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Lax additivity
Merlin Christ, Tobias Dyckerhoff, and Tashi Walde

Abstract. We introduce notions of lax semiadditive and lax additive (oo, 2)-categories, categori-
fying the classical notions of semiadditive and additive 1-categories. To establish a well-behaved
axiomatic framework, we develop a calculus of lax matrices and use it to prove that in locally
cocomplete (0o, 2)-categories lax limits and lax colimits agree and are absolute. In the lax addi-
tive setting, we categorify fundamental constructions from homological algebra such as mapping
complexes and mapping cones and establish their basic properties.

1. Introduction

In this article, we propose an axiomatic framework of lax additive (oo, 2)-categories,
intended as a natural context to develop foundational aspects of categorified homolog-
ical algebra (analogously to the familiar development of classical homological algebra
building on additive categories).

Our motivation stems from several recent developments, some of the most directly
relevant ones being:

* Categorified analogs of classical homological techniques have been very successful in
the study of Fukaya-type categories in homological mirror symmetry. The categorical
Picard-Lefschetz theory developed in [18] is a particularly well-proven example.

* Kapranov and Schechtman have proposed to study categorified analogs of perverse
sheaves, termed perverse schobers [13]. While this beautiful circle of ideas has already
created substantial impact, the theory is still somewhat experimental and as of now
there does not seem to exist a satisfying rigorous definition of perverse schobers in
some natural generality.

* Various foundational results from classical homological algebra have been shown to
admit categorified variants replacing abelian groups by stable co-categories. An illus-
trative example is the categorified Dold—Kan correspondence (cf. [4, 12]) which can
be regarded as a “proof of concept” for the feasibility of categorifying some of the
foundations of homological algebra.

* Several examples of stable co-categories of algebraic or geometric origin have been
shown to admit natural upgrades to complexes of stable co-categories (cf. [3]).
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We see this work as a first step towards capturing the basic 2-categorical principles
underlying these perspectives, with the final goal of creating a unified picture of mutual
benefit. That being said, we recommend to read this paper as a companion to [3], where
the abstract axiomatic theory developed here appears in a very hands-on way, illustrated
by many examples and explicit constructions.

Beyond these concrete applications, we feel that the 2-categorical theory of lax addi-
tivity developed in this work does have some intrinsic category theoretic appeal, justifying
its documentation in a standalone contribution. For example, we systematically introduce
various types of lax matrices along with categorified matrix multiplication rules. Based
on this calculus, we prove natural categorified variants of classical foundational results on
(semi-)additive categories such as:

Theorem (Corollary 4.15 and Theorem 4.19). In locally cocomplete' (00, 2)-categories
* lax limits and lax colimits coincide (when they exist) and
 all lax limits and lax colimits are absolute, i.e., preserved by locally cocontinuous’

functors.

As a further illustration of the theory, we categorify basic additive constructions from
homological algebra such as mapping complexes and mapping cones and establish their
basic properties.

1.1. Rules of categorification

We begin with an overview of our preferred type of “categorification”: It arises from
the insight that in some important respects stable co-categories behave like categorified
abelian groups, leading to the “categorification rules” in Table 1.

Classical Categorified
(1) abelian group A stable oo-category A
(2) element x € A object X € A
B)y—x cone(X i) Y)
; d d d d
@) X (=D'x; ot(Xo > X1 5 X, 5. 5 x,)

(5) direct sum decomposition C =A@ B semiorthogonal decomposition €~ (A, B)

(6) external direct sum A & B gluing along a functor/lax sum A % B
F

Table 1. Categorification rules.

'An (o0, 2)-category is locally cocomplete if all its hom-categories have colimits and if composition
of 1-arrows preserves colimits in each variable.

2A functor of (0o, 2)-categories is locally cocontinuous if it induces a colimit-preserving functor on
hom-categories.
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While the first two rules should be apparent, we start commenting on rule (3). This
is a first crucial difference between the classical and the categorified context: In order to
take a “difference” between objects X, Y of a stable co-category A, we need to be given
the additional datum of a morphism f: X — Y—the difference will then be the cone
of f. Compliance with this rule will force us to include certain 2-categorical data which
becomes invisible upon passing to the Grothendieck group Kj. This typically results in
rather natural lax variants of 1-categorical constructions.

Rule (4) is a natural generalization of Rule (3): An alternating sum over n elements will
be categorified by the totalization of an n-term complex in A. Here we do not only need to
specify the differentials of this complex, but also a coherent system of null homotopies—
this is necessary to make sense of the totalization in the co-categorical context.

Rule (5) is almost evident after having accepted Rule (3): While in a direct sum A @ B,
every element is uniquely the sum of elements from the components A and B, respectively,
in a semiorthogonal decomposition (A, B), every object is uniquely an extension of an
object A € A by an object B € B. Put differently, by shifting the exact triangle of the
extension, every object is uniquely the cone of a morphism A[—1] — B, thus connecting
back to Rule (3).

Conceptually distinct to a direct sum decomposition of a given abelian group are the
universal properties satisfied by the external direct sum of a pair of abelian groups. For
its categorificaiton, it is not sufficient to just provide a pair of stable co-categories. As an
additional datum, we need to specify a functor F': A — B (similar to the additional choice
of a morphism f: X — Y needed in Rule (3)). The categorified “direct sum” is then the
lax sum -

A B
F
of the diagram of stable co-categories described by F' (see Rule (6)), which is given by
the commonly known construction of gluing along a functor. The fact that this sum cat-
egorifies both the product and coproduct will be explained below in the context of lax
additivity. The lax sum admits a semiorthogonal decomposition with components A and
B, and vice versa, any stable co-category with a semiorthogonal decomposition can be
described as a lax sum if and only if the semiorthogonal decomposition admits a gluing
functor.

1.2. Lax additivity

Of course abelian groups are rarely studied in isolation; rather we consider the category
Ab of abelian groups. This category has many important features, but most importantly
for us it is additive. Continuing our train of thought, Table | has a natural continuation in
Table 2 which explains what it means to say that the (0o, 2)-category of stable co-category,
or more generally any (oo, 2)-category A, is lax additive.

Accepting our basic premise that abelian groups are to be categorified by stable oco-
categories, Rule (9) requires no further comment. Rule (8) is a convenient intermediate
step, categorifying the situation where the addition on hom-sets does not necessarily have
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Classical

Categorified

(7) additive (oco-)category A
(8) hom-sets A(X, Y) have addition
(9) hom-sets A(X, Y) are abelian groups

finite direct sums

10 k k k

( )@xsz [T xs= 11 xs
s=1 s=1 s=1
binary direct sums

(II)XEBY:XXY:XHY

(12) matrices (st a2 )

matrix multiplication

lax additive (oo, 2)-category A
hom-categories A (X, Y) have colimits
hom-categories A (X, Y) are stable
general lax bilimits
lax
P X5 = laxlim Xy = laxcolim X
S s:S s:S
lax/oplax A!-bilimits
- <~ - —
IxY=XLOY=XxY=X1Y
F F F F
My < Mlz)

lax matrices ( 1 1
My <— M

lax matrix multiplication

13 = coli )
(13) (nMYus = 3y (Mypr © M) (NM)ys = Sglgp(Nm oy o M)

matrix multiplication, reparameterized

D s = 3, (<1 (s 0 mss)

Table 2. Categorification rules (cont.).

lax-oplax matrix multiplication
(NM)ys = tot;(Nys © Mys)

inverses; just like the uncategorified case, many basic lemmas are most naturally expressed
in this generality leading to the notion of lax semi-additive (co, 2)-category.

The direct sum of abelian groups is both a categorical product and a categorical
coproduct, a universal property that is taken as the definition in general additive cate-
gories. Rule (10) states that the same definition can be categorified, by replacing finite
products and coproducts, i.e., limits and colimits indexed by finite discrete categories
S ={1,...,k}, with lax limits and colimits indexed by arbitrary co-categories S. Apart
from this change, the theory is exactly analogous: if the hom-categories have colimits (cat-
egorifying addition) then such lax limits and colimits always agree if they exist, yielding
the notion of lax bilimits. Thus we obtain the main concept of this article:

Definition (Definition 5.5). An (o0, 2)-category A is lax additive if
» itis enriched in stable co-categories with colimits and

e it has all lax limits and lax colimits, which then automatically agree.

In a lax additive (co, 2)-category, we can say even more for the special choice of S =
A, in which case the constructions categorify the binary direct sum. For this choice of S,
all four possible universal 2-categorical constructions (lax/oplax, limit/colimit) associated
to an S-diagram X i Y agree with each other. This is the content of Rule (11). Note that
this further explains the statement of Rule (6) and this (op)lax bilimit is also called the lax
sum X (6_9) Y.

F
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A convenient feature of additive categories is that maps m: x; @ x, — y1 @ y» between
direct sums can be represented as matrices of the form

m— mii: X1 —> yi, mMiaixa —> Y1
Ma1i X1 —> Y2, M22iX3 = )2

Composing such maps then just amounts to the usual matrix multiplication. Rule (13)
shows how the usual matrix multiplication formula can be categorified, yielding an anal-
ogous theory of matrices indexed in each coordinate not by a finite set but by arbitrary
oo-categories. These matrices are just a dependent version of bimodules, which by Morita
theory encode functors between module categories.

In Section 1.1 we have already seen how it is conceptually easier to categorify sub-
traction rather than addition and more generally alternating rather than ordinary sums. In
the lax additive setting we see a similar feature, expressed in Rule (14), where a suitable
“coordinate change” yields a more convenient formula for the categorified matrix mul-
tiplication when we reparameterize it to use alternating sums rather than ordinary sums.
Categorically speaking this reparameterization involves the identification of lax and oplax
limits and is therefore only available for certain special indexing categories such as A1,

1.3. Mapping cones and mapping complexes

Building on the notions introduced above, we explain how to categorify two fundamental
constructions within the lax additive framework: the mapping complex between two chain
complexes (see Construction 7.32) and the mapping cone of a chain map (see Construc-
tion 8.9).

We summarize the categorified formulas for their respective differentials in Table 3.
We note that upon passing to Ky, the signs in the right-hand side and left-hand side differ
only in a non-essential way, the chain complexes are isomorphic.

Classical Categorified
(15) 8ge = (dg + (—1)°gd) 8" gs = fib(dg — gd)le]
do d—0
(16) dCone(f) = (—fd) dCone(f) = (~|r \L)
f—d

Table 3. Categorification rules (cont.).

We further note that unlike in the classical setting, we do not require any signs in the
differential of Cone( f); the appropriate signs guaranteeing §2 = 0 are inbuilt into the
alternating sums defining the lax-oplax matrix multiplication.

The categorified mapping cone yields a natural notion of null-homotopy H of a chain
map f, given by §*(H) = f. The categorified mapping cone interacts with this notion
as expected.
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Theorem (Corollary 9.3). For every chain map f: A — B for which sufficient adjoints
exist and for each chain complex C, there is an equivalence between the (stable) oo-
categories of

e chain maps Cone( f) — C and
* chain maps g: B — C together with a lax null-homotopy H of gf .

The above mapping cone construction is only possible if certain adjoints of some of the
involved functors exist. However, one can further analyze which data is precisely neces-
sary to construct mapping cones, and give a more general construction of the categorified
mapping cone, which takes as input extra data containing a degree 1 map A — B. We also
prove a more general version of the above theorem, classifying maps out of this general-

ized mapping cone, see Theorem 9.2. In the case that sufficient adjoints exist, there exists
a canonical choice for this extra data and Theorem 9.2 specializes to the above theorem.

2. Additive 1-categories

To explain our philosophy, let us first remind the reader of the classical story for ordinary
additive categories.

We start by recalling the definition.
Definition 2.1. A category A is called additive if:

(1) The category A is enriched in abelian monoids; i.e., each hom-set A(x, y) has an
associative, commutative addition + with neutral element O such that composition

Alx,y) x Ay, z) — A(x, z)

preserves + and O in each argument.

(2) Each commutative monoid (A(x, y), +, 0) admits negatives, hence is an abelian
group.

(3) The category A admits finite products and coproducts (including empty ones).

(4) For each finite set of objects x1, ..., x, € A, the natural map

n n
]_[ X5 — ]_[ Xt (2.2)
s=1 =1
whose components x; — Xx; are

(2.3)

1:xy — Xy, ifs =t
0 € A(xs,x;), otherwise,

is an isomorphism.

A category only satisfying (1), (3) and (4) is called semiadditive.
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One typically identifies finite products and coproducts via the canonical map (2.2) and
uses the symbol @ (called direct sum or biproduct) for both.

The use of the phrase “is called additive if” implies that being additive is a property of
the category A rather than extra structure. This is justified by the fact that the addition on
the hom-sets of an additive category is uniquely determined. Explicitly, it is given by the
following formula: Given two maps f, g: x — y, their sum is the composite

fog
X—>XDx —>y Dy —>Yy,

where the first map is the diagonal x — x x x and the last map is the codiagonal y 11 y — y.
In this sense, the biproduct structure @ determines the addition structure + on the
hom-sets. The converse is also true, as explained by the following lemma.

Lemma 2.4. Let A be a category enriched in abelian monoids. Let x1, . .., X, be a finite
set of objects in A.

(1) Let x be an object of A equipped with a cone P = (ps: x — Xg);_, and a cocone
I = (is: xg — x)7_, satisfying the two equations
(a) ZZ:] isops=1¢€A(x,x),
1 € A(xg, x;), ifs =t,
(b) ptoi5={0 (o) 0

, otherwise.

Then P and I exhibit x as the product [ [5_, X, and as the coproduct | [5_, xn, re-
spectively. Moreover, the canonical comparison map (2.2) is the identity 1: x — Xx.

(2) Assume the product x = [[_, exists and let P = (ps: x — x;5)"_, be the product
cone. Then there exists a unique cocone I = (is: x5 — x)7_, satisfying conditions
(1a) and (1b) above.

(3) Dually, for every coproduct cocone I = (is: x5 — x)5_, there exists a unique cone
P = (ps:x = x4)i_, satisfying (1a) and (1b).

Since @ and + determine each other, we have the following corollary:

Corollary 2.5.

(1) Let A be a category enriched in abelian monoids. If A admits finite products
(equivalently, finite coproducts) then it is semiadditive.

(2) Let F: A — A’ be afunctor between additive categories. The following are equiv-
alent:

(a) the functor F preserves finite products;
(b) the functor F preserves finite coproducts;
(c) the functor F preserves the addition on the hom-sets.

Lemma 2.4 is well known. However, its proof will serve as a guide for its categorified
counterpart, so we shall explain it here.
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Proof of Lemma 2.4. To prove (1), we assume (1a) and (1b) and show that P is a product
cone; the statement about / is dual. We need to show that for each ¢ € A the natural map

P At x) » [[ACx): [ (pso iz

s=1

is a bijection. Using I we can produce an explicit inverse via the formula

L (f)jmy = ) is fs-

s=1

It satisfies

uaoloaﬂz:1=fu(§juﬁ>

s=1

= (pquisfs)

s=1 u=1

= (Z puisfs)
s=1

= (fu Z:]

n
u=1

(using equation (1b) in the last step) and
(I« o Pu)(f) = Li(ps o f)?=1
= (ispsf)
s=1

= (Zisps) of
s=1
—lof=/f

(using equation (la) in the last step), as desired. Moreover, equation (1b) says precisely
that the identity 1: x — x satisfies the defining equation to be the map (2.2).

