
Doc. Math. (Online first)
DOI 10.4171/DM/1055

© 2025 Deutsche Mathematiker-Vereinigung
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Lagrange’s theorem for a class of finite flat group schemes
over local Artin rings

Emiliano Torti

Abstract. Let R be a local Artin ring with residue field k of positive characteristic. We prove
that every finite flat group scheme over R whose special fiber belongs to a certain explicit class of
non-commutative k-group schemes is killed by its order. This is achieved via a classification result
which relies on the study of the infinitesimal deformation theory for such non-commutative k-group
schemes. The main result answers positively in a new case a question of Grothendieck in SGA 3 on
whether all finite flat group schemes are killed by their order, and improves the currently best known
result due to Schoof.

1. Introduction

Let S be a locally Noetherian base scheme and let G be an S -scheme. Denote by OS
and OG their respective structure sheaves. The S -scheme G is finite and flat if and only
if OG is a locally free OS -module of finite rank. In order to study the relation between
this rank (as a locally constant function) and the order of the elements in G we can focus,
by a standard EGA reduction argument (see Sec. 8.9, Sec. 8.10 and especially Sec. 9.2
in EGA IV Tome 3 in [5]), to the case where S D Spec.R/ for some local Noetherian
ring R and G D Spec.A/ where A is a finite and free R-module of finite rank, say the
positive integer nR. By functoriality, the positive integer nR is the restriction to Spec.R/
of a locally constant function say n defined on S with positive integer values. Such a
function is called the order of the finite flat S -scheme G.

Assume now that G D Spec.A/ over Spec.R/ has the extra structure of an R-group
scheme. Note that in notation and terminology in this article we will say R-group scheme
instead of Spec.R/-group scheme. The category of affine R-group schemes is anti-equiv-
alent to the category of commutative Hopf R-algebras. This implies that A has a natural
structure of Hopf algebra over R. Denote by n be the order of G D Spec.A/ over R. We
say thatG is killed by its order if the multiplication-by-nmorphism Œn� WG!G is the zero
morphism ofR-group schemes. This is equivalent to saying that for the induced morphism
of Hopf R-algebras Œn� W A! A˝n! A (obtained via a composition of the diagonal map
and the multiplication map on G) the kernel Ker.Œn�/ contains the augmentation ideal
I D Ker." W A! R/ where " denotes the unit section of G.
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Around the 1960s, Grothendieck asked if every finite flat group scheme over any base
scheme is killed by its order (see [1, SGA 3, Exp. VIII, Rem. 7.3.1], see also [15, p. 145]
and the survey article [12]). This is the generalization in the context of finite flat group
schemes of what is well known in abstract group theory, i.e., if G is a finite group of order
n then for all g 2G we have gn D eG . Note that strictly speaking this fact is an immediate
consequence of Lagrange’s theorem, which has indeed been generalized in the context of
finite flat group schemes (see, for example, [13]). We clarify this in the hope that the title
of the article will be interpreted properly.

Grothendieck’s question has been positively answered in many important cases. When
the group scheme G is commutative, this has been proven by Deligne around 1970. The
proof has not been published by Deligne himself but it has been reproduced many times
in the literature (see, for example, [16, Sec. 1], [15, Sec. 3.8] and Sec. 3.3 in J. Stix’s
lecture notes [14]). When the base scheme is the spectrum of a field, or more generally is
a reduced scheme, this has been proven by Grothendieck in [3, SGA 3, Exp. VII, Sec. 8]
(see also [11, Cor. 2.2]).

When studying Grothendieck’s question for finite flat group schemes over a local
Noetherian ring R, it is very useful to notice that it is possible to make a further reduction.
First, by Krull’s intersection theorem, we deduce that the answer is positive if and only
if it holds for all local Artin quotients of R, i.e., we can assume without loss of gener-
ality that R is a local Artin ring (see also [11]). This simplification is known to be very
useful as it opens up the possibility of proceeding by induction on the length of R, as it
will be done in this article. Moreover, it is clear that the problem of understanding when a
finite flat group scheme G over R is killed by its order can be studied up to faithfully flat
extensions of R. Thanks to [4, EGA 3, Tome 1, Prop. 10.3.1], we know that there exists a
faithfully flat local extension of R such that its residue field k is algebraically closed. This
allows one to do a final reduction and assume that the residue field k of characteristic p is
algebraically closed and that R is a strictly Henselian ring.

Coming back to the state of art on Grothendieck’s question, the best known result in
the general case is due to Schoof (see [11]).

Theorem 1.1 (Schoof, 2001). Let p be a prime and let R be a local Artin ring with
maximal ideal mR and with residue field k of positive characteristic p. Assume that m

p
RD

pmR D 0, then any finite flat group scheme G over R is killed by its order.

The aim of this article is to extend the above result to a certain class of finite flat group
schemes without any restriction on the length ofR (i.e., without the hypothesis m

p
RDpmR

D 0). This is achieved by proving a complete classification result (of independent interest
from Grothendieck’s question) for all the finite flat deformations of the considered family.

Now, we briefly recall Schoof’s strategy for the proof of Theorem 1.1. After reducing
the problem to assuming that R is strictly Henselian and k is an algebraically closed field
of characteristic p, Theorem 1.1 is proven by discussing separately two cases depending
on whether the base change G ˝R k of G from R to its residue field k (which we assume
is a k-group scheme of order pmC1) is killed or not by pm.
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Schoof proceeds by showing first that under the strong hypothesis on the length of R,
the groupsG whose base changeG ˝R k is already killed by pm are killed by their order.
The proof continues by showing that G ˝R k is not killed by pm if and only if G ˝R k
is isomorphic to �pm=k or to the matrix k-group scheme

G1 D

�
1 p̨

0 �pm

�
D

²�
1 x

0 y

�
W xp D 0; yp

m

D 0

³
;

endowed with the usual matrix multiplication. Finally, Schoof concludes by showing that
all deformations of G1 and �pm for some positive integer m are killed by their order. It is
interesting to remark that groups such as G1 are historically very important in the study
of finite flat group schemes. Indeed, for example when m D 1, the existence of the non-
commutative k-group scheme G1 of order p2 reflects the existence of a non-trivial action
of �p on p̨ (which are both commutative groups of order p). This phenomenon does not
have any analogue in the classical theory of finite abstract groups, where every group of
order p2 is commutative.

Note that the group G1 is denoted G0 in [11] but it will be clear soon enough why we
adopt this new notation and why it is not an explicit attempt to confuse the reader.

Now, since finite flat deformations of �pm over local Artin rings R are well known to
be trivial (as we will see later on), Schoof’s strategy is essentially reduced to the following
result for which no restrictions are needed on the length of the local Artin ring R.

Theorem 1.2 (Schoof, 2001). Let p be a prime and let R be a local Artin ring of residue
field k of positive characteristic p. Any finite flat R-group scheme G such that G ˝R k Š
G1 is killed by its order.

We define now a certain family of finite flat group schemes G� over k where � 2
¹1; : : : ; pm � 1º and which interpolates G1 D

� 1 p̨

0 �pm

�
exactly when � D 1.

