
Doc. Math. 31 (2026), 141–195
DOI 10.4171/DM/1040

© 2025 Deutsche Mathematiker-Vereinigung
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Crystalline condition for Ainf-cohomology and
ramification bounds

Pavel Čoupek

Abstract. For a prime p and a smooth proper p-adic formal scheme X over OK where K is a p-
adic field, we study a series of conditions (Crs), s � 0 that partially control the GK -action on the
image of the associated Breuil–Kisin prismatic cohomology R��.X=S/ inside the Ainf-prismatic
cohomology R��.XAinf=Ainf/. The condition (Cr0) is a crystallinity criterion for a Breuil–Kisin–
Fargues GK -module of Gee and Liu, and leads to a proof of crystallinity of Hiét.Xx� ;Qp/ that avoids
the crystalline comparison. Using the higher conditions (Crs), we are able to adapt the strategy of
Caruso and Liu to establish ramification bounds for the mod p representations Hiét.Xx� ;Z=pZ/, for
arbitrarily large e and i . This extends and/or improves existing bounds in various situations.
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1. Introduction

Let k be a perfect field of characteristic p > 0 and K 0 D W.k/Œ1=p� the associated abso-
lutely unramified field. Let K=K 0 be a totally ramified finite extension with ramification
index e, and denote by GK its absolute Galois group. The goal of the present paper is
to provide new bounds for ramification of the mod p representations of GK that arise as
the étale cohomology groups Hiét.Xx�;Z=pZ/ in terms of p, i and e, where X is a smooth
proper p-adic formal scheme over OK (and Xx� is the geometric adic generic fiber). Con-
cretely, let us denote byG�K the �-th ramification group ofGK in the upper numbering (in
the standard convention, e.g. [31]) and G.�/K D G

��1
K . The main result is as follows.
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P. Čoupek 142

Theorem 1.1 (Theorem 5.15). Set
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Then:

(1) The groupG.�/K acts trivially on Hiét.Xx�;Z=pZ/when�>1C e˛Cmax¹ˇ; e
p�1
º.

(2) Denote by L the field xKH whereH is the kernel of theGK-representation � given
by Hiét.Xx�;Z=pZ/. Then

vK.DL=K/ < 1C e˛ C ˇ;

where DL=K denotes the different of the extension L=K and vK denotes the addi-
tive valuation on K normalized so that vK.K�/ D Z.

In particular, unlike in previous results of this type (discussed below), there are no
restrictions on the size of e and i with respect to p.

Remark 1.2. As the constants ˛, ˇ appearing in Theorem 1.1 are quite complicated, let
us draw some non-optimal, but more tractable consequences. The groupG.�/K acts trivially
on Hiét.Xx�;Z=pZ/ when one of the following occurs:

(1) e � p and � > 1C e.blogp.
ip
p�1

/c C 1/C e,

(2) e > p and � > 1C e.blogp.
ie
p�1

/c C 1/C p,1

(3) i D 1 (e, p are arbitrary) and � > 1C e.1C 1
p�1

/.

Let us briefly summarize the history of related results. Questions of this type originate
in Fontaine’s paper [15], where he proved that for a finite flat commutative group scheme�
over OK that is annihilated bypn, G.�/K acts trivially on �. xK/ when �>e.nC1=.p�1//;
this is a key step in his proof that there are no non-trivial abelian schemes over Z. In the
same paper, Fontaine conjectured that general pn-torsion cohomology would follow the
same pattern: given a proper smooth variety X over K with good reduction, G.�/K should
act trivially on Hiét.X xK ;Z=p

nZ/ when � > e.nC i=.p � 1//.
This conjecture has been partially proved by Fontaine himself [17] in the case when

e D nD 1, i < p � 1 and by Abrashkin ([1]; see also [2]) when e D 1, i < p � 1 and n is
arbitrary. Both results make use of Fontaine–Laffaille modules (introduced in [18]), which
parametrize quotients of pairs of GK-stable lattices in crystalline representations with
Hodge–Tate weights in Œ0; i � (such as Hiét.X xK ;Qp/

_). The (duals of the) representations
Hiét.X xK ;Z=p

nZ/ are included among these thanks to a comparison theorem of Fontaine–
Messing [19]. Similarly to the original application, these ramification bounds lead to a
scarcity result for existence of smooth proper Z-schemes.

1Strictly speaking, to obtain this precise form one has to replace .i � 1/e in ˛ from Theorem 1.1 by
ie, and modify ˇ appropriately; one can show that such form of Theorem 1.1 is still valid.



Crystalline condition for Ainf-cohomology and ramification bounds 143

Various extensions to the semistable case subsequently followed. Under the assump-
tion i < p � 1 (and arbitrary e), Hattori proved in [21] a ramification bound for pn-torsion
quotients of lattices in semistable representations with Hodge–Tate weights in the range
Œ0; i �, using (a variant of) Breuil’s filtered .�r ;N /-modules. Thanks to a comparison result
between log-crystalline and étale cohomology by Caruso [8], this results in a ramification
bound for Hiét.X xK ;Z=p

nZ/ when X is proper with semistable reduction, assuming that
ie < p � 1 when n D 1 and .i C 1/e < p � 1 when n � 2.2

These results were further extended by Caruso and Liu in [10] for all pn-torsion
quotients of pairs of semistable lattices with Hodge–Tate weights in Œ0; i �, without any
restriction on i or e. The proof uses the theory of .'; yG/-modules [26], which are objects
suitable for description of lattices in semistable representations. Roughly speaking, a
.'; yG/-module consists of a Breuil–Kisin module M and the datum of an action of the
group yG D Gal.K.�p1 ; �1=p

1

/=K/ on yM DM ˝S;'
yR where yR is a suitable subring

of Fontaine’s period ring Ainf D W.OC[K
/ (and � 2 K is a fixed choice of a uniformizer).

However, an obstacle to applying the results of [10] to the torsion étale cohomology
Hiét.X xK ; Z=pZ/ is that it is not clear when (duals of) such representations come as a
quotient of two semistable lattices with Hodge–Tate weights in Œ0; i �. This is indeed the
case in the situation when e D 1, i < p � 1 and X has good reduction by the aforemen-
tioned Fontaine–Messing theorem, and it was also shown in the case i D 1 (no restriction
on e; p) for X with semistable reduction by Emerton and Gee in [13], but in general the
question seems open.

Nevertheless, the idea of the proof of Theorem 1.1 is to follow the general strategy of
Caruso and Liu. While one does not necessarily have semistable lattices and the associated
.'; yG/-modules to work with, a suitable replacement comes from the recently developed
cohomology theories of Bhatt–Morrow–Scholze and Bhatt–Scholze [4–6]. Concretely, to
a smooth p-adic formal scheme X one can associate the “pn-torsion prismatic cohomolo-
gies”

R��;n.X=S/ D R��.X=S/
L
˝ Z=pnZ;

R��;n.XAinf=Ainf/ D R��.XAinf=Ainf/
L
˝ Z=pnZ;

where R��.XAinf=Ainf/, R��.X=S/ are the prismatic avatars of theAinf- and Breuil–Kisin
cohomologies from [4,5], resp. TakingMBK D Hi

�;1
.X=S/ andMinf D Hi

�;1
.X=Ainf/, Li

and Liu showed in [24] that MBK is a p-torsion Breuil–Kisin module, Minf is a p-torsion
Breuil–Kisin–Fargues GK-module, and that these modules recover the étale cohomol-
ogy group Hiét.Xx�;Z=pZ/ essentially due to the étale comparison theorem for prismatic
cohomology from [6]. The pair .MBK; Minf/ then serves as a suitable replacement of a
.'; yG/-module in our context.

2Recently, in [24] Li and Liu extended Caruso’s result to the range ie < p � 1 regardless of n, for
X=OK proper and smooth (formal) scheme. In view of this, results of [21] should apply in these situations
as well.
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The most significant deviation from the strategy of [10] then stems from the fact that
the pair .MBK;Minf/ obtained this way is “inherently p-torsion”, that is, it does not come
equipped with any apparent lift to analogous objects in characteristic 0. This is not the
case in [10], where all torsion modules ultimately originate from a free .'; yG/-module
.M; yM/. A key technical input in loc. cit. is to establish a partial control on the Galois
action on M inside yM , namely, a condition of the form

8g 2 GK.�1=ps /; 8x 2M W g.x/ � x 2 .Jn;s C p
nAinf/. yM ˝ yR Ainf/: (1.1)

Here Jn;s � Ainf are certain ideals (that are shrinking with growing s). This is a “rational”
fact, in the sense that this claim is a consequence of the description of the Galois action
in terms of the monodromy operator on the associated Breuil module D. yM/ (cf. [7],
[25, Section 3.2]), a vector space over the characteristic 0 field K 0.

As a starting point for replacing (1.1) in our context, we turn to a result by Gee and
Liu in [14, Appendix F] (see also [28, Theorem 3.8]). Given a finite free Breuil–Kisin
module MBK (of finite height) and a compatible structure of Breuil–Kisin–Fargues GK-
module on Minf DMBK ˝S Ainf such that the image of MBK under the natural map lands
in .Minf/

G
K.�1=p

1
/ , the étale realization of Minf is crystalline if and only if

8g 2 GK ; 8x 2MBKW g.x/ � x 2 '�1
�
Œ"� � 1

�
Œ��Minf: (Cr0)

Here Œ�� denotes the Teichmüller lift and "; � are the elements of O
C[K

given by a collec-

tion .�pn/n of (compatible) pn-th roots of unity and a collection .�1=p
n
/n of pn-th roots of

the chosen uniformizer � , resp. We call condition (Cr0) the crystalline condition. As the
considered formal scheme X is assumed to be smooth over OK , it is reasonable to expect
that the same condition applies to the pairMBK D Hi

�
.X=S/ andMinf D Hi

�
.XAinf=Ainf/,

despite the fact that the Breuil–Kisin and Breuil–Kisin–Fargues modules coming from
prismatic cohomology are not necessarily free.

This is indeed the case and, moreover, it can be shown that the crystalline condition
even applies to the embedding of the chain complexes R��.X=S/! R��.XAinf=Ainf/: to
make sense of this claim, we model the cohomology theories by their associated Čech–
Alexander complexes. These were introduced in [6] in the case that X is affine, but can be
extended to (at least) arbitrary separated smooth p-adic formal schemes. We are then able
to verify the condition termwise for this pair of complexes. More generally, we introduce
a decreasing series of ideals Is , s � 0 where I0 D '�1.Œ"�� 1/Œ��Ainf, and then formulate
and prove the analogue of (Cr0) for Is and the action of GK.�1=ps /. As a consequence, we
obtain:

Theorem 1.3 (Theorem 4.5, Corollary 4.7, Proposition 4.10). Let X be a smooth sepa-
rated p-adic formal scheme over OK .

(1) Fix a compatible choice of Čech–Alexander complexes LC �BK �
LC �inf that compute

R��.X=S/ and R��.XAinf=Ainf/, resp. Then for all s � 0, the pair . LC �BK;
LC �inf/

satisfies (termwise) the condition

8g 2 GK.�1=ps /; 8x 2
LC �BKW g.x/ � x 2 Is LC

�
inf: (Crs)
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(2) The associated prismatic cohomology groups satisfy the crystalline condition, that
is, the condition

8g 2 GK ; 8x 2 Hi
�
.X=S/W g.x/ � x 2 '�1

�
Œ"� � 1

�
Œ��Hi

�
.XAinf=Ainf/:

(3) For all pairs of integers s; n with s C 1 � n � 1, the pn-torsion prismatic coho-
mology groups satisfy the condition

8g 2 GK.�1=ps /; 8x 2 Hi
�;n
.X=S/W

g.x/ � x 2 '�1
�
Œ"� � 1

�
Œ��p

sC1�n

Hi
�;n
.XAinf=Ainf/:

Theorem 1.3 (3) specialized to n D 1 provides the desired analogue of the prop-
erty (1.1) of .'; yG/-modules and allows us to carry out the proof of Theorem 1.1.

As a consequence of Theorem 1.3 (2), we obtain a proof of crystallinity of the coho-
mology groups Hiét.Xx�; Qp/ in the proper case partially by means of “internal” p-adic
Hodge theory (Corollary 4.8). This fact in this generality is originally due to Bhatt, Mor-
row and Scholze [4]. Of course, since our setup relies on the machinery of prismatic
cohomology and especially the étale comparison, the proof can be considered indepen-
dent of the one from [4] only in that it avoids the crystalline comparison theorem for
(prismatic) Ainf-cohomology.

The bounds of Theorem 1.1 compare to the already known bounds as follows. When-
ever the bounds of “semistable type” are known to apply to the situation of Hiét.Xx�;Z=pZ/

(e.g. [10] when i D 1, [21] when ie < p � 1 and X is a scheme), the bounds from Theo-
rem 1.1 agree with those bounds. The bounds tailored to crystalline representations [1,17]
are slightly better but their applicability is quite limited (e D 1 and i < p � 1).

The fact that the cohomology groups Hiét.Xx�; Z=p
nZ/ have an associated Breuil–

Kisin module yields one more source of ramification estimates: in [9], Caruso provides
a very general bound for pn-torsion GK-modules based on their restriction to GK.�1=p1 /
via Fontaine’s theory of étale OE -modules. Using the Breuil–Kisin module Hi

�;n
.X=S/

attached to Hiét.Xx�;Z=p
nZ/, this bound becomes explicit (as discussed in more detail in

Remark 5.6). Comparing this result to Theorem 1.1 is more ambiguous due to somewhat
different shapes of the estimates, but roughly speaking, the estimate of Theorem 1.1 is
approximately the same for e � p, becomes worse when K is absolutely tamely ramified
with large ramification degree, and is expected to outperform Caruso’s bound in case of
large wild absolute ramification (see Section 5.2 for a more precise comparison).

In future work, we intend to extend the result of Theorem 1.1 to the case of arbi-
trary n. This seems plausible thanks to the full statement of Theorem 1.3 (3). In a different
direction, we plan to extend the results of the present paper to the case of semistable reduc-
tion, using the log-prismatic cohomology developed by Koshikawa and Koshikawa–Yao
in [22, 23]. An important facts in this regard are that the Ainf-log-prismatic cohomol-
ogy groups are still Breuil–Kisin–Fargues GK-modules by a result of Česnavičius and
Koshikawa [11].
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The outline of the paper is as follows. In Section 2 we establish some necessary tech-
nical results. Namely, we discuss non-zero divisors and regular sequences on derived
complete and completely flat modules with respect to the weak topology ofAinf, and estab-
lish Čech–Alexander complexes in the case of a separated and smooth formal scheme.
Next, Section 3 introduces the conditions (Crs), studies their basic algebraic properties
and discusses in particular the crystalline condition (Cr0) in the case of Breuil–Kisin–
Fargues GK-modules. In Section 4 we prove the conditions (Crs) for the Alexander–Čech
complexes of a separated smooth p-adic scheme X over S and Ainf, and draw some
consequences for the individual cohomology groups (especially when X is proper), prov-
ing Theorem 1.3. Finally, in Section 5 we establish the ramification bounds for mod p
étale cohomology, proving Theorem 1.1. Subsequently, we discuss in more detail how the
bounds from Theorem 1.1 compare to the various bounds from the literature discussed
above.

Let us setup some basic notation used throughout the paper. We will use freely the
language of prisms and ı-rings from [6], and we adopt much of the related notation and
conventions. In particular, a formal scheme X over a p-adically complete ring A always
means a p-adic formal scheme, and it is called smooth if it is locally of the form SpfR
for a (derived3) p-completely smooth A-algebra R – that is, a p-complete A-algebra such
that R=p is a smooth A=p-algebra and TorAi .R;A=p/ D 0 for all i > 0. By the results of
Elkik [12] and the discussion in [6, Section 1.2], R is equivalently the p-adic completion
of a smooth A-algebra.

We fix a perfect field k of characteristic p > 0 and a finite totally ramified extension
K=K 0 of degree e where K 0 D W.k/Œ1=p�. We fix a uniformizer � 2 OK . This choice is
arbitrary if p > 2, but when pD 2, we make a suitable choice of � to be specified later (see
Section 3.1). Setting SDW.k/JuK, the choice of � determines a surjective map S!OK
given by u 7! � ; the kernel of this map is generated by an Eisenstein polynomial E.u/
of degree e. S is endowed with a Frobenius lift (hence a ı-structure) extending the one
on W.k/ by u 7! up . The pair .S; E.u/S/ then defines a prism (so-called Breuil–Kisin
prism).

Denote by Ainf the ring W.O
C[K
/ where CK is the completion of the algebraic closure

of K and
O
C[K
D lim
 �
x 7!xp

OCK=p

is the tilt of OCK . Fix a compatible system .�n/n of pn-th roots of � . Such a choice
determines an element � 2 O

C[K
and an embedding of S into Ainf via u 7! Œ�� where Œ��

denotes the Teichmüller lift. Under this embedding, E.u/ is sent to a generator � of the
kernel of the canonical map � WAinf ! OCK that lifts the canonical projection

pr0WO
[
CK
D lim
 �
'

OCK=p ! OCK=p:

3As we will always consider the base A to have bounded p1-torsion, there is no distinction between
derived p-completion and p-adic completion in this case.
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The pair .Ainf;Ker �/ forms a prism, and .S; .E.u///! .Ainf;Ker �/ is a map of prisms.
It is known that under such embedding, Ainf is faithfully flat over S (see e.g. [14, Propo-
sition 2.2.13]).

Similarly, we fix a choice of a compatible system of primitive pn-th roots of unity
.�pn/n�0. This defines an element " of O

C[K
in an analogous manner, and the embed-

ding S ,! Ainf extends to a map (actually still an embedding by [9, Proposition 1.14])
W.k/Ju; vK! Ainf by additionally setting v 7! Œ"�� 1. Additionally, we denote by ! the
element .Œ"� � 1/=.Œ"1=p� � 1/ D Œ"1=p�p�1 C � � � C Œ"1=p�C 1. It is well known that this
is another generator of Ker � , therefore !=� is a unit in Ainf.

The choices of �; �n and �pn remain fixed throughout, hence so do the embeddings
S ,! Ainf and W.k/Ju; vK ,! Ainf. Consequently, we identify the elements Œ��; Œ"�� 1; �
with u; v and E.u/, respectively.

