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Non-commutative crepant resolutions of ¢ A, singularities
via Fukaya categories

Jonny Evans and Yanki Lekili

Abstract. We compute the wrapped Fukaya category W(T*S1, D) of a cylinder relative to a
divisor D = {po, ..., pn} of n 4+ 1 points, proving a mirror equivalence with the category of per-
fect complexes on a crepant resolution (over ko, . . . , ] of the singularity uv = t¢t1 -+ - #,. Upon
making the base-change f; = f;(x, y), we obtain the derived category of any crepant resolution
of the ¢ A, singularity given by the equation uv = fy--- f,. These categories inherit braid group
actions via the action on W(T*S1, D) of the mapping class group of T*S! fixing D. We also give
geometric models for the derived contraction algebras associated to a ¢ A, singularity in terms of
the relative Fukaya category of the disc.

1. Introduction

§1.1. Consider the Fukaya category of a point with coefficients in a ring R. Before tak-
ing the triangulated envelope, there is only one object: the point itself, with endomorphism
algebra R.If R is not a field then there are non-invertible non-zero endomorphisms which
allow us to construct new twisted complexes in the derived Fukaya category. Via the
Yoneda embedding, we can think of the derived Fukaya category of a point with coef-
ficients in R as perf(R). We can think of this as the world’s lousiest A-model mirror to
Spec R. It is lousy in the precise sense that symplectic geometry has given us absolutely no
information here: all of the interesting information is contained in the coefficient ring. The
moral of the current paper is that there is a whole spectrum of ways we can get at a single
triangulated A-category by combining symplectic manifolds with coefficient rings. We
work out in detail some examples where the symplectic manifold is a 2-dimensional cyl-
inder.

§1.2. The starting point for these examples is the mirror symmetry result proved in [23]
between (on the A-side) 7*S! with a collection D of n + 1 punctures and (on the B-side)
a certain reducible curve C,4+; with n 4+ 1 nodes. The two sides of the mirror, together
with dual Lagrangian torus fibrations are shown in Figure 1 (the non-compact fibres on
the A-side are dual to the point-like fibres on the B-side). The precise statement of mir-
ror symmetry identifies the wrapped Fukaya category of Lagrangian branes avoiding the
punctures with the derived category of perfect complexes on the nodal curve.
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Keywords: relative Fukaya category, non-commutative crepant resolution, mirror symmetry, compound
Du Val singularity, derived contraction algebra.
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Figure 1. A punctured cylinder 7*S1 \ D and a nodal curve Cy,+1. Both are equipped with dual
Lagrangian torus fibrations—the fibres are the dashed curves. The fibres above are dual to those
below in the sense of having reciprocal radii; the non-compact fibres (“infinite radius”) through the
punctures are dual to the nodes (“zero radius”).

§1.3. Consider the versal deformation {uv = ty---t,} of an A,-curve singularity; this

admits a crepant resolution ¥ with a morphism to Spec k|to, ..., t,] whose central fibre
is Cy+1. The B-model in our main example will be ¥. To build an A-model mirror to
this, we need to find a Fukaya category which is linear over R = k[ty, ..., t,] and which

specialises to the Fukaya category of the (n + 1)-punctured cylinder when the ¢-variables
are set equal to zero. We therefore use R as the coefficient ring' for Floer theory on 7*S'!
and work relative to D, using intersections with D to weight polygons contributing to
the Floer A.-operations.” We will further base-change coefficient rings to find mirrors to
non-versal deformations.

§1.4. Here is the general setting. Let ¥ be a two-dimensional Liouville manifold (non-
compact surface), equipped with a choice of grading data (line field), and let D C ¥ be
a finite set of marked points {zg, ..., z,}. Fix a field k, let n = |D| — 1, and let R :=
klto,...,t]. We consider the following wrapped Fukaya category of X relative to D:

* The objects are properly-immersed, exact, graded Lagrangian branes in ¥ avoiding
the marked points D and asymptotic to conical Lagrangians near the ends of X. The
brane-data comprises a choice of orientation, relative spin-structure, grading, and local
system.

* The hom-spaces are given by wrapped intersections (see [1] or [12, Appendix B]).

* The Aso-operations are given by counting holomorphic polygons with boundaries on
(wrapped) Lagrangians, but each polygon P contributes to the corresponding opera-

tion with a weight of [T7_, ™" ®*) ¢ R.

» Finally, we take the split-closed triangulated envelope to get an R-linear triangulated
Aoo-category which we will write as W(X, D).

Ito get R-linearity.
2to get the deformation.
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Figure 2. The surface T* S ! together with its Lagrangian arcs Ly, . .., L,, marked points zg, . . ., zn
and some of the Reeb chords a; and b;.

§1.5. We will frequently change our coefficient ring R. If S is an R-algebra (i.e., a ring
with a morphism R — §) then we will write W(X, D) ®g S for the corresponding S-
linear Ao.-category where all hom-spaces are tensored with S.

§1.6. Relative Fukaya categories have played an important role in Floer theory start-
ing with Seidel’s paper on mirror symmetry for the quartic surface [33], and the idea of
deforming Floer cohomology by weighting operations according to how many times a
polygon passes through a point goes back to Ozsvath and Szabo [28] in their work on
Heegaard Floer homology. For a detailed exposition of Fukaya categories in the exact set-
ting, see [31]; for wrapped categories in general, see [1] or [12, Appendix B], but for a
very explicit model of the wrapped Fukaya category of a surface, see [5] and [16, Sec-
tion 3.3]. For relative (wrapped) Fukaya categories see [27,30,35] and for a very similar
example of a relative Fukaya category of a surface, see [22], and for a version with an
arithmetic flavour see [26].

§1.7. Main theorem. We will focus on the specific case where X is the cotangent bundle
T*S! with its canonical exact symplectic form and the line field given by cotangent fibres.
We will pick a collection of Lagrangian arcs Ly, ..., L, as shown in Figure 2. Let S be
an R-algebra. We will prove the following results:

(A) The endomorphism A.-algebra of the object @:7:0 L; in the relative Fukaya cat-
egory W(T*S', D) ®g S is quasi-isomorphic to the algebra A(T*S!, D) ®g S
where A(T*S!, D) is defined in §2.1 below. This algebra is supported in degree
zero, and hence has no non-trivial higher products. (See Section 2.)