LetG be any finite flat multiplicative group scheme over k acting on p̨ , i.e., equipped
with a non-trivial morphism ' W G ! Autk. p̨/ Š Gm. Then there exists a unique exten-
sion ofG by p̨ , i.e., Ext1'.G; p̨/Š 0 (see [2, Chap. 3, Cor. 6.4]). This is a consequence of
the fact that group extensions can be embedded in the group of extensions of fpqc sheaves
(see [2, Rem. 2.5]) and such a group is trivial under the assumption that k is perfect. More
generally, this holds when the base scheme is the spectrum of a small k-ring R (in the
sense of Demazure and Gabriel, see [2]) such that R=Rp D 0. For more details on the
relation between affine group schemes and fpqc sheaves we refer the reader to the nice
summary in [14], and to SGA 1, Exp. VI for a more in depth treatment (see, for example,
[6, Sec. 6]).

TakingG D �pm we know that ' is the restriction to �pm of the standard action of Gm

on Ga which corresponds uniquely to an element � 2 ¹1; : : : ; pm � 1º. In more precise
terms, for every � 2 ¹1; : : : ; pm � 1º there is a unique finite flat k-group scheme G�
corresponding to the unique split exact sequence 0! p̨ ! G� ! �pm ! 0. In other
words, the k-group scheme G� is the semi-direct product p̨ Ì� �pm where the subscript
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� indicates exactly the action of �pm which we are using to build the semi-direct product.
To be completely explicit, we have the following.

Definition 1.1. For � 2 ¹1; : : : ; pm � 1º, let G� be the k-group scheme given by:

G� D Spec
�
kŒx; y��

.xp; yp
m

/

�
with group law:

kŒx; y�=.xp; yp
m

/! kŒx; y�=.xp; yp
m

/˝k kŒx; y�=.x
p; yp

m

/;

x 7! .1C y/� ˝ x C x ˝ 1;

y 7! y ˝ 1C 1˝ y C y ˝ y:

More concisely, we adopt the notation .x; y/ ı .x0; y0/D..1Cy/�x0Cx; yCy0Cyy0/
for the group law inG between generic elements hD .x;y/ and h0D .x0;y0/. It is straight-
forward to verify that when � D 1 one gets exactly the group G1 described above which
appears in [11].

We show thatG� is a finite, flat, non-commutative group scheme of order pmC1 whose
isomorphism class only depend on the p-adic valuation of �, and that G� is not killed by
pm if and only if � is a unit (see Lemma 2.1). Hence, taking a generic � puts us outside
of the range of Schoof’s theorem (Theorem 1.2). The fact that � is not in general a unit
presents many subtle challenges which do not allow us to simply extend the proof of
Schoof and force us to find a new and different strategy, especially when one wants to
determine explicitly the R-scheme theoretical structure of a general deformation of G�.
However, it is possible to find a way to extend Schoof’s result without restriction on R
and obtain the following.

Theorem 1.3. Let R be a local Artin ring of positive residue characteristic p and let
� 2 ¹1; : : : ; pm�1º. Let G be a finite flat deformation over R of the k-group scheme G�,
then G is killed by its order.

This result constitutes a positive answer in a new case to Grothendieck’s question on
whether all finite flat group schemes over any base scheme are killed by their order. The
above theorem is a direct consequence of the complete classification of all the deforma-
tions of the non-commutative k-group scheme G�. On a side note, we mention that one
could also consider the case of �D 0, which corresponds to the case of the k-group scheme
G0 D p̨ ��pm . However, while it is possible to use the techniques in this article to show
that the deformations of G0 in characteristic p are also killed by their order, this still
leaves the problem open. Indeed, contrary to the case when � 6D 0 (see Theorem 4.1), the
k-group scheme G0 admits deformations in characteristic zero (because p̨ does) which a
priori do not have a clear R-schematic description. We hope to come back to this problem
later on.

Going back to our original question, the study of the deformation problem forG� with
� 2 ¹1; : : : ; pmº will allow us to prove the following complete and explicit classification.



Lagrange’s theorem for a class of finite flat group schemes over local Artin rings 5

Theorem 1.4. Let p be a prime and let R be a local Artin ring of perfect residue field
k of positive characteristic p. Let G be a deformation over R of the k-group scheme
G� Š p̨ Ì� �pm with parameter � 2 ¹1; : : : ; pm � 1º.

Then the characteristic of R is p and we have the following classification:

(i) if vp.�/ 6D m � 1, the deformations of G� over R are trivial, i.e.,

G Š . p̨ Ì� �pm/ �Spec.k/ Spec.R/I

(ii) if vp.�/Dm� 1, the deformations ofGpm�1 overR form a 1-dimensional family
(over k) of non-commutative finite flat R-group schemes of order pmC1.

Moreover, in (ii), there is a unique a 2 k such that we have an isomorphism:

G Š zHa as R-group schemes;

where zHa Š Spec.RŒx; y�=.xp; yp
m
// is endowed with the group law

x 7! .1C y/p
m�1

˝ x C x ˝ 1C a�Wp.x ˝ 1; 1˝ x/;

y 7! y ˝ 1C 1˝ y C y ˝ y

for the polynomial Wp.x; x0/ D
.xCx0/p�xp�x0p

p
.

Remark 1.1. Note that the above result extends to all � 2 ¹1; pm � 1º the main result in
[11, Prop. 3.3] where the specific case vp.�/ D 0 is treated. Moreover, for all �, Theo-
rem 4.1 ensures us that all deformations of G� are trivial over R rather than potentially
trivial after base change to a faithful flat extension as shown in [11, Prop. 3.3] in the
specific case vp.�/ D 0.

Remark 1.2. Note that the groups zHa for a 2 k are isomorphic to the semi-direct product
Ha Ì �pm where Ha is the deformation of p̨ as described by Proposition 4.1, where the
action of �pm on Ha is the one corresponding to � D pm�1.

In the first section after the introduction, we prove some useful properties concerning
the groups G�, and in the second section we state and prove Theorem 4.1 via the study of
the deformation problem for the k-group schemesG�. We conclude the second section by
stating and proving Theorem 1.3.

Notation. For a prime number p, the letter k will denote a perfect field of characteristic
p and by R we will denote a local Artin ring of residue field k. We denote by p̨ the finite
group scheme over k of order p given by Spec.kŒx�=.xp// with group law x 7! x ˝ 1C

1 ˝ x. The base change of an R-group scheme via an R-algebra morphism R ! S is
usually denoted G �Spec.R/ Spec.S/ but sometimes more concisely we adopt the notation
G ˝R S , or simply G ˝ S . For a finite flat group G over R, according to [2], we denote
by Lie.G/ the Lie group scheme attached to G and by !G˝k the module of differentials
of G ˝ k. By Modk.�; �/, we denote the set of homomorphisms of k-modules and by
GrR.�; �/, the set of homomorphisms of group schemes over a base ring R. For all the rest
we adopt standard notation, unless explicitly specified, which agrees with [11].
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2. The family of finite flat group schemes G� over k

In this short section, we summarize the main properties of the familyG� of finite flat group
schemes over a perfect field k of characteristic p. First, note that the k-group scheme
G� has order pmC1 and it is killed by its order. This can be checked either by a direct
computation or by using the well-known fact that any finite flat group scheme over a field
is killed by its order (see, for example, [3, SGA 3, Exp. VIIA, Prop. 8.5]). The family of
k-group schemes G� also satisfies the following useful property.