Next we prove (2); the statement (3) is dual. By the universal property of the product
cone P, there are unique maps is: x; — x satisfying equation (1b). These maps then
assemble into the desired cocone /. To verify equation (la) it suffices to postcompose
with all the product projections p, and compute

n n
Pu © Zisps = Zpuisps
s=1 s=1
= pu = lo DPu

(using equation (1b) in the second step). ]
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There is one further aspect of additive categories whose categorification will be dis-
cussed here: matrix calculus. This is based on the observation that in any category A any

S Txs =]

s=1 t=1
from a coproduct to a product can be encoded through the bijection

n m m n
a( L1 TT) = [T T
s=1 t=1 t=1s=1

as an m x n-matrix ( f¢s)7o] ., whose entry f;s isamap xg — ;.
,

The special feature of semiadditive categories is that it makes sense to consider the
composite

n 7 m n I
h:]_[xs—> l_[yz x~ ]_[y; 5 qu
s=1 t=1 t=1 u=1

of two such maps, using the identification (2.2). This composite corresponds to a matrix

I n
l,
(hus)u115s=1 € 1_[ 1_[ A(xs, zy).
u=1s=1
It is not hard to verify that the matrix corresponding to the composite /& arises from the
matrices of f and g by the usual rule for matrix multiplication:

m
hys = Zgutfts- (2.6)
=1
From this perspective, the identification (2.2) is just the identity matrix which has identi-
ties on the diagonal an zeroes everywhere else.

3. Preliminaries

Throughout this paper we use the notation “x : A” borrowed from homotopy type theory
to say that x is a term/inhabitant/element/object of the (co-)groupoid, (oco-)category, or
even (00, 2)-category A. When we construct an object “F(x) : B for each x : A”, it is
understood that F'(x) is supposed to be functorial in x in the appropriate sense. This
allows us to unambiguosly write formulas such as colimy. 4 F(x) or (F(x))x:4, which of
course only make sense with the additional functoriality in mind.

We reserve the notation x € A for the case when A is discrete, i.e., (equivalent to) a
set; in this case, the question of functoriality is vacuous.

3.1. (o0, 2)-categories

In this paper, we think of (co, 2)-categories as categories enriched in the co-category Cateo
of oco-categories. For a general treatment of enriched co-categories, we refer to the work
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of Gepner and Haugseng [9]. For different approaches to (oo, 2)-categories we refer to
[8,16].

Our goal is not to develop any (oo, 2)-categorical foundations but rather to develop

the theory of lax additivity while assuming that such foundations are already laid. In prac-
tice, this means that none of our arguments and constructions are performed explicitly
in a model, but only using the general high-level features which any theory of (oo, 2)-
categories is expected to share. We treat these ingredients axiomatically:

Let C be an (o0, 2)-category.
It has an underlying oo-category C1, and an underlying co-groupoid C= = (C)~.

It has a hom-functor
C(—,—):C® x C — Caty,

which takes values in the (0o, 2)-category of co-categories. Occasionally, it is conve-
nient to consider the hom-functor

C(—,—-):C’ x C; — Catwo
as a functor of the underlying co-categories, and its associated Cartesian fibration
*
Tw*(C) = f C(—,—) > Cy x C".
There are composition functors
CX,Y)xC(,Z)— C(X, Z), 3.1

functorial in X, Y, Z : C=. Composition is coherently associative; this is formalized
in [9] by encoding the (0o, 2)-category C as an algebra in the monoidal co-category
(Cato, x) of a certain generalized nonsymmetric operad A%’z — AP,

More generally, the composition map (3.1) is also natural in X : C{*, Z : C; and dinat-
ural in Y : C; (and not just in their groupoid cores). Thinking in terms of fibrations,
this means that composition can be written as the dashed functor

[ CX,Y) %y, [§ C, Z) ——----- s [XC(x,2)

! |

X:CHOxY:Cx(Z:Cy)) — X :Cy)x(Z:Cy)

of mixed (Cartesian, coCartesian) fibrations.

It makes sense to talk about adjunctions f < fR: X — Y in C. These are characterized
by the fact that

(fo) 4 (fRe):C(T.X) — C(T.Y) and (of%) 4 (cof):C(X,T) - C(Y,T)

are adjunctions of co-categories for all 7' : C.



Lax additivity 11

For the purpose of developing the theory of lax additivity we do not need the full
coherent associativity of the composition law, but only its incoherent shadow. More pre-
cisely, it suffices to postcompose the enrichment with the symmetric monoidal functor
(Catyo, X) — (hoCaty, X), and think of C as enriched in the homotopy category of co-
categories up to equivalence.

3.2. Lax limits and colimits

We start by recalling the definition of a lax limits and colimits in a (co, 2)-category. Let S
be an oco-category.

First, let X: S — Cato, be a diagram of co-categories. Let laxlim X be the co-category
of sections of the (covariant) Grothendieck construction [, X — S associated to the func-
tor X. Informally, objects of laxlim X consist of

(1) for each object s of .S, an object x; in X,

(2) foreachedge f:s5s — ¢ in §, amorphism x7: Xr (xs) = x; in X,

(3) for each 2-simplex s i> t S u (with the composite g f implicit) in S a 2-simplex

xg(xt)

Xgf S X
4 u

ng (xs)

in Xy,
(4) and so on for higher simplices of S.

We will denote an object of laxlimg.s X as a tuple (xs)s:s-

Now, let C be an arbitrary (oo, 2)-category and X: S — C a diagram. A lax cone
over the diagram X with vertex L is an object (¢s)s:s : laxlimg.s C(L, Xs), where s —
C (L, Xy) is the S-shaped diagram in Cat, obtained as the composite

X C(L,—
S—>C¥>Catoo.

Unpacking the above, one sees that such a cone consists of
(1) for each object s : S, a structure map ¢s: L — X,

(2) for each arrow f:s — t in S, a lax cone
L
Os &
/ =
Xy — Xy,
!

ie.,amap ¢r: Xrdps — ¢, in C(L, Xy),
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(3) together with coherent pasting identifications, ¢, 0 Xy ¢y =~ ¢¢ s for composable
arrows s i) t S uinS.

For each other object L’ : C we have a canonical composition map

C(L', L) x laxlimg.g C(L, Xy) ———— laxlimy.g C (L', X;)

lA xid

laxlimg.g C(L', L) x laxlimg.s C (L, Xy)

=

laxlimg.s C(L', L) x C(L, X;)

which explicitly sends a cone ® = (¢)s:s with vertex L and a morphism [: L” — L to
the cone ® ol = (¢ps 0 [)s:s.

In a dual way, we can define the co-category of lax cocones on X with vertex L as
laxlimg.sop C (X5, L). Explicitly, such a cocone (5)s.s has structure maps ¥s: Xy — L

and lax triangles
¥s ¥
/ N \

f)C—)f)C,

over each arrow f:s — 1 of S.

Definition 3.2. A cone P = (py)s:s : laxlimg.s C(L, Xy) is called a lax limit cone if for
each object L' : C the functor

Po—C(L, L)~ laxlém(C(L', Xs);: F+— (pso F)ss
S

is an equivalence of co-categories; in this case we call the object L a lax limit of the
diagram X: S — C and write L = laxlimg.g Xs.

Dually, we say that a cocone I = (ig)s:sop : laxlimg.gop C (X, L) is a lax colimit cone
if for each L’ : C the functor

—ol:C(L, L) — laxblign(C(xs, L"); F > (Foig)sso
5:85°

is an equivalence; in this case we call L a lax colimit of X and write L. = laxcolimg.s X;.

Remark 3.3. Our definition starts by defining the lax limits of co-categories to be sections
of the Grothendieck construction and then defining lax limits and lax colimits in arbitrary
(00, 2)-categories by considering (co)representables. One can also define lax limits and
colimits as a special case of weighted colimits, which can be defined directly in terms
of ordinary limits/colimits. When using the latter definition, one can then compute that
lax limits of co-categories as sections of the Grothendieck construction, see [ 10, Proposi-
tion 7.1 and Corollary 7.7].
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Example 3.4. Let C = Cat, be the (0o, 2)-category of co-categories. Let X: S — Cateo
be a diagram.

(1) As the notation suggests, the lax limit of X is the co-category L = laxlimg.g X :=
Fung (S, [..¢ Xs) of sections of the corresponding Grothendieck construction.
Indeed, naturally in L’ : Caty, we have the equivalence

Cateo (L', L) = Fun (L’,Funs (S, [ DC))
~ Fung (S X L’,/I)C)

~ FunS (S,/ FUH(L/, xs))
s:S
= laxl}m (Catoo(L', Xy)),
KH

which is induced by composition with the canonical cone

P = (pS:L = laxgimx — DCS)S:S

given by evaluation of sections.
(2) The lax colimit of the diagram X is the contravariant Grothendieck construction

s:8
laxcolim Xy = Xs,
s:S

exhibited by the canonical cocone

I = (is:xs—>/‘ DC)
s:Sop

that includes the individual fibers.
Assume now that the diagram X takes values in stable co-categories,

(3) The oco-category laxlims.s Xy = Fung (S, f* X) is again stable because limits and
colimits of sections are computed pointwise. For the same reason, every functor
F: L’ — laxlim,.g X is exact if and only if each composite ps o F is exact. It
follows that the cone P exhibits the co-category laxlimg.s X also as a lax limit
in the (0o, 2)-category of stable co-categories and exact functors.

(4) The oo-category | * X, which is the lax colimit of X in Cate, is typically not sta-
ble; to compute the lax colimit of X in the (0o, 2)-category of stable co-categories
one therefore has to stabilize this co-category, which is a rather tricky operation.
However, it will follow from the theory of lax matrices that—as long as the stable
categories in question have enough colimits, for example because S is finite or
because X takes vales in presentable stable co-categories—this lax colimit indeed
just agrees with the lax limit which can be computed in Cat; see Corollary 4.15
below.
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Remark 3.5. Definition 3.2 can easily be modified to also define partially lax limits and
colimits (sometimes also called marked (co)limits): If the indexing category S is equipped
with some collection M of marked arrows, we can define the M -partially lax limit of a
diagram X: S — Cat, as the co-category of those sections of the Grothendieck construc-
tion [, X — S, whose value on the arrows in M is cocartesian. Then one defines partially
lax limits and colimits in an arbitrary (co, 2)-category C analogously to Definition 3.2.
See also [1,2] for a general treatment of partially (op)lax (co)limits.

In this paper, we mostly deal with (fully) lax limits or colimits (i.e., M only consists
of the equivalences of .S).

Example 3.6. The only partially lax limits we need in this paper are the directed pull-
~
back and directed pushout, which we denote by A g Cand A I%I C. Abstractly, they are

equipped with the universal squares

A%€—>A g1 .4
l / lf and gl / l
€—r B e—m@e

inhabited by a (possibly noninvertible) 2-morphism (for given A, B, C and f, g which we
omit from the notation). Concretely, they can be defined as partially lax limits/colimits
with the arrow indexing g being marked or, equivalently, as partially oplax limits/colimits
with the arrow indexing f being marked.

4. Lax matrices

Throughout this section, let C be an (0o, 2)-category enriched in co-categories with col-

imits, i.e.,

» each hom-category C (X, Y) has all colimits and

* and each composition functor C(X,Y) x C(Y, Z) — C(X, Z) preserves colimits in
each variable separately.

Analogously to the case of ordinary coproducts and products (which corresponds to
the case where the category S is just a set), we can interpret maps from a lax colimit to a
lax limit as a sort of matrices: By the defining property we have

C ( laxcolim X, laxlim ‘jt) ~ laxlim C ( laxcolim X, Ht)
5.8 t:T t:T 5.8
~ laxlim laxlim C (Xs, Y;)
T 5.5

~ laxlim C(X,,Y,)
(¢,8):TxS°P
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so that we can interpret a map «: laxcolimg. s Xy — laxlim;.7 Y; as a tuple (@¢,5) ¢,5): T xS0
which we think of as a matrix whose rows are indexed by 7" and whose columns are
indexed by S°P. We define

laxMatc (X, Y) = laxlim C(Xs,Y,).
(t,8):T xSop

Note that this is a well-defined co-category even when laxcolim X and/or laxlim Y does not
exist. When X: {*} — C is just an object X =X, we still use the notation laxMatc (X, Y) =
laxMatc (X, Y) and observe that it is precisely the oco-category of lax cones on Y with
vertex X ; and analogously for lax cocones.

Example 4.1. Let S =T = Al = {0 i> 1} be the walking arrow and consider two dia-
grams X: S — C and Y: T — C. Then we can compactly describe objects of

C(Xo,Y0) +—— C(X1,Y0)
laxMatc (X, Y) = laxlim l l

C(Xo,91) — C(Xy,Y1)

as T x §°-indexed diagrams in the Grothendieck construction, which we depict as fol-
lows:
oo < Qo1

Q1o < 011
Explicitly unpacking this notation, such a matrix consists of:

(1) four 1-morphisms
ago: Xo = Yo ao1: X1 — Yo
a10: Xo = Y1 a11: X1 = Y1

(2) four 2-morphisms

yf o Moo 00 T 0{010:X:f
b
X10 91’ 0 o1
2
@10 S5 11 o Xy arg

(3) assembling into a commutative square

Yrow
Yy o ago L Yr oy 0 Xy

J/afl lothODCf

Dtlf
ag ———— a1 0 Xy.



M. Christ, T. Dyckerhoft, and T. Walde 16

We now introduce the lax matrix multiplication which categorifies the classical for-
mula (2.6). The classical formula involves a finite sum of elements in some hom-set
A(x;s, z,,) of the category A. Our categorified analog of these sums will be categorical
colimits.

Construction 4.2. Let S be an oco-category and X: S — C a diagram. Passing to the
Cartesian fibrations classifying the respective hom-functors, we obtain a commutative
square
Tw*(S) = [* S(=,—) —*= ["C(=,—) = TW*(C)
I s

X xX0P
S x Sop x > Cy x CY?

which amounts to the dashed section

o v O, X)) —— TWH(C)

el N
; | lo
7

Tw*(S) —2—— S x §% — XX, ¢, x P

of the pullback-fibration (X x X°P)*(g) which informally sends an arrow (f:s — t) :
Tw*(S) to Xr : C(Xs, Xy).
We can now construct the composite functor

laxlim C (L, Xs) x laxlim C(X;, L)
s:S t:S°p

= Fungxsw (S x S, [ C(L, %) x C(X;, L))

(s,7)

> Fungysor (Tw*(S), C(L,Xs) x C(Xy, L’))

(s,2)

(s,1)
—>FunSxSop(TW*(S),/ C (X5, X;) xSxSop/( )(C(L,DCS)X(C(DC,,L’))
st

(s,2)
= Fungxgor (Tw*(S),/(C(L,DCS) X5/ C(Xy, Xy) Xg0p /(C(DC,,L’))
s t

colim

— Fun (Tw*(S), C(L, L’)) — C(L, L"),
where
* the first arrow is pullback of sections along p: Tw*(S) — S x S°P,
* the second arrow adds the section « in the first component of the fiber product,

* the third arrow is given by composition with the composition map

(s,1)
/(C(L,DCS) xs/ C (X, X¢) Xgop /(C(DC,,L’) — C(L, L),
K t

* the last arrow is just the colimit functor in the co-category C(L, L’).
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On objects, this functor takes a lax cone and a lax cocone on X,
® :laxlimC(L,Xs) and W :laxlimC(X;, L"),
s:S t:Sor
and sends them to the map W og ®: L — L’ defined by the formula
Yog & := colim Y, 0 Xr o Dy). 4.3
§ (f:s—>t):Tw*(S)( o Xy o ) (4.3)

Remark 4.4. When S ={1,2,...,n}is afinite set the (Cartesian) twisted arrow category
Tw*(S) — S x S can be canonically identified with the diagonal A: S — S x S. Under
this identification the formula (4.3) simplifies to

n
(U og @) = ]_[ \Iltoidocbs:]_[\llso(bs
s=1

s,tES
s=t

which is just the usual multiplication (2.6) of the row vector W with the column vector .

When S = {x} is even a singleton, this formula just returns the original composition
in the (0o, 2)-category C. For this reason we drop the subscript S and just write —o—
instead of —oyy—.

