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Cohomological dimension of braided Hopf algebras
Julien Bichon and Thi Hoa Emilie Nguyen

Abstract. We show that for a braided Hopf algebra in the category of comodules over a cosemisim-
ple coquasitriangular Hopf algebra, the Hochschild cohomological dimension, the left and right
global dimensions and the projective dimensions of the trivial left and right module all coincide.
We also provide convenient criteria for smoothness and the twisted Calabi—Yau property for such
braided Hopf algebras (without the cosemisimplicity assumption on H), in terms of properties of
the trivial module. These generalize well-known results in the case of ordinary Hopf algebras. As
an illustration, we study the case of the coordinate algebra on the two-parameter braided quantum
group SL;.

1. Introduction

The global dimension is an important homological invariant of an algebra, which most
often serves as a good analogue of the dimension of a smooth affine algebraic variety. How-
ever, there are some examples where the global dimension does not match with geometric
intuition. Consider for example the first Weyl algebra A; (k) =k(x,y | xy — yx=1). If
the base field k has characteristic zero, then gldim(A; (k)) = 1 [29], while A; (k), being a
filtered deformation of the polynomial algebra k [x, y], should be an object of dimension 2.
This often leads us to consider the Hochschild cohomological dimension rather than the
global dimension. Recall that for an algebra A, the Hochschild cohomological dimension
cd(A) is defined to be the projective dimension of A in the category of A-bimodules.
The (left or right) global dimension of A is always smaller than cd(A) (see [13, Propo-
sition IX.7.6]), while they coincide in the important case of the coordinate algebra on a
smooth affine variety, and for the Weyl algebra one has cd(A4;(k)) = 2, as expected [30].

It is thus a natural and important question to determine classes of algebras for which
the global dimension and the Hochschild cohomological dimension coincide. Among such
classes that are known, let us mention two important ones.

(1) If A is a graded connected algebra, we have cd(A) = gldim(A), and these coincide
with the projective dimensions of the trivial left and right A-modules. See [5].

(2) If A is a Hopf algebra, we have cd(4) = gldim(A4), and these coincide with
the projective dimensions of the trivial left and right A-modules. This follows
from [16, Proposition 5.6], see the appendix in [33].

Mathematics Subject Classification 2020: 16T05 (primary); 16E10, 16E65 (secondary).
Keywords: braided Hopf algebra, cohomological dimension, twisted Calabi—Yau algebra.


https://creativecommons.org/licenses/by/4.0/

J. Bichon and T. H. E. Nguyen 2

In this paper, we enlarge this list by generalizing the Hopf algebra case to a class of
braided Hopf algebras. Recall [25] that a braided Hopf algebra is a Hopf algebra in a
braided category. Braided Hopf algebras generalize ordinary Hopf algebras, providing a
wider theory of quantum symmetries. They are also very useful, through the bosoniza-
tion construction [26, 28], in studying certain classes of usual Hopf algebras themselves,
see [20].

The primary objective in this paper is to extend a range of homological properties
observed in ordinary Hopf algebras to the case of braided Hopf algebras. In particular,
our main result (Theorem 3.5) is that if A is a Hopf algebra in the braided category of
comodules over a cosemisimple coquasitriangular Hopf algebra H, then we have

cd(4) = Lgldim(A4) = r.gldim(A),

and these coincide with the projective dimensions of the trivial left and right A-modules.
Our strategy is to extend [ 16, Proposition 5.6] to a general braided context (Corollary 3.4)
and then to use comparison results for various projective dimensions in the setting of
separable functors [27].

We then study some more subtle homological properties for braided Hopf algebras,
such as smoothness (an adequate analogue of regularity for noncommutative algebras) and
the twisted Calabi—Yau property (an analogue of Poincaré duality in Hochschild cohomol-
ogy). For a Hopf algebra A in the braided category of comodules over a coquasitriangular
Hopf algebra H (no cosemisimplicity assumption on H is needed here), we provide con-
venient criteria for smoothness and the twisted Calabi—Yau property, in terms of properties
of the trivial module, see Theorem 4.3 and Theorem 5.2 respectively. Again this general-
izes known results [8] for ordinary Hopf algebras.

We wish to emphasize that while there exist appropriate (co)homology theories for
braided Hopf algebras [3, 4, 19] to which some of our considerations apply, our main
aim in this paper is not to study braided Hopf algebras from this internal perspective, but
rather to use the additional structure to study the homological properties of the underlying
algebras.

We illustrate our results by studying an interesting example of a braided Hopf algebra,
the coordinate algebra on the two-parameter braided quantum group SL,. The correspond-
ing algebra O, 4 (SL2(k)), depending on parameters p,q € k*, coincides when p = ¢ with
the usual coordinate Hopf algebra on quantum SL,, and in general is a Hopf algebra in the
category of Z-graded vector space endowed with an appropriate braiding. We show that
cd(0p,4(SL2(k))) = 3 and that O, 4(SL,(k)) is a twisted Calabi—Yau algebra.

A summary of this paper is as follows. Section 2 consists of preliminaries. In Section 3,
we study the relations between categories of modules and bimodules over a braided Hopf
algebra, and then provide the proof of Theorem 3.5. In Section 4 we discuss finiteness
conditions for modules in a tensor category and prove our smoothness criterion (Theo-
rem 4.3). In Section 5 we study the twisted Calabi—Yau property for braided Hopf algebras,
and prove Theorem 5.2. Section 6 provides illustrations of our results on the example of
the coordinate algebra on braided quantum SL,.
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2. Preliminaries

This section, which also aims at fixing some notation, consists of reminders on monoidal
categories and braided Hopf algebras, together with some preliminary material to be used
in the proof of our comparison of cohomological dimensions for a braided Hopf algebra.
Standard references we use are [22] for ordinary Hopf algebra theory, [10, 14, 20] for
monoidal categories and braided Hopf algebras, and [34] for homological algebra. We
work over a fixed base field k.

2.1. Monoidal and braided monoidal categories

Recall that a monoidal category (€, ®, I,a,l,r) consists of a category € endowed with
the following components:

(1) abifunctor ®: € x € — €, called the tensor product;
(2) an object I, called the unit of the monoidal category;
(3) three natural isomorphisms expressing properties of the tensor product operation:

* anatural isomorphism
axyz XY ®Z)~(XQY)RZ
for all objects X, Y, Z in €, called the associativity constraint;

e two natural isomorphisms
Ix:IT®X ~X and ry: X Q1 ~X.
for any object X of €, called the left and right unit constraints;

satisfying the familiar pentagon and triangle axioms, see [10, Definition 1.1].

The monoidal category € = (€, ®, I, a,l,r) is said to be strict if the associativity and
unit constraints a, [, r all are identities of the category.

In this paper the monoidal categories of interest are all categories of vector spaces
endowed with additional structures (most notably categories of comodules over a Hopf
algebra) and with the associativity and unit constraints of vector spaces. In this case there
is no danger in suppressing the associativity and unit constraints, and we follow this con-
vention, hence considering our monoidal categories as strict monoidal categories. More
generally Mac Lane’s coherence theorem (see, e.g., [10, Section 1.5]) states that every
monoidal category is monoidally equivalent to a strict monoidal category, and this justi-
fies further that we only consider strict monoidal categories.

Working in strict monoidal categories allows us to use the familiar graphical calculus
in monoidal categories: for objects X, Y in €, the identity morphism idy: X — X and a
morphism f: X — Y are denoted by

X X
I and @
X Y
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and morphisms in € are equal precisely when the corresponding graphical diagrams are
the same up to isotopy.

A braided monoidal category is a monoidal category endowed with a braiding, i.e., a
family of natural isomorphisms

CX,YZX(X)Y—)Y@X
such that for all objects X, Y, Z in €, we have

cx,yez = (idy ® cx,z) o (cx,y ®idz),

cxey.z = (cx,z ® idy) o (idx ® cy,z),

and

cx,; =1idxy = cr x.
A braided monoidal category is said to be symmetric when we have cx,y = ¢y 1X for any
objects X,Y in €.

For objects X and Y of a braided monoidal category €, we denote the braiding iso-
morphism cx,y and its inverse cy j respectively by

XY Y X
Y X XY
The braiding axioms then are
XY Z XY Z
xXyez = t ] and cxev,z = ;@i 2.1
Y Z X Z XY

We will use as well the reverse category of a monoidal category: if € is a monoidal
category, then €™ is the monoidal category endowed with tensor product ®"™" defined
by X Y =Y ® X. If € is braided, then so is €™, with the braiding defined by

i
CX,Y =Cy X.

2.2. Coquasitriangular Hopf algebras

Basic examples of symmetric monoidal categories are the category ;M of k-vector spaces
over our base field k, with the (symmetric) braiding given by the flip operators, and more
generally the category of comodules over a commutative bialgebra. In this subsection, we
recall the structure that produces a braiding on the category of comodules over an arbitrary
bialgebra.
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A coquasitriangular bialgebra is a bialgebra H equipped with a convolution-invertible
linear formr: H ® H — k (called a universal r-form) such that, for any x, y,z € H,

yx = r(xa), YO)X@ Yo (X@), Ye): 22)

r(xy,z) =r(x,za))r(y, z@), r(x,yz) =r(xq),2)r(xew),¥). 2.3)

A coquasitriangular Hopf algebra is a Hopf algebra which is a coquasitriangular bialge-
bra.

Let H be a coquasitriangular bialgebra with universal r-form r. For right H-comodules
V and W, the linear mapry,w:V ® W — W ® V defined by

ry,w (v ® w) = r(va), w)) W) V() 2.4

is an H -colinear isomorphism, and it is an immediate verification that the axioms of an r-
form ensure that this procedure defines a braiding on M , which thus becomes a braided
category, which might be denoted by M if we want to remember the braided structure.

Example 2.1. Let I" be an abelian group. Then the universal r-forms on the group algebra
kT correspond to the bicharacters I' x I' — k*, i.e., the maps v such that

Y(xy,z) =¥ (x,2)¥(y,2); ¥(x,yz) =¥, »)¥(x,2) forx,y,zel.

Let us explicitly describe the braiding associated with a such a bicharacter v . For this,
recall first that M*T identifies with the category of I'-graded vector spaces as follows: if
V = (V,a) is aright kI"-comodule, put,forg e I', Vo, = {v € V | a(v) = v ® g}. Then
V = @ger Ve defines a I'-grading on V. Conversely, if V = P, cr Ve is I'-graded,
putting a(v) = v ® g for v € V,, defines a structure of kI"-comodule on V.

Given a bicharacter v/, the category M*T is braided with braiding:

CV’WIV®W—>W®V
VW EV, Wy = Y(g, hw @ v.