Lemma 2.1. The k-group scheme G� (of order pmC1) is killed by pm if and only if
v WD vp.�/ � 1.

Proof. We prove first the “if” part. We recall that the group operation onG� is as follows:

.x; y/ ıG� .x
0; y0/ D

�
x0.1C y/� C x; y C y0 C yy0

�
:

By induction, it is straightforward to check that for all h 2 Z�0 we have that:

Œph�.x; y/ D

�
x

ph�1X
iD0

.1C y/�i ; .1C y/p
h

� 1

�
Proving that pm kills G� means to prove that Œpm�.x; y/ D .0; 0/ which boils down to
prove that:

pm�1X
iD0

.1C y/�i D 0

in the ring kŒy�=.yp
m
/, because it is clear that .1 C y/p

m
� 1 D 0. Note first that the

positive integer m � v is the minimal positive integer h such that .1 C y/�p
h
D 1. For

r � s positive integers denote

a.r; s/ D

sX
iDr

.1C y/�i :

The claim is to prove that a.0; pm � 1/ D 0. Recall that v WD vp.�/. We have:

a.0; pm � 1/ D a.0; pm�v � 1/C a.pm�v; 2pm�v � 1/

C � � � C a
�
.pv � 1/pm�v; pvpm�v � 1

�
D a.0; pm�v � 1/C .1C y/�p

m�v

a.0; pm�v � 1/

C � � � C .1C y/�.p
v�1/pm�va.0; pm�v � 1/

D pva.0; pm�v � 1/ D 0

where the last equality holds because v � 1 and k is of characteristic p.
Now we prove the “only if” part. Assume by contradiction that Œpm�.x; y/ D .0; 0/,

i.e., that pm kills G� (where vp.�/ D 0, i.e., � is a unit). Since  � W �pm ! �pm such
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that  �.y/ D .1 C y/� � 1 is an isomorphism, we have that
Ppm�1
iD0 .1 C y/�i D 0 if

and only if
Ppm�1
iD0 .1 C y/i D 0. Denote by f .y/ WD

Ppm�1
iD0 .1 C y/i . We have that

f .0/ D 0 and that the degree deg.f / D pm�1. However, as k-vector space we have that
dimk.kŒy�=.y

pm//D pm so there cannot be any non-trivial zero linear combination of the
standard basis and this gives the desired contradiction.

Lemma 2.2. We have that G� Š G� if and only if vp.�/ D vp.�/.

Proof. Let u be a positive integer (strictly smaller than pm) such that vp.u/ D 0. We
have an isomorphism of finite flat R-group schemes  u W �pm ! �pm such that  u.y/ D
.1C y/u � 1, where y is a chosen variable parametrizing �pm (which is endowed with the
group law y! y˝ 1C 1˝ yC y˝ y). Pick � and � WD u�, so we have vp.�/D vp.�/.
Let '� and '� denote the two actions of �pm corresponding respectively to the integers �
and �. Then a direct computation shows that we have the following commutative diagram:

�pm � p̨

�pm � p̨ p̨

'� u�Id

'�

where  u � Id is an isomorphism. Via the isomorphism  u � Id, we have that

Ext�.�pm ; p̨/ Š Ext�.�pm ; p̨/ Š 0

(see, for example, [2, Cor. 6.4]). In particular, there is a unique extension which implies
that G� Š G�. On the other hand, if we have such an isomorphism it is straightforward to
conclude after comparing the group laws of G� and G�.

3. Adjoint representation and infinitesimal deformations

In this section, we recall the notion of adjoint representation for a finite flat group scheme
and we recall some useful results concerning the description of its infinitesimal deforma-
tions.

We start by introducing the cohomology of a linear representation of finite flat group
schemes (in terms of Hochschild cohomology) which will play a central role later on. Con-
sider the following general situation. Let R be a sufficiently nice ring, e.g., it is enough to
take the class of “models” in the sense of Demazure and Gabriel (see the beginning of [2]).
These rings form a full subcategory of the category of rings which is the subcategory of
U -small rings where U is a certain Grothendieck universe.

LetH be a finite, flat group scheme overR and let V be a projectiveR-module of finite
type. Denote by GL.V / the R-group functor sending each R-algebra S to GL.V ˝RS/
(where GL is the usual general linear group). A linear representation ofG in V is a natural
transformation � W G! GL.V /. Equivalently, writing G D Spec.A/ for the R-Hopf alge-
bra A, the morphism � corresponds to a R-linear map�� W V ! V ˝R A such that for all
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v 2 V we have that��.v/D �.g0/vA 2 V ˝R A (here vA D v˝R 1A) where g0 2 G.A/
is the element corresponding to the identity map on A. Of course, the map�� also reflects
other functorial relations corresponding to the fact that A is a R-Hopf algebra. The point
of view of considering �� instead of � is useful as it allows explicit computations as we
will see later on. Now, starting from an R-module V , we denote by Va the commutative
R-group functor on the category of R-algebras sending S 7! Va.S/ D V ˝R S .

For all positive integers n, we define the n-th cohomology group

Hn.G; V / WD Hn
Hoc.G; Va/

where H�Hoc.G; Va/ denotes the Hochschild cohomology of the G-module Va. An impor-
tant point is that the groupsHn.G;V / depend only on the action ofG on V . To be precise,
there exists a complex C �.G; V / where C n.G; V / D V ˝R A � � � ˝R A (n-times ˝RA)
whose boundary maps depend only on �� and such that Hn.G; V / Š Hn.C n.G; V //.
For more information on this, we refer the reader to the book of Demazure and Gabriel
(see [2, Chap. 2, Sec. 3]).

One important tool that we need for studying deformations of a finite flat group scheme
is the adjoint representation. As we will see later on, such special representation plays a
central role in the description of the group structures which can be attached to a certain
deformation. Let R."/ be the R-algebra of dual R-numbers, i.e., RŒT �=.T 2/. Denote by
p WR."/!R the projection which sends p.1/D 1 and p."/D 0. The Lie group of a finite
flat group scheme G over R is defined as Lie.G/.R/ D Ker.p W G.R."//! G.R//. The
group G acts functorially on Lie.G/ in the following way, called adjoint representation
of G:

AdG W G.R/! GL
�

Lie.G/.R/
�

g 7!
�
x 7! i.g/xi.g/�1

�
where i W G.R/! G.R."// is induced by the injection i W R ,! R."/ such that i.1/ D 1.