We assemble our categorified analog of row-column multiplication to the lax version
of matrix multiplication:

Construction4.5. Let S, U be co-categories, and X: S — C and Z: U — C two diagrams.
For each object Y : C we consider the functor

laxlim C (X, Y) x laxlli]mC(Y, Zy)
u:

s:80p

= laxlim C(X,Y)xC(Y,Z,)
(u,s):UxSop

— laxlim C(Xs, Zy),
(u,s):UxSop

induced by composition of C. On objects it takes a lax cocone and a lax cone,
W laxlimC (X5, Y) and & :laxlim C(Y, Z,),
s:Sop u:S
and sends them to the matrix ® o W : laxlim, ).z xso» described by the formula
(PoW)ys = &, 0 Dy.

More generally, we can replace the object Y : C by a diagram Y: T — C and consider the
functor

laxMatc (X, Y) x laxMatc (Y, 2)
= laxlim ( laxlim C (X, Y;) x laxlim C (Y, Zu))
(u,s):UxS°p ©:T t':Top

laxlimy, s (—o7—) A
laxlim C(X;, Z,) = laxMatc (X, 2)
(u,s):UxSop
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which is given in componentwise in u, s by the composition functor from Construction 4.2
(applied to lax cones and cocones on Y). Explicitly, this functor is given by the formula

o ¥ =, SN gy (P 0 U 0 W) sy

This is what we call the lax matrix multiplication.
Finally, we can assemble all lax matrices of different shapes into a category hoLaxMatc:

* Objects are equivalence classes of diagrams X: S — C, where S is any small co-
category.

*  Morphisms from X: S — C to Y: T — C are equivalence classes of matrices P :
laxMatc (X, Y).

* Composition is given by lax matrix multiplication of Construction 4.5.
Remark 4.6. Similarly to Remark 4.4, we drop the subscript 7" in the case where T = {x}
is just a point.

Note that the lax matrix multiplication is functorial by construction, making it in par-
ticular well defined on equivalence classes. To prove that hoLaxMatc is indeed a category,
we will thus only need to construct the identity matrix and prove that lax matrix multipli-
cation is associative up to equivalence.

In fact, we shall prove a slightly stronger statement.

Lemma 4.7. The lax matrix multiplication of Construction 4.5 is

(1) associative up to natural equivalence, i.e., for diagrams W: R — C and X: S — C
andyY: T — C and Z: U — C we have
(mor —)os — =~ —or (—os—)
as functors

laxMatc (W, X) x laxMatc (X, Y) x laxMatc (Y, Z) — laxMatc (W, 2)

(2) unital up to natural equivalence, i.e., for each diagram X: S — C there is a matrix
I% : laxMatc (X, X) with components
I = colim Xy : C (X, X 4.8
ts fIS({T,l) f (X, Xy) (4.8)
such that
IYog—~id and —ogI* ~id
as endofunctors of laxMatc (Y, X) and 1axMatc (X, Y), respectively (for each other
diagramy: U — C).

Remark 4.9. The category hoLaxMatc is of course only the truncation of an (oo, 2)-
category of lax matrices, which one could construct with more effort. Even Lemma 4.7
only shows that lax matrix multiplication is associative up to natural equivalence, but
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does not exhibit any sort of coherence such as the pentagon. We will not be needing this
additional layer of coherence in this article so Lemma 4.7 will suffice.

The proof of associativity is relatively straightforward.
Proof of Lemma 4.7, part (1). For matrices
F 1§ux<%gl(w,,xs), G: 1;1§1S1££1(xs,9,), H : lf}ﬁl;{‘?(Y”Z")
we compute

((H or G) os F) = }JO]IIH/(H or G)us’fosr
1s—>s

ur
=~ colim ( colim Hyy Yy Gs') Xs Fsr
fis—>s' gt

= colim colim(HysYg Grs Xy Fyy)

fis—>s' git—t’

= colim
(f,8):Tw*(S)xTw*(T)

e X (H or (GOS F))

(Hut’ngts/fosr)

ur

naturally in F, G, H and u : U, r : R°P; where the third step uses that composition in C
preserves colimits in each variable. ]

Before we can prove part (2) of Lemma 4.7 we need to construct the unit matrices
I% : laxMatc (X, X).

Construction 4.10. Consider the commutative square

Twa(S) = [, S(—.—) —%> [, C(=.—) = Tw«(C)

|- Js

op
SP x § X, CPxCy

induced by a diagram X: S — C. Here the vertical maps are the coCartesian fibrations
classifying the respective hom-functors of S and C. The fact that the (oo, 2)-category C
is enriched in co-categories with colimits means that there exists an (essentially unique)
left g-Kan extension of « along p, giving rise to the dashed lift

Twa(S) —%— Tws(C)

T
[

- op
S x § XXX C(l)p x Cq.

Since the pullback of the coCartesian fibration g along X°P x X is, by definition, the
coCartesian fibration f(s’t)zsopxs C(Xs,X;) — S°P x S, this lift I’ corresponds to a sec-
tion of this fibration, i.e., an object

I =71: laxlim C(Xs, X;).
(s,t):S°Px.S
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By the pointwise formula, we can explicitly compute the value of I at (s, ) : S x S
as the colimit of the composite

Tw«(S)/(s,1) % Tw, (C)/(Xs, Xy) — C(Xs, Xy),
which is the functor that informally maps
(f':s' >t gis = s hit' > 1) > Xj 0 Xyr 0 X

Since the inclusion S(s, 1) =~ Tw(S)(s,r) <> Tw«(S)/(s, t) has a left adjoint (because g
is a coCartesian fibration), it is homotopy terminal; thus we can compute the components
I fg via the desired explicit formula (4.8).

Remark 4.11. Since all pointwise colimits (4.8) are taken over spaces S(s, t) (as opposed
to arbitrary oco-categories), we see that for the construction of the unit matrix we could
have relaxed our assumption on C and only required it to be enriched in co-categories
with groupoidal colimits.

Remark 4.12. When S is a set this formula simplifies to

{idxs, ifs =1,

I, = colim (Xr) =
& =V iy 2:

f:8(s,0)
which is the direct analog of formula (2.3), with the initial object @ of C(x;, x;) taking
the role of the zero object of a commutative monoid.

Example 4.13. Continuing Example 4.1, we consider a diagram X: A! = {0 iy 1} - C.
The unit A! x (A!)°P-matrix then looks as follows:

idxo — 0
1 l :laxMatc (X, X)
xlo — idxl

since the indexing space of the colimit colimy. g, ;) Xy is either empty in the case s = 1,
t = 0 or a singleton otherwise.

We now finish the proof of Lemma 4.7.

Proof of Lemma 4.7, part (2). We only treat the case of postcomposition with I%; the
other statement is dual. We need to show that for every diagram Y: R — C, the functor

Ix ogs —:laxMatc (Y, X) — laxMatc (Y, X)

is naturally equivalent to the identity. Naturally in u : S, r : R°? and F : laxMatc (Y, X),

we compute (in the co-category C(Y,, Xs)):
I%0g F)yr ~ colim colim X, )X ¢ F.
(L™ 05 Flur (f:5—1):Tw* (S) (g:S(t,u) o) Xs For

= colim  XgrF,
(f:s—>1):Tw*(S)
g:5(t,u)
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where the shape of the second colimit is the category
/ S(t,u) = Tw*(S) xsov (S/u)°.
(f:s—1):Tw*(S)

Note that the diagram ( f, g) = X, s Fy, over which we are taking the colimit arises
as the pullback of the diagram

S/u—C{Y,,Xy), (h:s—>u)—> XpFs,
along the functor
Y Tw*(S) xgo0 (S/u)? — S/u, (f:s =1, gt > u)>(gf:s > u).
This functor y has a left adjoint
S/u — Tw*(S) xso (S/u)?, (fis = u)> (f:5 = u, idy:u — u),
and is therefore homotopy terminal. This allows us to finish the computation:

I% o5 F)yr >~  colim X, ¢F
(£ 05 F)ur (Frs—tymwi(s) 88T
g:8(t,u)

~ colim XjFy,
(h:s—u):S/u

jad :X:iduFur = Lyr,
using in the last step that id,,;: ¥ — u is a terminal object of the comma category S/u. =

We can characterize lax limit and colimits purely in terms of the matrix calculus
encoded in the category hoLaxMatc.

Lemma 4.14. Let X: S — C be a diagram.

(1) A lax cone P :1axMatc (L, X) is a lax limit cone if and only if it is an isomorphism
in the category hoLaxMatc.

(2) A lax cocone I :1axMatc (X, L) is a lax colimit cone if and only if it is an isomor-

phism in the category hoLaxMatc.

Proof. We prove the statement about lax cones; the other one is dual.

First assume that P is a lax limit cone. Let Y: T — C be a diagram in C. Using the
defining universal property of Definition 3.2 on L’ := Y, for each ¢ : T°P, we see that the
functor

P o —:laxMatc (Y, L) = laxlim C (Y,, L) = laxlim C (Y, Xy) = laxMatc (Y, X)
t:Top (s,2):8xT°P

is an equivalence of co-categories. In particular, after passing to equivalence classes of
matrices, the map

P o —:hoLaxMatc (Y, L) = hoLaxMatc (Y, X)
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is a bijection. Since Y was arbitrary, it follows that P: L — X is an isomorphism in the
category hoLaxMatc.

Conversely, assume that P has an inverse in hoLaxMatc, i.e., that we have a lax
cocone I : laxMatc (X, L) satisfying P o I ~ I* and I og P ~idy. Then foreach L’ : C
we have equivalences

(Po—)o(log—)=(Po(log—))~(Pol)og—=~TI%os—=~id
and
(I os—)o(Po—)=1Tog(Po—)=~(logP)o—~id,o—=id

as endofunctors of
laxMatc (L', X) and C(L', L),

respectively (using Lemma 4.7), showing that P o — is an equivalence of oco-categories,
as required. ]

Recall the standing assumption of this section, that C is enriched in co-categories with
colimits.

Corollary 4.15. A diagram X: S — C admits a lax limit if and only if it admits a lax col-
imit. When they exist, the unit matrix I : laxMatc (X, X) corresponds to an equivalence

% laxcolim X 5 laxlim X. (4.16)

Proof. The diagram X admits a lax (co)limit if and only if it is isomorphic in hoLaxMatc
to an object L: {*} — C. In this case L is both the lax limit and the lax colimit, exhibited by
mutually inverse lax (co)cones I: X — L and P: L — X. By definition, the map I*: L —
L corresponding to the matrix I is determined (up to equivalence) by the property that
PoIYol ~ I% Since the identity id; satisfies this property, we conclude that I% ~
idy ; in particular this map is an equivalence. ]

Remark 4.17. The comparison map (4.16) does not just depend on the objects
L =laxlimX and L’ = laxcolimX

but on the implicit lax (co)limit cones P:laxMatc (L, X) and I:1axMatc (X, L’). Specifi-
cally, the map I X is characterized up to equivalence by the relation

PoIYol ~I%

or equivalently
IY ~ ([ og P)! (4.18)
(since P and I are isomorphisms in hoLaxMatc and I¥ is the identity on X : hoLaxMatc).

Having described lax (co)limits via lax matrix formulas in hoLaxMatc, we can imme-
diately deduce that all lax (co)limits are absolute with respect to the colimit-enrichment.
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Theorem 4.19. Let C, C’ be (00, 2)-categories enriched in oo-categories with colimits.
Let F:C — C' be a functor which preserves colimits on hom-categories. Then F preserves
all lax colimits and lax limits.

Proof. Since F preserves colimits on hom-categories, it induces a well defined functor
hoLaxMatp : hoLaxMatc — hoLaxMatc,

given by applying F pointwise to diagram and matrices. Since this functor necessarily
sends isomorphisms to isomorphisms, Lemma 4.14 implies that F sends lax (co)limit
cones to lax (co)limit cones. [

Finally, we deduce that lax matrix multiplication corresponds to composition of maps
between lax colimits/limits in the case where those lax (co)limits exist.

Proposition 4.20. Let X: S — C, Y: T — C, Z: U — C be diagrams indexed by oco-
categories and admitting lax limits/colimits. Then there is a commutative square of co-
categories

C (laxcolimg X, laxlim7 Y) x C (laxcolimz Y, laxlimy Z) —» laxMatc (X, Y) x laxMatc (Y, Z)

lfo(lla)’lo— J/—OT—

C (laxcolimg X, laxlimg Z) = laxMatc (X, 2).

In other words, after identifying lax colimits and lax limits via the canonical unit matrix,
lax matrix multiplication corresponds precisely to function composition.

Proof. Denote by [Ix:laxMatc (X, laxcolim X) and Px:laxMatc (laxlim X, X) two lax
(co)limits cones for the diagram X (and similarly for Y and Z). The implicit identification

C (laxcolim X, laxlim Y) — laxMatc (X, Y)

is given explicitly as Py o — o I, and similarly for the other horizontal maps. Therefore
the desired commutative square is just the natural equivalence

(on—oly)OT (Pyo—olx) ~ on—o(ly or PB)O—OIX
~ Py o (— o(ly)_1 o —) o Iy.
using the equivalence (4.18) in the last step. ]
Y10

Example 4.21. Continuing Example 4.13, we consider a Al-diagram Y= Yo — Y1)
in C and two lax matrices

Fo
F=| | |:laxMatc(X,Y) and G = (Go < Gy) : laxMatc (Y, Z)
Fy
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(just a lax cone and a lax cocone, really). The Cartesian twisted arrow category Tw*(A!)
is the poset

ido —— (031

id;
The matrix product G oa1 F : laxMatc (X, Z) = C(X, Z) is therefore the pushout of the
diagram
F
GoFy <=~ G1Y10Fo

lGl f

G1F,

computed in the co-category C (X, Y'), where g: G1Y10 — Go and f:Y19Fo — F are the
2-cells encoded in G and F, respectively. More general A! x (A1)° matrices can then be
multiplied in the usual row-by-column fashion since each entry (GF), only depends on
row u of G and column s of F. For example, we can compute (with X = Y and F = IY)

Goo < Go1 idy, «— 0

GomI=| 1 | ]

Gio+— G111 Y10 < idy,

colim (Goo <~ G(nylo i) GOI%IO) <— colim (@ (i 0 — G01)
1 1l ~ G.

colim (G10 <~ G11Y10 i) Gn‘élo) < colim (@ <i 0 — Gll)

1

5. Lax additivity

Classical semi-additivity of a category A manifests itself on two levels:

(1) Each hom-set of 4 has a commutative monoid structure which allows to take sums
> ses fs indexed by arbitary finite sets S.

(2) The category A allows direct sums P, X, indexed by finite sets S which are
both products and coproducts.

We categorify these notions by replacing (discrete) addition ¥sc5 on the hom-sets
by colimits colimg.s on the hom-categories and (discrete) coproducts/products [ [;cg =~
I1 ses by lax bilimits laxcolim,.s = laxlim.g, which are now indexed by arbitary small
oo-categories S rather than finite sets.

Definition 5.1. Let C be an (0o, 2)-category enriched in co-categories with groupoidal
colimits. (This means that each hom-category C (X, Y) has all colimits indexed by oo-
groupoids and that composition preserves such colimits in each variable.) Let X: § — C
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a diagram indexed by an oco-category S. A lax bilimit of X consists of a lax colimit cone
I : laxMatc (X, L’) and a lax limit cone P : laxMatc (L, X) such that the canonical map

%L > L

corresponding to the unit matrix 7% : laxMatc (X, X) is an equivalence. We identify L
and L’ via I and write

lax lax
@ X or @ Xy
N s:S

for both/either of them.
X
When X: S — {*} = C is a constant diagram, we write S ® X or X for the constant

lax bilimit ¥ X = @& X. In the special case where S = A! so that X = (X A X1)

lax
is just an arrow in C, we also write Xy @g X instead of @12"1 X.

