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*-homomorphisms between groupoid C *-algebras
Fuyuta Komura

Abstract. In this paper, we investigate *-homomorphisms between C *-algebras associated to étale
groupoids. First, we prove that such a *-homomorphism can be described by closed invariant sub-
sets, groupoid homomorphisms and cocycles under some assumptions. Then we prove C *-rigidity
results for étale groupoids which are not necessarily effective. As another application, we investigate
certain subgroups of the automorphism groups of groupoid C *-algebras. More precisely, we show
that the groups of automorphisms that globally preserve the function algebras on the unit spaces are
isomorphic to certain semidirect product groups. As a corollary, we show that, if group actions on
groupoid C *-algebras fix the function algebras on the unit spaces, then the actions factors through
the abelianizations of the acting groups.

1. Introduction

The main subject in the present paper is C *-algebras associated with étale groupoids,
that is, groupoid C *-algebras. The theory of groupoid C *-algebras is initiated by Renault
in [16]. It is known that many C *-algebras are realized as groupoid C *-algebras (see [18],
for example). It is a natural task to characterize properties of groupoid C*-algebras in
terms of étale groupoids. For instance, see [1] for the relation between nuclearity of
groupoid C *-algebras and amenability of topological groupoids. In addition, simplicity of
full groupoid C *-algebras is investigated in [2]. Recently, the authors in [3] established the
Galois correspondence result between étale groupoids and twisted groupoid C *-algebras.
In [11], the author studied certain submodules in groupoid C *-algebras and analyzed
discrete group coactions on groupoid C *-algebras. In the present paper, we investigate
*-homomorphisms between groupoid C *-algebras. First of all, we explain our motivation
to study *-homomorphisms between groupoid C *-algebras.

For an étale groupoid G, one can construct a (reduced) groupoid C *-algebra C;*(G)
and a commutative C*-subalgebra Co(G®) C C*(G). Renault proved a C*-rigidity
result in [17]. Namely, for effective étale groupoids G; and G,, Renault proved that
G, and G, are isomorphic as étale groupoids if inclusions of C *-algebras Co(Gio)) C
C}(Gy) and CO(GS))) C C(G) are isomorphic. This result connects the bridge between
étale groupoids and C *-algebras and has various applications. Indeed, one can deduce
a C*-rigidity result for C *-algebras associated with dynamical systems from Renault’s
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result (see [13], for example). Now, assume that inclusions CO(G?))) C C}(Gy) and
Co(Géo)) C C¥(G,) are isomorphic. One may wonder how many isomorphisms between
Co(G\?) c C(Gy) and Co(GS?) C C*(G,) exist. To solve this problem, it is sufficient
to determine the following group

A C}(G)) = {p € Aut (C(G)) | 9(Co(G?)) = Co(G)).

utCO(Ggo)) (

Therefore, we are motivated to investigate Autc, o) (C;" (G)) for an effective étale group-
oid G. In Corollary 3.2.2, we prove that Autc, ) (C;"(G)) is isomorphic to the semi-
direct group of Aut(G) and Z(G, T), where Z(G, T) is the abelian group of T-valued
1-cocycles on G. We remark that the almost same result is obtained in [14, Proposi-
tion 5.7 (1)] and we obtain a slightly more direct proof by using our main theorem, that
is, Theorem 3.1.1. In addition, we shall remark that the similar result has been already
obtained for von Neumann algebras arising from equivalence relations in [8, Theorem 3].
In the present paper, we deal with an analogue of [8, Theorem 3] for groupoid C*-
algebras.

As stated above, our purpose in this paper is to study *-homomorphisms between
groupoid C*-algebras such as elements in Autc,G)(C;(G)). For example, a similar
attempt succeeded in [5, Theorem 6.3] for isomorphisms between regular C *-inclusions
in terms of coordinate systems. In this paper, we begin with the study of general *-
homomorphisms between groupoid C *-algebras which need not to be isomorphisms.
Our main theorem is Theorem 3.1.1, which asserts that a *-homomorphism ¢: C*(G) —
C}(H) can be described in terms of underlying étale groupoids G and H under assump-
tions that H is effective and ¢ has some compatibility with Co(G®) and Co(H©®).
Taking into account that previous works like [17] relies on the effectiveness of underly-
ing étale groupoids, it seems noteworthy that we do not assume the effectiveness of G.
As a direct application of Theorem 3.1.1, we prove that surjective *-homomorphisms
between groupoid C *-algebras induce quotients of étale groupoids (Corollary 3.1.11).
Corollary 3.1.11 generalizes Renault’s result in [17], which asserts that *-isomorphisms
between groupoid C *-algebras which preserve the Cartan subalgebras induce isomor-
phisms between étale groupoids. From Corollary 3.1.11, we obtain the following variant
of the rigidity results for not necessarily effective étale groupoids: for étale (not neces-
sarily effective) groupoids G which have closed Iso(G)° and some amenability condi-
tion, the quotient groupoids G/ Iso(G)° are invariants for the inclusion of C*-algebras
(CF(G), Co(G®)) (Corollary 3.1.12). In other words, (C(G), Co(G®)) remembers
G/ Iso(G)° even if an étale groupoid G is not effective.

As another important application of Theorem 3.1.1, we prove the structure theorem of
Autc, @) (C(G)) (Corollary 3.2.2). More precisely, we show that Autc, (g, (C;(G))
is isomorphic to the semidirect product of Aut(G) and Z(G, T). In particular, it turns
out that Z(G, T) corresponds to a certain abelian subgroup of Autc, g w©)(C,(G)). In
Corollary 3.2.6, we prove that Z(G, T') corresponds to

FAutc, oy (CF(G)) := {p € Aut (C}(G)) | p(a) = a foralla € Co(G?)}.
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As a corollary, we show that a group action on a groupoid C *-algebra factors through its
abelianization if the fixed point subalgebra contains Co(G ) (Corollary 3.2.8).

This paper is organized as follows. In Section 1, we recall fundamental facts about
étale groupoids, groupoid C *-algebras and inverse semigroups. In Section 2, we prove
our main theorems about *-homomorphisms between groupoid C *-algebras. Our goal
in the first subsection, Section 3.1, is Theorem 3.1.1. Toward Theorem 3.1.1, we first
prove that *-homomorphisms between groupoid C *-algebras induce groupoid homomor-
phisms and T-valued 1 cocycles (Lemma 3.1.6 and Lemma 3.1.8). Then we prove that
every *-homomorphisms can be described by closed invariant subsets, groupoid homo-
morphisms and T-valued 1-cocycles (Proposition 3.1.9 and Proposition 3.1.10). As a
special case of Theorem 3.1.1, we observe that surjective *-homomorphisms induce quo-
tients of étale groupoids in Corollary 3.1.11. This immediately implies a variant of rigid-
ity result for not necessarily effective groupoids (Corollary 3.1.12). In Section 3.2, we
investigate Autc,©)(C, (G)) for an effective étale groupoid G. First, we prove that
Autc, ©)(C;(G)) is isomorphic to the natural semidirect product of Aut(G) and Z(G, T)
(Corollary 3.2.2). Then we observe that Z(G, T) corresponds to FAutc, g (C(G))
(Corollary 3.2.6). In addition, we show that an endomorphism ¢: C*(G) — C;*(G) which
fixes Co(G®) pointwisely becomes an automorphism automatically (Corollary 3.2.7). As
a by-product of the analysis of FAutc, o) (C,(G)), we show that a group action on a
groupoid C *-algebra factors through its abelianization if the fixed point algebra contains
Co(G®) (Corollary 3.2.8).