We recall that there are two compatible operations on Lie.G/.R/ byR andG.R/. Now,
we have a canonical isomorphism as R-modules (see, for example, [2, Chap. II, Sec. 4,
Cor. 3.6]) Lie.G/.R/ Š Da.!G˝k/.R/ Š Modk.!G˝k ; R/. Moreover, since G is finite
flat we have that such an R-module is also canonically isomorphic to Modk.IG=I 2G ; R/
where IG is the augmentation ideal of G. Using the additive notation for the elements of
the Lie group of G (namely x D e"x), we have that the explicit adjoint representation as
R-module:

AdG W G.R/! GL
�

Modk.IG=I 2G ; R/
�

is determined by the formula

ge"f g�1 D e"AdG.g/f

for all g 2 G.R/ and all f 2Modk.IG=I 2G ; R/. We denote with Vad DModk.IG=I 2G ; R/
the adjoint representation of G.
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Now, we introduce the connection between the adjoint representation introduced above
and the deformation theory of the group schemeG. The first result deals with deformations
of group laws (this is a specialization of [3, SGA 3, Exp. III, Thm. 3.5]).

Theorem 3.1. Let S be a scheme and let I and J be two quasi-coherent ideals such that
J � I and I � J D 0 defining respectively closed sub-schemes S0 and SJ .

Let X be a finite flat S -scheme and denote by XJ and X0 the S -subschemes of X
obtained by base change via natural projections modulo the ideals I and J . Assume that
XJ has the structure of S -group scheme and denote by L0 the commutative S0-group
functor given by the derivations of X0=S0, i.e.,

HomS0.�; L0/ WD HomO�.!
1
X0=S0

˝OS0
O�; J ˝OS0

O�/:

The S0-group functorL0 acts onX0 via its adjoint representation. Moreover, the existence
of a structure of S -group scheme on X is equivalent to the following two conditions:

(i) there exists a S -scheme morphism P W X � X ! X which induces modulo J
the group law PJ of XJ ,

(ii) a certain obstruction class c.PJ / 2H 3.X0;L0/ (corresponding to the associa-
tivity property which P has to satisfy) is zero.

In addition, if the conditions .i/; .i i/ are both satisfied, the setE of group laws ofX (mod-
ulo S -automorphisms ofX ) inducing the group lawPJ onXJ is a principal homogeneous
space for the abelian group H 2.X0; L0/.

The proof of this result is particularly useful as it allows explicit computations. Indeed,
we now briefly recall how the second cohomology group of the adjoint representation
acts on the set of group laws. As it will be clear later on, this will allow us to classify
certain group structures. We translate the above theorem with the terminology adopted in
this article. Let E be the set of R-automorphisms orbits of group laws P on a finite flat
group scheme G defined over R, such that after reducing modulo the ideal J we have
that P coincides exactly with the group law of G ˝ R=JR over R=JR. Let I D m be
the maximal ideal of the local Artin ring R of residue field k. By the above result, we
know that E is a principal homogeneous space for the abelian group H 2.Gk ; VAd/ where
VAd is the k-adjoint representation of Gk . Note that for this fact we are using that the
groups involved are finite and flat. Denote the action of an element ı 2 H 2.Gk ; VAd/ on
an element � 2 E by ı � �. Now, in order to make computations explicit we consider the
action of H 2.G=k; VAd/ on E on points. Set a coefficient ring, say the R-algebra S . We
have that for all g; g0 2 G.S/ and for all �;�0 2 E.S/ we have that:

�0.g; g0/ D ı.�; �0/.g0; g
0
0/ � �.g; g

0/ D �.g; g0/CDı.�;�0/.g0;g 00/ 2 G.S/

D HomR-Alg.A; S/

where the derivation Dı.�;�0/.g0;g 00/ is the derivation associated to the image of .g0; g00/
via the 2-cocycle ı.�; �0/ 2 H 2.Gk ; VAd/ which is the one corresponding to the couple
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.�; �0/. Note that we are using that E is a principal homogeneous space, i.e., the action
of the abelian group H 2.Gk ; VAd/ is free and transitive which grant the existence and
unicity of ı as a function of � and �0. Moreover, as a k-module homomorphism, the
image of Dı.�;�0/.g0;g 00/ is contained in the ideal .�/ in R. This is a fundamental point
which ensures that the R-algebra homomorphism determined by �.g; g0/ plus the R-
module homomorphism Dı.�;�0/.g0;g 00/ is still an R-algebra homomorphism.

The second and final result that we need concerns lifts of group morphisms and allows
us to transport group structures via infinitesimal deformations. To be precise, we have the
following (this is specialization of [3, SGA 3, Exp. III, Thm. 2.1]).

Theorem 3.2. Let S be a scheme and let I and J be two quasi-coherent ideals such that
J � I and I � J D 0 defining respectively closed sub-schemes S0 and SJ .

Consider the following:

(i) X an S -group scheme,

(ii) L0 the commutative S0-group scheme given by the derivations of X0=S0, i.e.,

HomS0.�; L0/ WD HomO�.!
1
X0=S0

˝OS0
O�; J ˝OS0

O�/;

(iii) Y a flat S -group scheme and fJ W YJ ! XJ a morphism of SJ -group schemes.

Then we have that fJ lifts to a S -group scheme morphism f W Y ! X if and only if the
following two statements hold:

(i) fJ lifts to a S -scheme morphism f W Y ! X ,

(ii) a certain obstruction class c.fJ / 2 H 2.Y0; L0/ is zero.

4. Classification of the deformations of G�

In this section, we study the problem of classifying as explicitly as possible all the defor-
mations of the groups G�. Deformation theory for general finite flat group schemes is
a relatively complicated problem in the sense that the deformation functor is not always
representable. In the case of deformations of commutative groups, the problem has been
solved by Oort and Mumford in a positive way (see [9]). For example, we mention now a
useful result which will be used later on and it concerns the classification of finite flat R-
group schemes of order a prime p. To be precise, Oort and Tate have proven the following
(see [16] or [8]).

Proposition 4.1. Let p be a prime. There exists a polynomialWp 2 ZpŒx; y� such that for
every R complete local Noetherian ring of residue characteristic p and for any finite flat
group schemeG overR of order p, we have thatGD Spec.A/whereADRŒ��=.�p � a�/
with group operation given by:

� 7! �1 C �2 C bWp.�1; �2/

for some a; b 2 R such that ab D p 2 R.
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This result is a fundamental step in deformation theory of finite flat group schemes
in order to understand how complicated deformations might be in relation to possible
necessary ramification of the base ring (here represented by the relation ab D p in R). In
particular, the above result describes all the possible deformations of the finite flat group
scheme p̨ . As the k-group schemes in the family G� are non-commutative extra care is
needed. We are ready now to present the first main result of the section.

Theorem 4.1. Let p be a prime and let R be a local Artin ring of perfect residue field
k of positive characteristic p. Let G be a deformation over R of the k-group scheme
G� Š p̨ Ì� �pm with parameter � 2 ¹1; : : : ; pm � 1º.

Then the characteristic of R is p and we have the following classification:

(i) if vp.�/ 6D m � 1, the deformations of G� over R are trivial, i.e.,

G Š . p̨ Ì� �pm/ �Spec.k/ Spec.R/I

(ii) if vp.�/Dm� 1, the deformations ofGpm�1 overR form a 1-dimensional family
(over k) of non-commutative finite flat R-group schemes of order pmC1.