2. Preparations

2.1. Regularity on .p; E.u//-completely flat modules

The goal of this section is to prove that every .p;E.u//-complete and .p;E.u//-completely
flat Ainf-module is torsion-free, and that any sequence p; x with x 2 Ainf n .A

�
inf [ pAinf/

is regular on such modules.
Regarding completions and complete flatness, we adopt the terminology of [32, 091N],

[6], but since we apply these notions mostly to modules as opposed to objects of derived
categories, our treatment is closer in spirit to [29, 30, 34]. Given a ring A and a finitely
generated ideal I D .f1; f2; : : : ; fn/, the derived I -completion4 of an A-module M is

yM DM JX1;X2; : : : ;XnK=.X1 � f1;X2 � f2; : : : ;Xn � fn/M JX1;X2; : : : ;XnK: (2.1)

M is said to be derived I -complete if the natural map M ! yM is an isomorphism. This
is equivalent to the vanishing of ExtiA.Af ; M/ for i D 0; 1 and all f 2 I (equivalently,
for f D fj for all j ), and as a consequence, it can be shown that the category of derived
I -complete modules forms a full abelian subcategory of the category of all A-modules
with exact inclusion functor (and the derived I -completion is its left adjoint; in particular,
derived I -completion is right exact as a functor on A-modules). Another consequence
is that derived I -completeness is equivalent to derived J -completeness when I; J are
two finitely generated ideals and

p
I D
p
J . There is always a natural surjection yM !

yM cl where b.�/cl stands for I -adic completion, which will be referred to as classical I -
completion for the rest of the paper. Just like for classically I -complete modules, if M
is derived I -complete, then M=IM D 0 implies M D 0 (this is referred to as derived
Nakayama lemma).

4That is, this is derived I -completion of M as a module. This will be sufficient to consider for our
purposes.
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AnA-moduleM is said to be I -completely (faithfully) flat if TorAi .M;A=I /D 0 for all
i > 0 andM=IM is a (faithfully) flat A=I -module. Just like for derived completeness, I -
complete flatness is equivalent to J -complete flatness when J is another finitely generated
ideal with

p
I D
p
J .5

Let us start by a brief discussion of regular sequences on derived complete modules
in general. For that purpose, given an A-module M and f D f1; : : : ; fn 2 A, denote
by Kos.M I f / the usual Koszul complex and let Hm.M I f / denote the m-th Koszul
homology of M with respect to f1; f2; : : : ; fn.

The first lemma is a straightforward generalization of standard facts about Koszul
homology (e.g. [27, Theorem 16.5]) and regularity on finitely generated modules.

Lemma 2.1. Let A be a ring, I � A a finitely generated ideal and let M be a non-zero
derived I -complete module. Let f D f1; f2; : : : ; fn 2 I . Then

(1) f forms a regular sequence on M if and only if Hm.M I f / D 0 for all m � 1
if and only if H1.M If / D 0.

(2) In this situation, any permutation of f1; f2; : : : ; fn is also a regular sequence
on M .

Proof. As Koszul homology is insensitive to the order of the elements f1; f2; : : : ; fn, part
(2) follows immediately from (1).

To prove (1), the forward implications are standard and hold in full generality (see
e.g. [27, Theorem 16.5]). It remains to prove that the sequence f1; f2; : : : ; fn is regu-
lar on M if H1.M If1; : : : ; fn/ D 0. We proceed by induction on n. The case n D 1 is
clear (H1.M I x/ DMŒx� by definition, and M=xM ¤ 0 follows by derived Nakayama).
Let n � 2, and denote by f 0 the truncated sequence f1; f2; : : : ; fn�1. Then we have
the isomorphism Kos.M If / ' Kos.M If 0/˝Kos.AIfn/, which produces a short exact
sequence

0! Kos.M If 0/! Kos.M If /! Kos.M If 0/Œ�1�! 0

of chain complexes. Taking homologies results in a long exact sequence

H1.M If
0/
˙fn
���!H1.M If

0/!H1.M If /!M=.f
0/M

˙fn
���!M=.f 0/M!M=.f /M!0

(as in [27, Theorem 7.4]). By assumption, H1.M I f / D 0 and therefore, we have that
fnH1.M I f

0/ D H1.M I f
0/ where fn 2 I . Upon observing that H1.M I f 0/ is obtained

from finite direct sum of copies of M by repeatedly taking kernels and cokernels, it is
derived I -complete. Thus, derived Nakayama implies that H1.M I f 0/ D 0 as well, and
by induction hypothesis, f 0 is a regular sequence onM . Finally, the above exact sequence
also implies that fn is injective on M=.f 0/M , and M=.f /M ¤ 0 is satisfied thanks to
derived Nakayama again. This finishes the proof.

5However, note that while (derived) I -completeness more generally implies (derived) I 0-completeness
when I 0 is a finitely generated ideal contained in

p
I , the “opposite” works for flatness, i.e., I -complete

flatness implies I 00-complete flatness when I 00 is a finitely generated ideal with I �
p
I 00.
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Corollary 2.2. LetA be a derived I -complete ring for I D .f / where f D f1; f2; : : : ; fn
is a regular sequence on A, and let F be a non-zero derived I -complete A-module that is
I -completely flat. Then f is a regular sequence on F . Consequently, each fi is a non-zero
divisor on F .

Proof. By Lemma 2.1 (1),Hm.AIf /D 0 for allm � 1, hence Kos.AIf / is a free resolu-
tion of A=I . Thus, the complex Kos.F If / D F ˝A Kos.AIf / computes TorA� .F;A=I /,
and hence is acyclic in positive degrees by I -complete flatness. We may thus conclude
that Hi .F I f / D 0 for all i � 1. By Lemma 2.1, f is a regular sequence on F , and it
remains regular on F after arbitrary permutation. This proves the claim.

Now we specialize to the situation AD Ainf, which is the case of interest in this paper.

Lemma 2.3. For every element x 2 Ainf n .A
�
inf [ pAinf/ and for all integers k; l � 0, we

have that pkAinf \ x
lAinf D p

kxlAinf, and p; x forms a regular sequence. Furthermore,
the ideal

p
.p; x/ is equal to .p;W.m

C[K
//, the unique maximal ideal ofAinf. In particular,

given two choices x; x0 as above, we have
p
.p; x/ D

p
.p; x0/.

In particular, the equalities “
p
.p; x/D

p
.p; x0/” imply that all the .p;x/-adic topolo-

gies (for x as above) are equivalent to each other; this is the so-called weak topology on
Ainf (usually defined as .p; u/-adic topology in our notation); it is standard that Ainf is
complete with respect to this topology.

Proof. By assumption, the image Nx of x in Ainf=p D O
C[K

is non-zero and non-unit in
Ainf=p (non-unit since x … A�inf and p 2 rad.Ainf/). Thus, xl is a non-zero divisor both
on Ainf and on Ainf=p, hence the claim that pAinf \ x

lAinf D px
lAinf follows for every l .

The element p is itself non-zero divisor on (the domain) Ainf and thus, p; x is a regular
sequence. It follows that pk ; xl forms a regular sequence for arbitrary k and l and thus,
also the identity pkAinf \ x

lAinf D p
kxlAinf.

To prove the second assertion, note that
p
. Nx/Dm

C[K
since Ainf=p D O

C[K
is a rank 1

valuation ring. It follows that .p;W.m
C[K
// is the unique maximal ideal of Ainf above .p/,

hence the unique maximal ideal since p 2 rad.Ainf/, and that
p
.p; x/ is equal to this

ideal.

We are ready to prove the claim mentioned at the beginning of the section.

Corollary 2.4. Let F be a derived .p; E.u//-complete and .p; E.u//-completely flat
Ainf-module, and let x 2 Ainf n .A

�
inf [ pAinf/. Then p; x is a regular sequence on F .

In particular, for each k; l > 0, we have pkF \ xlF D pkxlF . Consequently, F is a
torsion-free Ainf-module.

Proof. By Lemma 2.3, Ainf and F are derived .p; x/-complete, F is .p; x/-completely
flat over Ainf, and p; x is a regular sequence on Ainf. Corollary 2.2 then proves that the
sequence p;x, hence also pk ; xl for any k; l , is regular on F , hence also the claim pkF \

xlF DpkxlF . To prove the “consequently” part, let y be a non-zero and non-unit element
of Ainf. Since Ainf is classically p-complete, we have

T
n p

nAinf D 0, and so there exist n
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such that y D pnx with x … pAinf. If x is a unit, then y is a non-zero divisor on F since
so is pn. Otherwise x 2 Ainf n .A

�
inf [ pAinf/, so p; x is a regular sequence on F , and so

is x;p (e.g. by Lemma 2.1). In particular, p;x are both non-zero divisors on F , and hence
so is y D pnx.

2.2. Čech–Alexander complex

Next, we discuss the construction of Čech–Alexander complexes for computing prismatic
cohomology, introduced in [6] in the affine case. Specifically, the goal of this section is to
extend this construction to the case of a smooth separated p-adic formal scheme.

Throughout this section, let .A; I / be a fixed bounded base prism, and let X be a
smooth separated p-adic formal scheme over A=I . Recall that .X=A/� denotes the site
whose underlying category is the opposite of the category of bounded prisms .B; IB/
over .A; I / together with a map of formal schemes Spf.B=IB/! X over A=I . Covers in
.X=A/� are given by the opposites of faithfully flat maps .B; IB/! .C; IC / of prisms,
meaning that C is .p; I /-completely faithfully flat over .B; IB/. The prismatic cohomol-
ogy R��.X; A/ is then defined as the sheaf cohomology R�..X=A/�;O/ (D R�..�;O//
where � is the terminal sheaf) for the sheaf O DO� on .X=A/� defined by .B; IB/ 7!B .

Additionally, let us denote by � the site of all bounded prisms, i.e., the opposite of the
category of all bounded prisms and their maps, with topology given by faithfully flat maps
of prisms.

In order to discuss the Čech–Alexander complex in a non-affine situation, a slight
modification of the topology on .X=A/� is convenient. The following proposition moti-
vates the change.

Proposition 2.5. Let .A; I / be a bounded prism.

(1) Given a collection of maps of (bounded) prisms .A;I /!.Bi ; IBi /, iD1;2; : : : ;n,
the canonical map .A; I /! .C; IC / D .

Q
i Bi ; I

Q
i Bi / is a map of (bounded)

prisms.

(2) .C; IC / is flat over .A; I / if and only if each .Bi ; IBi / is flat over .A; I /. In that
situation, .C; IC / is faithfully flat prism over .A; I / if and only if the family of
maps of formal spectra Spf.Bi=IBi /! Spf.A=I / is jointly surjective.

(3) Let f 2 A be an element. Then .cAf ; IcAf /, where b.�/ stands for the derived
(equivalently, classical) .p; I /-completion, is a bounded prism,6 and the canoni-
cal map .A; I /! .cAf ; IcAf / is a flat map of prisms.

(4) Let f1; : : : ; fn 2 A be a collection of elements generating the unit ideal. Then the
canonical map .A; I /! .

Q
i
cAfi ; I Qi

cAfi / is a faithfully flat map of (bounded)
prisms.

6We do consider the zero ring with its zero ideal a prism, hence allow the possibility ofcAf D 0, which
occurs e.g. when f 2 .p; I /. Whether the zero ring satisfies Definition 3.2 of [6] depends on whether
the inclusion of the empty scheme to itself is considered an effective Cartier divisor; following the usual
definitions pedantically, it indeed seems to be the case. Also some related claims, such as [6, Lemma 3.7
(3)] or [3, Lecture 5, Corollary 5.2], suggest that the zero ring is allowed as a prism.
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Proof. The proof of (1) is more or less formal. The ring C D
Q
i Bi has a unique A-

ı-algebra structure since the forgetful functor from ı-rings to rings preserves limits, and
C is as product of .p; I /-complete rings .p; I /-complete. Clearly IC D

Q
i .IBi / is an

invertible ideal since each IBi is. In particular, C ŒI � D 0, hence C is a prism by [6,
Lemma 3.5]. Assuming that all .Bi ; IBi / are bounded, from C=IC D

Q
i Bi=IBi we

have C=IC Œp1� D C=IC Œpk � for k big enough so that Bi=IBi Œp1� D Bi=IBi Œpk � for
all i , showing that .C; IC / is bounded.

The (.p; I /-complete) flatness part of (2) is clear. For the faithful flatness statement,
note that C=.p; I /C D

Q
i Bi=.p; I /Bi , hence A=.p; I / ! C=.p; I /C is faithfully

flat if and only if the map of spectra
`
i Spec.Bi=.p; I /Bi / D Spec.C=.p; I /C / !

Spec.A=.p; I // is surjective.
Let us prove (3). Since cAf has p 2 rad.cAf /, the equality 'n.f k/ D f kp

n
C p.� � � /

shows that 'n.f k/ for each n;k � 0 is a unit in cAf . Consequently, as in [6, Remark 2.16],cAf D 1S�1A for S D¹'n.f k/ j n;k � 0º, and the latter has a unique ı-structure extending
that of A by [6, Lemmas 2.15 and 2.17]. In particular, cAf is a .p; I /-completely flat A-ı-
algebra, hence .cAf ; IcAf / is flat prism over .A; I / by [6, Lemma 3.7 (3)].

Part (4) follows formally from parts (1)–(3).

Construction 2.6. Denote by .X=A/q
�

the site whose underlying category is .X=A/�.

The covers on .X=A/q
�

are given by the opposites of finite families ¹.B;IB/! .Ci ;ICi /ºi
of flat maps of prisms such that the associated maps ¹Spf.Ci=ICi /! Spf.B=IB/º are
jointly surjective. Let us call these “faithfully flat families” for short. The covers of the
initial object ¿7 are the empty cover and the identity. We similarly extend � to �q, that
is, we proclaim the identity cover and the empty cover to be covers of ¿, and generally
proclaim (finite) faithfully flat families to be covers.

Clearly isomorphisms as well as composition of covers are covers in both cases. To
check that .X=A/q

�
and �q are sites, it thus remains to check the base change axiom.

This is trivial for situations involving ¿, so it remains to check that given a faithfully
flat family ¹.B; IB/! .Ci ; ICi /ºi and a map of prisms .B; IB/! .D; ID/, the fiber
products8 .Ci ; ICi / �.B;IB/ .D; ID/ in �q exist and the collection of canonical maps
¹.D; ID/! .Ci ; ICi /�.B;IB/ .D; ID/ºi is a faithfully flat family; the existence and
.p; I /-complete flatness follows by the same proof as in [6, Corollary 3.12], only with
“.p;I /-completely faithfully flat” replaced by “.p;I /-completely flat” throughout, and the
fact that the family is faithfully flat follows as well, since .

Q
i .Ci ; ICi //�.B;IB/.D; ID/

is canonically identified with
Q
i ..Ci ; ICi /�.B;IB/ .D;ID// (and using Remark 2.7 (1)).

Remark 2.7. Let us comment further on the topology introduced in Construction 2.6.

(1) Note that for a finite family of objects .Ci ; ICi / in .X=A/�, the structure map
of the product .A; I / !

Q
i .Ci ; ICi / together with the map of formal spectra

7That is, ¿ corresponds to the zero ring, which we consider to be a prism as per the previous footnote.
8Here we mean fiber products in the variance of the site, i.e., “pushouts of prisms”. We use the symbol

� to denote this operation.
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(induced from the maps for individual i ’s)

Spf
�Y

i

Ci=ICi

�
D

a
i

Spf.Ci=ICi /! X

makes .
Q
i Ci ; I

Q
i Ci / into an object of .X=A/� that is easily seen to be the

coproduct of .Ci ; ICi /’s. In view of Proposition 2.5 (2), one thus arrives at the
equivalent formulation

¹Yi ! Zºi is a .X=A/q
�

-cover ,
a
i

Yi ! Z is a .X=A/�-cover.

Similar considerations apply to � and �q.

(2) The two sites are honestly different in that they define different categories of
sheaves. Namely, for every finite coproduct Y D

`
i Yi , the collection of canon-

ical maps ¹Yi !
`
i Yiºi forms a .X=A/q

�
-cover, and the sheaf axiom forces

upon a sheaf F 2 Shv..X=A/q
�
/ the identity F .

`
i Yi / D

Q
i F .Yi /, which is

not automatic.9 In fact, Shv..X=A/q
�
/ can be identified with the full category of

Shv..X=A/�/ consisting of all sheaves compatible with finite disjoint unions in
the sense above. In particular, the structure sheaf O D O�W .B; IB/ 7! B is a
sheaf for the .X=A/q

�
-topology. (Again, the same is true for � and �q, including

the fact that the presheaf OW .B; IB/ 7! B is a sheaf.)

Despite the above fine distinction, for the purposes of prismatic cohomology, the two
topologies are interchangeable. This is a consequence of the following lemma.

Lemma 2.8. Given an object .B; IB/ 2 .X=A/q
�

, one has Hi ..B; IB/;O/D 0 for i > 0.

Proof. The sheaf OW .B; I / 7! B on �q has vanishing positive Čech cohomology essen-
tially by the proof of [6, Corollary 3.12]: one needs to show acyclicity of the Čech complex
for any �q-cover ¹.B; I /! .Ci ; ICi /ºi , but the resulting Čech complex is identical to
that for the �-cover .B;I /!

Q
i .Ci ; ICi /, for which the acyclicity is proved in [6, Corol-

lary 3.12]. This implies the vanishing of Hi
�
q..B; I /;O/ for all bounded prisms .B; I /

and all i > 0 (e.g. by [32, 03F9]).
Now we use the fact that cohomology of an object can be computed as the cohomology

of the corresponding slice site. Let .B; IB/ 2 .X=A/q
�

. Forgetting structure, .B; IB/ may

be viewed as an object of �q, and then [32, 03F3] implies that for every i , we have the
isomorphisms

Hi
.X=A/q

�

�
.B; IB/;O

�
' Hi

�
.X=A/q

�
=.B; IB/;Oj.B;IB/

�
;

Hi
�
q

�
.B; IB/;O

�
' Hi

�
�q=.B; IB/;Oj.B;IB/

�
:

9For example, every constant presheaf is a sheaf for a topology given by singleton covers only, which
is not the case for .X=A/q

�
.
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Upon noting that the slice sites .X=A/q
�
=.B;IB/, �q=.B;IB/ are equivalent (in a manner

that identifies the two versions of the sheaf Oj.B;IB/), the claim follows.

Corollary 2.9. One has R�..X=A/�;O/ D R�..X=A/q
�
;O/.

Proof. The coverings of .X=A/q
�

contain all the coverings of .X=A/�, so we are in the
situation of [32, 0EWK]. Namely, there is a morphism of sites "W .X=A/q

�
! .X=A/�

given by the identity functor of the underlying categories, where the pushforward functor
"�W Shv..X=A/q

�
/! Shv..X=A/�/ is the natural inclusion and the (exact) inverse image

functor "�1WShv..X=A/�/! Shv..X=A/q
�
/ is the sheafification with respect to the “q”-

topology. One has
�
�
.X=A/q;�

�
D �

�
.X=A/;�

�
ı "�

(where "� denotes the inclusion of abelian sheaves in this context), hence

R�
�
.X=A/q;O

�
D R�

�
.X=A/; R"�O

�
;

and to conclude it is enough to show that Ri"�O D 0 8i > 0. But Ri"�O is the sheafi-
fication of the presheaf given by .B; IB/ 7! Hi ..B; IB/;O/ [32, 072W], which is 0 by
Lemma 2.8. Thus, Ri"�O D 0, which proves the claim.

For an open p-adic formal subscheme V � X, denote by hV the functor sending an
object .B; IB/ 2 .X=A/� to the set of factorizations of the implicit map Spf.B=IB/! X

through V ,! X; that is,

hV
�
.B; IB/

�
D

´
� if the image of Spf.B=IB/! X is contained in V;

; otherwise.

