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Crystalline condition for A;,-cohomology and
ramification bounds

Pavel Coupek

Abstract. For a prime p and a smooth proper p-adic formal scheme X over Og where K is a p-
adic field, we study a series of conditions (Crs), s > 0 that partially control the G g-action on the
image of the associated Breuil-Kisin prismatic cohomology RI'p (X/®) inside the Ajn¢-prismatic
cohomology RI'p (X4;,:/Ainf). The condition (Crp) is a crystallinity criteriop for a Breuil-Kisin—
Fargues G g-module of Gee and Liu, and leads to a proof of crystallinity of H (X7, Qp) that avoids
the crystalline comparison. Using the higher conditions (Cry), we are able to adapt the strategy of
Caruso and Liu to establish ramification bounds for the mod p representations Hfét (X7.2/pZ), for
arbitrarily large e and i. This extends and/or improves existing bounds in various situations.
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1. Introduction

Let k be a perfect field of characteristic p > 0 and K’ = W(k)[1/ p] the associated abso-
lutely unramified field. Let K/K’ be a totally ramified finite extension with ramification
index e, and denote by Gk its absolute Galois group. The goal of the present paper is
to provide new bounds for ramification of the mod p representations of Gx that arise as
the étale cohomology groups Hét(x,—,, Z/pZ) in terms of p, i and e, where X is a smooth
proper p-adic formal scheme over Ok (and Xy is the geometric adic generic fiber). Con-
cretely, let us denote by GI’é the pu-th ramification group of G in the upper numbering (in

the standard convention, e.g. [31]) and G}é‘) = Gl‘é_l. The main result is as follows.
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Theorem 1.1 (Theorem 5.15). Set
. 1 | .
o= logp max L,u +1, B=— tep —1].
r—1 p-1 r*\p—1
Then:

(1) The group G%L) acts trivially on Hi (X7,Z/ pZ) when ju> 1 + ea + max{B, ﬁ}.

(2) Denote by L the field K™ where H is the kernel of the G g -representation p given
by Hét(xﬁ, Z/pZ). Then

vk (Dr/x) <1+ ea+ B,

where Dy  denotes the different of the extension L /K and vk denotes the addi-
tive valuation on K normalized so that vg (K™) = Z.

In particular, unlike in previous results of this type (discussed below), there are no
restrictions on the size of e and i with respect to p.

Remark 1.2. As the constants «, § appearing in Theorem 1.1 are quite complicated, let
us draw some non-optimal, but more tractable consequences. The group G;ét) acts trivially

on Hét(xﬁ, 7/ pZ) when one of the following occurs:
(1) e < pand u > 1 + e(|log, %)J +1)+e,
(2) e > pand u > 1+ e(llog, %)J +1)+p,t
(3) i =1 (e, p are arbitrary) and . > 1 + e(1 + ﬁ).

Let us briefly summarize the history of related results. Questions of this type originate
in Fontaine’s paper [15], where he proved that for a finite flat commutative group scheme I
over Ok that is annihilated by p”, G}(’L) acts trivially on T'(K) when u>e(n+1/(p—1));
this is a key step in his proof that there are no non-trivial abelian schemes over Z. In the
same paper, Fontaine conjectured that general p”-torsion cohomology would follow the
same pattern: given a proper smooth variety X over K with good reduction, G%) should
act trivially on H. (X g, Z/ p"Z) when ju > e(n +i/(p — 1)).

This conjecture has been partially proved by Fontaine himself [17] in the case when
e=n=1,i < p—1and by Abrashkin ([1]; see also [2]) whene = 1,i < p— 1 andn is
arbitrary. Both results make use of Fontaine—Laffaille modules (introduced in [18]), which
parametrize quotients of pairs of Gg-stable lattices in crystalline representations with
Hodge-Tate weights in [0, i] (such as Hé[(X & Qp)Y). The (duals of the) representations
Hét(X &2/ p"Z) are included among these thanks to a comparison theorem of Fontaine—
Messing [19]. Similarly to the original application, these ramification bounds lead to a
scarcity result for existence of smooth proper Z-schemes.

IStrictly speaking, to obtain this precise form one has to replace (i — 1)e in « from Theorem 1.1 by
ie, and modify 8 appropriately; one can show that such form of Theorem 1.1 is still valid.
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Various extensions to the semistable case subsequently followed. Under the assump-
tioni < p — 1 (and arbitrary e), Hattori proved in [21] a ramification bound for p”-torsion
quotients of lattices in semistable representations with Hodge—Tate weights in the range
[0,7], using (a variant of) Breuil’s filtered (¢,, N )-modules. Thanks to a comparison result
between log-crystalline and étale cohomology by Caruso [8], this results in a ramification
bound for Hi (X g, Z/p"Z) when X is proper with semistable reduction, assuming that
ie<p—1whenn =1and (i +1)e < p—1whenn > 27

These results were further extended by Caruso and Liu in [10] for all p"-torsion
quotients of pairs of semistable lattices with Hodge—Tate weights in [0, i], without any
restriction on i or e. The proof uses the theory of (¢, G)-modules [26], which are objects
suitable for description of lattices in semistable representations. Roughly speaking, a
(o, @)-module consists of a Breuil-Kisin module M and the datum of an action of the
group G = Gal(K (ppoo, 7'/7*)/K) on M=M ®6.0 R where R is a suitable subring
of Fontaine’s period ring Ajn = W(O¢ ) (and 7 € K is a fixed choice of a uniformizer).
However, an obstacle to applying the results of [10] to the torsion étale cohomology
Hét(X &> Z/pZ) is that it is not clear when (duals of) such representations come as a
quotient of two semistable lattices with Hodge—Tate weights in [0, i]. This is indeed the
case in the situation when e = 1,i < p — 1 and X has good reduction by the aforemen-
tioned Fontaine—Messing theorem, and it was also shown in the case i = 1 (no restriction
on e, p) for X with semistable reduction by Emerton and Gee in [13], but in general the
question seems open.

Nevertheless, the idea of the proof of Theorem 1.1 is to follow the general strategy of
Caruso and Liu. While one does not necessarily have semistable lattices and the associated
(o, @)—modules to work with, a suitable replacement comes from the recently developed
cohomology theories of Bhatt—-Morrow—Scholze and Bhatt—Scholze [4—6]. Concretely, to
a smooth p-adic formal scheme X one can associate the *“p™-torsion prismatic cohomolo-
gies”

RT,, (X/G) = RT(X/@) & Z/p"Z,

L
RFA,n (X e/ Aing) = RFA(xAinr/Ainf) ®2Z/p"Z,

where RT'p (X 4,1/ Aint), RTp (X/©) are the prismatic avatars of the Aj,¢- and Breuil-Kisin
cohomologies from [4,5], resp. Taking Mg = A (X/©) and My = (f)C/Amf) Li
and Liu showed in [24] that Mpx is a p-torsion Breuil-Kisin module, Mmf 1s a p-torsion
Breuil- Klsm—Fargues Gg-module, and that these modules recover the étale cohomol-
ogy group H t(.')C,,, Z/ pZ) essentially due to the étale comparison theorem for prismatic
cohomology from [6]. The pair (Mpk, Minr) then serves as a suitable replacement of a
(o, G)-module in our context.

2Recently, in [24] Li and Liu extended Caruso’s result to the range ie < p — 1 regardless of 1, for
X/Ok proper and smooth (formal) scheme. In view of this, results of [21] should apply in these situations
as well.
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The most significant deviation from the strategy of [10] then stems from the fact that
the pair (Mgk, Miys) obtained this way is “inherently p-torsion”, that is, it does not come
equipped with any apparent lift to analogous objects in characteristic 0. This is not the
case in [10], where all torsion modules ultimately originate from a free (¢, @)-module
(M, M ). A key technical input in loc. cit. is to establish a partial control on the Galois
action on M inside M , namely, a condition of the form

Vg € Gy Yx € M g(x) —x € (Jus + p" Aind) (M ® 5 Ainy). (1.1)

Here J,, s C Aiyr are certain ideals (that are shrinking with growing s). This is a “rational”
fact, in the sense that this claim is a consequence of the description of the Galois action
in terms of the monodromy operator on the associated Breuil module i)(M ) (cf. [7],
[25, Section 3.2]), a vector space over the characteristic 0 field K'.

As a starting point for replacing (1.1) in our context, we turn to a result by Gee and
Liu in [14, Appendix F] (see also [28, Theorem 3.8]). Given a finite free Breuil-Kisin
module Mpk (of finite height) and a compatible structure of Breuil-Kisin—Fargues G-
module on Mi,y = Mk ®e Ains such that the image of Mgk under the natural map lands
in (Minf)GK(n‘/"w), the étale realization of M, is crystalline if and only if

Vg€ Gk, ¥x € Mgx:  g(x) —x € ¢~ ([e] — 1)[z] Mins. (Cro)
Here [—] denotes the Teichmiiller lift and g, v are the elements of (9@;( given by a collec-

tion ({p» ), of (compatible) p”-th roots of unity and a collection (x 1/P"),, of p"-th roots of
the chosen uniformizer 7, resp. We call condition (Crg) the crystalline condition. As the
considered formal scheme X is assumed to be smooth over O, it is reasonable to expect
that the same condition applies to the pair Mgx = H’A (X/©) and My = HlA (X 4,0/ Aint),
despite the fact that the Breuil-Kisin and Breuil-Kisin—Fargues modules coming from
prismatic cohomology are not necessarily free.

This is indeed the case and, moreover, it can be shown that the crystalline condition
even applies to the embedding of the chain complexes RI") (X/®) — R ) (X 4,/ Aing): to
make sense of this claim, we model the cohomology theories by their associated Cech—
Alexander complexes. These were introduced in [6] in the case that X is affine, but can be
extended to (at least) arbitrary separated smooth p-adic formal schemes. We are then able
to verify the condition termwise for this pair of complexes. More generally, we introduce
a decreasing series of ideals I, s > 0 where Iy = ¢~ !([¢] — 1)[x] Aixs, and then formulate
and prove the analogue of (Crg) for /5 and the action of G K(x1/r%)- As a consequence, we
obtain:

Theorem 1.3 (Theorem 4.5, Corollary 4.7, Proposition 4.10). Let X be a smooth sepa-
rated p-adic formal scheme over Ok.

(1) Fix a compatible choice of Cech-Alexander complexes é];K C Cv’i;f that compute
RI)(X/®) and RTp (X 4,/ Aint), resp. Then for all s > 0, the pair (Cgy, City)
satisfies (termwise) the condition

inf*

Vg € Ggpipsy, ¥X € Cow: g(x)—x e I,CY (Cry)
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(2) The associated prismatic cohomology groups satisfy the crystalline condition, that
is, the condition

Vg € Gk, Vx e Hy (X/©):  g(x) —x € ¢~ ([e] = 1) [m]H) (X s/ Ain)-

(3) For all pairs of integers s,n with s + 1 > n > 1, the p"-torsion prismatic coho-
mology groups satisfy the condition

Vg € Ggry. Vxe HiA,n(DC/G):
g(x)—x € (el - 1)[x]”

e HlA,n (xAinf/Ainf)'

Theorem 1.3 (3) specialized to n = 1 provides the desired analogue of the prop-
erty (1.1) of (¢, @)-modules and allows us to carry out the proof of Theorem 1.1.

As a consequence of Theorem 1.3 (2), we obtain a proof of crystallinity of the coho-
mology groups HZ (X7, Qp) in the proper case partially by means of “internal” p-adic
Hodge theory (Corollary 4.8). This fact in this generality is originally due to Bhatt, Mor-
row and Scholze [4]. Of course, since our setup relies on the machinery of prismatic
cohomology and especially the étale comparison, the proof can be considered indepen-
dent of the one from [4] only in that it avoids the crystalline comparison theorem for
(prismatic) Aj,r-cohomology.

The bounds of Theorem 1.1 compare to the already known bounds as follows. When-
ever the bounds of “semistable type” are known to apply to the situation of Hét(fxﬁ, 7/ pZ)
(e.g. [10] wheni = 1, [21] whenie < p — 1 and X is a scheme), the bounds from Theo-
rem 1.1 agree with those bounds. The bounds tailored to crystalline representations [ 1, 17]
are slightly better but their applicability is quite limited (¢ = 1 andi < p — 1).

The fact that the cohomology groups Hgt(x;,, Z/p"Z) have an associated Breuil—
Kisin module yields one more source of ramification estimates: in [9], Caruso provides
a very general bound for p”-torsion Gg-modules based on their restriction t0 G 1/r%)
via Fontaine’s theory of étale Og-modules. Using the Breuil-Kisin module HlA,n (X/©)
attached to H (X7, Z/p" Z), this bound becomes explicit (as discussed in more detail in
Remark 5.6). Comparing this result to Theorem 1.1 is more ambiguous due to somewhat
different shapes of the estimates, but roughly speaking, the estimate of Theorem 1.1 is
approximately the same for e < p, becomes worse when K is absolutely tamely ramified
with large ramification degree, and is expected to outperform Caruso’s bound in case of
large wild absolute ramification (see Section 5.2 for a more precise comparison).

In future work, we intend to extend the result of Theorem 1.1 to the case of arbi-
trary n. This seems plausible thanks to the full statement of Theorem 1.3 (3). In a different
direction, we plan to extend the results of the present paper to the case of semistable reduc-
tion, using the log-prismatic cohomology developed by Koshikawa and Koshikawa—Yao
in [22,23]. An important facts in this regard are that the Ajs-log-prismatic cohomol-
ogy groups are still Breuil-Kisin—Fargues Gx-modules by a result of Cesnavicius and
Koshikawa [11].
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The outline of the paper is as follows. In Section 2 we establish some necessary tech-
nical results. Namely, we discuss non-zero divisors and regular sequences on derived
complete and completely flat modules with respect to the weak topology of Aj,s, and estab-
lish Cech—Alexander complexes in the case of a separated and smooth formal scheme.
Next, Section 3 introduces the conditions (Cr;), studies their basic algebraic properties
and discusses in particular the crystalline condition (Cry) in the case of Breuil-Kisin—
Fargues G x-modules. In Section 4 we prove the conditions (Cr) for the Alexander—Cech
complexes of a separated smooth p-adic scheme X over © and Ay, and draw some
consequences for the individual cohomology groups (especially when X is proper), prov-
ing Theorem 1.3. Finally, in Section 5 we establish the ramification bounds for mod p
étale cohomology, proving Theorem 1.1. Subsequently, we discuss in more detail how the
bounds from Theorem 1.1 compare to the various bounds from the literature discussed
above.

Let us setup some basic notation used throughout the paper. We will use freely the
language of prisms and §-rings from [6], and we adopt much of the related notation and
conventions. In particular, a formal scheme X over a p-adically complete ring A always
means a p-adic formal scheme, and it is called smooth if it is locally of the form Spf R
for a (derived®) p-completely smooth A-algebra R — that is, a p-complete A-algebra such
that R/ p is a smooth A/ p-algebra and Torl-A(R, A/p) = 0foralli > 0. By the results of
Elkik [12] and the discussion in [6, Section 1.2], R is equivalently the p-adic completion
of a smooth A-algebra.

We fix a perfect field k of characteristic p > 0 and a finite totally ramified extension
K /K’ of degree e where K’ = W(k)[1/ p]. We fix a uniformizer 7 € Q. This choice is
arbitrary if p > 2, but when p = 2, we make a suitable choice of & to be specified later (see
Section 3.1). Setting @ = W(k)[u], the choice of = determines a surjective map © — Ok
given by u > m; the kernel of this map is generated by an Eisenstein polynomial E(u)
of degree e. @ is endowed with a Frobenius lift (hence a §-structure) extending the one
on W(k) by u +> u”. The pair (&, E (1)) then defines a prism (so-called Breuil-Kisin
prism).

Denote by Ay the ring W(O@( ) where Cg is the completion of the algebraic closure
of K and

(9@3{ = Lln 0@1{/ P
xX—>xP
is the tilt of O¢,. Fix a compatible system (i), of p"-th roots of 7. Such a choice
determines an element & € (901;( and an embedding of & into Ay via u +— [z] where [—]
denotes the Teichmiiller lift. Under this embedding, E(u) is sent to a generator & of the
kernel of the canonical map 8: Aijyr — Oc, that lifts the canonical projection

pro: 0¢, = lim Oc,/p — Ocy/p.
4

3As we will always consider the base A4 to have bounded p™-torsion, there is no distinction between
derived p-completion and p-adic completion in this case.
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The pair (Ajns, Ker ) forms a prism, and (&, (E(u))) — (Ains, Ker 0) is a map of prisms.
It is known that under such embedding, Aj,s is faithfully flat over & (see e.g. [14, Propo-
sition 2.2.13]).

Similarly, we fix a choice of a compatible system of primitive p”-th roots of unity
(¢pn)n>0. This defines an element ¢ of (9@; in an analogous manner, and the embed-
ding © — Aj,ys extends to a map (actually st111 an embedding by [9, Proposition 1.14])
W(k)[u,v] — Ainr by additionally setting v > [¢] — 1. Additionally, we denote by w the
element ([g] — 1)/([e"/?] — 1) = [¢//P]?~! + ... + [¢"/P] + 1. It is well known that this
is another generator of Ker 0, therefore @ /& is a unit in Ajys.