Moreover, in (ii), there is a unique a 2 k such that we have an isomorphism:

G Š zHa as R-group schemes;

where zHa Š Spec.RŒx; y�=.xp; yp
m
// is endowed with the group law

x 7! .1C y/p
m�1

˝ x C x ˝ 1C a�Wp.x ˝ 1; 1˝ x/;

y 7! y ˝ 1C 1˝ y C y ˝ y:

for the polynomial Wp.x; x0/ D
.xCx0/p�xp�x0p

p
.

We now proceed in proving the above result in several different steps. The strategy is
to proceed by induction on the length of R. When the length of R is 1, everything follows
by observing that one can take R D k. Now, assume that we are under the induction
hypothesis and let � 2 Ann.mR/. We have that the length of R=�R is strictly smaller
than the one of R, so we can apply the inductive hypothesis. First, this implies that the
characteristic of R=�R is p, hence there exists an element 
 2 R such that p D 
� . Now,
the deformation G over R of G� can be described explicitly (scheme-theoretically) by
polynomials f and g inside RŒx; y� such that, writing G D Spec.A/,

A Š RŒx; y���
xp � �f .x; y/; yp

m

� �g.x; y/
�:

Now, the Hopf R-algebra structure on A is given by the group law:

.x; y/ ıG .x
0; y0/D

�
x0.1Cy/�CxC�h1.x; x

0; y; y0/; yCy0Cyy0C�h2.x; x
0; y; y0/

�
;

for certain polynomials h1 and h2 in RŒx; x0; y; y0�=.xp; x0p; yp
m
; y0p

m
/.
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We first prove that the characteristic of R is p, i.e., every deformation of G� lives
in positive characteristic p. Consider two points h D .x; y/ and h0 D .x0; y0/ in G and
impose that h ıG h0 is still an element inG to deduce relations concerning the polynomials
f; g; h1 and h2.

The following conditions have to hold:´�
x0.1C y/� C x C �h1

�p
� �f

�
x0.1C y/� C x C �h1; y C y

0
C yy0 C �h2

�
D 0;

.y C y0 C yy0 C �h2/
pm
� �g

�
x0.1C y/� C x C �h1; y C y

0
C yy0 C �h2

�
D 0:

Since �2 D 0 and since R=�R has characteristic p we have that:´
.x0.1C y/� C x/p � �f .x0.1C y/� C x; y C y0 C yy0/ D 0;

.y C y0 C yy0/p
m

� �g.x0.1C y/� C x; y C y0 C yy0/ D 0

because �f .z C �h1; z0 C �h2/ D �f .z; z0/. Now, since h and h0 belong to G we have
that xp � �f .x;y/D x0p � �f .x0; y0/D 0 and focusing on the first equation in the above
system we have:

x0
p
.1C y/�p C

p�1X
kD1

�
p

k

��
x0.1C y/�

�k
xp�k

C xp � �f
�
x0.1C y/� C x; y C y0 C yy0

�
D 0

so we deduce that:

�f .x0; y0/.1C y/�p C
�
x0.1C y/� C x

�p
� x0

p
.1C y/�p � xp

C �f .x; y/ � �f
�
x0.1C y/� C x; y C y0 C yy0

�
D 0:

Denoting by Wp.x; x0/ D
.xCx0/p�xp�x0

p

p
, the expression becomes:

�
�

Wp

�
x; x0.1C y/�

�
� f

�
x0.1C y/� C x; y C y C yy0

�
C f .x; y/C f .x0; y0/.1C y/�p

�
D 0

imposing y D y0 D 0, we get:

�
�

Wp.x; x

0/ � f .x C x0; 0/C f .x; 0/C f .x0; 0/
�
D 0:

Note that inside the square parenthesis, there is the monomial 
x0xp�1 (coming from the
polynomialWp) and it is the only monomial of that degree because degx.f .x;y//�p� 1.
We deduce that 
 2mR and as a consequence, since �
 D p and since � 2 Ann.mR/ we
deduce that p D 0 in R, i.e., char.R/ D p > 0. This completes the first part of the proof.

Remark 4.1. It is interesting to notice that the above computation still holds when �D 0,
i.e., if we were in a situation where G is a deformation of the k-group scheme G0 Š
p̨ � �pm . However, it is clear that deformations of p̨ � �pm exist also over some ring
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of characteristic 0, e.g. H � �pm where H is a deformation of p̨ (described by Oort and
Tate in [16]) and all groups are taken over a ring R over which p ramifies. Indeed, the
issue is in the assumption that a generic deformation G are only of the form considered
in this article. In other words, a similar conclusion of Theorem 4.1 is false for the case
� D 0.

Taking up again the system of equations of before, and implementing the new infor-
mation that the characteristic of R is p, we have that:´

f
�
x0.1C y/� C x; y C y0 C yy0

�
D f .x; y/C f .x0; y0/.1C y/�p;

g
�
x0.1C y/� C x; y C y0 C yy0

�
D g.x; y/C g.x0; y0/

for the second equation we have used that:

.y C y0 C yy0/p
m

� �g
�
x0.1C y/� C x; y C y0 C yy0

�
D 0

and so

yp
m

C y0
pm
C yp

m

y0
pm
� �g

�
x0.1C y/� C x; y C y0 C yy0

�
D 0

and substituting inside

yp
m

� �g.x; y/ D y0
pm
� �g.x0; y0/ D 0:

In order to understand the underlying R-scheme structure of G, we have to classify all
the possible polynomials f; g 2 RŒx; y�, knowing that the characteristic of R is p. It
might be possible that a direct computational approach allows one to classify f and g
by imposing that the couple f; g has to satisfy that if h and h0 are two generic points in
G then the coordinates of h ıG h0 have also to satisfy the equations xp � �f .x; y/ D
yp

m
� �g.x; y/ D 0. We prefer here to proceed in a more conceptual way.

We know that:

G D Spec
�RŒx; y���

xp � �f .x; y/
�
; yp

m

� �g.x; y/

�
with group law depending on the parameter � 2 ¹1; : : : ; pm � 1º and certain polynomi-
als h1 and h2 in RŒx; x0; y; y0�. Define the vector F.x; y/ D .f .x; y/; g.x; y//T and
xF .x; y/ WD F.x; y/ mod mR. Consider now as usual two generic elements h D .x; y/

and h0 D .x0; y0/ in G�, we have:

xF .h ıG h
0/ D xF

�
.x; y/ ıG� .x

0; y0/
�

D

�
f
�
.x; y/ ıG� .x

0; y0/
�

g
�
.x; y/ ıG� .x

0; y0/
�� mod mR

D

�
f .x; y/C f .x0; y0/.1C y/�p

g.x; y/C g.x0; y0/

�
mod mR

D

�
f .x; y/

g.x; y/

�
C

�
.1C y/�p 0

0 1

��
f .x0; y0/

g.x0; y0/

�
mod mR
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hence we deduce the relation:

xF .h ıG� h
0/ D xF .h/C

�
.1C y/�p 0

0 1

�
xF .h0/:

Define now the k-vector space xV D ke1 ˚ ke2 over which G� acts via:

� W xV ! xV ˝k
kŒx; y��

.xp; yp
m

/

where �.e1/ D e1 ˝ .1C y/�p and �.e2/ D e2.
The relation proven above for xF .x; y/ is equivalent to say that xF is a crossed homo-

morphism from G� to xV and as such, we can identify it with a 1-cocycle for the represen-
tation xV , i.e., xF 2 H 1.G�; xV /.