Let .B;IB/! .C; IC / correspond to a morphism in .X=A/�. If Spf.B=IB/!X factors
through V, then so does Spf.C=IC / ! Spf.B=IB/ ! X. It follows that hV forms a
presheaf on .X=A/� (with transition maps hV..B; IB//! hV..C; IC // given by � 7! �
when hV..B;IB//¤;, and the empty map otherwise). Note that hX is the terminal sheaf.

Proposition 2.10. hV is a sheaf on .X=A/q
�

.

Proof. Consider a cover in .X=A/q
�

given by a faithfully flat family¹.B;IB/!.Ci ; ICi/ºi .
One needs to check that the sequence

hV
�
.B; IB/

�
!

Y
i

hV
�
.Ci ; ICi /

�
�
Y
i;j

hV
�
.Ci ; ICi /�.B;IB/ .Cj ; ICj /

�
is an equalizer sequence. All the terms have at most one element; consequently, there are
just two cases to consider, depending on whether the middle term is empty or not. In both
cases, the pair of maps on the right necessarily agree, and so one needs to see that the map
on the left is an isomorphism. This is clear in the case when the middle term is empty
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(since the only map into an empty set is an isomorphism). It remains to consider the case
when the middle term is non-empty, which means that hV..Ci ; ICi //D � for all i . In this
case we need to show that hV..B; IB//D �. Since the maps Spf.Ci=ICi /! Spf.B=IB/
are jointly surjective and each Spf.Ci=ICi /! X lands in V, it follows that so does the
map Spf.B=IB/! X. Thus, hV..B; IB// D �, which finishes the proof.

When V is affine, one can cover the sheaf hV by a representable sheaf. The construc-
tion of the representing object is essentially Construction 4.17 of [6] (but note that the
resulting object is not weakly initial unless V D X). We repeat the construction here in
order to fix notation and terminology.

Construction 2.11 (Prismatic cover of V). Let us additionally assume that V D Spf.R/
is affine. Choose a surjection PV ! R where PV D

1AŒX� is a .p; I /-completed free A-
algebra. Denote by JV the kernel of the surjection. Then there is a commutative diagram
with exact rows

0 JV PV R 0

1JVP ıV cP ıV 4R˝PV
P ıV 0;

where b.�/ stands for derived .p; I /-completion. Here for an A-algebra S , Sı denotes
the “ı-envelope” of S , that is, the S -algebra initial among S -algebras endowed with
an A-ı-algebra structure. Note that cP ıV D 1.P 0V/ı , where P 0V D AŒX� is the polynomial
algebra before completion; in particular, since .P 0V/

ı is a flat P 0V-algebra (essentially by
[6, Lemma 2.11]), it follows that cP ıV is .p; I /-completely flat PV-algebra. Consequently,
the completions in the lower row of the diagram can be equivalently taken as classical
.p; I /-completions (cf. [6, Lemma 3.7]).

Denote by J ı;^V �
cP ıV the image of the map 1JVP ıV ! cP ıV, i.e., the .p; I /-complete

ideal of cP ıV topologically generated by JV. Then we have a short exact sequence

0! J
ı;^
V !

c
P ıV !

4
R˝PV

P ıV ! 0:

Let . LCV; I LCV/ be the prismatic envelope of .cP ıV; J ı;^V /. It follows from [6, Proposi-
tion 3.13, Example 3.14] that . LCV; I LCV/ exists and is given by a flat prism over .A; I /.
The map

R!
4
R˝PV

P ıV D
c
P ıV=J

ı;^
V ! LCV=I LCV

of p-complete rings corresponds to the map of formal schemes Spf. LCV=I LCV/! V ,! X.
This defines an object of .X=A/q

�
, which we call a prismatic cover of V.

Remarks 2.12. Let us record several technical observations regarding Construction 2.11.

(1) Note that . LCV; I LCV/ is equivalently the prismatic envelope of .cP ıV; JVcP ıV/. More-

over, when the ideal JV is finitely generated, one has the equality J ı;^V D JV
cP ıV.
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(2) Since the ring R in Construction 2.11 is a p-completely smooth A=I -algebra, it
is in particular a p-completion of a finitely presented A=I -algebra. It follows that
the map PV ! R may be chosen so that PV is the (derived) .p; I /-completion
of a polynomial A-algebra of finite type, with the kernel JV finitely generated.
While such a choice may be preferable, we formulate the construction without
imposing it, as it may be convenient to allow non-finite-type free algebras in the
construction e.g. for the reasons of functoriality (see the remark at the end of
[6, Construction 4.17]).

(3) As is shown below, the sheaf represented by . LCV; I LCV/ covers the sheaf hV, jus-
tifying the term “prismatic cover”. While this term should arguably describe any
object of .X=A/� whose represented sheaf covers V, we reserve its usage for the
objects obtained as a result of Construction 2.11.

Proposition 2.13. Denote by h LCV
the sheaf represented by the object . LCV;I LCV/2.X=A/

q

�
.

There exists a unique map of sheaves h LCV
! hV, and it is an epimorphism.

Proof. If .B; IB/ 2 .X=A/� with h LCV
..B; IB// ¤ ;, this means that Spf.B=IB/! X

factors through V since it factors through Spf. LCV=I LCV/. Thus, we also have

hV..B; IB// D �;

and so the (necessarily unique) map h LCV
..B; IB// ! hV..B; IB// is defined. When

h LCV
..B;IB// is empty, the map h LCV

..B;IB//! hV..B;IB// is still defined and unique,
namely given by the empty map. Thus, the claimed morphism of sheaves exists and is
unique.

By the same argument as in [6, Construction 4.17], we show that this map is an epimor-
phism. Let .B; IB/ 2 .X=A/� such that hV..B; IB// D �, i.e., Spf.B=IB/! X factors
through V, and consider the map R ! B=IB associated to the map Spf.B=IB/ ! V.
Since PV is a p-completed free A-algebra surjecting onto R and B is .p; I /-complete,
the map R ! B=IB admits a lift PV ! B . This induces an A-ı-algebra map cP ıV ! B

which gives a morphism of ı-pairs�c
P ıV; JV

c
P ıV
�
! .B; IB/;

and further the map of prisms . LCV; I LCV/ ! .B; IB/ using the universal properties of
objects involved. It is easy to see that this is indeed (the opposite of) a morphism in
.X=A/�. This shows that h LCV

..B; IB// is non-empty whenever hV..B; IB// is. Thus,
the map is an epimorphism.

Remark 2.14 (Binary products in .X=A/�). For .B; IB/; .C; IC / 2 .X=A/�, let us
denote their binary product (in the variance of the site) by .B; IB/ � .C; IC /. Let us
describe it explicitly at least under the additional assumptions that

(1) .B; IB/; .C; IC / are flat prisms over .A; I /,

(2) there are affine opens U;V � X such that hU..B; IB// D � D hV..C; IC //.
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Set W D U \ V and denote the rings corresponding to the affine open sets U;V and W

by R; S and T , resp. Then any object .D; ID/ 2 .X=A/� with maps both to .B; IB/
and .C; IC / lives over W, i.e., satisfies hW..D; ID// D �. This justifies the following
construction. Consider the following commutative diagram, where q denotes the pushout
of p-complete commutative rings, i.e., taking the classically p-completed tensor product
y̋ (and B y̋A C is the derived, but equivalently classical, .p; I /-completion of B ˝A C ):

B y̋AC

B C

.B=IB y̋RT / y̋ T .C=IC y̋ ST /

B=IB B=IB y̋RT A C=IC y̋ ST C=IC

R T T S

x

x y

Let J � B y̋A C be the kernel of the map

B y̋A C ! .B=IB y̋R T / y̋ T .C=IC y̋ S T /:

Then the product .B; IB/ � .C; IC / is given by the prismatic envelope of the ı-pair
.B y̋A C; J /.

Let V D ¹Vj ºj2J be an affine open cover of X. For an integer n � 1 and a multi-index
.j1; j2; : : : ; jn/ 2 J

n, denote by Vj1;:::;jn the intersection Vj1 \ � � � \Vjn . As X is assumed
to be separated, each Vj1;:::;jn is affine and we write Vj1;:::;jn D Spf.Rj1;:::;jn/.

Proposition 2.15. The prismatic covers for the open formal subschemes Vj1;:::;jn as above
can be chosen so that for every multi-index .j1; : : : ; jn/, we have

. LCVj1;:::;jn
; I LCVj1;:::;jn

/ D . LCVj1
; I LCVj1

/� . LCVj2
; I LCVj2

/� � � �� . LCVjn
; I LCVjn

/:

Proof. Clearly it is enough to show the statement for binary products. More precisely,
given two affine opens V1; V2 � X and an arbitrary initial choice of . LCV1 ; I

LCV1/ and
. LCV2 ; I

LCV2/, we show that PV12 ! R12 can be chosen so that the resulting prismatic
cover . LCV12 ; I

LCV12/ of V12 is equal to . LCV1 ; I
LCV1/� . LCV2 ; I

LCV2/. For the purposes of
this proof, let us refer to a prismatic envelope of a ı-pair .S; J / also as “the prismatic
envelope of the arrow S ! S=J ”.

Consider ˛i WPVi�Ri , i D 1;2 as in Construction 2.11, and setPV12 DPV1
y̋A PV2 .

Then one has the induced surjection ˛1˝ ˛2WPV12!R1 y̋A=I R2, which can be followed
by the induced map R1 y̋A=I R2 ! R12. This latter map is surjective as well since X is
separated, and therefore the composition of these two maps ˛12WPV12!R12 is surjective,
with the kernel JV12 that contains .JV1 ; JV2/PV12 . We may construct a diagram analogous
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to the one from Remark 2.14, which becomes the diagram

bP ıV12

bP ıV1 bP ıV2

R12 y̋PV12
.bP ıV12/

R1 y̋PV1

bP ıV1 R12 y̋PV1

bP ıV1 A R12 y̋PV2

bP ıV2 R2 y̋PV2

bP ıV2

R1 R12 R12 R2;

x

x y

where the expected arrow in the central column is replaced by an isomorphic one, namely
the map obtained from the surjection PV12 ! R12 by the procedure as in Construc-
tion 2.11. Now . LCV12 ; I

LCV12/ is obtained as the prismatic envelope of this composed
central arrow, while . LCV1 ; I

LCV1/� . LCV2 ; I
LCV2/ is obtained the same way, but only after

replacing the downward arrows on the left and right by their prismatic envelopes. Com-
paring universal properties, one easily sees that the resulting central prismatic envelope
remains unchanged, proving the claim.

Remark 2.16. Fix a choice of free bases (i.e., polynomial variables) Xj for an initial
choice of maps PVj ! Rj . For later purposes, let us note that

(1) The prismatic cover . LCVj ; I
LCVj / 2 .X=A/

q

�
functorially depends on the underly-

ing map of sets Xj ! Rj ,

(2) The collection of prismatic covers . LCVj1;:::;jn
; I LCVj1;:::;jn

/ 2 .X=A/q
�

functorially
depends on the initial choice of maps Xj ! Rj for all j (having the formal
scheme X=A fixed). For example, the map of rings PVj1;j2

! Rj1;j2 and, hence,
the formation of . LCVj1;j2

; I LCVj1;j2
/, is determined by the map

Xj1 qXj1 � PVj1
y̋A PVj1

! Rj1 ˝Rj2 ! Rj1;j2

as in the preceding proof.

Remark 2.17. Suppose that for each j , the initial choice of the map PVj ! Rj has
been made as in Remark 2.12 (2), that is, PVj is the .p; I /-completion of a finite-type
free A-algebra and the ideal JVj is finitely generated. If now PVj1;j2;:::;jn

is the .p; I /-
completed freeA-algebra for Vj1;j2;:::;jn obtained by iterating the procedure in the proof of
Proposition 2.15, it is easy to see that in this case, the algebra PVj1;j2;:::;jn

is still the .p; I /-
completion of a finite-type free A-algebra, and it can be shown that the corresponding
ideal JVj1;j2;:::;jn is finitely generated.
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In more detail, given a ring B and a finitely generated ideal J � B , Let us call
a B-algebra C J -completely finitely presented if C is derived J -complete and there
exists a map ˛W BŒX� ! C from the polynomial ring in finitely many variables X D
¹X1; : : : ; Xnº such that the derived J -completed map y̨W1BŒX� ! C is surjective and
with a finitely generated kernel. Then the algebra Rj1;j2;:::;jn corresponding to Vj1;j2;:::;jn
is .p; I /-completely finitely presented by Remark 2.12 (2), and since PVj1;j2;:::;jn

is the
.p; I /-completion of a finite-type polynomial A-algebra, the following lemma shows that
JVj1;j2;:::;jn is finitely generated.

Lemma 2.18. Let C be a J -completely finitely presented B-algebra, and consider a map
ˇWBŒY �! C from a polynomial algebra in finitely many variables Y D ¹Y1; : : : ; Ymº
such that y̌ is surjective. Then the kernel of y̌ is finitely generated.

Proof. The proof is an adaptation of the proof of [32, 00R2], which is a similar assertion
about finitely presented algebras. Consider ˛ as in Remark 2.17, and additionally let us
fix a generating set .f1; f2; : : : ; fk/ �1BŒX� of Ker y̨.

For i D 1; : : : ; m, let us choose gi 21BŒX� such that y̨.gi / D ˇ.Yi /. Then one can
define a surjective map

�0W1BŒX�ŒY �! C; �0 jbBŒX�D y̨; �0.Yi / D ˇ.Yi /;

and it is easy to see that Ker �0 D .f1; : : : ; fk ; Y1 � g1; : : : ; Ym � gm/. That is, we have
an exact sequence �1BŒX�ŒY ��˚kCm !1BŒX�ŒY � �0�! C ! 0;

where the map on the left is a module map determined by the finite set of generators of
Ker �0. After taking the derived J -completion, the sequence becomes the exact sequence

3BŒX; Y �˚kCm !3BŒX; Y � ��! C ! 0:

That is, we have a surjective map � W3BŒX; Y �!C determined on topological generators by
�.Xj /D˛.Xj /, �.Yi /Dˇ.Yi /, and the kernel of � is .f1; : : : ; fk ; Y1 � g1; : : : ; Ym � gm/.

Next, we choose elements hj 21BŒY � such that y̌.hj / D ˛.Xj / for each j . Then we
have a surjective map  W3BŒX; Y �!1BŒY � given by Xj 7! hj and Yi 7! Yi , which has
the property that y̌ ı  D � . That is,

Ker � D Ker. y̌ ı  / D  �1
�

Ker. y̌/
�
;

and therefore  .Ker �/ D Ker y̌ since  is surjective. But Ker � is finitely generated by
the previous, and hence so is Ker y̌.

Proposition 2.19. The map j̀ hVj ! hX D � (where
`

denotes the coproduct in the
category Shv..X=A/q

�
/) to the final sheaf is an epimorphism, hence so is the mapa

j

h LCVj
! �:
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Proof. It is enough to show that for a given object .B; IB/ 2 .X=A/q
�

, there is a faithfully
flat family .B; IB/! .Ci ; ICi / in .X=A/q;op

�
such that

`pre
j hVj ..Ci ; ICi // ¤ ; for all

i where
`pre denotes the coproduct of presheaves.

With that aim, let us first consider the preimages Wj�Spf.B=IB/ of each Vj under the
map Spf.B=IB/!X. This is an open cover of Spf.B=IB/ that corresponds to an open cover
of SpecB=.p; I /B . One can then choose f1; f2; : : : ; fm such that ¹Spec.B=.p; I /B/fi ºi
refines this cover, i.e., every Spec.B=.p; I /B/fi corresponds to an open subset of Wj.i/

for some index j.i/.
The elements f1; : : : ; fm generate the unit ideal of B since they do so modulo .p; I /

which is contained in rad.B/. Thus, the family

.B; IB/! .Ci ; ICi / WD .cBfi ; IcBfi /; i D 1; 2; : : : ; m

is easily seen to give the desired faithfully flat family, with each
`pre
j hVj ..Ci ; ICi // non-

empty, since each Spf.Ci=ICi /! X factors through Vj.i/ by construction.

Remark 2.20. The proof of Proposition 2.19 is the one step where we used the refinement
of the topology, namely the fact that the faithfully flat cover .B; IB/!

Q
i .Ci ; ICi / can

be replaced by the family ¹.B; IB/! .Ci ; ICi /ºi .

Finally, we obtain the Čech–Alexander complexes in the global case.

Proposition 2.21. With the notation for Vj1;:::;jn as above and the choice of prismatic cov-
ers LCVj1;j2;:::;jn

as in Proposition 2.15, R�..X=A/�;O/ is modelled by the Čech–Alexander
complex

0!
Y
j

LCVj !

Y
j1;j2

LCVj1;j2
!

Y
j1;j2;j3

LCVj1;j2;j3
! � � � ( LC �V)

(that is, the complex associated to the cosimplicial ring .
Q
j1;:::;jn

LCVj1;:::;jn
/n).

Proof. By [32, 079Z], the epimorphism of sheaves j̀ h LCVj
! � from Proposition 2.19

implies that there is a spectral sequence with E1-page

E
p;q
1 D H q

��a
j

h LCVj

��p
;O
�
D H q

� a
j1;j2;:::;jp

h LCVj1;:::;jp

;O
�

D

Y
ji ;:::;jp

H q
��
LCVj1;:::;jp

; I LCVj1;:::;jp

�
;O
�

converging to

HpCq.�;O/ D HpCq
�
.X=A/q

�
;O
�
D HpCq

�
.X=A/�;O

�
;

where we implicitly used Corollary 2.9 and the fact that

h LCVj1

� h LCVj2

D h LCVj1
� LCVj2

D h LCVj1;j2

as in Proposition 2.15, and similarly for higher multi-indices.
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By Lemma 2.8, H q.. LCVj1;:::;jn
; I LCVj1;:::;jn

/;O/ D 0 for every q > 0 and every multi-
index j1; : : : ; jn. The first page is therefore concentrated in a single row of the form LC �V
and thus, the spectral sequence collapses on the second page. This proves that the coho-
mologies of R�..X=A/�;O/ are computed as cohomologies of LC �V, but in fact, this yields
a quasi-isomorphism of the complexes themselves. (For example, analyzing the proof
of [32, 079Z] via [32, 03OW], the double complex E��0 of the above spectral sequence
comes equipped with a natural map ˛W LC �V ! Tot.E��0 /, and a natural quasi-isomorphism
ˇWR�..X=A/�;O/! Tot.E��0 /; when the spectral sequence collapses as above, ˛ is also
a quasi-isomorphism.)

Notation 2.22. For future use, let us establish the following notation. Given the choice of
an affine open cover V D ¹Vj ºj of X and prismatic covers . LCVj1;:::;jn

; I LCVj1;:::;jn
/ chosen

as in Proposition 2.15, denote by NV the Čech nerve of j̀ h LCVj
! �, i.e., the simpli-

cial object in .X=A/q
�

underlying the construction of the Čech–Alexander complex LC �V
of Proposition 2.21 (this is a slight abuse of notation since it depends on the choice of
prismatic covers and not just on V; however, hopefully such a choice will always be clear
from context).