When I' = Z = (z) is the infinite cyclic group with a fixed generator z, a bicharacter is
uniquely determined by £ = v/(z, z). We denote by M*Z the resulting braided category.

2.3. Algebras, modules, coalgebras and comodules in monoidal categories

The familiar notions of algebras, modules, coalgebras and comodules in vector spaces
categories have direct generalizations in monoidal categories.

Let € be a monoidal category. Recall that an algebra in € is a triple (A, my, n4),
where A € ob(€),and my: A ® A — A and n4: I — A are morphisms such that

my o (my ®idyg) = my o (idgy ® my),

my o (N4 ®idy) =idg = my o (idg ® n4).
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Denoting the multiplication and the unit by

A A

1
m=T =T
A

A

the above associativity and unit axioms read

A A A A A A

A, A
_ d g =I= i 2.5)
A A

If A, B are algebras in the monoidal category €, an algebra morphism f: A — B is a
morphism in € such that

fomg=mpo(f®f) and fons=ns

Graphically, this means

A A
A A 1 )i
A A
B B
Let A be an algebra in €. A left A-module M (in €) is an object M in € together with a
morphism ,ufu: A® M — M, denoted by

A M

=)

M

such that
A A M A A M

My
_ m and ( }21 (2.6)
i M
M

The category of left A-modules (in €) is denoted 4€, with morphisms the left A-linear
morphisms, defined just as in the classical case. The category €4 of right A-modules is
defined similarly.

M
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An A-bimodule in € is an object M in € which is simultaneously a left and right
A-module and such that

A M A A M A

= . 2.7

The category of A-bimodules in € is denoted 4Cy4.

Example 2.2. Let H be a bialgebra. An algebra in the category of right H-comodules
MH is an H-comodule algebra, that is, an ordinary k-algebra 4 endowed with an H -
comodule structure such that the coaction map A — A ® H is an algebra map in the
usual sense. The category 4(M™) of left A-modules in M is the usual category of
relative Hopf modules 4 .M, whose objects are vector spaces V endowed simultaneously
with a right H-comodule and a left A-module structure and such that for any a € A and
v € V, we have
(a.v)) ® (a.v)a)y = a)-ve) @ aq)vqa)

where we have used Sweedler’s notation in the standard way. Similarly, the categories
(MH) 4 and 4(MH) 4 are the familiar categories M f and g M f respectively.

The following result is the straightforward adaptation to monoidal categories of the
familiar free module construction, see [3, Proposition 1.6] for example.

Proposition 2.3. Let € be a monoidal category, let A be an algebra in €, and let V be
an object in €.

(1) Left multiplication endows A @ V with a structure of left A-module. This con-
struction defines a functor € — 4€ which is left adjoint to the forgetful functor
A€ — €. A left A-module isomorphic to A ® V as above is said to be free.

(2) Right multiplication endows V' @ A with a structure of right A-module. This con-
struction defines a functor € — €4 which is left adjoint to the forgetful functor
€4 — €. A right A-module isomorphic to V ® A as above is said to be free.

(3) Left and right multiplications endow A @ V' ® A with a structure of A-bimodule.
This construction defines a functor € — 4 €4 which is left adjoint to the forgetful
functor 4€4 — €. An A-bimodule isomorphic to A @ V ® A as above is said to
be free.

Proof. The proof is similar to the usual one in vector spaces categories. For example, if
X is a left A-module, the map

®:Hom,e(A ® V, X) — Home(V, X)
f= fo(g®idy)
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is an isomorphism with inverse
W:Home(V, X) — Hom,e(A® V, X)
g|—>y,f,(o(id,4 ® g). [

As in the ordinary case of vector spaces, the definition of a coalgebra in a monoidal
category is dual that of an algebra. More precisely, a coalgebra in the monoidal category €
isatriple (C,Ac,ec), where Ac:C — C ® C and ec: C — I are morphisms, denoted by

C C
A m T

c C 1

satisfying the coassociativity and counit conditions:

z Kﬁ I. E o

c C C

The definition of a coalgebra morphism and of the categories of right or left comodules
over a coalgebra in € (denoted €€ and €€ respectively) are straightforward adaptations
of the ordinary ones, and we omit them.

Algebras or coalgebras in a monoidal category are algebras or coalgebras in the reverse
category €™ as well, and there are obvious category isomorphisms

fA ~ Aﬁrev, Af ~ \C’rev, A€A x>~ A\C’;fv.

2.4. Hopf algebras in braided monoidal categories (braided Hopf algebras)

There is no natural way to formulate the definition of a bialgebra in an arbitrary monoidal
category, but this becomes possible in the presence of a braiding, thanks to the following
construction.

Let € = (€, ¢) be a braided monoidal category, and let A, B be algebras in €. The
braiding of € gives rise to an algebra structure on the object A ® B with multiplication
given by

A B A B

MAg.B = . 2.9)
A B

and unit n4 ® np. The resulting algebra in € is denoted by A ®. B and is called the
braided tensor product algebra of A and B.
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The notion of bialgebra in a braided category is then defined as follows: a bialgebra
H = (H,myg,ng, Ag, eqg) in a braided category € is an algebra (H,mpyg,ng) and a
coalgebra (H, Ag,eg) in € such that Ay: H - H ®, H and ey: H — I are algebra
morphisms; that is

HH L ! I rin py I I
! 1 < ¢ ! 1
X: ) = and = ,I= . (2.10)
HH H H I 71
H H HH I

A Hopf algebra in a braided category € is a braided bialgebra H in € such that there
exists a morphism S: H — H in € (called the antipode of H) with S xidg = ng oeg =
idyg = S, where x is the convolution product (see, e.g., [10, Lemma 2.57]), which, in
diagrammatic notation, means that S satisfies

H H

H
=
= : (2.11)
2
H
H H

A braided Hopf algebra is a Hopf algebra in an appropriate braided category.

Given an algebra A in a braided category €, the opposite algebra A°P is the algebra
having A as underlying object, multiplication defined by m o = m4 o c4,4 and the same
unit as A. In case € is a category of ordinary vector spaces, the opposite algebra A°P
above should not be confused with the usual opposite algebra, and in that case A°? might
be denoted A°P¢ to highlight the dependency on the braiding c¢. One defines similarly the
co-opposite coalgebra CP of a coalgebra C in €. The antipode of a Hopf algebra H
in € is then an algebra map H — H°P and a coalgebra map H — H® (see, e.g., [10,
Proposition 2.65]), which, in diagrammatic notation, means

H H H H
J
o -
H H
H H
H H H H

2.12)

“fo-|-
m}—:~

(2.13)

ool
e s
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If A is a Hopf algebra in a braided category € and M is an object in €, then
e®idpy:AQM — M

defines a left A-module structure on M, and we denote by M the resulting left A-module.
If M is aright A-module, then .M, with the left A-module structure above, becomes an
A-bimodule. Similarly, we construct the right A-module M, and the A-bimodule M, if
M is aleft A module. For the unit object I of €, we obtain in this way the trivial left and
right A-modules ./ and /.

2.5. Abelian categories and projective dimensions

In this paper, the abelian categories we consider are abelian k-linear categories, which
means that our categories are abelian categories in the usual sense and moreover each
Hom set is endowed with a structure of vector space over k, and the composition operation
is k-bilinear. The basic examples of course are module or bimodule categories 4 M, My
or 4 M4 over a k-algebra A.

Let € be an abelian k-linear category. If € has enough projectives, which as usual
means that for every object X of € there is an epimorphism P — X with P projective,
then every object X in € has a projective resolution and the projective dimension of X,
denoted by pde (X), is defined to be the smallest possible length of a projective resolution
of X. An alternative description of pde (X) is given by the formula

pde(X) =sup{n € N |3Y € ob(€), Ext}(X,Y) # {0}} € N U {oo}
=inf{n € N | Extg""(X,Y) = 0, VY € ob(€)}
where Extg (—, —) are the usual Yoneda Ext-spaces of the abelian category €, which can
be computed using projective resolutions of the first factor when € has enough projectives,
and using injective resolutions of the second factor when € has enough injectives.
The projective dimension of € (still assuming that € has enough projectives) is then

defined by
pd(€) = sup {pde (M), M € ob(€)}.
For a k-algebra A, the projective dimension of a left (resp. right) A-module M is pd, (M)
= pd, 4 (M) (resp. pdger (M) = pd y, (M)), and the left and right global dimensions of
A are respectively defined by
Lgldim(A4) = pd(4 M), r.gldim(A) = pd(My).

When 1.gldim(A) and r.gldim(A) coincide, the common quantity is denoted gldim(A),
and is called the global dimension of A. Finally, the Hochschild cohomological dimension
of A is defined by

cd(A) = pd, 4, (A).
It is well known (see, e.g., [13, Proposition IX.7.6]) that

L.gldim(A) < cd(A), r.gldim(A) <cd(A4).

We record, for future use, a well-known useful result (see, e.g., [1]).
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Proposition 2.4. Let € and D be k-linear abelian categories, and let F:€ — D and
G: D — € be some k-linear exact functors with G right adjoint to F.
(1) If P € ob(€) is projective, then F(P) € ob(D) is also projective. If € has enough
projectives and furthermore G is faithful, then D also has enough projectives.
(2) If P € ob(D) is injective, then G(P) € ob(€) is also injective. If D has enough
injectives and furthermore F is faithful, then € also has enough injectives.

(3) Suppose that € and D have enough projectives or injectives. Then we have natu-
ral isomorphisms

Ext, (F(X), V) ~ Exts (X, G(V))

for any X € ob(€) and V € ob(D). In particular, if € and D have enough pro-
Jectives, then we have pdg(F (X)) < pde(X).

In order that the inequality of projective dimensions in the above result becomes an
equality, we need one more assumption on the functor F. Let €, D be categories and let
F:€ — D be afunctor. Then F induces a natural transformation

P_._:Home(—, —) — Homg (F(-), F(-)).
We say that F is a separable functor [27] if there is natural transformation
M_ _:Homg (F(-), F(—)) — Home(—, —)

suchthat M o P _ = Iyome(—,—)-
The following result is certainly well known, for a proof we refer the reader to the
obvious adaptation of [6, Proposition 14].

Proposition 2.5. Let € and D be k-linear abelian categories having enough projective
objects, and let F: € — D be a k-linear functor. Assume that F is exact, preserves projec-
tive objects and is separable. Then for any object X in €, we have pde (X) = pdg (F(X)).

The main examples of separable functors we consider in this paper are provided by
the following result from [11].

Proposition 2.6. Let H be a cosemisimple Hopf algebra and let A be a right H -comodule
algebra. The forgetful functors AM* — 4 M and M f — My are separable.