We recall now that G� Š p̨ Ì� �pm , i.e., it fits into a split exact sequence 0! p̨ !

G�! �pm! 0. The action ofG� on V factors via the quotient �pm . Now, diagonalizable
group schemes, such as �pm , satisfy the following useful property (on which we rely also
later on, so we state it properly).

Proposition 4.2. LetH be a diagonalizable k-group scheme and � WH!GL.V / a linear
representation of H , then for all n > 0 we have that Hn.H; V / D 0.

Proof. See, for example, [2, Chap. II, Sec. 3, Prop. 4.2]. This result holds for any base R
which is a “model” in the sense of [2].

Moreover, we can combine the above result with the following.

Proposition 4.3. Let G be a finite flat k-group scheme and let N be a finite flat normal
subgroup scheme inside G. Let W be any G-module and assume that G=N (which is as
well a finite flat k-group scheme) is diagonalizable. Then for all i � 0 we have isomor-
phisms:

H i .G;W /
Š
�! H i .N;W /G=N :

Proof. This is a consequence of Proposition 4.2 applied to Grothendieck’s generalization
of the Lyndon–Hochschild–Serre spectral sequence. See, for example, [7, Cor. 6.9].

For n 2 N, we recall that the action of G on the cohomology groups Hn.N; W / is
deduced by the action of G on the cocycles C n.N; W / D W ˝ O.N /˝n which comes
from the action of G on N via conjugation and on W via its G-module structure (see,
for example, [7, Sec. 6.7]). Finally, we have that Proposition 4.3 allows us to compute
explicitly.

Proposition 4.4. For � 2 ¹1; : : : ; pm � 1º, we have H 1.G�; xV / D 0.

Proof. First, we recall that the G�-representation xV decomposes as a direct sum L˚Ga

(withLŠGa as k-group schemes) where the action of a generic element gD .x;y/ 2G�
on L is given by the multiplication by .1C y/�p and it is the trivial one on the second
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factor Ga. By Proposition 4.3, we have that:

H 1.G�; xV / Š H
1.G�; L/˚H

1.G�;Ga/ Š H
1. p̨; L/

�pm ˚H 1. p̨;Ga/
�pm :

We have that H 1.Ga;Ga/ Š Grk.Ga;Ga/ is the k-group scheme of endomorphisms of
Ga which is isomorphic to the group ¹p.x/ D

P
k�0 aix

pi with ai 2 kº with the usual
addition of polynomials (see, for example, [2, Chap. 2, Sec. 3.4]). Hence, we have that
any 1-cocycle z W p̨ ! Ga corresponds to a polynomial pz.x/ D azx for some az 2 k
(since xp D 0). A direct computation shows that both actions of �pm on L and the trivial
one on Ga are incompatible with the conjugation on p̨ (which corresponds to sending a
generic element x of p̨ to .1C y/�x). As a consequence, we have thatH 1. p̨; L/

�pm D

H 1. p̨;Ga/
�pm D 0.

We deduce then that xF is a 1-coboundary, or equivalently, there exists .c; d/ 2 k2

such that for every h D .x; y/ 2 G� we have that xF .h/ D �.h/ � .c; d/T � .c; d/T . After
making the representation � explicit, we have that there exists some polynomials z1 and
z2 in RŒx; y� with coefficients in mR such that

F.x; y/ D

�
f .x; y/

g.x; y/

�
D

�
c
�
.1C y/�p � 1

�
C z1

z2

�
:

Since � 2 Ann.mR/, we deduce that �f .x; y/ D c�Œ.1C y/�p � 1� and �g.x; y/ D 0.
Finally, we conclude that the underlying R-scheme structure of the generic deformation
G over R of G� has to have the form:

G D Spec
�
RŒx; y���

xp � c�
�
.1C y/�p � 1

�
; yp

m��:
Note also that (since char.R/ D p) .1C y/�p D 1C y�p if and only if � is a power of p.
Hence, we first simplify a bit the expression c�Œ.1 C y/�p � 1� by using the results in
Section 2. By Lemma 2.2, we have indeed that without loss of generality we can assume
that �Dpv for a certain integer v� 0 and so c�Œ.1C y/�p � 1�D c�yp

vC1
. Summarizing

what we have proven until now, we have that for every deformation G of G� we have the
following isomorphisms of R-schemes:

G Š Spec
�
RŒx; y��

.xp � c�yp
vC1

; yp
m

/

�
for some c 2 k:

Our goal is to prove the following stronger description.

Proposition 4.5. For all � 2 ¹1; : : : ; pm � 1º, we have that every finite flat deformation
G over R of G� is isomorphic as R-scheme to Spec.RŒx; y�=.xp; yp

m
//, i.e., to the base

change G� ˝k R.

Our aim is now to prove that as R-schemes, we have an isomorphism between G and
Spec.RŒx; y�=.xp; yp

m
//, i.e., c D 0. This point of the proof is the most delicate as the

situation is substantially different from the one treated in [11] where vp.�/D 0 and a new
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approach is necessary. Indeed, if vp.�/ D 0, it is possible to directly conclude by a linear
isomorphic substitution after observing that xp � c�Œ.1C y/�p � 1� D .x � !y/p after
suitably extending R finitely flatly by adding an element ! such that !p D c� . However,
when vp.�/ > 1, the situation is much more subtle because such a substitution is not
available. Our first goal is to determine the possible values of the constant c 2 k. SinceG is
an R-group scheme with neutral element .0; 0/ we have that in order for the group axioms
to be satisfied we have that hi .x; y; 0; 0/D hi .0; 0; x0; y0/D 0 for i D 1; 2. The strategy is
to use the inductive hypothesis on R=�R and k to transport certain group structures from
the infinitesimal deformations (i.e., deformations overR=�R where �2 D 0) toG overR.
We recall that, using the additive notation for the elements of the Lie group of G (namely
x D e"x), the explicit adjoint representation as R-module:

AdG W G.R/! GL
�

Modk.IG=I 2G ; R/
�

is determined by the formula

ge"f g�1 D e"AdG.g/f

for all g 2G.R/ and all f 2Modk.IG=I 2G ;R/. Let now consider the case whereG DG�
defined over a finite perfect field k of positive characteristic p. We know that:

G� D Spec
�
kŒx; y��

.xp; yp
m

/

�
with group law given by .x; y/ ıG� .x

0; y0/ D .x0.1C y/� C x; y C y0 C yy0/.
Let g D .x0; y0/ and denote by g�1 D .x00; y00/. The following relations hold:´

.1C y0/�x00 C x0 D 0;

y0 C y00 C y0y00 D 0:

Let f .x; y/ D af x C bf y 2 Modk.IG�=I
2
G�
; R/ where IG� D .x; y/ as an ideal inside

O.G�/. Now, we impose that ge"f g�1 D e"AdG.g/f . In other words, we have to compute
ge"f g�1 D f .g ı .x; y/ ı g�1/ as an element in Modk.IG�=I

2
G�
; R/. We have that:

f
�
.x0; y0/ ı .x; y/ ı .x00; y00/

�
D f

�
.1C y0/�

�
.1C y/�x00 C x

�
C x0; y0 C y C y00 C yy00 C y0.y C y00 C yy00/

�
Now, using the relations between g and g�1 and that we are doing computations modulo
the ideal .x;y/2 inside O.G�/D kŒx;y�.x

p; yp
m
/, we conclude that the above expression

is equal to:

f
�
.1C y0/�x � �x0y; y

�
D f

��
.1C y0/� ��x0

0 1

��
x

y

��
where we used that .1C y/� D 1C �y mod .x; y/2. We deduce finally that the a adjoint
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representation of G� is the representation:

AdG� W G�.R/! GL
�
Modk.IG�=I

2
G�
; R/

�
g D .x; y/ 7!

