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Spectral properties of the resolvent difference
for singularly perturbed operators

Grigori Rozenblum

Abstract. We obtain order sharp spectral estimates for the difference of resolvents of singularly
perturbed elliptic operators AC V1 and AC V2 in a domain � � RN with perturbations V1;V2
generated by V1�; V2�, where � is a measure singular with respect to the Lebesgue measure and
satisfying two-sided or one-sided conditions of Ahlfors type, while V1; V2 are weight functions
subject to some integral conditions. As an important special case, spectral estimates for the differ-
ence of resolvents of two Robin realizations of the operator A with different weight functions are
obtained. For the case when the support of the measure is a compact Lipschitz hypersurface in� or,
more generally, a rectifiable set of Hausdorff dimension d D N � 1, the Weyl type asymptotics for
eigenvalues is justified.

Dedicated to Gerd Grubb on her Jubilee.

1. Introduction

1.1. Resolvent perturbations

Let A be a self-adjoint second order elliptic differential operator in an open (possibly,
unbounded) connected set � � RN. Suppose that V1 and V2 are some perturbations of A
(one of them may be the zero one), so, at least symbolically,

A1 D AC V1; A2 D AC V2: (1.1)

Generally, the perturbations V1;V2 can be rather singular, and the expressions for A1;A2
in (1.1) can be understood in a quite generalized and often highly formal way. In particular,
such a vague setting may embrace the change in the boundary conditions for an elliptic
operator. The question about the spectral properties of the difference of resolvents,

R.1;2/ D .A1 C t /�1 � .A2 C t /�1; (1.2)

where the real number t is chosen in such way that both operators in (1.2) are invert-
ible, is one of the classical ones in Spectral Theory, with long history. In particular,
an efficient method was elaborated and fundamental results were obtained in [15, 16],
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where one can find references to earlier papers and a motivation for studying this kind of
problems, the most important being the needs of the scattering theory. Further on, quite
general abstract operator perturbation methods have been developed, see, in particular,
[2,10,11,13,26–28,32,44,48], and many other sources. Being applied to concrete differen-
tial operators, these abstract perturbation schemes have produced a number of impressive
results on the spectral properties, semi-group properties, regularity etc.

One of important directions of study is the investigation of the spectrum of the differ-
ence of resolvents of operators generated by the same elliptic differential expression with
different boundary conditions. For the difference of resolvents of the Dirichlet and Neu-
mann operators, eigenvalue estimates we obtained in the already cited paper [16] by M.
Birman in 1962, while later, in [18], general methods were developed producing eigen-
value asymptotics for many problems, including the above one.

Even this, rather particular, topic attracted great attention in the latest two or even three
decennia, with scores of papers published. We mention here the papers [2, 9, 13, 32, 35],
and a vast amount of references therein. For the study of these problems, the extensive
machinery of abstract Krein–von Neumann perturbation formulas, quasi-boundary triples,
and the generalized H. Weyl M -function have been elaborated. This approach, in various
modifications, was used to the study of many kinds of spectral problems, a systematic
description and an impressive bibliography can be found in [10].

One of special singular problems under consideration has been the study of the spectral
properties of the difference of resolvents of self-adjoint operators A�, �D 1; 2, in�� RN,
corresponding to the Laplacian (or a general symmetric second order elliptic operator L)
with weighted Robin boundary conditions containing two different weight functions,

@�.L/u.X/ D V�.X/u.X/; � D 1; 2; X 2 � D @�;

where @�.L/u is the (co)normal derivative at the boundary, associated with L. For the
singular values sj of this difference, in [16], the estimate sj D O.j�

2
N�1 / was obtained,

it was improved to sj D O.j�
3

N�1 / in [13]. Further on, in [34], the latter estimate was
elevated to the asymptotic formula

sj � .Aj /
� 3

N�1 ; A D C

Z
†

ˇ̌
V1.X/ � V2.X/

ˇ̌ N�1
3 !.X/�.dX/; (1.3)

where the density !.X/ is determined (in some complicated way, see [34, Theorem 3.5])
by the coefficients of the operator L at the boundary. We do not need the particular expres-
sion for this weight function.

Formula (1.3) was established in [34] under rather restrictive regularity conditions for
the functions V�, namely, that they and their difference should be piecewise Hölder contin-
uous, with allowed discontinuities only along some smooth hypersurfaces in � , common
for V1;V2 (in fact, a little less restrictive regularity is required, expressed in terms of spaces
of Bessel potentials.) These restrictions were caused by the pseudodifferential technique
used in [34]; further on, the regularity conditions were somewhat relaxed in [35]. Impor-
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tant results were also obtained for various singular perturbations in [11,27,44], and many
more.

Another perturbation problem, also subject to an extensive study, is the analysis of
spectral properties of the difference of resolvents of ‘Schrödinger-like operators’,�

AC V1.X/C t
��1
�
�
AC V2.X/C t

��1
; (1.4)

where V1; V2 are functions defined in �. Such problems were being studied systemati-
cally, starting, probably, with [6, 58]. For functions V� with compact support and some
summability conditions, eigenvalue estimates and eigenvalue asymptotics were known for
the operator (1.4) since long ago. More generally, operators of the type �� C V , with
the singular perturbation V being the ı-distribution supported on a hyper-surface, with
some weight, were being considered, see, especially, [22,23] and references therein; such
mathematical models were treated as ‘leaky quantum graphs’. More recently, the studies
were concerned with the spectrum of resolvent differences for such singularly perturbed
operators, see, e.g., [7, 9, 24]. The coefficients in front of the distributional potential were
supposed to be smooth functions on the hypersurface. More generally, one can consider
singular perturbations problems for Schrödinger-like operators, as above, but with the
roles of potentials played by singular measures supported on some sets of zero Lebesgue
measure, possibly, with fractional dimension, sometimes called ‘transmission across a
fractal set’, see, e.g., [3, 4, 19, 20, 29, 36, 40–42], etc.

1.2. Singular perturbations

In the present paper, we show that the study of spectral properties of the problems dis-
cussed above can be performed in a uniform way, as versions of one and the same con-
struction. Namely, for a Radon measure � supported in x�, possibly, singular with respect
to the Lebesgue measure, and a �-measurable function V on the support of � and subject
to some summability conditions, the operator AC V� inL2.�/ can be effectively defined
by means of quadratic forms, and the eigenvalues of the difference of its resolvent and the
resolvent of A (as well as of the difference of powers of resolvents) can be estimated.
The order of such estimates is determined by the class of Ahlfors regularity of the mea-
sure � (roughly speaking, the local Hausdorff dimension of the support of �), while the
coefficient in the estimates depends on a certain integral norm of the ‘weight’ function V
with respect to the measure �. In a similar way, the spectrum of the difference of (pow-
ers of) resolvents of operators with two different weight functions V1; V2 can be studied,
producing eigenvalue estimates and, in certain cases, asymptotics, generalizing (1.3).

In this setting, the Robin problem corresponds to the measure � supported on some set
in the boundary of �, while the latter type of problems, which we call ‘the Schrödinger-
type’ ones, corresponds to the measure � supported inside �. It is possible, of course, to
consider a combination of these perturbations.