(B) Let£ C W(T*S!, D) denote the subcategory split-generated by the Lagrangian
arcs Lg,...,L,. Then £ ®pg S is preserved by the action of the mapping class
group I'(T*S, D) of compactly-supported graded symplectomorphisms of 7*S'!
fixing D pointwise. (See Section 3.)
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§1.8. Remarks.

®

(ii)

(iii)

In the appendix (Appendix A), we will show that the arcs split-generate the cat-
egory W(T*S', D) ®g R where R is the completion k[fo, . . ., #,]. We expect
that the arcs generate 'W(T*S!, D) itself, and this is confirmed in the forthcom-
ing work of Mamaev.

We will prove something slightly more general than §1.7 (B) which gives quasi-
equivalences for symplectomorphisms which permute the points of D. For some
choices of R-algebra S, these will be autoequivalences of £. See §3.1 for
details.

By construction the algebra 4(7*S!, D) is linear over R but, in fact, it turns
out that it has a bigger center given by R[u, v]/(uv — tot; - - - t,). We expect that
the autoequivalences given in §1.7 (B) are linear over this bigger ring (not just
linear over R). The main reason to expect this is that the additional variables u
and v come from Hochschild cohomology classes of 4(7*S!, D) associated
with the infinite ends of 7*S?!, whereas our autoequivalences are induced by
compactly supported symplectomorphisms.

§1.9. Mirror symmetry interpretation. The theorem of §1.7 (A) implies that

£ =~ perf (A(T*S', D)).

This category has an interpretation on the B-side. Consider the singular variety given by

Yo = Spec R[u, v]/(uv —to---t,) C A"*3

This is a toric singularity. Indeed, consider the vector space V = A2(*+1 generated by
the entries of the 2-by-(n + 1) matrix

(XO X1 xn)
yo yl e yn
and consider the action of the torus 7 = G}, whose i’ h component acts as follows:
X0 cr Xi—1 Xi e _xn) (_xo e Axi—l A_lxi .o xn)
- -1
Yo st Yi-l Yi ot Yn Yo ot AT yicr Ayi ot o

¥

Then ¥y can be identified with the affine GIT quotient V' / T, where we can see that
ti =X;yi, U =XoX1-+Xp and v = ygy1 - -+ yn. The generic GIT quotients V' /4 T provide
toric crepant resolutions of ¥y. These correspond to triangulations of [0, 1] x A, where A,
denotes the n-simplex. All of these are (non-canonically) isomorphic to a toric Calabi—Yau
variety, which we denote by ¥. These toric Calabi—Yau varieties are well known [9, 24].
We have a map ¥ — Spec R given by projection to (¢, . . ., t,). The fibre of this map over
0 is a nodal curve given by a chain of P!’s together with two A!’s attached at the two
ends, and the total space ¥ is the versal deformation of this nodal curve.
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There is a tilting bundle V on ¥ constructed by Van den Bergh [39]; we review this
construction in Section 4. In §4.6, we will see that Endy (V) is precisely our algebra
A(T*S!, D) and since ¥ is smooth, this means that

£ ~ Db(coh(iy))

which can be regarded as a relative version of homological mirror symmetry for ¥ (see
also the remark of §1.13).

The braid group action on D?(coh(¥)) is constructed by Donovan—Segal [9] by the
variation of GIT method, and previously by Bezrukavnikov—Riche [4] via Springer theory.
Under the mirror symmetry equivalence discussed above their action on the B-side almost
certainly corresponds to our braid group action on the A-side given by the theorem of
§1.7 (B) but we do not check the details here.

§1.10. Base change. We get further results by working over an R-algebra S. Let ¥s ¢ =
Spec(Oy, ®r S). Let Ys be the fibre product:
J
Yys — Y

l l

yS,O —_— yo.

In §4.7, we will show that the pullback j*V is still a tilting object with
End(j*V) = A(T*S', D) ®r S.

The variety ¥Yg is a partial resolution of ¥g ¢, and the theorem of §1.7 (B) now yields
an action of I'(T*S!, D) by autoequivalences on perf(¥Ys). If Ys is itself smooth, this
category is quasi-equivalent to D?(coh(¥Ys)).

§1.11. Example. If we take S = k[t] considered as an R-module via the homomorphism
ti — t then Y5 o = Spec(k[u, v, t]/(uv — " *1)) is the 4, surface singularity and ¥s is
its minimal resolution, so we get a ['(T*S!, D) action on D?(coh(¥s)). This is one of
the examples where we get a bigger group action: any compactly-supported graded sym-
plectomorphism of 7*S! fixing D setwise acts as an autoequivalence of £. This yields
an action of the annular (extended) braid group by autoequivalences. In this example, an
action of the (usual) braid group was known to Seidel and Thomas [34] and an extended
braid group action was constructed by Gadbled, Thiel and Wagner in [14].

§1.12. Example. Let f(x, y) be a polynomial whose lowest order term has degree n + 1
and consider the compound A, singularity {uv = f(x,y)} C C*. If f factors as fo--- f,
with each curve { f; (x, y) = 0} smooth then the singularity admits a small resolution. This
resolution has the form ¥g where S = k|[x, y] is considered as an R-algebra via the homo-
morphism #; > f;(x, y). The algebra A(T*S', D) ®g S is called a non-commutative
crepant resolution (NCCR) of this singularity: it is a non-commutative algebra whose
derived category is equivalent to the derived category of the resolution.
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The theorem of §1.7 (B) yields an action of I'(T*S!, D) on D?(coh(¥s)). This action
can be enhanced to the bigger group of symplectomorphisms: let i be a symplectomorph-
ism of 7*S! fixing D setwise and let o be the permutation ¥ (z;) = zy(;); we get an
autoequivalence from vy if f;)y = f; for all i. Autoequivalences of D?(coh(Yy)) called
“mutation functors” were constructed by Iyama and Wemyss [20] using flops along the
exceptional curves.

§1.13. These examples show that, although this Fukaya category leaves much of the
heavy-lifting to the module category of the coefficient ring, it does readily give geometric
insights which are non-trivial on the B-side. The relative Fukaya category W(T*S!, D)
is appealing because working with Fukaya categories of surfaces reduces to combinatorial
algebra. However, in view of [25, Conjecture E], it is possible to relate the relative Fukaya
category W(T*S!, D) to an appropriate subcategory of an absolute Fukaya category of a
higher-dimensional symplectic manifold X . See [25, Example 2.5] for a detailed exposi-
tion of the case D = {1}.