2. Preliminaries

In this section, we recall fundamental notions about étale groupoids, groupoid C *-algebras
and inverse semigroups.

2.1. Etale groupoids

We recall the basic notions on étale groupoids. See [15, 18] for more details.
A groupoid is a set G together with a distinguished subset G©© C G, domain and
range maps d,7: G — G© and a multiplication

G?:={(a,f) € GxG|d)=r(f)}>@p)~afeG

such that
(1) forall x € G®, d(x) = x and r(x) = x hold,
(2) foralle € G, ad(x) = r(e)a = « holds,
(3) forall (&, B) € G®, d(aB) = d(B) and r(af) = r(x) hold,
@) if (@, B), (B.y) € GP, we have (af)y = a(By),
(5) every y € G, there exists ' € G which satisfies (¥, ), (y,¥") € G® and d(y) =

y'yandr(y) = yy'.
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Since the element )’ in (5) is uniquely determined by y, )’ is called the inverse of y
and denoted by y~1. We call G© the unit space of G. A subgroupoid of G is a subset
of G which is closed under the inversion and multiplication. For U € G(©, we define
Gy :=d ' (U) and GY := r~1(U). We define also G := Gy and G* := G} for
x € GO, Asubset F C GO is said to be invariant if d(«) € F implies () € F for all
o« €G.If F C GO isinvariant, Gr C G is a subgroupoid and the unit space of G is F.

A topological groupoid is a groupoid equipped with a topology where the multipli-
cation and the inverse are continuous. A topological groupoid is said to be étale if the
domain map is a local homeomorphism. Note that the range map of an étale groupoid is
also a local homeomorphism. In this paper, although there exist important étale groupoids
that are not Hausdorff, we assume that étale groupoids are always locally compact Haus-
dorff unless otherwise stated. Hence, we mean locally compact Hausdorff étale groupoids
by étale groupoids.

A subset U of an étale groupoid G is called a bisection if the restrictions d |y and r|y
is injective. It follows that d |y and r|y are homeomorphism onto their images if U is a
bisection since d and r are open maps.

An étale groupoid G is said to be effective if G@ coincides with the interior of Iso(G),
where

Is0(G) :={a € G | d(a) = r(a)}

is the isotropy of G. An étale groupoid G is said to be topologically principal if
{xe GO |G, NG" = {x}}

is dense in G If G is topologically principal, then G is effective. If G is second count-
able and effective, then G is topologically principal (see [17, Proposition 3.6]).

A groupoid homomorphism ¢: G — T is called a T-valued 1-cocycle, where T denotes
the circle group. Because we only consider a T -valued 1-cocycle in this paper, we often
simply call it a cocycle. We let Z (G, T') denote the set of all continuous cocycles c: G — T.
Then Z(G, T) is an abelian group with respect to the pointwise product.

2.2. Groupoid C *-algebras

We recall the definition of groupoid C *-algebras.

Let G be an étale groupoid. Then C.(G), the vector space of compactly supported
continuous C-valued functions on G, is a *-algebra with respect to the multiplication and
the involution defined by

frg)= Y f@egB). [ =rfo,
af=y
where f,g € C.(G) and y € G. The left regular representation A,: C.(G) — B({*(Gy))
at x € G is defined by

A=Y f(B)Spar

BEG, ()



*-homomorphisms between groupoid C *-algebras 201
where f € C.(G) and « € Gy. The reduced norm |-||, on C.(G) is defined by

1f 1l := sup [Ax(f)]
xeG©O

for f € C.(G). We often omit the subscript ‘r’ of |||, if there is no chance to confuse.
The reduced groupoid C*-algebra C;*(G) is defined to be the completion of C.(G) with
respect to the reduced norm. Note that C.(G(?) C C.(G) is a *-subalgebra and this inclu-
sion extends to the inclusion Co(G @) C C*(G).

For a closed invariant subset F C G©, the closed subgroupoid Gz C G is étale with
respect to the relative topology. It is well known that the restriction

Ce(G)> f = fler € Cc(GF)

extends to the surjective *-homomorphism C*(G) — C*(GF). In addition, the reduced
groupoid C*-algebra C*(G) can be embedded into Cy(G) as in the following, which is
originally proved by Renault in [16, Proposition II 4.2]. See also [18, Proposition 9.3.3]
for the proof.

Proposition 2.2.1 (Evaluation). Let G be an étale groupoid. For a € C}(G), j(a) €
Co(G) is defined by

J(@)(@) = (8¢|Xd(@) (@)a(w))
fora € G." Then j:C}(G) — Co(G) is anorm decreasing injective linear map. Moreover,
j is an identity map on C.(G).
Remark 2.2.2. Since j:C}(G) — Co(G®) is injective, we may identify j(a) with a.
Hence, we often regard a as a function on G and simply denote j(a) by a.

Finally, we recall facts about normalizers.

Definition 2.2.3. Let A be a C*-algebra and D C A be a C*-subalgebra. An element
n € A is called a normalizer for D if nDn* U n*Dn C D holds. We denote the set of
normalizers for D by N(A4, D).

For a € C}(G), we denote the open support of a by

supp®(a) := {a € G | a(a) # 0}.

Note that supp°(a) is open in G. Normalizers for Co(G(®) and bisections in G are inti-
mately related as follows.

Proposition 2.2.4 ([17, Proposition 4.8]). Let G be an étale groupoid and U C G be an
open set. If U is a bisection, then every elements in C.(U) is a normalizer. Moreover, if
n € C}(G) is a normalizer and G is effective, then supp®(n) C G is an open bisection.

'In this paper, inner products of Hilbert spaces are linear with respect to the right variables.
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2.3. Inverse semigroups

We recall the basic notions about inverse semigroups. See [12] or [15] for more details.
An inverse semigroup S is a semigroup where for every s € S there exists a unique
s* € S such that s = ss*s and s* = s*ss*. We denote the set of all idempotents in S
by E(S) :={e € S | e? = e}. It is known that £(S) is a commutative subsemigroup of
S. An inverse semigroup which consists of idempotents is called a (meet) semilattice of
idempotents. A zero element is a unique element O € S such that Os = s0 = 0 holds for
all s € S. An inverse semigroup with a unit is called an inverse monoid. By a subsemi-
group of S, we mean a subset of S that is closed under the product and inverse of S. A
map ¢: S — T between inverse semigroups S and 7 is called a semigroup homomor-
phism if ¢(st) = ¢(s)¢(t) holds for all s,¢ € S. Note that a semigroup homomorphism
automatically preserves generalized inverses (i.e., ¢(s*) = ¢(s)* holds for all 5 € §).

For a topological space X, we denote by Iy the set of all homeomorphisms between
open sets in X . Then Iy is an inverse semigroup with respect to the product defined by the
composition of maps. For an inverse semigroup S, an inverse semigroup action @: S ~ X
is a semigroup homomorphism § > s +— o, € Iy. In this paper, we always assume that
every action o satisfies |, £(s)dom(ae) = X.