Proof. These are left-right variations on [11, Corollary 3.5] or [12, Corollary 24], based
on Rafael’s separability criterion for adjoint functors, see also the direct approach using
the Haar integral in [6, Lemma 20]. [

2.6. Abelian monoidal categories

An abelian k-linear monoidal category is a k-linear abelian category € endowed with a
monoidal category structure such that the bifunctor — ® —: € x € — € is k-bilinear and
such that for any object X in €, the functors X ® —: € —€ and — ® X: € — € are exact.
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An abelian k-linear braided category is an abelian k-linear monoidal category en-
dowed with a braiding (and hence is in particular a braided monoidal category).

Notice that exactness of the above tensor product functors in the definition of an abelian
k-linear monoidal category is not always assumed in the literature, but it is convenient, in
order to simplify the terminology, to include these conditions as part of our axioms.

Proposition 2.7. Let € be an abelian k-linear monoidal category, and let A be an algebra
in €. The categories 4 €, €4 and 4 €4 are all abelian k-linear, and have enough projective
objects if € has.

Proof. That 4€, €4 and 4 €4 are all abelian is proved for example in [2], and that these
categories have enough projective objects if € has follows from the combination of Propo-
sition 2.3 and of Proposition 2.4. ]

We now specialize to the abelian k-linear monoidal category M with H a bialge-
bra. Let A be a right H-comodule algebra. Then (see [12] or [6]) the forgetful functor
QH:AMf — 4 M4 has a right adjoint

RiaMy — aMH
V—=VOH

where VO H is V ® H as vector space, its A-bimodule structure is given by
a-(wW®h)=apy-v®amh, (Wh)-a=v-aq @ hagq)

and its H -comodule structure is induced by the comultiplication of H. Similarly, if V isa
left (resp. right) A-module, when endowing V' ® H with only the above left (resp. right)
A-module structure, we denote it by V @ H (resp. V& H), and obtain an object in 4 M
(resp. in Mf), and this defines a functor 4 M — 4 M (resp. My — Mf) which is right
adjoint to the forgetful functor QuiaMT > 4 M (resp. QLp: er — My).

Proposition 2.8. Let H be a bialgebra and let A be a right H-comodule algebra. Then
the categories 4 M, M f and g4M f are all abelian k-linear categories having enough
injectives, and have enough projectives if M has. We have, for any object V in 4 M f
(resp. in 4 MH | resp. in Mf ) and any A-bimodule (resp. any left A-module, resp. any
right A-module) W, natural isomorphisms

Ext y, (20 (V). W) = Ext! (V. W © H). (2.14)
(resp. EXU 3 (Qu (V). W) = Ext® 0 (V.W & H)), 2.15)
(resp. Exty, (Qr(V). W) ~ Ethuf (V.W & H)). (2.16)

In particular, if H is a cosemisimple Hopf algebra, the categories 4 M™ Mf and g4 M f
are abelian k-linear categories having enough projectives, and we have for any object V
in geMH (resp. in Mf),

pd, e (V) =pd, (V). (resp. pdyu (V) = pdy, (V).
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Proof. Our categories are abelian by Proposition 2.7, and the remaining statements follow,
by Proposition 2.4, from the existence of previous adjoint functors and the fact that the
categories AMf , AMH and Mf have enough injectives, and from Proposition 2.5. |

3. Modules and bimodules over a braided Hopf algebra and
projective dimensions

In this section, we prove our result on the comparison of the global dimension and the
Hochschild cohomological dimension for some braided Hopf algebras. We begin by exam-
ining the relations between modules and bimodules over a braided Hopf algebra.

Proposition 3.1. Let € be a braided category and let A be a bialgebra in €. Let V be
a left A-module in €. Endow V @ A with the right A-module structure defined by right
multiplication. Then the morphism

A VA

'“lV®A =
|4 A

provides V ® A with a left A-module structure, hence with an A-bimodule structure in €.
Denoting the resulting A-bimodule by V X A, this construction yields a functor

L=—XA:4€ — 4€4
Vi VKA.

Proof. We verify that /LIV @4 18 indeed a left A-module structure on V' ® A, which means
1y ga © (M4 ®idyea) = V‘IV®A o (ida ® fyg 4):
AAV A A VA

A0
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and /LIV®A o (N4 ®idyga) = idyga:

A V A AV

A
vV A
(2.10)
el - 0
v A v A

Thus, we need only check the compatibility of the two structures in order to conclude that
V X A is a well-defined A-bimodule and we leave this verification to the reader. Now, let
f € Hom,e(V, W), we see that f ® idg € Hom,e(V K A, W K A):

A V A A V A A V A
Vv A Vv A Vv A

Similarly, we also observe that f ® id4 is a morphism in €4. Consequently, it is a mor-
phism in 4 €4, implying that L defines a functor. ]

The following is [20, Proposition 3.7.1], we include the proof for the sake of com-
pleteness.

Proposition 3.2. Let € be a braided category and A be a Hopf algebra in €. Let M be
an A-bimodule in €, the morphism

A M

endows M with a left A-module structure in €. We then denote by M the resulting left
A-module. This construction defines a functor

R: 4€4 — 4€
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Proof. We begin by showing that “371 o(mg ®idy) = /,Léq o (idg ® p,%l):
AAM A AM A A M

@ . A 2)
M
M

A A

<

A M

~— |

2.6)

J&

@

)
g

(2.10) (2.12)

Then,

S

M M

that is, V“i\? o (n4 ® idps) = idpy. This finishes our proof.

15
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Proposition 3.3. Let € be a braided category and A be a Hopf algebra in €. Then the
Junctor R: 4€4 — A€ is right adjoint to the functor L = — X A: 4€ — 4€4.

Proof. LetV € 4€ and M € 4€4. Consider
®y.pr:Hom e, (V R A, M) — Hom,e (V. M)
[ f=fo(dy ®na).

We verify that f is well defined as a morphism in 4€, which means ,uvﬁq o(idg ® f ) =
foul:

AV AV AV AV
() Jr
_ & © = ©
M @ 90,
M M M
AV A %4 A Vv
A |4
_ 2.8) 21D _
M
M M M

In the above computation, the equality (x) arises from the fact that f is a morphism in
4€4. We also have the map

Wy pr: Hom e (V, M) — Hom ¢, (V X A, M)
g & = py o (g ®ida),

where we check similarly that g is a morphism in 4 €y4. It is then straightforward to check
that @y ps and Wy ps are inverse natural isomorphims, and we conclude that the functor
R is right adjoint to L = — X A. ]

We obtain the following generalization of [16, Proposition 5.6].
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Corollary 3.4. Let € be an abelian k-linear braided category with enough projectives
and let A be a Hopf algebra in €. There exists a natural isomorphism

Ext*e (4. M) ~ Ext*c(:1. M).
and we have pd ¢, (A) = pd,e(c1) = pde, (1¢).

Proof. The categories 4€4 and 4€ are abelian k-linear by Proposition 2.7, the adjoint func-
tors in Proposition 3.3 are exact, and we have clearly ./ XA = A. Hence, the announced
natural isomorphisms are obtained from Proposition 2.4, and we getpd, ¢, (4) <pd, e (s 1)
as well.

For a left A-module M, consider the A-bimodule M, as in the end of Section 2.4. Then
the morphism M — ]\Z which is the identity in € is an isomorphism in 4 €, because

A e

Thus 1\7; ~ M in 4€ and we obtain
Ext*e, (A, M) 2 Ext*o (o1, My) = Ext*c(:1. M).

Hence pd, ¢ (/) < pd, ¢, (A), and it follows that pd, ¢, (4) = pd,e(]).
The equality pde, (I¢) = pd, ¢, (A) is obtained by applying the left case to the reverse
category €, |

Theorem 3.5. Let A be a Hopf algebra in the braided category M of comodules over a
coquasitriangular cosemisimple Hopf algebra H. Then we have

cd(A4) = l.gldim(A4) = r.gldim(A4) = pd4(ck) = pdop (k).

Proof. We have
(1 pdAMf’ (A) = pd, gz (k) by Corollary 3.4;
(2) pd, yu (k) = pd, 4 (k) by Proposition 2.8;
(3) pd, u, (4) =pd, M (A) by [6, Corollary 11] (which follows from Proposition 2.4,
because the (exact) forgetful functor 4 M f — 4 M4 has an exact right adjoint).

Hence we obtain
Lgldim(4) < cd(A) = pd, 4, (4) < pd, 411 (4) = pd, s (ck) = pd 4 (k) < Leldim(A)

which gives the announced equality for left global dimension, and the one for right global
dimension is obtained similarly. ]
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Remark 3.6. Let A be a Hopf algebra in the braided category M*! of comodules over a
coquasitriangular Hopf algebra H. Then for an object M € 4 M f , the isomorphisms

Ext* it (A, M) ~ Ext* 4 (ck, M)

in Corollary 3.4 are valid without assuming that M# has enough projectives. This fol-
lows from Proposition 3.3, Proposition 2.8 (the categories 4 M f and 4 M have enough
injectives) and Proposition 2.4. In particular, combining this with Proposition 2.8 gives,
for any A-bimodule M, the following description for Hochshild cohomology:

H*(A. M) = Ext, (A, M) = BxU 1 (4. M © H) = Ext} yon (ck. M O H).

4. Finiteness conditions and smoothness

In this section we use the previous constructions to obtain a convenient smoothness cri-
terion for a Hopf algebra in the braided category of comodules over a coquasitriangular
Hopf algebra.

Let us first recall the following standard finiteness condition [9] on a module over an
ordinary k-algebra A: aleft A-module M is said to be of type FP, if it admits a projective
resolution by finitely generated and projective A-modules, and is said to be of type FP if
it admits a finite projective resolution by finitely generated A-modules, which means that
there is an exact sequence of A-modules

O—-P,—>P_1—>--Pob—>P —>Pyp—M—>0

where each P; is a finitely generated and projective A-module. A similar definition holds
for right modules and for bimodules, and an algebra A is said to be smooth if A is of type
FP as an A-bimodule.

To adapt the definition of a module of type FP to a more general monoidal category €,
recall first that an object V' in € is said to have a left dual if there exists an object V*
together with morphisms e: V* @ V — [ and 6: I — V ® V™ such that

(idy ® e)o (6§ ®idy) =idy, (e ®idy+)o (idy* ® §) = idy=
When € = ; M, a vector space V has a left dual if and only if it is finite dimensional.

Definition 4.1. Let € be an abelian k-linear monoidal category and let A be an algebra
in €.
(1) A left A-module M is said to be relative projective if M is isomorphic, as an
A-module, to a direct summand of a free A-module A ® V.

(2) A left A-module M is said to be finite relative projective if M is isomorphic, as
an A-module, to a direct summand of a free A-module A ® V', with V' an object
of € having a left dual.
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(3) Aleft A-module M is said to be of type FP if it has a resolution by finite relative
projective A-modules.