Then for an abelian sheaf F on .X=A/q
�

, we use the notation LC �.NV; F / for the
complex associated with the cosimplicial abelian group obtained from NV by termwise
applying F . Thus, for example, the Čech–Alexander complex LC �V of Proposition 2.21 is
also denoted by LC �.NV;O/.

Remark 2.23. Just as in the affine case, the formation of Čech–Alexander complexes is
compatible with “termwise flat base-change” on the base prism essentially by [6, Proposi-
tion 3.13]. That is, if . LCm; @/m is a Čech–Alexander complex modelling R��.X=A/ and
.A; I / ! .B; IB/ is a flat map of prisms, then the complex . LCm y̋A B; @ ˝ 1/m is a
Čech–Alexander complex that computes R��.XB=B/.

In order to understand Čech–Alexander complexes even more explicitly, we employ
the following approximation of the prismatic envelope, similar in spirit to the proof of
[6, Proposition 3.13].

Definition 2.24. Let B be a ı-ring, J � B an ideal with a fixed generating set x D
¹xiºi2ƒ, and let b 2 J be an element. Denote by b0 be the kernel of the B-algebra map

BŒT � D B
�
¹Tiºi2ƒ

�
! B

�
1

b

�
; Ti 7!

xi

b
:

Denote by B¹T º the free B-ı-algebras on the generators T , and let b be the ı-ideal in
B¹T º generated by b0. Then we denote by B¹x

b
º the ı-ring B¹T º=b, and call it weak

ı-blowup algebra of x and b.

That is, the above construction adjoins (in ı-sense) the fractions xi=b to B together
with all relations among them that exist inBŒ1=b�, making it possible to naturally compute
with fractions.
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Note that if B ! C is a map of B-ı-algebras such that JC D bC and this ideal is
invertible, the fact that the localization map C ! C Œ 1

b
� is injective shows that there is a

unique map of B-ı-algebras B¹x
b
º ! C .

The purpose of the construction is the following.

Proposition 2.25. Let .A;I / be a bounded prism with I D dB for a distinguished element
d 2 B . Let .A; I /! .B; J / be a map of ı-pairs and assume that .C; IC / is a prismatic
envelope for .B; J / that is classically .p; I /-complete. Let x D ¹xiºi2ƒ be a system of
generators of J . Then there is a surjective map of ı-rings 1B¹ x

d
ºcl ! C , where b.�/cl

denotes the classical .p; I /-completion.

Proposition 2.25 applies in particular when .C; IC / a prismatic cover from Construc-
tion 2.11. Since the prismatic cover is .p; I /-completely flat over the base prism, it is
classically .p; I /-complete by [6, Proposition 3.7].

Proof. Since JC D dC and d is a non-zero divisor on C , there is an induced map
B¹

x

d
º ! C and hence a map of ı-rings 1B¹ x

d
ºcl ! C (using [6, Lemma 2.17]).

To see that this map is surjective, let C 0 denote its image in C , and denote by � the in-
clusion of C 0 into C . Then C 0 is (derived, and, consequently, classically) .p; I /-complete
A-ı-algebra with C 0Œd � D 0. It follows that .C 0; IC 0/ D .C 0; .d// is a prism by [6,
Lemma 3.5] and thus, by the universal property of C , there is a map of B-ı-algebras
r WC ! C 0 which is easily seen to be right inverse to �. Hence, � is surjective, proving the
claim.

3. The conditions (Crs)

3.1. Definition and basic properties

In order to describe the conditions (Crs), we need to fix more notation. Recall that � is
a fixed choice of a uniformizer of K. For a natural number s, denote by Ks the field
K.�s/ (where .�n/n is the compatible chain of pn-th roots of � chosen before, i.e., so
that u D Œ.�n/n� in Ainf), and set K1 D

S
s Ks . Further set Kp1 D

S
mK.�pm/ and for

s 2 N [ ¹1º, set Kp1;s D Kp1Ks . Note that the field Kp1;1 is the Galois closure of
K1. Denote by yG the Galois group Gal.Kp1;1=K/ and by Gs the group Gal. xK=Ks/,
for s 2 N [ ¹1º.

When p > 2, the group yG is generated by its two subgroups Gal.Kp1;1=Kp1/ and
Gal.Kp1;1=K1/ by [25, Lemma 5.1.2]. When p D 2, the same can be achieved by a
specific choice of � by the following lemma, and we choose � in this manner (this is the
specific choice of � mentioned in Section 1).

Lemma 3.1. Let p D 2. Then K1 \K21 D K for a suitable choice of the uniformizer
� 2 OK .

Proof. This is [33, Lemma 2.1]. We just note that while [33] assumes that the residue field
k is finite, the proof easily adapts to the more general case of a perfect residue field k.
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The subgroup Gal.Kp1;1=Kp1/ of yG is normal. An element g 2 Gal.Kp1;1=Kp1/
is determined by its action on the elements .�s/s , which takes the form g.�s/ D �

as
ps�s ,

with the integers as unique modulo ps and compatible with each other as s increases. It
follows that Gal.Kp1;1=Kp1/ ' Zp , with a topological generator � given by �.�n/ D
�pn�n (where, again, �pn ’s are chosen as before, so that v D Œ.�pn/n� � 1).

Similarly, the image of Gs in yG is the subgroup yGs D Gal.Kp1;1=Ks/. Clearly yGs
contains yG1 and the intersection of yGs with Gal.Kp1;1=Kp1/ is Gal.Kp1;1=Kp1;s/.
Just as in the s D 0 case, yGs is generated by these two subgroups, with the subgroup
Gal.Kp1;1=Kp1;s/ normal and topologically generated by the element �p

s
.

There is a natural GK-action on Ainf DW.O
[
CK
/, extended functorially from the natu-

ral action on O[
CK

. This action makes the map � WAinf!OCK GK-equivariant, in particular,
the kernel E.u/Ainf is GK-stable. The GK-action on the GK-closure of S in Ainf factors
through yG. Note that the subgroup Gal.Kp1;1=K1/ of yG acts trivially on elements of S,
and the action of the subgroup Gal.Kp1;1=Kp1/ is determined by the equality

�.u/ D .v C 1/u:

For an integer s � 0 and i between 0 and s, denote by �s;i the element

�s;i D
's.v/

!'.!/ � � �'i .!/
D '�1.v/'iC1.!/'iC2.!/ � � �'s.!/

(recall that ! D v='�1.v/), and set

Is D .�s;0u; �s;1u
p; : : : ; �s;su

ps /:

For convenience of notation, we further set I1 D 0 and '1.v/u D 0.
We are concerned with the following conditions.

Definition 3.2. Let Minf be an Ainf-module endowed with a GK-Ainf-semilinear action,
let MBK be an S-module and let f WMBK ! Minf be an S-linear map. Let s � 0 be an
integer or1.

(1) An element x 2Minf is called a (Crs)-element if for every g 2 Gs ,

g.x/ � x 2 IsMinf:

(2) We say that the pairMBK!MAinf satisfies the condition (Crs) if for every element
x 2MBK, the image of x in Minf is (Crs).

(3) An element x 2Minf is called a (Cr0s)-element if for every g 2 Gs ,

g.x/ � x 2 's.v/uMinf:

(4) We say that the pairMBK!MAinf satisfies the condition (Cr0s) if for every element
x 2MBK, the image of x in Minf is (Cr0s).

(5) Additionally, we call (Cr0)-elements crystalline elements and we call the condi-
tion (Cr0) the crystalline condition.
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Remarks 3.3. Several remarks are in order.

(1) Since I0 D '�1.v/uAinf, the crystalline condition equivalently states that for all
g 2 GK and all x in the image of MBK,

g.x/ � x 2 '�1.v/uMinf:

The reason for the extra terminology in the case s D 0 is that the condition is
connected with a criterion for certain representations to be crystalline, as discussed
in Section 3.2. The conditions (Cr1) and (Cr01) are clearly both equivalent to the
condition f .MBK/ �M

G1
inf .

(2) Strictly speaking, one should talk about the crystalline condition (or (Crs)) for the
map f , but we choose to talk about the crystalline condition (or (Crs)) for the
pair .MBK; Minf/ instead, leaving the map f implicit. This is because typically
we consider the situation that MBK is an S-submodule of MG1

inf and MBK ˝S

Ainf ' MAinf via the natural map (or the derived .p; E.u//-completed variant,
MBK y̋S Ainf ' MAinf ). Also note that f WMBK ! Minf satisfies the condition
(Crs) if and only if f .MBK/ �Minf does.

(3) For every fixed s, the ideal Is contains the principal ideal 's.v/uAinf. Conse-
quently, for every s, (Cr0s) implies (Crs). To our knowledge, there is no logical
dependency between any of the conditions (Crs) (and between (Cr0s), respectively)
for different values of s.

Lemma 3.4. For any integer s, the ideals 's.v/uAinf and Is are GK-stable.

Proof. It is enough to prove that the ideals uAinf and vAinf are GK-stable. Then GK-
stability of 's.v/Ainf for any s 2 Z follows since ' is a GK-equivariant automorphism
of Ainf. Then g's.v/ equals to 's.v/ times a unit for every g and s and the same is then
true of 'i .!/ D 'i .v/='i�1.v/, hence also of all the elements �i;s and it follows that Is
is GK-stable.

Given g 2 GK , g.�n/ D �
an
pn�n for an integer an unique modulo pn and such that

anC1 � an .mod pn/. It follows that g.u/ D Œ"�au for a p-adic integer a (D limn an).
Thus, uAinf is GK-stable.

Similarly, we have g.�pn/D �
bn
pn , for integers bn coprime to p, unique modulo pn and

compatible with each other as n grows. It follows that g.Œ"�/ D Œ"�b for b D limn bn, and
so g.v/ D .v C 1/b � 1 D limn..v C 1/

bn � 1/. The resulting expression is still divisible
by v. To see that, fix the integers bn to have all positive representatives. Then the claim
follows from the formula

.v C 1/bn � 1 D v
�
.v C 1/bn�1 C .v C 1/bn�2 C � � � C 1

�
;

upon noting that the sequence of elements�
.v C 1/bn�1 C .v C 1/bn�2 C � � � C 1

�
D
�
.v C 1/bn � 1

�
=v

is still .p; v/-adically convergent, e.g. by Lemma 2.3.
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Let f WMBK ! Minf be as in Definition 3.2. Lemma 3.4 shows that the modules
Minf=IsMinf and Minf='

s.v/uMinf have a well-defined GK-action. Consequently, we get
the following restatement of the conditions (Crs) and (Cr0s).

Lemma 3.5. Given f WMBK ! Minf as in Definition 3.2, the pair .MBK; Minf/ satisfies
the condition (Crs) ((Cr0s), resp.) if and only if the image of MBK in Minf WD Minf=IsMinf

(Minf WDMinf='
s.v/uMinf, resp.) lands in Minf

Gs .

In the case of the above-mentioned condition f .MBK/ � M
G1
inf , the GK-closure of

f .MBK/ in Minf is contained in the GK-submodule MGKp1;1 , and thus, the GK-action
on it factors through yG. Under mild assumptions onMinf, theGs-action on the elements of
f .MBK/ is ultimately determined by �p

s
, the topological generator of Gal.Kp1;1=Kp1;s/.

Consequently, the conditions (Cr0s) are also determined by the action of this single element.

Lemma 3.6. Let f WMBK ! Minf be as in Definition 3.2. Additionally, assume that Minf

is classically .p;E.u//-complete and .p;E.u//-completely flat, that the action of GK on
Minf is continuous for the .p; E.u//-adic topology, and that the pair .MBK; Minf/ satis-
fies (Cr1). Then the action of yG on elements of f .MBK/ makes sense, and .MBK; Minf/

satisfies (Cr0s) if and only if

8x 2 f .MBK/W �
ps .x/ � x 2 's.v/uMinf:

Proof. Clearly the stated condition is necessary. To prove sufficiency, assume the above
condition for �p

s
. By the fixed-point interpretation of the condition (Cr0s) as in Lemma 3.5,

it is clear that the analogous condition holds for every element g 2 h�p
s
i.

Next, let us assume that g is an element of Gal.Kp1;1=Kp1;s/, the p-adic closure
of h�p

s
i. Then g D limn �

psan , with the sequence of integers .an/ p-adically convergent.
For x 2 f .MBK/, by continuity we have g.x/ � x D limn.�

psan.x/ � x/, which is equal
to limn '

s.v/uyn with yn 2 Minf. Since the sequence .yn/ is still convergent (using the
fact that the .p;E.u//-adic topology is the .p; 's.v/u/-adic topology, and that p; 's.v/u
is a regular sequence on Minf), we have that g.x/ � x D 's.v/uy where y D limn yn.

To conclude, note that a general element g of yGs can be written in the form g D g1g2
where g1 2 Gal.Kp1;1=Kp1;s/ and g2 2 Gal.Kp1;1=K1/. Then for x 2 f .MBK/, by
the assumption f .MBK/�M

G1
inf we have g1g2.x/� x D g1.x/� x, and so the condition

(Cr0s) is proved by the previous part.

Let us now discuss some basic algebraic properties of the conditions (Crs) and (Cr0s).
The basic situation when they are satisfied is the inclusion S ,! Ainf itself.

Lemma 3.7. The pair S ,! Ainf satisfies the conditions (Cr0s) (hence also (Crs)) for all
s � 0.

Proof. Note that S ,! Ainf satisfies the assumptions of Lemma 3.6, so it is enough to
consider the action of the element �p

s
2 yGs . For an element f D

P
i aiu

i 2 S we have

�p
s

.f / � f D
X
i�0

ai
�
.v C 1/p

s

u
�i
�

X
i�0

aiu
i
D

X
i�1

ai
�
.v C 1/p

s i
� 1

�
ui ;
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and thus,

�p
s
.f / � f

's.v/u
D

X
i�1

ai
.v C 1/p

s i � 1

's.v/
ui�1 D

X
i�1

ai
.v C 1/p

s i � 1

.v C 1/p
s
� 1

ui�1:

Since 's.v/ D .v C 1/p
s
� 1 divides .v C 1/p

s i � 1 for each i , the obtained series has
coefficients in Ainf, showing that �p

s
.f / � f 2 's.v/uAinf as desired.

The following lemma shows that in various contexts, it is often sufficient to verify the
conditions (Crs) and (Cr0s) on generators.

Lemma 3.8. Fix an integer s � 0. Let (C) be either the condition (Crs) or (Cr0s).

(1) Let Minf be an Ainf-module with a GK-Ainf-semilinear action. The set of all (C)-
elements forms an S-submodule of Minf.

(2) Let Cinf be an Ainf-algebra endowed with a GK-semilinear action. The set of (C)-
elements of Cinf forms an S-subalgebra of Cinf.

(3) If the algebra Cinf from (2) is additionally Ainf-ı-algebra such that GK acts by
ı-maps (i.e., ıg D gı for all g 2 GK) then the set of all (C)-elements forms a
S-ı-subalgebra of Cinf.

(4) If the algebra Cinf as in (2) is additionally classically .p; E.u//-complete and
CBK ! Cinf is a map of S-algebras that satisfies the condition (C), then so does
bCBK ! Cinf, where bCBK is the classical .p; E.u//-completion of CBK. In partic-
ular, the set of all (C)-elements in Cinf forms a classically .p; E.u//-complete
S-subalgebra of Cinf.

Proof. Let J be the ideal Is if (C) = (Crs) and the ideal 's.v/uAinf if (C) = (Cr0s). In
view of Lemma 3.5, the sets described in (1) and (2) are obtained as the preimages
of .Minf=JMinf/

Gs (.Cinf=JCinf/
Gs , resp.) under the canonical map Minf ! Minf=JMinf

(Cinf! Cinf=JCinf, resp.). As these Gs-fixed points form an S-module (S-algebra, resp.)
by Lemma 3.7, this proves (1) and (2).

Similarly, to prove (3) we need to prove only that the ideal JCinf is a ı-ideal and
therefore the canonical projection Cinf ! Cinf=JCinf is a map of ı-rings.

Let us argue first in the case (Cr0s). As ı.u/ D 0, we have

ı
�
's.v/u

�
D ı

�
's.v/

�
up D

'
�
's.v/

�
�
�
's.v/

�p
p

up D
'sC1.v/ �

�
's.v/

�p
p

up:

Recall that 's.v/ D Œ"�p
s
� 1 divides 'sC1.v/ D .Œ"�p

s
/p � 1. The numerator of the

last fraction is thus divisible by 's.v/ and since 's.v/Ainf \ pAinf D 's.v/pAinf by
Lemma 2.3, 's.v/ divides the whole fraction .'sC1.v/ � .'s.v//p/=p in Ainf. (We note
that this is true for every integer s, in particular s D �1, as well.)
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Let us now prove that the ideal J D Is (hence also IsCinf) is a ı-ideal. For any i
between 0 and s � 1, we have

ı.�s;i / D ı
�
'�1.v/'iC1.!/ � � �'s.!/

�
D
'�1.v/!'iC2.!/ � � �'sC1.!/ � '�1.v/p'iC1.!/p � � �'s.!/p

p
:

The numerator is divisible by �s;iC1, and so is the whole fraction thanks to Lemma 2.3.
Thus, we have that ı.�s;iup

i
/ D ı.�s;i /u

piC1 is a multiple of �s;iC1up
iC1

. Finally, when
i D s, we have �s;s D '�1.v/, and ı.�s;s/ is thus a multiple of �s;s by the previous. Conse-
quently, ı.�s;sup

s
/ D ı.�s;s/u

psC1 is divisible by �s;sup
s
. This shows that Is is a ı-ideal.

Finally, let us prove (4). Note that E.u/ � ue .mod pS/, henceq�
p;E.u/

�
D
p
.p; ue/ D

p
.p; u/

even as ideals of S; consequently, .p; E.u//-completions agree with .p; u/-completions
both for S- and Ainf-modules. We may therefore replace .p; E.u//-completions with
.p; u/-completions throughout.

Since Cinf is .p; u/-complete, any power series of the form

f D
X
i;j

ci;jp
iuj

with ci;j 2 Cinf defines a unique element f 2 Cinf, and f comes from bCBK if and only if
the coefficients ci;j may be chosen in the image of the map CBK ! Cinf. Assuming this,
for g 2 Gs we have

g.f / � f D
X
i;j

g.ci;j /p
i .
u/j �

X
i;j

ci;jp
iuj

D

X
i;j

�
g.ci;j /


j
� g.ci;j /C g.ci;j / � ci;j

�
piuj ;

where 
 is the Ainf-unit such that g.u/ D 
u. Thus, it is clearly enough to show, upon
assuming the condition (C) for .CBK; Cinf/, that the terms .g.ci;j /
j � g.ci;j //piuj and
.g.ci;j /� ci;j /p

iuj are in JCinf when g 2 Gs . (Note that an element d D
P
i;j di;jp

iuj

with di;j 2 JCinf is itself in JCinf, since J is finitely generated.)
Since g.ci;j /� ci;j 2 JCinf by assumption, it remains to treat the term g.ci;j /.


j � 1/.
Since .
j � 1/ is divisible by 
 � 1, it is also divisible by 's.v/ by Lemma 3.7. Thus, the
terms g.ci;j /.
j � 1/piuj are divisible by 's.v/u when j � 1, and are 0 when j D 0;
in either case, they are members of JCinf.