�
.1C y/� ��x

0 1

�
:

We have now enough information for computing the cohomology of Vad as a G�-module.
To be precise, we have the following.

Proposition 4.6. Let � 2 ¹1; : : : ; pm � 1º and let Vad be the adjoint representation ofG�
over k.

We have that:

H 2.G�; Vad/ D

´
hWpi if vp.�/ D m � 1;

0 otherwiseI

where the class Wp represents the polynomial Wp.x; x0/ D 1
p
Œ.x C x0/p � xp � x0p�.

Proof. When vp.�/ D 0, the claim has been proven by Schoof (see [11, Lem. 3.2]).
Assume now that vp.�/ � 1. It is well known thatH 2. p̨;Ga/Š hWpi (see, for example,
[2, Chap. II, Sec. 3, Cor. 4.8]). By Proposition 4.3, we have that:

H 2.G�; Vad/ Š H
2. p̨; Vad/

�pm Š H 2. p̨; L
0/�pm ˚H 2. p̨;Ga/

�pm ;

where L0 Š Ga (as k-group schemes) has a �pm -module structure given by the action of
�pm sending x to .1C y/�x and where the action of �pm on Ga is the trivial one. It is
straightforward to check how �pm acts on every 2-cocycle ˛2p ! Ga by directly checking
how it acts on the 2-cocycle given by Wp . In order to find the �pm -invariants, we have
to impose that the 2-cocycle Wp is invariant under the simultaneous action of �pm via
conjugation on p̨ and the adjoint representation action on either the first factor L0 or the
second factor Ga. A direct computation shows that only one case is non-trivial. Indeed,
let 
 2 �pm be represented by the variable y. Then considering the trivial action of �pm
on Ga we have:

Wp
�

.x; x0/

�
D Wp

�
.1C y/�x; .1C y/�x0

�
D .1C y/�pWp.x; x

0/:

Hence, we have that H 2. p̨;Ga/
�pm is different from zero if and only if

Wp
�

.x; x0/

�
D Wp.x; x

0/

which happens, by the above computation, if and only if vp.�/ D m� 1 (note that we are
assuming � � 1). We deduce that H 2. p̨; L

0/�pm D 0 and H 2. p̨;Ga/
�pm Š hWpi (if

vp.�/ D m � 1 and 0 otherwise).

As a consequence of Proposition 4.6 and thanks to Theorem 3.1 (see also the discus-
sion following the theorem), we can completely classify all group structures of the generic
deformation of G� by describing explicitly the polynomials h1 and h2. To be precise, we
have the following.
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Lemma 4.1. The polynomials h1 and h2 inRŒx;y;x0; y0� satisfy the following properties:

if vp.�/ 6D m � 1; then h1 D h2 D 0;

if vp.�/ D m � 1; then h1 2
˝
Wp.x; x

0/
˛

and h2 D 0:

Proof. We have that the action of H 2.G�; VAd/ on the principal homogeneous space E
of group laws on G depends only on the derivations evaluated in p̨ by Proposition 4.6. A
direct computation shows that for g D .x;y/ and g0 D .x0; y0/ the morphism �0.g;g

0/ WD

.xC x0;yC y0C yy0/ defines a group law onG, i.e.,�0 2E, and because of Theorem 3.1
any other group law � is uniquely obtained by translations via derivations, i.e., �.g;g0/D
�0.g; g

0/ CD�0;�.g0; g
0
0/ where g0 and g00 are the reductions mod k of g and g0 and

are generic elements of G�. Finally, since the derivation D�0;�.g0; g
0
0/ has image living

in the ideal .�/ and depends only on x and x0, in the only non-zero case (i.e., when
vp.�/ D m � 1) we have that the image of D�0;�.g0; g

0
0/ is exactly a�Wp.x; x0/ for

some a 2 k.

Note that in all cases we have hi .x;0/D hi .0;x0/D 0 for i D 1;2 because of the axiom
for the neutral element. If vp.�/ D v D m � 1, one obtains immediately Proposition 4.5.
Hence, we restrict our attention to the case vp.�/ 6D m � 1. Consider the R-scheme mor-
phism:

' W N WD Spec
�
RŒx�=.xp/

�
,! G D Spec

�
RŒx; y�=

�
xp � c�yp

vC1

; yp
m��

where ' corresponds to the natural projection for y D 0.

Lemma 4.2. For all � 2 ¹1; : : : ; pm � 1º, the R-scheme N has a group law for which
it is a normal R-subgroup scheme of G with the closed immersion given by the R-group
morphism ' and N Š p̨ as R-group schemes.

Proof. By inductive hypothesis, we know that after taking a base change toR=�R, we have
that H ˝ R=�R has the structure of an R=�R-group scheme isomorphic to �pm=R=�R
and ' ˝ R=�R is a R=�R-group scheme homomorphism. The idea now is to use the
results from SGA mentioned above to transport these group structures from the infinitesi-
mal deformations over R=�R to R. Note the fundamental fact that N is a flat R-scheme
of finite type over R.

According to Theorem 3.1, in order to prove that N has the structure of group scheme
we have to verify two statements. First that there exists a R-scheme morphism PN W

N � N ! N which specialize to the group law of p̨ after base change to R=�R and
second, that a certain class c.PN / 2 H 3. p̨=k; VAd/ (corresponding to the associativ-
ity property of PN ) is zero. For the first part, note that G as a R-group scheme has its
group law which can be seen as a R-scheme morphism P W G � G ! G which induces
the usual group law on G� after base changing to R=�R (by inductive hypothesis).
Because of Lemma 4.1, taking the restriction of P to generic elements of N we get that
P..x; 0/; .x0; 0// D .x C x0 C �h1; 0/. Hence, defining PN as the restriction of P to N
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we get a well-defined R-schemes morphism PN W N � N ! N satisfying the required
properties. Now, the class c.PN / 2 H 3. p̨; VAd/ which corresponds to the associativity
property of PN is nothing else than the image of the respective class c.P / 2H 3.G�; VAd/

under the group homomorphism H 3.G�; VAd/! H 3. p̨; VAd/ induced by the inclusion
p̨ ,! G� (because PN is defined as the restriction of P to N � N ). Since P is a group

law, we have that c.P / D 0 which implies that c.PN / D 0. We conclude that N has the
structure of a finite flat group R-scheme. Now, applying Theorem 3.2 to the R-scheme
morphism ' together with the (necessary) induction hypothesis that ' ˝ R=�R is the
closed immersion corresponding to the projection y D 0, we can conclude that ' is also a
closed immersion R-group scheme morphism.