The choices of , m, and {,» remain fixed throughout, hence so do the embeddings
© < Ajpr and W(k)[u, v] = Ajns. Consequently, we identify the elements [z], [¢] — 1, &
with u, v and E (u), respectively.

2. Preparations

2.1. Regularity on (p, E(u))-completely flat modules

The goal of this section is to prove that every (p, E (u))-complete and (p, E (1))-completely
flat Ajnr-module is torsion-free, and that any sequence p, x with x € Ains \ (A}5; U pAing)
is regular on such modules.

Regarding completions and complete flatness, we adopt the terminology of [32, 091N],
[6], but since we apply these notions mostly to modules as opposed to objects of derived
categories, our treatment is closer in spirit to [29, 30, 34]. Given a ring A and a finitely
generated ideal I = (f1, f,..., f»), the derived I-completion* of an A-module M is

M=M[X1,Xa.....Xn] /(X1 — f1. X2 — fore .. Xn — f)M[X1, X2, ... Xp]. (2.1)

M is said to be derived I -complete if the natural map M — M is an isomorphism. This
is equivalent to the vanishing of Exti1 (Af, M) fori = 0,1 and all f € I (equivalently,
for f = f; forall j), and as a consequence, it can be shown that the category of derived
I-complete modules forms a full abelian subcategory of the category of all A-modules
with exact inclusion functor (and the derived I -completion is its left adjoint; in particular,
derived /-completion is right exact as a functor on A-modules). Another consequence
is that derived I-completeness is equivalent to derived J-completeness when /, J are
two finitely generated ideals and ~/7 = +/J. There is always a natural surjection M —
M<! where (/—\)CI stands for /-adic completion, which will be referred to as classical I-
completion for the rest of the paper. Just like for classically I-complete modules, if M
is derived I-complete, then M/IM = 0 implies M = 0 (this is referred to as derived
Nakayama lemma).

“That is, this is derived I-completion of M as a module. This will be sufficient to consider for our
purposes.
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An A-module M is said to be I -completely (faithfully) flat if Torlf‘1 (M,A/T)=0forall
i >0and M/IM is a (faithfully) flat A//-module. Just like for derived completeness, I -
complete flatness is equivalent to J-complete flatness when J is another finitely generated
ideal with /7 = +/J

Let us start by a brief discussion of regular sequences on derived complete modules
in general. For that purpose, given an A-module M and f = fi,..., f, € A, denote
by Kos(M; f) the usual Koszul complex and let Hy, (M_f ) denote the m-th Koszul
homology of M with respect to f1, f2,..., fa- o

The first lemma is a straightforward generalization of standard facts about Koszul
homology (e.g. [27, Theorem 16.5]) and regularity on finitely generated modules.

Lemma 2.1. Let A be a ring, I C A a finitely generated ideal and let M be a non-zero
derived I -complete module. Let [ = fi, f2,..., fa € I. Then

(1) f forms a regular sequence on M if and only if Hy(M; f) = 0 for all m > 1
ifand only if H1(M; f) = 0.

(2) In this situation, any permutation of fi, fa,..., fn is also a regular sequence
on M.
Proof. As Koszul homology is insensitive to the order of the elements f1, f3,..., fu, part

(2) follows immediately from (1).

To prove (1), the forward implications are standard and hold in full generality (see
e.g. [27, Theorem 16.5]). It remains to prove that the sequence fi, f2,..., fn is regu-
lar on M if Hy(M; fi,..., fn) = 0. We proceed by induction on n. The case n = 1 is
clear (H{(M; x) = M |x] by definition, and M/xM # 0 follows by derived Nakayama).
Let n > 2, and denote by f’ the truncated sequence fi, f>,..., fu—1. Then we have
the isomorphism Kos(M ; f)_z Kos(M; f') ® Kos(4; f,), which produces a short exact
sequence o o

0 — Kos(M:; 'y — Kos(M; f) — Kos(M; f')[-1] = 0

of chain complexes. Taking homologies results in a long exact sequence

Hy(M: ) =25 Hy (M )= Hy (M f)— M/ ()M =25 M/ ()M = M/(f)M =0

(as in [27, Theorem 7.4]). By assumption, H;(M; f) = 0 and therefore, we have that
foHi(M: f') = Hi(M; f') where f, € I.Upon observing that H; (M f’) is obtained
from finite direct sum ofzopies of M by repeatedly taking kernels and cokernels, it is
derived I-complete. Thus, derived Nakayama implies that H; (M ; f "y = 0 as well, and
by induction hypothesis, f” is a regular sequence on M . Finally, the above exact sequence
also implies that f, is in}:ctive on M/(f )M, and M/(f)M # 0 is satisfied thanks to
derived Nakayama again. This finishes the proof. o ]

SHowever, note that while (derived) 7 -completeness more generally implies (derived) I’-completeness
when I’ is a finitely generated ideal contained in /1, the “opposite” works for flatness, i.e., /-complete
flatness implies 7”-complete flatness when I” is a finitely generated ideal with I € /1"
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Corollary 2.2. Let A be a derived I -complete ring for I = (f) where f = f1, f2,..., [a
is a regular sequence on A, and let F' be a non-zero derived?—complet?A—module that is
I -completely flat. Then f is a regular sequence on F. Consequently, each f; is a non-zero
divisor on F. o

Proof. By Lemma 2.1 (1), Hy(A; f) = 0forall m > 1, hence Kos(4; f) is a free resolu-
tion of A/1. Thus, the complex Kos(F; f) = F ®4 Kos(A; f) computes Tor4(F, A/I),
and hence is acyclic in positive degrees_by I -complete flatness. We may thus conclude
that H;(F; f) = 0 for all i > 1. By Lemma 2.1, f is a regular sequence on F, and it
remains regular on F after arbitrary permutation. This proves the claim. ]

Now we specialize to the situation A = Aj,, which is the case of interest in this paper.

Lemma 2.3. For every element X € Aine \ (A} U pAine) and for all integers k,l > 0, we
have that p Amf Nx Amf p X Amf, and p, x forms a regular sequence. Furthermore,
the ideal \/(p, x) is equal to (p, W(mcg( )), the unique maximal ideal of Ains. In particular,

given two choices x,x" as above, we have \/(p,x) = \/(p, x').

In particular, the equalities “1/(p, x) = v/(p, x)” imply that all the (p, x)-adic topolo-
gies (for x as above) are equivalent to each other; this is the so-called weak topology on
Ajnr (usually defined as (p, u)-adic topology in our notation); it is standard that Ay, is
complete with respect to this topology.

Proof. By assumption, the image X of x in Ajp¢/p = (9(]:;< is non-zero and non-unit in

Aing/ p (non-unit since x ¢ A and p € rad(Aixr)). Thus, x!
on Ajyr and on Ajye/ p, hence the claim that p A,y N x T Aine = px Amf follows for every /.
The element p is itself non-zero divisor on (the domain) Aj,r and thus, p, x is a regular
sequence. It follows that p¥, x! forms a regular sequence for arbitrary k and / and thus,
also the identity p¥ Aipe N X! Ains = p*x! Ajny.

To prove the second assertion, note that \/@ = me since A/ p = (9@3{ isarank 1
valuation ring. It follows that (p, W(m, )) is the unique maximal ideal of A;y¢ above (p),
hence the unique maximal ideal since p € rad(Ai), and that /(p, x) is equal to this
ideal. ]

is a non-zero divisor both

We are ready to prove the claim mentioned at the beginning of the section.

Corollary 2.4. Let F be a derived (p, E(u))-complete and (p, E(u))-completely flat
Ainr-module, and let x € Ains \ (Ajyy U pAine). Then p, x is a regular sequence on F.
In particular, for each k,1 > 0, we have p* F N x'F = p*x!F. Consequently, F is a
torsion-free Aips-module.

Proof. By Lemma 2.3, Ay and F are derived (p, x)-complete, F is (p, x)-completely
flat over Ajy¢, and p, x is a regular sequence on Aj,s. Corollary 2.2 then proves that the
sequence p, x, hence also pk, x! for any k, [, is regular on F, hence also the claim pk FnN
x! F = p*x! F. To prove the “consequently” part, let y be a non-zero and non-unit element
of Ajns. Since Ay is classically p-complete, we have ﬂn p" A = 0, and so there exist n
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such that y = p"x with x ¢ pAjy. If x is a unit, then y is a non-zero divisor on F since
so is p”. Otherwise x € Ains \ (A]5; U pAing), SO p, X is a regular sequence on F, and so
is x, p (e.g. by Lemma 2.1). In particular, p, x are both non-zero divisors on F, and hence

sois y = p"x. |
2.2. Cech-Alexander complex

Next, we discuss the construction of Cech—Alexander complexes for computing prismatic
cohomology, introduced in [6] in the affine case. Specifically, the goal of this section is to
extend this construction to the case of a smooth separated p-adic formal scheme.

Throughout this section, let (4, 1) be a fixed bounded base prism, and let X be a
smooth separated p-adic formal scheme over 4/7. Recall that (X/A) ) denotes the site
whose underlying category is the opposite of the category of bounded prisms (B, IB)
over (A, I') together with a map of formal schemes Spf(B/IB) — X over A/I. Covers in
(X/A)p are given by the opposites of faithfully flat maps (B, IB) — (C, IC) of prisms,
meaning that C is (p, I )-completely faithfully flat over (B, I B). The prismatic cohomol-
ogy RT') (X, A) is then defined as the sheaf cohomology RT'((X/A)p. @) (= RI'((*, O))
where * is the terminal sheaf) for the sheaf @ = @) on (X/A) defined by (B, IB) — B.

Additionally, let us denote by A the site of all bounded prisms, i.e., the opposite of the
category of all bounded prisms and their maps, with topology given by faithfully flat maps
of prisms.

In order to discuss the Cech—Alexander complex in a non-affine situation, a slight
modification of the topology on (X/A) is convenient. The following proposition moti-
vates the change.

Proposition 2.5. Let (A, I) be a bounded prism.

(1) Given a collection of maps of (bounded) prisms (A, I)— (B;,IB;),i=1,2,...,n,
the canonical map (A, 1) — (C,IC) = ([]; Bi. I []; B:) is a map of (bounded)
prisms.

(2) (C,IC) is flat over (A, I) if and only if each (B;, 1 B;) is flat over (A, I). In that
situation, (C, IC) is faithfully flat prism over (A, I) if and only if the family of
maps of formal spectra Spf(B;/1B;) — Spf(A/ 1) is jointly surjective.

(3) Let f € A be an element. Then (;1} 1 71;) where (/—\) stands for the derived
(equivalently, classical) (p, I)-completion, is a bounded prism,° and the canoni-
cal map (A, 1) — (;1;, I:l}) is a flat map of prisms.

(4) Let fi1,..., fn € A be a collection of elements generating the unit ideal. Then the
canonical map (A, 1) — ([1; Az, 1 [1; Ay,) is a faithfully flat map of (bounded)
prisms.

%We do consider the zero ring with its zero ideal a prism, hence allow the possibility of Z; = 0, which
occurs e.g. when f € (p, I). Whether the zero ring satisfies Definition 3.2 of [6] depends on whether
the inclusion of the empty scheme to itself is considered an effective Cartier divisor; following the usual
definitions pedantically, it indeed seems to be the case. Also some related claims, such as [6, Lemma 3.7
(3)] or [3, Lecture 5, Corollary 5.2], suggest that the zero ring is allowed as a prism.
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Proof. The proof of (1) is more or less formal. The ring C = [[; B; has a unique A-
§-algebra structure since the forgetful functor from §-rings to rings preserves limits, and
C is as product of (p, I')-complete rings (p, I)-complete. Clearly /C = [[;(IB;) is an
invertible ideal since each IB; is. In particular, C[/] = 0, hence C is a prism by [0,
Lemma 3.5]. Assuming that all (B;, IB;) are bounded, from C/IC = []; B;/IB; we
have C/IC[p>®] = C/IC|[p*] for k big enough so that B; /IB;[p>™] = B;/IB;[p*] for
all 7, showing that (C, I C) is bounded.

The ((p, I)-complete) flatness part of (2) is clear. For the faithful flatness statement,
note that C/(p, I)C = []; Bi/(p. I)B;, hence A/(p.I) — C/(p.I)C is faithfully
flat if and only if the map of spectra | [; Spec(B;/(p.I)B;) = Spec(C/(p.1)C) —
Spec(A/(p, 1)) is surjective

Let us prove (3). Since Af has p € rad(Af) the equality " (f*) = fk?" + p(---)
shows that ¢ ( f k) for each nn, k > 0 s a unit in As . Consequently, as in [6, Remark 2.16],
Ar =38 lA for S = {¢"(f*) | n,k >0}, and the latter has a unique §-structure extending
that of A by [6, Lemmas 2.15 and 2.17]. In particular, Ar ris a (p, I)-completely flat A-§-
algebra, hence (Z}, 1;1}) is flat prism over (A4, I') by [6, Lemma 3.7 (3)].

Part (4) follows formally from parts (1)-(3). ]

Construction 2.6. Denote by (X/A)E the site whose underlying category is (X/A4)p.
The covers on (DC/A)X are given by the opposites of finite families {(B, IB) — (C;, I C;)};
of flat maps of prisms such that the associated maps {Spf(C;/IC;) — Spf(B/IB)} are
jointly surjective. Let us call these “faithfully flat families” for short. The covers of the
initial object @’ are the empty cover and the identity. We similarly extend A to AU, that
is, we proclaim the identity cover and the empty cover to be covers of &, and generally
proclaim (finite) faithfully flat families to be covers.

Clearly isomorphisms as well as composition of covers are covers in both cases. To
check that (X/ A)E and AU are sites, it thus remains to check the base change axiom.
This is trivial for situations involving &, so it remains to check that given a faithfully
flat family {(B, IB) — (C;, IC;)}; and a map of prisms (B, IB) — (D, ID), the fiber
products® (C;, I1C;) ®(p.rp) (D, ID) in A exist and the collection of canonical maps
{(D,ID) — (C;, IC;) Kp,1p) (D, ID)}; is a faithfully flat family; the existence and
(p, I)-complete flatness follows by the same proof as in [0, Corollary 3.12], only with
“(p,I)-completely faithfully flat” replaced by “(p,I)-completely flat” throughout, and the
fact that the family is faithfully flat follows as well, since ([ [; (Ci, I1C;))X(p,18) (D, ID)
is canonically identified with [ [; ((C;, I C;) ®(p, 1) (D, ID)) (and using Remark 2.7 (1)).

Remark 2.7. Let us comment further on the topology introduced in Construction 2.6.

(1) Note that for a finite family of objects (C;, IC;) in (X/A)p, the structure map
of the product (4, I) — [];(C;, IC;) together with the map of formal spectra

"That is, @ corresponds to the zero ring, which we consider to be a prism as per the previous footnote.
8Here we mean fiber products in the variance of the site, i.e., “pushouts of prisms”. We use the symbol
X to denote this operation.
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(induced from the maps for individual 7 ’s)
Spf(l_[ C,-/ICi) = [ [spf(Ci/1Ci) > X
i i

makes ([]; Ci, I []; C;) into an object of (X/A), that is easily seen to be the
coproduct of (C;, IC;)’s. In view of Proposition 2.5 (2), one thus arrives at the
equivalent formulation

{Yi > Z}jisa (%/A)X-cover & ]_[ Y; — Zisa (X/A)p-cover.

Similar considerations apply to A and A,

(2) The two sites are honestly different in that they define different categories of
sheaves. Namely, for every finite coproduct Y = | [; Y;, the collection of canon-
ical maps {¥; — [][; ¥;}; forms a (X/A)X-cover, and the sheaf axiom forces
upon a sheaf ¥ € Shv((DC/A)Z) the identity ¥ ([ [; ¥;) = [[; ¥ (¥;), which is
not automatic.” In fact, Shv((X/ A)X) can be identified with the full category of
Shv((X/A) ) consisting of all sheaves compatible with finite disjoint unions in
the sense above. In particular, the structure sheaf @ = O A (B,IB)—~ Bis a
sheaf for the (/ A)E-topology. (Again, the same is true for A and Al including
the fact that the presheaf @: (B, IB) + B is a sheaf.)

Despite the above fine distinction, for the purposes of prismatic cohomology, the two
topologies are interchangeable. This is a consequence of the following lemma.

Lemma 2.8. Given an object (B, IB) € (DC/A)E, one has H ((B, IB),0) = 0 fori > 0.

Proof. The sheaf O: (B, I) — B on A" has vanishing positive Cech cohomology essen-
tially by the proof of [6, Corollary 3.12]: one needs to show acyclicity of the Cech complex
for any AY-cover {(B,I) — (C;, IC;)};, but the resulting Cech complex is identical to
that for the A-cover (B, 1) — ]—[i (C;, 1Cy), for which the acyclicity is proved in [6, Corol-
lary 3.12]. This implies the vanishing of HiAH ((B, 1), 0) for all bounded prisms (B, I)
and all i > 0 (e.g. by [32, 03F9]).