2.4. Inverse semigroups associated to inclusions of C *-algebras

Following [7, Proposition 13.3], we associate inverse semigroups of slices to inclusions
of C*-algebras.

Definition 2.4.1. Let D C A be an inclusion of C*-algebras. A slice is a norm closed
subspace M C A such that DM U MD C M and M C N(A, D). The set of all slices is
denoted by S(4, D).

Proposition 2.4.2 ([7, Proposition 13.3]). Let D C A be an inclusion of C*-algebras.
Assume that D has an approximate unit for A. For M, N € S(A, D), define M N to be
the closure of the linear span of

{xyeA|xeM, yeN}

Then S(A, D) is an inverse semigroup under this operation. The generalized inverse of
MeSA,D)isM*:={x*eA|xe M)}

Let G be an étale groupoid and Bis(G) denotes the set of all open bisections in G. For
U,V € Bis(G), their product is defined by

UV:={apeGlacU eV, da)=r(B)}.

Then UV € Bis(G) and Bis(G) is an inverse semigroup with respect to this product. Note
that U* € Bis(G) is given by

Ul:={a'eG|aecU).
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For U € Bis(G) and f € C.(U), we have f* f € Co(G®) and
LA =1rfllr = sup [T f(x0)] = sup | f@)].

xeG©
Hence the reduced norm coincides with the supremum norm on C.(U) and we may
identify the closure of C.(U) in C}(G) with Co(U). Note that Co(U) C C}(G) is a
Co(G®)-subbimodule.
Now we associate a Co(G(?)-subbimodule Co(U) C CX(G) to abisection U €Bis(G).
This gives a semigroup homomorphism as in the following.

Theorem 2.4.3 ([11, Proposition 1.4.3., Corollary 2.1.6.]). Let G be an étale groupoid.
Then the map
W:Bis(G) 3 U + Co(U) € $(C}(G), Co(GD))

is an injective semigroup homomorphism. If G is effective, then V is an isomorphism.

2.5. Etale groupoids associated to inverse semigroup actions

Many étale groupoids arise from actions of inverse semigroups to topological spaces. We
recall how to construct an étale groupoid from an inverse semigroup action.

Let X be a locally compact Hausdorff space. Recall that Iy is the inverse semigroup
of homeomorphisms between open sets in X. For e € E(S), we denote the domain of o,
by DZ. Then oy is a homeomorphism from D& ; to DY ... We often omit « of D if there
is no chance to confuse.

For an action «: § ~, X, we associate an étale groupoid S x, X as the following.
First we put the set S * X := {(5,x) € § x X | x € D% }. Then we define an equivalence
relation ~ on S * X by declaring that (s, x) ~ (¢, y) holds if

x = y and there exists e € E(S) such that x € DY and se = te.

Set S xq X := 8§ x X/~ and denote the equivalence class of (s, x) € S x X by [s, x].
The unit space of S x, X is X, where X is identified with the subset of .S x, X via the
injective map

Xsx[e,x]eSxqy X, xeDY.

The domain map and range maps are defined by

d([s,x]) =X, r([s,x]) = as(x)

for [s, x] € S X X. The product of [s, a;(x)], [t, x] € S X X is [s¢, x]. The inverse is
[s,x]7! = [s*, as(x)]. Then S x4 X is a groupoid in these operations. For s € S and an
openset U C D%, define

s*s>
[s,U]:={[s.x] € Sxq X | x € U}.
These sets form an open basis of S X, X . In these structures, S x4 X is a locally compact

étale groupoid, although S X, X is not necessarily Hausdorff. In this paper, we only treat
inverse semigroup actions «: S y X such that § x, X become Hausdorff.
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Example 2.5.1. Let G be an étale groupoid. For U € Bis(G), put 6y = r|y o d|51.
Then Ay :d(U) — r(U) is a homeomorphism and we obtain an action 8: Bis(G) ~, G©.
We call this action the canonical action of Bis(G). Assume that an inverse subsemigroup
S C Bis(G) satisfies

(1) G =Jyes U, and
(2) forevery U,V € Sando € U NV, there exists W € S suchthata e W CU N V.
By [6, Proposition 5.4], G is isomorphic to S xg G(©. Indeed, the map

:S xe GO 5 [Ux]—aeG
is an isomorphism, where « is the unique element in U such that d(«) = x.

We will use the following proposition to construct a groupoid homomorphism. The
proof is left to the readers.

Proposition 2.5.2. Let a: S ~ X and B: T ~ Y be actions of inverse semigroups S
and T on topological spaces X and Y. Assume that a continuous map o: X — Y and a
semigroup homomorphism . S — T satisfies the following condition:

Ifx € X and s € S satisfies x € D%, then o(x) € Dﬁ(s*s) and By s)(o(x)) =
o (as(x)) hold.
Then the map
DS xg X 3 [s.x] = [Y(s).0(x)] € Txg ¥

is a continuous groupoid homomorphism. If 6: X — Y is locally homeomorphic, then ®
is also locally homeomorphic.

3. Main theorems

3.1. *-homomorphisms between groupoid C *-algebras
In this subsection, we investigate *-homomorphisms between groupoid C *-algebras. Our

goal in this subsection is to show the next theorem.

Theorem 3.1.1. Let G be an étale groupoid and H be an étale effective groupoid. Assume
that we are given a *-homomorphism ¢: C}(G) — C}(H) such that ¢(Cop (G®)) c
Co(H©) holds and ¢(Co(G@)) is an ideal of Co(H ). Then there exist

(1) a closed invariant subset F ¢ G©,

(2) alocally homeomorphic groupoid homomorphism ®: G g — H such that ®|yng
is a homeomorphism onto its image for each U € Bis(G),” and

(3) a continuous cocycle c:Gg — T,

which satisfy the following property.

2In particular, ®|f is a homeomorphism onto the open subset of H o,
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For each U € Bis(G), the following diagram is commutative:
29
C()(U) e Co(@(U N GF))

qu
Dd,c,U

Co(UNGF)

’

where oy : Co(U)— Co(P(U NG F)) is the restriction ¢|c,w), qu: Co(U) = Co(UNGF)
is a surjective bounded linear map defined by qu(f) = fluncy for f € Co(U) and
0o,c,0:Co(UNGF) = Co(P(U N GF)) is a linear isometric isomorphism defined by

9.c,u(f) (@) = c(7(8) f(27'(5))
for f € Co(UNGF)and s € (U N GF).

Moreover, assume that there exists a *-homomorphism ¢: CX(Gg) — CX(H) with
the following commutative diagram:’

Cr*(G) L Cr*(H)’

ASH

Cr(GF)

where q: C)(G) — C(GF) denote the *-homomorphism induced by the restriction

CC(G) el f = flGF € CC(GF)'

Then the formula

FHG = > c@f@

aed~ 1 ({8}
holds forall f € C.(Gr)andé € H.

