)ﬂ

+/0 /0 (P2(s. p.9)n(p). 1(9)), dp dq.

where the three operators P;, i = 0, 1,2, are given by
T

G130 Poo)= [ [Z10:9)°CTCZ109) (s e o)),
ST

G130 PiGs.p)= [ [210:9)°CCZalt. pos) 41109 a0, pos) ],
S

T
(3.13¢) Pa(s. p.q) = / [Z2(t.4.5)* C*CZa(t. p.s)+¥a(t.q.5) Va(t. p.5)]d1.

The presence of the operators Py, Py, and P, (defined by (3.13) and which are
building-blocks of the quadratic form (3.12)) is not immediately apparent in a first
formula for the optimal strategy that follows in a first step combining the optimality
condition with the transition properties of the optimal pair. Pinpointing this fact requires
that we deduce a suitable distinct representation of each operator P;, i € {0, 1, 2},
beforehand.
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LemMA 3.7. With the operators W1 (t, s) and Y, (t, p, s) defined in (3.4) and (3.5),
Z1(t,s) and Z,(t, p, s) defined in (3.6) and (3.7), respectively, then the optimal cost
operators P; in (3.13) can be equivalently rewritten as follows, i € {0, 1,2}:

T
(3.14a) Po(t) = / e C*CZ, (0, t)do,
t
T *
(3.14b) Pl(z,p)z/ e @D C*CZy(0, p.t)do,
t
T
(3.14¢) Pz(t,p,q):/ Mo, q.1)*C*CZ;(o, p.t)do.
t

Moreover, an additional (third) expression of Pi(t, p) holds true:

(3.15) Pi(t, p) = /T Z1(0,)* C*CA(a, p,t)do,
t

so that in particular

(3.16) Pi(t,0)" = /T Mo, t,)*C*CZ (o, t)do.
t

In the following result, we pinpoint the continuity of the operators Py(¢), P1(¢, p),
and P,(¢, p, q) with respect to the various independent variables. The said regularity
allows us to consider the integrals of Py(¢), P1(r,r), and P, (r, p,r) as well as to use
the bounds || Po|lcos || P1llcos and || P2 || co-

ProrosiTioN 3.8. The optimal cost operators Py(t) € L£(H), P1(t, p) € LU, #),
Pr(t, p,q) € L£(U) are continuous with respect to all the variables at hand.

Prookr. (0) From the representation (3.14a) of Py, we immediately obtain
T
| Po(t)x] 5 < M / 00| Z,(0.0)x | do < ¢ Zy(1)x | 5y < cllx e
t
so that

(3.17) |Po®)]| ggey < C. 0=t =T

An inspection of (3.14a) shows that in fact Py(-) € C([0, T], £(H)).
(1) The formula (3.14b) for P;(t, p) yields the estimates

T
“ Pl(t,p)v”% = M/t e®@=D “22(0—7 PJ)”x(U,g{)”v”U do

T 1/r T 1/r
r No—
([ 1z 00y do) ([ e d0) bl

/ ’ 2 2
< C”v”U(ewr (T—t) _ l)l/r . wherer = 5 o y o= ﬁ7
v - ~2y
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with the latter implying

(3.18) | Pt P) | gy <C. O<p=<i<T
More specifically, the asymptotic estimate

(3.19) |P1(2. p) ||x(]€) <cw(T —t) withw(r) = 0,as7 — 0

holds true.
In order to prove continuity with respect to the first variable ¢, we compute for
t>t>p

T
Pyi(t. p) — Pi(z. p) =/ [e4" =) _ o A"O=D1C*C Z,y(0, p, 1)do
t
T *
+ / e (U_r)C*C[Zz(O, p.t)— Zs(o, p.7)|do
t
T *
+/ e (“_’)C*CZg(o,p,r)do.
t
By (3.11) and (3.8), we see that the increment P; (¢, p) — P1(t, p) tends to O as

t—7t—0.
As for the increment on the second independent variable, we see that

T
mmm—am@=/eAWW?qupn—&w%mw
t

so that in this case we use (3.10), to find || P (¢, p) — P1(t,q) | ew,%) — O0as p —q — 0.
(2) Starting from formula (3.14c¢) for P, (¢, p, q), we find immediately that

1/2 1/2
HPz(”Pv‘J)Hx(U)fc[/ [40.4.0 )40 ] [/ 1220 2.0 .30y 00 } ’
so that the uniform bound
(3.20) | P2t p. )| gy =C fort=q=p

holds true. Next, we evaluate (forf > 7 > pand t > q)

T
Py(t, p.q) — P2(7, p,q) 2/ [A(o.q.0)* — A0, q.7)*|C*CZx(0, p,t)do

t

T
+ f Mo.q.1)*C*C[Z2(0. p.1) — Z2(0. p,7)]do
t

T
+/ Mo,q,7)*C*CZs (0o, p,1)do.
T
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By (2.1a) and (2.4), as well as (3.8) and (3.11), we deduce that
| P2(t. p.q) — P2(z. p.q) ||£(U) —0 ast—1—0.