Remark 5.2. When convenient we drop the typographical distinction between a matrix
F :1axMatc (X, Y) and the associated map F : @la" X — @lax Y. More generally, Propo-
sition 4.20 justifies dropping the typographical distinction between matrix multiplication
G or F and composition G o F of the associated maps

lax F lax G lax
S X T y 7 @U Z

between lax bilimits in C.

We can now finally define the notion of lax semiadditivity.

Definition 5.3. An (00, 2)-category A is called (finitely) lax semiadditive if

(1) it is enriched in oo-categories with (finite) colimits (with functors preserving
them),

(2) each diagram S — A indexed by a (finite) small co-category S admits a lax
bilimit.

Remark 5.4. We have seen in Corollary 4.15 that in the presence of sufficently many

colimits in the hom-categories, every lax limit or colimit is automatically a lax bilimit.

Thus the second condition could be weakened to just require the existence of lax limits or
lax colimits.

The final step is to categorify the passage from semiadditve to additive categories
which amounts to requiring the hom-monoids to be abelian groups. Following our philos-
ophy of Section 1.1, abelian groups should be replaced by stable co-categories leading to
the following easy definition.

Definition 5.5. A (finitely) lax semiadditive (oo, 2)-category A is called (finitely) lax
additive if every hom-oo-category A (X, Y) is stable.
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Remark 5.6. Denote by C°P the (0o, 2)-category obtained from C by reversing the direc-
tions of the 1-morphisms, i.e., CP(X,Y) = C(Y, X). If C is enriched in (stable) oco-
categories with colimits, then so is C°P. Moreover, lax limits/colimits/bilimits in C°P
correspond to lax colimits/limits/bilimits in C. Thus an (oo, 2)-category A is (finitely)
lax (semi)additive if and only if A°P is (finitely) lax (semi)additive.

Example 5.7. Lax limits in the (oo, 2)-category PrL of presentable co-categories exist
and are computed as underlying co-categories, i.e., as sections of the Grothendieck con-
struction as in Example 3.4; indeed, for any small diagram X: S — Pr’ the co-category
L :=Fung(S, [, X) is again presentable (see [15, Propositions 5.5.3.17 and 5.5.3.3]) and
a functor into it preserves colimits if and only if it does so after postcomposing with each
pointwise evaluation map L — X. Since Pr’ is enriched in oo-categories with colim-
its it follows that it is a lax semiadditive (0o, 2)-category. The full (oo, 2)-category St~
of presentable stable oo-categories is closed under lax colimits and enriched in stable
oo-categories, thus it is lax additive. The (oo, 2)-category 8t® of presentable stable co-
categories and right adjoint functors is only finitely lax additive, since composition with a
right adjoint functor is exact but does not preserve arbitrary colimits. The (oo, 2)-category
8t of stable co-categories and exact functors is finitely lax additive.

Note that one can replace all presentability assumptions by just requiring the relevant
oo-categories to have colimits (or limits, in the case of $tR) and for the functors between
them to preserve them.

Remark 5.8. In the (0o, 2)-category 8t%, the lax bilimit of a diagram F: A — B comes
with a semiorthogonal decompositions with components A and B and gluing functor F
in the sense of [7], see also Appendix B. The idea to use matrices to describe coordinate
change for such semiorthogonal decompositions already appears in [6]. Enlarging 8t by
a suitably defined (oo, 2)-category of exact profunctors, we may even describe general
semiorthogonal decompositions via lax bilimits — in the context of dg categories, this
corresponds to the gluing constructions for bimodules, as established in [14].

Construction 5.9. Let 7, S be small co-categories and let
F:T x S — Spaces ~ Prk (Spaces, Spaces)

be a matrix of spaces. Let A be a lax semiadditive (0o, 2)-category. For each X : A, denote
by FX := F ® idy the matrix

FX.T x §° i) Spaces ﬂ) AX, X),

where the second functor arises from the tensoring by Spaces on the co-category A (X, X)
with colimits. In this way, the space-valued matrix F gives rise to a map FX: X5 — XT
which we call the action of F on X. Similarly, when the hom-categories are pointed/stable,
we can interpret in A every matrix of pointed spaces/spectra, by using the corresponding
tensoring.
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Lemma 5.10. Action of matrices is compatible with matrix multiplication, i.e., we have
equivalences FX o GX ~ (F o G)X whenever F, G are composable matrices of spaces/
pointed spaces/spectra and X is an object in a correspondingly enriched (0o, 2)-category.

Proof. We have, naturally inu : U, s : S°:
(F o G)uXS ~ (jgolim F.® G,S) ® idy
it—>t’
~ (colim(Fyr ® idy) o (G5 ® idy))
fia—t
~ (FX 0 GX)ys
using that the tensoring preserves colimits and that idy o idy =~ idy. ]

Example 5.11. The universal identity A! x (A!)°P-matrix is

{x}+— 0
I=\|1 | |:A" x (A")® — Spaces.
{} < {*}

Indeed, every (00, 2)-category C whose hom-categories have initial objects, the unit matrix
I for the constant diagram X: A! — {x*} X Cis givenby I* = IX := T ® idy.

More generally, for any co-category S the universal identity S x S°P-matrix is the just
the transpose of the hom-functor

I:=8(-.—-):8? x§ — Spaces.

Example 5.12. Consider the matrices

SO« s°

Cof:=| | L |: A" x (A)°P — Spaces,

0+—S°
and

0+ S[-1]

Fb=|] o | |:A"x(AY?— Sp,
S+—0

defined in pointed spaces and spectra, respectively. If A is a pointed oco-category with
colimits, then the matrix Cof acts as the cofiber map

idg +—idy 1 )
Cofa=| | | |:A% = A~
0<+—idy

a 1
(¢>:3—>AA
b

Indeed, for every
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we can compute the matrix product

idg <—idy a colim(a < a — b) b
1 1 0(¢)2 1 ~ 1 = Cof(a — b).
0 +— idy b colim(0 <— a — b) cof(a — b)

If A is also stable, then a similar calculation shows that the matrix Fib is inverse to Cof
and acts as the fiber map.

For every matrix F: T x S°° — A(X, X) corresponding to an arrow X5 — X7 in A,
we denote by F; the “transposed” matrix

Fri SO x (TP ~ T x §% 5 A(X, X),
describing the dual map X7 — X 5%,

Lemma 5.13. In the setting of Construction 5.9 there are commutative diagrams

AX,YS) —== AX,Y)S AS ®X.Y) —— AX.Y)5”
A(X,Fy)l lFAUﬂY) and A(FX,Y)T TFTA(X’Y)
AX,YT) = Ax. T AT ®X,Y) —== AX.T”

Proof. We do the second computation; the first one is similar. Functorially in
M AX TP ~A(T®X.,Y)
and s : S°P we compute
A(FX)Y)(M)y = (Mo F¥); =  colim  MyoFX
( Y(M)s = ( )s (a SOlm Mo By

= colim My o (F;s ® idy)
fTw*(T)

~ colim Fis @ My
(f:t—t"):Tw*(T)

~ colim Fis @ My
(g:t'—t):Tw*(T°p)

~ colim  (Frs ® ida(x,y))(My)
(g:t'—1):Tw*(T°P)

= colim F. id My
(i o) (( st ® A(X,Y))( 1)

— F-FMX’Y)(M)&

Apart from expanding the various definitions, we have used
o that My o — A(X, X) — A(X,Y) preserves colimits and hence the tensoring F;; ® —,
 the canonical identification Tw™* (T') ~ Tw™* (T °P) which reverses source and target,

* that colimits of functors A(X,Y) — A(X,Y) are computed pointwise, hence also the
tensoring Frs ® —. [
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Lemma 5.14. Let A be a lax semiadditive (00, 2)-category. Then A is lax additive if and
only if each hom-category A(X, Y) is pointed and the matrix Cof from Example 5.12 acts
invertibly on each X : A. If this is the case, then the inverse is given by the action of Fib.

Proof. Assuming that all hom-categories A (X, Y) of the lax semiadditive (oo, 2)-category
A are pointed, they are stable if and only if the cofiber functor

CofAXY): A (X, Y)A — AX, V)N

is invertible. Using Lemma 5.13, we can identify this functor with A (X, CofY ). Thus A
is lax additive if and only if all A(X,Y) are stable, if and only if all A(X, Cof?) are
invertible, if and only if all CofY are invertible, as claimed. [

5.1. Oplax additivity

So far we have focused our discussion exclusively on lax limits and colimits, as opposed to
oplax ones. We could have of course passed to the 2-morphism dual everywhere (obtained
from an (oo, 2)-category C by replacing each hom-category C(X, Y) by its opposite)
and told an analogous story using oplax colimits/limits/bilimits. This would lead to what
we might call oplax (semi)additive (oo, 2)-categories A, which are enriched in (stable)
oo-categories with limits and allow the formation of oplax bilimits

oplax
@ X := oplaxcolim X ~ oplaxlim X
S s s

of any diagram X: S — A indexed by a small co-category.
For the convenience of the reader, we summarize the main formulas of this dual theory;
all the constructions and proofs are dual to the ones we saw earlier.

(1) For two diagrams X: S — A and Y: T — C, we define

oplaxMatc (X, Y) = oplaxlim C(Xs,Y,)
(t,8):T xSop

as the category of oplax matrices from X to Y. Explicitly, such matrices are sec-
tions of the contravariant Grothendieck construction

(,5):TxS°P
/ A(Xs,Y:) > TP x S.
(2) The oplax matrix multiplication
oplaxMatc (X, Y) x oplaxMatc (Y, Z) — oplaxMat¢ (X, Z)
is given by the formula

(PoW)y = lim Dy Wss.

1
(f:t—>t")Tws(T)
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(3) The oplax unit matrix for a diagram X: S — C is

gx = ((t,s) —  lim I)Cf) : oplaxMatc (X, X).
f:8(s,1)
Example 5.15. The (oo, 2)-category St’ is enriched in stable co-categories and admits
oplax limits; thus it is finitely oplax additive. It is not oplax additive because composition
of functors does not preserve arbitrary limits.

Example 5.16. As in Example 4.21, consider a Al-diagram Y= Yo ﬂ Y1) in C. The
oplax matrix product over Y of an oplax cocone (= Al-row vector) G with an oplax cone
(= (A1)°P-column vector) F is given by the dual formula

Fo GoFo — G1%10F0
(G() g Gl) OAL T = lim T
I G F,

General (A1)°P x A-matrices can then be multiplied in the usual row-by-column way. The
oplax unit matrix on Y is
idy, — {*}

=l 1|

1310 — id\g1

where {x} is the terminal object of C (Y1, Yo).

6. Coordinate change for A!-matrices

We have seen that any lax semiadditive (oo, 2)-category admits a nicely behaved calculus
of lax matrices. However, if we apply Ko componentwise to the lax matrix multiplication
for lax A!-bilimits (see Examples 4.13 and 4.21) we obtain the very unusual formula

b
(a0 air)o (b(l)) = agbo —a1bo + a1b;

or, more generally Ao B = AI71B, where I = K, (IAI) = ( { ‘1)) is the new unit matrix.
The goal of this section is to introduce a convenient “coordinate change” in the lax
additive (as opposed to merely lax semiadditive) setting, which up to a sign recovers the
usual matrix multiplication on Kj.
The key ingredient is the cofiber-fiber-equivalence

Cof: Fun(A!, A) < Fun(A!, A) :Fib,
(fib) = b % a) <> (a > b’ = cof(u))

for every stable co-category A.
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More precisely, we make use of the following dependent version of the cofiber-fiber-
equivalence which identifies the oplax limit over an arrow with the lax limit.

Lemma 6.1 ([5, Lemma 1.3]). Let f: A — B be a diagram of stable co-categories. Then
there is a natural equivalence

Cof: oplaxlim(B <= A) < laxlim(A 7, B) :Fib 6.2)
Al A

described by the formula
(b = fib(),a,b > fa) < (a,b' = cof(u), fa > b').

While not strictly necessary, it is convenient to implement this equivalence by explicit
matrices using a combination of the lax and oplax matrix calculus.

For the remainder of the section, let A be a lax additive (o0, 2)-category. Then A is in
particular enriched in co-categories with finite limits, so that we have available the finite
oplax matrix calculus (dual to the one in Section 4) as long as we restrict to diagrams
indexed by finite co-categories S.

F
Construction 6.3. Let X: A! — A be a diagram, X = (X9 — X;) and let P = (py)
and I = (is) (indexed by s : A!) be the lax limit/colimit cone exhibiting the lax bilimit

lax
Xo @& F X1. We construct the oplax cone and cocone

lax lax

Xo &F X1 Xo &F X1
Fib .= y/& and Flbv = fV x
DCO I3 > DCl DCO Ia > :X:l
as follows:
¢ Recall that
0
po = (idy, < 0) and i;=| |
idy,

are just the top row and right column of the unit matrix I, viewed as a map out of or
into the lax limit of X, respectively.

* Additionally we define the row and column vectors

[_1]3C0
fib := (0 <~ [—l]xl) and fibY := 1

0

obtained by passing to the vertical and horizontal fibers of the unit matrix I,
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+ By construction, (po, fib) and (fib", i) fit into a (A!)°P x (A!)°P-matrix and a A! x

Al-matrix,
Po idy, «+—0 [=1]x, — 0
Fib=+|=| t+ o T and FibY := (fib¥ — i1) = L o ||
fib 0 +— [—1]x, 0 — idx,

respectively. As indicated, we can view these matrices as a column vector of row
vectors, or a row vector of column vectors, respectively, thus yielding the desired
oplax cone and cocone.

The following lemma explains the name of the cones Fib and Fib" in terms of the
maps they represent/corepresent.

Lemma 6.4. Let Y : A.
(1) The induced map

lathA(Y Xy) — A(Y, X GBF X ) e, oplaxlim A (Y, X;)
s:Al

is precisely the dependent fiber functor of Lemma 6.1 for the A'-diagram
A(Y,Xo) = A(Y, Xy).

(2) The induced map

laxlim A (X, Y) < A(I)Co @F X1, ) ﬂ oplaxlim A (X5, Y)
s:(A)op s:(A1)op

is precisely the dependent fiber functor of Lemma 6.1 for the (A!)°° = Al-diagram
A(:X:o, Y) <~ A(Xl, Y)

X0
Proof. A quick matrix computation for each x = ( 1 ) : laxlimg A (Y, X) shows
X1

Do oAt X X0
Fibo x = T = T : oplaxlim A (X, Y),
fiboar x fib(Fxg — x1) s

as required. Similarly, for each x¥ = (xg < x7) : laxlimg, a1y A(X, Y') we have

x¥ oFib¥ = (fib(x) F — xg) — x7') : oplaxlim A (X, Y),
s

as desired. [

As an immediate application of Lemma 6.1 we therefore get that the oplax cone/cocones
Fib and Fib" exhibit the lax bilimit X EB F X also as an oplax limit and colimit. The fol-
lowing lemma makes a more precise statement, showing that Fib and Fib" are inverse up
to a shift.
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Lemma 6.5. The oplax cone Fib and cocone FibY from Construction 6.3 are, up to
negative shift [—1], mutually inverse with respect to the oplax matrix multiplication. In
particular, Fib and Fib¥[1] (or Fib[1] and Fib" ) exhibit the lax bilimit X @r X1 also as
an oplax bilimit of the diagram X: A! — A.