In short, the first half of Theorem 3.1.1 states that the local property of a given *-homo-
morphism ¢ can be described in terms of underlying étale groupoids. The latter half states
that ¢ itself can be described in terms of étale groupoids if there exists ¢. In Exam-
ple 3.1.14 and the text above it, we will investigate the condition that ¢ exists.

First, we summarize standing assumptions in this subsection. In the entirety of this
subsection, we assume that G and H are étale groupoids. Moreover, we assume that

3Note that this @ is unique if it exists since ¢ is surjective. In Example 3.1.14, we give an example such
that ¢ does not exist.
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H is effective except for Lemma 3.1.2 and Lemma 3.1.3. In addition, we assume that
@: C}(G) — C}(H) is a *-homomorphism such that ¢(Co(G®)) C Co(H®). Except
for Lemma 3.1.2, we assume that ¢(Co(G®)) € Co(H @) is an ideal.

Since ker ¢ N Co(G®) is an ideal of Co(G®), there exists a closed subset F C
G such that Co(G@ \ F) = kerp N Co(G®) holds. By [18, Lemma 10.3.1], F is an
invariant set of G and therefore G := d ~!(F) is a closed subgroupoid of G.

For U € Bis(G), recall that Co(U) is a Co(G »)-subbimodule of C¥(G) in the natural

way. We put oy = ¢|cy)-

Lemma 3.1.2. Let G and H be étale groupoids and U € Bis(G). Assume that a *-homo-
morphism ¢: C}¥(G) — C}¥(H) satisfies 9(Co(G@)) C Co(H®). Then there exists an
isometric linear map y: Co(U N Gg) — Co(H©) that makes the following diagram

commutative:

Co(U) —2— p(CoU)),

qu
YU

Co(UNGF)

where qu: Co(U) — Co(U N G ) denotes the surjective bounded linear map defined by
the restriction. In particular, (Co(U)) C C¥(H) is a closed linear subspace.

Proof. Recall that F € G is a closed invariant subset of G such that Co(G© \ F) =
ker @ N Co(G©@). We claim that ||o(m)|| = SUPyeunG M ()| holds for all m € Co(U).
Since U is a bisection, m is a normalizer for Co(G®) by Proposition 2.2.4. Hence
p(m*m) € Co(H®) follows from m*m € Co(G©®) and ¢(Co(G®)) c Co(H®). By
the definition of F C G®, there exists an injective *-homomorphism g0 Co(F) —>
Co(H©) that makes the following diagram commutative:

PG
Co(GO) ——— Co(H®),
46O _
(ZeI0)]

Co(F)

where @) is the restriction of ¢ to Cyp (G©®) and qdc: Co(G©®) — Cy(F) denotes the
*-homomorphism defined by the restriction. Hence, we obtain

loem]* = letm*m)| = lago (m*m)| = sup [m*m()| = sup |m()]*
xeF acUNGF

and therefore ||p(m)|| = supyeyng, [Mm(@)|.
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Now, we obtain an isometry ¢g: Co(U N Gr) — ¢(Co(U)) that makes the following
diagram commutative:

Co(U) — 22— 4(Co1))

qu
20

Co(UNGF)

)

where qy: Co(U) — Co(U N GF) denotes the surjective bounded linear map defined
by the restriction. Since Co(U N GF) is complete and ¢g is an isometry, ¢(Co(U)) =
U (Co(U N'GF)) is a closed linear subspace of C;*(H). |

In the rest of this subsection, we assume that ¢(Co(G®)) C Co(H ) is an ideal of
Co(HO).

Lemma 3.1.3. Assume that 9(Co(G©@)) € Co(H®) is an ideal of Co(H©®). Then
¢(Co(U)) C C(H)
is a Co(H©)-subbimodule and
¢(Co(U)) C N(C}(H), Co(H))
holds for all U € Bis(G).
Proof. Takem € Co(U) anda,b € Co(H®). Let {e;}ic; C Co(G®) be an approximate
identity for C*(G). Since we assume that ¢(Co(G®)) is an ideal of Co(H ), ap(e;)
and ¢(e; )b are contained in ¢(Co(G?)) for all i € I. There exists f, g € Co(G®) such
that o(f) = ap(e;) and ¢(g) = ¢(e;)b hold. Now we have
agp(e)p(m)g(eib = ¢(fmg) € (Co(U))

since Co(U) C CF(G)isa Co(G®)-subbimodule. Since {e;me;}ic; converges to m, we
obtain ag(m)b € p(Co(U)) by Lemma 3.1.2. Hence, ¢(Co(U)) is a Co(H®)-subbimodule.

Next, we show ¢(Co(U)) C N(C*(H),Co(H®)). Take me Co(U) and he Co(H®).
Let {e; }ic1 C Co(G?) be an approximate identity for C*(G). Since ¢ (e;)h€p(Co(G©))
and m € N(C(G), Co(G?)), we have ¢(m)p(e;)hp(m*) € p(Co(G))(C Co(H)).
Hence we obtain (m)he(m)* € Co(H®). One can show ¢(m)*ho(m) € Co(H?) in
the same way. Therefore, ¢ () is a normalizer for Co(H ) and we obtain

¢(Co(U)) C N(C}(H). Co(H™)). .
In the rest of this subsection, we assume that an étale groupoid H is effective.

Lemma 3.1.4. Assume that ¢(Co(G®)) € Co(H®) is an ideal and H is effective. Then
there exists a semigroup homomorphism : Bis(G) — Bis(H) such that ¢(Cy(U)) =
Co(¥(U)) holds for all U € Bis(G).
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Proof. Take U € Bis(G). Then ¢(Co(U)) C C¥(H) is a closed Co(H »)-subbimodule
that consists of normalizers for Co(H ) by Lemma 3.1.2 and Lemma 3.1.3. Hence, there
exists a unique ¥ (U) € Bis(H) such that ¢(Co(U)) = Co(/ (U)) holds by Theorem 2.4.3.

We show the map : Bis(G) — Bis(H ) is a semigroup homomorphism. Take Uy, U, €
Bis(G). Then we have

Co(¥ (U Y (Uz)) = Co(v (U1))Co(¥(U2))
= @(Co(U1))p(Co(U2))
= ¢(Co(U 1))
= Co (¥ (U102)).
Thus, we obtain ¥ (U )y (U,) = ¥ (U Uz) and ¢ is a semigroup homomorphism. |

We let
¥:Bis(G) — Bis(H)

denote the semigroup homomorphism defined in Lemma 3.1.4.
Lemma 3.1.5. Put
T :={U NGp €Bis(Gr) | U € Bis(G)}.

Then T is an inverse subsemigroup of Bis(G ) and there exists a subsemigroup homo-
morphism : T — Bis(H) that makes the following diagram commutative:

Bis(G) v Bis(H),

0

Ay

T

where Q:Bis(G) — T is the semigroup homomorphism defined by Q(U) = U N GF for
each U € Bis(G).