(4) A left A-module M is said to be of type FP if it has a finite resolution by finite
relative projectives, in the sense that there exists an exact sequence of A-modules

O—-P,—>Py_y—>--P,—>P —>Pyp—>M—0
where for each i, the A-module P; is finite relative projective.
Of course similar definitions hold for right A-modules and for A-bimodules.

Proposition 4.2. Let € be a braided category and let A be an algebra in €. The functor
L =—X A: 4€ — 4C€4 transforms free A-modules into free A-bimodules. If moreover €
is an abelian k-linear braided category, then the functor L transforms objects that are of
type FP (resp of type FP ) in 4€ into objects that are of type FP (resp. of type FPo) in 4€4.

Proof. One has to prove that for an object V' of €, the A-bimodule (A ® V) X A is
isomorphic to the free A-bimodule A ® V' ® A. Consider the linearmap f:AQ V @ A —
(A® V)X A defined by

A V A

AV A
We first check that f o (my ® idyga) = MfA®v>®A o (idg ® f),

A AV A AV A AVA

A

So f is amorphism in 4 € and it is not difficult to verify that f is a morphism in €4. Thus
f is indeed a morphism in 4€4. Moreover, f is an isomorphism with inverse

A VA

AV A

This means the functor L transforms free A-modules into free A-bimodules, and the
remaining statements follow from the exactness of L. ]
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We get the announced smoothness criterion.

Theorem 4.3. Let A be a Hopf algebra in the braided category M of comodules over
a coquasitriangular Hopf algebra H. If ;k is of type FP in 4 MH, then A is a smooth
algebra.

Proof. We have L(zk) ~ A, hence A is of type FP in 4 M if .k is of type FP in 4 MH,
by Proposition 4.2. It follows that A4 is of type FP in 4 M4, since finite relative projective
objects in 4 M f clearly are finitely generated projective A-bimodules. ]

Remark 4.4. Let H be a Hopf algebra and let A be a right H-comodule algebra. If A4 is
(left) Noetherian, then every object in 4 M that is finitely generated as an A-module is
of type FPy in 4 MH

Proof. This is similar to the usual argument with ordinary modules: let M be an object
in 4 M and let V C M be a finite-dimensional subspace that generates M as an A-
module. Then there is a finite-dimensional H -subcomodule W of M that contains V', and
a surjective A-linear and H -colinear map A ® W — M. The kernel is an object of 4 M
and is finitely generated by Noetherianity of A, so we can repeat the process to get the
desired resolution of M. ]

We now use the FP,, condition to construct a comodule structure on certain Ext
spaces. This will be used in the next section and relies on the following observation.

Lemma 4.5. Let H be a Hopf algebra with bijective antipode and let A be an H -
comodule algebra. Let P be a finite relative projective object in 4 M. Then there is a
map

8:Homy (P, A) — Homy(P,A) @ H
f e fo® fo
such that for all x € P,
fo () ® fa) = f(x©)0) ® Si' (x1) [ (x©) 1) 4.1

that endows Homy (P, A) with an H -comodule structure, and makes it into an object in
M f (Homy (P, A) being endowed with its natural right A-module structure).

Proof. Start with the map
80: Homy (P, A) - Homy (P, 4A ® H)
f = 80(f) 80X = f(x)) ® SE' (xay) S (X))
Let us check that §o( /) is indeed A-linear. Fora € A and x € P, we have
S0 (/@) = (@x)0) ) ® S (@0)w) f ((@1)@) )
= f(a@-x®)o ® Sg' (@@Xm).f[@o-xo)a
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= (a0 [ (x©)) gy ® Si' (@ xa)) (@@ f (x@)) )
= a@) f(x@)o ® Sg' (@@xm)aw) f (X))

= aq) f(x©0)©) ® Sg' (xa)Sg' (@e)aa) f(x©)a)
=af(x©) ) ® Sz (x1) f(x©))-

Since P is finite relative projective in 4 .M, it is in particular finitely generated projective
as an A-module and the map

Homy (P, A) ® H — Homy(P,4A® H)

Z(p,- ® hi — (x > Z(pi(x) ®h,~)

is an isomorphim. The map § is then obtained from the composition of the inverse of this
map and §9. Now we check that § is coassociative. Applying (id ® Ag) to (4.1), we have,
forall x € P,
S0y () ® A (f)) = f(x@) ® Si' Xa) @) (x)m ® Sg' xm)a) f (X))
= f(x©)© ® Sz' (x@) f(x©) 1) ® Sg' (x1) £ (*0) @)

On the other hand we have
F00X) ® fom ® fu1) = foy (X))o ® Sg (X)) fo) (x0)a) ® fa)
= f(x©0)©) ® Sg' (x@) f(x©0) 1) ® Sg' (x1) f(x©0) )

and this proves the coassociativity. The counit property is an easy verification, and we
have indeed defined the announced comodule structure on Homy (P, A).
For a € A, we have

(f - a)0)(x) ® (f-a)a) = (f - a) (X)) ® Sz" (xay))(f - @) (x()) 1)
= (f(x(O))a)(o) ® SITII (X(l))(f(X(o))a)(l)

= f(x©@)©a0) ® Sg' (x@)) S (x@)maq)
= fo) - a©(*) ® fuyaq)

and this shows that Homy4 (P, A) is indeed an object in Mf . ]

Lemma 4.6. Let H be a Hopf algebra with bijective antipode, and let A be an H -
comodule algebra. Let M be an A-module of type FPoo in oM . For n € N, the comodule
structure of Lemma 4.5 induces a map

§:Ext} (M, A) — Ext}(M, A) @ H
1+ [flo @ [flo = ol ® fu)

making Ext} (M, A) into an H-comodule, and an object in M f .
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Proof. Let (P«,dx) — M be a projective resolution of M in 4. M such that for each n,
P, is finite relative projective. Each Homy (P, A) inherits the H-comodule structure of
Lemma 4.5, and to prove our assertion, it is enough to check that the following diagram
commutes:

Hom(Py. A) —— 21 Homy(Poy1. A)

Js Js

Homy (Pp, A) @ H o0& g (Pasr, A) ® H.
For f € Homy(P,, A) and x € P, we have, using the colinearity of d,,+1,

Joyodn1(x) ® f) = f(dn+1(x)(0))(0) ® Sg' (dn+1(x)(l))f(dn+l(x)(0))(1)
= [ (dn+1(x©))) ) ® Si' 1)) S (dn1(x@))) 1
= (fodnt1)(X) ® (f odnt1)q)
and this concludes the proof of the lemma. ]
We conclude this section by a last lemma, that we will use in Section 6.

Lemma 4.7. Let H be a Hopf algebra with bijective antipode, and let A be an H -
comodule algebra. Let M be an A-module of type FP in 4 M having a resolution

O—-P,—>Py_1—>--Pob—>P—>Pyp—>M—>0

with each A-module P; finite relative projective and P, = A. Assume moreover that
Ext} (M, A) is one dimensional. Then the group-like corresponding to the H-comodule
structure on Exty (M, A) in Lemma 4.6 is trivial.

Proof. 1t is a straightforward verification that under the identification A >~ Homyg (4, A),
the H-coaction of Lemma 4.5 on Homy (4, A) is given by a — a9 ® a(). The right
A-module Ext)j(M, A) is the cokernel of the right A-linear map Homy(Py,—1, A) —
Homy (A, A) >~ A, which is surjective if and only if 14 belongs to its image. The assump-
tion dimy (Extj (M, A)) = 1 then ensures that the class of 14 generates the vector space
Ext; (M, A) and our first observation in the proof thus ensures that the H-coaction is
trivial. ]

5. Homological duality

In this section we provide a convenient criterion that ensures that a braided Hopf algebra
in a comodule category is twisted Calabi—Yau.

5.1. Twisted Calabi-Yau algebras

We begin the section by recalling the concept of twisted Calabi—Yau algebra. Recall that if
R is an algebra and M, N are left R-modules with N is a right S-module for another alge-
bra S such that N is a R-S-bimodule, then the space of right R-linear maps Homg (M, N)
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carries a natural right S-module structure defined by

(f -9)x) = f(x)-s.

This formula induces a natural right S-module structure on Exty (M, N). In particular,
the Hochschild cohomology spaces H* (A4, 4A @ A4) = Extye (A, A°) are naturally right
A¢-modules, hence A-bimodules. The following condition appears in [8] under the name
rigid Gorenstein, see for example [24] for the present terminology.

Definition 5.1. An algebra A is said to be twisted Calabi—Yau of dimension n > 0 if A is
smooth and
{0} ifi #n

H' (A, 4A® Ay) ~
(“Aadedn {AM iti =n

as A-bimodules, for an algebra automorphism p € Aut(A), called the Nakayama auto-
morphism of A.

The interest in the twisted Calabi—Yau condition comes from the fact that it induces
a duality between the Hochschild homologies and cohomologies [32]: if A is a twisted
Calabi—Yau algebra of dimension n with Nakayama automorphism p, then necessarily
n = cd(A), and if M is an A-bimodule, then we have for any i > 0

H' (A, M) ~ Hy—i(A, ;-1 M).

We will prove the following result, which generalizes the usual result [8, Corollary 5.2]
for ordinary Hopf algebras.

Theorem 5.2. Let A be a Hopf algebra with bijective antipode in the braided category
MH of comodules over a coquasitriangular Hopf algebra H. Assume that the A-module
ok is of type FP in oM™ and that there is an integer n > 0 such that Exti1 (ck, A) = {0}
fori # n and Ext(:k, A) is one-dimensional. Then A is twisted Calabi—Yau of dimension
n, with Nakayama automorphism defined by

w(a) = ¥ (appr(apiay. Sa@apie)g ") Si@p)o)

where yr: A— k is the algebra map corresponding to the A-module structure on Ext)j(:k, A)
and satisfies Yy (ay)aay = Y(a)l for any a € A, and g € H is the group-like element
corresponding to the H -comodule structure on Ext} (:k, A) from Lemma 4.6.

The rest of the section is devoted to the proof of Theorem 5.2.

5.2. The structure of H*(A, 4A ® A4)
Theorem 5.2 will be a consequence of the following result.

Theorem 5.3. Let A be a Hopf algebra in the braided category M™ of comodules over
a coquasitriangular Hopf algebra H. If ¢k is of type FPoo in oM™, then there is an



J. Bichon and T. H. E. Nguyen 24

isomorphism of right A®-modules
H*(A, 4A ® Aq) >~ Ext}(ck, 44) ® A
where the right A®-action on Exty(:k, 4A) ® A is defined by
(If1®d)- (@ b)
= (/1 am) ) ® ba'SE(apio)r[api0). S (ap@)Sa (L1 am) q)]

with the right A-structure on Exty (¢k, 4A) induced by right multiplication in A and the
right H -comodule structure being the one of Lemma 4.6.