§1.14. Derived contraction algebra. The derived contraction algebra is a DG-algebra
associated to a small resolution ¥ — ¥, that prorepresents derived deformations of the
irreducible components of the reduced exceptional fibre of the contraction. Concretely,
it is a non-positively graded DG-algebra whose zeroth cohomology recovers the contrac-
tion algebra of Donovan and Wemyss [10]. See the papers by Hua-Toda [19], Hua [17],
Hua—Keller [18], and Booth [6] for more background. The derived contraction algebra is
obtained by localising a non-commutative resolution away from an idempotent. From the
Fukaya-categorical description of the non-commutative resolution in the ¢ A, case from
§1.12, we can give a geometric interpretation of this localisation: the derived contrac-
tion algebra can be described using the relative Fukaya category of the punctured disc
(T*S'\ Lo, D). We discuss this in Section 6.

2. The Floer cohomology algebra

§2.1. Definition of A(T*S!, D). Let O, be the quiver in Figure 3 with vertices la-
belled Ly, ..., L, and arrows® a;: L,y — L;, b;:L; — L;_;.

Recall that R = k|ty, ..., t,]. Consider the path algebra RQ,+1 of Q4+ with coef-
ficients in the ring R; that is elements of RQ,+; are R-linear combinations of paths in
0On+1 and multiplication is given by concatenate-or-die. We write e; for the idempotent
corresponding to the constant (lazy) path at the vertex L;. Let Ir C RQ,+; be the ideal
of RQ,+ generated by

a,-b,-—t,-e,-+1, bja; —tie;, i =0,...,n.

3Indices are taken to belong to the cyclic group Z/(n + 1).
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Figure 3. The quiver Q;,+1.

Write 4(T*S!, D) for the algebra RQ, /IR, considered as an A..-algebra concen-
trated in degree zero with no differential or higher operations.
The theorem of §1.7 (A) follows immediately from the next proposition.

§2.2. Proposition. The Ax-algebra @?,j=0 CF(L;, L;) is quasi-equivalent to the Aso-

algebra A(T*S', D). Note that, in this proof. we write CF to mean homy(r« g1 p).

Proof. We will use the model of the Fukaya category from [16]. The arrows labelled a and
b in Figure 3 represent the Reeb chords with the same names in Figure 2, considered as
wrapped intersection points a; € CFO(L;, L;11), b; € CF°(L; 41, L;). All Reeb chords
(called “boundary paths” in [16]) can be obtained by concatenating these, and therefore
the R-module CF(L;, L;) has as a basis the set of all paths from L; to L; in Q, 1. Here,
we include the constant path e; at L;, thought of as the identity element of CF(L;, L;).

Since all of these chords are concatenations of chords of degree zero, everything is
in degree zero, which implies that the only non-trivial p-operation on @ CF(Li, L)
is (o the differential and higher products all vanish. To compute 15, a51de from concat-
enation of chords, we need to count polygons. The arcs L; cut X into n + 1 quadrilaterals
Dy, ..., Dy, where we write D; for the quadrilateral containing the point z;. Using the
formula* [16, Eq. (3.18)] and keeping track of our additional weighting from the marked
points, we see that:

p2(a;, bi) = tiejr1, pa2(bi,a;) =tie;

for all i, where these contributions come from D;. Any other contributions to p, would
need to come from quadrilaterals, and any quadrilateral can be decomposed as a union of
D;s, so any other p, product can be deduced from these. ]

“The authors of [16] state this formula for z with k > 3 only because they do not have any quadrilat-
erals like D; in [16].
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Figure 4. The functions f and g used in the definitions of the symplectomorphisms p and § in §3.3.

3. Autoequivalences

§3.1. Group action. Let R = k[to, ..., ,]. Given a permutation ¢ of {0, 1,...,n}, let
R, denote the R-module whose underlying vector space is R but #; acts as multiplication
by f5(;). Consider the triangulated Ao-category

W(T*S'. D) xSpi1:= [] WT*S'.D)®r Ry

0ESn+1

where the morphism spaces between different components are zero. Given a graded sym-
plectomorphism y: T*S! — T*S! satisfying ¥ (D) = D, we get a permutation o € Sy, 11
defined by ¥ (z;) = z,(;). This induces an autoequivalence

W(T*S', D) % Syp1 — W(T*S', D) % Spi1

sending W(T*S!, D) ®g R, to W(T*S', D) ® g Ry<. In particular, this gives an action
of the pure annular braid group by autoequivalences on W(T*S!, D).

§3.2. Theorem. Let £, denote the subcategory of W(T*S!, D) ®r Ry, generated by
the arcs Ly, ..., Ly. Then the autoequivalences from §3.1 preserve ]—[oeSn+1 B

We now begin the proof of this theorem, which will conclude in §3.9. We will focus on
the case n > 2 because it can be handled uniformly: for small # the arguments are similar
but the pictures are slightly different because L; = L, or Ly = Ly = L,. Throughout
the argument we will ignore signs and orientations of moduli spaces. The reason we can
get away with this is explained in the remark of §3.10.

§3.3. We define some compactly-supported symplectomorphisms of 7*S! fixing D set-
wise. First, let (p, ¢) be coordinates with p € R and ¢ € S! = R/2xZ, and define the
symplectomorphisms

p(p.q) = (p.q+ f(p). 8(p.q9) = (p.q+g(p))

where f, g:R — R are the functions shown in Figure 4.



Non-commutative crepant resolutions of c A, singularities via Fukaya categories 9

Figure 5. The half-twisted arc ¥o(Lo), perturbed slightly along the Reeb flow to separate it from
Lo. We have added two stops on the boundary for convenience; these are labelled o. We have also
labelled the Reeb orbits connecting the Lagrangian arcs. Note that a9 = «’a and b, = 8’B. The
point p (marked with a e) is an intersection point of Ly with ¥¢(Lg). Two important polygonal
regions A and B are shaded.