Proof. One can show that T is an inverse subsemigroup of Bis(G ) by straightforward
calculations. It is sufficient to show that ¥ (U;) = v (U) holds for Uy, U, € Bis(G) which
satisfy Uy NGr =U, N Gp. Itfollowsthat Uy NGr =U1 NU; N GF fromU; NG =
U> N Gfr.By Lemma 3.1.2, there exists an isometry ¢g, : Co(U; N GF) — ¢(Co(Uy)) that
makes the following diagram commutative:

Co(Un) —22 4 p(CoU)),

qu, ~
(20}

Co(U1NGF)
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where gy, : Co(U1) — Co(U1 N GF) denotes the surjective bounded linear map defined
by the restriction. Now we have

¢(Co(U)) = §7, (Co(Ur N Gr)) = 5, (Co(Ur N U> N Grr))
= @T(QU1 (CO(UI n UZ))) = (P(CO(Ul N Uz))

Thus we obtain vy (Uy) = ¥ (Uy N Uy). Replacing Uy with U,, we obtain
Vv (Uz) = y(Ur NU2)
and therefore ¥ (Uy) = ¢ (Us). |

Since we assume that ¢(Co(G?)) C Co(H®) is an ideal, there exists an open set
V c HO such that ¢(Co(G®)) = Co(V). In addition, since F satisfies Co(G® \ F) =
ker ¢ N Co(G®), there exists a *-homomorphism 0G0 : Co(F) — Co(V) that makes the
following diagram commutative:

(ZelQ)
Co(GO)y ———— Co(V),
4G .
(Zel0)
Co(F)

where g denotes the *-homomorphism defined by the restriction. One can see that
¢ is indeed an *-isomorphism. By Gelfand—Naimark duality, there exists a homeo-
morphism @g@: V — F such that 950 (f) () = f(@go (»)) holds for all f € Co(F)
andy € V.Puto := ggo " F — V C H®. We regard the range of o as H© rather
than V.

Now, we obtain a semigroup homomorphism {/;: T — Bis(H) and a homeomorphism
o:F > HO®,

Lemma 3.1.6. The above maps o: F — H© and f/?: T — Bis(H) satisfy the condition
in Proposition 2.5.2 for the canonical actions of bisections T ~, F and Bis(H) ~ H©.

Proof. Take x € F and U € Bis(G) such that x € d(U N GF). First, we show that o (x) €
d(y (U N GF)). We have

Co(o(d(U NGF))) = Co(pgom ' (d(U N GF)))
= 950 (Co(d(U N GF))) = Co(¥(d(U N GF))).

Note that we use the condition that @) is injective to deduce the second equality.
Thus, we obtain o(d(U N Gg)) = ¥ (d(U N GF)). Since ¥ is a semigroup homomor-
phism, we have ¥ (d(U N GF)) = d(¥ (U N GFg)). Therefore we obtain

o(x) € o(d(U NGp)) =d(¥(U NGF)).
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Since we assume that x € d(U N GF), there exists « € U N GF such that d (o) = x.
In addition, since o (x) € d(lZ(U N GF)), there exists § € J(U N G ) such that d(§) =
o (x). In order to complete the proof, it is sufficient to show o (r(«)) = r(§). Instead, we
show that 7 () = @G (r(8)). Take n € Co(U) such that n(a) # 0. For all f € Co(G®),
we have

@) £ (r(@) = n* fn(d(@) = 4o 0* f1)(x) = 4goo (* 1) (F5w (d(6)))
= 960 (460 (1* fm)(d(©)) = poo (n* fn)(d(8))
= p()*o(/)pn)(d(8)) = p(n*n)(d(®))e(f)(r(8))
= p(n*n)(0(x))9gw (a0 () (7))
= n*n(x)4g0 (/) ([@gw (7)) = |n@)]|* f (@gw ().

Hence, f(r(a)) = f(@gw (r(8))) holds forall f € Co(G©®). Therefore we obtain r(a) =
©g© (r(8)) by Urysohn’s lemma. n

By Lemma 3.1.6 and Proposition 2.5.2, we obtain the groupoid homomorphism ®: T x
F — Bis(H) x H®_ Since ®|r: F — H® is a homeomorphism onto its image, ®
is locally homeomorphic. Since we may apply Example 2.5.1 to the canonical actions
T~ FandBis(H) n H®, T x F and Bis(H) x H© are isomorphic to Gr and H
respectively. Thus we obtain the groupoid homomorphism from Gr to H and denote it
by & again. This ® is given explicitly as follows. Take @ € Gr and U € Bis(G) with
a € U. Then there exists o' € ¥ (U) such that o(d(«)) = d(a’). This o’ is nothing but
® (). In the proof of Lemma 3.1.6, we obtained o (d(U N Gf)) = J(d(U NGr)). In
addition, we have &(d(U NGr)) = d(xZ (UNGF))=d(U)). Therefore, we have the
following commutative diagram:

Uner —2 Ly
d d
d(UNGr) —Z— d(y(U)).

In particular, ® gives a homeomorphism from U N G to ¥ (U) since the vertical domain
maps and o are homeomorphisms. Note that we have ®|r = 0 = g5 .

Lemma 3.1.7. Fixa € G. Take U € Bis(G) andn € Co(U) such that o € U and n(o) #
0 hold. Then |@(n)(®(x))| = |n(a)| holds. Moreover, the value

¢(n)(P(a))
n(o)

is independent of the choice of U and n.

eT



*-homomorphisms between groupoid C *-algebras 211

Proof. First, we show |¢(n)(®(«))| = |n(«)|. This follows from the next calculation:

o) (@@)[* = pr*n)(d (®(@)) = ¢n*n)(®(d(@)))
= 960 (4o (n*n)) (®(d(@)))
=g (*n)(d(@)) = |n(a)|2.

Next, we show that the value

¢(n)(2(w))
n(a)

is independent of the choice of U and n. Consider W € Bis(G) and m € Co(W) such that
o € W and m(a) # 0 hold. Then we have

eT

n*m(d(x)) = n(a)m(a)
and _
e(n*m)(2(d(@))) = p(n"m)(d (D(@))) = ¢(n)(P(@))p(m)(P()).
Take f € C.(d(U N W)) such that f(d(a)) = 1. Then we have nf,mf € C.(U N W)
and (nf)*(mf) € Co(G). Combining with
n*m(d(@) = (nf)*mf)(d(@)) = ¢((nf)*(mf))(2(d(@)))
= ¢(n)(P(@))p(m)((a))
and p(n)(®(a))/n(a) € T, we obtain

p(m)(2(a)) n(@ w(n)(q>(ot)).

m@ e (@) n(@)

Thus, the value
p(n)(®(a))
n(o)

is independent of the choice of U and 7. ]

eT

Lemma 3.1.8. Define c:Gg — T by

_ o(m)(d(@)
T n(e)

wheren € Co(U) and U € Bis(G) satisfies o € U and n(a) # 0.* Thenc:Ggp — T isa
continuous groupoid homomorphism.

c(o):

“Note that ¢ is well defined by Lemma 3.1.7.
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Proof. First, we show that ¢ is continuous. Fix @ € Gr. Take U € Bis(G) and n € Cy(U)
so that ¢ € U and n(«) # 0 holds. Then we have

_ p(n)((y))
n(y)

for all y € supp®(n). Since ¢(n) o ® and n are continuous, ¢ is also continuous at . Since

c(y)

o € GF is arbitrary, ¢ is continuous on G .