To prove the second assertion of (4), let now CBK � Cinf be the S-subalgebra of all
.C/-elements. By the previous, the map bCBK ! Cinf satisfies (C), and hence the image
CCBK of this map consists of (C)-elements. Thus, we have CBK � C

C
BK � CBK, and hence,

CBK is derived .p;E.u//-complete since so is CCBK. However, as a subring of Cinf it is also
separated for the .p;E.u//-adic topology, hence it is classically .p;E.u//-complete.
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For future use in applications topn-torsion modules,we consider the following approx-
imation of the ideals Is appearing in the conditions (Crs).

Lemma 3.9. Consider a pair of integers n; s with s � 0, n� 1. Set t Dmax¹0; sC 1� nº.
Then Is � '�1.v/up

t
Ainf C p

nAinf.

Proof. When t D 0 there is nothing to prove, therefore we may assume that

t D s C 1 � n > 0:

In the definition of Is , we may replace the elements

�s;i D '
�1.v/'iC1.!/'iC2.!/ � � �'s.!/

by the elements

� 0s;i D '
�1.v/'iC1

�
E.u/

�
'iC2

�
E.u/

�
� � �'s

�
E.u/

�
;

since the quotients �s;i=� 0s;i are Ainf-units.
It is thus enough to show that for every i with 0 � i � s, the element

#s;i D
� 0s;iu

pi

'�1.v/
D 'iC1

�
E.u/

�
'iC2

�
E.u/

�
� � �'s

�
E.u/

�
up

i

taken modulo pn is divisible by up
sC1�n

.
This is clear when i � sC 1� n, and so it remains to discuss the cases when i � s � n.

Write 'j .E.u// D .ue/p
j
C pxj (with xj 2 S). Then it is enough to show that

#s;i

up
i
D
�
.ue/p

iC1

C pxiC1
��
.ue/p

iC2

C pxiC2
�
� � �
�
.ue/p

s

C pxs
�

(�)

taken modulo pn is divisible by

up
sC1�n�pi

D up
i .p�1/.1CpC���Cps�n�i /:

Since we are interested in the product (�) only modulo pn, in expanding the brackets we
may ignore the terms that use the expressions of the form pxj at least n times. Each of
the remaining terms contains the product of at least s � i � nC 1 distinct terms from the
following list:

.ue/p
iC1

; .ue/p
iC2

; : : : ; .ue/p
s

:

Thus, each of the remaining terms is divisible by (at least)

.ue/p
iC1CpiC2C���Cps�nC1

D .ue/p
i �.p/�.1CpC���Cps�n�i /;

which is more than needed. This finishes the proof.
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3.2. Crystalline condition for Breuil–Kisin–Fargues GK -modules

The situation of central interest for the crystalline condition is the inclusionMBK �M
G1
inf

such that Ainf ˝S MBK !Minf is an isomorphism, where MBK is a Breuil–Kisin module
and Minf is a Breuil–Kisin–Fargues GK-module. The version of these notions used in this
paper is tailored to the context of prismatic cohomology.

Definition 3.10. Breuil–Kisin(–Fargues, resp.) modules are defined as follows.

(1) A Breuil–Kisin module consists of a finitely generated S-moduleM together with
a SŒ1=E.u/�-linear isomorphism

' D 'MŒ1=E�W .'
�
SM/

�
1=E.u/

� �
�!M

�
1=E.u/

�
:

For a positive integer i , the Breuil–Kisin module M is said to be of height � i
if 'MŒ1=E� is induced (by linearization and localization) by a 'S-semilinear map
'M WM !M such that, denoting 'linW'

�M !M its linearization, there exists an
S-linear map  WM ! '�M such that both the compositions  ı 'lin and 'lin ı 

are multiplication by E.u/i . A Breuil–Kisin module is of finite height if it is of
height � i for some i .

(2) A Breuil–Kisin–Fargues module is a finitely presented Ainf-module M such that
MŒ1=p� is a free AinfŒ1=p�-module, together with an AinfŒ1=E.u/�-linear isomor-
phism

' D 'MŒ1=E�W .'
�
Ainf
M/

�
1=E.u/

� �
�!M

�
1=E.u/

�
:

Similarly, the Breuil–Kisin–Fargues module is of height � i if 'MŒ1=E� comes
from a 'Ainf -semilinear map 'M WM !M admitting an Ainf-linear map  WM !
'�M such that  ı 'lin and 'lin ı  are multiplication maps by E.u/i , where 'lin

is the linearization of 'M . A Breuil–Kisin–Fargues module is of finite height if it
is of height � i for some i .

(3) A Breuil–Kisin–Fargues GK-module (of height � i , of finite height, resp.) is
a Breuil–Kisin–Fargues module (of height � i , of finite height, resp.) that is
additionally endowed with a continuous, Ainf-semilinear GK-action that makes
'MŒ1=E� GK-equivariant (that makes also 'M GK-equivariant in the finite height
cases).

That is, the definition of a Breuil–Kisin module agrees with the one in [4], andMinf is a
Breuil–Kisin–Fargues module in the sense of the above definition if and only if '�Ainf

Minf is
a Breuil–Kisin–Fargues module in the sense of [4].10 The notion of Breuil–Kisin module
of height � i agrees with what is called “(generalized) Kisin modules of height i” in [24].

10This is to account for the fact that while Breuil–Kisin–Fargues modules in the sense of [4] appear as
Ainf-cohomology groups of smooth proper formal schemes, Breuil–Kisin–Fargues modules in the above
sense appear as prismatic Ainf-cohomology groups of smooth proper formal schemes.
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The above notion of finite height Breuil–Kisin–Fargues modules agrees with the one from
[14, Appendix F] except that the modules are not assumed to be free. Also note that under
these definitions, for a Breuil–Kisin module MBK (of height � i , resp.), the Ainf-module
Minf D Ainf˝S MBK is a Breuil–Kisin–Fargues module (of height� i , resp.), without the
need to twist the embedding S! Ainf by '.

The connection between Breuil–Kisin-, Breuil–Kisin–Fargues GK-modules and the
crystalline condition (justifying its name) is the following theorem.

Theorem 3.11 ([14, Appendix F], [20]). Let Minf be a free Breuil–Kisin–Fargues GK-
module which admits as an S-submodule a free Breuil–Kisin module MBK � M

G1
inf of

finite height, such that Ainf ˝S MBK
�
�!Minf (as Breuil–Kisin–Fargues modules) via the

natural map, and such that the pair .MBK;Minf/ satisfies the crystalline condition. Then
the étale realization of Minf,

V.Minf/ D
�
W.C[K/˝Ainf Minf

�'D1� 1
p

�
;

is a crystalline representation.

Remarks 3.12. In more detail, Theorem 3.11 relates to the results of [14, 20] as follows.

(1) Theorem 3.11 is actually an equivalence: If V.Minf/ is crystalline, it can be shown
that the pair .MBK;Minf/ satisfies the crystalline condition. We state the theorem in
the one direction since this is the one that we use. However, the converse direction
motivates why it is reasonable to expect the crystalline condition for prismatic
cohomology groups that is discussed in Section 4.

(2) Strictly speaking, in [14, Appendix F] one assumes extra conditions on the pair
Minf (“satisfying all descents”); however, these extra assumptions are used only
for a semistable version of the statement. Theorem 3.11 in its equivalence form is
therefore only implicit in the proof of [14, Theorem F.11]. (See also [28, Theo-
rem 3.8] for a closely related result.)

(3) On the other hand, Theorem 3.11 in the one-sided form as above is a consequence
of [20, Proposition 7.11] that states that V.Minf/ is crystalline if and only if the
weaker condition

8g 2 GK W .g � 1/MBK � '
�1.v/W.mO

C
[
K

/Minf

is satisfied.

It will be convenient later to have version of Theorem 3.11 that applies to not neces-
sarily free Breuil–Kisin and Breuil–Kisin–Fargues modules. Recall that, by [4, Proposti-
tion 4.3], any Breuil–Kisin module MBK is related to a free Breuil–Kisin module MBK;free

by a functorial exact sequence

0!MBK;tor !MBK !MBK;free !MBK ! 0;
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where MBK;tor is a pn-torsion module for some n and MBK is supported at the maximal
ideal .p; u/. Taking the base-change to Ainf, one obtains an analogous exact sequence

0!Minf;tor !Minf !Minf;free !Minf ! 0

(also described by [4, Proposition 4.13]) where Minf;free is a free Breuil–Kisin–Fargues
module. Clearly the maps MBK ! MBK;free and Minf ! Minf;free become isomorphisms
after inverting p.

Assume that Minf is endowed with a GK-action that makes it a Breuil–Kisin–Fargues
GK-module.

By the functoriality of the latter exact sequence, one obtains an induced GK-action on
Minf;free, making it a free Breuil–Kisin–Fargues GK-module and the map Minf !Minf;free

GK-equivariant. Note that this map becomes an isomorphism of '-GK-modules after
inverting p.

Proposition 3.13. Assume that the pair MBK ,! Minf satisfies the crystalline condition.
Then so does the pair MBK;free ,!Minf;free.

Proof. Notice that the crystalline condition is satisfied forMBKŒ1=p�!MinfŒ1=p� and by
[4, Propositions 4.3, 4.13], this map can be identified withMBK;freeŒ1=p� ,!Minf;freeŒ1=p�.
Thus, the following lemma finishes the proof.

Lemma 3.14. Let Finf be a free Ainf-module endowed with Ainf-semilinear GK-action
and let FBK � Finf be a free S-submodule such that FBK Œ1=p� ,! FinfŒ1=p� satisfies the
crystalline condition. Then the pair FBK ,! Finf satisfies the crystalline condition.

Proof. Fix an element a 2 FBK and g 2 GK . The crystalline condition holds after invert-
ing p, and so we have the equality

b WD .g � 1/a D '�1.v/u
c

pk

with c 2 Finf. In other words (using that pk is a non-zero divisor on Finf), we have

pkb D '�1.v/uc 2 pkFinf \ '
�1.v/uFinf D p

k'�1.v/uFinf;

where the last equality follows by Lemma 2.3 since Finf is a free module. In particular, we
have

pkb D pk'�1.v/ud

for yet another element d 2 Finf. As pk is a non-zero divisor on Ainf, hence on Finf, we
may cancel out to conclude

.g � 1/a D b D '�1.v/ud 2 '�1.v/uFinf;

as desired.
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Proposition 3.13 leads to the following strengthening of Theorem 3.11.

Theorem 3.15. The “free” assumption in Theorem 3.11 is superfluous. That is, given a
Breuil–Kisin–Fargues GK-module Minf and a Breuil–Kisin S-submodule MBK � M

G1
inf

of finite height such thatAinf˝S MBK
�
�!Minf and such that the pair .MBK;Minf/ satisfies

the crystalline condition, the representation

V.Minf/ D
�
W.C[K/˝Ainf Minf

�'D1� 1
p

�
is crystalline.

Proof. With the notation as above, upon realizing that V.Minf/ and V.Minf;free/ agree, the
result is a direct consequence of Proposition 3.13.

4. Conditions (Crs) for cohomology

4.1. Conditions (Crs) for Čech–Alexander complexes

Let X be a smooth separated p-adic formal scheme over OK . R��.XOCK
=Ainf/ comes

with a natural GK-action by functoriality of cohomology, which we now discuss in detail.

Definition 4.1. For g 2GK , the semilinear map gWR��.XOCK
=Ainf/! R��.XOCK

=Ainf/

is given as follows.

(0) As XOCK
comes from X=OK , there is a canonical identification of g�XOCK

with
XOCK

as a formal OCK -scheme. In more detail, there is a Cartesian square of the
form

XOCK
XOCK

SpfOCK SpfOCK :

Qg

s0 s0

g

(where s0WXOCK
! SpfOCK is the structure map). From now on, let us denote the

map Qg again simply by g. Note that for an affine open V D Spf.R/ � X and V0 D

VOCK
� XOCK

, one again has g�V0 canonically identified with V0 (even as formal
subschemes of XOCK

), and the resulting map gWV0 ! V0 is described in terms of
coordinate rings asR y̋OK OCK !R y̋OK OCK , x˝ a 7! x˝ g.a/ (equivalently,
the canonical isomorphism V0

�
�! g�V0 is given by the map of coordinate rings

R y̋OK OCK ˝OCK;g
OCK ! R y̋OK OCK , x ˝ a˝ b 7! x ˝ g.a/b).

(1) The map gWXOCK
! XOCK

from the previous step induces a (continuous and co-
continuous) functor of sites gW .XOCK

=Ainf/
q

�
! .XOCK

=Ainf/
q

�
given as follows.

An object described by .Ainf; .�//! .B; �B/ and Spf.B=�B/! XOCK
is sent

to the object obtained by the compositions .Ainf; .�//
g
�! .Ainf; .�//! .B; �B/

and Spf.B=�B/! XOCK

g
�! XOCK

. Let us denote this object by g�.B; �B/ for
brevity.
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(2) The pullback functor

g�1WShv.XOCK
=Ainf/

q

�
! Shv.XOCK

=Ainf/
q

�

(as in [32, 00XN]) sends a sheaf F 2 Shv.XOCK
=Ainf/

q

�
to the sheaf g�1F , which

takes any object .B; �B/ of .XOCK
=Ainf/

q

�
to F .g�.B; �B//. In particular, the

sheaf O D O� is mapped to the sheaf g�1O, which takes an object .B; �B/ 2
.XOCK

=Ainf/
q

�
to g�B (i.e., B viewed as an Ainf-algebra via Ainf

g
�! Ainf ! B).

(3) For any sheaf F 2 Shv.XOCK
=Ainf/

q

�
, there is an induced map of global sections

�.XOCK
; F / ! �.XOCK

; g�1F / (sending a section � ! F to � D g�1� !

g�1F ) and hence, a map R�.XOCK
;F /! R�.XOCK

; g�1F /. Taking F D O,
we get a map R�.XOCK

;O/! R�.XOCK
; g�1O/ (tautologically Ainf-linear when

the Ainf-action on g�1O is induced by the Ainf-action on O).

(4) Finally, there is a morphism of sheaves g�1O!O (making the morphism of sites
g from step (1) into a morphism of ringed sites) given by the “identity map”

.g�1O/
�
.B; �B/

�
D g�B

id
�! B D O

�
.B; �B/

�
on every .B; �B/ 2 .XOCK

=Ainf/
q

�
(the map can, thus, be thought of as an Ainf-

g-semilinear identification of g�1O with O). Composing the map from step (3)
with the map on global sections induced by g�1O ! O, the result is an Ainf-g-
semilinear map gW R�.XOCK

;O/! R�.XOCK
;O/, which is the map defining the

action of g on R�.XOCK
;O/ D R��.XOCK

=Ainf/.

The resulting action can be described in terms of a (suitably chosen) Čech–Alexander
complex modelling R��.XOCK

=Ainf/. Roughly speaking, this is due to the pullback func-
toriality of Čech complexes together with an initial choice of a cover that is stable under
the natural GK-action.

Construction 4.2. Denote by LC �BK a Čech–Alexander complex that models R��.X=S/.
Denote the affine open cover of X used in the construction of LC �BK by VD¹Vj ºj , and the
chosen compatible prismatic covers by . LCVj1;:::;jn

;E.u/ LCVj1;:::;jn
/. Set LC �infD

LC �BK y̋S Ainf,
computed termwise – by Remark 2.23, this is a Čech–Alexander complex modelling
R��.XOCK

=Ainf/, associated similarly with the affine open cover V0 D ¹V0j ºj , obtained
by base-change of ¹Vj ºj along OK ! OCK . Likewise, denote the associated prismatic
covers . LCVj1;:::;jn

y̋S Ainf; � LCVj1;:::;jn
y̋S Ainf/ simply by . LCV0j1;:::;jn

; � LCV0j1;:::;jn
/.

Further, denote the coordinate ring of Vj1;:::;jn by Rj1;:::;jn and of V0j1;:::;jn by R0j1;:::;jn ,
respectively. Let us denote by Pj1;:::;jn ! Rj1;:::;jn the initial choices of surjective maps
from .p; E.u//-completely free S-algebras made in the construction of prismatic covers
(Construction 2.11; but note that these are chosen compatibly in the sense of Proposi-
tion 2.15), and by P 0j1;:::;jn ! R0j1;:::;jn the .p; E.u//-completed base change to Ainf. By
Remark 2.17, we may assume that the set of variables for each of the underlying poly-



Crystalline condition for Ainf-cohomology and ramification bounds 173

nomial algebras is finite. Although not strictly necessary at this stage, we do make this
assumption from now on.

For g 2 GK , denote by g�V0 the affine open cover ¹g�V0j ºj of XOCK
, and denote by

g�. LCV0j1;:::;jn
; � LCV0j1;:::;jn

/ the pullback of

. LCV0j1;:::;jn
; � LCV0j1;:::;jn

/ 2 .XOCK
=Ainf/

q

�

(that is, the object given by the prism g� LCV0j1;:::;jn
D LCV0j1;:::;jn

y̋Ainf;g Ainf and where the

map Spf. LCV0j1;:::;jn
=� LCV0j1;:::;jn

/ ! XOCK
is base-changed along XOCK

g
�! XOCK

). These
assemble into a simplicial object g�NV0 obtained by applying g� termwise toNV0 (equiv-
alently, this is Ng�V0 , the Čech nerve of the cover h

g� LCV0
j

! �). Consider now the

following.

(1) For a sheaf F on .XOCK
=Ainf/

q

�
, a section s 2 F .. LCV0j1;:::;jn

; � LCV0j1;:::;jn
// corre-

sponds by Yoneda lemma to a map of sheaves fs W h. LCV0
j1;:::;jn

;� LCV0
j1;:::;jn

/
! F .

Taking pullback by g yields a map

g�1fs Wg
�1h

. LCV0
j1;:::;jn

;� LCV0
j1;:::;jn

/
! g�1F ;

where g�1h
. LCV0

j1;:::;jn
;� LCV0

j1;:::;jn
/

is naturally isomorphic to h
g�. LCV0

j1;:::;jn
;� LCV0

j1;:::;jn
/
.

This yields a section

g�1s 2 g�1F
�
g�
�
LCV0j1;:::;jn

; � LCV0j1;:::;jn

��
:

The resulting assignment s 7! g�1s induces a map of chain complexes

LC �.NV0 ;F /! LC �.g�NV0 ; g
�1F /:

Taking F DO, one obtains a map LC �infD
LC �.NV0 ;O/! LC

�.g�NV0 ; g
�1O/. Un-

wrapping all the definitions, this morphism is the canonical map LC �inf ! g�g
� LC �inf

given by x 7! x ˝ 1 (but note that it is Ainf-linear thanks to g� on the right).