Eigenvalue estimates obtained in the present paper involve integral characteristics of
the weight functions. This circumstance provides us quite a freedom in extending the
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existing results on the eigenvalue asymptotics to considerably less regular weight func-
tions V� for the difference of Robin resolvents, compared, e.g., with the results in [34].
Note that in addition to the asymptotics of singular numbers, studied previously, we are
able to separate positive and negative parts of V1 � V2, thus finding the asymptotics of
negative and positive eigenvalues separately. Similarly, for problems with singular poten-
tials supported inside �, the eigenvalue asymptotics is found for the measure � being the
Hausdorff measure on a Lipschitz hypersurface in � or on some unions of such surfaces
(uniformly rectifiable sets). When the set † D supp� is Ahlfors regular of a fractional
dimension, asymptotic formulas for eigenvalues are, probably, not accessible in a general
case, however, our estimates are order sharp: the general upper estimates are accompanied
by lower estimates of the same order.

There is a huge literature on the operator perturbation theory, with extensive machin-
ery, involving boundary triples, generalized boundary pairs, Weyl M -functions etc.; this
activity has produced quite a lot of impressive results. In our case, we deal with perturba-
tion of operators defined by means of quadratic forms, using the approach originating in
[15] and developed further in [19] and in [48]; the latter is the closest to ours, being much
more general. We, however, do not need this approach in its full generality; our perturba-
tion scheme is rather elementary and does not use the above general constructions, giving
at the same time convenient explicit formulas.

In dealing with spectral estimates and asymptotics for singular measures, we follow
the approach developed recently in the papers [37,49,50,52,54] concerning spectral prop-
erties of Birman–Schwinger type operators with singular weights and use some important
results of these papers, especially, [54]. When needed, we reproduce some formulations
from these papers; we explain the strategy of proving asymptotic formulas as well.

In this paper, we restrict ourselves to perturbations and boundary problems for second
order uniformly elliptic operator L with smooth coefficients. The regularity of the bound-
ary, if it is present, depends on the particular problem under consideration. More general
results involving elliptic operators with less regular coefficients and boundaries (like in
[51]), as well as higher order operators, would require essentially more complicated con-
siderations which would dim simple ideas in our approach to spectral problems. We hope
to return to these general topics on some other occasion.

There are numerous papers devoted to various aspects of spectral theory of singular
perturbations. Our initial attempts to include a complete bibliography led to the reference
list filling almost one third of the paper. Therefore, we decided to make the reference
list (more or less) reasonably short, so that the interested Reader may find an additional
information using reference lists of the papers cited here and the citation lists in the entries
of these papers in MathSciNet.

2. The abstract perturbation formula and related spectral properties

We consider perturbations of a given operator by quadratic forms. The formulas for the
resolvent of the perturbed operator are somewhat similar to the ones established in [19,38]

https://mathscinet.ams.org
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and, later, in [48], however this particular form enables us to apply previously obtained
results concerning spectral estimates.

2.1. Form perturbations

Let A > 0 be a self-adjoint operator in the Hilbert space H. We suppose that A � c0 > 0
is defined by the positive quadratic form aŒu� D .Bu;Bu/H with domain H1 D D.A 1

2 /.
Here B is a bounded operator acting from the Hilbert space H1 to H. Of course, there is
a considerable freedom in choosing the operator B generating one and the same operator
A. The choice, always possible, is B D A 1

2 .
The perturbation is supposed to be defined by means of the quadratic form vŒu� with

domain dŒv� � D.A 1
2 / � H1 and bounded there,ˇ̌

vŒu�
ˇ̌
� CaŒu�; u 2 H1: (2.1)

Therefore, the quadratic form vŒu� defines a bounded self-adjoint operator V in H1 satis-
fying

.Vu; u/H1 D vŒu�; u 2 H1:

Under these conditions, we define the perturbed operator AV in H by means of the
quadratic form

aVŒu� D aŒu�C vŒu�; u 2 H1; (2.2)

In this paper, we suppose that the quadratic form (2.2) is positive in H. Then, by the KLMN
theorem, this quadratic form is closed in H and, in fact, defines a lower semi-bounded self-
adjoint operator AV. Having the quadratic form definition of the operator AV, we are going
now to describe conveniently the operator itself.

Set u D A� 12 v, v 2 H, in (2.2). We obtain

vŒu� D vŒA�
1
2 v�:

We suppose that the perturbing quadratic form has the following structure. Let G be a
Hilbert space and 
 be a (boundary) operator, 
 W H1 ! G such that

k
uk2G � Ckuk
2
H1 ; u 2 H1:

Further on, let F be an operator in the space G such that its domain D.F/ contains 
H1

and
kF
ukG � CkukH1

(note that we do not expect that F is a bounded operator in G .) Finally, let U be a bounded
self-adjoint operator in G .

Under the above conditions, the quadratic form v is supposed to be defined by

vŒu� D .UF
u;F
u/G ; u 2 H1: (2.3)

The expression (2.3) is defined, at least, on H1 and it is bounded with respect to the
H1 norm, see (2.1). Since u D A� 12 v, v 2 H, (2.3) transforms to

vŒA�
1
2 v� D .UF
A�

1
2 v;F
A�

1
2 v/G : (2.4)
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By the conditions imposed above, F
A� 12 is a bounded operator from H to G . Therefore,
the expression in (2.4) can be represented as

vŒA�
1
2 v� D

�
.F
A�

1
2 /�U.F
A�

1
2 /v; v

�
H
: (2.5)

Here, .F
A� 12 /� acts from G to H; it is the adjoint operator to F
A� 12 considered as
acting from H to G . Since the operator U is self-adjoint and bounded, the operator

.F
A�
1
2 /�U.F
A�

1
2 /

is a self-adjoint bounded operator in H.
We return to v D A 1

2u. The expression in (2.5) transforms to

vŒu� D
�
.F
A�

1
2 /�U.F
A�

1
2 /A

1
2u;A

1
2u
�

H
; u 2 H1:

Now we consider the operator AV defined in H by means of the quadratic form (2.2), with
v as in (2.3). We suppose further on that the form aVŒu� is positive in H1, namely,

avŒu� � CaŒu�; u 2 H1; (2.6)

with someC >0. Under this condition, the operator 1C .F
A� 12 /�U.F
A� 12 / is positive,
and therefore, we can write, for u 2 H1,

aVŒu� D .A
1
2u;A

1
2u/H C

�
.F
A�

1
2 /�U.F
A�

1
2 /A

1
2u;A

1
2u
�

H

D
��
1C .F
A�

1
2 /�U.F
A�

1
2 /
�
A
1
2u;A

1
2u
�

H

D
��
1C .F
A�

1
2 /�U.F
A�

1
2 /

1
2
�
A
1
2u;�

1C .F
A�
1
2 /�U.F
A�

1
2 /

1
2
�
A
1
2u
�

H
: (2.7)

The last expression in (2.7) still defines the quadratic form of the self-adjoint operator AV,
and therefore we have the representation for this operator as the composition of an operator
and its adjoint (such composition is always self-adjoint):