Alternatively, it can be checked by formulas that the R-scheme morphism ' preserves
the group law via a direct computation as everything is explicit. Finally, because the group
law of N is explicit, another direct computation shows that N is a normal R-subgroup
scheme inside G. This concludes the lemma.

Now that we endowed N with a finite flat R-subgroup scheme structure which makes
it normal inside G, which allows us to take the quotient. As this procedure is usually
delicate because the category of finite flat affine group schemes over an arbitrary R is
not an abelian category, we state precisely a result of Grothendieck which grants us the
existence of the quotient ofG byN as a finite flat group scheme overR (see, for example,
[15, Sec. 3] or [14, Sec. 6.3] or [10]):

Theorem 4.2. Let N be a finite flat closed normal subgroup of an affine finite group
scheme G over R. Then the quotient group fpqc sheaf G=N is representable by an affine
finite group scheme H , which coincides with the categorical cokernel for the inclusion
N � G with the natural projection G ! G=N being finite and faithfully flat.

Moreover, ifGD Spec.A/ andN D Spec.A=J / is commutative thenG=N D Spec.B/
where theR-algebraB is described explicitly byBD¹a2A W c.a/�1˝a mod .J˝A/º,
where c denotes the co-multiplication on A.

The fact that the natural projection G ! G=N is finite and faithfully flat implies in
particular thatG is finite flat if and only ifG=N is finite and flat (note that we are assuming
as hypothesis thatN is already finite and flat). Coming back to our case, sinceG is a finite
flat deformation of G� we have that G=N is a finite flat R-group scheme. Moreover, we
have that N D Spec.RŒx�=.xp// with the group law mentioned above is commutative
because it is a finite flat group scheme of prime order (this is a result of Oort and Tate, see,
for example, [16]). Hence, G=N is isomorphic to Spec.B/ where B is the R-subalgebra
of RŒx; y�=.xp � c�yp

vC1
; yp

m
/ such that

B D
°
a 2 RŒx; y���

xp � c�yp
vC1

; yp
m� W c.a/ � 1˝ a mod

�
.y/˝ A

�±
where as usual, the group law of G is determined by c.x/ D .1C y/� ˝ x C x ˝ 1 and
c.y/ D 1˝ y C y ˝ 1C y ˝ y (after Lemma 4.1). It is straightforward to check that B
is theR-subalgebra ofRŒx;y�=.xp � c�yp

vC1
; yp

m
/ generated by the elements xp and y
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with relation xp � c�yp
vC1
D 0. Indeed we have that because the formulas for c holds as

above, the element x does not belong to B but the elements xp and y do (and no smaller
power of x belongs to B). Note also that .xp/2 D 0 because �2 D 0. If c 6D 0, the relation
xp � c�yp

vC1
D 0 prevents the R-algebra B to be free (note that R is local) which would

contradict the fact that Spec.B/ is a finite and flat R-group scheme. This allows us to
conclude directly that c must be zero. Another equivalent way to prove that c D 0 comes
from the deformation theory of �pm . Indeed, the finite flat R-group scheme G=N is a
deformation of �pm , i.e., G=N ˝R k Š �pm=k (because base change of algebraic groups
preserves exactness under flatness hypothesis). However, the k-group scheme �pm does
not admit non-trivial deformations over a local Artin ring R, i.e., we have the following.

Proposition 4.7. Let R be a local Artin ring. Let H be a finite flat R-group scheme such
thatH ˝R k Š �pm , then we have thatH Š �pm=R. In other words, all deformations of
�pm are trivial for all positive integers m.

Proof. This is a direct consequence of the fact that the category of R-group schemes
which are of multiplicative type and finite over R is equivalent to the same category over
R=mRR Š k, and we know that H ˝R k Š �pm is of multiplicative type. This implies
that H and �pm over R have to be isomorphic. See, for example, [1, SGA 3, Exp. X,
Cors. 2.3 and 2.4, Rem. 4.0.1 and Lem. 4.1].

We conclude that we have an isomorphism G=N Š �pm as R-group schemes, which
implies that B Š RŒy�=.yp

m
/ which holds if and only if c D 0. Finally, for all � we have

that:
G Š Spec

�
RŒx; y��

.xp; yp
m

/

�
with group law given for a certain a 2 k by:

.x; y/ ıG .x
0y0/ D

�
.1C y/�x0 C x C a�Wp.x; x

0/; y C y0 C yy0
�
:

This concludes the proof of Proposition 4.5. By Lemma 4.1, we conclude that if vp.�/ 6D
m � 1 there are no non-trivial deformations of G� over R, i.e., G Š G� ˝k R Š p̨ Ì�
�pm which explicitly is the R-scheme RŒx; y�=.xp; yp

m
/ with group structure given by

.x; y/ ıG� .x
0; y0/ D ..1C y/�x0 C x; y C y0 C yy0/.

If vp.�/ D m � 1, we have that the deformations of G� form a 1-dimensional family
zHa (with parameter a 2 k) of non-commutative R-group schemes of order pmC1. We

have that the family of finite flat R-group schemes zHa can be explicitly described as:

zHa Š Spec
�
RŒx; y��

.xp; yp
m

/

�
with group law given by:

.x; y/ ıG .x
0; y0/ D

�
.1C y/p

m

x0 C x C a�Wp.x; x
0/; y C y0 C yy0

�
:

This concludes the proof of Theorem 4.1. Finally, we can apply Theorem 4.1 to the prob-
lem of understanding if any finite flat deformation G over R of G� is killed by its order.
In particular, we conclude with the following.
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Theorem 4.3. Let R be a local Artin ring of positive residue characteristic p. Let G be
a deformation over R of the k-group scheme G� for any � 2 ¹1; : : : ; pm�1º. Then G is
killed by its order.

Proof. By Theorem 4.1, if vp.�/ 6D m � 1, we have that G Š . p̨ Ì� �pm/ �Spec.k/

Spec.R/ over R and we conclude that also G is killed by its order.
Now, assume that vp.�/ D m � 1. By Theorem 4.1, for any deformation G over R of

Gpm�1 there exist a 2 k such that we have thatGŠ zHa. We can perform now computations
as the group law is also explicit in this case. Indeed, given a generic element h D .x; y/ 2
zHa, we have that

Œpm�.x; y/ D

�
x

pm�1X
kD0

.1C y/kp
m�1

; yp
m

�
because Wp.x; x/ D 0 since xp D 0. Since yp

m
D 0 the second component is zero.

Finally, the same exact computation performed in Section 2 can be repeated here which
grants us that also the first component is indeed zero because

Ppm�1

kD0
.1 C y/kp

m�1
D

pm�1
Pp�1

kD0
.1 C y/kp

m�1
D 0 because R is of characteristic p. This proves that Œpm�

kills zHa and in particular we deduce that G is killed by its order. This concludes the proof
of the theorem.
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