As for the increment on the second independent variable, we have

T
Py(t,p,q) — Pr(t,r,q) = / Mo, q.1)*C*C[Z,(0, p.t) — Za(0,1.1)]do
t
fort > p > randt > ¢q, and again by (2.1a) and (3.10), we find

H Pr(t, p,q) — Pat, r,q)”x(U) —-0 asp—r—0.

Finally, fort > p and ¢ > g > r, the increment on the third variable yields

T
PZ(tv P,CI) - PZ(t’ D, r) = f [A’(O—7 qvt)* - A((L r’t)*]C*CZZ(()'? p’t)do—a
t

whose £(U)-norm tends to 0, as ¢ — r tends to 0, in view of (2.3) and (3.8). ]

3.3. Closed-loop optimal solution, the gain operators

The analysis performed in the preceding section constitutes the premise for the derivation
of the feedback formula (1.20), which expresses the optimal control at time ¢ > s > 0
in terms of the dynamics — namely, the w-component of the state — (pointwise in time)
as well as of the past values of the optimal solution itself from s forward, up to time ¢.
The statement (S3) of Theorem 1.5 is explicitly recorded in the result that follows for
the reader’s convenience.

We emphasize that while the proof of Proposition 3.9 below is akin to the one that
led to show Proposition 1 in [5], the unboundedness of the control operator B raises
the technical issue here of whether the gain operators B* Py(¢) and B* Py (¢, p) are
defined also on elements of the respective functional spaces, and not just on the optimal
evolution. This question is answered positively at the end of the section; see the next
Proposition 3.10.

ProrosiTiON 3.9. Let 1i(t, s; Xo) be the optimal control for the minimization problem
(1.12)—(1.17), with initial state Xo. Then, the optimal control i admits the following
representation:

(.5, Xo) = —[B*Po(t) + Pi(t,1)*]i(t, s, Xo)

_[O [B* Pi(1, p) + Pa(t, p.1)]0(p)dp,
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with

60) = { 0) in [0.5)
u(,s,Xo) inls,t)

and the operators P; as in (3.14) (originally, in (3.13)), i € {0,1,2}.
ProposiTiON 3.10. The (gain) operators B* Py(t) and B* Py (¢, p) belong to the spaces

E(H) and £(FH, U), respectively. Moreover, B* Py(-) € C([0, T, £(H#)) and, for
s> p,

_ 2
B*Pi(-,p) € L°(s,T: L(H:U)) withpy <400 y =3/4,
=400 y <3/4.

Proor. Showing that the gain operator B* Py(¢) is bounded from J# into U is pretty
straightforward (and also expected, as this result needs to be consistent with the memo-
ryless case): it suffices to write

T
B*Py(t) = B*(A*)—Vf A A ODC*CZ1 (0, 1)do

t

and recall that Z (-, 1) € C([t, T], £(H)) to find

T
|B* Po®) | g (s.0) = c/t pE—— | Z16.0] ggeydo < (T =)'V | Z1C1) | 50

As for the gain B* P (t, p), first of all, we need to show that for any v € U, we
have P(t, p)v € D(B*). Indeed, with z € D(B), we see that

T
(Pl(t,p)v,Bz)ﬂ, = (/ eA*("_t)C*CZz(U,p,t)v da,Bz)
t IH

T
=/ (eA*(U_t)C*CZZ(U,p,t)v,BZ)% do

t
T
:/ ((B*A*_V)A*VeA*("_’)C*CZZ(G,p,t)v,z)Udo
t
which yields
r
(Prtt.ppvB2) = [ =) Zato putio] g dolzly

so that r
. 1
I3 ri el = [ Gplato .0l do
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Thus, since (by (3.8)) Z(-, p.t) € L (¢, T; £(U, #)) withr =2/(2y — 1), it follows
that

=553 V>
(3.2D) B*Pi(-,p)v € LP(t,T;U), withp{ <400 y = %,
=+o0 y <73
along with
|B*PrC. )V Lo 1) = €l 22620V L1 gy < IV U
for every t > p. u

4. WELL-POSEDNESS FOR THE COUPLED SYSTEM OF QUADRATIC
OPERATOR EQUATIONS. PROOFS OF THE STATEMENTS (S4)—(S5)

This section deals with the issue of the unique determination of the triplet of operators
which enter the feedback representation (1.20) of the optimal control. This is a key step
to achieve the optimal synthesis. Showing that the operators Py (), P1(z, p), P1(¢, p)*,
P>(t, p, q) do solve a certain coupled system of quadratic (operator) equations cor-
responding to the optimal control problem on [s, 7], that is, (1.21), establishes the
property of existence for the system (1.21). The next and final step is to prove the
property of uniqueness for the solutions to (1.21), thus confirming its well-posedness.