Now we use the fact that cohomology of an object can be computed as the cohomology
of the corresponding slice site. Let (B, IB) € (X/ A)X. Forgetting structure, (B, I B) may

be viewed as an object of AH, and then [32, 03F3] implies that for every i, we have the

isomorphisms
- ay (B 1B).0) = H' ((X/A)p/(B.1B). OlB.15)).

HiAH((B, 1B),0) ~H (A" /(B, IB),0|(B,18))-

For example, every constant presheaf is a sheaf for a topology given by singleton covers only, which
is not the case for (DC/A)E.
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Upon noting that the slice sites (X/ A)X /(B,IB), Al /(B, IB) are equivalent (in a manner
that identifies the two versions of the sheaf @|(p,sp)), the claim follows. ]

Corollary 2.9. One has RI'((X/A)).0) = RF((I)C/A)E, 0).

Proof. The coverings of (X/ A)E contain all the coverings of (X/A) ), so we are in the
situation of [32, OEWK]. Namely, there is a morphism of sites e: (DC/A)X — (X/A))
given by the identity functor of the underlying categories, where the pushforward functor
ex: Shv((X/ A)Z) — Shv((X/A)p) is the natural inclusion and the (exact) inverse image
functor e~ !: Shv((X/A) A) = Shv((X/ A)z) is the sheafification with respect to the “HI”-
topology. One has

T((X/A, =) = T((X/A),~) o ex

(where g4 denotes the inclusion of abelian sheaves in this context), hence
RL((X/A)™, 0) = RI((X/A),Re.0),

and to conclude it is enough to show that Rie,@ = 0 Vi > 0. But Ri,© is the sheafi-
fication of the presheaf given by (B, IB) — H!((B, IB), ) [32, 072W], which is 0 by
Lemma 2.8. Thus, Rig, @ = 0, which proves the claim. [

For an open p-adic formal subscheme V C X, denote by &y the functor sending an
object (B, IB) € (X/A)  to the set of factorizations of the implicit map Spf(B/IB) — X
through V < X; that is,

x  if the image of Spf(B/IB) — X is contained in V,
hv((B,IB)) = {

@ otherwise.
Let (B, IB) — (C,IC) correspond to a morphism in (X/A4) 5. If Spf(B/IB) — X factors
through V, then so does Spf(C/IC) — Spf(B/IB) — X. It follows that sy forms a

presheaf on (X/A) p (with transition maps hvy((B, IB)) — hy((C, IC)) given by * > x*
when iy ((B, I1B)) # @, and the empty map otherwise). Note that /1 is the terminal sheaf.

Proposition 2.10. /v is a sheaf on (X/ A)E.

Proof. Consider a cover in (DC/A)X given by a faithfully flat family {(B, I B) — (C;, I C;)}; .
One needs to check that the sequence

hy((B.IB)) — [ [hv((Ci. 1C)) = [[ v ((Gi. 1Ci) Bip.1m) (C;. IC)))
i i
is an equalizer sequence. All the terms have at most one element; consequently, there are
just two cases to consider, depending on whether the middle term is empty or not. In both
cases, the pair of maps on the right necessarily agree, and so one needs to see that the map
on the left is an isomorphism. This is clear in the case when the middle term is empty
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(since the only map into an empty set is an isomorphism). It remains to consider the case
when the middle term is non-empty, which means that 4y ((C;, I C;)) = * for all i. In this
case we need to show that hy((B, IB)) = *. Since the maps Spf(C; /1 C;) — Spf(B/IB)
are jointly surjective and each Spf(C;/IC;) — X lands in 'V, it follows that so does the
map Spf(B/IB) — X. Thus, hy((B, IB)) = *, which finishes the proof. |

When V is affine, one can cover the sheaf /1y by a representable sheaf. The construc-
tion of the representing object is essentially Construction 4.17 of [6] (but note that the
resulting object is not weakly initial unless V = X). We repeat the construction here in
order to fix notation and terminology.

Construction 2.11 (Prismatic cover of V). Let us additionally assume that V = Spf(R)
is affine. Choose a surjection Py — R where Py = A/[Z] is a (p, I)-completed free A-
algebra. Denote by Jy the kernel of the surjection. Then there is a commutative diagram
with exact rows

where (/—\) stands for derived (p, I)-completion. Here for an A-algebra S, S% denotes
the “J-envelope” of S, that is, the S-algebra initial among S-algebras endowed with
an A-§-algebra structure. Note that P\‘; = (P\‘;)‘g, where P) = A[X] is the polynomial
algebra before completion; in particular, since (P{;)‘s is a flat P{}—algebra (essentially by
[6, Lemma 2.11]), it follows that P{g is (p, I)-completely flat Py-algebra. Consequently,
the completions in the lower row of the diagram can be equivalently taken as classical
(p, I)-completions (cf. L(l’ Lemma 3.7]). - .

Denote by J\‘;’A - P{; the image of the map JVP{E — P{?, i.e., the (p, I)-complete
ideal of P{; topologically generated by Jy. Then we have a short exact sequence

0— J3" - Py > R@p, PS—0.

Let (év, ICV) be the prismatic envelope of (P3, Jg’/\). It follows from [6, Proposi-
tion 3.13, Example 3.14] that (Cy, I Cvy) exists and is given by a flat prism over (4, ).
The map

R— R®p, P) = P3/J5" - Cy/ICy

of p-complete rings corresponds to the map of formal schemes Spf(év /1 év) -V —X.
This defines an object of (X/ A)X, which we call a prismatic cover of V.

Remarks 2.12. Let us record several technical observations regarding Construction 2.11.
(1) Note that (C’v, 1 év) is equivalently the prismatic envelope of (PJ, Jy Pé). More-

over, when the ideal Jy is finitely generated, one has the equality J{;’A =Jy P{g.
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(2) Since the ring R in Construction 2.11 is a p-completely smooth A/[-algebra, it
is in particular a p-completion of a finitely presented A/ I -algebra. It follows that
the map Py — R may be chosen so that Py is the (derived) (p, I)-completion
of a polynomial A-algebra of finite type, with the kernel Jy finitely generated.
While such a choice may be preferable, we formulate the construction without
imposing it, as it may be convenient to allow non-finite-type free algebras in the
construction e.g. for the reasons of functoriality (see the remark at the end of
[6, Construction 4.17]).

(3) As is shown below, the sheaf represented by (C’v, I C‘v) covers the sheaf &y, jus-
tifying the term “prismatic cover”. While this term should arguably describe any
object of (X/A) ) whose represented sheaf covers V, we reserve its usage for the
objects obtained as a result of Construction 2.11.

Proposition 2.13. Denote by h ¢y the sheaf represented by the object (Cy, ICy)e(X /A) E
There exists a unique map of sheaves hév — hvy, and it is an epimorphism.

Proof. 1f (B, IB) € (X/A)) with hév ((B, IB)) # @, this means that Spf(B/IB) — X
factors through V since it factors through Spf(év /1 Cv). Thus, we also have

hv((B.1B)) = *,

and so the (necessarily unique) map hC"v ((B,IB)) — hy((B, IB)) is defined. When
hC"v ((B, IB)) is empty, the map hév ((B,1B)) = hvy((B, IB)) is still defined and unique,
namely given by the empty map. Thus, the claimed morphism of sheaves exists and is
unique.

By the same argument as in [6, Construction 4.17], we show that this map is an epimor-
phism. Let (B, IB) € (X/A) such that hy((B, IB)) = *, i.e., Spf(B/IB) — X factors
through 'V, and consider the map R — B/IB associated to the map Spf(B/IB) — V.
Since Py is a p-completed free A-algebra surjecting onto R and B is (p, I)-complete,
the map R — B/IB admits a lift Py — B. This induces an A-§-algebra map P{; — B
which gives a morphism of §-pairs

(P} JyPY) — (B.1B),

and further the map of prisms (C‘v, 1 év) — (B, IB) using the universal properties of
objects involved. It is easy to see that this is indeed (the opposite of) a morphism in
(X/A),. This shows that hév ((B, IB)) is non-empty whenever hy((B, IB)) is. Thus,
the map is an epimorphism. ]

Remark 2.14 (Binary products in (X/A)y). For (B, IB), (C,IC) € (X/A)p, let us
denote their binary product (in the variance of the site) by (B, IB) X (C, IC). Let us
describe it explicitly at least under the additional assumptions that

(1) (B,IB),(C,IC) are flat prisms over (A, 1),

(2) there are affine opens U, V € X such that Ay ((B, IB)) = *x = hy((C, 1C)).
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Set W = U NV and denote the rings corresponding to the affine open sets U, V and W
by R, S and T, resp. Then any object (D, ID) € (X/A), with maps both to (B, IB)
and (C, IC) lives over W, i.e., satisfies hw((D, ID)) = *. This justifies the following
construction. Consider the following commutative diagram, where 7 denotes the pushout
of p-complete commutative rings, i.e., taking the classically p-completed tensor product
® (and B ®4 C is the derived, but equivalently classical, (p, I)-completion of B ®4 C):

B@AC

B/l\c

(B/IBRRT)RT(C/ICRsT)

/ v

B/IB — B/IB&RT C/IC®sT « CJIC
T ot T T
R—— T T ¢+—— S

Let J € B ®, C be the kernel of the map

B®4C — (B/IBRrT)®7r (C/IC ®sT).
Then the product (B, IB) K (C, IC) is given by the prismatic envelope of the §-pair
(B®4C.J).

Let B = {V;};cs be an affine open cover of X. For an integer n > 1 and a multi-index
(j1.J2,---, jn) € J", denote by V;, ;. theintersection V; N---NV; . As X is assumed
to be separated, each V;, ;. is affine and we write V;, ;. = Spf(Rj,,....;,)-

Proposition 2.15. The prismatic covers for the open formal subschemes Vj,
can be chosen so that for every multi-index (j1, ..., jn), we have

jn as above

------

(éV.ilf.u,jn ) IéV.fl ) = (éle ) IéV.n) X (éviz ] ]éviz) K- (évin ) Iéan)'

.....

Proof. Clearly it is enough to show the statement for binary products. More precisely,
given two affine opens V1, V, € X and an arbitrary initial choice of (é\?p 1 évl) and
(Cvz, 1 Cvz) we show that Py, — R12 can be chosen so that the resulting prismatic
cover (Cy,,, I Cy,,) of V15 is equal to (Cy,, I Cy,) ® (Cy,, I Cy,). For the purposes of
this proof, let us refer to a prismatic envelope of a §-pair (S, J) also as “the prismatic
envelope of the arrow S — S/J”.

Consider o;: Py; — R;,i = 1,2 asin Construction 2.11, and set Py,, = Py, ®4 Py,.
Then one has the induced surjection o1 ® o2: Py, — R & 4/1 Rz, which can be followed
by the induced map R; ®A/1 R> — Rj>. This latter map is surjective as well since X is
separated, and therefore the composition of these two maps «12: Py,, — Ri2 is surjective,
with the kernel Jv,, that contains (Jv,, Jy,) Py,,. We may construct a diagram analogous
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to the one from Remark 2.14, which becomes the diagram

P
/ PVIZ \

Py Py
Py, Py,
Ri2®py , (P§)

Ri®p, P§ = Riz®py PY, R12®py, P, < Ra®py,PS,
L J
T T T T
Rl ———— R Ri «——— Rs,

where the expected arrow in the central column is replaced by an isomorphic one, namely
the map obtained from the surjection Py,, — Rj, by the procedure as in Construc-
tion 2.11. Now (é\?m I évlz) is obtained as the prismatic envelope of this composed
central arrow, while (évl i év]) X (C’vz, 1 Cv‘vz) is obtained the same way, but only after
replacing the downward arrows on the left and right by their prismatic envelopes. Com-
paring universal properties, one easily sees that the resulting central prismatic envelope
remains unchanged, proving the claim. ]

Remark 2.16. Fix a choice of free bases (i.e., polynomial variables) X ; for an initial
choice of maps Py, — R;. For later purposes, let us note that

(1) The prismatic cover (év_i, 1 évj) e (X/ A)E functorially depends on the underly-
ing map of sets X ; — R;,

depends on the initial choice of maps X; — R; for all j (having the formal
scheme X'/ A fixed). For example, the map of rings Py, ., — R;, j, and, hence,
the formation of (CVJ'L iy 1 Cle ’ fz)’ is determined by the map

le HX]'I - PV.fl ®A ijl — Rj, ® Rj, > Rj, j,
as in the preceding proof.

Remark 2.17. Suppose that for each j, the initial choice of the map Py, — R; has
been made as in Remark 2.12(2), that is, Py, is the (p, I)-completion of a finite-type
free A-algebra and the ideal Jy, is finitely generated. If now Py, . . is the (p,I)-
,,,,,,, j» Obtained by iterating the procedure in the proof of
Proposition 2.15, it is easy to see that in this case, the algebra th’ Fain is still the (p, I)-
completion of a finite-type free A-algebra, and it can be shown that the corresponding

ideal Jy,; , . isfinitely generated.
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In more detail, given a ring B and a finitely generated ideal J C B, Let us call
a B-algebra C J-completely finitely presented if C is derived J-complete and there
exists a map o: B[X] — C from the polynomial ring in finitely many variables X =
{X1,..., X} such that the derived J-completed map &: B/—[E — C is surjective and
with a finitely generated kernel. Then the algebra R, ;,.... ;, corresponding to V;, ;, . ;.
is (p, I)-completely finitely presented by Remark 2.12(2), and since Py, , . is the

(p, I)-completion of a finite-type polynomial A-algebra, the following lemma shows that

IV, jy...in 18 finitely generated.

Lemma 2.18. Let C be a J -completely finitely presented B-algebra, and consider a map
B: B[Y] — C from a polynomial algebra in finitely many variables Y = {Y1,..., Y}
such that B is surjective. Then the kernel of B is finitely generated.

Proof. The proof is an adaptation of the proof of [32, 00R2], which is a similar assertion
about finitely presented algebras. Consider o as in Remark 2.17, and additionally let us
fix a generating set ( f1, f2,..., fx) C B/® of Kera.

Fori =1,...,m, let us choose g; € B/@ such that @(g;) = B(Y;). Then one can
define a surjective map

Qozf[z[ﬂ —C, 6 |B[/X]: a, 6o(Y;) = B(Yy),

and it is easy to see that Ker8y = (f1,..., fx. Y1 — &1,..., Ym — gm). That is, we have
an exact sequence

(BIXIY)® ™ - BIXIIY] 2 ¢ >0,

where the map on the left is a module map determined by the finite set of generators of
Ker 6. After taking the derived J-completion, the sequence becomes the exact sequence

— —
B[X.Y]®+™  B[X.Y]> C — 0.

That is, we have a surjective map 6: @ — C determined on topological generators by
0(X;)=a(X;),0(Y;)=p(;),and thekernel of O is (f1...., f&. Y1 —&1.---. Yn — &m)-

Next, we choose elements h; € ﬁ[ﬁ such that B (hj) = a(X;) for each j. Then we
have a surjective map v @ — @ given by X; — h; and Y; — Y;, which has
the property that 8 o = 6. That is,

Kerf = Ker(ﬁo v) = wil(Ker(B))’

and therefore ¥ (Ker #) = Ker ,g since v is surjective. But Ker 0 is finitely generated by
the previous, and hence so is Ker 8. ]

Proposition 2.19. The map [ [; hv; — hx = * (where | [ denotes the coproduct in the
category Shv((X/ A)X) ) to the final sheaf is an epimorphism, hence so is the map

]—_[hévj —> k.
J
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Proof. Tt is enough to show that for a given object (B, IB) € (X/A)Y A there is a faithfully

flat family (B, IB) — (C;, IC;) in (DC/A)]'I P such that ]_[fre hy, ((C;, I1C;)) # @ for all
i where [ [** denotes the coproduct of presheaves

With that aim, let us first consider the preimages W; CSpf(B/I B) of each V; under the
map Spf(B/IB)— X. This is an open cover of Spf(B/IB) that corresponds to an open cover
of SpecB/(p, I)B. One can then choose fi, f2,..., fm such that {Spec(B/(p, I)B)ys}:i
refines this cover, i.e., every Spec(B/(p, I)B)y, corresponds to an open subset of W;(;)
for some index j (7).

The elements f7, ..., f, generate the unit ideal of B since they do so modulo (p, 1)
which is contained in rad(B). Thus, the family

(B,IB) — (C;,IC;) := (By,,IBy), i=12,....m

is easily seen to give the desired faithfully flat family, with each ]_[E.re hv; ((C;, 1C;)) non-
empty, since each Spf(C; /I C;) — X factors through V;(;) by construction. |

Remark 2.20. The proof of Proposition 2.19 is the one step where we used the refinement
of the topology, namely the fact that the faithfully flat cover (B, IB) — [[;(C;, IC;) can
be replaced by the family {(B, IB) — (C;, IC;)};.