AV D
��
1C .F
A�

1
2 /�U.F
A�

1
2 /
� 1
2A

1
2
����

1C .F
A�
1
2 /�U.F
A�

1
2 /
� 1
2A

1
2
�
: (2.8)

Note again that we do not (and need not to) describe explicitly the domain of this operator.
The operator AV is invertible, since in (2.8) it is represented as a composition of two
invertible operators. Therefore, for the (bounded) inverse operator to AV, we obtain the
representation

.AV/
�1
D Œ

�
1C.F
A�

1
2 /�U.F
A�

1
2 /
� 1
2A

1
2
��1���

1C.F
A�
1
2 /�U.F
A�

1
2 /
� 1
2A

1
2
����1

D A�
1
2
�
1C .F
A�

1
2 /�U.F
A�

1
2 /
�� 12 �1C .F
A�

1
2 /�U.F
A�

1
2 /
�� 12A�

1
2

D A�
1
2
�
1C .F
A�

1
2 /�U.F
A�

1
2 /
��1A�

1
2

� A�
1
2 .1C T/�1A�

1
2 ; T � TV D .F
A�

1
2 /�U.F
A�

1
2 /: (2.9)

We arrive here at the resolvent perturbation formula, which creates the base of our
further considerations.
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Proposition 2.1. Let A be a positive self-adjoint operator and let V be a perturbation as
above. Then

RV � A�1 � .AV/
�1
D A�

1
2
�
1 �

�
1C .F
A�

1
2 /�U.F
A�

1
2 /
��1�A� 12

� A�
1
2
�
1 � .1C TV/

�1
�
A�

1
2 : (2.10)

Operators of the form TV and their analogies have been the base of the study of dis-
crete spectrum of Schrödinger-type operators since 1960s. It is reasonable to call them
‘Birman–Schwinger’ operators.

The representation (2.10) of the resolvent difference has been derived under the con-
dition that the operator

1C TV � 1C .F
A�
1
2 /�U.F
A�

1
2 /

is positive definite. If we replace the operator A by A � t , t < 0, (2.6) still holds, and
(2.9) gives the representation for the inverse of AV � t , this means, for the resolvent of
the operator AV at the point �t . If there is a family of quadratic forms v" such that the
corresponding operators TV" converge in the norm sense to TV as "! 0, then, as soon
as kTV" � TVk is small enough, the operator 1C TV" is positive definite as well and the
resolvent perturbation formula (2.10) is valid.

2.2. Asymptotic spectral characteristics

We are going to study asymptotical spectral properties of compact operators in a Hilbert
space. Here we collect some basic notations and facts, mostly well known. Let K be a
compact self-adjoint operator in a Hilbert space H. By n˙.�;K/we denote the distribution
function of positive (resp., negative) eigenvalues˙�˙j .K/ of the operator K:

n˙.�;K/ D #
®
j W �˙j .K/ > �

¯
:

For a given exponent � > 0, the asymptotic characteristics of the spectrum of K are defined
as

nsup
˙
.K; �/ D lim sup

�!C0

n˙.�;K/�� ; ninf
˙ .K; �/ D lim inf

�!C0
n˙.�;K/�� (2.11)

and
n˙.K; �/ D lim

�!C0
n˙.�;K/�� ; (2.12)

provided these limits exist.
Similarly, for an arbitrary compact operator K, the distribution function for its singular

numbers sj .K/ and their asymptotic characteristics are defined and denoted as above, but
with the symbol˙ deleted.

It follows immediately that for a bounded operator J,

n.�; JK/ � n
�
�; kJkK

�
D n

�
kJk�1�;K

�
;
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therefore,
nsup.JK; �/ � kJk�nsup.K; �/:

The lim sup form of the multiplicative Ky Fan inequality

n.�1�2;K1K2/ � n.�1;K1/C n.�2;K2/ (2.13)

implies in these terms

nsup.K1K2; �/ � 2nsup.K1; �1/
�
�1 nsup.K2; �2/

�
�2 : (2.14)

Similar inequalities are valid for the product of several operators, K D
Qm
jD1 Kj , ��1 DP

��1j :

nsup.K; �/ � m
Y�

nsup.Kj ; �j /
�
�j
�
: (2.15)

Another simple consequence of the multiplicative Ky Fan inequality is the following.

Lemma 2.2. If nsup.Kj ; �j / <1, for j D 1; 3 and K2 is a compact operator, then

nsup.K1K2K3; �/ D 0; ��1 D ��11 C �
�1
2 :

2.3. Ratios of quadratic forms

We will systematically use operators defined by the ratio of quadratic forms, see, e.g., [17].
If k is a bounded Hermitian quadratic form in the Hilbert space H, its eigenvalues

(eigenvalues of the operator K defined by this quadratic form) are determined in varia-
tional way, in particular,

n˙.�;K/ D min
°

codimL � H W
˙kŒu�
hŒu�

> �; u 2 L n ¹0º
±
;

where hŒu� WD kuk2H. It is convenient to denote this distribution function by n˙.�; k
h /. The

notation of asymptotic characteristics (2.11), (2.12) is modified accordingly.
When we handle several different Hilbert spaces (related, in concrete examples later,

with different domains in RN), the following statement is useful, see [17, Lemma 1.2],
which we reproduce here, in our notations.

Lemma 2.3. Let H1;H2 be two Hilbert spaces, with squared norm h1;h2, and let K1;K2

be self-adjoint compact operators in these spaces. We denote by k1;k2 the quadratic forms
of these operators, k�Œu�D .K�u;u/H� , �D 1; 2. Let J WH1!H2 be a bounded operator,
moreover, k1Œu� D 0 for all u 2 Ker.J/. Suppose that for all u 2 H1,

˙
k1Œu�
h1Œu�

� ˙
k2ŒJu�
h2ŒJu�

for all u 2 H1, for which˙k1Œu� > 0. Then

n˙.�;K1/ � n˙.�;K2/;

for all �> 0, with the corresponding inequalities for asymptotical spectral characteristics.
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This statement will be used on two concrete occasions.

Corollary 2.4. Let �2 � �1 � RN.

(1) Let H.l/ be some space of functions in H l
loc.�1/. Suppose that the operator J of

restriction of functions in H.l/ to H l .�2/ is bounded. We set h2Œu� D kuk2H l .�2/
,

h1Œu� D kuk2H.l/.�1/ and suppose that k2ŒJu� D k1Œu�. Then

n˙.�;K1/ � n˙
�
�; kJkK2

�
D n˙

�
kJk�1�;K2

�
: (2.16)

(2) Let �1 � �2 � RN and J be the bounded operator of extension of functions in
H l .�1/ to H l .�2/; suppose that k2ŒJu� D k1Œu�. Then (2.16) holds.

2.4. Asymptotic perturbations

The major tool in the study of spectral asymptotics for problems involving singularities of
various kinds is the asymptotic perturbation lemma by M. Birman and M. Solomyak, see,
e.g., [17, Lemma 1.5]. We reproduce it here, in our present notations.