Existence. For the proof of existence, we omit the details and instead refer the reader
to the necessarily long computations in [5, Section 2] (cf. the proof of statement (S5)),
which are equally valid here. We limit ourselves to state explictly a result which plays
a primary role in the computation of the derivatives of Py, Py, and P,.

Lemma 4.1. Let y1(p,t), ¥a(r, p,t), Z1(p,0), Z2(0, p,t) be the operators defined in
(3.4), (3.5), (3.6), and (3.7), respectively. If x € D(A) and v € U, then the derivatives
atl/fl (pa [)x, 8t¢2(r, p’ t)v) at21(p, U)X, 8[22(0, p, l)v exist, Wlth

@.la) 9, Zi(0.t)x = =D Ax + [(Ls + H.)d, Y1 (- 1)x](0)
—[eACDB + Ao, 1,0) |1 (1. 1)x € Lﬁ(l‘, T:¥),
(@.1b) 3, Z(0. p.1)v = —eA k(s = p)Bv + [(L + H)d: (- p.1)v](0)
_ [eA(U—t)B + A(o, p,l‘)]l//z(U, p.Hv E Lﬁ(l‘, T.3),
where
@2a2) Y1 (p,0)x = A7 [(L] + H)CC[(eADB + A¢,1,0) [y (2, 1)x
+ e Ax)(p) e L7 (1, T; V),
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(4.20) 0,9a(r p. )y = AT [(L + HYCHC[(ATB + 2. 0.0) [ya(t. p.t)v
+ eA('—l‘)k([ — p)Bv](r) S Lr(t, T; U)

with e € (0,1 —y) and forr = ‘zyz—l'

With the representations (3.14) of Py(t), P1(¢, p), P2(¢, p, q) as a starting point,
using the expressions (4.1) and (4.2) stated in Lemma 4.1 — along with the memberships
therein — we can compute the derivatives of (Po(¢)x, y), (P1(t, p)v, )z, and
(Py(t, p,q)u,v)y, with x, y € D(A) and u, v € U, thereby attaining the differential
system (1.21).

Uniqueness. To confirm the property of uniqueness, we follow the line of argument
pursued in [5, Theorem 4.1]. We rewrite the differential system (1.21) solved by Py (%),
Pi(t, p), and P, (¢, p, q) as a matrix (operator) differential equation, that is,

4.3) %P(z) =—Q— P(1)[A+ Ki(1)] — [A* + K2(1)] P(2)
+ P(t)11:BI,P(1),

supplemented with the final condition P(7") = 0, having set

[ Po(t)  Pi(t,)
(4.4) P(’)_<P1(t,:)* Pz(f,',i))

and

_(c*c o (o k(- (0o o
(Q—( 0 O)a JCl(f)—(O 0 >’ JCZ(r)_(k(r_:)* 0)’

1 0 1 0 BB* B
I, = ;o Iy, = : 8=, :
b (o x{r}c)) ’ (o x{r}c)) ( B 1)

The differential equation (4.3) in Y can be equivalently written in its integral form

T
4.5 P@) = / er (@ + P(r) K1 (r) + Ka(r)P(r)

t

— P(r)11,81,,P(r)]e* " dr,

having introduced the Cy-semigroup
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We know that P (¢) defined by (4.4) is a solution to (4.5), so let us assume that Q (¢)
is another solution: setting

V(t) = P(t) - Q)

_ Po(t) — Qol(1) Pi(t,) = Qi) | _ [ Vo) Wi
Pl(t7:)*_Q1(t7:)* PZ(Z7'7:)_Q2(I"7:) Vl(t’:)* Vl(t"v:) '

we see that V' (¢) solves the integral equation

T
(4.6) V()= / eA*(r_t)[V(i’)eKl(r) + Ka(r)V(r)
t V(@) I1,,BI,P(r)— 0, Bl>, V(r)]e’A'(r_t) dr.

Take now s € [0, T'). Our goal in what follows is to produce an a priori estimate
for the quantity

A7) IVolloois,m;2e) + I B* VollLoos, ;e +  sup ||V1(l’p)||x(,7€)
pel0,1];1€ls.T]

+  sup Va(. p.q) +  sup B*Vi(.p)| 120 7 ,

pacloal:rels.T] || ”.i’,(U) pel0.]: 1els.T] ” ”L t,T;£(H,U))

which will be simply indicated as
A(5) := [Volloo,s + 1B*Volloo,s + [Villoo,s + Valloo,s + [ B*ViC p) | .-

We also recall that by (3.21) we know that B* P;(-, p) and B*Q(:, p) belong to
L7 (s, T; £(H,U)), r = 2.