Next, we show that ¢ is a groupoid homomorphism. Fix o, § € G with d(«) = r(B).
Take Uy, U, € Bis(G), n € Co(U;y) and m € Co(U,) so that @ € Uy, B € U,, n(a) # 0
and m(B) # 0 hold. Then we have nm € Co(U V) and nm(af) = n(a)m(B) # 0. Hence,
we obtain

cay = LOM(P@R) _ g(@@)t(@B)
nm(ap) n(a)m(p)
Here, the second equality follows from the fact that ¢(n) and ¢(m) are supported on
bisections that contain ®(«) and ®(f) respectively. Therefore, c: Gg — T is a continuous
groupoid homomorphism. ]

Thus, we have obtained the locally homeomorphic groupoid homomorphism ®: Gr —
H and the continuous cocycle c: Gr — T. From the remark beneath Lemma 3.1.6, ®|yng
is a homeomorphism onto its image for each U € Bis(G). Now, we are ready to show the
first half of Theorem 3.1.1.

Proposition 3.1.9. Fix U € Bis(G). Define a homeomorphism
Py = Dlyng,:U NGr — ®(U N GF).
In addition, define 9o y: Co(U N Gfr) — Co(P(U N GF)) to be
9.0 (f)(6) = c(P7' () £ (P5' (8))

for feCo(UNGF)and§ € ®(U NGF). Then 9o v is a linear isometric isomorphism.
Moreover, oy = ¢a.c,u © qu and U = @@,y hold.

Proof. Itfollows that 94 . r is a linear isometric isomorphism from the direct calculation.
Note that the inverse map of ¢g ., is given by

Yor.v(@)(@) = c(@)g(Pu (@)

forg € Co(®(U NGF))anda € U N GF.
We show ¢y = ¢a..uv o qu. Take g € Co(U) and § € (U N GF). Assume that
g(®;'(8)) # 0. Then we have

C(®_1(5))=w(g)(<1>(<1>5‘(8))): @@ e
0 s(97'®) 5(97'0) ~ aw@ (2 ®)
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Thus, we obtain

o (8)(6) = c(®y' (§)qu(9)(Py' ) = ¢a.cu © qu(g)(E).

If g(Cbal (8)) = 0, we have

lou(9)@)|* = v(g*2)(d(©) = " g(271(d(5)))
= "g(d(95' ) = |g(®5' @) =0
and therefore
9a.c,u © qu(g)(8) = ¢(07' (8))g(Py' (8) = 0.
Hence, we obtain
pu (8)(8) = ¢a.c,u °qu(g) ().
forall g € Co(U) and § € ®(U N G). The last assertion follows from the fact that we

have oy = @y o qu and qy is surjective. (]

Define a *-homomorphism ¢ : C.(Gr) — C.(H) to be

Poc(f)E) = > cl@)f(@)

acd~1(5)

for f € C.(GF) and § € H. Note that the right hand side of the above formula is a finite
sum since @ is locally homeomorphic and the support of f is compact. In addition, we
use the condition that @ is injective on F to check that ¢4 . preserves the multiplications.
Thus one can check that ¢ .: C.(GF) — C.(H) is actually a *-homomorphism. We shall
remark that g . does not always extend to C,* (G ) if GF is not amenable. We will give
a relevant example in Example 3.1.14.

Finally, we complete the proof of Theorem 3.1.1.

Proposition 3.1.10. Assume that there exists a *-homomorphism
§:C}(Gr) — C(H)
with the following commutative diagram:

Cr*(G) L Cr* (H)’

S

Cr(GF)

where q: C}(G) — C} (G F) denote the *-homomorphism induced by the restriction. Then
O(f) = ¢o,c(f) holds for all f € C.(GF). In particular, po . extends to C}(Gf) and
@ = @o, holds.
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Proof. Fix U € Bis(G). By Proposition 3.1.9, we have ¢(f) = ¢ao.(f) for all f €
C.(U N GF). Since C.(GF) is the linear span of UUEBMG) C.(U N GF), we obtain

o(f) =po(f)forall f € C.(GF). un

Now, we have completed the proof of Theorem 3.1.1. In the last of this subsection,
we give some remarks about our results in this subsection. First, we present a special case
of Theorem 3.1.1. Applying Theorem 3.1.1 for surjective *-homomorphisms, we obtain
quotients of underlying étale groupoids (Corollary 3.1.11). We refer the readers to [9,
Section 3] for the quotient étale groupoids. We remark that the quotient étale groupoid
G/Iso(G)° appearing in Corollary 3.1.11 is nothing but the groupoid of germs associated
with G in the sense of [17, Proposition 3.2].

Corollary 3.1.11. Let G be an étale groupoid and H be an étale effective groupoid.
Assume that there exists a surjective *-homomorphism ¢: C}(G) — C}(H) such that
P(Co(GD)) = Co(HD). Then there exists a closed invariant subset F € G© such
that H is isomorphic to G /1so(GF)° as étale groupoids. Moreover, if ¢ is injective on
Co(G©) (and therefore Co(G©) and Co(H ) are isomorphic), then H is isomorphic
to G/Iso(G)°.

Proof. Applying Theorem 3.1.1, we obtain a closed invariant F € G©® and a locally
homeomorphic groupoid homomorphism ®: Gg — H. Since we assume that ¢ is sur-
jective, it turns out that ®: Gr — H is also surjective. Indeed, assume that ®: G —
H is not surjective. Then there exists § € H \ ®(G ). Using Proposition 2.2.1, define
evs:CX(H) — C by

evs(a) = j(a)(8)

fora € C}(H). Then, for each U € Bis(G), we have
(p(CC(U)) C CO(CD(U N GF)) C kerevg

by the formula ¢y = ¢, v © qu in Theorem 3.1.1. In addition, by the linearity of ¢
and the partition of unity argument, we obtain ¢(C.(G)) C kerevs. Hence we obtain
@(CX(G)) C kerevs by the continuity of ¢. This contradicts to the assumption that ¢ is
surjective and fact that kerevs & C*(H). Therefore, : Gr — H is surjective.

Now, one can see @1 (H©) = Iso(Gr)° since H is effective. Therefore, ® induces
an isomorphism G g /Iso(G g )° ~ H by the fundamental theorem on homomorphisms [10,
Proposition 2.2]. Now, the last assertion is obvious since F' coincides with GO if @ is
injective on Co(G©®). n

Combining Corollary 3.1.11 and groupoid quotients, we obtain the following rigidity
result (Corollary 3.1.12) for not necessarily effective groupoids.

Corollary 3.1.12. Let G and H be étale (not necessarily effective) groupoids and Q: H —
H /1so(H)° be the quotient map. Assume that there exists a surjective *-homomorphism
@: C*(G) — C¥(H) such that ¢ give an isomorphism between Co(G®) and Co(H©).
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In addition, assume that Iso(H)° C H is closed and the *-homomorphism

00:Ce(H) > f > (5 Y f(a)) € C.(H /Iso(H)°)
aeQ~1(8)
extends to the *-homomorphism from C*(H) to C}(H /Iso(H)®).” Then G/Iso(G)® is
isomorphic to H /Iso(H)°.