The symplectomorphism p fixes the two non-compact ends and rotates the points in D
by an angle 27/ (n + 1); the symplectomorphism § is a Dehn twist along a loop { po} x S'!
with pg < 0. Next, let y;: T*S! — T*S! denote the half-twist around the arc connecting
zj—1 to z; (indices taken modulo n + 1). The mapping classes o, ..., ¥y, p, § generate
the graded symplectic mapping class group: see” [14, Section 1]. The symplectomorphism
8 acts trivially on our Lagrangians as objects of the wrapped category: § is part of the
wrapping that we would do anyway to compute hom-spaces. The symplectomorphism p
cyclically permutes the L; (up to Hamiltonian isotopy). So to prove that ['(T*S!, D)
preserves £, it suffices to check that y; (L;) is generated by the arcs Lo, ..., L, for all
i, j.Infact, ;(L;) = L; unless i = j, so we just need to study ; (L;). Moreover, by
cyclic symmetry of (T*S!, D) we can assume thati = 0.

§3.4. The half-twisted arc ¥o(Lo) is shown in Figure 5. To localise the calculation
near the diagram, we will insert a stop (in the sense of Sylvan [37]) on each of the two
boundary components and work first in the partially wrapped Fukaya category. We will
write down a twisted complex IL” built out of L,, Lo and L; and a quasi-isomorphism
g € CF(IL', Y¥o(Lo)). If we then apply Sylvan’s stop removal functor to this twisted
complex, we obtain a twisted complex IL in ' W(T*S!, D) which is quasi-isomorphic to

Yo(Lo).

>Gadbled, Thiel and Wagner treat one of the two non-compact ends as a puncture, so do not need §.
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§3.5. The advantage of inserting stops is that the partially wrapped Floer cohomology is
easy to read off from Figure 5:

CF(yo(Lo).Lo) = R-p. CF(Lo.Vo(Lo))=R-p®R-a®R-f,
CF(Yo(Lo).L1) = R-a', CF(Ly.v¥o(Lo)) = R (Bbo),
CF(Yo(Lo), Ln) = R-B', CF(Ln,¥0(Lo)) = R+ (@an).
All of these morphisms are in degree zero except for p which is in degree 1.
§3.6. Consider the twisted complex

L = (Ly @ Ly 2% 1)

and the morphisms ¢;: L — ¥o(Lo) and ¢g2: ¥o(Lo) — L’ defined by®

(bo’al’l)
Li®L, —— Ly Yo(Lo)
q1: p qz: (a/’ ﬂ/)
Yo(Lo) Li®L, — Ly

We need to show that ;LZT Y(q1,q2) and pL2T Y (g2, q1) are equal to the identity elements
of CF(yo(Lo), ¥o(Lo)) and CF(IL’, L") respectively (we are using Seidel’s convention
for composition, right-to-left). We compute ,uzT Y by stacking the morphisms and then
taking all possible paths through the resulting diagram, composing wherever possible.

§3.7. To calculate ,uzT Y (g2, 41), we have the following diagram:

by, a
LI@LnMLO

s

Yo(Lo)

(a’,ﬂ’){

Li®d L, — Ly
" (bo.an)

6We will write twisted complexes horizontally and morphisms between them vertically.
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"
L 1

"
Ln

Vo(Lo)”

"
L 0

Figure 6. The choices of partially wrapped Hamiltonian perturbations for the computations in §3.8.
The intersection points marked ® denote the identity elements of the corresponding Floer complex.
We show the three holomorphic quadrilaterals which contribute to pu3(e’, p, by'), u3(8’, p.ay’)
and 3 (an, B, p) (all other products vanish with these choices); the quadrilaterals are distinguished
by the direction of their hatching.

There are several routes through the diagram connecting the top row to the bottom.
There are two paths that involve three morphisms:

bo,a
Ll@Ln (0 n) L()

/, ,b /’ an
(U«3(Ol p.bo) us(@,p,a )) M3(bo,05/,P) + MS(an,ﬂ/,P)

u3(B’sp,bo) 3 (B',p,an)

There is also a path of length 2 connecting Lo to L1 & L, and one of length 4 con-
necting L; @ L, to Ly. Both of these concatenations vanish for degree reasons.

§3.8. Up until this point, we have been relaxed about choosing Hamiltonian perturba-
tions, but in order to proceed we must specify which choices of partially wrapped per-
turbations have been made. The relevant perturbations are L', L}, ¥o(Lo)”, Ly, L}” and
L where each prime indicates that we have wrapped more; see Figure 6 for our specific
choices and the relevant intersection points. Note that we now need to distinguish notation-
ally between by € CF (L', Lo) and by’ € CF(L'", Ly') and between a, € CF(L},, Lo)

and ay’ € CF(L}", Ly'). This allows us to read off all the relevant 3 products contribut-
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ing to ;LZT Y (g2, q1) from quadrilaterals in the picture. The result is:

by, a
L169Ln(0—n)>Lo

o
~—
—_—

Li®L, — > Ly.
(b07al’l)

For example, let us compute j3(a’, p, by') and see that it is equal to 1. We must think
of this p3 product as a map

13: CF (Yo(Lo)", L) ® CF (LY, ¥o(Lo)") ® CF(L}", LYy — CF(L}", L}).

In Figure 6, there is a unique quadrilateral with vertices at «’, p, by, and at the unique
intersection point L}" N L; which represents 1 € CF(LY’, L1). This shows that

ps(@', p.by) = 1.

The other calculations are similar; note that u3(a,, 8/, p) = 1 and u3(bo, ', p) = 0 with
our choice of perturbations, so that w3 (a,, 8/, p) + uz(bo,o’, p) = 1.