4y-3
The four (scalar) integral equations to which (4.6) is equivalent allow us to establish

the following a priori estimates (with ¢ € [s, T] and p,q € [0, t]):

T
I VO(I)”;&(J() = C/t [ B*Vo(0) H;C(J(’,U) + [ Vi(o, U)||§6(J€)]d0

<C(T _S)[”B*VOHOO,S + ”VIHOO,S];

LS|
B Vo0l sear = € [ s (1B Vo gy + Vi) |00 ]do

< C(T =5)"7"[I1B Volloo,s + Vi lloo,s]:

T
4Py = € [ (1@ = )] gy Vol
+ [1B*Volloo,s + Villos,s ]| B* P1(0, P)| ¢ 5.0y
+ ”B*Vl (0, p) ”;g(,;zg,y) + HVZHOO,S}dG

1 * *
< C(T=9)2[|Vollco.s + 1B*Volloo.s + Vi llco.s + 1B*Vill2,s]
+ C(T = 5)[[V2lloo,s:
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|Va(t. p.q) H:C(U)

T

= [ {1Ik© = )] iy + 150 =) | |1V
+ B V1(0.9) | 50,0 + 1V2llows ][ [| B* P1(o, p)||;£(J€,U) +C]
+{[B*Vi(0. D) g e,y + V2lloos ][ B* Q10 D) | £ g 0ry + C1}do

2,5];

1 *
< C(T = 9)2[IVilloo,s + IV2lloo,s + |B* V1

|| B*Vi(-, p) ||L2(t,T;:C(J€,U))

T
1
<ClWallos| [ =7 k@ = Pl gy

L2(t,T)

T
1
+[I1B*Volloo,s + V1 lloo,s ] / o=y 1B P1@ P 2.0y +C 1o

L2@t,T)

T
* H / (o0 =) [HB*Vl (0.p) ”jﬁ(gf,U) + ||V2||oo,s]d0

<C(T = )'""[IMolloo,s + 1B Volloo,s + Villooss + 1B Villz,s + [Valloo.s]-

L2(t,T)

Thus, we return to (4.7) taking into account the five estimates above, to find
A(s) < C(T — )1V A(s).

Then, if T — s is sufficiently small, say T — s < g, we get A(o) = 0in [T — 1y, T].
Repeating the above argument in [s, T — tp], we obtain A(0) = 0 in [T — 2y, T].
In a finite number of steps, we obtain A(c) = 0 in [s, T']; by definition, this means
V(t) = P(t) — Q(t) = 0in [s, T]. Since s was arbitrary, we deduce P = Q; namely,
the solution to the equation (4.6) is unique.

APPENDIX: A FEW INSTRUMENTAL RESULTS

In this appendix, we recall a few regularity results which are used in the paper. These
include results pertaining to the (time and space) regularity of the mapping L and of
its adjoint L defined in (1.6) and (1.7), respectively; these are established outcomes in
the context of memoryless control systems of the form y’ = Ay + Bu under the first
two of Assumptions 1.1 (a pattern which is consistent with parabolic-like dynamics
subject to boundary data/actions). Lastly, we record a more basic result pertaining to
convolutions.
The first result can be found in [15, Vol. I].
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ProposiTioN A.1. Let Ly and L be the maps defined by (1.6) and (1.7), respectively.
Then,

L%'%l(s,T;t%) if)/>%,
(A.1) L L2(5,T5U) —> 3 Nyeoo LIG. T ) ify = 1,
C ([s.1], %) ify <3
continuously, and more generally
LT (5. T: ) if p < 1L
(A2) Lt LP(s. T:U) — | Nyeoo LYG. T3 ) if p = 145,
C (Is.1). ) ifp> L
continuously.
For the adjoint operator, we have
L 17<1pfy)n (5, T; U) ifp < ﬁ,
(A.3) LytLP(s,TiH) —> | Nyeoo LY. T:U) ifp = ﬁ,
C([s.7].0) ifp>ﬁ

continuously.

The next lemma is the classical Young inequality for convolutions, whose proof is
found e.g. in [17, Theorem 4.2, p. 98].

LemMMa A2, Let f € LP(0,T —s)and g € L4(s, T), with % + 5 — 1> 0. Then, the
convolution [ * g defined by

(Ad) (f % 9)(1) = / £t —o)g0)do 1€ [5.T)

belongs to L" (s, T') with % = -+ % — 1, and the following estimate holds true:

1
2
I f *gllere,m < IfllLro,r—s) I€llLaes,T)-
If% + é —1<0, then f x g € C([s, T]), and we have
If *gllcas,ry < NS lLro,r—s) I€llLacs,T)-

An analogous result holds in the case f € LP(s —T,0), g € L9(s, T), and with

T
(f *9)(q) = / flq—0)go)do q<cls.T).
q
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