Lemma 2.5. Let K be a compact self-adjoint operator, and there exists a sequence K",
"! 0, such that

(i) for some � > 0, the limits n˙.K"; �/ D m˙;" exist and are finite;

(ii) lim"!0 nsup.K �K"; �/ D 0.

Then the limits m˙ D lim"!0 m˙;" exist and n˙.K; �/ D m˙.
If the condition (i) above is satisfied for only one of the signs ˙, the conclusion of the

lemma holds for this sign.

Note that often, say, in [34, Lemma 3.1], the condition (ii) above is stated in a stronger
form, requiring not the asymptotic but a uniform in � estimate for singular numbers of the
difference K �K". In our study, it is the less restrictive condition (ii) that can actually be
guaranteed, while uniform estimates may be not available.

2.5. Spectral estimates for form perturbations

In this subsection we reduce the task of finding eigenvalue estimates for the perturbations
of the resolvent to the one for Birman–Schwinger type operators. We start with a simple
transformation.

Lemma 2.6. Let A, AV be the operators constructed in Section 2.1,

T D TV D .F
A�
1
2 /�U.F
A�

1
2 / (2.17)

Then the following identity holds

A�1 � A�1V � RV D A�
1
2TA�

1
2 � A�

1
2T.1C T/�1TA�

1
2

� R.1/V � R.2/V : (2.18)
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Proof. The relation (2.18) follows immediately from the obvious identity

1 � .1C T/�1 D T � T.1C T/�1T:

Next we transform the terms R.1/V and R.2/V in (2.18).

Lemma 2.7. The terms in (2.18) are equal to

R.1/V D .F
A�1/�U.F
A�1/; (2.19)

and
R.2/V D .F
A�1/�U.F
A�

1
2 /.1C T/�1.F
A�

1
2 /�U.F
A�1/: (2.20)

Proof. All manipulations below are legal since we deal with bounded operators only. For
(2.19), we use that F
A�1 D .F
A� 12 /A� 12 , therefore,

.F
A�1/� D A�
1
2 .F
A�

1
2 /�:

The same identity takes care of the first and the last factors in (2.20).

Next, we have the eigenvalue estimate for RV.

Lemma 2.8. Suppose that for some � > 0, the following asymptotic singular numbers
estimate is known:

nsup.F
A�1; 2�/ D m <1;

kUk � 1, and the operator F
A� 12 is compact. Then

nsup.RV; �/ � 2m:

Proof. We express (2.20) in the form

R.2/V D K�1K2K1; K1 D F
A�1; K2 D U.F
A�
1
2 /.1C T/�1.F
A�

1
2 /�U:

The operator K2 is compact, and we can apply Lemma 2.2 and then the Ky Fan inequality
for the sum of compact operators.

Next we establish a relation for operators containing A�1 to a higher power. It is a
direct consequence of the Ky Fan inequality in the limit form, see (2.13).

Lemma 2.9. Let F1; F2 be two operators in G such that Q� D F�
A�l�=2 are compact
operators and nsup.Q�; 2��/ D m� <1, � D 1; 2; let also B be a bounded operator in G .
Then, for ��1 D ��11 C �

�1
2 ,

nsup.Q�1BQ2; �/ � CkBk�m
�
�1

1 m
�
�2

2 :

More generally, iterating, if we have the product of several operators, Q� D F�
A�l�=2,
nsup.Q�; 2��/ D m� <1, � D 1; : : : ; 2m and bounded operators B�, then

nsup
� mY
�D1

Q�2�B�Q2��1; �

�
� C

Y
kB�k�

Y
m

�
��
� :

with ��1 D
P
��1� .
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2.6. The difference of perturbed resolvents

Let two quadratic forms, v1Œu�, v2Œu� be given, similarly to (2.3),

v1Œu� D .F1u;U1F1u/G ; v2Œu� D .F2u;U2F2u/G ; u 2 H1;

both satisfying the conditions in Section 2.1, and, additionally, the positivity condition, as
in (2.6),

We are going to study the difference of the resolvents of the perturbed operators,

R.1;2/ D A�1V1 � A�1V2 I (2.21)

our main interests lies in eigenvalue estimates (and, if possible, asymptotics) for R.1;2/.
The following lemma provides us with a convenient representation of this difference.

Lemma 2.10. Suppose that for the quadratic form

vŒu� D v1Œu� � v2Œu�;

with v1; v2 as in (2.3),

1C T� � 1C .F�
A�
1
2 /�U�.F�
A�

1
2 /; � D 1; 2

are invertible. Then the following identity is valid

R.1;2/ D A�
1
2 .T1 � T2/A�

1
2 � Z1 C Z2;

where
Z� D A�

1
2
�
T�.1C T�/�1T�

�
A�

1
2 :

Proof. We express the operator (2.21) as

R.1;2/ D
�
.AV1/

�1
� A�1

�
�
�
.AV2/

�1
� A�1

�
(2.22)

and apply to both term on the right in (2.22) the perturbation formula (2.18).

From this lemma, we derive the eigenvalue estimate for R.1;2/.

Lemma 2.11. Suppose that for the quadratic forms v1; v2, the conditions of Lemma 2.8
are fulfilled,

nsup.A�
1
2 .T1 � T2/A�

1
2 ; �/ � m:

and the operators T� D F�
A� 12 are compact. Then

nsup.R.1;2/; �/ � m:

Proof. The result follows immediately from the relation nsup.Zj ; �/D 0, which is already
established in the proof of Lemma 2.8.

Note that this property imposes restrictions not only upon the difference T1 � T2, but
also upon the operators T1;T2 separately.
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3. Elliptic operators with singular perturbations

3.1. Singular form-perturbations

Let � � RN be a connected domain and † be a compact subset in x�; let � be a Radon
measure supported in †. Further, let L be a second order elliptic operator in � with
smooth coefficients. The corresponding quadratic form is

aŒu� D
Z
�

hX
j;k

ajk.X/@ju@kuC t
ˇ̌
u.X/

ˇ̌2i
dX; t > 0; (3.1)

(where the zero order term is added in order to grant positivity) with domain dŒa� D
H 1.�/; this is the Neumann realization of L; if needed, this will be reflected in the nota-
tion of the quadratic form, aN, and the same for the corresponding operator A D AN.

Along withH 1.�/, we will consider higher order Sobolev spacesH l .�/, with integer
l > 1 as well as, for a domain� with compact complement, Hilbert spaces Hl

L
.�/ which

locally, near @�, are contained in H l

Under certain regularity conditions (specified later on) the restriction 
 of functions in
the Sobolev spaceH l .�/ to† is a well defined bounded operator from the Sobolev space
H l .�/ to the Hilbert space G D L2;�.†/ with respect to the measure �, in particular, as
explained in Section 3.2, Hausdorff measure Hd of the proper dimension d � N. Namely,
this restriction, the operator 
 , defined initially on C.x�/ \H l .�/, can be extended by
continuity to the whole of H l .�/.