§3.9. To calculate ul% (g1, g2), we have the following diagram:

Yo(Lo)

(@ B

bo,a
L1®Ln%Lo

Yo(Lo)

There is only one route from the top row to the bottom, which means that
13" (@1.42) = p3(p. (bo. an). (@', ')
= wu3(p.bo. &) + ps(p.an. p)

As with the previous calculation, this yields 1 € CF(¥¢(Lo), ¥0(Lo)). This shows that
q1 and g, are mutually inverse quasi-isomorphisms, which completes the proof. ]

§3.10. Remark about signs. In this proof, we completely ignored signs. If we insert all
the undetermined signs, the arguments yield

1I(q1.q2) = Eidyyre).  MIV(q2.92) = (£idr,) ® (£id,) & (£idg,).
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At this point, we pass to cohomology and consider the morphisms [¢1] € HF (IL, ¥o(Lo))
and [¢q2] € HF (Yo(Lo), Lo). The morphisms

[q1] € HF (L. ¥0(Lo)). [g2] o [q1] o [q2] € HF (y0(Lo), L)

are now mutually inverse because all signs are squared in the composites [g1] o [¢2] ©
[91] 0 [g2] and [g2] o [g1] © [g2] © [g1]-

4. B-side

§4.1. Setup. Asin Section 1,let R = k|tg,...,t,],let Yo = Spec R[u,v]/(uv —to---ty),
and let f: Yy — A"T! be the morphism given by (¢. ... .,). This morphism f is the
versal deformation of the A4, curve singularity. We have a toric crepant resolution 7: Y —
Yo given by a triangulation of [0, 1] x A,,.

§4.2. The Van den Bergh tilting bundle. We now describe a tilting bundle on ¥, making
explicit the construction of Van den Bergh [39, Propositions 3.2.5, 3.2.10] in this example.
Recall from §1.9 that ¥ is the GIT quotient V' /4 T, where V is the space of 2-by-(n + 1)

matrices
Xo 0 X Xi41 0 Xp
(J’O o Yio Yivro o J’n)
and the torus T = G, acts as
(klxo o AT AT Aigaxign l;lxn>
Atlyo - MATL Y AiviALivr 0 Aada

and 0 is the character O(Aq,...,Ay) = A1 --- A, of T,

Given another character y: T — C*, we get aline bundle (V x C) /4 T over ¥, where
T acts with weight y on C. Let M; be the line bundle corresponding to the character
Xi(A1,...,An) = A;. The sections of M; are in bijection with the polynomials in the
variables x;, y; which have weight y under the action of 7. For example, xg is a section
of M; and y, is a section of M,,.

§4.3. Lemma. The sections of Oy form a ring isomorphic to Ru, v]/(uv —tg---ty).
The sections of M; form a module over this ring which is generated by o; = X¢ - - Xj—1
and T == Yi -+ Yn.

Note that since 74Oy = Oy, we can think of H O(.M;) as an Oy-module or an Oy,-
module. It is isomorphic to the R[u, v]/(uv —tg - - - t,)-module (u, ¢ - - - t;—1) by identify-
ing o; with u and 7; with g ---t;_1.

Proof. Consider the monomial x° - - x5," yg" e y,ﬁl”. The condition that this defines a

section of Oy is that ¢; + dj+1 —c¢j41 —d; =0 foralli =0,...,n — 1. This implies
that co — do = --- = ¢, — d,. If this common value is positive then the monomial can be
written as

[(‘)10 v [rfn uCO_dO
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otherwise it can be written as
co C d()—c‘o
150 - t5m

where we are defining
U=X0 "Xp, V=DY0""VYn, L =X}

as in §1.9. The argument for the sections of M; is similar except one is left with an addi-
tional factor of xq - -+ x;—1 or y;4+1 --- y, depending on whether ¢; > d; ordj+1 >¢;. =

§4.4. Lemma. Let M = @:’:1 M;. Consider the n — 1 sections

51 = (01,72,0,...,0),
s2 = (0,02,13,0,...,0),

Sn—l = (O’ L] 05 Un—l» Tn)-

These sections are everywhere linearly independent, and hence span a copy of the trivial
bundle of rank n — 1 inside M.

Proof. At each point of ¥, the wedge product s; A s2 A -+ A s,—1 has components

T2 Tn,
0173+ Tp,

010274+ T,

01+ Op—1-

If the sections are linearly dependent somewhere then all of these components vanish
at that point. Let ; be minimal such that 6; = 0; note that this implies x; = 0. Since
01+++0j—1Tj+1 " Tn = 0 we deduce that some tpz = 0 for k > j, and for the maximal
such k we have that y; = 0. But, as can be easily verified using the Hilbert—-Mumford
criterion (cf. [38]), the unstable locus for the linearization 6 is the union of the subvarieties
{xj = yx =0} for 0 < j <k < n, so on the GIT quotient ¥ there are no points where
these sections vanish simultaneously. ]

§4.5. Corollary. Let £ be the quotient of M by the trivial subbundle spanned by these
sections. Then L is an ample line bundle on ¥ and 'V := Oy & M is a tilting bundle.

Proof. The quotient is a line bundle and is therefore determined by its first Chern class,
which is in turn determined by its restriction to the curve {tp = --- = t, = 0} C Y. This
curve is a chain comprising n copies of P! which generate H,(¥;Z) as well as two copies
of Al at either end of the chain. The bundle JM; restricts to the bundle @ (1) on the ith P!
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and to the trivial bundle on the other P's, which means that &£ restricts to 9(1) on all the
P1s. Since the compact irreducible components of fibres of 7: ¥ — ¥ are chains of P!s
homologous to the positive linear combinations of P1s in this chain, this implies that £ is
relatively ample.
Since the bundles M; are toric line bundles generated by global sections, we have [13,
Corollary on p. 74]
Ext/ (Oy, M;) =0 forall j > 0.

If we can show that Ext! (M;, ©Oy) = 0 then we can use [39, Lemma 3.2.3] to deduce
that Ext* (Oy & M, Oy & M) is supported in degree zero and argue as in [39, Proposi-
tion 3.2.5] to deduce that Oy @ M generates.

Tensoring with M;! we see that Ext'(Oy, M;) = H'(M;'). By projecting to the
coordinates (fo, . .., t,), we can view ¥ as a family over A1 which is the versal family
of deformations of the nodal curve of the form A U, P! U, P! Uy --- P! U, Al with
n + 1 nodes. Any other fibre C; of this family is given by a nodal curve obtained from
Cy by smoothing the nodes corresponding the non-zero component of ¢ = (fo, ..., t;).
The restriction of M ! to these curves gives a line bundle on C; whose restriction to the
rational components of C; are either all trivial or in at most one component it restricts to
O(-1). In any case, H'(M;'|c,) = 0 for any 7, which then implies H'(M;!) = 0 as
claimed. ]

§4.6. Corollary. The derived category of Y is quasi-equivalent to the derived category
of modules over A(T*S', D).