(2) From the map of sheaves of rings g�1O! O from Definition 4.1 (4), one obtains
a map LC �.g�NV0 ; g

�1O/ ! LC �.g�NV0 ;O/. This map pre-composed with the
map from step (1) yields the (Ainf-g-semilinear) canonical map LCinf ! g� LCinf

given by x 7! x ˝ 1.

(3) The cover g�V0 is, in fact, canonically isomorphic to the cover V0 as outlined in
Definition 4.1 (0). Moreover, the prismatic covers g�. LCV0j1;:::;jn

; � LCV0j1;:::;jn
/ are also

canonically isomorphic to the prismatic covers . LCV0j1;:::;jn
; � LCV0j1;:::;jn

/ of V0j1;:::;jn .
To see this, note that the completed polynomial algebra P 0j1;:::;jn comes from a
polynomial W.k/-algebra P 0j1;:::;jk D W.k/Œ¹Xiºi � by the .p; �/-completed base-
change � y̋W.k/ Ainf. The algebra g�.P 0j1;:::;jk ˝W.k/ Ainf/ is then canonically
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identified, as an Ainf-algebra, with P 0j1;:::;jk ˝W.k/ Ainf, for the same reasons as in
Definition 4.1 (0). In particular, the canonical isomorphism

P 0j1;:::;jk˝W.k/Ainf˝Ainf;gAinfD g
�.P 0j1;:::;jk˝W.k/Ainf/! .P 0j1;:::;jk˝W.k/Ainf/

is given by f ˝ a˝ b 7! f ˝ g.a/b; if we treat g�AinfŒ¹Xiºi � on the left as the
polynomial algebra AinfŒ¹Xiºi � with twisted Ainf-action, the map takes the formP
i aiX

i 7!
P
i g.ai /X

i .
This, in particular, agrees with the canonical isomorphism g�R0j1;:::;jn!R0j1;:::;jn ,
i.e., there is a commutative square

g�P 0j1;:::;jn ˝W.k/ Ainf g�R0j1;:::;jn

P 0j1;:::;jn ˝W.k/ Ainf R0j1;:::;jn ;

where the horizontal maps come from P 0j1;:::;jn !R0j1;:::;jn and its g-twist, and the
vertical maps are the canonical isomorphisms just described. Taking .p; �/-adic
completion, one thus obtains the commutative diagram with exact rows

0 g�.JP 0j1;:::;jn/ g�P 0j1;:::;jn g�R0j1;:::;jn 0

0 JP 0j1;:::;jn P 0j1;:::;jn R0j1;:::;jn 0:

Taking ı-envelopes and prismatic envelopes as in Construction 2.11, one obtains a
canonical isomorphism of prisms g�. LCV0j1;:::;jn

; � LCV0j1;:::;jn
/
�
�!. LCV0j1;:::;jn

; � LCV0j1;:::;jn
/

over Ainf. Moreover, the maps from R0j1;:::;jn to LCV0j1;:::;jn
=� LCV0j1;:::;jn

as in Con-
struction 2.11 are also clearly compatible, i.e., there is a commutative square

g�R0j1;:::;jn g� LCV0j1;:::;jn
=�.g� LCV0j1;:::;jn

/

R0j1;:::;jn
LCV0j1;:::;jn

=� LCV0j1;:::;jn
;

where the vertical maps are the canonical maps. This shows that the canonical
isomorphism g�. LCV0j1;:::;jn

; � LCV0j1;:::;jn
/! . LCV0j1;:::;jn

; � LCV0j1;:::;jn
/ is in fact an iso-

morphism of objects of .XOCK
=Ainf/

q

�
(in the opposite direction in the variance

of the site). Moreover, since this isomorphism is functorial in the maps P 0 ! R0

(or, more precisely, in the map of sets X ! R0 where X is the given chosen set
of free variables of P 0, cf. Remark 2.16), these isomorphisms assemble to an iso-
morphism of simplicial objects NV0 ! Ng�V0 .
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(4) Finally, given F 2 Shv.XOCK
=Ainf/

q

�
, the canonical isomorphism NV0 ! Ng�V0

yields an isomorphism LC �.Ng�V0 ;F /! LC �.NV0 ;F /; in particular, for F D O

one obtains an isomorphism g� LC �inf !
LC �inf. Composing the maps from steps (1)

and (2) with this map yields the Ainf-g-semilinear action map gW LC �inf !
LC �inf.

Proposition 4.3. Definition 4.1 and Construction 4.2 are compatible, that is, the action-
by-g map gWR��.XOCK

=Ainf/! R��.XOCK
=Ainf/ from Definition 4.1 is modelled by the

action map gW LC �inf !
LC �inf from Construction 4.2.

Proof. Just like in the proof of Proposition 2.21, we invoke proofs of [32, 079Z, 03OW].
That is, upon choosing a resolution O ! 	� by injective abelian sheaves, there is a dia-
gram

R��.XOCK
=Ainf/ D �.�;	

�/
a
�! LC �.NV0 ;	

�/
˛
 � LC �.NV0 ;O/ D LC

�
inf;

where

• ˛ is the natural map to the left (zeroth) column (i.e., 	�.qj . LCVj //) of the double
complex LC �.NV0 ; 	

�/, and becomes a quasi-isomorphism after totalization of this
double complex,

• a is the map to the bottom (zeroth) row (i.e., LC �.NV0 ; 	
0/) of the double complex

LC�.NV0;	
�/ induced by the map of sheaves O!	0, and becomes a quasi-isomorphism

after totalization of the double complex.

This diagram can be extended to the commutative diagram

�.�;	�/ LC �.NV0 ;	
�/ LC �.NV0 ;O/

�.�; g�1	�/ LC �.Ng�V0 ; g
�1	�/ LC �.Ng�V0 ; g

�1O/

�.�;	�/ LC �.Ng�V0 ;	
�/ LC �.Ng�V0 ;O/

LC �.NV0 ;	
�/ LC �.NV0 ;O/;

˛


1 d1

a

c1

˛1


2 d2

a1

c2

˛2

˛
d3 c3

a2

a

where

(1) The map 
1 is the pullback map from Definition 4.1 (3) (applied to the complex of
sheaves 	�) and, in parallel, the maps d1; c1 are the pullback of sections operation
on Čech complexes described in Construction 4.2 (1) (applied to the complex of
sheaves 	� and to O, respectively).

(2) The complex of sheaves g�1	� is an injective resolution of g�1O (e.g. because
the sheaf pullback functor g�1 is an auto-equivalence on the category of abelian
sheaves on .XOCK

=Ainf/
q

�
) and thus, one can choose a lift l W g�1	� ! 	� of
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the map of sheaves g�1O ! O from Definition 4.1 (4). Then the maps 
2; d2
are obtained from l (by functoriality of global sections and of the Čech complex
formation, resp.) and likewise, c2 is obtained by applying the Čech construction
to the original map g�1O ! O.

(3) The maps d3; c3 are induced by the isomorphism of Čech nerves NV0 ! Ng�V0

described in Construction 4.2 (3).

(4) The maps ˛i ; ai are the natural maps into zeroth column and row, resp., defined
analogously to ˛ and a but for different complex of sheaves (g�1O ! g�1	�)
and/or different choice of the Čech nerve (Ng�V0 ).

The composition 
2
1 is the map g on R��.XOCK
=Ainf/ described in Definition 4.1

while the composition c3c2c1 is the map g on LC �inf. After totalization of the double com-
plex LC �.NV0 ;	

�/, the maps a; ˛ become quasi-isomorphisms (altogether, the canonical
quasi-isomorphism between cohomology and the Čech–Alexander complex), showing
that c3c2c1 models the map g on R��.XOCK

=Ainf/.

As a consequence of Construction 4.2, the Galois action on the complex LC �inf is fairly
explicit. In particular, we have the following properties.

Corollary 4.4. Let us keep the notation from Definition 4.1 and Construction 4.2.

(1) The Galois action on each term LC n�1inf makes each direct factor LCV0j1;:::;jn
GK-

stable and, in fact, for every g 2 GK , the map gW LC n�1inf ! LC n�1inf is the direct
product of the maps gW LCV0j1;:::;jn

! LCV0j1;:::;jn
on these direct factors.

(2) On each such LCV0j1;:::;jn
, the action is given by (Ainf-semilinear) maps of prisms.

Moreover, if ¹Xiºi is the free basis of the polynomial algebra used in construction
of LCV0j1;:::;jn

(as in Remark 2.16), then g.Xi / D Xi for all g 2 GK and all i .

Proof. In terms of the notation from proof of Proposition 4.3, the map c2c1W LC �inf! g� LC �inf
has the explicit description x 7! x ˝ 1 (cf. Construction 4.2 (2)) and thus, it is a direct
product of maps LCV0j1;:::;jn

! g� LCV0j1;:::;jn
, x 7! x ˝ 1, which are g-semilinear maps of

prisms. Moreover, it is easy to see that this map is obtained from the commutative square

P 0j1;:::;jn R0j1;:::;jn

g�P 0j1;:::;jn g�R0j1;:::;jn

x 7!x˝1 x 7!x˝1

by the functorial construction of prismatic covers (Construction 2.11). The map c3 has
also the product form from its definition, and is obtained by the functoriality of prismatic
covers from the square

g�P 0j1;:::;jn g�R0j1;:::;jn

P 0j1;:::;jn R0j1;:::;jn ;

where the vertical maps are the canonical isomorphisms described in Construction 4.2 (3).
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Altogether, the map g D c3c2c1W LC n�1inf ! LC n�1inf therefore decomposes as a product
of maps gW LCV0j1;:::;jn

! LCV0j1;:::;jn
, proving part (1). Furthermore, these are maps of prisms

since they are functorially obtained from the composite square

P 0j1;:::;jn R0j1;:::;jn

g�P 0j1;:::;jn g�R0j1;:::;jn

P 0j1;:::;jn R0j1;:::;jn

x 7!x˝1 x 7!x˝1

by functoriality of Construction 2.11. Moreover, for the free basis ¹Xiºi used in the con-
struction, it is easy to see that the left vertical mapP 0j1;:::;jn!P 0j1;:::;jn sends eachXi toXi
(in fact, the vertical map is obtained from the endomorphism

P
˛ a˛X

˛
7!
P
˛ g.a˛/X

˛

of the polynomial algebra AinfŒ¹Xiºi � by .p; �/-completion). This proves part (2).

With the Galois action on LC �inf established, our next aim is to prove the following.

Theorem 4.5. For every m � 0 and s 2 N [ ¹1º, the pair LCmBK !
LCminf satisfies the con-

dition (Crs).

By Corollary 4.4, Theorem 4.5 immediately reduces to the case of a single prismatic
cover LCV0j1;:::;jn

. Let us fix a choice of this cover (i.e., fix n, multi-index j1; : : : ; jn, and

consider LCV0j1;:::;jn
, appearing in LC �inf as a direct factor). To simplify notation from the one

previously used, let us omit the multi-index everywhere, i.e.,

Spf.R/D VD Vj1;:::;jn ; Spf.R0/D V0 D V0j1;:::;jn ; P D Pj1;:::;jn ; P 0 D P 0j1;:::;jn ; : : :

and so on. Let us denote the basis used for constructing the map P ! R, by ¹Xiº D
¹X1; X2; : : : ; Xmº. That is, the map P ! R is obtained from the map AinfŒ¹Xiºi �! R

by .p;E.u//-completion on the left. Further, let us denote�
LCBK;E.u/ LCBK

�
D
�
LCj1;:::;jn ;E.u/

LCj1;:::;jn
�
;

�
LCinf;E.u/ LCinf

�
D
�
LC 0j1;:::;jn ;E.u/

LC 0j1;:::;jn

�
:

It is now enough to verify the following:

Proposition 4.6. The pair LCBK! LCinf satisfies the conditions (Crs) for every s2N[¹1º.

Proof. Fix a generating set y1; y2; : : : ; yl of J D Ker.P ! R/, and set P1 D cP ı , P 01 D
1.P 0/ı . Using the weak ı-blowup construction from Section 2.2, we obtain a commutative
diagram

4
P1

°
y

E.u/

±
cl 4

P 01

°
y

E.u/

±
cl

LCBK LCinf;

� � 0
(4.1)
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where the vertical maps are the surjective maps from Proposition 2.25, and the horizontal
maps come from the .p;E.u//-completed base change � y̋S Ainf. In particular, LCBK and
LCinf are .p; E.u//-adically topologically generated as an S-ı-algebra and Ainf-ı-algebra,

resp., by

X1; X2; : : : ; Xm; t1 D �
�
y1=E.u/

�
; t2 D �

�
y2=E.u/

�
; : : : ; tl D �

�
yl=E.u/

�
:

By Lemma 3.8 (3), (4), it is enough to check the conditions for these generators. By Corol-
lary 4.4, we have g.Xi / D Xi for all i . Regarding the action on tj ’s, note that tj 2 LCinf is
the unique element with

tjE.u/ D yj :

Thus, for g 2 GK we obtain
g.tj /
E.u/ D g.yj /;

where 
 is the Ainf-unit such that g.E.u// D 
E.u/. Note that, since yj 2 JP 0 and
JP 0 DKer.P 0!R0/ isGK-stable (under the action considered e.g. in the proof of Corol-
lary 4.4, compatible with the GK-action on LCinf), g.yj / 2 JP 0. Consequently, there exists
a (necessarily unique) rj 2 LCinf with rjE.u/D g.yj /, given by rj D � 0.g.yj /=E.u//. We
may therefore write

g.tj / D 

�1rj :

Let us now fix an integer s 2 N[ ¹1º and verify (Crs) for the above fixed generators.
Since the elements Xi satisfy g.Xi / � Xi D 0 for every g 2 Gs , these are in fact (Cr0s)-
elements; by Lemma 3.8, so are the elements y1; y2; : : : ; yn since they come from the
S-algebra topologically generated by X1; : : : ; Xm, i.e., from the image of P in LCBK.
From now on, let us denote this image simply by P , and similarly, refer to the image of
P 0 in LCinf simply as P 0.

Let us now fix an index 1 � j � l and verify (Crs) for tj . For an element g 2 Gs , we
may write g.yj /� yj D 's.v/uzj D �s;0uE.u/ Qzj for some zj ; Qzj 2 P 0 (that are equal up
to a multiplication by an Ainf-unit). Similarly, we have

g�1
�
E.u/

�
�E.u/ D .
�1 � 1/E.u/ D 's.v/ua D �s;0uE.u/ Qa

with a; Qa 2 Ainf (again equal up to a unit).
Thus, we have that

g.tj / � tj D 

�1rj � tj D �

0

�

�1g.yj / � yj

E.u/

�
D � 0

�

�1g.yj / � 


�1yj C 

�1yj � yj

E.u/

�
D 
�1� 0

�
g.yj / � yj

E.u/

�
C .
�1 � 1/� 0

�
yj

E.u/

�
D 
�1�s;0u Qzj C �s;0u Qayj 2 Is LCinf:

This shows that each of the remaining generators tj is a (Crs)-element, which finishes the
proof.
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4.2. Consequences for cohomology groups

Let us now use Theorem 4.5 to draw some conclusions for individual cohomology groups.
The first is the crystalline condition for the prismatic cohomology groups and its conse-
quence for p-adic étale cohomology. As before, let X be a separated smooth p-adic formal
scheme over OK . Denote by XAinf the base change X �OK OCK D X �S Ainf, and by Xx�
the geometric adic generic fiber.

Corollary 4.7. For every i � 0, the pair Hi
�
.X=S/! Hi

�
.XAinf=Ainf/ satisfies the con-

ditions (Cr0) and (Cr1).

Proof. By the results of Section 2.2, we may and do model the cohomology theories by
the Čech–Alexander complexes

LC �BK !
LC �inf D

LC �BK y̋S Ainf;

and by Theorem 4.5 the conditions (Cr0) and (Cr1) termwise hold for this pair. The
condition (Cr1) for Hi

�
.X=S/ � Hi

�
.X=Ainf/ thus follows immediately, and it remains

to verify the condition (Cr0).
Each of the terms LC iinf is .p;E.u//-completely flat overAinf, which means in particular

that the terms LC iinf are torsion-free by Corollary 2.4. Denote the differentials on LC �BK;
LC �inf

by @ and @0, resp.
To prove the crystalline condition for cohomology groups, it is clearly enough to verify

the condition at the level of cocycles. Given x 2 Zi . LC �BK/, denote by x0 its image in
Zi . LC �inf/. For g 2GK we have g.x0/� x0D '�1.v/uy0 for some y0 2 LC iinf. As g.x0/� x0 2
Zi . LC �inf/, we have

'�1.v/u@0.y0/ D @0
�
'�1.v/uy0

�
D 0;

and the torsion-freeness of LC iC1inf implies that @0.y0/ D 0. Thus, y0 2 Zi . LCinf/ as well,
showing that g.x0/ � x0 2 '�1.v/uZi . LC �inf/, as desired.

When X is proper over OK , we use Corollary 4.7 to reprove the result from [4] that
the étale cohomology groups Hiét.Xx�;Qp/ are in this case crystalline representations.

Corollary 4.8. Assume that X is additionally proper over OK . Then for any i � 0, the
p-adic étale cohomology Hiét.Xx�;Qp/ is a crystalline representation.

Proof. It follows from [6, Theorem 1.8] (and faithful flatness of Ainf=S) that MBK D

Hi
�
.X=S/ and Minf D Hi

�
.XAinf=Ainf/ are Breuil–Kisin and Breuil–Kisin–Fargues mod-

ules, resp., such that Minf DMBK ˝S Ainf. Moreover, Minf has the structure of a Breuil–
Kisin–Fargues GK-module with

V.Minf/ WD
�
W.C[K/˝Ainf Minf

�'D1� 1
p

�
' Hiét.Xx�;Qp/

asGK-representations. By Corollary 4.7, the pair .MBK;Minf/ satisfies all the assumptions
of Theorem 3.15. The claim thus follows.



P. Čoupek 180

For the purposes of obtaining a bound on ramification of p-torsion étale cohomology
in Section 5, let us recall the notion of torsion prismatic cohomology as defined in [24],
and discuss the consequences of the conditions (Crs) in this context.

Definition 4.9. Given a bounded prism .A; I / and a smooth p-adic formal scheme X over
A=I , the pn-torsion prismatic cohomology of X is defined as

R��;n.X=A/ D R��.X=A/
L
˝Z Z=p

nZ:

We denote the cohomology groups of R��;n.X=A/ by Hi
�;n
.X=A/ (and refer to them as

pn-torsion prismatic cohomology groups).

Proposition 4.10. Let s � 0, n � 1 be a pair of integers. Set t D max¹0; s C 1 � nº.
Then the torsion prismatic cohomology groups Hi

�;n
.X=S/! Hi

�;n
.XAinf=Ainf/ satisfy

the following:

8g 2 Gs W .g � 1/Hi
�;n
.X=S/ � '�1.v/up

t

Hi
�;n
.XAinf=Ainf/:

Proof. The proof is a slightly refined variant of the proof of Corollary 4.7. Consider again
the associated Čech–Alexander complexes over S and Ainf,

LC �BK !
LC �inf D

LC �BK y̋S Ainf:

Both of these complexes are given by torsion-free, hence Z-flat, modules by Corol-
lary 2.4. Consequently, R��;n.X=S/ is modelled by LC �BK;n WD

LC �BK=p
n LC �BK, and similarly

for R��;n.XAinf=Ainf/ and LC �inf;n D
LC �inf=p

n LC �inf. That is, the considered maps between
cohomology groups are obtained as the maps on cohomology for the base-change map of
chain complexes

LC �BK;n !
LC �inf;n D

LC �BK;n y̋S Ainf;

and as in the proof of Corollary 4.7, it is enough to establish the desired condition for the
respective groups of cocycles.