For a given real-valued function V on †, measurable with respect to the measure �
on †, the function F is defined as F D jV j

1
2 , a real �-measurable function on †. The

bounded function U.X/ on † is defined as the sign of V.X/: U.X/ D sign V.X/ WD
V.X/jV.X/j�1 if V.X/ ¤ 0 and U.X/ D 0 otherwise. In this setting, the perturbing
quadratic form vŒu� is defined as

vŒu� D
Z
†

V.X/ju.X/j2�.dX/ D .F 
u; UF 
u/L2.†;�/

WD .F
u;UF
u/G ; u 2 H 1.�/; G D L2;�:

with F;U being the operators of multiplication by F; U ; this is a concrete realization
of the abstract scheme in Section 2. In order to use this scheme, we need to check the
abstract properties required in Section 2 for the particular setting, which will be done in
this section.

In this paper, we consider the measure � having compact support. We will show that
if the ‘density’ V belongs to a certain Lp;� class (with p depending on d;N; l) or, in
some cases, the Orlicz class, then the conditions (2.1) and (2.6) are fulfilled and the above
construction fits into the abstract setting of Section 2.

We consider two different cases in the study of the spectral properties of the difference
of resolvents. On the one hand † may be a compact set in the boundary † � � D @�, of
positive, or possibly, zero surface measure and of Hausdorff dimension d 2 .N� 2;N� 1�.
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The domain � may be bounded or having bounded complement. Here, the perturbation
V consists in setting Robin type boundary conditions on †, with measure V� serving as
weight, while keeping intact the Neumann boundary conditions on the remaining part of
� . In particular, if V D 0 everywhere on � , the quadratic form av coincides with (3.1).
Such, unperturbed, operator is the operator of the Neumann problem, ADAN. It turns out
that the eigenvalue estimates for .AN/�1 � .AV/

�1 have order depending on the Hausdorff
dimension of †, in the special case when d D N� 1 for † with positive surface measure,
the eigenvalue asymptotics holds. These results are valid for the difference of resolvents
of two Robin type problems as well.

The second case concerns � D RN and † � RN being a compact set of Haußdorff
dimension d 2 .N � 2;N� with a Hausdorff Hd -measurable function V on †. Here, we
consider the difference of resolvents of Schrödinger like operators with, possibly singular
(for d < N), potentials. In particular, the case fits in this picture when the set † is a
Lipschitz hypersurface, and the perturbation V consists, in fact, in setting ‘transmission
type’ condition on †. In this way, we include here ı-interactions on a hypersurface, d D
N � 1, systematically studied in the literature, see, e.g., [8], but we fail to cover ı0-type
interactions, since this perturbation does not fit into our quadratic form approach. We
obtain spectral estimates for the difference of powers of the resolvents as well and its
eigenvalue asymptotics.

Further on, we specify the properties of the set † and the weight function V , which
grant that the abstract conditions in Section 2 are fulfilled.

3.2. Singular sets and measures

We recall the definition of Ahlfors regular sets and measures. Let † be a compact set in
RN and � be a Radon measure supported in †. For d 2 .0;N�, the measure � is called
Ahlfors regular of dimension d (sometimes the word ‘d -set’ is used for †) if for any
r 2 .0; diam.†/� and any point X 2 †,

A�r
d
� �

�
† \ B.X; r/

�
� ACr

d ; (3.2)

with some positive constants A˙ D A˙.†/, B.X; r/ denoting the ball with center at X
and radius r .

This notion is widely used in geometric measure theory and many other topics in Anal-
ysis, see, e.g., [21, 57]. It is known that such measure is equivalent to the d -dimensional
Hausdorff measure Hd on †. If the measure � satisfies (3.2) we will write � 2 Ad , or
† 2 Ad .

For an integer dimension d , the most obvious example, the leading one in this paper,
is a compact Lipschitz surface or a finite union of such surfaces. A more general con-
struction, valid for fractional d as well, is the following (we refer to the exposition in
[57, Chapters 4 and 5]).

Self-similar measures are multi-dimensional generalizations of the well-known Can-
tor sets with Hausdorff measure of a proper dimension. An affine mapping S in RN is
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called similitude with ratio � if it is a composition of a translation, a rotation, and a
homothety with coefficient � < 1. Let us have a finite collection of similitudes � D ¹Sj º,
j D 1; : : : ; N , with ratios �j . The compact set K is called invariant with respect to �

if K D
S
j SjK . For any such collection of similitudes, there exists a unique invariant

compact set K . This set, for every fixed m, satisfies

K D
[

jD.j1;:::;jm/

Sj1 : : : SjmK:

Let d be the Hausdorff dimension of K . The set K is called selfsimilar, if, moreover,

Hd
�
SjK \ Sj 0.K/

�
D 0; j ¤ j 0: (3.3)

A strengthening of (3.3) is the open set condition: there exists an open set O containing
K such that

Sj .O/ \ Sj 0.O/ D ¿; j ¤ j 0; and
[
j

Sj .O/ � O:

The property of our interest is that if the open set condition is satisfied, then the Hausdorff
dimension d of K equals the only positive solution ofX

j

�dj D 1;

and the Hausdorff measure Hd restricted to K belongs to Ad . Obviously, a bilipschitz
image of a d -set is a d -set again. More examples one can get by considering a disjoint
union of d -sets, finite, and under some conditions, infinite.

It was found in [54] that sometimes, when studying spectral estimates, only one of
the inequalities in (3.2) is needed. In this connection, we call the measure (the set) lower-,
resp., upper-regular of order d if the left, resp., the right inequality in (3.2) is satisfied. The
corresponding classes of measures will be denoted Ad�, resp., AdC, so Ad D AdC \Ad�. (If
the support of the measure � is not compact, the inequalities in (3.2) are supposed to hold
for all r > 0, we, however, restrict our considerations to compact sets.)

3.3. Regularity of the boundary

For different types of spectral problems under consideration, we will require different reg-
ularity level of the domain � � RN. For the Schrödinger-type problems, where only the
local regularity of solutions of the elliptic equations is used, � is an arbitrary domain
without additional restrictions, and we can consider the whole RN. For boundary prob-
lems with Robin boundary conditions, when considering the difference of resolvents, we
suppose that the boundary is present, is compact and is of class C 1;1, this means that the
boundary can be represented, locally in properly rotated local co-ordinates X D .x1; x0/,
as the graph of a function x1 D  .x0/ where first order partial derivatives of the function
 belong to the Lipschitz class. In the latter case, the following local regularity property
plays the key role.
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Proposition 3.1. Let� be a domain of class C 1;1 in RN and let L be a Hermitian elliptic
second order operator in � with smooth coefficients. Let �0 � � be a bounded domain
with C 1;1 boundary such that the boundary of � lies in �0. Then for any f 2 L2.�/, the
(unique) solution u of the Neumann boundary problem

LuC tu D f; @�.L/uj@� D 0; t > 0; (3.4)

belongs to the Sobolev space H 2.�0/ and

kukH2.�0/ � Ckf kL2.�0/:

For a smooth boundary, this is the general elliptic regularity fact, presented in a num-
ber of standard sources. For the boundary of finite smoothness, as above, this result can
be found, with different degree of detalization, in certain advanced treaties on elliptic
boundary problems, sometimes in the version for the Dirichlet boundary conditions, with
referral to a similar reasoning for the Neumann conditions. We can cite here, e.g., [30, The-
orem 2.5.1.1].