Proof. Since Oy @ M is a tilting object, the derived category of ¥ is quasi-equivalent to
the derived category of modules of Endy(Oy & M). This can be computed directly via
toric geometry. Indeed, we have Homy (M;, M;) = H®(M; ® M; ') which, as in §4.3,
can be identified with the set of polynomials p € k[x;, y;] in the Cox ring [8] such that
p(A-x) = x—ij(A)p(x) forall A € T, where y_; j(A1,...,A,) = /\i_l)kj. Assuming
i > j without loss of generality, such polynomials are generated freely over R by

r S
XiXig1 " XpXo - Xj_1U',  YjYj+1---Yi—1V forr,s € Zsy.

Note that Endy (M;) = Oy itself is freely generated over R by {1,u",v® : r,s € Z>¢}.
We now write down an isomorphism F:Endy (V) — A(T*S!, D). Both sides are
bimodules over );_, Re; where ¢; is an idempotent, acting as the identity in the hom-
space Homy (M, M;) = e; Endy ('V)e; or as the constant path at vertex i in A(T*S!, D).
We define
F;j:Homy (M;, M;) — e; A(T*S', D)e;

using the basis above, setting

Fij(XiXi41 - XnXo - Xj—U") = @j_1---apao---a; - (@ -+~ ando -+ aj—1)"
Fij(yjyj1---yic1v®) = bjbjiq---bi_y - (bi-+-bubo---bi_1)’.
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The elements on the right-hand side form a free R-module basis for e; A(T*S!, D)e;,
so this map is bijective. It is a homomorphism because it coincides with the algebra map
defined by F(x;) = a;, F(y;) = b;; to see that this algebra map is well defined, observe
that the quiver relations a;b; = t;e;+1 and b;a; = t;e; follow from x;y; = ¢;. [

One can also perform this calculation entirely within the category of Cohen—Macaulay
modules over Oy, ; for details, see the recent work of Zhang [40].

§4.7. Corollary (base-change). Let S be a finitely generated R-algebra. Let Y o denote
the scheme Spec(Qy, ®r S) and consider the diagram

ys%y
l l

& | Yso—— Y f

! l

Spec(S) LN Spec(R)

where Ys is the fibre product. The pullback j*'V is a tilting bundle on Y s with endomorph-
ism algebra Endy, (j*V) = A(T*S', D) ®g S. In particular, by §1.7(B), the derived
category of perfect modules on Ys inherits an action of T(T*S1, D).

Proof. The map ¥ — Spec(R) is a conic fibration over A”*! with equidimensional fibres
and smooth (in particular, Cohen—Macaulay) total space, hence flat. The endomorphism
bundle Endy (V) is a locally free Oy-module, so 'V is flat over Spec(R) by [7, Lemma 2.2].
By [7, Lemma 2.9], this implies that j*V is a tilting bundle with

Endyg (j*V) = g« Endyg (j*'V) = i* f« Endy (V)
~ i*A(T*S', D) =~ A(T*S',D) Qr S.

This base-change formula is used in the proof of [7, Lemma 2.9] but can also be found
in [21, Lemma 2.10] where the pullbacks are left-derived; in our case all the modules are
either free or locally free, so derived pullback equals pullback. ]

5. A 1-d picture of a 3-d sphere

We conclude by discussing an example which displays how one can draw 1-dimensional
pictures corresponding to sheaves on the higher-dimensional mirrors. Let n = 1; in this
case ¥ is the usual small-resolved conifold which is the total space of the vector bundle
O(=1) ® O(—1) over P!. The pushforward of the structure sheaf of P! is well known to
be a 3-spherical object S in D? coh(¥). It can be resolved by line bundles as follows:

,—X1)

02) (o (9(1)@2 (x1,50) o
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Figure 7. A 3-spherical object in W(T*S1, D) where | D| = 2. The gray curve is a small pushoff,
used to compute the Floer complex.

and @(2) in turn is equivalent to @ Lo g (1)®2, where O (i) denote the line bundles on

Y with degree i on P 1 We can, therefore, express the mirror to the 3-spherical object S, in
terms of the generators of W(T*S!, D) and then work out, using the surgery exact triangle
on the A-side, which immersed Lagrangian it corresponds to. In Figure 7, the thick curve
is this immersed Lagrangian. Note that this immersed Lagrangian is unobstructed: it does
bound four “teardrops” (monogons) which would contribute to the curved A,-operation
Lo, but these appear in cancelling pairs passing through the same marked point (and hence
weighted by the same variable).

The gray curve is a small pushoff. The Floer complex between these two curves has
eight generators, living in the following degrees:

degree -2 -1 0 2 3

1
generators | y X,z e m X,z )

The Floer differential can be computed as follows:

dy =11z —tox, OJx =tye, 0z = tge
de =0, om = thx—1oZ
% =117, 3z = to7, 35 = 0.

which yields cohomology of k|[tg, t1]/(t0, 1) = k in degrees 0 and 3.
It is also possible to verify directly that this immersed Lagrangian corresponds to a
simple module of A(7T*S!, D) dual to L.
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6. Derived contraction algebra

§6.1. Let Y, be a 3-fold compound Du Val singularity admitting a small resolution ¥.
The derived contraction algebra T" of ¥ is an enhancement of the contraction algebra A of
Donovan and Wemyss [10] in the sense that A = H°(T"). The derived contraction algebra
can be understood as the Drinfeld localisation [11] of the endomorphism algebra End('V)
of the tilting bundle on ¥ with respect to the idempotent e = idgp,, corresponding to the
structure sheaf @Qy. Recall that the Drinfeld localisation is given by

End(V). = End(V)(e)/(ce = ec = ¢, de = e),

that is we freely introduce an element ¢ to End(Oy) of degree —1 with de = e. This kills
the corresponding object in D?(End(V)) ~ D®(¥) after localisation:

perf( End('V)e) ~ DP(¥)/(0y).

§6.2. Let us consider the case of a compound Ay singularity. Recall that in this case we
have a 3-fold singularity given by

uv = fO(x’Y)fl(x’Y)"'fn(xJ’)‘

The relative Fukaya category is derived equivalent to the algebra A(T*S!, D) ®g S
where S := k[x, y] is viewed as an R-algebra by the homomorphism #; — f;(x, y). By
the corollary of §4.7, A(T*S!, D) ®g S is isomorphic to the algebra Endy, (j*V) of
endomorphisms of the tilting bundle j*V = Oy, @ j*M. Hence the derived contraction
algebra is given by

(AT*S'. D)®r S), , eo=idr,.