Set ˛ D '�1.v/up
t
. Note that by Lemma 3.9, the condition (Crs) for the pair of com-

plexes LC �BK;n !
LC �inf;n implies the condition

8g 2 Gs W .g � 1/ LC �BK;n � ˛
LC �inf;n

(meant termwise as usual), and since the terms of the complex LC �inf are .p;E.u//-complete
and .p; E.u//-completely flat, ˛ is a non-zero divisor on the terms of LC �inf;n by Corol-
lary 2.4.

So pick any element x 2 Zi . LC �BK;n/. The image x0 of x in LC iinf;n lies in Zi . LC �inf;n/ and
for any chosen g 2 Gs we have g.x0/ � x0 D ˛y0 for some y0 2 LC iinf;n. Now g.x0/ � x0

lies in Zi . LC �inf;n/, so ˛y0 D g.x0/ � x0 satisfies

0 D @0.˛y0/ D ˛@0.y0/:

Since ˛ is a non-zero divisor on LC iC1inf;n , it follows that @0.y0/ D 0, that is, y0 lies in
Zi . LC �inf;n/. We thus infer that g.x0/ � x0 D ˛y0 2 ˛Zi . LC �inf;n/, as desired.
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5. Ramification bounds for mod p étale cohomology

5.1. Ramification bounds

We are ready to discuss the implications to the question of ramification bounds for mod
p étale cohomology groups Hiét.Xx�;Z=pZ/ when X is smooth and proper p-adic formal
scheme over OK .

We define an additive valuation v[ on O[
CK

by v[.x/ D v.x]/ where v is the valuation
on OCK normalized so that v.�/ D 1, and .�/]WO[

CK
! OCK is the multiplicative lift of

pr0WO
[
CK
! OCK=p. This way, we have v[.�/ D 1 and v[." � 1/ D pe=.p � 1/. For a

real number c � 0, denote by a>c (a�c , resp.) the ideal of O[
CK

formed by all elements x
with v[.x/ > c (v[.x/ � c, resp.).

Similarly, we fix an additive valuation vK ofK normalized by vK.�/D 1. Then for an
algebraic extension L=K and a real number c � 0, we denote by a>cL the ideal consisting
of all elements x 2 OL with vK.x/ > c (and similarly, for “�” as well).

For a finite extensionsM=F=K and a real numberm � 0, let us recall (a version of11)
Fontaine’s property .PM=Fm /:

.P
M=F
m / For any algebraic extensionE=F , the existence of an OF -algebra map OM!

OE=a
>m
E implies the existence of an F -injection of fields M ,! E.

We also recall the upper ramification numbering in the convention used in [10]. For
G D Gal.M=F / and a non-negative real number �, set

G.�/ D
®
g 2 G j vM

�
g.x/ � x

�
� � 8x 2 OM

¯
;

where vM is again the additive valuation of M normalized by vM .M�/ D Z.
For t � 0, set

�M=F .t/ D

Z t

0

ds
ŒG.1/ W G.s/�

(which makes sense asG.s/ �G.1/ for all s > 0). Then �M=F is a piecewise-linear increas-
ing continuous concave function. Denote by M=F its inverse, and setG.�/DG. M=F .�//.

Denote by �M=F the infimum of all � � 0 such that G.�/ D ¹idº, and by �M=F the
infimum of all � � 0 such that G.�/ D ¹idº. Clearly one has �M=F D �M=F .�M=F /.

Remark 5.1. If GS-.�/; GF-.�/ are the upper-index ramification groups in [31] and [15],
resp., and similarly GS-.�/ and GF-.�/ are the corresponding lower-index ramification
groups, then we have

G.�/ D GS-.��1/
D GF-.�/; G.�/ D GS-.��1/ D GF-.�=Qe/;

where Qe D eM=F is the ramification index of M=F .

11Fontaine’s original condition uses the ideals a�mE instead. Up to changing some inequalities from “<”
to “�” and vice versa, the conditions are fairly equivalent.
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In particular, the claims that lower indexing is compatible with restrictions to sub-
groups and upper indexing is compatible with passing to quotients remain valid. Thus, it
make sense to set

G
.�/
F D lim

 �
M 0=F

Gal.M 0=F /.�/;

where M 0=F varies over finite Galois extensions M 0=F contained in a fixed algebraic
closure xK of K (and GF D lim

 �M 0=F
Gal.M 0=F / is the absolute Galois group).

Regarding �, the following transitivity formula is useful.

Lemma 5.2 ([10, Lemma 4.3.1]). Let N=M=F be a pair of finite extensions with both
N=F and M=F Galois. Then we have �N=F D max.�M=F ; �M=F .�N=M //.

The property .PM=Fm / is connected with the ramification of the field extension M=F
as follows.

Proposition 5.3. Let M=F=K be finite extensions of fields with M=F Galois and let
m > 0 be a real number. If the property .PM=Fm / holds, then:

(1) ([35, Proposition 3.3]) �M=F � eF=Km. In fact, �M=F =eF=K is the infimum of all
m > 0 such that .PM=Fm / is valid.

(2) ([10, Corollary 4.2.2]) vK.DM=F / < m, where DM=F is the different of the exten-
sion M=F .

Corollary 5.4. Both the assumptions and the conclusions of Proposition 5.3 are insensi-
tive to replacing F by any unramified extension of F contained in M .

Proof. Let F 0=F be an unramified extension such that F 0 � M . The fact that .PM=Fm /

is equivalent to .PM=F
0

m / is proved in [35, Proposition 2.2]. To show that also the con-
clusions are the same for F and F 0, it is enough to observe that eF 0=K D eF=K ; eM=F 0 D
eM=F , vK.DM=F 0/ D vK.DM=F / and �M=F 0 D �M=F . The first two equalities are clear
since F 0=F is unramified. The third equality follows from DM=F DDM=F 0DF 0=F , since
DF 0=F is the unit ideal. Finally, by Lemma 5.2, we have

�M=F D max
�
�F 0=F ; �F 0=F .�M=F 0/

�
:

As F 0=F is unramified, we have �F 0=F D 0 and �F 0=F .t/ D t for all t � 0. The fourth
equality thus follows as well.

Let X be a proper and smooth p-adic formal scheme over OK . Fix the integer i , and
denote by T 0 the Galois module Hiét.Xx�;Z=pZ/. Let L be the splitting field of T 0, i.e.,
L D xKKer� where �WGK ! AutFp .T

0/ is the associated representation. The goal is to
provide an upper bound on vK.DL=K/, and a constant �0 D �0.e; i; p/ such that G.�/K

acts trivially on T 0 for all � > �0.
We follow rather closely the strategy of [10], but replacing the datum of .'; yG/-module

in [10] by a pair consisting of a p-torsion Breuil–Kisin module and a Breuil–Kisin–
Fargues GK-module that arise from the p-torsion prismatic S- and Ainf-cohomology,
whose relation to T 0 is described below.
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Proposition 5.5 ([24, Proposition 7.2, Corollary 7.4, Remark 7.5]). Let X be a smooth
and proper p-adic formal scheme over OK . Then

(1) MBK D Hi
�;n
.X=S/ is a pn-torsion Breuil–Kisin module of height � i , and we

have

Hiét.Xx�;Z=p
nZ/ ' Tn.MBK/ WD

�
MBK ˝Wn.k/JuK Wn.C

[
K/
�'D1

as Z=pnZŒG1�-modules.

(2) Minf D Hi
�;n
.XAinf=Ainf/ is a pn-torsion Breuil–Kisin–Fargues GK-module of

height � i , and we have

Hiét.Xx�;Z=p
nZ/ ' Tn.Minf/ WD

�
Minf ˝Wn.O

C
[
K
/ Wn.C

[
K/
�'D1

as Z=pnZŒGK �-modules.

(3) We have MBK ˝S Ainf DMBK ˝Wn.k/JuK Wn.OC[K
/ 'Minf, and the natural map

MBK ,!Minf has the image contained in MG1
inf .

Given the parallel with the strategy of [10], we refer to the proofs in loc. cit. whenever
possible, and describe the needed modifications where necessary. We note that while [10,
21] are concerned with the case p > 2, the arguments and results we will use apply for
p D 2 as well, with identical proofs. (To facilitate this approach further, the notation used
will usually closely reflect the notation of [10].)

Setting M 0
BK D Hi

�;1
.X=S/, M 0

inf D Hi
�;1
.XAinf=Ainf/, we have

T 0 D Hiét.Xx�;Z=pZ/ D T
inf
1 .M

0
inf/ D T1.M

0
BK/:

Moreover, since u is a unit in W1.C[K/ D C[K , we have

T1.M
0
BK/ D T1.MBK/ and T inf

1 .M
0
inf/ D T

inf
1 .Minf/;

whereMBK DM
0
BK=M

0
BKŒu

1� andMinf DM
0
inf=M

0
infŒu

1� are again a Breuil–Kisin mod-
ule and a Breuil–Kisin–FarguesGK-module, resp., of height� i . The isomorphismMinf'

MBK ˝S Ainf still remains true, and the pair .MBK;Minf/ satisfies the conditions

8g 2 Gs 8x 2MBKW g.x/ � x 2 '�1.v/up
s

Minf (5.1)

for all s � 0, since the pair .M 0
BK; M

0
inf/ satisfies the analogous conditions by Proposi-

tion 4.10. Finally, the module MBK is finitely generated and u-torsion-free kJuK-module,
hence a finite free kJuK-module (and, consequently, Minf is a finite free O

C[K
-module).

Instead of using T 0 D T1.Minf/ D Hiét.Xx�;Z=pZ/ directly, we work instead with the
dual module

T WD T
�;inf
1 .Minf/ D HomAinf;'.Minf;OC[K

/ ' Hiét.Xx�;Z=pZ/
_:
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This is equivalent, as the splitting field of T is still L. Note that

T ' T �1 .MBK/ D HomS;'.MBK;OC[K
/

as a Z=pZŒG1�-module.

Remark 5.6 (Ramification bounds of [9]). Similarly to the discussion above we may take,
for any n � 1, M 0

BK D Hi
�;n
.X=S/, and MBK DM

0
BK=M

0
BKŒu

1�. Then the G1-module

T WD T �n .MBK/ D HomS;'

�
MBK; Wn.OC[K

/
�

is the restriction of Hiét.Xx�;Z=p
nZ/_ to G1. Denoting by OE the p-adic completion of

SŒ1=u�, ME WD MBK ˝S OE then becomes an étale '-module over OE in the sense of
[16, Section A], with the natural map MBK ! ME injective; thus, in terminology of [9],
MBK serves as a '-lattice of height dividing E.u/i . Upon observing that T is the G1-
representation associated with ME (see e.g. [9, Section 2.1.3]), Theorem 2 of [9] implies
the ramification bound

�L=K � 1C c0.K/C e
�
s0.K/C logp.ip/

�
C

e

p � 1
:

Here c0.K/, s0.K/ are constants that depend on the field K and that generally grow with
increasing e. (Their precise meaning is described in Section 5.2.)

We employ the following approximations of the functors T �1 and T �;inf
1 .

Notation 5.7. For a real number c � 0, we define

Jc.MBK/ D HomS;'.MBK;OC[K
=a>c/;

J inf
c .Minf/ D HomAinf;'.Minf;OC[K

=a>c/:

We further set J1.MBK/DT
�
1 .MBK/ and J inf

1 .Minf/DT
�;inf
1 .Minf/. Given c; d 2R�0[¹1º

with c�d , we denote by �c;d WJc.MBK/!Jd .MBK/ (�inf
c;d
WJ inf
c .Minf/!J

inf
d
.Minf/, resp.)

the map induced by the quotient map O
C[K
=a>c ! O

C[K
=a>d .

SinceMinf'MBK˝SAinf as '-modules, it is easy to see that for every c2R�0[¹1º,
we have a natural isomorphism �c WJc.MBK/

'
�! J inf

c .Minf/ of abelian groups; the biggest
point of distinction between the two is that J inf

c .Minf/ naturally attains GK-action from
the one on Minf by the rule

g.f /.x/ WD g
�
f
�
g�1.x/

��
; g 2 GK ; f 2 J

inf
c .Minf/; x 2Minf:

On Jc.MBK/, there is a natural action given similarly by the formula g.f /.x/ WD
g.f .x// where f 2 Jc.MBK/ and x 2 MBK. However, in order for this action to make
sense, one needs that each g.f / defined this way is still an S-linear map, which comes
down to requiring that g.u/ D u (that is, g.�/ D �) in the ring O

C[K
=a>c . This condition

holds for g 2 Gs for s depending on c as follows.
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Proposition 5.8 ([10, Proposition 2.5.3]). Let s � 0 be an integer with s > logp.
c.p�1/
ep

/.
Then the natural action of Gs on O

C[K
=a>c induces an action of Gs on Jc.MBK/. Fur-

thermore, when d � c, the map �c;d WJc.MBK/! Jd .MBK/ is Gs-equivariant, and when
s0 � s, theGs0 -action on Jc.MBK/ defined in this manner is the restriction of theGs-action
to Gs0 .

The crucial connection between the actions on Jc.MBK/ and J inf
c .Minf/ is established

using (the consequences of) the conditions (Crs).

Proposition 5.9. For

s > max
²

logp

�
c.p � 1/

ep

�
; logp

�
c �

e

p � 1

�³
;

the natural isomorphism �c WJc.MBK/
'
�! J inf

c .Minf/ is Gs-equivariant.

Proof. Identifying Minf with MBK ˝S Ainf, �c takes the form f 7! Qf where

Qf .x ˝ a/ WD af .x/; x 2MBK; a 2 Ainf:

Note that we have '�1.v/up
s
O
C[K
D a�p

sCe=.p�1/. The condition (5.1) then states that

for all x 2MBK and all g 2 Gs , g.x ˝ 1/� x ˝ 1 lies in a�p
sCe=.p�1/Minf and therefore

in a>cMinf thanks to the assumption on s. It then follows that for every Qf 2 J inf
c .Minf/,

Qf .g.x ˝ 1// D Qf .x ˝ 1/, and hence

g. Qf /.x ˝ a/ D g
�
Qf
�
g�1.x ˝ a/

��
D g

�
g�1.a/ Qf

�
g�1.x ˝ 1/

��
D ag

�
Qf .x ˝ 1/

�
D ag

�
f .x/

�
for every g 2 Gs , x 2 MBK and a 2 Ainf. Thus, we have that g. Qf / DAg.f / for every
g 2 Gs and f 2 Jc.MBK/, proving the equivariance of �c .

From now on, set b WD ie=.p � 1/ and a WD iep=.p � 1/. Then T is determined by
Ja.M/; Jb.M/ in the following sense.

Proposition 5.10. Keeping all the previous notation, we have:

(1) The map �1;b WT �1 .MBK/! Jb.MBK/ is injective, with the image being precisely
the subgroup �a;b.Ja.MBK// of Jb.MBK/.

(2) Similarly, the map �inf
1;b
WT
�;inf
1 .Minf/! J inf

b
.Minf/ is injective with �inf

1;b
.Minf/D

�inf
a;b
.J inf
a .Minf//.

(3) For s > logp.i/, T
�
1 .MBK/ has a natural action of Gs that extends the usual G1-

action.

(4) For s>max.logp.i/; logp..i�1/e=.p�1///, the action from (3) agrees with T jGs .

Proof. Part (1) is proved in [10, Proposition 2.3.3]. Then T �1 .MBK/ attains the action of
Gs with s > logp.i/ by identification with �a;b.Ja.MBK// and using Proposition 5.8 (see
also [10, Theorem 2.5.5]), which proves (3). Finally, the proof of (2), (4) is analogous
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to [10, Corollary 3.3.3] and [10, Theorem 3.3.4]. Explicitly, consider the commutative
diagram

T �1 .MBK/ Ja.MBK/ Jb.MBK/

T
�;inf
1 .Minf/ J inf

a .Minf/ J inf
b
.Minf/;

�1;a

� �1 � �a

�a;b

� �b

�inf
1;a

�inf
a;b

where the composition of the rows gives �1;b and �inf
1;b

, resp. This immediately proves
(2) using (1). Finally, the map �inf

1;b
is GK-equivariant, the map �1;b is (tautologically)

Gs-equivariant for s > logp.i/ by the proof of (3), and both maps are injective. Since �b
is Gs-equivariant when s > logp..i � 1/e=.p � 1// by Proposition 5.9, it follows that so
is �1, which proves (4).

We employ further approximations of Jc.MBK/ defined as follows.

Notation 5.11. Let s � 0 be an integer. Consider a real number c 2 Œ0; eps/ and an alge-
braic extension E=Ks . We consider the ring

.'sk/
�OE=a

>c=ps

E D k ˝'s
k
;k OE=a

>c=ps

E

(note that the condition on c implies that p 2 a
>c=ps

E , making OE=a
>c=ps

E a k-algebra).
We endow this ring with an S-algebra structure via

S
modp
���! kJuK

˛
�! .'sk/

�OE=a
>c=ps

E

where ˛ extends the k-algebra structure map by the rule u 7! 1˝ �s . Then we set

J .s/;Ec .MBK/ D HomS;'

�
MBK; .'

s
k/
�OE=a

>c=ps

E

�
:

In the case when E=Ks is Galois, the module J .s/;Ec .MBK/ attains a Gs-action induced
by the Gs-action on OE=a

>c=ps

E .
When c; d are two real numbers satisfying eps > c � d � 0, there is an obvious

transition map �.s/;E
c;d

.MBK/W J
.s/;E
c .MBK/ ! J

.s/;E

d
.MBK/, which is Gs-equivariant in

the Galois case.

The relation to Jc.MBK/ is the following.

Proposition 5.12. Let s; c be as above. Then

(1) Given an algebraic extensionE=Ks , J
.s/;E
c .MBK/ naturally embeds into Jc.MBK/

as a submodule (Gs-submodule when E=Ks is Galois).

(2) Given a tower of algebraic extensions F=E=Ks , J
.s/;E
c .MBK/ naturally embeds

into J .s/;Fc .MBK/ as a submodule (Gs-submodule if both E=Ks and F=Ks are
Galois).

(3) J .s/;
xK

c .MBK/ is naturally isomorphic to Jc.MBK/ as a Gs-module.
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Proof. Part (2) follows from the observation that the map OE=a
>c=ps

E ! OF =a
>c=ps

F

induced by the inclusion OE ,! OF remains injective (and is clearly Gs-equivariant in
the Galois case). Similarly, part (3) follows from the fact that the map

prs WOC[K
D lim
 �
s;'

O xK=p ! O xK=p

induces a (Gs-equivariant) isomorphism O
C[K
=a>c!.'s

k
/�O xK=a

>c=ps

xK
when s>logp.c=e/

(so a fortiori when s > logp.c/), which is proved in [10, Lemma 2.5.1]. Part (1) is then
obtained as a direct combination of (2) and (3).