For higher order operators, we suppose, for the sake of brevity, that the boundary is
infinitely smooth. For a bounded domain�, the general elliptic regularity results, see, e.g.,
[43], imply that the operator .AN C t /�l=2 acts continuously from L2.�/ to H l .�/. For
an exterior domain � with compact boundary, some more discussion is needed.

We suppose that the operator L is uniformly elliptic in � and has coefficients with
bounded derivatives of all orders. Let AN be the Neumann operator for LC t in �. The
domain of .AN/

1
2 is the Sobolev spaceH 1.�/. The domain of a higher power, .AN/

l
2 , of

our operator (we denote this domain by Hl
L

, with graph norm), may be hard to describe
explicitly as soon as it concerns the behavior at infinity. Locally, as follows from the
elliptic regularity, functions in Hl

L
belong to H l . A detailed analysis of the boundary

regularity of functions in Hl
L

is performed, e.g., in [33, 44] (see, especially, Section 4,
Proposition 4.9 in the latter paper.) It follows, in particular, that the functions in Hl

L
belong

to H l near the boundary. These results can be summarized as the following.

Proposition 3.2. Let � � RN be a domain with smooth compact boundary � D @�. Let
�0 be a bounded subdomain in � such that � � �0. Then the operator J of restriction of
functions in Hl

L
to �0 acts boundedly to H l .�0/.

It follows, in particular, that the operator .AN/�l=2 acts as a bounded operator from
L2.�

0/ to H l .�0/.
Another fact, important in our study, is the possibility of continuation of solutions of

the equation (3.4) from � across the boundary, with preservation of smoothness.

Lemma 3.3. If � is a C 0;1 domain with compact boundary then there exists a bounded
extension operator J W H l .�/! H l .RN/ for all l .

This is a particular case of the classical Stein extension theorem, see [56, Chapter 6,
Theorem 5].
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Thus, for a smooth boundary, under the conditions of Proposition 3.1, there exist a
continuation operator J in H l for all solutions of the Neumann problem.

3.4. Singular quadratic forms in the spaceH l

The conditions we impose on the functions defined on singular sets will depend on the
exponent � > 0. For the sake of the uniformity of formulations, we introduce the following
notation. For a given exponent � and a finite measure �, we denote by L.�/;� the space
L�;� for � > 1,L1;� for � < 1, and, for � D 1, the Orlicz spaceL‰;� corresponding to the
function‰.s/D .sC 1/ log.sC 1/� s:

R
‰.jV.X//j�.dX/<1. By kF k.�/;� we denote

the norm of a function F in this space. There are several equivalent ways to introduce a
norm in the Orlicz space; we will use the Luxemburg norm (see, e.g., [56, Chapter 8]).

The statement to follow presents some basic, mostly known, facts about the properties
of the quadratic form

aV�Œu� D
Z
V.X/

ˇ̌
u.X/

ˇ̌2
�.dX/ (3.5)

considered in the Sobolev spaces H l .RN/. We will use it for integer values of l , while
l D 1 and l D 2 are the most important ones.

First of all, if N < 2l , the Sobolev space H l .RN/ is embedded in C.RN/, therefore
the quadratic form aV�Œu� is well defined and bounded in H l .RN/ for any finite measure
� and for any V 2 L1;�. The case N � 2l is considerably more delicate.

Lemma 3.4. Let N� 2l and let the measure� belong to AdC, for some d , N� 2l < d �N
if N > 2l , � 2 Ad , d > 0 if N D 2l . Suppose that V 2 L.�/;�, � D d

d�NC2l . Then

(1) the quadratic form (3.5), defined initially for u 2H l .RN/\C.RN/, is bounded in
the H l .RN/-metric and admits a unique bounded extension to the whole Sobolev
space H l .RN/;ˇ̌̌̌ Z ˇ̌

u.X/
ˇ̌2
V.X/�.dX/

ˇ̌̌̌
� C0kV kL.�/;�kuk

2
H l .RN/

; u 2 H l .RN/I (3.6)

(2) the quadratic form

aV� D
Z

RN

ˇ̌
r
lu.X/

ˇ̌2
dX C

Z ˇ̌
u.X/

ˇ̌2
V.X/�.dX/; u 2 H l .RN/; (3.7)

is lower semi-bounded in H l .RN/:Z
RN

ˇ̌
r
lu.X/

ˇ̌2
dX C

Z ˇ̌
u.X/

ˇ̌2
V.X/�.dX/C t

Z
RN

ˇ̌
u.X/

ˇ̌2
dX

� c

Z
RN

ˇ̌
r
lu.X/

ˇ̌2
dX; u 2 H l .RN/ (3.8)

for some t 2 R1.

The same statements are valid, with RN replaced in the formulation by a domain � with
compact C 0;1 boundary.
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Proof. It suffices to prove the lemma for the whole space; the case of a domain follows
immediately by using the Stein extension theorem. Statement (1) can be found, e.g., in
[52] for the case N D 2l and in [54] for N > 2l ; both are direct consequences of trace
theorems in the book by V. Maz’ya [46].

After this, the starting point in the proof of statement (2) is the classical multiplicative
inequality in the Sobolev space. We reproduce its version as a particular case of [46,
Theorem 1.4.7]:

Let the measure � belong to AdC with d > N� 2l . Then for any function u in D.RN/,

kukLq;� � C0kr
luk�

L2.RN/kuk
1��
L2.RN/; q � 2;

d

q
>

N
2l
� 1; � D

N
2l
�
d

q
: (3.9)

with constant C depending on the measure � and parameters N; q; d .
It follows from (3.9) that for any " > 0, there exists C" such that

kuk2Lq;� � "kr
luk2

L2.RN/ C C"kuk
2
L2.RN/: (3.10)

Now, for proving (3.8), for a given V 2 L�;�, � D d
d�NC2l and given ı > 0, we find such

h D h.ı/ > 0 so that

V D V1 C V2;
ˇ̌
V1.X/

ˇ̌
� h; kV2k�;� < ı:

Correspondingly, the quadratic form aV� splits into the sum, aV�Œu�D aV1�Œu�C aV2�Œu�.
For aV1�Œu�, we apply (3.10) with q D 2, � D N�d

2l
, which givesˇ̌

aV1�Œu�
ˇ̌
D

ˇ̌̌̌ Z
V1.X/

ˇ̌
u.X/

ˇ̌2
�.dX/

ˇ̌̌̌
� hkukL2;�

� h"

Z
RN
jr
luj2dX C hC"

Z
RN

ˇ̌
u.X/

ˇ̌2
dX:

To estimate the second term, we apply (3.10) for q D 2d
N�2l , i.e., � D 1. We obtain, by the

Hölder inequalityˇ̌
aV1�Œu�

ˇ̌
� kV2kL�;�kuk

2
Lq;�
� Cı

Z
RN

ˇ̌
r
lu.X/

ˇ̌2
dX:

We take "; ı so small that a" < 1
4

, Cı < 1
4

, therefore,ˇ̌̌̌ Z
V.X/

ˇ̌
u.X/

ˇ̌2
�.dX/

ˇ̌̌̌
�
1

2

Z
RN
jr
luj2dX C C 0kuk2

L2.RN/;

and, finally,Z
RN
jr
luj2dX C

Z
V.X/

ˇ̌
u.X/

ˇ̌2
�.dX/ �

1

2

Z
RN
jr
luj2dX � C 0kuk2

L2.RN/;

which justifies the semi-boundedness inequality.
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In dimension N D 2l , a similar reasoning proves the required semi-boundedness of
the quadratic form (3.7), with the weight V belonging to the Orlicz class L‰;�. The trace
inequality replacing (3.9), (3.10) is [46, Theorem 11.8] and its H l version, see detains in
[49, 52].