€o

That is, the localisation of D?(¥Y) away from Oy, corresponds to localisation away from
the Lagrangian Ly in the relative Fukaya category W(T*S', D) ®g S. In the remainder
of this section, we will give an alternative, more geometric, description of the derived
contraction algebra in terms of the relative Fukaya category of a disc.

§6.3. Theorem. Let A be the disc obtained by excising Lo from T*S' (Figure 8). The
derived contraction algebra of a 3-fold compound Ay singularity is quasi-equivalent to
the endomorphism algebra of @;_, L; in the relative Fukaya category W(A, D) ®R S.

Proof. We can think of the annulus 7*S! as the result of attaching a Weinstein 1-handle
to the disc, with Lo as the cocore of the handle. By Ganatra, Pardon and Shende [15,
Proposition 11.2], this means that the localisation

(W(T*S', D) ®& S)/{Lo)

is quasi-equivalent to the relative Fukaya category of the disc A we get by excising L
from 7*S!. This proves the theorem. |



Non-commutative crepant resolutions of ¢ A, singularities via Fukaya categories 19

Figure 8. Relative Fukaya category of the disc as a localisation.

§6.4. A model for the derived contraction algebra. We now give a model for the Ao.-
algebra Endwa,p)(D;_; L;). This can be calculated directly. It is given by taking the
R-linear path algebra of the following quiver

b] bn—l

imposing the relations (coming from the quadrilaterals with boundary b; U L; U a; U
Li+1 in A)

bija; = tie;, a;b; = tiejy1, fori=1,...,.n—1,
a? =0, B2 =0,

and defining the differential (coming from the bigons with boundary « U L and L, U B)
by

daj =db; =0fori =1,....,n—1, da=tye;, df = tye,,
extending to longer paths by the graded Leibniz rule. Note that a;, b;, i = 1,...,n — 1,
are in degree zero whilst @ and § are in degree —1.

To see that there are no higher products, we appeal to a Maslov index calculation
of Ozsvath and Szabo [29, Proposition 6.2] who studied these relative categories in the
context of Heegaard—Floer theory (where it is called the pong algebra). A rigid (k + 1)-
gon contributing to a pg-operation has Maslov index 2 — k; Ozsvéth and Szabo show that
the Maslov index of a holomorphic disc u with boundaries on Ly, ..., L, is given by
mult(u, z1) + mult(u, z,), which is non-negative since u is holomorphic. It follows that
k < 2. A similar argument appears in [3, Proposition 3.6].
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§6.5. Remark. The relative wrapped Fukaya category W(A, D) is acted on by its center
given by its Hochschild cohomology which can be identified with the symplectic cohomo-
logy SH(A, D). There is a closed orbit 7 that corresponds to the boundary of A which
has degree —2. Thus, W(A, D) can be seen as a category over k[n]. This recovers the
familiar structure of the derived contraction algebra studied in detail in [18, Section 6].

§6.6. Example. We can compute the case where n = 1 and fy = x, f1 = y. This cor-
responds to the conifold singularity. We get that I' = k[x, y](a, B) with a? = % =0,
da = x and dfB = y. It is easy to determine that H*(I") = k[n] with n = af + Ba of
degree —2. This coincides with Booth’s calculation [6, Section 4.2].

§6.7. Example. Consider the Pagoda flop fo = y + x", fi = y — x". Our model for the
derived contraction algebra gives

k[x»y](avﬂ)/(az’ﬁz)’ dOl:y-i-Xn, dﬂ:y_xn-

Assuming we are not in characteristic 2, we can define

G=@+p)/2, LH=(@@-p)/2

sothat d¢; = y and d{, = x". This DG-algebra is isomorphic to the graded commutative
algebra

k. y. 8. 0l/@E+85). doa=y. di=x"
Now, it is easy to see that the map from

klx.g],  df=x"

sending { — {, and x — x is a quasi-isomorphism. This latter model for the derived
contraction algebra of the Pagoda flop is given by Booth in [6, Lemma 4.3.8]. Note that in
characteristic 2, the class x” € H%(I") is non-trivial, so the assumption on characteristic
is important here.

§6.8. Example. Consider the 3-fold uv = xy(x? + y3). This has six different partial
resolutions corresponding to different permutations of

fi=x, fHh=x>+y> fr=y.

We just focus on this particular choice and compare the answer our model gives for A =
HO(I") with that computed by August [2, Example 4.5, Figure 2]. Our model gives an
algebra over k[x, y] described by the following quiver:

by
OO
~__ "
ay

with differential
do = xey, df = yes,
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and relations
arby = (X* +y*er, bia; = (x> +y>es, o> =0, p>Z=0.

At the chain level, in degree zero, we have the free k[x, y]-module spanned by ey, e5,a1,b1.
We need to quotient by

xer, yes, aiby=(x*+yer, biay = (x* + y)es.

The quotient algebra is therefore generated by m := ye;, £ = xe3, a = by, ¢ = a; and
these satisfy precisely the relations

?=ac, m*=ca, la=am=cl=mc=0

given for B, in [2, Figure 2]. For example:

m?> = y3e; = (v + x¥ey = a1b; = ca.

A. Generation of the relative Fukaya category

§A.1. Proposition. Let 1 = (tg,...,1,) C R and write k for the module R/w. The
category W(T*S', D) ®g k is split-generated by the Lagrangian arcs Ly, . .., L.

Proof. There is a tautological identification of W(T*S', D) ® g R/m with the full sub-
category
B(D) Cc W(T*S'\ D)

corresponding to Lagrangian branes which do not go near the punctures along D. The
manifold 7*S! \ D is a (n + 3)-punctured sphere with the grading structure restricted
from the standard one on 7*S. In [23], a mirror equivalence was established giving

W(T*S' \ D) ~ D’ coh(C)

where C = A! Upe P! Upe P!... Ups P! Upe A is a nodal curve with n + 2 irreducible
toric components glued together at the toric fixed points. Under this equivalence, the full
subcategory B(D) gets identified with the full subcategory perf(C) C D? coh(C), and
the Lagrangians L; go to line bundles £; on C. In particular, one can arrange that £ is
the trivial bundle (i.e., the structure sheaf O¢).