Finally, we obtain the Cech—Alexander complexes in the global case.

Prop051t10n 2.21. With the notation for 'V}, . ;. as above and the choice of prismatic cov-
ers Cv]] Jawjn @8 in Proposition 2.15, RI'((X/ A) p, O) is modelled by the Cech—Alexander

complex
0— C'V —> C'V —> CV —> e (C')
J1:J2 J1-72:73 Pas
Ji.J2 J1:J2,J3

(that is, the complex associated to the cosimplicial ring (]_[

Proof. By [32, 079Z], the epimorphism of sheaves | | i h Gy X from Proposition 2.19
J

implies that there is a spectral sequence with E;-page

Ef”qzﬂq((]_[hév)x;z,@) ( 11 th AAAAA jp,(9)
J J1:J25e5Jp
= l_[ Hq((évll ----- Jp’ICle »»»»» Jp)’(g)
Jiseees Jp

converging to
HP(x,0) = HPT((X/A)), 0) = HPT((X/A)p, 0),
where we implicitly used Corollary 2.9 and the fact that

heo xhe =he go  =hg
Cvjl Cvfz th IZICij th 2J2

as in Proposition 2.15, and similarly for higher multi-indices.
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index ji, ..., jn. The first page is therefore concentrated in a single row of the form CV’;;]
and thus, the spectral sequence collapses on the second page. This proves that the coho-
mologies of RI'((X/A)p, O) are computed as cohomologies of C2 ., but in fact, this yields
a quasi-isomorphism of the complexes themselves. (For example, analyzing the proof
of [32, 079Z] via [32, 030W], the double complex EJ°® of the above spectral sequence
comes equipped with a natural map «: Cv‘% — Tot(E3*), and a natural quasi-isomorphism
B:RI'((X/A)p, Q) — Tot(EG*); when the spectral sequence collapses as above, « is also
a quasi-isomorphism.) ]

Notation 2.22. For future use, let us establish the following notation. Given the choice of
an affine open cover B = {V;}; of X and prismatic covers (Cy;, ICy, ) chosen

-----

----- Jn’
as in Proposition 2.15, denote by Ng the Cech nerve of L, h¢, — *, ie., the simpli-
cial object in (X/ A)z underlying the construction of the Cech—Alexander complex CV’Q'}
of Proposition 2.21 (this is a slight abuse of notation since it depends on the choice of
prismatic covers and not just on I; however, hopefully such a choice will always be clear
from context).

Then for an abelian sheaf ¥ on (DC/A)X, we use the notation C *(Nsg, ¥) for the
complex associated with the cosimplicial abelian group obtained from Ng by termwise
applying % . Thus, for example, the Cech—Alexander complex CV'% of Proposition 2.21 is
also denoted by ok (Ng, 09).

Remark 2.23. Just as in the affine case, the formation of Cech—Alexander complexes is
compatible with “termwise flat base-change” on the base prism essentially by [6, Proposi-
tion 3.13]. That is, if (C’ ™ 3)m is a Cech-Alexander complex modelling RI)\(X/A) and
(A, 1) — (B, IB) is a flat map of prisms, then the complex (C‘m Q4B IR 1), is a
Cech-Alexander complex that computes RI" A(XB/B).

In order to understand Cech—Alexander complexes even more explicitly, we employ
the following approximation of the prismatic envelope, similar in spirit to the proof of
[6, Proposition 3.13].

Definition 2.24. Let B be a §-ring, J € B an ideal with a fixed generating set x =
{xi}ien,and let b € J be an element. Denote by by be the kernel of the B-algebra map

1 Xi
B[T] = B[{Ti}ica] — B[;] T; — ?l
Denote by B{T} the free B-§-algebras on the generators 7, and let b be the §-ideal in
B{T'} generated by by. Then we denote by B{%} the §-ring B{T}/b, and call it weak
8-blowup algebra of x and b.

That is, the above construction adjoins (in §-sense) the fractions x; /b to B together
with all relations among them that exist in B[1/b], making it possible to naturally compute
with fractions.
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Note that if B — C is a map of B-§-algebras such that JC = bC and this ideal is
invertible, the fact that the localization map C — C [%] is injective shows that there is a
unique map of B-§-algebras B{%} — C.

The purpose of the construction is the following.

Proposition 2.25. Let (A, I) be a bounded prism with I = d B for a distinguished element
d € B. Let (A, 1) — (B, J) be a map of §-pairs and assume that (C, I C) is a prismatic
envelope for (B, J) that is classically (p, I)-complete. Let x = {x, }iea be a system ¢ of
generators of J. Then there is a surjective map of §-rings B{ }Cl — C, where (— )Cl
denotes the classical (p, I)-completion.

Proposition 2.25 applies in particular when (C, I C) a prismatic cover from Construc-
tion 2.11. Since the prismatic cover is (p, I)-completely flat over the base prism, it is
classically (p, I)-complete by [6, Proposition 3.7].

Proof. Since JC = dC and d is a non-zero divisor on C, there is an induced map
B{%} — C and hence a map of §-rings B/{%\}Cl — C (using [6, Lemma 2.17]).

To see that this map is surjective, let C’ denote its image in C, and denote by ¢ the in-
clusion of C’ into C. Then C’ is (derived, and, consequently, classically) (p, I)-complete
A-§-algebra with C’'[d] = 0. It follows that (C’, IC’) = (C’, (d)) is a prism by [6,
Lemma 3.5] and thus, by the universal property of C, there is a map of B-§-algebras
r:C — C’ which is easily seen to be right inverse to . Hence, ¢ is surjective, proving the
claim. ]

3. The conditions (Cry)

3.1. Definition and basic properties

In order to describe the conditions (Cry), we need to fix more notation. Recall that 7 is
a fixed choice of a uniformizer of K. For a natural number s, denote by K; the field
K(ms) (where (7,), is the compatible chain of p”-th roots of 7 chosen before, i.e., so
that u = [(77,)n] in Aing), and set Koo = | J; K. Further set Ko = |, K({pm) and for
s € NU {oo}, set Ky s = Kpoo K. Note that the field K, o is the Galois closure of
K. Denote by G the Galois group Gal(Kp /K) and by Gy the group Gal(K/Kj),
for s € N U {o0o}.

When p > 2, the group G is generated by its two subgroups Gal(Kpe o/ Kp) and
Gal(Kpeo, 00/ Koo) by [25, Lemma 5.1.2]. When p = 2, the same can be achieved by a
specific choice of 7 by the following lemma, and we choose 7 in this manner (this is the
specific choice of 7 mentioned in Section 1).

Lemma 3.1. Let p = 2. Then Ko N Kz = K for a suitable choice of the uniformizer
T e (DK.

Proof. This is [33, Lemma 2.1]. We just note that while [33] assumes that the residue field
k is finite, the proof easily adapts to the more general case of a perfect residue field k. m
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The subgroup Gal(K pe oo/ Kpo) of G is normal. An element g € Gal(K poo 00/ Kpoo)
is determined by its action on the elements (75)s, which takes the form g(ms) = EZ? s,
with the integers a; unique modulo p* and compatible with each other as s increases. It
follows that Gal(Kpe, 00/ Kp) =~ Z,, with a topological generator t given by t(m,) =
Cpnn (Where, again, ¢,n’s are chosen as before, so that v = [({pn),] — 1.

Slmllarly, the image of Gy in G is the subgroup Gs = Gal(Kpe 00/ Ky). Clearly Gy
contains Goo and the intersection of Gy with Gal(Kpoo 00/ Kpoo) is Gal(Kpeo o0/ Kpo ).
Just as in the s = 0 case, Gy is generated by these two subgroups, with the subgroup
Gal(Kpoo 00/ Kpeo ) normal and topologically generated by the element 1248

There is a natural G g-action on Aj,r = W((D%K), extended functorially from the natu-
ral action on (90"31(. This action makes the map 0: Ajnr — Oc Gg-equivariant, in particular,
the kernel E(u)Ajys is Gg-stable. The Gg-action on the Gg-closure of @ in Aj,¢ factors
through G. Note that the subgroup Gal(Kpe o0/ Koo) of G acts trivially on elements of &,
and the action of the subgroup Gal(K = o/ Kp=) is determined by the equality

t(u) = (v + Du.

For an integer s > 0 and i between 0 and s, denote by & ; the element
¢*(v)
wp) ¢ (@)

(recall that w = v/¢~!(v)), and set

s
]S = (Ss,ou,ss,lup, e 755,5”1) )

For convenience of notation, we further set /o, = 0 and ¢*°(v)u = 0.
We are concerned with the following conditions.

Esi = R ) VA () VAR () RRRR7R (%)

Definition 3.2. Let M;,; be an A;,;-module endowed with a G g-A;,s-semilinear action,
let Mgk be an ©-module and let f: Mgx — M, be an S-linear map. Let s > 0 be an
integer or co.

(1) Anelement x € My is called a (Cry)-element if for every g € G,
g(x) —x € IyMiy.
(2) We say that the pair Mpx — M 4, satisfies the condition (Cr,) if for every element
X € Mgy, the image of x in My is (Cry).

(3) Anelement x € M, is called a (Cr;)—element if for every g € Gy,
g(x) — x € ¢* (V)uMip.

(4) We say that the pair Mgk — M 4, satisfies the condition (Cry) if for every element
X € Mgk, the image of x in My is (Cr)).

(5) Additionally, we call (Crp)-elements crystalline elements and we call the condi-
tion (Cry) the crystalline condition.
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Remarks 3.3. Several remarks are in order.

(1) Since Iy = ¢~ (v)uAjyy, the crystalline condition equivalently states that for all
g € Gk and all x in the image of Mgk,

gx)—xe€ ﬁﬂ_l(U)UMinf-

The reason for the extra terminology in the case s = 0 is that the condition is
connected with a criterion for certain representations to be crystalline, as discussed
in Section 3.2. The conditions (Cre,) and (Crgo) are clearly both equivalent to the
condition f(Mpk) € M5,

inf

(2) Strictly speaking, one should talk about the crystalline condition (or (Cry)) for the
map f, but we choose to talk about the crystalline condition (or (Cry)) for the
pair (Mpk, Miy) instead, leaving the map f implicit. This is because typically
we consider the situation that Mgk is an ©-submodule of Mint"" and Mgk ®¢
Ainr >~ My, via the natural map (or the derived (p, E(u))-completed variant,
Mgk ®@ Aint >~ My,,). Also note that f: Mgx — My satisfies the condition
(Cry) if and only if f(Mpg) € M, does.

(3) For every fixed s, the ideal I contains the principal ideal ¢*(v)uAjys. Conse-
quently, for every s, (Cr}) implies (Cry). To our knowledge, there is no logical
dependency between any of the conditions (Cr;) (and between (Cr,), respectively)
for different values of s.

Lemma 3.4. For any integer s, the ideals ¢° (v)uAinr and Iy are G -stable.

Proof. 1t is enough to prove that the ideals u A,y and vA;,s are Gg-stable. Then Gg-
stability of ¢°(v) A,y for any s € Z follows since ¢ is a Gg-equivariant automorphism
of Ajys. Then g’ (v) equals to ¢*(v) times a unit for every g and s and the same is then
true of ¢’ (w) = @' (v)/¢'~1(v), hence also of all the elements £; 5 and it follows that I
is Gg-stable.

Given g € Gk, g(m,) = ZZ,’,’ 7, for an integer a, unique modulo p” and such that
an+1 = a, (mod p™). It follows that g(u) = [¢]?u for a p-adic integer a (= lim, a,).
Thus, u A, is Gg-stable.

Similarly, we have g({,n) = EIfZ, for integers b,, coprime to p, unique modulo p” and
compatible with each other as n grows. It follows that g([g]) = [¢]? for b = lim,, b,, and
s0 g(v) = (v + 1)? — 1 = lim, ((v + 1)®» — 1). The resulting expression is still divisible
by v. To see that, fix the integers b, to have all positive representatives. Then the claim
follows from the formula

W+ D" —1=v(+ D+ @+ D241 1),
upon noting that the sequence of elements
(+ D" @+ D24 ) = (W + D = 1) /v

is still (p, v)-adically convergent, e.g. by Lemma 2.3. |
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Let f: Mggx — M, be as in Definition 3.2. Lemma 3.4 shows that the modules
Mine/ Is Miye and Mg/ ° (v)u My have a well-defined Gg-action. Consequently, we get
the following restatement of the conditions (Cry) and (Cr’s).

Lemma 3.5. Given f: Mgx — My as in Definition 3.2, the pair (Mgx, Miyt) satisfies
the condition (Cry) ((Crg), resp.) if and only if the image of Mg in Miys := Mg/ Is Mins
— . w5—Gs
(Ming := Ming/@* (vV)uMing, resp.) lands in My .

In the case of the above-mentioned condition f(Mpgk) C Miff‘”, the Gg-closure of
f(Mgk) in My is contained in the Gg-submodule M OKpoo o0 , and thus, the Gg-action
on it factors through G. Under mild assumptions on Mj,¢, the Gs-action on the elements of
f(Mgg) is ultimately determined by t7°, the topological generator of Gal(K .00/ Kp s).
Consequently, the conditions (Cr}) are also determined by the action of this single element.

Lemma 3.6. Letr f: Mggx — My be as in Definition 3.2. Additionally, assume that My
is classically (p, E(u))-complete and (p, E (u))-completely flat, that the action of Gg on
M,y is continuous for the (p, E(u))-adic topology, and that the pair (Mgg, Mins) satis-
fies (Cryo). Then the action of G on elements of f(Mgk) makes sense, and (Mgy, Minf)
satisfies (Cr') if and only if

Vx € f(Mgk): 72 (x) — x € ¢*(V)uMiy.

Proof. Clearly the stated condition is necessary. To prove sufficiency, assume the above
condition for 77’ . By the fixed-point interpretation of the condition (Cr}) as in Lemma 3.5,
it is clear that the analogous condition holds for every element g € (77°).

Next, let us assume that g is an element of Gal(Kpe 0/ Kp ), the p-adic closure
of (t?°). Then g = lim, t7°%" with the sequence of integers (a,) p-adically convergent.
For x € f(Mgk), by continuity we have g(x) — x = lim, (t?°% (x) — x), which is equal
to lim, ¢*(v)uy, with y, € M. Since the sequence (y;) is still convergent (using the
fact that the (p, E(u))-adic topology is the (p, ¢*(v)u)-adic topology, and that p, ¢*(v)u
is a regular sequence on M), we have that g(x) — x = ¢*(v)uy where y = lim, y,.

To conclude, note that a general element g of @s can be written in the form g = g1 g»
where g1 € Gal(Kpeo oo/ Kpo s) and g, € Gal(Kpx o/ Kso). Then for x € f(Mgxk), by
the assumption f(Mpg) C Miff“ we have g1g2(x) — x = g1(x) — x, and so the condition
(Cr}) is proved by the previous part. ]

Let us now discuss some basic algebraic properties of the conditions (Cry) and (Cr)).
The basic situation when they are satisfied is the inclusion @ < Ajy itself.

Lemma 3.7. The pair © — Ay satisfies the conditions ( Cr; ) (hence also (Cry)) for all
s> 0.

Proof. Note that © < Ajy¢ satisfies the assumptions of Lemma 3.6, so it is enough to
consider the action of the element 2’ € Gy. For an element f = Y a;u' € © we have

()= f = a0+ D7) =Y ant = Y ai( + D - 1),

i>0 i>0 i>1
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and thus,

Tp(f) f (+ )P — i1 _ w4+ D7 —1
Ce(u Z @S (v) u _Z (v+1)PS—1” '

Since ¢°*(v) = (v + 1)?° — 1 divides (v + 1)?’! — 1 for each i, the obtained series has
coefficients in Ajys, showing that 7° (f) — f € ¢*(v)u Ay as desired. |

The following lemma shows that in various contexts, it is often sufficient to verify the
conditions (Cry) and (Cr;) on generators.

Lemma 3.8. Fix an integer s > 0. Let (C) be either the condition (Cry) or (Cr;).

(1) Let Miy be an Ains-module with a Gk -Aine-semilinear action. The set of all (C)-
elements forms an ©-submodule of M.

(2) Let Cins be an Ains-algebra endowed with a G g -semilinear action. The set of (C)-
elements of Ciye forms an G-subalgebra of Ciy.

(3) If the algebra Ciy from (2) is additionally Ays-8-algebra such that Gk acts by
8-maps (i.e., g = g6 for all g € Gk ) then the set of all (C)-elements forms a
&-8-subalgebra of Ciy.

(4) If the algebra Ciy as in (2) is additionally classically (p, E(u))-complete and
Cgk — Cinf is a map of ©-algebras that satisfies the condition (C), then so does
fB\K — Cing, where C/’];( is the classical (p, E(u))-completion of Cgk. In partic-
ular, the set of all (C)-elements in Ciy forms a classically (p, E(u))-complete
&-subalgebra of Ciyy.