Proof. First, H/Iso(H)° is Hausdorff since we assume that Iso(H)° C H is closed [9,
Proposition 3.11]. We denote the extension of g by ¢g:C}(H) — C}(H/Iso(H)®)
again. Then ¢ is surjective and the restriction ¢g|c, g, is an isomorphism onto
Co((H/ Iso(H)°)®) by [9, Proposition 3.13 and Lemma 3.14]. In addition, note that
H/Iso(H )" is effective. Therefore we may apply Corollary 3.1.11 for ¢g 0 ¢: C(G) —
C}(H/Iso(H)®) and this yields an isomorphism G/ Iso(G)° >~ H/Iso(H)°. |

Remark 3.1.13. We remark that the converse of Corollary 3.1.12 does not hold. For
example, let G := {e} be the trivial group and H := Z. Then both of G/ Iso(G)° and
H /Tso(H)® are trivial groups although there does not exist a surjective *-homomorphism
from CX(G) = Cto C)(H) = C(T).

From Corollary 3.1.12, we deduce that the quotient groupoids G/ Iso(G)° define an
invariant for inclusions of C *-algebras (C*(G), Co(G®)) associated with étale amenable
groupoids G such that Iso(G)° C G are closed. Namely, for étale amenable groupoids G
and H such that Iso(G)° C G and Iso(H )° C H are closed, G/ 1so(G)° and H/Iso(H )° are
isomorphic if there exists a *-isomorphism ¢: C;*(G) — C,;* (H) such that ¢(Cy (G®)) =
Co(H®). In particular, since the orbit spaces of G and G/ Iso(G)°® are homeomor-
phic, the orbit spaces G®/G also define an invariant for inclusions of C *-algebras
(CX(G), Co(G®)) associated with étale amenable groupoids G with closed Iso(G)°.
Note that G©©/G is the quotient space of G with respect to the equivalence relation
defined by declaring x ~ y if there exists « € G such that d(«) = x and (o) = y.

Next, we investigate the condition that ¢ in Proposition 3.1.10 exists. Recall that an
étale groupoid G is said to be inner exact if the following sequence

0= C(Ggonr) = C(G) > CH(GFr) =0

is exact for each closed invariant subset F C G(O), where ¢ is the inclusion map and ¢
is the restriction. If G is inner exact, then @ in Proposition 3.1.10 exists. In particular,
@ always exists for all amenable groupoids, since amenable groupoids are inner exact
(see [18, Definition 10.1.2, Theorem 10.1.4 and Proposition 10.3.2] for this fact and the
amenability of étale groupoids). In addition, if ¢ is injective on Co(G @), then § exists and
@ is nothing but ¢ since F = G holds. In particular, no matter whether G is amenable
or not, every *-automorphisms on C,*(G) that preserves Co(G®) comes from groupoid
automorphisms and continuous cocycles on G (Corollary 3.2.2).

SThis assumption holds if H is amenable. See [18, Definition 10.1.2] for the definition of amenable
groupoids.
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On the other hand, Example 3.1.14 is an example such that ¢ does not exist, although
the étale groupoid G in Example 3.1.14 is not effective. To our knowledge, it is an open
problem whether ¢ always exists or not under the assumption that G is effective.

Example 3.1.14 (HLS groupoid). We give an example where ¢ dose not exist.
Let G be the HLS groupoid associated with the free group I' := F, (see [19] for
details) and H := {e} be the trivial group. Then we have C;*(H) = C. Recall that

G = ]_[ Iy x {n},

neNU{oco}

where I';, is a finite quotient group of I" for n € N and I'oso = T (see [19] for the precise
definition). Define a *-homomorphism ¢: C.(G) — C by

o(f) =Y f((s.00))
sel’
for f € C.(G). Then ¢ extends to the *-homomorphism ¢: C;*(G) — C since C;*(G)
coincides with the universal groupoid C *-algebra C *(G) by [19, Theorem 1.2]. Note that
the corresponding closed invariant set is F' ={oo}. Since F is not amenable, ¢: C,* (GF) —
C dose not exist by [4, Theorem 2.6.8].

Example 3.1.15. From a *-homomorphism ¢: C,*(G) — C*(H ) such that ¢(Co(G®)) C
Co(H (0)) is an ideal, we have constructed a closed invariant subset F C GO, a locally
homeomorphic groupoid homomorphisms ®: G — H such that ®|F is injective and a
continuous cocycle ¢: Gr — T. If G is amenable, this construction is bijective. Indeed,
forsuch F ¢ GO, &: Gr — H and c: Gy — T, the *-homomorphism ¢¢ .: C.(GF) —
C}(H) in Proposition 3.1.10 extends to C;*(GF) by [18, Theorems 9.2.3 and 10.1.4].
Thus, we obtain a *-homomorphism ¢: C;*(G) — C;*(H) which induces F, ® and c. If
G is not amenable, these constructions need not to be bijective. We give such an example.

Let I" be a countably infinite discrete group and X := I" U {oo} be the one point
compactification of I'. The left multiplication I' ~, T extends to the action on X and
we denote it by 0: I' , X. Putting G :=T" X, X, then G is an effective étale groupoid.
In addition, F := {oo} is a closed invariant subset of G. Let H := {e} be the trivial
group, ®: Gr — H be the unique group homomorphism and ¢ = 1. If I' is not amenable,
then there dose not exist a *-homomorphism ¢: C*(G) — C}(H) that induces F, ®
and c. Actually, there dose not exist a nonzero *-homomorphism ¢: C*(G) — C*(H)
if I' is not amenable. If such ¢: C;*(G) — C(H) exists, then one obtain a nonzero *-
homomorphism C}(I') — C by composing ¢ with the canonical inclusion C;*(I') —
C(X)xT =C;(G). This contradicts to the non-amenability of I" (see [4, Theorem 2.6.8],
for example).

3.2. Automorphism groups of C*(G) that globally preserve Cy(G (0

In this subsection, we investigate automorphism groups of C;*(G) that globally preserve
Co(G©).
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Definition 3.2.1. Let D C A be an inclusion of C*-algebras. We define Autp(A4) and
FAutp (A) to be

Autp (4) = {p € Au(4) | (D) = D).
FAutp (A4) := {(p € Aut(A) | ¢(a) = aforalla € D}.
Note that Autp (A) and FAutp (A) are subgroups of Aut(A4) and we have
FAutp (A) C Autp (A).
For an étale groupoid G, recall that we define
Z(G,T):={c:G — T | c is a continuous groupoid homomorphismj}.

Then Z(G, T) is an abelian group with respect to the pointwise product. In addition,
Aut(G) naturally acts on Z(G, T). Indeed, for ® € Aut(G) and ¢ € Z(G, T), ®.c €
Z(G,T) is defined by

d.c(a) == c(®7 ()

for « € G. In the next corollary, we consider the semidirect product Aut(G) x Z(G, T)
with respect to this action. Recall that the product of Aut(G) x Z(G, T) is

(@1.¢1) - (D2.02) = (P10 Do, (D5 '.c1) - )

for (@41, c1), (P2, c2) € Aut(G) x Z(G, T).