In the case n = 0, the mirror curve C is simply the affine curve

Al Ups AT = Speck[x, y]/(xy),

and the category D? coh(C) is quasi-equivalent to the derived category of modules over
End(O¢). The subcategory of perfect objects is then generated by End(O¢) itself [36,
Lemma 15.78.1].
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For higher n, there is an n + 1-fold covering map 7: T*S! \ D — T*S! \ {p} which
respects the grading. The graph of 7 is a Lagrangian submanifold of (T*S!\ D)~ x
(T*S'\ {p}) (where ~ indicates that we reverse the sign of the symplectic form on this
factor). This induces triangulated A, quilt functors

T W(T*S'\ D) — W(T*S'\ {p})

respectively

7 W(T*S'\ {p}) - W(T*S'\ D).
Geometrically, a Lagrangian brane is sent under 7 (respectively 7*) to its image’ (respect-
ively preimage) under 7. These functors restrict to give functors

e B(D) — B(p) respectively 7*:B(p) - B(D).

Given an object of B(D), it follows as in [32, Section 9] that the object 7 *m, (L) is the
sum P gec &(L) where G is the deck group of the covering map 7.

Write Lo, ..., L, for the arcs in 7*S' \ D and Ly for the arc in T7*S' \ {p}. By the
n = 0 case of the proposition, if L € B(D) then m4(L) is generated by Lo C T*S \ {p}.
Therefore P g(L) is generated by n*Ly = @D;_o Li, and since L is a summand of
é geg §(L), we see that L is split-generated by D7 _, L, as required. ]

§A.2. Remark. Obviously, the Lagrangians Ly, ..., L, do not generate W(T*S! \ D),
since the Lagrangian branes that are allowed in ‘W(T*S! \ D) can have ends near the
punctures along D.

§A.3. Proposition (generation with coefficients). Let L be an object of W(T*S!, D). If
L generates Wo(T*S', D) := W(T*S!, D) ®g R/ then it also generates the relative
wrapped category with coefficients in R, that is W(T*S', D) ®g R.

As a corollary, the category W(T*S', D) ®g R is split-generated by the Lagrangian
arcs Ly, ..., L. The proof of this proposition will take up the rest of the appendix.

§A.4. Proof. Let

a‘z = Endw(T*Sl’D)(L) QR Ea
Ao = End'WQ(T*Sl,D)(L) = El’ldw(T*Sl’D)(L) Qr R/I‘[I

We have Yoneda-type functors
Y:W(T*S', D) ®g R — mod(A)

and
Yo: Wo(T*S', D) — mod(sy).

"possibly immersed.
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The module Yo(L) = 4y (respectively ¥ (L) = ) generates the subcategory perf(sg)
(respectively perf(s)) of perfect objects. Since L generates Wy (7 *S!, D), the functor Yo
lands in perf(-4¢) and corestricts to give a quasi-equivalence

Yo: Wo(T*S', D) — perf(Ag)

(i.e., the induced functor on homotopy categories is fully faithful and essentially surject-
ive). We want to show that

(a) Y lands in perf(A);

(b) the induced functor H(Y') on homotopy categories is (i) essentially surjective and
(ii) fully faithful.

§A.5. Proof of (a). The subcategory perf(+4) C mod(+) is precisely the triangulated
subcategory of compact objects (see for example [36, Proposition 15.78.3]). An object
C in a pre-triangulated A, category is compact if and only if the functor it corepresents
hom(C, ) preserves coproducts, that is,

@®; hom(C, E;) = hom(C, &®; E;)

for arbitrary direct sums @; E;. So it suffices to show that if K € W(T*S!, D) ®g Ris
an object then

®; hommod(a‘i) (}_/(K)’ Ei) = hommod(rfz) (Y(K)’ ®i Ei)

for arbitrary direct sums @®; E; in mod(4).

The complexes @; hommod(eg)(f(l(), E;) and hommod(x)(?(K), ®; E;) are complete
filtered R-modules with the filtration coming from the action of powers of the maximal
ideal; the canonical map

@; hom,_ 1) (Y (K), Ei) — hom_ 4 %) (Y (K), ®; E;) (A1)

is a morphism of filtered complexes. There are therefore spectral sequences computing
both sides, and a morphism of spectral sequences induced by (A.1). By the Eilenberg—
Moore comparison theorem, it suffices to check that this morphism is an isomorphism on
the Eq pages. Note that Eilenberg—Moore requires completeness of the filtration, which is
why we are working over R instead of R.

The E, pages are respectively

E{* = @i hom?h,) (Yo(K), & ()

m

and
EJ* =hom! T (Yo(K), @i gr” (E:))
where gr? denotes the pth graded piece of the associated graded module. The morphism

on Ey-pages is induced by the canonical map

@i hompmoa(ag) (Yo(K). gr(E;)) — homumea(ag) (Yo(K). @i gr(E;)).

Since Yy (K) is perfect, this is an isomorphism, which proves (a).
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§A.6. Proof of (b) (i). We have A = I?(L), and since /4 generates perf(gz), the essential
image of ¥ in mod(s4) contains perf(+4). ]

§A.7. Proof of (b) (ii). Given objects K, K’ € W(T*S', D) ®g R, the complexes
CF(K,K')®r R and hom, 7 (Y (K),Y(K))

are filtered by powers of the maximal ideal. These filtrations give us spectral sequences
and the functor Y gives a map of filtered complexes

CF(K,K') ®r R — hom,_ 7 (Y (K),Y (K"))
and hence a morphism of spectral sequences. On the £ page this is just the map
H (homig, 751, p)(K, K)) @R gr(R) = H (hompad(ae) (Yo(K), Yo(K"))) @& gr(R)
induced from
H(Yy): H (homyy, 7«51 py(K, K')) = H(hommea(ae) (Yo(K), Yo(K")))

(because any polygons which pass through the marked points have their contributions
weighted by an element of mt). This is an isomorphism because Y, is cohomologically
full and faithful. The Eilenberg—Moore comparison theorem then implies that the map
H(Y) is an isomorphism, which proves that Y is cohomologically full and faithful. ]
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