Proof. Let J be the ideal I if (C) = (Cry) and the ideal ¢*(v)uAy if (C) = (Cry). In
view of Lemma 3.5, the sets described in (1) and (2) are obtained as the preimages
of (Ming/ JMing)®s ((Cing/ J Cing) %, resp.) under the canonical map Miyy — Mine/J Mine
(Cint — Cing/ J Cing, resp.). As these Gs-fixed points form an G-module (S-algebra, resp.)
by Lemma 3.7, this proves (1) and (2).

Similarly, to prove (3) we need to prove only that the ideal JCj, is a §-ideal and
therefore the canonical projection Ciyf — Cine/J Cins is @ map of §-rings.

Let us argue first in the case (Cr)). As §(u) = 0, we have

el @) = ()’ , e -(@w)"

§(¢° (v)u) = §(¢*(v))u? . 5

Recall that ¢°(v) = [g]?" — 1 divides ¢*T!1(v) = ([¢]”’)? — 1. The numerator of the
last fraction is thus divisible by ¢*(v) and since ¢*(v)Ainsr N pAint = @° (V) pAins by
Lemma 2.3, ¢*(v) divides the whole fraction (¢*T!(v) — (¢*(v))?)/p in Ainr. (We note
that this is true for every integer s, in particular s = —1, as well.)
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Let us now prove that the ideal J = I (hence also I;Cjy) is a §-ideal. For any i
between 0 and s — 1, we have

8(6s,i) = (¢ ()" (@) -+ ¢ ()
_ ¢ e (@) 9 (w) — ¢ )P () - ¢ (@)
P
The numerator is divisible by & ;+1, and so is the whole fraction thanks to Lemma 2.3.
Thus, we have that §(& ;u?') = (3(‘§S,,-)bt1”lJrl is a multiple of Ss,iﬂuplﬂ. Finally, when
i =s,wehave £, = ¢~ (v), and §(&;.5) is thus a multiple of £ ; by the previous. Conse-
quently, §(£s u?’) = S(Em)ul’erl is divisible by £ su?’. This shows that I is a -ideal.
Finally, let us prove (4). Note that £(u) = u® (mod p®), hence

V(P E@) = V(p.u¢) = V(p.u)

even as ideals of &; consequently, (p, E(u))-completions agree with (p, u)-completions
both for &- and Aj-modules. We may therefore replace (p, E(u))-completions with
(p, u)-completions throughout.

Since Ciyt is (p, u)-complete, any power series of the form

o
f= E ci,jp'u’
i,j

with ¢; ; € Ciyr defines a unique element f* € Ciy, and f comes from C/B\K if and only if
the coefficients ¢; ; may be chosen in the image of the map Cgx — Ciys. Assuming this,
for g € G5 we have

g(f)—f =) gl uy’ =Y cijp'u’
i,] 1,J
= Z (gci, )y’ —gleij) + gleiy) —cij) p'u

i,j
where y is the A;ye-unit such that g(u) = yu. Thus, it is clearly enough to show, upon
assuming the condition (C) for (Cgk, Cin), that the terms (g(c;,;)y’ — g(ci,;))p'u’ and
(g(ci,j) — ci,j)piuj are in J Cyr when g € Gy. (Note that an element d = Zi,j di ; piul
with d; ; € JCiy is itself in J Ciyy, since J is finitely generated.)

Since g(c;, ;) — ci,j € J Cinr by assumption, it remains to treat the term g(c,-,j)(yj —1).
Since (y/ — 1) is divisible by y — 1, it is also divisible by ¢*(v) by Lemma 3.7. Thus, the
terms g(c; ;)(y/ — 1)p'u’ are divisible by ¢*(v)u when j > 1, and are 0 when j = 0;
in either case, they are members of J Cjys.

To prove the second assertion of (4), let now Cgx C Cjyr be the G-subalgebra of all
(C)-elements. By the previous, the map Cix — Cyy satisfies (C), and hence the image
CB+K of this map consists of (C)-elements. Thus, we have Cgx C C];LK C Cgk, and hence,
Cgy is derived (p, E(u))-complete since so is C];LK. However, as a subring of Cjy it is also
separated for the (p, E(u))-adic topology, hence it is classically (p, E(u))-complete. =
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For future use in applications to p”-torsion modules, we consider the following approx-
imation of the ideals I appearing in the conditions (Cry).

Lemma 3.9. Consider a pair of integers n,s with s >0, n > 1. Set t = max{0,s + 1 —n}.
Then Iy < (p_l (v)uplAinf =+ pn Aint.

Proof. When t = 0 there is nothing to prove, therefore we may assume that
t=s+1-n>0.

In the definition of /5, we may replace the elements

i =0 (1) T )" T (w) - ¢f (w)

by the elements

£ =0 W T EW)e' T2 (EM)) - ¢* (Eu)),

since the quotients & ; /&, ; are Ajq¢-units.
It is thus enough to show that for every i with 0 <i < s, the element

P . . ;
Vs, = %() =" "HEW)) o' (E@)) - ¢* (E@))u”
o (v
taken modulo p” is divisible by upP™'
This is clear when i > s 4+ 1 — n, and so it remains to discuss the cases wheni < s — n.

Write ¢/ (E(u)) = (ue)”j + px; (with x; € &). Then it is enough to show that
ﬁs,i

up'

= ((ue)piJrl + Pxi+1)((ue)pi+2 + pxiga) - (WP + px) ()

taken modulo p” is divisible by

WP =Pt P (=Dt ptetp T

Since we are interested in the product () only modulo p”, in expanding the brackets we
may ignore the terms that use the expressions of the form px; at least n times. Each of
the remaining terms contains the product of at least s — i — n + 1 distinct terms from the
following list:

(ue)pi+1 ’ (ue)pi+2, L (ue)ps.
Thus, each of the remaining terms is divisible by (at least)

i+1 i+2 s—n+1 i s—n—i
+pi 2t (p)-(1+p+-t
we)?r" +r p = ()P P)rUtpttp™)

which is more than needed. This finishes the proof. ]
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3.2. Crystalline condition for Breuil-Kisin—Fargues G -modules

The situation of central interest for the crystalline condition is the inclusion Mg C Mme“’
such that Ay ® e Mk — Miys is an isomorphism, where Mgy is a Breuil-Kisin module
and M is a Breuil-Kisin—Fargues Gg-module. The version of these notions used in this

paper is tailored to the context of prismatic cohomology.

Definition 3.10. Breuil-Kisin(—Fargues, resp.) modules are defined as follows.

(1) A Breuil-Kisin module consists of a finitely generated ©-module M together with
a ©[1/E(u)]-linear isomorphism

¢ = omp ey WeM)[1/E)] = M[1/E@)].

For a positive integer i, the Breuil-Kisin module M is said to be of height < i
if ppr11/E] 1s induced (by linearization and localization) by a ¢g-semilinear map
oym: M — M such that, denoting ¢j;,: 9* M — M its linearization, there exists an
&-linear map ¥: M — ¢* M such that both the compositions ¥ o ¢}, and @y, © ¥
are multiplication by E(u)'. A Breuil-Kisin module is of finite height if it is of
height < i for some i.

(2) A Breuil-Kisin—Fargues module is a finitely presented Aj-module M such that
M1/ p] is a free Ajye[1/ p]-module, together with an Ay¢[1/ E (u)]-linear isomor-
phism

¢ = omuy/e): (@h, M)[1/E)] — M[1/E®)].

Similarly, the Breuil-Kisin-Fargues module is of height < i if @p[1/E] comes
from a @4, .-semilinear map @pr: M — M admitting an Ajp¢-linear map : M —
@*M such that ¥ o ¢y, and @y, o ¥ are multiplication maps by E (u)’, where ¢y,
is the linearization of ¢ps. A Breuil-Kisin—Fargues module is of finite height if it
is of height < i for some i.

(3) A Breuil-Kisin—Fargues Gg-module (of height < i, of finite height, resp.) is
a Breuil-Kisin—Fargues module (of height < i, of finite height, resp.) that is
additionally endowed with a continuous, Ajs-semilinear Gg-action that makes
omp/E) Gk-equivariant (that makes also ¢ps Gg-equivariant in the finite height
cases).

That is, the definition of a Breuil-Kisin module agrees with the one in [4], and Mj,sis a
Breuil-Kisin—Fargues module in the sense of the above definition if and only if (psz Mg is
a Breuil-Kisin—Fargues module in the sense of [4].'° The notion of Breuil-Kisin module
of height < i agrees with what is called “(generalized) Kisin modules of height i in [24].

10This is to account for the fact that while Breuil-Kisin—Fargues modules in the sense of [4] appear as
Ains-cohomology groups of smooth proper formal schemes, Breuil-Kisin—Fargues modules in the above
sense appear as prismatic Ajpr-cohomology groups of smooth proper formal schemes.
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The above notion of finite height Breuil-Kisin—Fargues modules agrees with the one from
[14, Appendix F] except that the modules are not assumed to be free. Also note that under
these definitions, for a Breuil-Kisin module Mgy (of height < i, resp.), the Aj,r-module
Mine = Ainr ® Mz is a Breuil-Kisin—Fargues module (of height < i, resp.), without the
need to twist the embedding © — Ajy¢ by @.

The connection between Breuil-Kisin-, Breuil-Kisin—Fargues Gg-modules and the
crystalline condition (justifying its name) is the following theorem.

Theorem 3.11 ([14, Appendix F], [20]). Let Miys be a free Breuil-Kisin—Fargues Gg-
module which admits as an &-submodule a free Breuil-Kisin module Mgy C Miff” of
finite height, such that Ay ®e Mk = Myt (as Breuil-Kisin—Fargues modules) via the
natural map, and such that the pair (Mgg, Mint) satisfies the crystalline condition. Then
the étale realization of My,

V(Minf) = (W(CI;() ®Ainf Minf)(0=l |:§i|’

is a crystalline representation.

Remarks 3.12. In more detail, Theorem 3.11 relates to the results of [14,20] as follows.

(1) Theorem 3.11 is actually an equivalence: If V(Mjy¢) is crystalline, it can be shown
that the pair (Mpk, Minr) satisfies the crystalline condition. We state the theorem in
the one direction since this is the one that we use. However, the converse direction
motivates why it is reasonable to expect the crystalline condition for prismatic
cohomology groups that is discussed in Section 4.

(2) Strictly speaking, in [14, Appendix F] one assumes extra conditions on the pair
My (“satisfying all descents”); however, these extra assumptions are used only
for a semistable version of the statement. Theorem 3.11 in its equivalence form is
therefore only implicit in the proof of [14, Theorem F.11]. (See also [28, Theo-
rem 3.8] for a closely related result.)

(3) On the other hand, Theorem 3.11 in the one-sided form as above is a consequence
of [20, Proposition 7.11] that states that V(Mjy¢) is crystalline if and only if the
weaker condition

Vg e Gk: (g—1)Mpk C sﬂ_l(U)W(m(DCb )Miye
K

is satisfied.

It will be convenient later to have version of Theorem 3.11 that applies to not neces-
sarily free Breuil-Kisin and Breuil-Kisin—Fargues modules. Recall that, by [4, Proposti-
tion 4.3], any Breuil-Kisin module Mgk is related to a free Breuil-Kisin module Mgk frec
by a functorial exact sequence

0 — Mgk or = Mpk — MBgK,free — Mpk — 0,
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where Mgk (or is @ p"-torsion module for some n and Mgk is supported at the maximal
ideal (p, u). Taking the base-change to Aj,¢, one obtains an analogous exact sequence

0— Minf,lor - Minf - Minf,free - Minf -0

(also described by [4, Proposition 4.13]) where Mixt free is a free Breuil-Kisin—Fargues
module. Clearly the maps Mgk — MBEK free a0d Mint — Mint free become isomorphisms
after inverting p.

Assume that M, is endowed with a Gg-action that makes it a Breuil-Kisin—Fargues
Gg-module.

By the functoriality of the latter exact sequence, one obtains an induced G -action on
Mg free, making it a free Breuil-Kisin—Fargues Gk -module and the map Miyy — Minf, free
Gk -equivariant. Note that this map becomes an isomorphism of ¢-Gg-modules after
inverting p.

Proposition 3.13. Assume that the pair Mgx — Myt satisfies the crystalline condition.
Then so does the pair Mk free = Minf free-

Proof. Notice that the crystalline condition is satisfied for Mg [1/ p] = Min[1/ p] and by
[4, Propositions 4.3, 4.13], this map can be identified with Mgk frec[1/ p] = Mint,tree[1/ P].
Thus, the following lemma finishes the proof. ]

Lemma 3.14. Let Fiy¢ be a free Ains-module endowed with A s-semilinear Gg-action
and let Fgx C Fiyt be a free S-submodule such that Fpg[1/ p] < Fiue[1/ p] satisfies the
crystalline condition. Then the pair Fpx — Fiu¢ satisfies the crystalline condition.

Proof. Fix an elementa € Fpk and g € Gg. The crystalline condition holds after invert-
ing p, and so we have the equality

bi=(g—1)a= <p—‘(v>u§

with ¢ € Fjy¢. In other words (using that pk is a non-zero divisor on Fj,¢), we have
P*b = 7 W)uc € p* Fie N o™ (0)uFins = p*o ™" (v)uFus,

where the last equality follows by Lemma 2.3 since Fiyt is a free module. In particular, we
have
P = pre7 wyud

for yet another element d € Fiys. As pk is a non-zero divisor on A;,r, hence on Fip, we
may cancel out to conclude

(g—Da=b=9¢ ' (v)ud € ¢~ (V)uFpy.

as desired. [
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Proposition 3.13 leads to the following strengthening of Theorem 3.11.

Theorem 3.15. The “free” assumption in Theorem 3.11 is superfluous. That is, gtven a
Breuil-Kisin—Fargues Gg-module My and a Breuil-Kisin ©-submodule Mgy C MmfOQ
of finite height such that Ay @ Mpx = Miw¢ and such that the pair (Mg, Mine) satisfies
the crystalline condition, the representation

=11
V(Ming) = (W(C?() ® Ain Minf)(o |:;i|
is crystalline.

Proof. With the notation as above, upon realizing that V(Mins) and V(Mint free) agree, the
result is a direct consequence of Proposition 3.13. ]

4. Conditions (Cry) for cohomology

4.1. Conditions (Cry) for Cech-Alexander complexes

Let X be a smooth separated p-adic formal scheme over Ok. RFA(DC@CK /Ainf) comes
with a natural G g-action by functoriality of cohomology, which we now discuss in detail.

Definition 4.1. For g € Gg, the semilinear map g:RI"p (.'XZ@CK /Aint) = RTp (.')C@CK / Ainf)
is given as follows.
(0) As I)C@cK comes from X/Ok, there is a canonical identification of g*f)C@cK with
Xoc, as aformal Oc-scheme. In more detail, there is a Cartesian square of the
form

g
XQCK E— :X:@CK

ls ls
SpfOc, —5— SpfOc¢,.

(where 5’: .’JC@CK — SpfOc, is the structure map). From now on, let us denote the
map g again simply by g. Note that for an affine open V = Spf(R) € X and V' =
V(%K - DC@EK, one again has g*V’ canonically identified with V' (even as formal
subschemes of DC@CK ), and the resulting map g: V' — V' is described in terms of
coordinate rings as R ®0x Ocy — R ®0yx Ock, X ® a > x ® g(a) (equivalently,
the canonical isomorphism V'’ 5 g*V' is given by the map of coordinate rings
R ®0, Ocy ®0cy, Ocx = R ®ox Ock, X ®a®@b > x ® g(a)b).

(1) The map g: :X:QCK — DC@CK from the previous step induces a (continuous and co-
continuous) functor of sites g: (DC@CK / Ainf)z (DC@CK / Ainf)z given as follows.
An object described by (A, (§)) — (B, £B) and Spf(B/SB) — DC@C is sent
to the object obtained by the compositions (A, (§)) LN (A, (§)) — (B,EB)
and Spf(B/éB) — DC@CK 2, DC@CK. Let us denote this object by g«(B, £B) for
brevity.
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(2) The pullback functor
—1. u i}
g ShV(:X:@CK /Ainf)A — ShV(:X:OCK /Ainf)A

(asin [32, 00XN]) sends a sheaf ¥ € ShV(C)C(pC / Ainf)z to the sheaf g~ %, which
takes any object (B, £B) of (I)C@CK /Amf)LI to ¥ (g«(B, £B)). In particular, the
sheaf @ = O is mapped to the sheaf g_1(9, which takes an object (B, éB) €
(X@CK /Ainf)X to g« B (i.e., B viewed as an A;,s-algebra via Ajys LN At — B).

(3) For any sheaf ¥ € Shv(x(ch / Ainf)X, there is an induced map of global sections
[T (Xoc,» F) = T(Xog, - &' F) (sending a section * — F to x = g~ '+ —
g~'#) and hence, a map RT'(Xo,, . ¥) — R[(Xog, . g~ F). Taking ¥ = O,
we get a map RF(DC@CK ,0) —> RF(DC@CK , g7 10) (tautologically A;,-linear when
the A;p-action on g~ 1@ is induced by the Ajy¢-action on ).