For a non-negative integer s, denote by Ls the composite of the fields Ks and L.
The following adaptation of Theorem 4.1.1 of [10] plays a key role in establishing the
ramification bound.

Theorem 5.13. Let E=Ks be an algebraic extension where s is an integer satisfying

s >M0 WD max
²

logp

�
a

e

�
; logp

�
b �

e

p � 1

�³
D max

²
logp

�
ip

p � 1

�
; logp

�
.i � 1/e

.p � 1/

�³
:

Then the inclusion �.s/;E
a;b

.J
.s/;E
a .MBK// ,! �a;b.Ja.MBK//, facilitated by the inclusions

J
.s/;E
a .MBK/ ,! Ja.MBK/ and J .s/;E

b
.MBK/ ,! Jb.MBK/ from Proposition 5.12, is an

isomorphism if and only if Ls � E.

Proof. The proof of [10, Theorem 4.1.1] applies in our context as well, as we now explain.
In [10, Section 4.1], for every F=Ks algebraic, an auxiliary set zJ .s/;F1 .MBK/ is con-
structed, together with maps of sets

z�.s/;Fc W zJ
.s/;F
1 .MBK/! J .s/;Fc .MBK/ for every c 2 .0; eps/:

Notably, the construction relies only on the fact that MBK is a Breuil–Kisin module that
is free over kJuK and the assumption s > logp.a=e/. When F is Galois over K, this set is
naturally a Gs-set and the maps are Gs-equivariant. Moreover, the sets have the property
that . zJ .s/;F1 .MBK//

GF 0 D zJ
.s/;F 0

1 .MBK/ when F=F 0=Ks is an intermediate extension.
Subsequently, it is shown in [10, Lemma 4.1.4] that

z�
.s/;F

b
is injective and its image is �.s/;F

a;b

�
J .s/;Fa .MBK/

�
; (�)

where the only restriction on s is again s > logp.a=e/.
Finally, one obtains a series of Gs-equivariant bijections:

zJ
.s/; xK
1 .MBK/ ' �

.s/; xK

a;b

�
J .s/;

xK
a .MBK/

�
.by (�)/

' �a;b
�
Ja.MBK/

�
.Proposition 5.12 .3//

' �inf
a;b.J

inf
a

�
Minf/

�
.Proposition 5.9/

' T .Proposition 5.10 .2//



P. Čoupek 188

(where the next-to-last step relies on the assumption s > logp.b � e=.p � 1//). Applying
.�/GE to both sides and using (�) again then yields

�
.s/;E

a;b

�
J .s/;Ea .MBK/

�
' T GE :

Therefore, we may replace the inclusion from the statement of the theorem by the inclu-
sion T GE � T , and the claim now easily follows.

Finally, we are ready to establish the desired ramification bound. Let Ns D Ks.�ps /
be the Galois closure of Ks over K, and set Ms D LsNs . Then we have

Proposition 5.14. Let s be as in Theorem 5.13, and set m D a=ps . Then the properties
.P

Ls=Ks
m / and .PMs=Ns

m / hold.

Proof. The proof of .PLs=Ksm / is the same as in [10], which refers to an older version of
[21] for parts of the proof. Let us therefore reproduce the argument for convenience. By
Corollary 5.4, it is enough to prove .PLs=K

un
s

m / whereKun
s denotes the maximal unramified

extension of Ks in Ls .
Let E=Kun

s be an algebraic extension and f WOLs ! OE=a
>m
K be an OKun

s
-algebra

map. Setting c D a or c D b, one can consider an induced map

fc WOLs=a
>c=ps

Ls
! OE=a

>c=ps

K ;

and we claim is that this map is well defined and injective.
Indeed, let $ be a uniformizer of Ls , satisfying the relation

$e0
D c1$

e0�1
C c2$

e0�2
C � � � C ce0�1$ C ce0 ;

where P.T / D T e
0

�
P
i ciT

e0�i is an Eisenstein polynomial over Kun
s . Applying f one

thus obtains te
0

D
P
i ci t

e0�i in OE=a
>m
K where t D f .$/, and thus, lifting t to Qt 2 OE ,

we obtain the equality

Qte
0

D c1 Qt
e0�1
C c2 Qt

e0�2
C � � � C ce0�1 Qt C ce0 C r

with vK.r/ > m > 1=ps . It follows that vK.Qt / D vK.$/ D 1=pse0, and so $n 2 a
>c=ps

Ls

if and only if Qtn 2 a
>c=ps

E , proving that fc is both well defined as well as injective.
The map fc then induces a k-algebra injection .'s

k
/�OLs=a

>c=ps

Ls
,! .'s

k
/�OE=a

>c=ps

E

which in turn gives an injection J .s/;Lsc .MBK/! J
.s/;E
c .MBK/, where c D a or c D b;

consequently, we obtain an injection

�
.s/;Ls
a;b

�
J .s/;Lsa .MBK/

�
,! �

.s/;E

a;b

�
J .s/;Ea .MBK/

�
:

Combining this with Propositions 5.10 and 5.12, we have the series of injections

�
.s/;Ls
a;b

�
J
.s/;Ls
b

.MBK/
�
,! �

.s/;E

a;b

�
J
.s/;E

b
.MBK/

�
,! �

.s/; xK

a;b

�
J
.s/; xK

b
.MBK/

�
,! �a;b

�
Jb.MBK/

�
' T:
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Since �.s/;Ls
a;b

.J
.s/;Ls
b

.MBK//'T by Theorem 5.13, this is actually an injection T ,!T ,
hence an isomorphism since T is finite. In particular, the natural morphism

�
.s/;E

a;b

�
J
.s/;E

b
.MBK/

�
,! �a;b

�
Jb.MBK/

�
is an isomorphism, and Theorem 5.13 thus implies that Ls � E. This finishes the proof
of (1).

Similarly as in [10], the property .PMs=Ns
m / is deduced from .P

Ls=Ks
m / as follows.

Given an algebraic extension E=Ns and an ONs -algebra morphism OMs ! OE=a
>m
E , by

restriction we obtain an OKs -algebra morphism OLs ! OE=a
>m
E and thus, there is a Ks-

injection Ls! E. AsNs � E, this can be extended to aKs-injectionMs! E, and since
the extension Ms=Ks is Galois, one obtains an Ns-injection Ms ! E by precomposing
with a suitable automorphism of Ms .

Theorem 5.15. Let

˛ D bM0c C 1 D

�
logp

�
max

²
ip

p � 1
;
.i � 1/e

p � 1

³��
C 1:

Then

(1) vK.DL=K/ < 1C e˛ C
iep

p˛.p�1/
�

1
p˛

.

(2) For any � satisfying

� > 1C e˛ Cmax
²

iep

p˛.p � 1/
�

1

p˛
;

e

p � 1

³
;

G
.�/
K acts trivially on T .

Proof. We may set s D ˛ as the condition s > M0 is then satisfied. Propositions 5.3 and
5.14 then imply that vK.DLs=Ks / < a=p

s (where a D iep=.p � 1/) and thus

vK.DLs=K/ D vK.DKs=K/C vK.DLs=Ks / < 1C es �
1

ps
C

a

ps
D 1C e˛ C

a � 1

p˛
:

Similarly, we have vK.DL=K/DvK.DLs=K/�vK.DLs=L/�vK.DLs=K/, and the claim (1)
thus follows.

To prove (2), let Ms and Ns be as in Proposition 5.14. The fields Ns and Ms D LNs
are both Galois over K, hence Lemma 5.2 applies and we thus have

�Ms=K D max
®
�Ns=K ; �Ns=K.�Ms=Ns /

¯
:

By [21, Remark 5.5], we have

�Ns=K D 1C es C
e

p � 1
:

As for the second argument, Proposition 5.3 gives the estimate

�Ms=Ns � eNs=Km D
eNs=K

ps
a:
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The function �Ns=K.t/ is concave and has a constant slope 1=eNs=K beyond t D
�Ns=K , where it attains the value �Ns=K.�Ns=K/ D �Ns=K D 1C es C e=.p � 1/. Thus,
�Ns=K.t/ can be estimated linearly from above as follows:

�Ns=K.t/� 1C esC
e

p � 1
C

1

eNs=K
.t � �Ns=K/D 1C esC

t

eNs=K
�
�Ns=K

eNs=K
C

e

p � 1
:

There is an automorphism � 2Gal.Ns=K/with �.�s/D �p�s . That is, vK.�.�s/��s/D
e=.p � 1/C 1=ps , showing that

�Ns=K � eNs=K

�
e

p � 1
C

1

ps

�
;

and combining this with the estimate of �Ns=K.t/, we obtain

�Ns=K.t/ � 1C es C
t

eNs=K
�
1

ps
:

Plugging in the estimate for �Ms=Ns then yields

�Ns=K.�Ms=Ns / � 1C es C
a

ps
�
1

ps
D 1C es C

iep
p�1
� 1

ps
:

Thus, we have

�L=K � �Ms=K � 1C e˛ Cmax
²

iep

p˛.p � 1/
�

1

p˛
;

e

p � 1

³
;

which finishes the proof of part (2).

5.2. Comparisons of bounds

Finally, let us compare the bounds obtained in Theorem 5.15 with other results from the
literature. These are summarized in the table below.

�L=K � � � �

Theorem 5.15 1C e
��

logp
�

max
®
ip
p�1

; .i�1/e
p�1

¯�˘
C 1

�
Cmax

®
ˇ; e

p�1

¯
, ˇ < min.e; 2p/12

Caruso–Liu [10] 1C e
��

logp
�
ip
p�1

�˘
C 1

�
Cmax

®
ˇ; e

p�1

¯
, ˇ < e13

Caruso [9] 1C c0.K/C e
�
s0.K/C logp.ip/

�
C

e
p�1

Hattori [21]

´
1C e C e

p�1
; i D 1;

1C e C ei
p�1
�

1
p
; i > 1;

under ie < p � 1

Abrashkin [1],
Fontaine [17]

1C i
p�1

, under e D 1, i < p � 1

Table 1. Comparisons of estimates of �L=K .

12More precisely: When i D 1, it is easy to see that ˇD .eip=.p� 1/� 1/=p˛ is smaller than e=.p� 1/,
and hence does not have any effect. When i > 1, one can easily show using p˛ > ip=.p � 1/; p˛ >

.i � 1/e=.p � 1/ that ˇ < e and ˇ < pi=.i � 1/ � 2p.
13The number ˇ here has different meaning than the number ˇ of [10, Theorem 1.1].
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Comparison with [21]. If we assume ie < p � 1, then the first maximum in the estimate
of �L=K is realized by ip=.p � 1/ 2 .1; p/; that is, in Theorem 5.15 one has ˛ D 1 and
thus,

�L=K � 1C e Cmax
²
ei

p � 1
�
1

p
;

e

p � 1

³
;

which agrees precisely with the estimate [21].

Comparison with [1,17]. Specializing to e D 1 in the previous case, the bound becomes

�L=K �

8<: 2C 1
p�1

; i D 1;

2 � 1
p
C

i
p�1

i > 1:

This is clearly a slightly worse bound than that of [17] and [1] (by 1 and .p � 1/=p,
respectively).

Comparison with [10]. From the shape of the bounds it is clear that the bounds are
equivalent when .i � 1/e � ip, that is, when e � p and some “extra” cases that include
the case when i D 1 (more precisely, these extra cases are when e > p and i � e=.e � p/),
and in fact, the terms ˇ in such situation agree. In the remaining case when .i � 1/e > ip,
our estimate becomes gradually worse compared to [10].

Remarks 5.16. Several explanations regarding this comparison are in order.

(1) It should be noted that the bounds from [10] do not necessarily apply to our situa-
tion as it is not clear when Hiét.Xx�;Z=pZ/ (or rather their duals) can be obtained as
a quotient of two lattices in a semistable representation with Hodge–Tate weights
in Œ0; i �. To our knowledge the only result along these lines is [13, Theorem 1.3.1]
that states that this is indeed the case when i D 1 (and X is a proper smooth vari-
ety over K with semistable reduction). Interestingly, in this case the bound from
Theorem 5.15 always agrees with the one from [10].

(2) Let us point out that the verbatim reading of the bound from [10] as described
in Theorem 1.1 of loc. cit. would have the term dlogp.ip=.p � 1//e (i.e., upper
integer part) instead of the term blogp.ip=.p � 1//c C 1 as in Table 1, but we
believe this version to be correct. Indeed, the proof of Theorem 1.1 in [10] (in
the case n D 1) ultimately relies on the objects J .s/;E1;a .M/ that are analogous
to J .s/;Ea .MBK/, where s D dlogp.ip=.p � 1//e. In particular, Lemma 4.2.3 of
loc. cit. needs to be applied with c D a, and the implicitly used fact that the ring
OE=a

>a=ps

E is a k-algebra (i.e., of characteristic p) relies on the strict inequality
e > a=ps , equivalently s > logp.ip=.p � 1//. In the case that ip=.p � 1/ happens
to be equal to pt for some integer t , one therefore needs to take s D t C 1 rather
than s D t . This precisely corresponds to the indicated change.

Comparison with [9]. Let us explain the constants s0.K/, c0.K/ that appear in the esti-
mate. The integer s0.K/ is the smallest integer s such that 1C psZp � �.Gal.Kp1=K//
where � denotes the cyclotomic character. The rational number c0.K/ � 0 is the small-
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est constant c such that  K=K0.1 C t / � 1 C et � c (this exists since the last slope of
 K=K0.t/ is e).14

In the case when K=K 0 is tamely ramified, the estimate from [9] becomes

�L=K � 1C e
�

logp.ip/C 1
�
C

e

p � 1
;

which is fairly equivalent to the bound from Theorem 5.15 when e < p (and again also in
some extra cases, e.g. when i D 1 for any e and p), with the difference of estimates being
approximately

e

�
logp

�
p

p � 1

�
�

1

p � 1

�
2

�
�

e

4
p
p
; 0

�
:

When e is big and coprime to p, the bound in [9] becomes gradually better unless e.g.
i D 1.

WhenK has relatively large wild absolute ramification, we expect that the bound from
Theorem 5.15 generally becomes stronger, especially ifK contains pn-th roots of unity for
large n, as can be seen in the following examples (where we assume i > 1; for i D 1, our
estimate retains the shape of the tame ramification case and hence the difference between
the estimates becomes even larger).

Example 5.17. Let i > 0 be an integer. Consider the base field K as follows.

(1) When K D Qp.�pn/ for n � 2, one has e D .p � 1/pn�1, s0.K/ D n and from
the classical computation of  K=Qp (e.g. as in [31, IV Section 4]), one obtains

c0.K/ D
�
.n � 1/.p � 1/ � 1

�
pn�1 C 1:

The difference between the two estimates is thus approximately

ne � pn�1 C 1 > .n � 1/e:

(2) WhenK D Qp.p1=p
n
/ for n � 3, one has e D pn and s0.K/D 1. The description

of  K=Qp in [10, Section 4.3] implies that c0.K/ D npn D ne. The difference
between the two estimates is thus approximately

e
�
1C logp.i/ � logp.i � 1/C logp.p � 1/

�
� 2e:

(In the cases nD 1; 2, one can check that the difference is still positive and bigger
than p.)

Acknowledgments. I would like to express my gratitude to my Ph.D. advisor Tong Liu
for suggesting the topic of this paper, his constant encouragement and many comments,
suggestions and valuable insights. The present paper is an adapted version of the author’s
Ph.D. thesis at Purdue University.

14To make sense of this in general, one needs to extend the definition of the functions  L=M ; 'L=M to
the case when the extension L=M is not necessarily Galois. This is done e.g. in [9, Section 2.2.1].



Crystalline condition for Ainf-cohomology and ramification bounds 193

Many thanks go to Deepam Patel and Shuddhodan Kadattur Vasudevan for organiz-
ing the prismatic cohomology learning seminar at Purdue University in Fall 2019, and to
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[11] K. Česnavičius and T. Koshikawa, The Ainf-cohomology in the semistable case. Compos.
Math. 155 (2019), no. 11, 2039–2128 Zbl 1451.14077 MR 4010431

[12] R. Elkik, Solutions d’équations à coefficients dans un anneau hensélien. Ann. Sci. École Norm.
Sup. (4) 6 (1973), 553–603 (1974) Zbl 0327.14001 MR 0345966

[13] M. Emerton and T. Gee, p-adic Hodge-theoretic properties of étale cohomology with modp
coefficients, and the cohomology of Shimura varieties. Algebra Number Theory 9 (2015),
no. 5, 1035–1088 Zbl 1321.11050 MR 3365999

https://doi.org/10.1007/BF01231518
https://zbmath.org/?q=an:0761.14006
https://mathscinet.ams.org/mathscinet-getitem?mr=1062798
https://doi.org/10.1016/j.jalgebra.2014.11.029
https://zbmath.org/?q=an:1322.11122
https://mathscinet.ams.org/mathscinet-getitem?mr=3312307
https://public.websites.umich.edu/~bhattb/teaching/prismatic-columbia/
https://doi.org/10.1007/s10240-019-00102-z
https://zbmath.org/?q=an:1446.14011
https://mathscinet.ams.org/mathscinet-getitem?mr=3905467
https://doi.org/10.1007/s10240-019-00106-9
https://doi.org/10.1007/s10240-019-00106-9
https://zbmath.org/?q=an:1478.14039
https://mathscinet.ams.org/mathscinet-getitem?mr=3949030
https://doi.org/10.4007/annals.2022.196.3.5
https://zbmath.org/?q=an:1552.14012
https://mathscinet.ams.org/mathscinet-getitem?mr=4502597
https://doi.org/10.1007/s002080050031
https://zbmath.org/?q=an:0883.11049
https://mathscinet.ams.org/mathscinet-getitem?mr=1428871
https://doi.org/10.1007/s00222-007-0091-9
https://zbmath.org/?q=an:1245.14019
https://mathscinet.ams.org/mathscinet-getitem?mr=2372809
https://doi.org/10.1215/00127094-2371976
https://zbmath.org/?q=an:1294.11207
https://mathscinet.ams.org/mathscinet-getitem?mr=3127808
https://doi.org/10.1016/j.jalgebra.2010.10.005
https://zbmath.org/?q=an:1269.14001
https://mathscinet.ams.org/mathscinet-getitem?mr=2745530
https://doi.org/10.1112/s0010437x1800790x
https://zbmath.org/?q=an:1451.14077
https://mathscinet.ams.org/mathscinet-getitem?mr=4010431
https://doi.org/10.24033/asens.1258
https://zbmath.org/?q=an:0327.14001
https://mathscinet.ams.org/mathscinet-getitem?mr=0345966
https://doi.org/10.2140/ant.2015.9.1035
https://doi.org/10.2140/ant.2015.9.1035
https://zbmath.org/?q=an:1321.11050
https://mathscinet.ams.org/mathscinet-getitem?mr=3365999
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