Taking Theorem 5.3 for granted, the proof of Theorem 5.2 follows easily:

Proof of Theorem 5.2. Let A be a Hopf algebra in the braided category M* of comodules
over a coquasitriangular Hopf algebra H. If .k is of type FP in 4M*, we know from
Theorem 4.3 that A is smooth. Assuming moreover that Extf4 (¢k, A) = {0} for i # n,
we obtain from Theorem 5.3 that H?(A, 4A ® A4) = {0} for i # n. Assume finally that
Ext}} (¢k, A) is one dimensional and let y: A — k be the algebra map corresponding to the
A-module structure on Ext)j (:k, A) and g € H be the group-like element corresponding
to the H -comodule structure on Ext’j (;k, A) given by Lemma 4.6. It is easily seen from
the fact that Ext; (¢k, A) is an object in Mj] (Lemma 4.6) that ¢ satisfies ¥ (a())aq) =
Y (a)l for any a € A (while there is no such condition on g). Then the right A¢-module
on the right term of Theorem 5.3 is

([f1®d')(a ®b)
= (/1 am) ) ® ba'SE(apio)r(apw). Su (@) Sa (L1 am) )]
= Y (ap)[flo) ® ba'Si(apio)rapiay. Sa(apie)SH (L 1m)]
= [f1® ba'y (ap) S3(apyo)r[apiy. Su(@p)e)g "]

and therefore Theorem 5.2 follows from Theorem 5.3. [

5.3. Proof of Theorem 5.3

We now fix a coquasitriangular Hopf algebra H and a Hopf algebra A in the braided
category M, for which we use the following Sweedler notation for the respective comul-
tiplications and coaction of H on A:

Agla) = ap ®ap;, Ap(x) =xq) ® xp), ala) =ap) ® aq).
The H -colinearity of Ay4 reads, fora € A,
ano ® apjo) ® animapio) = do ® dope ® aa) CRY)
and, if we apply id4 ® o ® idgy to both sides of this equality, we obtain:

anjo) ® apjo) ® apja) ® anjmapRie) = 4ol ® 421 ® do)rRin) ® aay. (5.2)
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Since Sy4 is also H -colinear, we have as well
Sa(a)) ® Sa(a)ay = Salaw)) ® aq). (5.3)

The following result, which provides an isomorphism between two natural objects
in g M2, generalizes a known result for ordinary Hopf algebras [8, Lemma 2.2].

Proposition 5.4. Let A be a Hopf algebra in the braided category M of comodules over

a coquasitriangular Hopf algebra H. We have an isomorphism in 4 MH :
F:(4WAQQA) B H —> (AR Ay) OH

defined by

Fl@a®b®h)=ag-(1®b® Sylaw)h)
= apnjo) ® bSalap)) ® hyr(apa). Su@nmmame)ha)),
with inverse -
GipJARQRA4 O H > JAQAL H

given by
G(a ® b ® h) = apy) ® bSE(ap)) ® hayr(apia). Su@nmapie)ha))-

Proof. Using the left A-module structure from Proposition 3.2, and (2.2) and (5.2), we
have

Fla®b®h)=aq) - (1®b® Su(au)h)
= a1 ® bSa(ao)210)
® a©ym (Su(@m)h) aormrlaope. (Sa@a)h) ]
= a110) ® bSa(a)210)
® a©maope (SH@m)h) g rlaopia): (Saam)h) )]
= a@) ® bSa(a)210) ® am)Su (@@)her(appia). Su@E)ho]
= a1 ® bSa(a)210) ® heyr[aepiw. Suam)ho)]
= apo) ® bSalap)w) ® heyrlapiw. Su@nmap)ho -

We obtain the expression of F as stated. For x € A, we have

F(x (a®b® h)) = F(x@a ®b ® xuyh)
= (x@a) ) " (1 ® b ® Su ((x©a)1)xh)
= (x@a@) - (1®b ® Sy (xmyam)x@h)
=x-(a@ - (1®b® Sulaw)h))
=x-Fla®b®h).
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Hence F is A-linear, and it is immediate to check that F is also H -colinear. It remains to
prove that F is indeed an isomorphism with inverse G. We have

FoGla®b®h)
= F(apo) ® bS5(api0) ® he)r(apia). S ammapie)ho)
= apo e ® bSF(ap0)Sa@noe) ® he)
x r(apmi): SH(@moumanoeie)he)r(apw. Su@mnmaeie)ho)
= apon) ® bSapi)Sa(amoeie) ® har(anoen. Saapnahe)
x ¥(a))s S (@m@apie)h@)  (by using (5.2) for api))
= apyo) ® bSF(ap|0)Saapiw) ® hayr(apn. S @nmapie)he)
x r(ap)). Su(an@apieaEie)ha)  (applying again (5.2) to a)
= apyo) ® bSa(api0) Sa(api0)) ® har™ (api). apa)r@pe). he)
x r(ap)e). Su(@mmapie))rape). ho)r(ape). Seameapieas))

where we have used the fact that Sy is an algebra anti-morphism in M for the last
equality. Using successively the properties of r, we get

FoGa®b®h)

= a0 ® bSa(ap)0)Salagie)) ® hayr™ (apim. apim)r@EEaRIe): )

A\/

r(ap)3), SH(an1@)aR)s)a31@)
® hiyr™ (apy)- ap1e)r (@RI aEa). ha))

x r(ap)@), Sa(apap)@))r
= anjo) ® bSa(ap)0)Salap)o)

A\./

r(ap)e). Su(ammap@))r(aEe): Su(@meapis))r(aEe. Sa(aps)
= apyo) ® bSa(api Saap|)) ® hoyr™ (apie). apie)r@mapo. o)
r(a3)a216) SH(@mmapie))r(aEe. St (ap;s)
= apyo) ® bSa(apio Sa(ap|0)) ® hoyr™ (apie). apie)r@Rmap. ha)
r(api@apie): Su@mmapi@))r(aEe. Su(apEes))-
Now let f: H — k be the linear map defined by f(x) = r(x(1), Su (x(2))) and recall from

[22, Proposition 2 (v), p. 334] that, for b,k € H,r ' (h, k) = r(Sg(h),k) and r(h, k) =
r(Sg (h), Sy (k)). We have the partial expression

(e ape)r(ap@. Su @)
= r(Su (ap)3)- ap13) f (@)
= r(SH(ape)- ap16) f (@p1))
= r(Su(apa)). S ap)@) faEe)  (by [22, Proposition 3, p. 334])
= r(ap3). Su(ap@)) f(ape)
r(ap3). Su(ap)s))r(ape). Su(ape))
= r(apie)aEe). Su(aE@))-
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We finally obtain

FoGa®b®h)
= aqi)) ® bSa(api0)Salapo) ® herapmapw.ha)
x r(ap)e)aEe): St (anmapi@))r(apease). Sa(ape))
= apy) ® bSa(api0Salame)) ® hor(apmapa. Sa@mmapieape)ha)
= apje) ® bSa[(apSalap)) )] ® he)
x r[(ap1Sa(ag3) oy S (ap1SalaE) @) Su (@ma)hay]  (by (5.3))
= ano) ® bSa(eaap)) ® heyr[L. S (apa)h]
=a®bQh.

Similarly, we also have

GoF(a®b®h)
= G(anyo) ® bSalapi0) ® he)r(apia)- Su@mmapie)ho)
= a1 ® bSa(ape)Siamopo) ® her(apa). St ammazie)hao)

x r(amomri): S (@nommamnoee)he)
= apij) ® bSa(ap0)Siapiw) ® her(apia). Se@mmape)he)

x r(ag), S @ne)apie)asie)ha)  (by using (5.2) successively)
= apij) ® bSa[Sa(api0)apio] ® her™ (ap). apm)

x r(ap)e)- Su(ammapie)he)r(ape- S ameapmase)hao)

(because S4 is an antimorphism in M )

=a®b®h

by applying the same reasoning as in the calculations of F o G, which completes the
proof. ]

The proof of Theorem 5.3 will consist in transporting the right A°-module structure
on H*(A, 4A ® Ay) to Ext}(sk, 4A) ® A using several successive isomorphisms:

H*(A, 44 ® Aq) = Ext] (4,44 ® Ay)
~ Ext:MH (A,4A® A4 © H) (by Proposition 2.8)
A
~ EthM,, (ck,4A® A4 © H) (by Remark 3.6)
~ Ext:MH (ck,4AA® Am H) (by Theorem 5.4)
~ Exty(:k, 44 @ A) (by Proposition 2.8)
~ Ext} (ck, 44) ® A (ck is of type FP).

We now proceed with the transportation of the various A¢-module structures, step by
step. We fix an object P be in 4 M.
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Lemma 5.5. There is a right A°-module structure on HomAMf (PXA,4AQR A4 O H)
defined by
f@@b)x®a)=) dd @bb Qh
i

where f(x ® a) =Y ; a' ® b* ® h, and such that the natural isomorphism
HomAMf(P NA4AQ A4 © H) ~ Hom, 4, (P R A, 4A R Ay)
is A®-linear.
Proof. The isomorphism is
HomAeM,I{I(P NA4A® A4 © H) - Hom, 4, (P R A, 4A ® A4)
frf=d®em)of
and the verification is immediate. ]

Lemma 5.6. There is a right A®-module structure on HomAMH(P,M), defined
by
f . (al ®b/)(x) — Zaial ®b/bi ® hi
i

where f(x) =Y ;a' ® b* ® h', and such that the natural isomorphism
HomAMH(P,AA QR A4 O H) ~ HomAMf(P XA, 4AR A4 O H)
is A®-linear.
Proof. The isomorphism (from Proposition 3.3) is given by
Hom, yu (P, 34 ® Az © H) — Hom, ,u (P K A, 4A® A4 © H)
fr—)f x®ar> f(x)a
and again the verification is immediate. |

Lemma 5.7. There is a right A°-module structure on Hom , yn (P,4A ® A [ H) defined
by

fe@®b)(x)
. . ) . .
= 40%om ® 0D i@ pi0) ® hoyTlalpia) S @i ]
i
where f(x) =), a' @ b' @ h', and such that the isomorphism induced by the isomor-
phism of Proposition 5.4
Hom, 41 (P, AA ® A@ H) ~ Hom, yu (P,4A ® A4 © H)

is A¢-linear.
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Proof. The above isomorphism coming from Proposition 5.4 is

Hom, yu (P,4A® AE H) —>H0mAMH(P,A/A®A\A®ﬁ)

frFof
Gog<«ig.