Proof. An explicit computation with the oplax matrix multiplication over A! (recall Exam-
ple 5.16) shows:

poﬁbv — pOil ldj)c0 [—1] —0
FiboFib¥ = [ = 1 =l 7 T =41
fibfib¥ — fibi; F[-1] — idx, [-1]

and

Fib" oa1 Fib ~ lim(fib¥ pg — i1 Fpg < i1fib)

[-1]+0 00 0+—0
~ lim 1 N N 1 1
0+—0 F+0 0+ [-1]
[-1]+«—0
~ 1 L | =%,
Fl-1] = [-1]

where in the second computation we omit the straightforward verification that the unnamed
arrows appearing in the last matrix are indeed those of 7%[—1]. |

Remark 6.6. While there is a distinguished choice for the cofiber-fiber equivalence (6.2),
Lemma 6.5 provides two (but equally distinguished) ways to identify the lax bilimit

Xo Glaa);: X1 and the oplax bilimit X ?51? X1, depending on whether we look at the repre-
sented map (using Fib and treating them as (op)lax limits) or the corepresented map (using
Fib¥ and treating them as (op)lax colimits). These two ways are not equivalent: they differ
precisely by a suspension.

1 1
Remark 6.7. We now have several different ways to represent maps Xo eﬁfv Xy % Yo GSZ;

Y1, with the passage between them implemented by applying the cofiber-fiber equivalence
to rows and/or columns of a matrix.

h

Qoo <= o) . [ %o = Q01

Tl =11 7T

v v
Qo < &1y a{’(‘; —af,
FibO—T FibO—T

al — o

oo < o1 00 01

l l —oFibY l l

010 <— 011 a(’)ll_ﬂxll
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Here, the notation is chosen as follows:

* Subscripts indicate the source and target of each entry, reading right to left. For exam-
ple, @10, a{’o, afo,oc{‘(’)’ all live in A (Xg, Y1), etc.

* Superscripts record in which direction (horizontal and/or vertical) one has to take
fibers to obtain the new object from the original lax-lax matrix (lower left). For exam-
ple, a{’o is the fiber of the horizontal map oy F — a1 while a{’(’)’ can be computed
either as the fiber of the vertical map Gago — a{’o or equivalently as the fiber of the
horizontal map o, F — af,.

Remark 6.8. Consider two composable maps

2L o @6 91 S 2.
Each of the two maps 8 and « can be represented by a matrix in two ways, depending on
whether we treat the middle term as a lax or oplax bilimit. The following table shows the
four corresponding possible row-column-multiplications with the standard lax multiplica-
tion in the lower left. General 2 x 2 matrices describing maps between (op)lax bilimits
over A! can then be multiplied in the usual row-by-column fashion.

o (g < 1) (ocg — o)

Bo alBo — a1GPo

T cof(a1 f7 — a1GPo — ofo)  lim T (1]

Bl ar B (6.9)
Bo aofo < a1GPo

1 colim 4 cof(ocgﬁo — a1GBy — a161)

B1 ar By

Observe how the entry in top right differs from the standard oplax multiplication (see
Example 5.16) by a shift [1]. The reason for this is that we used the canonical cofiber-
fiber-equivalence (6.2) both horizontally and vertically, which amounts to using the iden-
tification Fib: @™ Y — @°P™ Y when discussing maps info the (op)lax bilimit but the
identification Fib": laxy @lax Y when discussing maps from the (op)lax bilimit;
we have seen in Lemma 6.5, that these two identifications are only inverse up to shift.

The following table depicts the unit matrix with respect to each of the four multipli-
cations; they are just obtained from the standard lax unit matrix (lower left) by passing to
horizontal and/or vertical fibers.

lax oplax
id +— 0 [-1]—0
oplax [ | T o T T T
0 < [-1] [—1] — [-1]

id<«—0 1] —=0

lax U Lol
id +—id 0—id
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From the matrix multiplication formulas of (6.9) we can immediately see the advan-
tage of this change of coordinates. By working with lax-oplax or oplax-lax matrices, we
obtain, on K¢ the formulas

(ao al) (Z(l)) = :I:(aobo —albl).

The fact that matrix multiplication now involves an alternating sum rather than an ordinary
sum is a feature, rather than a bug. In the next section we will see, for example, how we
can express the differential of the mapping cone of a chain map f: (A., @) — (B., ) by
directly categorifying the canonical matrix § = ( ? 2) without having to introduce any
signs; the signs are already part of the matrix multiplication.

Another convenient feature is that the identification between lax-oplax and oplax-lax
matrices is compatible with the passage to adjoints in the following sense.

Construction 6.10. Assume that G: Yo — Y; has a right adjoint G 4 GR. Then Corol-
lary A.3, applied to the adjunctions (Go) 4 (GRo) and (oGR) - (oG) yields equivalences

ax oplax ax oplax
A(=. Yo B6 Y1) = A(—.Ys Box Yo) and  A(Ys Bgx Yo.—) = Ao e Y1.-)

given explicitly by passing to vertical and horizontal transposes

Gyo G®y1 5 .
v | al and (yi/ <—y0VGR) < ()’(\)/ - yy )
» Yo

where we have added the application of the gluing functor in the matrix to make the
effect of the transposition more apparent (usually we would just write something like

g = »)-

Lemma 6.11. For each X,Z : A, we have a commutative square

ax oplax
A(G Yo B Y1) x Ao Bo ¥1,2) — A(X.2)
oplax ax H
ACG Yy Box Yo) x AY1 Box Yo, 2) —— A, 2),

where the horizontal maps are the oplax-lax and lax-oplax matrix multiplication, respec-
tively, and the left vertical map is the equivalence of Construction 6.10.

Proof. For each

v Y v oplax Yo lax
<y0_>y1>:y0@c‘31—>2, and lu : X — Yo & Y1.
1
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the two different row-column products are the cofiber in A(X,Z) of the two composite maps

VYo yu you vy1
vy vo —> ¥V Gyo = yYy1 and ygyo —> ygGRy1 —> yYy1.

A straightforward computation using the triangle identities for G | GR shows that these
two maps are in canonically identified; hence so are their cofibers. ]

7. Chain complexes and chain maps

Throughout this section, let A be a finitely lax additive (oo, 2)-category.
Let Z = (Z, <) be the standard poset of integers. A chain complex in A is a functor
Z°° — A, depicted as

LA 2 A 2 Ag 2 -,

with the conditions that each o is a zero objectin A(A,, Ay—1-¢) fork > 2.
There are various notions of chain maps, corresponding to different notions of natural
transformations of diagrams Z°P — A in the 2-categorical context (see also Appendix A.2).

* A chain map (without further qualifier) is a commutative diagram of the form
S Ay — A —E Ag —— -
I I I
L =~ A =~ fo (7.1)

s B > B > B
B 278 17 0™

Chain complexes and chain maps in A assemble into an (oo, 2)-category Ch(A),
defined as a full sub-2-category of FUN(ZP, A).

* Alax chain map is a diagram of the form, commuting only up to possibly noninvertible
2-cells.

o a a o
> Aoy > Ay > Ao AR

> B > >

B 72 B 8 8
Chain complexes and chain maps in A assemble into an (0o, 2)-category Ch'**(A),
defined as a full sub-2-category of FUN 4 (Z°P, A).

+ Dually, we define the full sub-2-category ChoP'*(A) C FUNplax (ZP, A) of chain
complexes and oplax chain maps, which explicitly look as follows:

a).Az a)-A] a).Ao 2 5.
/2 / fi / Jo

> B > B > B
B 278 178 078

Given two chain complexes (A., @) and (B., §), we write

Mapg* (A. B) <> Map(A. B) < Mapy"**(A. B)
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for the three corresponding co-categories of lax chain maps, chain maps and oplax chain
maps A — B. More generally, we write

Mapi™ (Aa, Ba) := Mapi*(Ae, Brye) and  Map)”™ (Aa, Ba) := Mapy” ™ (Ae, Byre)

for the (stable) co-category of lax/oplax degree-k-maps from A to B. Abstractly, these
various oco-categories are just the hom-categories in the (oo, 2)-categories FUN(ZP, A),
FUN;,4x (Z°P, A) and FUN,p1ax (Z°P, A). For us, a more useful description/definition will be
as certain sections of certain tautological fibrations.

For the rest of this section, fix two chain complexes (A., ) and (B., 8) and an integer
k e Z.

Construction 7.2. Consider the functor
P op AoP ——
2% x 2 2 A A% 20D st mon) > A(Ay, B
and its two mixed Grothendieck constructions
m:Z°P nzZ
q: / A(A,, Bm) > ZxZ and ¢’ : / A(An, Bm) — Z°%° x Z°P, (7.3)
n:Z m:Z°p
(contravariant, covariant) and (covariant, contravariant), respectively. We can identify oplax
and lax chain maps A — B with sections of ¢ and ¢’ on the diagonal. More precisely, we
define

m:ZoP
Mapzplax(ﬂ,, B) := Fungzxz (Z(k),/ A(A,, ‘Bm))
and
n:Z
Mapl#*(A. B) = Funzmzso (Z°P(k), [ aa Bm)),
m:Z°p
where

Zk) ={(n+kn)|m=n+k} CZLXZ
is the k-shifted diagonal. Concretely, such a section consists of objects f; : A(Ay, Bpyi)
and morphisms
Jn = Jat1 Or fay1 = fa

in the corresponding Grothendieck construction, amounting to morphisms

o1 = Bfn or Bfy — fa-1a, (7.4)

in A(Ay, By 4+x—1) respectively. We say that f, is an oplax or lax chain map of degree k.

The full subcategories of Mapgplax (A,B) and Mapg”‘ (A, B) spanned by those sections
where the corresponding maps (7.4) are equivalences are canonically equivalent to each
other by passing to inverses; we define this common full subcategory to be Map(A, B); it
consists of the degree-k-chain maps.

Remark 7.5. By the standing assumption that A is finitely lax additive, the diagram
A (A, Bo): Z°P x 7 — 8t takes values in stable co-categories and exact functors, hence
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any of its associated categories of sections will again be stable and restriction functors
between them will be exact (see also Example 3.4 (3)).

This includes the co-categories Mapzplax (A, B) and Map}f" (A, B) of shifted diagonal
sections as well as other variants defined below, such as the shifted upper triangular sec-
tions of Construction 7.7. Moreover, the full subcategory Map(A, B) < Map*(A, B)
(defined by the condition that each of the maps Bf,+1 — fy« is an equivalence) mani-
festly contains the zero section and is closed under fibers and cofibers; hence it is a stable
subcategory.

Remark 7.6. We shall not unravel the definition of FUNj,, and FUN,p.x and show that
the mapping categories therein do indeed agree with the co-categories constructed in Con-
struction 7.2. For the purpose of this paper, the reader may take this construction as the
definition.

It will be useful to study more general sections of the fibrations (7.3).

Construction 7.7. Denote by Z(>k) — Z x Z the full shifted triangular subposet of
those (m, n) satisfying m > n + k. We write

m:Z°
Map(;pliax(A, B) := Fungzxz (Z(Ek),/ A(An, Bm))'
= n:Z

for the (stable) oco-category of shifted upper triangular sections; see Remark 7.8 for a
depiction of such sections. For each k we have the obvious (exact) restriction functors

|>k+1

Mapzplax (A, B) X Map‘f,lcax(fl, B) — Mapf,lfil (A, B).
Remark 7.8. A section F = (Fpn)m>k-+n as in Construction 7.7 with f,] = Fy4, » can

be depicted as follows:

. _ii+ Ay _li+ Aq _li+ /{0 _£L+ A_q _11+ .

PN

jBk+2 Lﬁf 6___kff+d «— fg?+2 6___.ffi8
lﬁ \ T T T
Bk+1 ff — ﬁf+l — ffrz 79
lﬂ ﬁ\\\\\\ T- T\ ( . )
By 1 —— rEH
1s T
Br-1 f—kl

’ AN
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The complexes A, and B, are drawn for reference to indicate how the section F spreads
across the fibers of the fibration.

Note that the arrows and squares in the diagram (7.9) take place in a Grothendieck
construction, so that one needs to suitably postcompose with 8 or precompose with « to
obtain genuine arrows or squares in the hom-categories A (A, By+,). Explicitly unpack-
ing the data of such a section F, we see that for each r > k and n € Z it contains

» anobject f,] in A(An, Brir),

o arrows 7: f7 — BfIH! (vertical) and &7 : fnr_"’lla — f,J (horizontal) in A(A,, Bytr),

* anarrow f, o — Bf,, | (diagonal) in A(A,+1, Bptr),

* acommutative square

ﬁsyr, 1
lenr S 13 nr—+1 o

77rrlfl]\ \ Tn;71 o

-1
fnr T fnr—la

in A(Ay, By+r—1) when r > k, and just the upper right triangle when r = k (because
f¥=1is not defined).
oplax

Observe how the diagonal part ¥ = F|j : Map,” " (A, B) precisely encodes the datum
of an oplax degree-k chain map as in Construction 7.2.

The following lemma states that we can “crop” redundant zeroes in a section f :
oplax
Map_, (A, B).

Lemma 7.10. Denote by
Ul ={(m,n) |k <m—n<k+r}CZ(=k)

the k-shifted diagonal strip of width r. The canonical restriction functor along Uy —
Z(>k) induces an equivalence

m:Z°P

Mapozp;cax(ﬂ’ B)lszrr:O i) Funz«z (Ukr’f A(An, Bm)) s (7.11)
n

Z ‘2k+r =0

where on both sides we are only considering those sections which are zero on the r-th off
diagonal and beyond.

Proof. First of all, we claim that the restriction functor (7.11) admits a fully faithful left
adjoint given by left g-Kan extension (g is the fibration (7.3)). The pointwise g-Kan
extension formula trivializes, since for each m > n 4 k + r the overcategory Uk’ /(m, n)
has a terminal object given by the vertical edge (n + k + r,n) — (m, n). We thus only
have to argue that there are sufficiently many coCartesian edges over these vertical edges
(n +k 4+ r,n) — (m,n). Since we are, by definition, only considering sections whose
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value at (n + k + r, n) is zero, this is automatic; the resulting Kan extended diagram is
zero on Z(>k+r). The result follows since by construction the essential image of this left
q-Kan extension is precisely Map°plax (A, B)|ppr=0- |

Remark 7.12. Even when the r-th off-diagonal is zero, we cannot crop the diagram any
further without losing information. In other words, the restriction functor

m:Z°P

MapZ}™ (A, B)|_,.,,—0 — Funzsz, (Uk’—l, / A(Ay, Bm)),
n

Z

is not typically an equivalence because the commutative squares

BfI T «—0

1 I

fnr72 — r 1106
at the edge of the strip U} carry more data than just the composable arrows
rla_>fr2_>'3fr1
namely a trivialization of their composite.
Remark 7.13. In the special case r =2, Lemma 7.10 says that a section f : MapOpldx (A, B)
satisfying f|>x+2 = 0 amounts to the following data:
* objects f = fK: A(An, Brin)s
* objects by = fFF AL Brgnt),

* commutative squares
Bhy +— 0

T T (7.14)

fn — hp«
in A(An, Bi+n)-

Lemma 7.15. The canonical evaluation maps at the individual k -shifted diagonal entries
assemble into an equivalence

MapZy™ (A, B) =0 = [ [ ACn Bein), L7 (flnez

nezZ

of (stable) co-categories. Here the left-hand side denotes the kernel of the restriction func-
tor

I
MapZ ™ (A, B) 2 Ma P (AL B),

i.e., the full subcategory of those shifted upper triangular sections that vanish on the first
off-diagonal and beyond.
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Proof. By Lemma 7.10 (with r = 1), we may restrict our sections to the strip Uk1 C
Z(>k), which, as a poset, is simply isomorphic to Z via (m,n) — m + n. Therefore a
diagram of shape U kl just amounts to a sequence of objects and arrows. If such a diagram is
zero on odd-indexed objects 2n 4+ 1 = (n + 1,n), then all arrows are unlquely determined
and the only relevant data are the values at the even-indexed objects 2n & (n,n). ]

Lemma 7.16. The restriction functor

"P‘“(A B) — Map‘;f’,‘jjl(ﬂ, B)

admits a left adjoint j and a right adjoint j’, both fully faithful, given by left and right
q-Kan extension, respectively. A section (7.9) lies in the essential image of j / j' if and
only if each leftmost horizontal/bottommost vertical edge is coCartesian/Cartesian, i.e.,
induces an equivalence

fk+10l i) fnk / fnk i ﬂfnk+l-

Proof. The pointwise left g-Kan extension formula at (n + k, n) along the inclusion
Z(>k+1) — Z(>k) trivializes, since the overcategory Z(>n+k—+1)/(n + k,n) has a
terminal object (n + k,n — 1). Therefore the desired left g-Kan extension exists if and
only if each horizontal edge (n + k,n) < (n + k,n — 1) admits a coCartesian lift. Since
the fibration

‘Z()p
q:/ AAn, Bm) > Z X Z
n:Z

is (by construction) coCartesian in the second variable, this is always the case.
The argument for the right adjoint is dual. ]

Going forward, it will be convenient to reformulate such statements using recollements
of stable co-categories. See Appendix B for a brief summary of the theory as we will use
it without further explicit mention.