(4) Finally, there is a morphism of sheaves g71© — @ (making the morphism of sites
g from step (1) into a morphism of ringed sites) given by the “identity map”

(g7'0)((B.£B)) = g.B > B = O((B.£B))

on every (B,&B) € (DC@CK / Ainf)i (the map can, thus, be thought of as an Ajy¢-
g-semilinear identification of g~ with @). Composing the map from step (3)
with the map on global sections induced by g7 '@ — 0, the result is an Ajy¢-g-
semilinear map g: RF(DC@CK ,0) > RF(DC@CK , @), which is the map defining the
action of g on RF(DC@CK ,0) = RFA(X%K / Aint)-

The resulting action can be described in terms of a (suitably chosen) Cech-Alexander
complex modelling RT"p (DC@CK / Aing). Roughly speaking, this is due to the pullback func-
toriality of Cech complexes together with an initial choice of a cover that is stable under
the natural Gg-action.

Construction 4.2. Denote by C’];K a Cech—Alexander complex that models RT A(X/©).
Denote the affine open cover of X used in the construction of C3 by B ={V;};, and the
chosen compatible prismatic covers by (év i E (u)év i) SEL éi;f = CV’BfK ® Aint,
computed termwise — by Remark 2.23, this is a Cech—Alexander complex modelling
NN (DC@C /Aing), associated similarly with the affine open cover B’ = {V’ }j, obtained
by base- change of {V;}; along Ok — Ocy. Likewise, denote the assoc1ated prismatic
covers (Cv N ®@ mf,ECv] ®@ Ajne) simply by (Cv/ ..‘,,-,,’Eév'- ).
Further, denote the coordinate r1ng of Vj,....i» bY R}, and of \7/ " by R’,
respectively. Let us denote by Pj, .. j, — Rj1,..., jn the inltlal choices of surjective maps
from (p, E(u))-completely free G-algebras made in the construction of prismatic covers
(Construction 2.11; but note that these are chosen compatibly in the sense of Proposi-
tion2.15), and by P/ . — R} . the (p, E(u))-completed base change to Ains. By
Remark 2.17, we may assume that the set of variables for each of the underlying poly-

,,,,,,,,,,
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nomial algebras is finite. Although not strictly necessary at this stage, we do make this
assumption from now on.
For g € Gk, denote by g*8’ the affine open cover {g*\?;. }j of Xoc, . and denote by

g*(év} . ,SCV‘V} ; ) the pullback of
1 1 n

(Cy, §Cv )€ Xog, /A

(that is, the object given by the prism g*CV‘V; = CV’V; ; ® Ainr,e Aint and where the
J1seeesdn J1seeesdn
map Spf(CV/ /ECV/ ) — DC@C is base-changed along f)C(gC LN I)C(gC ). These

assemble 1nto a s1mphclal ob]ect g* Ny obtained by applying g* termwise to Ny (equiv-
alently, this is Ngxg, the Cech nerve of the cover hg* Cor — ). Consider now the
j

following.
(1) For a sheaf ¥ on (X, /Ainf)z, a section s € 37((6\73_ _ ,ECV'V} ; )) corre-
Lo Lowesn
sponds by Yoneda lemma to a map of sheaves fs:h £y ) F.
J1sees Jn J1seees Jjn
Taking pullback by g yields a map 1
-1 —1 g
figThe, e, 8 F
J1sees jn J1seees Jn
where g_lh(cvv}l By Sév}l ,-,,) is naturally isomorphic to hg*(év;l . £Cy M).

This yields a section
g7l egT (g (Cyy L ECy ).

-1

The resulting assignment s — g~ s induces a map of chain complexes

C*(Ng, F) — C*(g* Ny, g7 ' 7).

Taking ¥ = O, one obtains a map Cmf—C (Nggr, O) —C* (g*NQ]/ g7 10). Un-
wrapping all the definitions, this morphism is the canonical map Clgf - g*g*éh'lf
given by x = x ® 1 (but note that it is Ajpe-linear thanks to g on the right).

(2) From the map of sheaves of rings g_1(9 — @ from Definition 4.1 (4), one obtains
a map C* (g*Ng.g7109) — c* (g*Nggr, ). This map pre- composed with the
map from step (1) yields the (Ajys-g-semilinear) canonical map Cmf — g Cmf
givenby x > x ® 1.

(3) The cover g*B’ is, in fact, canonically isomorphic to the cover B’ as outlined in

Definition 4.1 (0). Moreover, the prismatic covers g* (év} . € év/ ) are also
- -
canonically isomorphic to the prismatic covers (CV; ; € CV} ) of J] in®
J1seeos n 1oees yeees
To see this, note that the completed polynomial algebra P -/1 i comes from a

polynomial W (k)-algebra P;: ’’’’ e = W(k)[{X;i}i] by the (p, £)-completed base-

change — @W(k) Ajys. The algebra g*(Pj(: jr ®Wk) Ajyr) is then canonically

.....
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identified, as an A;ns-algebra, with P].? i ®w (k) Aint, for the same reasons as in
Definition 4.1 (0). In particular, the canonical isomorphism

Pj?,...,jk OWk) Aint ® 4;,g Aint = g*(Pj(:,...,jk Qwk) Ainf) = (Pj?,‘..,jk QwWik) Aint)

isgivenby f Q@ a ® b — f ® g(a)b; if we treat g* Aine[{X; };] on the left as the
polynomial algebra Aj,¢[{X;};] with twisted Ajs-action, the map takes the form
YoaiX Y glan)X.

This, in particular, agrees with the canonical isomorphism g*R}l’m’ i R}l,..., i
i.e., there is a commutative square

&Py ®Wk) Aint 8" R\
Pj(:’m,]'n ®W(k) Ainf —_— R}],..‘,jn’

where the horizontal maps come from P]fl N e R}l erin and its g-twist, and the
vertical maps are the canonical isomorphisms just described. Taking (p, £)-adic

completion, one thus obtains the commutative diagram with exact rows

£ / * ! * /
0 —— ¢*UPj ;) — &P ., — &R, ., —0
0—>JPj/ . — P! . ——— 3 R . — 0.
15+-05Jn J1seees]n J1seeesJn

Taking §-envelopes and prismatic envelopes as in Construction 2.11, one obtains a

,,,,,,,,,,,

AAAAA

R, ., — Cv, ,/£Cy

,,,,,,,,,,,,,,,,,,,,,,

morphism of objects of (X, / Ainf)z (in the opposite direction in the variance
of the site). Moreover, since this isomorphism is functorial in the maps P’ — R’
(or, more precisely, in the map of sets X — R’ where X is the given chosen set
of free variables of P’, cf. Remark 2.16), these isomorphisms assemble to an iso-
morphism of simplicial objects N/ — Ng+sgr.
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(4) Finally, given ¥ € ShV(X@CK JAinp) H A the canonical isomorphism Ng/ — Ngxg
yields an isomorphism C* (Ng*m/ F)— ok (Nggr, F); in particular, for ¥ = O
one obtains an isomorphism g*C — Clnf Composing the maps from steps (1)
and (2) with this map yields the Amf -g-semilinear action map g: C ;= C

Proposition 4.3. Definition 4.1 and Construction 4.2 are compatible, that is, the action-
by-g map g: RFA (x@CK /Aing) = RUp (Xoc,, /Aint) from Definition 4.1 is modelled by the

action map g: Cs—>C®

of ¢ from Construction 4.2.

Proof. Just like in the proof of Proposition 2.21, we invoke proofs of [32, 079Z, 030W].
That is, upon choosing a resolution @ — I° by injective abelian sheaves, there is a dia-
gram

RFA(X@CK/Alnf) =T(x,1I° )—>C (Ngr, I°® )<—C (Ng,0) =

mf ’
where

* o is the natural map to the left (zeroth) column (i.e., I°(LI; (évj ))) of the double
complex C *(Ngs, I°), and becomes a quasi-isomorphism after totalization of this
double complex,

* a is the map to the bottom (zeroth) row (i.e., C *(Ng, I%)) of the double complex
C *(Nsg, I®) induced by the map of sheaves @ — I°, and becomes a quasi-isomorphism
after totalization of the double complex.

This diagram can be extended to the commutative diagram

[(%,I%) —%— C*(Ng, I*) +—%—— C*(Nw.0)

b b -

(kg7 11%) 2 C*(Ngrayr, g7 I%) <2 C*(Ngrgyr, g710)

| B [

(%, I%) —2— C*(Ngrgr, I°) +—2— C*(Ngegw, 9)

X ld3 lcs

C*(Nyg . I%) +—2%—— C*(Ng.0),

where

(1) The map y; is the pullback map from Definition 4.1 (3) (applied to the complex of
sheaves 7°) and, in parallel, the maps d, c; are the pullback of sections operation
on Cech complexes described in Construction 4.2 (1) (applied to the complex of
sheaves I°® and to O, respectively).

(2) The complex of sheaves g~ 1.I*® is an injective resolution of g~ (e.g. because
the sheaf pullback functor g~! is an auto-equivalence on the category of abelian
sheaves on (DC@CK /Ainf)X) and thus, one can choose a lift /: g='I® — I°® of
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the map of sheaves g7'@ — @ from Definition 4.1 (4). Then the maps y», d»
are obtained from / (by functoriality of global sections and of the Cech complex
formation, resp.) and likewise, ¢, is obtained by applying the Cech construction
to the original map g~'9 — 0.

(3) The maps d3, c3 are induced by the isomorphism of Cech nerves Ny — N Py
described in Construction 4.2 (3).

(4) The maps «;, a; are the natural maps into zeroth column and row, resp., defined
analogously to o and a but for different complex of sheaves (g710 — g7 1I°)
and/or different choice of the Cech nerve (Ng+sg).

The composition y,y; is the map g on RFA(VXC%K /Aing) described in Definition 4.1
while the composition c3cac; is the map g on C;b,. After totalization of the double com-
plex C *(Ng, I*®), the maps a, @ become quasi-isomorphisms (altogether, the canonical
quasi-isomorphism between cohomology and the Cech—Alexander complex), showing
that c3c2¢1 models the map g on RI") (DC@CK / Ainf)- [ ]

As a consequence of Construction 4.2, the Galois action on the complex Cv'i;f is fairly
explicit. In particular, we have the following properties.

Corollary 4.4. Let us keep the notation from Definition 4.1 and Construction 4.2.

(1) The Galois action on each term C n U makes each direct factor CV/ ; Gk-

J1
stable and, in fact, forvevery g e GVK’ the map g: Clﬁf 1 ¢ nol s 'the direct
product of the maps g: Cv/ — Cv/ i on these direct factors.
n

(2) On each such C\;/ the action is given by (Aint-semilinear) maps of prisms.

Moreover, if {X; }l is the free basis of the polynomial algebra used in construction
ofCV}_ (as in Remark 2.16), then g(X;) = X; forall g € Gk and all i.
1

Proof. Interms of the notation from proof of Proposition 4.3, the map c,c¢y: Cmf —>g Cmt

has the explicit descr1pt10n X > x ® 1 (cf. Construction 4.2 (2)) and thus, it is a direct
product of maps Cvr - g*Cvr _, X = x ® 1, which are g-semilinear maps of

prisms. Moreover, it is easy to see that th1s map is obtained from the commutative square

1 ’
P.lla -sJn R]l, sJn
lx»—>x®1 lxt—»x@l
* D/ s * D/
g le ..... Jn §R;j, . J

by the functorial construction of prismatic covers (Construction 2.11). The map c3 has
also the product form from its definition, and is obtained by the functoriality of prismatic
covers from the square

where the vertical maps are the canonical isomorphisms described in Construction 4.2 (3).
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Altogether the map g = c3cacy: C — C' "1 therefore decomposes as a product
of maps g: Cv/ s Cv/ provrng part (1). Furthermore these are maps of prisms

/ !
P]1> wJn R]l, s Jn

lx»—)x@l lx»—)x@l

/A * /
g le, - Jn g le, - Jn

| !

! /
Pjr, -Jn le, »Jn

by functoriality of Construction 2.11. Moreover, for the free basis {X;}; used in the con-

struction, it is easy to see that the left verticalmap P/, — P/ . sendseach X; to X;
(in fact, the vertical map is obtained from the endomorphism ), ¢ X* — )", g(aq) X*
of the polynomial algebra A ¢[{X;}i] by (p, §)-completion). This proves part (2). |

With the Galois action on Cmf established, our next aim is to prove the following.

Theorem 4.5. For everym > 0 and s € N U {o0o}, the pair C};”K — Ci’n"f satisfies the con-
dition (Cry).

By Corollary 4.4, Theorem 4.5 immediately reduces to the case of a single prismatic
cover CV}_ . Let us fix a choice of this cover (i.e., fix n, multi-index ji, ..., j,, and
consider CV’V} """ _, appearing in Cl;f as a direct factor). To simplify notation from the one
previously used, let us omit the multi-index everywhere, i.e.,

Spf(R) =V= Vj],.r.,jn s Spf(R ) = V/ V/ Py P = le,~~~,jn s P P’

weosJn Jlseesin?

and so on. Let us denote the basis used for constructing the map P — R, by {X;} =
{X1,X2,..., Xm}. That is, the map P — R is obtained from the map Ai,e[{X;}i] > R
by (p, E(u))-completion on the left. Further, let us denote

(CBK» E(u)éBK) = (éjl ,,,,, Jn> E(”)éjl ,,,,, jn)’ (éinfv E(u)éi“f) = (éjll
It is now enough to verify the following:

Proposition 4.6. The pair CBK—> éinf satisfies the conditions (Cry) for every s € N U {o0}.

Proof. Fix a generating set yy, y,, ..., y; of J = Ker(P — R), and set P; = P9, P =

—_

(P’)%. Using the weak §-blowup construction from Section 2.2, we obtain a commutative
diagram

Y 1 Y 1
PI{E(M)}C — Pl/{E(u)}c

lcr lg" “.1)

Cgxk —————— Ciyp,
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where the vertical maps are the surjective maps from Proposition 2.25, and the horizontal
maps come from the (p, E(u))-completed base change — ®g Ains. In particular, Cpxk and
Cins are (p, E(u))-adically topologically generated as an G-§-algebra and Aj,¢-§-algebra,
resp., by

X1, X2.....Xms t1=0(n/EW)), t2=0(y2/EW)),.... t1=0(yi/EW)).

By Lemma 3.8 (3), (4), it is enough to check the conditions for these generators. By Corol-
lary 4.4, we have g(X;) = X; for all i. Regarding the action on #;’s, note that #; € Cin is
the unique element with
GE®) = yj.
Thus, for g € Gg we obtain
g(t))YE) = g(y)).

where y is the Ajye-unit such that g(E(u)) = yE(u). Note that, since y; € JP' and
JP’ =Ker(P’ — R’) is Gg-stable (under the action considered e.g. in the proof of Corol-
lary 4.4, compatible with the Gg-action on Cinp), g(yj) € JP'. Consequently, there exists
a (necessarily unique) r; € Cing with r; E(u) = g(yj), givenby r; =0o'(g(y;)/E(u)). We

may therefore write

gty) =y 'rj.

Let us now fix an integer s € N U {oo} and verify (Cr;) for the above fixed generators.
Since the elements X; satisfy g(X;) — X; = 0 for every g € Gy, these are in fact (Cr)-
elements; by Lemma 3.8, so are the elements yq, y,, ..., y, since they come from the
G-algebra topologically generated by Xy, ..., Xy, i.e., from the image of P in Cik.
From now on, let us denote this image simply by P, and similarly, refer to the image of
P'in Ciyy simply as P’.

Let us now fix an index 1 < j <[ and verity (Cry) for ¢;. For an element g € G, we
may write g(y;) — y; = ¢*(V)uz; = & ouEu)Z; for some z;,Z; € P’ (that are equal up
to a multiplication by an Ajye-unit). Similarly, we have

gHEW) —Ew = (™' = DEW) = ¢*(v)ua = & ouEu)a

with a,a € Ay (again equal up to a unit).
Thus, we have that

~lg(y:) — v;
gt —t; =y~ = U’(—y géy(;)) y])

o (Y8OD =y Ay Ty
E(u)

i (&8y) =y . o Vi
= () ot e (g5)

=y Y& 0uZ; + Egoudy; € I;Cin.

This shows that each of the remaining generators {; is a (Cr,)-element, which finishes the
proof. ]
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4.2. Consequences for cohomology groups

Let us now use Theorem 4.5 to draw some conclusions for individual cohomology groups.
The first is the crystalline condition for the prismatic cohomology groups and its conse-
quence for p-adic étale cohomology. As before, let X be a separated smooth p-adic formal
scheme over Ok . Denote by X 4, the base change X X@, Ocy = X Xg Ainr, and by Xz
the geometric adic generic fiber.

Corollary 4.7. For every i > 0, the pair HlA xX/e) - H’A (X 4,/ Aint) satisfies the con-
ditions (Crg) and (Crgo).