The transported A°-module structure on Hom , 4 (P, 4A ® A 3 H) is defined by
@ ®b)(x)=G((Fof) (a®b)(x))
For f(x) =Y ;a' ® b' ® h', we have

F(f() = 2 _atiy) ® b'Salafayo) © by (apayqy: St @y afare)hin)
i
and hence

(Fof)-(a"®b)(x)
=D ajye@ ® b Sa(apy ) ® Mgy r(agyy Su@hymaine)hiy)-
i
‘We thus have
f@®b)x)=G((Fof) (d ®b)x))
=D (@@ ® b'0 Sa(apy o) S @f0)@)210)]
i
® hiayr[agay. Sa(@pyayape)ho ]
x r[(@f1100)@ 121> S (@1300)@)110) @110 21@) 2y |
Since A4 is an algebra morphism in M* | we have the partial expression
@[y0)@)11 ® @10)@)121 = 410 m@hio ® AnoeoREmoea): 4o
and hence
f@ ®b)(x)
. o .
= Z(“fu(c)[ll“fu(m)(o) ® 'Y’ SA(“fz](O))SA[(afll(O)[zl(O)ale)(O)]
i
® hiayrlaoei Al Sa@mmape)ho)]
x r[(@1)0)210) 212D V- S (@130)1191110) D @110y 220) 21 @) )]
‘ S L
= Z a9 © b0 Sa(@l0)S4(@n10)210)9210)
i
® hiayrla o) Al epm: Sa@mmape)ho)]

i / i / i / i
x r[ap om0 S @nonofmnnnope e e -
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Using now the properties of r, we get

J@ @b = Z" OO0 ® b Sa@pi0)Si @@oepin i) ® e

X"[am(o)[z](z)’ iy S @inaape)hin ]

i / i i / / i
r[a[I](O)[2](1)a[2](l)’ Su (am(o)[u(l)a[l](o)[z]<3)“[1]<2)“[2](2))h(2>]-
Applying the H -colinearity of A4 (5.2) successively for a1}y and a[) then gives

. o .
[@ @b)(x) =) ajo)aie ® 5D Salaly) Si@hye ) ® k)
i

x rlapyy o). ey r(apay. Se @@ @ ame) o ]
r["fz](l)“le(l)’ SH (“EI](1)”f2](3)“f1](2)“f2](2))hl(z)]'

Using the fact that S4 is an anti-morphism and then successive applications of the proper-
ties of r, we get

f-@ ®b)(x)
= Z“ 100 © 00 Sa[Saapy o)) a0 @ hes)

r iy a0y 4 e o rlae): Sa@he e e o]
X "[afz](z)“le(z)’ Sa@hmapw e e ho)]
_ i 4 110 i / i i —1r7 i / i
= Z“[l](o)“m(o) ® b'b" Sl Sa(ap0)al2100)310)] ® Myt A1) 2210 AP10)]

x "[“[21(4» et ) by rlags @) Su @)t @]
X rlajy )i Moy Al @) St @hmap)e) e dzm)]
_ i 4 AN i / i i —1r,,i / i
=D afy e ® b0 Sa[Sa(ah0)ap0) b0 ® oyt apye e de)
i

x rlagsys) i a0 910 A1) S8 @na i) M@ S (@s)]

X ¥[afy)a)@fayay SH @118 a15) ¥ s A1) i )
Considering again the linear form f: H —k defined by f(x)=r(x(), S(x(2))), we obtain,
by [22, Proposition 2 (v) and Proposition 3, p. 334], the partial expression

1 a0 213) Aa3) Ty SH (@35)]
= r[Su (@y31213))- 9313/ (@314

2100216))- Si @31 [ @]313))]
23)402163) SH @[30 S (@[313))]
i) Ir[ee) Su@ge)]
= 14313902152 1313) St (@f310))]

=r[Su(a]
= r[a}
[
[

!
21341

= r[apy)9) SH @
i !/
21341
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Hence we have
f (@ ®b)(x)
= Z“[l 104110 ® b0 Sa[S4(@lay0)1210)4[310] ® M2y
x r[ 2200 SH @) F e e e SE@psw)]

x x[apy )y SH @[ ) IFap a0 20y Porlaps) amm)]
B . ) L ) ) . .
= Z 0o ® D' Sa[Sa(a0)aiy0) 0] ® he)

x r[ [2](1) B [3 ) SH(“[I (1)”f2](4)“f3](2))hl(1)]
x rafy )21y SH @110 13 T3y ]
=D ajy0)@0) ® b0 Sa[Sa(ap0) Sa(aly0)atse ] ® hiyrlagyay. apa))
i
x ¥[ap)812) 431010 SH @A) A1) )]
X r[apy3)ap3)- SH (@)A1 [ap@ - 4o -
Using once again the properties of r, we then have
fo@®@b)(x) = Z“[u(o)“[u(o) ® b'D" Sa[S4(az)(0)) S4(az)0) L3107 ] ® Moy
x rlagy ) Ayt [0 at a0y SH @l e dme) o]
(permute a’ and a’)
r[ap3)406) SH (@[ am) IHap@ - 4

The partial expression

rlay)2)- 4y [ 3) 2213 SH @1y Afaa) ¥y Ay )
= rlafy ) 4y a0 S8 @ @) M@ a)]
= rlafy)- A 210 S8 @ @) IFate) SH @@ aps)]
= £n (ajy)¥ [z SH (@131 3))]
enables us to obtain, using again the colinearity of S4 and (5.2),
f-@®b)(x)
= Z 1109110y ® b'D Sa[Sa(@fay0)) (Sa(@fz)afz)) )] ® )
x r[a
x r[a

210 (Sa@p)aiz) - (Satagzais) o) Sr @fya)hi]
21(2): SH (af 14 2](3))] (Since S4 is H -colinear)

—_~ o~



J. Bichon and T. H. E. Nguyen 32

. - . .
=D alo@he ® b0 Siapye)ealaly) ® hiy,
i
x r[apy ). Su (@ ae) o]

_ ' [ o2 ' ; '
=D aloyom ® b'0' SF (@l p) © hytlaty iy St @ an)hi)]
i

and this completes the proof. ]

Lemma 5.8. Assume that P is finitely generated and projective as an A-module. Then
there is a right A®-module structure on Hom, 4 (P, A) ® A such that

(f®d) - (a®b)
= (/f - apo) ® ba'Si(ap)r[apa), SuapR) S ((f - an)m)]

where the right A-action and H -coaction on Hom (P, A) are induced respectively by
right multiplication in A and by Lemma 4.5. This A®-module structure is such that the
composition of the canonical isomorphisms

Hom, 4 (P, A) ® A — Hom, 4(P,44A ® A) — Hom, yu (P,4A® AB H)
is A¢-linear, where the right term has the A¢-module structure given in Lemma 5.7.

Proof. The map on the left above is an isomorphism because P is finitely generated pro-
jective, the map on the right is the adjunction isomorphism, and the composition, that we
denote T, is then defined by

T(f ®a)x) = f(x@) ®a® xq).
It is enough to check that
T((f®d)-(@a®b) =T(f ®d)-(a®Db),
with (f ® d’) - (a ® b) defined as above. We have
T((f®d)-(a®b))(x)
= T[(f - ap)) ® ba'SF(api0)]()rapiy. Sa @pi) Sa ((f - appm)]
= (f - ap) ) (x©) ® ba'SF(ap0) ® xyrapiy, Su(ape)Sa((f -ap)m)]
= (f -ap) (x©)© ® ba'SZ(api0) ® X
X r[a[z](l), S (ap)e)SH (S;II (xay)(f - a[I])(x(O))(l))] (here, we use Lemma 4.5)
= (f(x@)ap) o) ® ba'Si(ag)0) ® X2
x rlapi). Sa(apye) Su ((f (x@)ap) o)) ¥m ]

= f(x0))©0)aM)0) ® ba'Si(ap)o) ® X
x rlapy, Sa(apaya@)Su (f @) ) xm]-
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On the other hand we have

T(f ®a)-(@a®b)(x) = f(x@©)©aon ® ba'Siawio)
® x@r[a@pio). Su (f(xe)mam)xw]
= f(x@)anio) ® ba'Sg(ag0)
® xor[apin). Su (f (o) mammapi)xm]  (by (5.2))

and the two expressions coincide, which proves our lemma. ]

We can now prove Theorem 5.3. Let P« — .k be aresolution of .k by finite relative pro-
jectives in 4 M. Then the P; are finitely generated projective A-modules, and P, XA — A
is also a resolution of A in 4 M f by relative projective objects (by Proposition 4.2) and
hence by finitely generated projective A-bimodules. It follows that Ext: My (A, 4A®Ay) is
the homology of the complex Hom, 4, (P« X A, 44 ® A4) (with the natural right A°-module
structure), while Ext} (;k, 4A) ® A is the homology of the complex Hom, 4 (Px, A) ® A,
with the A°-module structure obtained by applications of Lemmas 5.5, 5.6, 5.7 and 5.8,
and that these homologies are isomorphic as A¢-modules.

5.4. Bosonization and another approach to Theorem 5.2

In this subsection we propose another approach to the proof of Theorem 5.2, making use
of results of Krihmer [23]. The only small but important nuance with this approach is that
we have not been able to get relevant information on the group-like g € H in Theorem 5.2,
which is important in view of applications.

To connect Theorem 5.2 and the results in [23], we need the bosonization construc-
tion [26, 28], that we recall now. Let H be a coquasitriangular Hopf algebra and let A be
a Hopf algebra in M . We retain the previous Sweedler notation:

Aga) =ap ®ap).  Ap(xX) =xq) Qxp), «la)=aw) ®ay).
The bosonization H#A is then the ordinary Hopf algebra that has H ® A as underly-

ing vector space, has the unit and counit of the ordinary tensor product of algebras and
coalgebras, and comultiplication, product and antipode given by
x#a - y#b = r(aq), yo))xym#aob,
Alx#a) = (xy#an)o) ® (xeyanm#ar)).
S(x#a) = (1#SA(a(O))) . (SH(xa(l))#l)
= r(aq), Su(x1)a()) St (x2)a(3))#S4(a))-

In particular, this gives

S(l#a) = r(a(l), Su (a(z)))SH(a(3))#SA(a(0))

and
Sz(x#a) = r(a(l), SH(a(z)))Sé (x)#Sj(a(O)).
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The algebra embedding A — H#A, a — l#a, realizes A as a right coideal subalgebra
A C H#A, since
A(l#a) = (l#a[l](o)) ® (a[l](l)#a[z]).

The Hopf algebra H#A has bijective antipode since S4 is bijective, H#A is free as a right
A-module hence is faithfully flat, while the assumption that -k is of type FP in 4 M
ensures by Theorem 4.3 that A is smooth, therefore we can use the results in [23]. In
particular, [23, Theorem 6] and the reasoning inside the proof of [23, Theorem 1] (p. 249)
give

H'(A,4A® Aq) = {0} fori # n.
It then remains to study the A-bimodule structure of H"” (A, 44 ® A4).