Corollary 3.2.2 ([14, Proposition 5.7]). Let G be an effective étale groupoid. For ¢ €
Z(G,T)and ® € Aut(G), define 9o : C.(G) — C.(G) by

po.c(f)(@) = c(®7 (@) /(27" (@)

for f €Cc(G) and a € G. Then the map o . extends to an element of Autc, (G0 (C (G)).
Moreover, the map

W: Aut(G) x Z(G.T) 3 (P.¢) = 9o, € Autg, oy (CF(G))

is a group isomorphism.

Remark 3.2.3. The above result is almost same as [14, Proposition 5.7 (1)]. In the proof
of [14, Proposition 5.7], Renault’s theory about Cartan C*-subalgebras [17] is used. In
this paper, we obtained the proof of Corollary 3.2.2 in a slightly more direct way without
Renault’s theory.

Proof of Corollary 3.2.2. We show that W is a group homomorphism. Take

(®1,c1), (P2,c2) € Aut(G) x Z(G, T).
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For f € C.(G) and y € G, we have

Po1.c1 © Py, () (Y)
= 9o,.¢, (95,0, ( ) (¥)
1 (D7 (1)) 010, (N (D71 ()
c1 (@7 ()2 (7 (@71 (1)) S (@2 (271 (1))
(@5 .c) (@10 D2) 1 (1)) 2 ((P1 0 D2) ' (1)) f (D10 D2) (1))
= 09,00,,(@;1.0)ca (HWw)
= Q@1,61)(®2,02) (V).

Thus W is a group homomorphism. By Theorem 3.1.1, W is surjective. Remark that, if
¢ in Theorem 3.1.1 is an automorphism, then the corresponding invariant closed subset
F C G© is the whole set G(© since ¢ is injective on Co(G ) and F is given by

Co(GO\ F) =kerp N Co(G©).

To show that W is injective, take (®1, c1), (P2, ¢2) € Aut(G) x Z(G, T) and assume
Pby.0c1 = Pbycr- If @1 7 Do, then T1(y) # @51 (y) holds for some y € G. By Urysohn’s
lemma, there exists f € C.(G) such that f(®71(y)) # 0 and f(®,'(y)) = 0 hold. It
follows that ¢o,.c, (f)(y) # 0 and @a,.c,(f)(y) = 0, which contradicts to ¢¢, ., =
©®,,c,- Hence we obtain &; = 5. To show ¢; = ¢, take y € G and f € C.(G) so
that f(®7!(y)) = 1. Then we have

c1(y) = @o,,e; ()Y) = 01,6, (/)(Y) = c2(y).

Thus we obtain ¢; = c,. Therefore we have shown that W is injective. In conclusion, ¥ is

a group isomorphism. ]

Finally, we investigate FAutc, (g (C;(G)). In the following propositions, we assume
that an étale groupoid G is topologically principal. Recall that an étale Hausdorff groupoid
G is effective if G is topologically principal. The converse is true if G is second countable.

Proposition 3.2.4. Let G be a topologically principal étale groupoid and ®: G — G be a
continuous groupoid automorphism. Assume that ®(x) = x holds for all x € G©. Then
® =id.

Proof. Put A = {x € G® | d7(x) N r~1(x) = {x}}. Then 4 C G© is dense. Since
d:G — G© is an open map, d~'(4) C G is dense. We show that ®(ar) = o holds for
all @ € d~1(A). Note that we have

d(CD(oe)) = CD(d(oz)) =d(a)

and 7 (®(«)) = r(a). Thus (®(a)~!, @) is a composable pair and we have ®(a) ' €
Giw N G?@ _ Since d(a) € A, we obtain ®(«) = a. Since d ' (A) C G is dense, it
follows that ®(«) = « holds for all ¢ € G. |

Corollary 3.2.5. Let G be a topologically principal étale groupoid and ©1, P2: G — G
be continuous groupoid automorphisms. If ®1|go) = P2|gw), then &1 = P, holds.
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Proof. Since @1 o0 ®,!(x) = x holds forall x € G, we obtain ®, o ®,! = id by Propo-
sition 3.2.4. Hence we obtain ®; = ®,. [

Corollary 3.2.6. Let G be a topologically principal étale groupoid. Fix (®,c) € Aut(G) x
Z(G,T). Then ® = idg holds if and only if 9o . € FAutc, gy (C(G)) holds. In par-
ticular, the restriction of V in Corollary 3.2.2 gives a group isomorphism

V|z@,1): Z(G, T) — FAutg, o) (C(G))
and FAutc, g0 (C;(G)) is an abelian group.

Proof. It is clear that pe. € FAutg, @) (C;(G)) holds if @ = idg. Assume ¢o. €
FAutc, ()(C;(G)). Then we have

[(@7'(x) = o, (N)(x) = f(x)

forall fe CO(G(O)) and x € G Hence, we obtain ®~! | =1dg© and therefore ®| )
= idg . By Proposition 3.2.4, we obtain & = idg. Now, the last assertion is clear. [

A *-homomorphism ¢: C;*(G) — C;*(G) automatically becomes an automorphism if
@ fixes Co(G @) pointwisely as follows.

Corollary 3.2.7. Let G be a topologically principal étale groupoid and ¢: C}(G) —
C}(G) be a *-homomorphism. Assume that () = f holds for all f € Co(G©®). Then
(VNS FAutCO(G(O)) Cr* (G)

Proof. By Theorem 3.1.1, there exists a locally homeomorphic groupoid homomorphism
®:G — G and ¢ € Z(G, T) such that

e(® = Y cl@f(@)
acd~1({5})

holds for all f € C.(G) and § € H. Here, in this situation, the corresponding closed invari-
ant subset F C G© is the whole set G since ¢ is injective on Co(G®). In addition,
note that ®|;): G — G© is injective. Since G is effective and ®|g0: G — G©
is injective, ®: G — G is injective by the fundamental theorem on homomorphisms [10,
Proposition 2.2]. Now, for all f € Co(G®) and x € G©@, we have

F(@() = e(NH(P(x)) = f(x).

Hence we obtain ®|;©) = idg and therefore & = idg by Proposition 3.2.4. Thus, for
all f € C.(G) and o € G, we obtain

P(f)(e) = c(a) f(a)
and therefore ¢ € FAutc, 0, (C(G)). [

For a topological group H, we denote the abelianization of H by H® . Recall that H®
is the quotient group of H by the closure of commutator subgroup [H, H]. In addition,
we denote the quotient map by 7: H — H® in the next corollary.
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Corollary 3.2.8. Let G be a topologically principal étale groupoid, H be a topological
group and o H ~, C(G) be an action such that

kero :={s € H | oy = idcr(c)}
is closed in H. Assume that the fixed point algebra

CHG) = () {x € C}(G) | 05(x) = x}
seH

contains Co(G®). Then there exists an action &: H® ~, C*(G) such that o5 = O (s)
holds forall s € H.

Proof. Since we assume Co(G®) C C(G)?, we have
Oy € FAlltCO(G(o)) (Cr* (G))

forall s € H. Hence, it follows [H, H] C ker o since FAutc, @) (C;*(G)) is an abelian

group by Corollary 3.2.6. Since we assume ker o is closed, we obtain [H, H] C kero.
Now, the existence of & follows from the fundamental group theory. |

The assumption that kero C H is closed in Corollary 3.2.8 holds if we assume some
continuity of o. For example, if o is a strongly continuous action, then kero C H is
closed.
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