Corollary 7.17. The restriction functor |41 is part of a recollement

T~

X |> X
[Thez AR Biyn) —— MapP (A, B) — Map®s (A.B)  (7.18)

\_/\/

7!

J

Jj

of stable co-categories with gluing functor

o (ﬁb(fk+1Ol — ﬂfk+l))n.

Proof. Lemma 7.16 provides the two fully faithful adjoints j and j’ of the functor |>g4;
as left and right g-Kan extension, respectively. Since the kernel of this functor is identified
with I—[nG 7 A(Ap, Bryrn) by Lemma 7.15, this determines the desired recollement.
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It remains to compute the gluing functor. From the pointwise formulas for the relative
Kan extensions we see that for each f,° : Map(f]lcail (A, B) the canonical transformation
J(f) = j'(f) is given on the main diagonal by the structure map

J = L e = BL = ()
(for n € Z); passing to fibers yields the desired formula for the gluing functor. ]

Remark 7.19. Note that neither of the two adjoints in the left half of the recollement
(7.18) are the tautological functor £,* > (£¥),ez that evaluates a section at the individual
entries of the k-shifted diagonal.

Remark 7.20. We can think of Mapg,]cax (A, B)|,4, =0 as the oo-category of degree-k
chain maps f: Ae — Byte with trivialized structure map fo — Bf. Note that this is not
oplax

a full subcategory of Map,~ " (A, B). Indeed, the restriction functor
oplax oplax
Mapzpk (A.B)| 1, =0 = Map” (A, B)

which forgets the trivialization is neither full nor faithful.

The restriction functor to the diagonal does not, in general, have analogous adjoints.
This does happen in the special case where the differentials of the chain complexes (A, o)
and/or (B., B) have left adjoints.

Lemma 7.21. Consider the restriction functor

|k Map®®™ (A, B) — Map?P™ (A, B)

(1) Assume that each differential B has a left adjoint. Then this restriction functor has
a fully faithful left adjoint given by relative left Kan extension. Explicitly it is given
by

fE = B fR and  fT =0 forr >k +2

with the non-trivial vertical arrows amounting to the units f* — BB f¥ of the
adjunction.

(2) Assume that each differential o has a left adjoint. Then this restriction functor has
a fully faithful right adjoint given by relative right Kan extension. Explicitly it is
given by

fE = fk Qb and  fT =0 forr >k +2

with the non-trivial horizontal arrows amounting to the counits fnk +1aLa — fnk 1
of the adjunction.

Proof. The two statements are dual; we focus on (2).

We observe that the relevant undercategories (m, n)/Z (k) (for (m,n) : Z(>k)) have
an initial object (m, m — k). Therefore the desired pointwise right g-Kan extension exists
if we can guarantee that each horizontal edge (m, m — k) — (m, n) has a Cartesian lift.
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In general, the fibration

m:Z°P
q:/ AA,, Bm) > Z X7
n:zZ
is only Cartesian in the first variable, not in the second. Being Cartesian in the second
variable amounts to each A(«, B,,) having a right adjoint which is guaranteed because
each o: A, — A,_ has a left adjoint by assumption. The explicit formulas are an imme-
diate consequence of this pointwise construction using %A% = 0 to obtain the vanishing
beyond the first off-diagonal. |

Lemma 7.22. There is an equivalence, canonical up to shift, between

o the full subcategory
{f1Vr#k+1: f =0} C Map*(A. B)

of those sections f which are non-zero only on the first off-diagonal and

(A, B) of oplax degree-(k+1) chain maps.

oplax

* the oo-category Map; ',

Explicitly it sends a section [ to a chain map with components g, = fFT1[—n] :
A(An. Bent1)-

Remark 7.23. Note that the equivalence of Lemma 7.22 is not induced by the obvious
restriction functor
lk+1

Mapgp,ia* (A, B) —> Mapj"™ (A, B)

which, when restricted to {f | Vr # k + 1 : fJ = 0} only hits oplax chain maps with
trivial structure map.

Proof. According to Remark 7.13, the data of a section f : Map™ ™ (A, B) with f |sg42=
0and f¥ = 0 amounts to
« l-morphisms /1, := f**1: A(An, Brint1)
* and commutative squares
Bhp <— 0
0 — hpi

in A(Ap, By ) which amount precisely to morphisms ¢y, : by —1 [—n + 1o — Bhy, [—n].

Thus setting g, := h,[—n], this is precisely the data of an oplax degree-(k+1) map g =
lax

(8e- o) - Map” [ (A, B). -

Proposition 7.24. Assume that all differentials o and B have left adjoints. Then the
restriction functor

le: MapZ ™ (A, B),_, ,=0 — Map;”**(A. B) (7.25)
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is part of a recollement

J

/\/\

Map{Ti5 (A, B) ' MapZi™(A. B, om0 —— Map (4. B):  (7.26)

o \/ \_/

1

J

with gluing functor
p: fo > (fib(B™ frr = fur12™)[—n]), . (7.27)

In particular, we have the dashed equivalence of (stable) co-categories.

Mapdy ™ (A, B) |, ,=0 <= Map°P‘“(A,3)gMap;Pff(A,B)

i o (7.28)

Map{P™* (A, B).

Proof. By Lemma 7.21, the restriction functor (7.25) has adjoints j and j’ given by rela-
tive left and right Kan extension. Using Lemma 7.22 to identify the kernel then yields the
recollement (7.26) and the induced equivalence (7.28) by the general theory.

From the explicit construction in Lemma 7.22 it follows that the canonical transfor-
mation j — j’ between the two adjoints is given explicitly at f : MapOPlaX (A, B) by the
canonical mate

JOOEHY = BE £ — frpaah = j/(f)E!

on the first off-diagonal; it is an equivalence ( f; > fnor0 = 0) everywhere else. The
gluing functor
MapP™* (A, B) — Ker(|x)

is given by the fiber of this transformation, therefore yields the desired formula (7.27)
under the identification of Lemma 7.22. ]

Definition 7.29. We denote by
Map (A, B) C Maplh™(A. B)

ex>k

the full subcategory spanned by those sections ( f,] ) such that all the induced squares

ﬁfr—H ¢ /3 r+2

a1
fnr r+1106

in A(A,, B,4n) are biCartesian (for all » > k) and call such sections exact.
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Lemma 7.30. There is an equivalence of oco-categories between

* the full subcategory

Mapoplax (_A, B)|Zk+2=0 C Map;p]lcax(ﬂ, B)

ex>k

of those sections which are exact and vanish beyond the first off-diagonal and
lax

* the oo-category Map?’, | (A, B), of lax degree-(k+1) chain maps.

Explicitly it sends a section (f,]') to a chain map with components g, = nk'H [—n].

Proof. In Remark 7.13, if we restrict to squares (7.14) which are biCartesian, the data
just amounts (by rotating the exact triangle forward and shifting by [—n]) to objects &, =
FEHY D A(Ap, Brtnt1) and maps Bhy[—n] — hy—i[—n + 1]a in A(A,, Bip). This is
precisely the data of a lax degree-k+1 chain map g with components g, := h,[—n], as
desired. ]

Remark 7.31. Lemmas 7.22 and 7.30 explain how the co-category Mapg:x (A.B)|2s12=0
contains both the oplax and the lax degree-(k+1) maps A — B. From the explicit con-
structions it is immediate that these two inclusions are compatible, in the sense that there
is a commutative square

Map(As, Biyor1) — Map)'}'} (A. B)

l [

) lax
Map | (A, B) > MapZi™ (A B)|_, ,,=0

and we have

Map(Ae, Bite+1) = Map,'s (A, B) N Map}, | (A, B)

as full subcategories of Map‘f,lc"le (A, B)|ogs2=0-

Construction 7.32 (lax mapping complex). Let (f,)) = (f. h) : Map(f,lcax (A, B) be a sec-
tion as in Remark 7.13. If each square (7.14) is biCartesian, then both of the maps

fona = Bhya and  Bhy,o — Bfu+1
are equivalences, since their fibers/cofibers are
hy—1aa =0 and BBh,4+1 =0,

respectively. Therefore the oplax degree-k chain map f = f¥ is an actual chain map
Ae — Bjte. Therefore the canonical restriction functor

le: MapZ (A, B) — MapP™ (A, B)



M. Christ, T. Dyckerhoft, and T. Walde 46

restricts to a functor

Ik

§:Mapf™ | (A, B) =~ Map*; (A, B)|_,,,—0 — Map(A. Bja)

ex>k
whose kernel is precisely Map(Ae, Br+e+1). These differentials § assemble to what we

call the lax mapping complex Map®* (A, B):

-+ Maps*(A, B) -------%------ > Map®™(A, B) ------%----- > Mapi*(A, B)---

Map(Ae, Bi+e) Map(A.. B.)
(7.33)
Unraveling, we get the explicit formula for the differential

8(ge)n = fib(Bgn — gn—12)[n].

Remark 7.34. Assume that the differentials o and B have right adjoints o® and BR,
respectively. Denote by AR := (A_,,aR) and BR := (B_,, BR) the chain complex obtained
from A and B by passing to right adjoints of the differentials. Note that for each n € N
there is a tautological equivalence of co-categories

Map”™ (AR, BR) S Map!} (4, B),
(fo. foaR = BRf) > (foe. Bf — f)

by noting that both sides are sections

(Z°P Z
I AR B — [ A )
/// J/q J/q,
Z(k) ———— Z xZ <+> Z°P x 7%

of the same fibration. An explicit computation shows that under this equivalence, the dif-
ferential
§:Mapy | (A, B) — Map* (A, B)

of the lax mapping complex (7.33) is identified with the gluing functor
0 Map(f)]la_xl (AR, BR) — Mapl_"",‘C (AR, BR)
of Proposition 7.24 applied to the chain complexes AR and BR.

Once we have constructed the mapping complex, we immediately get the correspond-
ing notion of categorified chain homotopy.

Definition 7.35. Let f: A — B be a chain map. A lax null-homotopy of f is alax degree-
1 map h: Map'™ (A, B) with §(h) = f.
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Remark 7.36. Clearly, one could dualize Construction 7.32 and all the preceding lemmas
to obtain the oplax mapping complex and the resulting notion of an oplax null-homotopy.
This is the version which appears in [3, Section 4.6], where this oplax mapping complex
was constructed (in the special case C = StkL) via the product totalization of the canonical
double complex C(A_., Bo). We shall not give a detailed proof that these two different
constructions agree; this is relatively straightforward by inspection of the terms of the
complex and the explicit formulas for the differential.

Definition 7.37. A commutative square

A543

fl lf’

C——D
g

in an (o0, 2)-category A is called vertically left/right adjointable if both f and f’ have a
left/right adjoint and the corresponding canonical mate

e —gft ) ef®— fRe

is an equivalence. Horizontally left/right adjointable is defined analogously but with g
and g’ having adjoints.

For chain maps, we distinguish two types of adjointability conditions: in the direction
of the differentials and in the direction of the chain map itself.

Definition 7.38. Let f: (A.,®) — (B, f) be a chain map.

»  We say that f is left diff-adjointable/right diff-adjointable if each square in the cor-
responding diagram (7.1) is horizontally left/right adjointable, i.e., all differentials o
and B admit left/right adjoints and the canonical mate B f — fol/faR — BR f is
an equivalence.

*  We say that f is left/right adjointable if each square in the corresponding diagram
(7.1) is vertically left/right adjointable, i.e., each component f,, has a left/right adjoint
and the canonical mate f“8 — af/afR® — fRB is an equivalence.

8. The oplax mapping cone construction

Let A be a finitely lax additive (oo, 2)-category. The goal of this section is to construct
the oplax mapping cone Cone () of a chain map (7.1) in A by categorifying the usual
formula

=)

Cone(f)n+1 = An (&%) Bn+l _— An—l D Bn = Cone(f),, (81)
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for the differential. According to the philosophy outlined in Section 1.1, we need addi-
tional data to specify the mapping cone complex:

* To construct the terms of the mapping cone complex

lax
Cone“ (f) = An—1 o By

as a lax bilimit, we need to specify 1-morphisms h: A,,_; — B, ork: B, — A, _;.

»  We need some suitable 2-categorical data to be able to write down the A! x Al-analog
of the differential matrix (8.1).

We will also see that in the presence of sufficient compatible adjoints to the differen-
tials &, B and/or f', one can canonically construct such data using the various units/counits
and in this case we recover the fiber and cofiber of f as in [3, Section 4.3].

Definition 8.2. We denote by

Map" (A, B) := Map(A, B) x,, MapZ™ (A, B))_,—o

apy (A, B)

the co-category of those sections (7.9) which are zero beyond the first off-diagonal and
restrict to an honest chain map (as opposed to an oplax one) on the diagonal. Such sections
are called lh-enhanced morphisms of chain complexes and are written

F: (.A., ao) 2} (BO’ IB')

The mnemonic “lh” stands for “left-horizontal” and is explained by Lemma 8.10,
where we construct canonical lh-enhancements in the presence of left adjoints in the hor-
izontal (= differential) direction.

Ih
Remark 8.3. Remark 7.13 tells us that an lh-enhanced morphism F': (As, 0te) = (B, Be)

consists of 1-morphisms
fuiAp —> B, and hy Ay — Buia
together with (not necessarily biCartesian) commutative squares

hp—10, —— 0

la,, l (8.4)

fo =2 Butihn

in A(A,, B,) such that each composite

Jn—10n M Brnhn—10y M Bn fn (8.5

is an equivalence (i.e., exhibits f: A — B as a chain map). We say that F' = (F, h, e, n)
is an lh-enhancement of the underlying chain map f: A — B.
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We can also depict such an lh-enhanced morphism of chain complexes as follows

o

Ay e > A e >A0 ud R
= =
lf g lf g lf (8.6)
vle v ele
ﬁ’BZ ﬁ,%l ﬂ,ﬁo e

but note that this picture is not complete, since it does not depict the trivialization no e >~ 0
encoded in the square (8.4).
The forgetful functor
Map™(A4, B) — Map(A, B)

sends an lh-enhanced morphism F = ( f, h, €, 1) to its underlying chain map by forgetting
h, & and 1 and only remembering the maps f and the equivalences fa >~ B f; in the picture
(8.6) this just amounts to pasting the triangular 2-cells to form (commutative) squares.
For each chain map f: Ae. — B., we write Map}}nl (A, Bs) for the fiber of this forgetful
functor over the object f : Map(A., B.); it is the (typically not stable) co-category of
lh-enhancements of the chain map f.

Remark 8.7. An lh-enhanced morphism is called exact if each square (8.4) is biCartesian.
We denote by

Maplh_ex(ﬂ, 'B) — Mapoplax (.A, B)|22=0 c Maplh(fl, g)

ex>0
the full subcategory of exact lh-enhanced morphisms.

Remark 8.8. Note that under the identification of Lemma 7.30, an exact lh-enhancement
of a chain map is precisely a lax null-homotopy in the sense of Definition 7.35.

The following construction of the oplax mapping cone is a tautological reformulation
of what the data of an lh-enhanced morphism entails.