Proof. By the results of Section 2.2, we may and do model the cohomology theories by
the Cech—Alexander complexes

Cpx — Cinp = Cx ®c Aint,

and by Theorem 4.5 the conditions (Crp) and (Crs) termwise hold for this pair. The
condition (Crs,) for H’A (X/®) c H‘A (XC/Ains) thus follows immediately, and it remains
to verify the condition (Cry).

Each of the terms C’if]f is (p, E (u))-completely flat over A;,p, which means in particular
that the terms C/. are torsion-free by Corollary 2.4. Denote the differentials on Cy, C%;
by d and o', resp.

To prove the crystalline condition for cohomology groups, it is clearly enough to verify
the condition at the level of cocycles. Given x € Z i(é];K), denote by x’ its image in
VA (éi;f). For g € Gk we have g(x') — x’ = ¢! (v)uy’ for some y’ € Cv'i’;lf. Asg(x)—x'e
Z! (éi;f), we have

" (ud' (y) = 3 (¢ ()uy’) =0,

and the torsion-freeness of C:1' implies that '(y’) = 0. Thus, ¥’ € Z!(Cinf) as well,

inf

showing that g(x) — x’ € ¢ 1 (V)uZ' (Cy,), as desired. n

When X is proper over Ok, we use Corollary 4.7 to reprove the result from [4] that
the étale cohomology groups Hél(xﬁ, Qp) are in this case crystalline representations.

Corollary 4.8. Assume that X is additionally proper over Ok. Then for any i > 0, the
p-adic étale cohomology Hét(xﬁ, Qp) is a crystalline representation.

Proof. Tt follows from [6, Theorem 1.8] (and faithful flatness of Aj,¢/@) that Mgk =
H’A (X/©) and My = H’A (X 4,,,/ Ainf) are Breuil-Kisin and Breuil-Kisin—Fargues mod-
ules, resp., such that My = Mgk ®g Ainr. Moreover, Mi; has the structure of a Breuil—
Kisin—Fargues G g-module with

=1]1 :
V(M) := (W(C'}() ® Ains Minf)(p 1[;} >~ Hg (X7, Qp)

as G -representations. By Corollary 4.7, the pair (Mpk, Miys) satisfies all the assumptions
of Theorem 3.15. The claim thus follows. [
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For the purposes of obtaining a bound on ramification of p-torsion étale cohomology
in Section 5, let us recall the notion of torsion prismatic cohomology as defined in [24],
and discuss the consequences of the conditions (Cr;) in this context.

Definition 4.9. Given a bounded prism (A4, /) and a smooth p-adic formal scheme X over
A/ 1, the p"-torsion prismatic cohomology of X is defined as

R, (X/A) = RT(X/A) ®72/p"Z.

We denote the cohomology groups of RT'p , (X/A) by H’ (f)C /A) (and refer to them as
p"-torsion prismatic cohomology groups).

Proposition 4.10. Let s > 0, n > 1 be a pair of integers. Set t = max{0,s + 1 — n}.
Then the torsion prismatic cohomology groups H’ (DC/ G) > H’ (Z)CAmf / Aing) satisfy
the following:

Vg€ Gyt (g— DH)y (/) S~ uPHy (Xay/Ain).

Proof. The proof is a slightly refined variant of the proof of Corollary 4.7. Consider again
the associated Cech—Alexander complexes over @ and Ajyy,

Cx = Cing = Gk O Aun.

Both of these complexes are given by torsion—freve, hence vZ-ﬂat, rnvodules by Corol-
lary 2.4. Consequently, RI" n (X/®) is modelled by Cgy , := Cg/ p" Cgy, and similarly
for RT'p , (X 4,1/ Aing) and Cmfn = C2./p"C2p. That is, the considered maps between
cohomology groups are obtained as the maps on cohomology for the base-change map of
chain complexes

Cv'1;1<,n - éi;f,n = Cv'13‘1<n ® Aint.
and as in the proof of Corollary 4.7, it is enough to establish the desired condition for the
respective groups of cocycles.

Seta = ¢! (v)upt. Note that by Lemma 3.9, the condition (Cry) for the pair of com-

plexes CBK n = Cmt ,, implies the condition

Vge Gy (g— l)CBKn CaCy

inf,n

(meant termwise as usual), and since the terms of the complex ~rare (p, E(u))-complete
and (p, E(u))-completely flat, « is a non-zero divisor on the terms of Cl:lfn by Corol-
lary 2.4.

So pick any element x € Z’ (CV’B'K ,»)- The image x” of x in Cl’nf "

lies in Z° (C ) and
Now g(x') — x’

inf,n

for any chosen g € G5 we have g(x’) — x’ = ay’ for some y’ € Cmfn

lies in Z! (Cmf’n), soay’ = g(x') — x’ satisfies
0= 0" (ay) =ad'(y).
Since « is a non-zero divisor on C/t!, it follows that &'(y’) = 0, that is, y’ lies in

inf,n >
A (Cmfn) We thus infer that g(x') — x' = ay’ € aZ'( mfn) as desired. L



Crystalline condition for A;,s-cohomology and ramification bounds 181
5. Ramification bounds for mod p étale cohomology

5.1. Ramification bounds

We are ready to discuss the implications to the question of ramification bounds for mod
p étale cohomology groups H (X5, Z/ pZ) when X is smooth and proper p-adic formal
scheme over Og.

We define an additive valuation v on (94'): < by vP(x) = v(x*) where v is the valuation
on Oc, normalized so that v(;r) = 1, and (—)* @%K — Ocy is the multiplicative lift of
pro: O%K — Oc¢y/p- This way, we have v () = 1and v’ (e — 1) = pe/(p —1). Fora
real number ¢ > 0, denote by a”¢ (a=¢, resp.) the ideal of (90": " formed by all elements x
with v°(x) > ¢ (W’ (x) > ¢, resp.).

Similarly, we fix an additive valuation vg of K normalized by vk (7r) = 1. Then for an
algebraic extension L /K and a real number ¢ > 0, we denote by aZ" the ideal consisting
of all elements x € Oy, with vg(x) > ¢ (and similarly, for “>" as well).

For a finite extensions M/ F/K and a real number m > 0, let us recall (a version of'!)
Fontaine’s property (P,f,l / F):

(PmM / F) For any algebraic extension E/F, the existence of an Op-algebra map Oy —

Of /az™ implies the existence of an F-injection of fields M — E.

We also recall the upper ramification numbering in the convention used in [10]. For
G = Gal(M/F) and a non-negative real number A, set

G ={g€G|um(g(x)—x) =1 Vx €Opn}.

where vys is again the additive valuation of M normalized by vy (M) = Z.
Fort > 0, set
bur0= [ e
mr o [Gay:G)]
(which makes sense as G(5) € Gy for all s > 0). Then ¢z, F is a piecewise-linear increas-
ing continuous concave function. Denote by ¥/ F its inverse, and set G = G y,,, JF ()
Denote by Ay r the infimum of all A > 0 such that Gy = {id}, and by us/F the
infimum of all & > 0 such that G = {id}. Clearly one has Um/F = dm/F(Am/F).

Remark 5.1. If G5 GFW) are the upper-index ramification groups in [31] and [15],
resp., and similarly Gs.(3) and Gg.(y) are the corresponding lower-index ramification
groups, then we have

GW = gS--1 — GF-(M)’ G(A) — GS-(A—I) — GF—(/\/E)»

where é = ey, F is the ramification index of M/ F.

"Fontaine’s original condition uses the ideals az™ instead. Up to changing some inequalities from “<”
to “<” and vice versa, the conditions are fairly equivalent.



P.Coupek 182

In particular, the claims that lower indexing is compatible with restrictions to sub-
groups and upper indexing is compatible with passing to quotients remain valid. Thus, it
make sense to set

G = lim Gal(M'/F)®,
M'|F
where M’/ F varies over finite Galois extensions M’/ F contained in a fixed algebraic
closure K of K (and G = hmM//F Gal(M'/F) is the absolute Galois group).

Regarding p, the following transitivity formula is useful.

Lemma 5.2 ([10, Lemma 4.3.1]). Let N/M/F be a pair of finite extensions with both
N/F and M/ F Galois. Then we have jin;r = max(ip/F, dm/F (UN/M))-

The property (PmM / F) is connected with the ramification of the field extension M/ F
as follows.

Proposition 5.3. Let M/ F/K be finite extensions of fields with M/ F Galois and let
m > 0 be a real number. If the property (P,fy / F) holds, then:

(1) ([35, Proposition 3.3]) ua/F < ep/xm. Infact, ppg/r /e k is the infimum of all
m > 0 such that (P,f,WF) is valid.

(2) ([10, Corollary 4.2.2]) vg (Dpr/r) < m, where Dy F is the different of the exten-
sion M/ F.

Corollary 5.4. Both the assumptions and the conclusions of Proposition 5.3 are insensi-
tive to replacing F by any unramified extension of F contained in M .

Proof. Let F'/F be an unramified extension such that F’ € M. The fact that (P / £y
is equivalent to (P,ﬁ/l / F/) is proved in [35, Proposition 2.2]. To show that also the con-
clusions are the same for F and F’, it is enough to observe that er//x = er/k.em/F =
em/F» VK (Dyyr) = vg(Dpyr) and pupg/pr = pagsF- The first two equalities are clear
since F’/F is unramified. The third equality follows from Dy r = O/ p DF//F, since
Dr/F is the unit ideal. Finally, by Lemma 5.2, we have

pm/F =max (wpyp.orr (myrr)).

As F'/F is unramified, we have wryp = 0and ¢p/p(t) =t for all t > 0. The fourth
equality thus follows as well. ]

Let X be a proper and smooth p-adic formal scheme over Ok . Fix the integer i, and
denote by 7' the Galois module H. (X7, Z/pZ). Let L be the splitting field of 77, i.e.,
L = KX'? where p: Gx — Autg,(T”) is the associated representation. The goal is to
provide an upper bound on vx (Dr/k), and a constant o = pole, i, p) such that G(“ )
acts trivially on 7" for all © > pg.

We follow rather closely the strategy of [10], but replacing the datum of (¢, @)-module
in [10] by a pair consisting of a p-torsion Breuil-Kisin module and a Breuil-Kisin—
Fargues Gg-module that arise from the p-torsion prismatic &- and Aj,;-cohomology,
whose relation to T’ is described below.
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Proposition 5.5 ([24, Proposition 7.2, Corollary 7.4, Remark 7.5]). Let X be a smooth
and proper p-adic formal scheme over Og. Then

(1) Mgk = H’A n(f)C/@) is a p"-torsion Breuil-Kisin module of height < i, and we
have ,

H(Xg, 2/ p"2) ~ To(Mpk) = (Mak @w, g Wa(Ck))* ™

as 7] p"Z|G |-modules.
2) My = HiAn(I)CAinf/Ainf) is a p"-torsion Breuil-Kisin—Fargues Gg-module of
height <1, and we have

] =1
He (X7, Z/ p"Z) = Ty(Mint) = (Minf ®Wn(003{) Wy ((Dg())(p

as 7/ p"Z[G g]-modules.
(3) We have Mk ®e Aint = Mk Qw, ()[u] W ((903() ~ M, and the natural map
Mgk — Myt has the image contained in Miff“’.

Given the parallel with the strategy of [10], we refer to the proofs in loc. cit. whenever
possible, and describe the needed modifications where necessary. We note that while [10,
21] are concerned with the case p > 2, the arguments and results we will use apply for
p = 2 as well, with identical proofs. (To facilitate this approach further, the notation used
will usually closely reflect the notation of [10].)

Setting My = H’A l(DC/GB), MO =H 1(DCAinf/Amf), we have

inf = Tp
T' = Hy(X5.Z/ pZ) = T{"(Myy) = Ti(Mgy).
Moreover, since ¥ is a unit in W ((D?() = (DI;(, we have

Ty (M) = Ti(Mpx) and T{™(M2) = T{™(Min),

where Mpx = MP /M2 [u™] and My = M2/ ML, [u] are again a Breuil-Kisin mod-
ule and a Breuil-Kisin—Fargues Gg-module, resp., of height <i. The isomorphism Mj,s >~
Mgx ®@ Ay still remains true, and the pair (Mg, Miy) satisfies the conditions

Vg e Gy Vx € Mgx: g(x)—x € go_l(v)upsMinf 5.1

for all s > 0, since the pair (Mg, M?;) satisfies the analogous conditions by Proposi-
tion 4.10. Finally, the module Mgy is finitely generated and u-torsion-free & [u]-module,
hence a finite free & [u]-module (and, consequently, M, is a finite free (9@3{ -module).

Instead of using 7" = Ty (M) = HL (X5, Z/ pZ) directly, we work instead with the
dual module

T = T;"™(Miy) = Hom g, o (Mg, Ogy) = H. (X7.2/pZ)".
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This is equivalent, as the splitting field of T is still L. Note that
T ~ Ty (Mgx) = Homg o (Mpk, Ocs )
as a Z/ pZ[Gso]-module.

Remark 5.6 (Ramification bounds of [9]). Similarly to the discussion above we may take,
forany n > 1, Mgy = H), ,(X/®), and Mpx = Mgy /Mgy [u™]. Then the Goo-module

T := T, (Mgx) = Homg , (MBK, W, ((905())

is the restriction of H. (X7, Z/p"Z)" to Geo. Denoting by Og the p-adic completion of
G[1/u], Mg := Mgk ®g Og then becomes an étale p-module over Qg in the sense of
[16, Section A], with the natural map Mgx — Mg injective; thus, in terminology of [9],
Mgy serves as a g-lattice of height dividing E(u)’. Upon observing that T is the Goo-
representation associated with Mg (see e.g. [9, Section 2.1.3]), Theorem 2 of [9] implies
the ramification bound

. e
pr/k < 14 co(K) + e(so(K) +log,(ip)) + T

Here c¢(K), so(K) are constants that depend on the field K and that generally grow with
increasing e. (Their precise meaning is described in Section 5.2.)

We employ the following approximations of the functors 7" and Tl*’i"f.

Notation 5.7. For a real number ¢ > 0, we define
Je(Mgx) = Homg ,(Mpk, (9@;(/(1%),
T (Mine) = Homog,, o (Miyg, (9@5( /a”©).

We further set Joo(Mpk) =T (Mgk) and J, égf(Mmf) = Tl*’inf(Minf). Given ¢, d e RZ°U{o0}
with ¢ >d, we denote by p. 4: Jc(Mpk) — J4 (Mgx) (pic“fd: Jci“f(Minf) — Jail“f(Mmf), resp.)
the map induced by the quotient map 0@% /a”¢ — (903{ Ja™e.

Since Minr >~ Mgk ®e Ainr as g-modules, it is easy to see that for every ¢ € RZ0U{o0},
we have a natural isomorphism 6.: J. (Mpk) — J;nf(Minf) of abelian groups; the biggest
point of distinction between the two is that Jci“f(Minf) naturally attains Gg-action from
the one on Mj,s by the rule

g(NHx)=g(f(g7' ™)), ge€Gk, f €T M), x € Miyy.

On J.(Mgk), there is a natural action given similarly by the formula g(f)(x) :=
g(f(x)) where f € J.(Mgk) and x € Mgx. However, in order for this action to make
sense, one needs that each g( f) defined this way is still an &-linear map, which comes
down to requiring that g(u) = u (that is, g(x) = =) in the ring (901;{ /a”€. This condition
holds for g € G, for s depending on ¢ as follows.
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Proposition 5.8 ([10, Proposition 2.5.3]). Let s > 0 be an integer with s > logp(M).

ep
Then the natural action of G on (9@5(/(1” induces an action of Gg on J.(Mgg). Fur-

thermore, when d < c, the map pc.q: Jo(Mpk) — Ja(Mgk) is Gg-equivariant, and when
s' > s, the Gg-action on J.(Mgk) defined in this manner is the restriction of the G-action
to Gg.

The crucial connection between the actions on J.(Mpg) and J, Ci“f(Minf) is established
using (the consequences of) the conditions (Cry).

Proposition 5.9. For

—1
s > max {logp (M),logp (c — Ll)}’
ep p—

the natural isomorphism 6,: J.(Mgx) = ci“f(Minf) is Gg-equivariant.
Proof. Identifying Mj,s with Mg Qg Ay, O, takes the form f +— f where
f(x ®a):=af(x), x € Mgk, a € Apy.

Note that we have w_l(v)ups(QC% = qZP'+¢/(r=1) _The condition (5.1) then states that
forall x € Mg andall g € Gy, g(x ® 1) —x ® 1 lies in aZl’”re/(”_l)Mme and therefore
in a”¢ My thanks to the assumption on s. It then follows that for every f € T (M),
f(g(x®1)) = f(x ® 1), and hence
gHxea)=g(f(g'x®a)) =g(g ' @/f(g (x® 1))
=ag(f(x® 1) = ag(f(x))

for every g € Gy, x € Mgk and a € Ajy. Thus, we have that g(f) = gfﬁ) for every
g € Gy and f € J.(Mgg), proving the equivariance of 6,. L]

From now on, set b :=ie/(p — 1) and a := iep/(p — 1). Then T is determined by
Ja(M), Jp(M) in the following sense.
Proposition 5.10. Keeping all the previous notation, we have:

(1) The map poop: Ty (Mpx) — Jp(Mgx) is injective, with the image being precisely
the subgroup pa,»(Ja(Mgk)) of Jp(Mgk).
(2) Similarly, the map p™ , : Tl*’inf(Minf) —J li]“f(Minf) is injective with p™t p(Ming) =

i ] 00,b 00,
P (T3 (M),
(3) Fors >log,(i), Ty"(Mgx) has a natural action of G that extends the usual Goo-
action.