Let ¥: A — k be the algebra map corresponding to the A-module structure on the
one-dimensional space Ext} (-k, A). By [23, Corollary 2], the A-module Extj (:k, A) is an
object in a certain category of “twisted” Hopf modules 4 M f’ §‘;‘. Inspecting the condition
that defines the objects of 4 Mﬁﬁﬁ [23, p. 246], we get ¥ (ao))aq) = ¥ (a)l foranya € A
(while there is no condition on the group-like g € H corresponding to the H -comodule
structure). Following [23, Lemma 7], we define the algebra map

0:A— H#A
a = Y(api) S (ammHary)-

We have, using the equality ¥ (a(o))aq) = ¥(a)l,

o(a) = Y(apmo)r(apia). Su(ape)) Sk (@na)#S2(apo)
= y(appr(apay. Su(ap)e)) 1453 (ap)0)

so that o defines an automorphism of A (as predicted by [23, Corollary 4]). Consider
now the A-bimodule (H#A). By [23, Theorem 7], the A-bimodule H" (A4, 4A ® A4) is
isomorphic to the sub-A-bimodule

X ={g#a,a € A} C (H#A),.

It is an immediate verification that X is isomorphic to 4 A5, Where « is the automorphism
of A defined by

a(a) =r(agy. £)a).
and hence to Ay-1,. Since a~!(a) = r(aq), g~ a(o)., it is a direct verification to check
that & = o~ o has the announced form.

6. Example: two-parameter braided quantum SL,

In this section we apply our various results to the coordinate algebra on the two-parameter
braided quantum group SL,.
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6.1. Two-parameter braided quantum SL,

Definition 6.1. Let p,q € k*. The algebra O, ,(SL>(k)) is the algebra presented by gen-
erators a, b, ¢, d subject to the relations

ba = gqab, ca = pac, db=gqbd, dc= pcd, bc=cb
ad — p~'be =1 = da — qbc.

For p = q the algebra O, ,(SL,(k)) is the classical coordinate algebra on the quan-
tum group SL,, and has a well-known ordinary Hopf algebra structure. Generalizing this
for p # g, we construct a braided Hopf algebra structure on O 4(SL(k)). For this, the
following first piece of structure on O, 4, (SL2(k)) is an immediate verification.

Proposition 6.2. The algebra O 4(SLy(k)) has a kZ-comodule algebra structure whose
coaction is defined by the algebra map

8:0p,q(SL2(k)) = Op¢(SL2(k)) ® kZ
abcd~>a®1,bzLe®z,d®l
where z is a fixed generator of the infinite cyclic group 7.

From now on, we denote A = O, 4(SL,(k)), and we work in the abelian k-linear
braided category M2 with £ = p~'g, with its braiding denoted by ¢, see Example 2.1.

Proposition 6.3. There exist algebra morphisms

AA—-> AQ: A

a b . a®a+b®c a@®b+b®d
c d c®a+d®®c c®b+d®d

and

e A—k S: A — APC

(O I OO B A LY By

that endow A with a Hopf algebra structure in the braided category M*Z:£.

Proof. It is immediate to check that ¢ is a well-defined algebra map, and is a morphism
in M¥Z-¢_Consider now the algebra map

Ao:k{a,b,c,d) > A®. A

a b . a®a+b®c a@®b+b®d
c d c®a+d®c c®b+d®d

where A ®. A is the braided tensor product of the algebra A with itself, see Section 2.4.
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In view of the structure of the braiding of M*%-¢ we have, in A ®. A, for arbitrary ele-
ments x,y € Aand z,t € {a,b,c,d} with (z,t) ¢ {(b,b), (b,¢), (c,b), (c,c)},

(x®b).(b®y)=plgxb® by,
(x ®b).(c ® y) = pg~"xc ® by,
(x®c)(b®y)=pg 'xb®cy,
(x®c)(c®y) =plgxc®cy,
(x®2)(tR®y) =xtQ®zy.

We now have, in 4 ®, A,
Aoha)=(a®b+b®d).(a®a+b®c)
=@®b).a®a)+@b).bRc)+(bRd).(a®a)+ (bRd).(bRc)
=a’®ba+ p~'qab ® be 4+ ba ® da + b* ® dc
=qa’ ®ab + p~lqab ® bc + ba ® da + b* Q dc.

On the other hand,

Ao(ah) =@ ®@a+b®c)(a@b+b®d)
=@®a)@®b)+b®c)(a®b)+@®a).bd)+(bRc).(b®J)
=a’®ab+ba®ch+abad + pg 'b*> R cd
=a*®ab+ba®bc +ab®ad +q 'b* @ dc
=a>®ab+ba ®bc+q 'ha ® (da —gbc + p~'he) + ¢ 1b*> ® de
=a’®ab+q 'ha®da+ p~lab ® be + ¢ 'h* ® dc

and hence Ag(ba) = qAg(ab). Next, we also have
Ao(ad — p~tbc)
=@®a+b®c)(cb+d®d)—p a®b+bRd).(cRa+dQc)
=@®a)(c®b)+@®a)(dd)+bRc)(c®b)+(b®c)(d®d)
—p N @®b)(c®a)-pl@®b).(d®c)-p (b ®d).(c ®a)
—p ' (b®d).(d ®c)
=ad @ad + p~'gbc ® ch +bd @ cd —ad ® (ad — 1)
—p7'he ® (14 gbc) —bd ® cd
=ad @1—p he®@1=1®1=Ao(1).
Similar calculations, which we leave to the reader, show that

Ag(ca) = pAglac), Ao(db)=qAo(bd), Ao(dc)= pAo(cd), Ao(bc)=Ao(ch)

and
Ao(da — gbc) = Ag(1).
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Therefore we obtain the announced morphism of algebras A: 4 — A ®. A, which is easily
seen to be a morphism in M*Z-£
In A°P¢, we have for x, y € {a,b,c,d} with (x,y) ¢ {(b,b), (b,c),(c,b),(c,c)},

X-y=yx
while
b-b=plgb®, b-c=pqgtbe, c-b=pqglbc, c-c=plqct

From this, it is a direct verification to define the algebra map S as in the statement, and to
check that S is a morphism in M*%-£_ Tt is then immediate that A, ¢, S satisfy the Hopf
algebra axioms on the generators of A, and hence on the whole of A4 since these are algebra
maps. |

We call the braided Hopf algebra O, ,(SLa(k)) the coordinate algebra on the two-
parameter braided quantum group SL,.
The following are straightforward generalizations of classical results in the case p = gq.

Proposition 6.4. The set {a'b’c¥ | i, j k e NYU{bIckd! | j k € N,I € N*}isavector
space basis of Op 4(SL2(k)).

Proof. The result is obtained using the diamond lemma, as in [22, Section 4.1.5]. [

Proposition 6.5. The algebra A = O, 4(SL2(k)) and its quotients A/(b), A/(c) and
A/ (b, c) are domains.

Proof. Tt is well known that A/(b), A/(c) and A/(b, c) ~ kZ are domains. For A, we
can proceed exactly as in [7, Chapter I.1]. We consider first the algebra A, , presented by
generators a, b, ¢, d and relations

ba = qab, ca = pac, bc = cb, db = qbd, dc = pcd, ad —da = (p~' — q)bc

and remark that A, , is an iterated Ore extension, hence is a domain. Put D, ; = ad —
p~'bc = da — gbc. We have Dp 4 € Z(Ap4) and Op 4(SLa(k)) = Apg/(Dpg — 1).
Consider then the localization A, 4 [D;’}I] with respect to the central regular element D), ;.
We then have an algebra isomorphism
fiApglDyt]l = 0pg(SLa(k)) ® k[z, 27"
a,bc,d—»a®z,b®z,c®1,d®1

and since 4, 4[D, 1] is a domain, s0 is 4 = Op 4(SL2(k)). ]

6.2. Relation with previous literature

To the best of our knowledge, Definition 6.1 seems to be the first formal occurrence of the
braided Hopf algebra O, 4(SL2(k)) under this form in the literature. There are however
some related known objects, that we briefly mention and discuss in this subsection.
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First, assume that k = C and, for ¢ € C*, consider C(SU,(2)), the algebra of con-
tinuous functions on the braided compact quantum group SU,(2) defined by Kasprzak,
Meyer, Roy and Woronowicz in [21]: C(SU4(2)) is the universal C*-algebra generated
by elements «, y satisfying the relations

e +yTy =1 e’ +qPPyy* =1, yy* =y*y ay = qye, ay* = qy*a.
For p = g, it is an immediate verification to check that Oz 4(SL2(C)) has a *-algebra

structure given by

*

a*=d, b*=—gc, c*=—-q'b, d*=a
and that there exists a *-algebra map with dense image

Oq—l,q—l (SLz((C)) — C (SUq (2))

a b o —qy*
-G )
Hence Oz-1 4-1(SL2(C)) might be called the coordinate algebra on the braided compact
quantum group SUy(2), and denoted by O(SU,(2)).

It is shown in [17] that O(SU4(2)) can be constructed from the ordinary Hopf *-
algebra O(SUy (2)) for some ¢’ € R via Majid’s transmutation operation [25]. Similarly
it is also possible to construct O, 4(SL2 (k)) from the ordinary Hopf algebra O, (SL(k))
via transmutation. We will not give the details here, and instead briefly explain how
Op,q(SL2(k)) naturally occurs in the setting of the more familiar Takeuchi’s two-parameter
quantum GL, [31].

Recall [31] that for p,q € k*, the algebra O, ,(GL2(k)) is presented by generators
a,b,c,d, s and relations

ba = qab, ca = pac, db= pbd, dc=gqcd, pbc=qcbh,
da—ad = (p—q YHbe, (ad —q 'bc)§™ ' =1=6Yad —q 'he).

To connect O, 4 (SL,(k)) and Oy, , (GL,(k)), we use the bosonization construction recalled
in Section 5.4.

Proposition 6.6. The bosonization k Z#0, 4(SL2(k)) is isomorphic to Op 4(GL(k)).
Proof. 1t is a straightforward verification to check that there exists an algebra map
f: Op,q (GLz(k)) —> kZ#Op,q (SLz(k))
a b -1 z#a z#D -1
(c d) S (l#c l#d) 2 H
which is an isomorphism, and a coalgebra map as well. ]

It follows from this result that O, 4(SL2(k)) can be recovered as the subalgebra of
coinvariants associated with a Hopf algebra projection on O, 4 (GL(k)), see [28].
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6.3. Homological properties of O, 4 (SL2(k))

In this subsection we compute the cohomological dimension of A = O, ,4(SL2(k)), and
prove that A is smooth and twisted Calabi—Yau. We begin by constructing a suitable reso-
lution for the trivial module, generalizing that found by Hadfield and Krihmer [18] in the
p = q case.