Construction 8.9 (Oplax mapping cone). Let F = (f, h, &, 7n): (Ae, @) lé (B., B) be an
lh-enhanced morphism of chain complexes. We define the oplax mapping cone of F to be
the chain complex
lax Snt1 lax 8n lax
COHC<_(F)Z i An o) 3n-i-l — An—l o) Bn - An—2 ®n Bn—l e,
where the differential is the lax-oplax matrix

®n 0 oplax lax
8n+1 = i i A ®n Bur1 = An—1 S By
Jn = Bnt1
induced by the commutative square (8.4). Using the matrix multiplication formula from

Remark 6.8 we compute the squared differential

cof(ex — 0) ——— cof (0 — 0)

§ob 2~ 1 1
cof(fa — Bha — Bf) — cof(0 — BB)
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It is zero because a? ~ 0, B2 ~ 0 and the fact that the composite map (8.5) is an equiva-
lence.

Having constructed the mapping cone Cone™ (F) with respect to the choice of the
auxiliary lh-enhancement of the underlying chain map f, it is natural to ask whether
there are universal ways to produce such lh-enhancements. These exists as long as the
differentials o and/or B admit left adjoints.

Lemma 8.10. Let (Ae, ) and (Be, B) be two chain complexes in A. Consider the forgetful
functor
p:Map™(A,, Bo) — Map(A,, B,)
(1) If each differential B has a left adjoint, then p admits a fully faithful left adjoint
(—)p-
(2) If each differential a has a left adjoint, then p admits a fully faithful right adjoint
(e
(3) Assume that both differentials o and B admit left adjoints. The canonical trans-

Sformation (=)g — (—)a is an equivalence precisely on those chain maps f :
Map(A., Be) which are left diff-adjointable.

Proof. The first two statements are a direct consequence of Lemma 7.21 (for k = 0) by
observing that both adjoints (if they exists) take values in

Map" (A, B) C MapTy™ (A, B)
when restricted to
Map(A, B) C MapP™ (A, B).

To prove (3) fix a chain map f : Map(A., B.) and consider the component fg — fq.
The only place where it can possibly not be an equivalence is on the first off-diagonal.
Unraveling the pointwise formula, one observes that the value at these off-diagonal places
is given by the mates B~ f — fal of the equivalences fa — Bf; by definition £ is left
diff-adjointable precisely if these mates are all equivalences. ]

Remark 8.11. Assume that all differentials & and B admit left adjoints. Then the recolle-
ment (7.26) (for k = 0) restricts to a recollement

RN

Map?™ (A, B) ——— Map"(A, B) —Z— Map(A, B)

\/\/

and therefore to an equivalence

Map™ (A, B) ¢-=-» Map(A. B) X Map"*™(A. B)
]

| |

Map(A, B) =————= Map(A, B).
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Pointwise over each f : Map(A, B) we thus have an equivalence
Map}f(A. B) = p(f)/ Map\"** (A, B).

A glance at the explicit formula (7.27) shows that the gluing functor p is zero precisely
on those chain maps which are left diff-adjointable; in this case the oo-category of lh-
enhancements is simply equivalent to Mapop fax (A, B), hence in particular stable.

The following corollary summarizes the situation over each chain map f: When the
differentials of the chain complexes admit adjoints, each chain map f can be canonically
enhanced in two ways yielding an initial or terminal object in the category Map (A, B) of
lIh-enhancements of f. If the chain map is left diff-adjointable, this co-category is stable
and these two canonical lh-enhancements agree.

Corollary 8.12. Let f: (As, ) = (Be, B) be a chain map.

(1) If each differential B admits a left adjoint B" then f admits an initial lh-enhance-

ment fg.

(2) Dually, if each differential a admits a left adjoint ", then f admits a terminal
lh-enhancement fy.

(3) If the chain map f is left diff-adjointable then the two lh-enhancements fg and

fo coincide. In this case we denote this lh-enhancement by f,.

Proof. Follows from the adjunctions of Lemma 8.10 viewed pointwise over
f : Map(A., Bs). |

We now identify the mapping cones constructed from the initial and terminal lh-
enhancement with those constructed in [3, Construction 4.3.3] using the directed pushout
and directed pullback.

Proposition 8.13. Let f: (Ae, o) — (Be, B) be a chain map.

(1) Assume that each a admits a left adjoint and let f, be its terminal lh-enhancement
of Corollary 8.12. Consider the oplax square

A A
o e
/ & oplax

B 5 Ay &, B

obtained by pasting € with the oplax collmlt cone. Thzs square is a directed pushout,
thus yields an identification A;_q H B; = Ai—1 EB;, B;. Under this identifica-
tion the differential of Cone™ ( fy) corepresents the map

(a; 1o = b f) — (cof(a;_ja — b f)a = by Bf). (8.14)
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(2) Dually, if each B admits a left adjoint, then the terms of the cone Cone™ (fg) are
canonically identified with A;_, BQ B; and the differential represents the map
1

(fai — Bbis1) — (faa; = Bfib(fa; — Bbi+1))[1]. (8.15)

Proof. Let fy = (f, hy, €4, Ne) be the terminal lh-enhancement of f. We have to show
that for each test object C : A, the functor

oplaxlim (A (A;_1., €) <2 A(B;,€))
Al
oplax
= A(Ai_1 Bp, Bi€) > A(Ai_1.€) X A(Bi.C) (8.16)
A(A;,C)

is an equivalence of (stable) co-categories. Explicitly, this functor sends a section a;_; —
by’ hq to the composite

bY ficu,
’ LAY AV L A
a;_yo — b hea = b;” fiama ——— b}’ f;,

(where cug: ™o — id is the counit of the adjunction o™ = er), which is precisely its trans-
pose under the adjunction (oar) - (o). Thus the functor (8.16) is an equivalence by

Lemma A.41 applied to

A(Ai1,€) 2% AL ) <18 AeB;. 0.

To compute the map corepresented by the differential, we compute for each

v T oplax
(a;_y = b;") : A(Ai—1 &4, Bi. C)
the matrix product

a—0
@ Sbyol L || =(cof@_ o = bYfi) = cof(©0— bYB)), (817
fi—B
where in the first entry we are taking the cofiber of the map u:a;” |« z bYhga —b—vi“»
by fi. Note that in the matrix representation (8.17) we are omitting the application of the
gluing functor as is customary. If we put this implicit application back in, we obtain the
map
cof(a;”_ja — b f;) — by Bhe = b)Y Bfit10"~ : A(A;, C)

which yields the desired map
COf(aiv_l(X — bl\/fl)()é — blv,Bf,_H . A(.AH_L (3)

after transposing; it is just the equivalence b, fioo >~ b Bf;+1 because a;” e = 0.
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The proof of the dual statement is analogous: We apply A (€, —) to reduce to the case
of oo-categories, where we apply Lemma A.42. Then we only have to perform the dual
matrix computation

a—0 a; cof(aa; — 0) aa;
Lodel ¢ |= ! = ! [1]
fi—B bit1 cof( fia; — Bbit1) fib(fia;i — Bbit1)

to obtain the desired formula. [

Definition 8.18. The external shift of a chain complex (A., «) is defined as
Alnle = (Aezn, a[n]),
where the terms are reindexed and the differentials are shifted internally in the stable co-
categories A (A;, Aij—1).
Construction 8.19. Let f: (Al,®) — (B, B) be a chain map. We define

Cof(f) := Cone™ (fy) and Fib(f) := Cone™ (fp)[—1].
whenever these are defined, i.e., whenever « or 8 has a left adjoint, respectively.

Remark 8.20. Proposition 8.13 essentially states that this definition of Fib( f') and Cof( f')
agrees with the one from [3, Construction 4.3.3] in the case A = SIIf.

Corollary 8.21. Let f: (Ae, @) — (B, B) be a left diff-adjointable chain map. We have
an equivalence

Cof(f) =~ Fib(f)[1].

Proof. Since we assume that the chain map £ is left diff-adjointable, Corollary 8.12 states
that f, and fg are canonically equivalent as lh-enhancements of the chain map f". There-
fore the chain complexes

Cof(f) = Cone™ (fo) and Fib(f)[1] = Cone™ (f3)

are also equivalent. ]

So far we have used that one can express the directed pullback A;_; BQ B; and the
i—1

directed pushout A; _; H B; as a lax limit/colimit of a composite involving horizontal left

adjoints. To prove [3, Proposmon 4.3.12] we need an analogous discussion using verti-
cal right adjoints. This change corresponds to changing the direction of the gluing map
between B, and A, _;. We start by defining the corresponding notion of enhancement.

Definition 8.22. An rv-enhanced morphism F: (A, tte) = (B., Be) of chain complexes

consists of 1-morphisms

fniAn — By and ky: B, - Ap—1
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together with an oplax-lax matrix of the form

ﬂ — f lax oplax
8= T T :Bn+1 527 An — Bn 52)" An—1 (8.23)
0+«

such that the composite map fo — fkf — Bf is an equivalence (yieldinlg the underly-
ax

ing chain map f of F). The resulting chain complex (Cone (F)e := Be O Ae—_1,08) is

called the oplax mapping cone of F'.

The mnemonic “rv” stands for “right-vertical” and reflects the fact that there are
canonical rv-enhancements in the presence of right adjoints in the vertical (= chain map)
direction.

We shall now explain how such rv-enhanced morphisms assemble into an co-category.
For simplicity we will restrict to those, where each f;, admits a right adjoint g, = fnR.

Construction 8.24. Define

n:Z
Map'™ (B, A) := Funzumxzo (Z(fk)"P, [ A(Bn,flm))

m:Z°p

to consist of sections defined on
Z(<k)® = {(m,n) |m <n+k} CZPxZP,

Pictorially, such sections look as follows:

LA W S P W N
la \
A2 g5
e !
Akt glf_l —_— g’f
Jo 1l
Ak gy —— gt —— gk

Denote by
Map™ " (A, B) C Map¥ (B, A)

the full subcategory of those sections (g},) satisfying the following:
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 The lax chain map ge = g0: Bs — A. on the main diagonal is left adjointable, i.e.
each g,: B, — A, has a left adjoint g," and the canonical mate g,— ;"o — Bg," is
an equivalence.

* The section is zero beyond the first off-diagonal, i.e. g, = 0 for r < —2.

Using the dual of Remark 7.13 and by passing from an adjointable lax chain map
ge = g2: By — A, toits adjoint f, := go": Ae — B, (which is an honest chain map), it is
not hard to see that the data of such a section amounts precisely to that of an rv-enhanced
morphism whose underlying chain map f admits pointwise adjoints; the 1-morphisms
kn:Bp — Ap—; are the term g, 1 on the first off-diagonal and the matrices (8.23) amount
precisely to the squares

knt1 — gn

I

00— ky.

Therefore we can view Map™ (A, B) as the co-category of those rv-enhanced mor-
phisms, whose underlying chain map f admits pointwise adjoints. We have the canonical
forgetful functor

Map'®5 (B, ), =0 ———— Map*(B. A)

) )

Map™ (A, B) ——° {left adjointable g}

g

{pointwise right adjointable fo} —— Map(A, B)

(8.25)

sending such an rv-enhanced morphism to its underlying chain map. For each pointwise

adjointable chain map f: A — B we write Map}l’ (A,B) = Map}v_L(A, B) for the fiber

of this dashed functor; it is the co-category of rv-enhancements of f.

Lemma 8.26. The forgetful functor (8.25) is part of a recollement

J

e

Maplf)i (B,A) c s MaprV_L(A,B) s {Poim‘wisjer.r:i‘%‘zt_ilfgointable}7

\_/

!

J

whose gluing functor p computes the fiber of the canonical mate, i.e.,

p(f) = (fibfp™ = fu1"B)ln]),,.

Proof. Similarly to Lemma 7.16 and Corollary 7.17 we compute that the relative left
and right Kan extension along the diagonal Z°? — Z(<0)°P always exist, yielding fully
faithful left and right adjoints j and j’ to the restriction functors |o. Explicitly we have

J(©y =agn — gna1B=J'(2),"
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(the structure map of g,) on the first off-diagonal and zero beyond it. Moreover, the kernel
of the forgetful functor is the full subcategory

{g | Vr # —1:g{ =0} C MapZ{(B, A).
which, similarly to Lemma 7.22 we can identify with Mapl‘lx (B, A) via the assignment

ge (g, [n),-
The desired result follows by passing to adjoints, i.e., ge = fo\. ]

Remark 8.27. The gluing functor for the recollement

/\/\

Maplax (B,A) — Maplalx (B, A)\< ,=0 —>| Mapla"(B,A)

\_/\/

(before restricting the cokernel to the subcategory of left adjointable maps g: B — A) is
nothing but the differential of the lax mapping complex Map!™ (B, A).

As a direct consequence we get the following result, which provides the two canonical
rv-enhancements of a pointwise right adjointable chain map.

Corollary 8.28. Let f: (Ae, ) = (Be, B) be a pointwise right adjointable chain map.
The oo-category Map‘j}" (A, B) has

(1) an initial object f* = j(f) with k% = afR and where the vertical map a —
kf = afRf in the matrix (8.23) is the unit;

(2) a terminal object f# = j'(f) with kB = fRB and where the horizontal map
B < fk = ffRB in the matrix (8.23) is the counit.

(3) These two rv-enhancements coincide if and only if the chain map f is right
adjointable. In this case we denote this rv-enhancement by .

Analogously to Proposition 8.13, we can exhibit the terms of the corresponding oplax
mapping cones Cone™ ( f*) and Cone* ( f#) as a directed pushout or directed pullback,
respectively.

Proposition 8.29. Let f: (A., &) — (B., B) be a chain map and assume that each f;
admits a right adjoint.
(1) The oplax square
Aj ——F——3 Ay
v
fl ke / l
< 1
Bi —— Bi ke Ai1
yields an identification A; 1 LI B = B Gaku i—1. Under this identification, the
differential of Cone™ (f%) agaln corepresents the map (8.14).
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(2) Dually, the terms of the cone Cone* (f#) are canonically identified with
Ai—q BQ B; and the differential again represents the map (8.15).

i—1

Proof. Similar to Proposition 8.13; omitted. [

Corollary 8.30. The chain complexes Cone (f*) and Cone (f#) also yield a con-
struction for Cof(f) and Fib( f)[1], respectively. In particular, Cof(f) and Fib(f)[1]
agree when the chain map f is right adjointable.

Corollary 8.31. When f is both right adjointable and left diff-adjointable, the two canon-
ical oplax mapping cones Cone* ( fi,) and Cone™ (f™V) agree.

Remark 8.32. Throughout this section there was a bias in our discussion, since we implic-
itly treated chain maps as being oplax, i.e. having directed squares of the form

l+1—>.A

fz+ll Z lfz

BH_] T} B;.

This was already apparent in the chosen direction for directed pushouts and directed pull-
backs in Example 3.6 and accounts for the two possible choices we had when it came
to adjointability conditions: having vertical right adjoints or horizontal left adjoints. We
could rewrite this whole section with the opposite conventions and obtain the lax mapping
cone Cone™ (F) associated to a chain map f with suitable enhancements. In the case
where f is left adjointable or right diff-adjointable we could again construct a canonical

lax mapping cone Cone™ (F) whose terms are identified both with B; J]cI[ A;—1 and with

A
'B,‘ X -Ai—1~
B

i—1

9. Universal property of the lax mapping cone

The main reason for introducing the mapping cone of a chain map f: (Ade, @) — (B, B)
between chain complexes in an additive category A is that it yields an explicit model for
the cofiber of f in the stable co-category K (A) of chain complexes up to chain homotopy.
In other words, it satisfies

Mapsc (4 (Cone(f), C)~fib (Map(B, C)—>Map(4,C))={(g: B—C, h:gf ~0)}

naturally in C : K(A).
Already before passing to the stable co-category K (A), one can see a naive version of
this universal property characterizing the mapping cone up to isomorphism in Ch(A) via

Ch(A)(Cone(f),C) = {(g.h) | g: B — C,h:gf ~ 0} 9.1)

naturally in C : Ch(A). In other words: maps out of Cone( f) are chain maps g: B — C
together with a null-homotopy of g f.
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Ultimately, we are of course interested in understanding the categorified analog of the
homotopically meaningful universal property. However, this is currently out of reach since
we do not even know what the correct analog of the stable co-category K(A) should be
and in what sense we are supposed to view the mapping cone as a cofiber. Therefore, we
now instead describe the categorified analog of (9.1) in the hopes that it might lead to a
better understanding of the theory of categorified chain complexes up to homotopy.