In the next section, we will use these results for l D 1 and l D 2. The results for higher
order will be used in the treatment of the difference of powers of resolvents.

3.5. A singular measure on the boundary and the operator for the Robin problem

Here we discuss the same kind of inequalities for the measure supported at the boundary
of �. We recall that the classical Robin boundary problem in a domain � � RN for the
elliptic operator L is

LuC tu D f in �; @�.L/u.X/C V.X/u.X/ D 0 on @�; (3.11)

with a ‘nice’ function V . This problem can be expressed in the variational form, see, e.g.,
[5, Section 5], see also [44]. The operator which maps u to f is defined by the quadratic
form

aR;V D
Z
�

˝
a.X/ru.X/;ru.X/

˛
dX C t

Z
�

ˇ̌
u.X/

ˇ̌
dX

C

Z
@�

V.X/
ˇ̌
.
u/.X/

ˇ̌2
�.dX/; u 2 H 1.�/; (3.12)

where a.X/ is the matrix of leading coefficients of L and � is the natural surface mea-
sure on @�. The quadratic form is considered on the Sobolev space H 1.�/ equipped
with the metric defined by the first two terms in (3.12). Note that for u 2 H 1.�/, the
trace 
u on the boundary is well defined as an element in L2.@�/ and even as an ele-
ment in the Sobolev space H

1
2 .@�/, as soon as the boundary is Lipschitz. It is in this

variational form that we will introduce the generalization of the classical Robin problem
(3.11). In more recent papers, a more general setting was considered, with the function V
in (3.11) replaced by a pseudodifferential operator ‚ on @�, acting in some convenient
way between Sobolev spaces on @�, see, e.g., [11,13,14,44]. In our case, this operator will
be replaced by a measure on @�, possibly, singular with respect to � , with summability
conditions imposed.

Namely, having a measure � supported in � D @� and a �-measurable function V ,
we can consider the quadratic form aV�Œu� D

R
V.X/j
u.X/j2�.dX/ instead of the one

on the second line in (3.12).
For such quadratic form, the results similar to the ones in the previous subsection are

valid, under the condition that the boundary � D @� possesses theH l -extension property;
in our case, recall, we suppose that it is a Lipschitz one.

Lemma 3.5. Let the measure � be supported in � . Suppose that the conditions of Lemma
3.4 are satisfied, just with the inequality N� 2l < d �N replaced by N� 2l < d �N� 1.
Then the statements in Lemma 3.4 are correct.
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Proof. We consider the bounded extension operator J W H l .�/! H l .RN/, kJk D C1.
and obtain, using the fact that aV�ŒJu� D aV�Œu�

vV�Œu� � C0kJuk2H l .�0/
� C0C1kuk

2
H l .�/

; (3.13)

where C0 is the constant in (3.6). The same reasoning takes care of the lower semi-
boundedness of the quadratic form aV�.

4. Spectral estimates for singular measures

In this section, we adapt the results of the papers [52, 54] to our concrete setting. We
consider two main cases, l D 1, corresponding to quadratic forms in the Sobolev space
H 1.�/, and l D 2, corresponding to the Sobolev space H 2.�/. Then we discuss also the
case of a general integer l , used later to treat the difference of powers of resolvents.

4.1. Upper spectral estimates

In the papers [52, 54] spectral estimates of weighted pseudodifferential operators with
singular measure acting as weight were obtained. Let � be a measure with support (the
smallest closed set of full �-measure) † � x� � RN and let V.x/ be a �-measurable
function on † (supposed, if necessary, being extended by zero to the whole of � or to the
whole of RN); we denote by ��� the measure V�.

First, we will obtain spectral estimates for an operator S D S.���/ D S.���; l;�/ defined
by the quadratic form vŒu� D

R
ju.X/j2���.dX/ in the Sobolev space H l .�/. The deci-

sive property of these estimates is that they depend not on the L1 norm of the weight
function V , but on its norm in some integral metric. Since the groundbreaking papers by
M. Birman and M. Solomyak, such estimates keep being, probably, the only way to prove
spectral asymptotics for operators with singularities.

The boundedness of S, equivalently, the boundedness of the quadratic form vŒu� in
H l .�/, was established in Section 3. Under the conditions below, the operator S turns
out to be compact. We will use the notations set in Section 2 for the characteristics of the
distribution of the spectrum of S.

The following results were established in [52, 54]. The conditions imposed on the
measure look differently for the following three cases:8̂̂<̂

:̂
subcritical; 2l < N; � 2 AdC; d > N � 2l I
critical; 2l D N; � 2 Ad ; 0 < d � NI
supercritical; 2l > N; � 2 Ad�; 0 < d � N:

(4.1)

Theorem 4.1 ([52, Theorem 3.3], [54, Theorems 3.3 and 3.9]). Let the measure � sat-
isfy (4.1) and let � D d

dC2l�N . Let the weight function V belong to L.�/;�. Then for the
corresponding case in (4.1) above, for the operator S, the following estimates hold:

nsup.S; �/ � CkV k�.�/;�; nsup
˙
.S; �/ � CkV˙k�.�/;�; (4.2)
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with constant C not depending on V in the corresponding space. In the sources cited
above, the dependence of the constants in the spectral estimates on the measure � and,
especially, on the constants in (3.2), are described as well, however, since the measure in
our considerations is fixed, we do not need such results here. In the critical case, in [52], a
different, ‘averaged’ norm in the Orlicz space is used. Using the Luxemburg norm instead
changes only the constant C in (4.2).

Eigenvalue estimates in Theorem 4.1 extend easily to operators S.���; l;L; �/ gener-
ated by the quadratic form vŒu� in the space Hl

L
, the domain of the operator Al=2, for the

case when the measure � is supported strictly inside �.

Corollary 4.2. Let, in conditions of Theorem 4.1, L be a second order elliptic operator
in� with smooth coefficients. Then for the operator S.���; l;L;�/ spectral estimates (4.2)
hold.

Proof. We use Lemma 2.3 and its corollary. First, we take a bounded domain �1 � �
with smooth boundary, supp��� � �1. By the local elliptic regularity, the operator J1,
the restriction of functions in Hl

L
to H l .�1/ is bounded. Next, the Stein operator J2

of extension from H l .�/ to H l .RN/ is bounded as well. By Corollary 2.4, the spectral
estimates survive, probably, with some controlled degradation in the constants.