(4) Fors>max(log,(i),log,((i —1)e/(p—1))), the action from (3) agrees with T | g,

Proof. Part (1) is proved in [10, Proposition 2.3.3]. Then T,*(Mgx) attains the action of
G with s > log,, (i) by identification with p, 5 (J4(Mpx)) and using Proposition 5.8 (see
also [10, Theorem 2.5.5]), which proves (3). Finally, the proof of (2), (4) is analogous
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to [10, Corollary 3.3.3] and [10, Theorem 3.3.4]. Explicitly, consider the commutative
diagram

00,a ,Da,
T (Mpx) —2%% J,(Mgx) —=2— Jy(Mpk)

~|ow ~l . ~leb

inf

. Poo,a in s inf
Tl*,mf(Minf) 5 Ja f(Minf) —b> Jb t(1uinf),

where the composition of the rows gives po, p» and ,oio'g’b, resp. This immediately proves
(2) using (1). Finally, the map pg‘g,b is Gk-equivariant, the map p p is (tautologically)
G-equivariant for s > log,, (i) by the proof of (3), and both maps are injective. Since 6,
is Gs-equivariant when s > log,((i — 1)e/(p — 1)) by Proposition 5.9, it follows that so

is 00, Which proves (4). [ ]
We employ further approximations of J.(Mpgg) defined as follows.

Notation 5.11. Let s > 0 be an integer. Consider a real number ¢ € [0, ep®) and an alge-
braic extension E /K. We consider the ring

@) O /ag"” =k ®4pi Or /g
(note that the condition on ¢ implies that p € azc/ ? s, making O/ a;c/ P
We endow this ring with an &-algebra structure via

a k-algebra).

mod s
& 2D ku] > (0))*0r/a5c!"
where o extends the k-algebra structure map by the rule ¥ — 1 ® 7. Then we set
J(;(S)’E (Mgx) = Homg, o Mgk, (‘/’Ii)*@E/azc/p )-

In the case when E/Kj; is Galois, the module Jc(s)’E (M3gy) attains a Gg-action induced
by the G-action on OE/a;C/ps.

When c, d are two real numbers satisfying ep® > ¢ > d > 0, there is an obvious
transition map pgi;E (Mgx): JEE (Myy) — Jd(s)’E (Mgk), which is Gg-equivariant in

the Galois case.
The relation to J.(Mgk) is the following.

Proposition 5.12. Let s, c be as above. Then

(1) Given an algebraic extension E [ K, Jc(s)’E(MBK) naturally embeds into J,(Mgx)
as a submodule (Gg-submodule when E | K is Galois).

(2) Given a tower of algebraic extensions F/E/Kj, Jc(s)’E (Mgx) naturally embeds

into JC(S)’F(MBK) as a submodule (Gg-submodule if both E /K and F/K; are
Galois).

3) JC(S)’E(MBK) is naturally isomorphic to J.(Mgg) as a Gg-module.
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Proof. Part (2) follows from the observation that the map Of/ a;c/ LN a;c/ P
induced by the inclusion O — OF remains injective (and is clearly Gs-equivariant in
the Galois case). Similarly, part (3) follows from the fact that the map

prg:Ogy =1mOg/p — Og/p
5,9
induces a (G-equivariant) isomorphism O /a™¢— ((pf()*@g/a}c/ps when s >1log,, (c/e)
(so a fortiori when s > log, (¢)), which is proved in [10, Lemma 2.5.1]. Part (1) is then
obtained as a direct combination of (2) and (3). ]

For a non-negative integer s, denote by L the composite of the fields Ky and L.
The following adaptation of Theorem 4.1.1 of [10] plays a key role in establishing the
ramification bound.

Theorem 5.13. Let E /K be an algebraic extension where s is an integer satisfying

ot =) o 12 (52

Then the inclusion p(s) E(Ja(s)’E(MBK)) — pa,p(Ja(Mgk)), facilitated by the inclusions
Ja(s) E(M k) — Jq(Mpgk) and Jb(s)’E(MBK) — Jp(Mgx) from Proposition 5.12, is an
isomorphism if and only if Ly C E.

Proof. The proof of [10, Theorem 4.1.1] applies in our context as well, as we now explain.
In [10, Section 4.1], for every F/K; algebraic, an auxiliary set J fs)’F (M3gg) is con-
structed, together with maps of sets

POF TOF (M) — JOF (Mgg)  for every ¢ € (0, ep®).

Notably, the construction relies only on the fact that Mpk is a Breuil-Kisin module that

is free over k[Ju] and the assumption s > log,(a/e). When F is Galois over K, this set is

naturally a G4-set and the maps are Gg-equivariant. Moreover, the sets have the property

that (jl(s)’F(MBK))GF/ = ﬂs)’F,(MBK) when F/F’/Kj is an intermediate extension.
Subsequently, it is shown in [10, Lemma 4.1.4] that

[)ff)’F is injective and its image is p(s) F (Jf)’F(MBK)), (%)

where the only restriction on s is again s > log,(a/e).
Finally, one obtains a series of G-equivariant bijections:
TOK (M) = o835 (10K (M) by ()
> Pab (Ja (MBK)) (Proposition 5.12 (3))
~ pZ‘fb (JI(Ming))  (Proposition 5.9)
~ T (Proposition 5.10 (2))
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(where the next-to-last step relies on the assumption s > log, (b —e¢/(p — 1))). Applying
(—)9E to both sides and using () again then yields

E
PL(,S) ( a(s)’E(MBK)) ~ TCE,

Therefore, we may replace the inclusion from the statement of the theorem by the inclu-
sion T9E C T, and the claim now easily follows. [

Finally, we are ready to establish the desired ramification bound. Let Ny = K(ps)
be the Galois closure of K over K, and set My = L N;. Then we have

Proposition 5.14. Let s be as in Theorem 5.13, and set m = a/ p°. Then the properties
(PLs/%sy and (PMs/N¢) hold.

Proof. The proof of (P,ﬁ s/ KS) is the same as in [10], which refers to an older version of
[21] for parts of the proof. Let us therefore reproduce the argument for convenience. By
Corollary 5.4, it is enough to prove (P,ﬁ o/ K “) where K" denotes the maximal unramified
extension of K in L.

Let E/K" be an algebraic extension and f:Or, — Of/ag™ be an Ogwm-algebra
map. Setting ¢ = a or ¢ = b, one can consider an induced map

fe: (914/(1> o/p’ (9E/a1><c/ps,

and we claim is that this map is well defined and injective.
Indeed, let @ be a uniformizer of L, satisfying the relation

we/ _ Clwe/_l + Czwe/_z 4t Co1 T+ Cors
where P(T) = T¢ — Yoici 7€'~ is an Eisenstein polynomial over K". Applying f one
thus obtains ¢ = Y ¢it? ' in Op/ag™ wheret = f(w), and thus, lifting t to 7 € Of,
we obtain the equality

7€ =i el 2 b Cygf o T
with vg (r) > m > 1/ p®. It follows that vg (f) = vx (@) = 1/p°e’, and so w" € azc/p

c/p*

if and only if 7" € a> , proving that f. is both well defined as well as injective.

The map f, then induces a k-algebra injection (¢} )* (9Ls/a>c/p — (¢})*Of /a>c/p

which in turn gives an injection JC( $):Ls (Mx) — Jc(s) E(MBK), where ¢ = a or ¢ = b;
consequently, we obtain an injection

L s E ,
IO(S) (J(S) ,L (M )) s /O(S) (JLSY) E(MBK))-
Combining this with Propositions 5.10 and 5.12, we have the series of injections

p((lsg)Ls (J(s) Lv(M )) s p(s) E(J(S) E(M )) N p(s) K(J(s) K(MBK))
> pap(Jp(Mpk)) =~ T.
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Since ,o(s) LS(J;S)’LX(MBK)) ~T by Theorem 5.13, this is actually an injection T < T,
hence an 1somorphism since T is finite. In particular, the natural morphism

pl(;;;E (JF (Me)) = pap (J5(Msx))

is an isomorphism, and Theorem 5.13 thus implies that Ly € E. This finishes the proof
of (1).

Similarly as in [10], the property (P,,Iy of Ns) is deduced from (P,ﬁS/ KS) as follows.
Given an algebraic extension E/Ny and an O y,-algebra morphism Oy, — O /a7, by
restriction we obtain an Ok, -algebra morphism Oy — O /az™ and thus, there is a K-
injection Ly — E. As Ny C E, this can be extended to a K-injection My — E, and since
the extension M/ Kj is Galois, one obtains an Ny-injection Mgy — E by precomposing
with a suitable automorphism of Mj. ]

Theorem 5.15. Let
ip (i—1e
a=|Moy] +1=]|log, | max { —, + 1.
r—1 p—1
Then

(1) vk (Drk) <1+ ea + woiles — 2

(2) For any p satisfying

) 1
/L>l+ea+max{i——,L},
p(p—1 p* p—1

G}(“) acts triviallyon T.

Proof. We may set s = « as the condition s > M, is then satisfied. Propositions 5.3 and
5.14 then imply that v (Dr,/k,) < a/p°® (wherea = iep/(p — 1)) and thus

1 -1
vk (Dr,/x) = vk (Dk, k) + vk (Dr,/k,) <1+ es— p— + p— =14+ea+ p—

Similarly, we have vg (Dr k) =vk (Dr,/x) — vk (DL, /1) <vk (DL, k), and the claim (1)
thus follows.

To prove (2), let Mg and Ny be as in Proposition 5.14. The fields Ny and My = LN;
are both Galois over K, hence Lemma 5.2 applies and we thus have

pnmy k= max {n, k. PNy k (atg/N,) }-

By [21, Remark 5.5], we have
e
Nk =1+es + ——.
p —
As for the second argument, Proposition 5.3 gives the estimate
e
Ny/K

KM /N, = éNy K = s
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The function ¢y, x(¢) is concave and has a constant slope 1/ey,/x beyond t =
AN, Kk, where it attains the value ¢n, x (An,/x) = un,)k = 1+ es +e/(p —1). Thus,
¢n,/k (t) can be estimated linearly from above as follows:

‘. (t—An k) =1+es+ _ANJK €
r—1 enyk eNy/k  eNgk P —1
There is an automorphism o € Gal(Ny/ K) with o (15) = {,7s. Thatis, vx (o (7r) — 75) =
e/(p —1) 4+ 1/p®, showing that

Ak = ¢ ;!
e I b
Ny/K = €Ny/K 1

¢NS/K(I)§ 14+es+

pS
and combining this with the estimate of ¢,k (¢), we obtain
¢NS/K(I)§1+€S+ —is
eNy/K P
Plugging in the estimate for upz,/n, then yields
a 1 lep
Ny k(Umy/N) S1+es+ ———=1+es+ %
p p p
Thus, we have
KL/k = Mk =1 +ea+max{ ep —i, ‘ }
) prp—=1 p* p-1
which finishes the proof of part (2). ]

5.2. Comparisons of bounds

Finally, let us compare the bounds obtained in Theorem 5.15 with other results from the
literature. These are summarized in the table below.

Pk <o

Theorem 5.15 1+ ¢(| log, (max {pifl, “p__lie 1|+ 1) + max {8, pe_l}, B < min(e,2p)"?
Caruso-Liu [10] | 1+ e(|_logp (pifl)J + 1) + max {/3, pil }, B <e
Caruso [9] 1+ co(K) + e(so(K) +log, (ip)) + 55

1 £, i =1,
Hattori [21] { +€+Pe_il . l " underie < p—1

1+e+p_1—;, i>1,
Abrashkin [1], i —1 i _
Fontaine [17] I+ p—1’ undere = 1,7 < p—1

Table 1. Comparisons of estimates of 7,/ k-

12More precisely: When i = 1, it is easy to see that 8 = (eip/(p — 1) — 1)/ p® is smaller thane/(p — 1),
and hence does not have any effect. When i > 1, one can easily show using p® > ip/(p — 1), p* >
(i—1De/(p—1)that f <eand g < pi/(i —1) < 2p.

3The number B here has different meaning than the number g of [10, Theorem 1.1].
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Comparison with [21]. If we assume ie < p — 1, then the first maximum in the estimate
of ur/x is realized by ip/(p — 1) € (1, p); that is, in Theorem 5.15 one has & = 1 and
thus,

ei 1 e
ML/K§1+€+maX{ - —, }
r—1 p p-1
which agrees precisely with the estimate [21].

Comparison with [1,17]. Specializing to e = 1 in the previous case, the bound becomes

24+ L i=1,
ML/ < T .
Tl2-Li4 L i
p p—1

This is clearly a slightly worse bound than that of [17] and [1] (by 1 and (p — 1)/p,
respectively).

Comparison with [10]. From the shape of the bounds it is clear that the bounds are
equivalent when (i — 1)e < ip, that is, when e < p and some “extra” cases that include
the case when i = 1 (more precisely, these extra cases are whene > p andi <e/(e — p)),
and in fact, the terms B in such situation agree. In the remaining case when (i — 1)e > ip,
our estimate becomes gradually worse compared to [10].

Remarks 5.16. Several explanations regarding this comparison are in order.

(1) It should be noted that the bounds from [10] do not necessarily apply to our situa-
tion as it is not clear when H (X7,Z/ pZ) (or rather their duals) can be obtained as
a quotient of two lattices in a semistable representation with Hodge—Tate weights
in [0, {]. To our knowledge the only result along these lines is [13, Theorem 1.3.1]
that states that this is indeed the case wheni = 1 (and X is a proper smooth vari-
ety over K with semistable reduction). Interestingly, in this case the bound from
Theorem 5.15 always agrees with the one from [10].

(2) Let us point out that the verbatim reading of the bound from [10] as described
in Theorem 1.1 of loc. cit. would have the term [log,(ip/(p — 1))] (i.e., upper
integer part) instead of the term |log,(ip/(p — 1))] + 1 as in Table 1, but we
believe this version to be correct. Indeed, the proof of Theorem 1.1 in [10] (in
the case n = 1) ultimately relies on the objects J fj}E(sm) that are analogous

to J;S)’E(MBK), where s = [log,(ip/(p — 1))]. In particular, Lemma 4.2.3 of

loc. cit. needs to be applied with ¢ = a, and the implicitly used fact that the ring

Ofg/ aza/ P isa k-algebra (i.e., of characteristic p) relies on the strict inequality

e >a/p’, equivalently s > log,(ip/(p — 1)). In the case thatip/(p — 1) happens

to be equal to p’ for some integer #, one therefore needs to take s = ¢ + 1 rather

than s = ¢. This precisely corresponds to the indicated change.

Comparison with [9]. Let us explain the constants so(K), c¢o(K) that appear in the esti-
mate. The integer 5o (K) is the smallest integer s such that 1 4+ p*Z, C x(Gal(Kp~/K))
where y denotes the cyclotomic character. The rational number co(K) > 0 is the small-
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est constant ¢ such that g x/(1 + ) > 1 + et — c (this exists since the last slope of

Yk k(1) is ).
In the case when K /K’ is tamely ramified, the estimate from [9] becomes

) e
Lk <1+ e(logp(lp) + 1) + F,
which is fairly equivalent to the bound from Theorem 5.15 when e < p (and again also in

some extra cases, e.g. when i = 1 for any e and p), with the difference of estimates being

approximately
p 1 e
1 — ) -—) | ———=.0]).
e(og”(p—l) p—l) ( 4Jp )

When e is big and coprime to p, the bound in [9] becomes gradually better unless e.g.
i=1.

When K has relatively large wild absolute ramification, we expect that the bound from
Theorem 5.15 generally becomes stronger, especially if K contains p”-th roots of unity for
large n, as can be seen in the following examples (where we assume i > 1; fori = 1, our
estimate retains the shape of the tame ramification case and hence the difference between
the estimates becomes even larger).

Example 5.17. Leti > 0 be an integer. Consider the base field K as follows.

(1) When K = Q,({pn) for n > 2, one has e = (p — 1) p"~1, so(K) = n and from
the classical computation of ¥k q, (e.g. as in [31, IV Section 4]), one obtains

co(K) =[(n=D(p—1)—1]p" " +1.
The difference between the two estimates is thus approximately
ne—p" '+ 1>m—1e.

(2) When K = Qp(pl/l’n) for n > 3, one has e = p” and s¢(K) = 1. The description
of Yk/q, in [10, Section 4.3] implies that co(K) = np" = ne. The difference
between the two estimates is thus approximately

e(1+log, (i) —log,(i — 1) +log,(p — 1)) ~ 2e.

(In the cases n = 1, 2, one can check that the difference is still positive and bigger
than p.)
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