Ih
Theorem 9.2. Let F: A = B be an lh-enhanced morphism of chain complexes with
underlying chain map f.

(1) For each chain complex C : Ch(A) there is a natural equivalence of (stable) co-
categories between
e chain maps Cone (F) — C and
e chain maps g: B — C together with an exact lh-enhancement E of gf and a

morphism E — gF of lh-enhancements of g f .

(2) For each chain complex C : Ch(A) there is a natural equivalence of (stable) co-
categories between

e chain maps © — Cone (F)[—1] and
e chain maps g:C — A together with an exact lh-enhancement E of fg and a

morphism Fg — E of lh-enhancements of fg.

Before proving Theorem 9.2, we isolate the special case where F is the initial or
terminal lh-enhancement of f.
Corollary 9.3. Let f: (Al,a) = (B, B) be a chain map.
(1) Assume that all differentials o have left adjoints. Then for each chain complex
C : Ch(A) there is an equivalence of (stable) co-categories between
e chain maps Cof(f) — C and
e chain maps g: B — C together with a lax null-homotopy E of gf .
(2) Assume that all differentials B have left adjoints. Then for each chain complex
C : Ch(A) there is an equivalence of (stable) co-categories between
e chain maps C — Fib(f) and

e chain maps g: C — A together with a lax null-homotopy E of fg.
Proof. We prove the first statement; the second is dual. Let f be the terminal Th-enhance-
ment of f and recall that we have Cof( /) = Cone* (fy). Observe further, that compo-
sition with g sends the lh-enhanced morphism fy to g(fy) =~ (gf)«, Which is thus a

terminal object of Mapg‘f (A, C,). Therefore the claim follows from Theorem 9.2 after
identifying exact lh-enhancements with lax null-homotopies (see Remark 8.8). ]

Proof of Theorem 9.2. Fix an lh-enhanced morphism

F = (fihe.n): (Ae.aa) = (Ba. o)
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and a test chain complex (C, y) in A. We unravel the data encoded in a chain map
(Cone™ (F)e.8) = (Co, ).

using lax-oplax matrices. For each n, we have a map
Mn—1 - lax
Gn = (kn—1 — gn):Cone™ (F), = Ay—1 ® B, — Cy
and an equivalence G, 8, +1 5 Yn+1Gn+1, which we can expand to

o, — 0
(cof (kn—10tn — gn fn) = &nPnt1) = (kno1 = gn) | | 1
Jn — Brt1

— (Vn+1kn = VYnt18n+1) -

Therefore, the map G, 08,+1 —> Yn+1Gn+1 amounts to a cube (read back to front)

kn_1ap s 0
Mn—10n /
gnhn—10p 0 > 0
e
gnsnl J/
&nfn Enln > gnPn+1 ©-4)
\ m
Vn
Yn+1Mn
Yn+1kn > Yn+18n+1
A(‘An,en) < —ohp, A(’Bn+1’en)

in the contravariant Grothendieck construction of — o /,. The fact that this map is an
equivalence amounts to saying that the left and right squares of the cube are biCartesian.
In particular, we can focus on the right face and see an equivalence ¢n+1: gnBn+1 =
Vn+1&n+1, €xhibiting ge: (B, B) — (Ce, ¥) as a chain map.

Consider the functor

E:ZPxZx A = 8t;  (m,n,—) > (A(An, Br) 2o A(An, Cm)),

which is well defined because g: Bo — C, is a chain map.

By direct comparison with the diagram (9.5) below, one verifies that all of the data
(9.4) can then be equivalently encoded as Z(>0) x A!-sections of the mixed (contravari-
ant, contravariant, covariant) Grothendieck construction of E that satisfy

Th
* the restriction to Z(>0) x 0 is the original lh-enhanced morphism F: A = B,
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* the value on each edge (n,n,1) — (n,n,0) is Cartesian,

Ih
* the restriction to Z(>0) x {1} is an exact lh-enhanced morphism E: A = C.

An+1 L> An # An—l

Crn+1 gf < < 0
. ‘ 2 )
Bni , R R Y 0
v
B ~+ n ¢
Cn of —— ko O3
7' | \7,\
5 - )
n f
y N v
B A n
Chn_1 gf
2 /
Bn—l f

Ih
In other words, we have exact lh-enhanced morphisms E: A = € equipped with a map

E — gF which induces an equivalence on the underlying chain maps. This completes the
proof. |

A. Some lemmas from (2-)category theory

A.1. About (op)lax limits of co-categories

We collect here a few useful lemmas regarding various types of 2-categorical limits of
oo-categories or stable co-categories.

Construction A.1. Let S be an oco-category and X: S — Cate an S-indexed diagram
of oo-categories. Let p: [¢ X — S be its (covariant) Grothendieck construction. Assume
that for every arrow f:s — t in S, the functor Xy admits a right adjoint. In this case, the
cocartesian fibration p is also cartesian; it corresponds to the diagram XR: S — Cate,
which is obtained form X by passing to right adjoints. Therefore we obtain a tautological
identification

lax;im X = {sections of p} = oplaxlim XR. (A.2)
Sop
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Corollary A.3. Let f: A — B be a diagram of co-categories and assume that | has a
right adjoint fR. Then there is a natural identification

AXB=BXA
7 IR

given by the formula
(a.b, fa = b) < (a,b,a — fRb).

Proof. This is just the special case S = A! of the identification (A.2). |

Lemma A4. Let A i) < Bhea diagram of co-categories.

(1) Assume that f has a right adjoint fR. Then there is a natural equivalence

AXB~B X
¢ fRg

given by the formula
(a,b, fa X gb) < (a,b,a 5 fRgb).
(2) Assume that g has a left adjoint g“. Then there is a natural equivalence

AXB~A X B
e g-f

given by the formula
(a,b, fa e gh) < (a,b,g" fa 5 b).
Proof. We compute
AR B = A xgp O B~ AXCxeB
§P= el Xey b = ? Xe
~ G}?RA xe B ~ Al0—1} X 4t Cxe B

>~ A{O_)l} X {1} B~B ; .A,
SfRg

where we have used Corollary A.3 in the third step and the explicit construction of the
lax/oplax limit in steps two, four and six. Chasing through the chain of identifications one
immediately obtains the desired formula.

The second statement is analogous, this time using the description

AFB~AxeBXC
e 7

and applying Corollary A.3 in the other direction. ]
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Corollary A.5. Let C be an (00, 2)-category.

(1) For each arrow f: A — B in C with a right adjoint fR, we have natural equiva-
lences

N <« —
AXB~BXA and BUA~ALB.
f SR A f
(2) For each diagram A i) cE Bin C, we have a natural equivalences

AX Br~AXB~B X A
ghf c fRg

assuming that g has a left adjoint or f has a right adjoint.
(3) For each diagram A <i L Bin C, we have a natural equivalences
<~ N —
BUOA~~AUB~A LI B
fe® ¢ gft

assuming that g has a right adjoint or f has a left adjoint.

Each of these equivalences represents (in the case “11”) or corepresents (in the case “x”)
the corresponding equivalences of Corollary A.3 and Lemma A.4.

Proof. All the relevant objects are characterized either by their represented or corepre-
sented functor, hence we may reduce to the case of lax limits and directed pullbacks in
Cateo. This case is established in Corollary A.3 and Lemma A 4. ]

A.2. About adjoints in diagram 2-categories

Let B, C be two (00, 2)-categories.

By FUNi4 (B, C) and FUN1ax (B, C) we denote the (oo, 2)-category of functors B —
C and lax/oplax natural transformations n: F — G between them, which assigns to
each morphism f: B — B’ in B a square

Ff Ff

FB —— FB’ FB —— FB’
nsl A lnB’ or nBl pZ lng’ (A.6)
I ’

respectively. Formally, the functors FUN (B, —) and FUNpjax (BB, —) can be defined
as right adjoints to the lax and oplax Gray tensor products; for example, see [11, Sec-
tion 3] and references therein.

By FUN(B, C) we denote the standard internal hom in the (o0, 2)-category of (oo, 2)-
categories; it can be identified with the wide, locally full subcategory of FUN« (B, C)
and FUNgpi.x (B, C) containing only those 1-morphisms 7, where the squares (A.6)
contain invertible 2-cells.
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. . L

If each component 7 of a lax natural transformation n: F — G has a left adjoint ",

then these assemble to an oplax natural transformation n“: F — G whose oplax naturality
squares

6B %L, B’

nBLl 4 lﬂB/L

/
FB —— FB

are the canonical mates of the squares (A.6). Dually, each oplax transformation 7 has a
canonical mate n® (which is a lax transformation), whenever its components have right
adjoints. Finally, note that each natural transformation 7 can be viewed both as a lax and
as an oplax transformation, thus has both mates 5" (oplax) and n® (lax), provided that all
the required componentwise adjoints exist.

The following result due to Haugseng characterizes the morphisms in FUN(B, C)
which have a adjoints.

Proposition A.7 ([11, Theorem 4.6]). Let n: F — G:B — C be a natural transformation.

(1) As a morphism in FUNx (B, C), the transformation n has a right adjoint if and
only if each component n8 has a right adjoint in C. The right adjoint nR is its
canonical mate, where 1 is viewed as an oplax transformation.

(2) As a morphism in FUNgpx (B, C), the transformation 1 has a left adjoint if and
only if each component n® has a left adjoint in C. The left adjoint 0" is its canon-
ical mate, where 0 is viewed as a lax transformation.

This result also explains our terminology from Definition 7.37.

Corollary A.8. Let n: F — G:B — C be a natural transformation. As a morphism in
FUN(B, C) it has

(1) a right adjoint if and only if the naturality square (A.6) is vertically right ad-
Jjointable,

(2) aleft adjoint if and only if the naturality square (A.6) is vertically left adjointable,

In each case, the left/right adjoint is the corresponding canonical mate.

Proof. Beyond the existence of adjoints, the right/left vertical adjointability condition
states precisely that the 2-cells in the canonical mates 5, n are again invertible, thus pro-
viding a right/left adjoint in FUN(BB, C) and not just in FUNj, (B, C)/FUNypiax (B, C). =

Remark A.9. Let S be an co-category and a: X — Y: § — C a natural transformation
of S-diagrams in C. Assume that each component o has a left/right adjoint S5 and that
all naturality squares of « are vertically left/right adjointable. Corollary A.8 tells us that
in this case the components 5 assemble to a natural transformation 8: Y — X which is in
the diagram category FUN(S, C) a left/right adjoint to «. Assuming that C has lax limits
or colimits of shape S, we can apply the 2-functors

laxcolim: FUN(S,C) - C and laxlim: FUN(S,C) —» C
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to get corresponding adjunctions

laxcolim a: laxcolim X <> laxcolim Y : laxcolim S
N S

and
laxlim s laxlim X <> laxlimY : laxlim S
S N

which in the lax semiadditive case are identified with each other.

B. Recollements of stable co-categories

For the convenience of the reader, we quickly summarize the basic theory of recollements
of stable co-categories, or equivalently that of semiorthogonal decompositions with a glu-
ing functor, as it is used in Sections 7 and 8 without further mention. For comprehensive
treatments, see for instance [17, Appendix A.8] and [7, Section 2].

All co-categories in this section are stable, all functors exact.

Definition B.1. A recollement of stable co-categories is a diagram

q J
A i3 23 g (B2)
~_ ~_ “
q/ j/

of adjunctions ¢ i 4 ¢’ and j 4 p - j’, such that
» the functor i is fully faithful and exhibits A as the kernel of p;

» the functors j and j’ are fully faithful and exhibit B as the kernel of ¢ and of ¢/,
respectively.

In such a recollement, one often views A as a full subcategory of € via i; then B is
viewed either as its left or its right orthogonal complement

LA = {C 1 C C(C,i(—)) = O} =ker(q) ~ B

and

At ={c:C|C(i(-).c) =0} = ker(q') ~ B
depending on whether we view B as embedded in € via j or via j'. Note that while these
two complements are both identified with B, they are not the same subcategory of C,
unless the recollement is trivial, i.e., € = A x B.

Remark B.3. We prefer the formulation of Definition B.1 because it presents the full
datum of a recollement in a way which is nicely symmetric between left and right adjoints.
In this way our definition seemingly differs from Lurie’s (see [17, Definition A.8.1]), who
in a more general left exact setting defines recollements asymmetrically only in terms of
two full subcategories Cy £ Aand € £ AL of €, whose inclusions i and J’ admit left
adjoints L 2 q and L, 2 p, respectively. In the stable setting one then automatically has
the other two adjoints ¢’ and j, see [17, Remark A.8.19] (this can also be deduced from
[7, Proposition 2.3.2]), justifying our more redundant definition.
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One has the following computation.

Lemma B.4. Given a recollement (B.2), the units and counits of the various adjunctions
yield canonical identifications

q'j =fib(j — j') = qj'[-1]

of functors B — A, where the canonical map j — j' can be obtained either by transpos-
ing the counit pj — idg along the adjunction p 1 j' or, equivalently, by transposing the
unit idg — pj’ along the adjunction j 3 p. Note that in the middle there is the implicit

claim that fib(j — j'): B — C factors through i, so that we can view it as a functor
B — A.

Definition B.5. Any of the equivalent functors F: B — A of Lemma B.4 is called the
gluing functor of the recollement (B.2).

Construction B.6. Conversely given a F: B — A, one can construct a canonical recolle-
ment
!
cof (b—Fb)

K)\ —
AMBxAmB (B.7)
\/ F

eva (b—0)

where in the middle we have the lax limit

B%)A:{(b%a)z(b:B,a:A,Fb—>a)},

i.e., the category of sections of the Grothendieck construction for the functor A! — 8¢
classifying F. Manifestly, the gluing functor of the recollement (B.7) is the original func-
tor F: A — B.

The main structural result of the theory is that one can construct recollements starting
with only very minimal amount of data.

Theorem B.8. A recollement (B.2) can be uniquely recovered/constructed from any one
of the following pieces of data:
(1) A fully faithful functor i: A — C which admits a left and a right adjoint. In this
case B is determined as the Verdier quotient C/A.

(2) A functor p: C — B which admits a left and a right adjoint, both fully faithful. In
this case A is determined as the kernel of p.

(3) An arbitrary functor F: B — A. In this case the recollement is determined by
Construction B.6.

Proof. Part (1) is the statement of [7, Proposition 2.3.3] or [17, Proposition A.8.20]. Part
(3) follows from [7, Proposition 2.2.11] or [17, Remark A.8.18]. The only thing to note
there is that Lurie’s convention is dual to ours: instead of reconstructing the recollement
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from the composite F = ¢’ j: B — A, he uses the composite F' = ¢j’: B — A (which
is written L¢|C; in his notation); and instead of considering sections of the coCartesian
Grothendieck construction, he uses the Cartesian one. Passing from one convention to the
other is just a matter of replacing each stable co-category with its opposite.

Part (2) follows from [7, Proposition 2.3.2]: since the inclusion j: B — € admits a right
adjoint, there is a semiorthogonal decomposition (A, B) of € with A = ker(p), which in
turn implies that i: A — € admits a left adjoint. A similar argument shows that i admits a
right adjoint. ]
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