Proposition 6.7. The following is a resolution of .k by free left A-modules:
(P 0> A 232 832 450

where ¢1(x,y,z) = x(a — 1) + yb + zc, ¢p3(x) = x(c,—b, pga — 1) and

b 1—gqa 0
Pa(x,y,z) =(x,y,2) | ¢ 0 1— pa
0 c —b

Proof. The maps ¢1, ¢, ¢3 are clearly A-linear, and that (Py) is a complex follows from
the matrix computations

b 1—gqa 0 a—1 0
c 0 1— pa b =10],
0 c —b c 0
b 1—gqa 0
(c,=b,pga—1)1c 0 1—pa] =(0,0,0).
0 c —b

The injectivity of ¢3 follows from the fact that A is a domain. Moreover, ¢ is surjective
and it is a standard verification that Ker(¢) is generated as a left A-module by @ — 1, b and
¢, so Ker(g) = Im(¢y).

Let X = (x,y,z) € Ker(¢1), wehave x(a — 1) + yb + zc =0 and hence x(a — 1) =0
in the domain A/(b, c¢), so that x = 0 in A/(b, ¢). By using the relations that define A,
we see that bA = Ab and cA = Ac, hence we can write x = ab + B¢ for some «, 8 € A.
Then we have

(x,7,2) = ¢2(a, B,0) = (x,,2) — (b + Be,a(l — qa), B(1 — pa))
= (0.y —a(l—ga).z — B(1 - pa)).
Thus, to show that X € Im(¢;), we can assume that X = (0, y, z) for some y, z € A.

Then we have yb 4 z¢ = 0 which gives yb = 0 in the domain A/(c). Hence, y = yc and
z = —yb for some y € A. It follows that X = (0, yc, —yb) = ¢2(0,0, y), and therefore

Ker(¢1) = Im(¢2).
Let X = (x,y,z) € Ker(¢,). Then
xb + yc =0,
x(1 —ga)+zc =0,
y(l—pa)—zb=0
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and x(1 — ga) = 0 in the domain A/(c), hence x = 0 in A/(c), which implies x = x'c
for x’ € A. Since xb + yc = 0 and A4 is a domain, we obtain y = —x’b. We have now

x'c(l —qa) +zc =0,
—x'b(1 — pa) —zb =0

from which it follows that z = x’(pga — 1) since A is a domain. We get
X = x'(c,=b, pga — 1) = ¢3(x").
Therefore, Ker(¢,) = Im(¢3), and we conclude that the sequence (Ps) is exact. |

We now use the previous resolution to compute some Ext spaces. For ¢ € k¥, it is
straightforward to check that there exists an algebra map

e A—k
a b . t 0
c d 0 ¢!

Proposition 6.8. For p,q € k*, put t = (pq)~'. The vector spaces Ext;(zk, ¢, k) are
described by the following table.

with g1 = e.

pq#FLp#FLqg#1 pg#FL1€{pqt pg=Lp#lLqg#1 p=qg=1
Ext§ (:k, ¢, k) {0} {0} k k
Ext} (ck. ¢, k) {0} k k K3
Ext2 (ck, ¢, k) k k2 k K3
Ext} (ck, ¢, k) k k k k

Moreover, for any algebra map : A — k with  # &, we have Extf’1 (ek, k) = {0}.

Proof. Applying Homy(—, yk) to the resolution in Proposition 6.7, we see, after some
standard identifications, that Ext} (;k, yk) is the cohomology of the complex

0k B0
where

f1x) = ((v(@) =) x,. v (b)x. ¥ (c)x). f3(x,y.2) =x¥(c)—y¥(b) + (pg¥(a) — 1)z,
and
V(D) v(c) 0
fZ(X’y’Z): (X,y,Z) 1_qW(a) 0 W(C)
0 1—py(a) —y(b)
We thus see that if ¥ (b) # 0 or ¥ (c) # 0 or ¥ (a) # (pq) ™", we have Extf’1 (ck,yk) =1{0}.
Otherwise ¥ = ¢4, and the announced results are immediate. [
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Corollary 6.9. We have cd(Op.4(SL2(k))) = 3 forany p,q € k*.

Proof. We have pd,(:k) < 3 by Proposition 6.7 and pd4(ck) > 3 by Proposition 6.8,
hence pd4(¢k) = 3. We conclude by Theorem 3.5. |

We now want to prove that A = O, 4(SL2(k)) is smooth using Theorem 4.3. For this
we interpret the resolution in Proposition 6.7 as a resolution in 4 M¥Z.

Proposition 6.10. Let V, W be the 3-dimensional kZ-comodules with respective bases
(e1, ez, e3) and (e}, e}, e}), and coactions defined by

Sy V>V QkZ SwW > WQRkZ
er, e3> e ®1,e, @27 es®z, e ey el ®z7 e @z, e ® 1.

Then we have a resolution of ¢k by free A-modules in M*Z

0 AB aew B asv B a0
where

P1(x Qe +yQer+z®e3) =x(a—1)+ yb + zc,
$3(x) =xc®ey —xb®e,+ x(pga—1) ® €5,
dr(x®e)) =xbRe; +x(1 —qga) Q e,
$r(x ® ey) = xc ®e; + x(1 — pa) ® e3,
hr(x @ e3) = xc ® ez —xb ® e3.
In particular ¢k is of type FP in 4 M*Z.
Proof. After the obvious identifications between A ® V and A3 and between A ® W and

A3, the above sequence is the same as the one in Proposition 6.7, and hence is exact. It is
also an immediate verification that the above maps are k Z-colinear. ]

Combining Corollary 6.9, Theorem 4.3 and Proposition 6.10, we obtain that the alge-
bra Op 4 (SL2(k)) is smooth, with cd(O, 4(SL2(k))) = 3.
We can also use Proposition 6.10 to compute some Ext spaces in 4 M*Z.
Proposition 6.11. For p,q € k*, putt = (pq)~'. We have
i k ifi €{2,3}, ori €{0,1}and pqg =1,
Ext! k,o k)~
AMLE (ek- oK) { 0 otherwise.

Proof. Let ¥: A — k be an algebra map that is also a map of kZ-comodules. Apply-
ing Hom L MEZ (—. k) to the resolution in Proposition 6.10 we see, after some standard
identifications, that Ext: kz (k. k) is the cohomology of the complex

0k Bk 2k koo

where f1(x) = (Y (a) — 1)x, fo(x) =0 and f3(x) = (pq¥(a) — 1)x. The announced
result is then a direct verification. [
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Our next aim is to prove that O, 4(SL2(k)) is a twisted Calabi—Yau algebra.

Proposition 6.12. We have Ext} (;k, A) =0 ifn # 3, and Extf1 (ck, A) >~ k as right

A-modules.

Ep)!

Proof. Applying the functor Homy (—, A) to the resolution (Py) in Proposition 6.7 and using
some standard isomorphisms, we obtain the complex of right A-modules Homy ( Py, A):

o; o3 ot
0454324332 450

where ¢ (x) = (@ — 1,b,¢)x; ¢35 (x,y,2) = cx —by + (pga — 1)z and

b 1—gqa 0 x\ 7t
¢§(x,y,2)=[ c 0 1-pally ]
0 c —-b z

We have Ext)j(ck, A) >~ Ker(¢, ;)/Im(¢,) and verifications are straightforward using
the same arguments as in Proposition 6.7, especially the fact that A, A/(b), A/(c) and
A/(b, c) are domains. We leave the verifications to the reader, except for the degree 3
where we want to obtain explicitly the A-module structure.
Let x € A, then x is a linear combination of elements of the forms a’b/ c* and b7 ¢k d*.
In A/Im(¢3), we have b = ¢ = 0,a = (pg)~'1 and d = (pq)1. Hence (the class of) 1
generates A/Im(¢3), and we have to check that 1 ¢ Im(¢3). If 1 € Im(¢3), there exists
(x,y,z) € A3 such that
1=cx—by+ (pga—1)z,

and we have 1 = (pga — 1)z in the Laurent polynomial ring A/ (b, ¢) = k[a,a™'], which
is impossible. Thus 1 ¢ Im(¢3) and hence, Extf1 (¢k, A) >~ k as vector spaces, and it is

clear from the previous relations that Extf1 (ck, A) ~ k¢ (1 38 right A-modules. |

Theorem 6.13. The algebra Op 4(SLy(k)) is twisted Calabi-Yau of dimension 3, with
Nakayama automorphism defined by

11: 0y (SLa (k) = Op 4 (SLa(K))

-1
a b L (pg)~a b '
c d ¢ (pq)d
Proof. Proposition 6.10 and Proposition 6.12 enable us to use Theorem 5.2 to conclude
that O, 4 (SL2(k)) is twisted Calabi—Yau of dimension 3. Moreover, the form of the reso-

lution in Proposition 6.10 gives, by Lemma 4.7, that the group-like g occurring in Theo-
rem 5.2 is trivial. Hence the Nakayama automorphism is given by

1(x) = SZ(x[210))& (pgy1 (X11) T[X1211)» Skz (X212)) ]

and the computation of its values on the generators is immediate. ]
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We finish the paper by recording some Hochschild cohomology computations for
Op,q(SLa(k)) when the bimodule of coefficients is one dimensional. This has some inter-
est in connection with the probabilistic questions studied in [15]. We begin with a general
observation.

Proposition 6.14. Let A be a Hopf algebra in the braided category M of comodules
over a coquasitriangular Hopf algebra H. Let M be a left A-module, and endow M with
the trivial right A-module structure. Then we have

H*(A, M,) ~ Ext} (k. M).
Proof. Start with an A-bimodule M and recall the isomorphisms
H* (A, M) = ExC, s (k. M O H)
from Remark 3.6. The left A-module structure on M @ H is given by
a-(x ®h) = r(ap)). hey)ape)-x-Salap)o) ® apnmhaaria)
and if we assume that the right A-module structure on M is trivial this gives
a-(x ®h) = apyo).x ® apjmyh.

Hence we have ]/VI—SB_E = M @ H. We conclude by Proposition 2.8. ]

It follows that the Hochschild cohomology spaces H* (O, 4(SL2(k)), oks), for any
algebra map a: Op 4(SL2(k)) — k, can now be computed using Proposition 6.7. In par-
ticular, still in connection with [15], we notice that

{0y ifpg#1, p#1, q#1,
Hz(Op,q(SLz(k)),sks) ~qk itpg=1, p#1, q#1,orl1€{p,q}and pg#1,
k3 ifp=1=q.
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