We recall here that the eigenvalue estimates for the operator S.���; l;L; �/ are equiva-
lent to eigenvalue estimates for the operator

Wl D .F
A�
l
2 /�U.F
A�

l
2 /;

see Section 2. These estimates will be discussed in the next section.

4.2. Estimates for measures supported at the boundary of�

In the study of the Robin boundary problem, we will need eigenvalue estimates for the
case when the measure � is supported in the boundary of the domain � � RN, � 2 Ad

with N � 2 < d � N � 1.
For a bounded domain��RN with boundary of classC 1;1, for the elliptic operator L

with coefficients smooth in x�, we know that the domain of .AN/
1
2 coincides withH 1.�/

and the domain of AN coincides with H 2.�/. Therefore, the eigenvalue estimates for the
operator defined by the quadratic form v in these Hilbert spaces are the same as estimates
in the corresponding Sobolev spaces, i.e., are the same as in Theorem 4.1. For higher
values of l , we require that the boundary � is smooth, and the reasoning goes in the same
way, using the elliptic regularity.

For an unbounded domain � with compact boundary, we use the boundary elliptic
regularity, described in Section 3.3. The functions in the domain of .AN/

l
2 belong to H l

in a neighborhood of the boundary, and we can repeat the reasoning in Corollary 4.2,
where Corollary 2.4 is used again, reducing the estimation of eigenvalues of the operator
S.���; l;L; �/ to estimates in the Sobolev space, found in Theorem 4.1.
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4.3. Lower estimates

We present here some lower spectral estimates for operators of the form S, with sign-
definite, say, positive weight function V . Here, unlike the upper estimates above, the
measure � is supposed to be two-sided Ahlfors-regular, � 2 Ad , for all relations between
l and N, therefore, we may suppose that � coincides with the Hausdorff measure Hd .
We reproduce here the results established in the book [57]. The particular case we are
interested in is l D 2. For this case, Theorem 28.6 in [57], with m D 2, ~ D 4, gives the
following result. We formulate it in our present notations.

Theorem 4.3 (Triebel’s lower estimate). Let � be a bounded domain in RN, let † be
a compact set in �, Ahlfors d -regular N � 4 < d � N, m D 1, ~ D 2, � D Hd on †.
Consider the operator SD S.�; 2;�/, defined by the quadratic form

R
†
ju.X/j2Hd .dX/

in the Sobolev space H 2.�/. Then

ninf.S; �/ > 0; � D
d

4 � NC d
:

Remark. The equivalence of our formulation with H. Triebel’s one is explained in [57],
see (28.27) there. Theorem 4.3 does not provide estimates for operators with non-sign-
definite V and we refer to it only in order to give a cue that our upper eigenvalue estimates
are order sharp.

As it concerns upper spectral estimates established in [57], the interested Reader is
addressed to the appendix in [54], where the non-sharpness of these estimates is discussed,
therefore, we used more sharp estimates in Theorem 4.1 instead.

5. The resolvent of a singular Schrödinger operator

Here we apply the general results on the spectrum of singular quadratic form perturba-
tions.

5.1. The Schrödinger operator with singular potential

Let � be an unbounded domain in RN with C 1;1 boundary and compact complement.
Suppose that † is a compact subset in � and let � be a Radon measure supported in
† and V.X/ be a real �-measurable function. Let further on, L be a uniformly elliptic
formally self-adjoint second order operator in �,

L D �
X
j;j 0

@jaj;j 0.X/@j 0 ; (5.1)

with bounded smooth coefficients aj;j 0 . With the operator (5.1), we associate the quadratic
form

aŒu� D
Z
�

X
j;j 0

aj;j 0.X/@ju.X/@j 0u.X/dX C t

Z
�

ˇ̌
u.X/

ˇ̌2
dX: (5.2)
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with t large enough. This form, considered for u 2H 1.�/, defines the Neumann operator
A D AN in L2.�/. For t > 0, this operator is positive in H 1.�/, so that aŒu� is equiv-
alent to the squared norm in H 1.�/; we suppose that this is already done and keep our
notations.

Let now the measure � and the weight function V satisfy the conditions of Lemma 3.4
for l D 1, d 2 .N � 2;N�. Denote by 
 the restriction operator, bounded as acting from
H 1.�/ to L2.�/. By this lemma, the perturbing quadratic form vŒu�,

vŒu� D
Z
†

V.X/
ˇ̌
u.X/

ˇ̌2
�.dX/ D .UF
u;F
u/L2.†;�/; u 2 H 1.�/;

is bounded inH 1.�/, and defines inH 1.�/ a bounded operator Sv, for which the spectral
estimates in Theorem 4.1 are valid. The operator A 1

2 is an isomorphism between H 1.�/

and L2.�/. Thus, setting v D A 1
2u 2 L2.�/, we obtain the quadratic form

vŒu� D vŒA�
1
2 v� D .UF
A�

1
2 v;F
A�

1
2 v/L2.†;�/; v 2 L2.�/:

This quadratic form defines the operator T D Tv in L2.�/, unitarily equivalent to S,

T D Tv D ŒF
A�
1
2 ��UŒF
A�

1
2 �:

In this way, we have arrived to the setting of our Section 2, with a compact operator T
(Theorem 4.1 with l D 1 gives order sharp eigenvalue estimates, but at the moment, only
compactness is needed.)

Following Section 2, we will also need spectral estimates for the operator

W �Wv;2 D A�1=2TA�
1
2 D ŒF
A�1��UŒF
A�1� (5.3)

in L2.�/. This operator is defined by the quadratic form

wŒv� D vŒA�
1
2 v� D

Z
U.X/

ˇ̌
F.X/

ˇ̌2 ˇ̌
.A�1v/.X/

ˇ̌2
�.dX/; v 2 L2.�/: (5.4)

By setting A�1v D w, we transform (5.4) to

wŒv� D sŒw� D
Z
U.X/

ˇ̌
F.X/

ˇ̌2 ˇ̌

w.X/

ˇ̌2
�.dX/; w 2 D.A/: (5.5)

The quadratic form (5.5) is considered in the Hilbert space D.A/ D H 2
L

, the domain of
the self-adjoint operator A. For an unbounded �, this domain, generally, is rather hard,
if possible, to describe. This circumstance was taken care of in Section 4, by means of
describing the local regularity of functions in H 2

L

The corresponding result is just a re-formulation of Theorem 4.1. Before stating it, we
recall the restrictions imposed by this theorem on the measure � and the weight function
V for the most important values l D 1 and l D 2. These conditions should be satisfied
both for l D 1, in order to be able to define the operator T and grant its compactness, and
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for l D 2, in order to estimate the eigenvalues of W:

� 2 Ad ; 0 < d � 2 for N D 2I

� 2 Ad ; N � 2 < d � N; for N D 3; or N D 4I

� 2 AdC; N � 2 < d � N; for N > 4;

(5.6)

and

V 2 L.#/;�; # D
d

d C 2 � N
:

Theorem 5.1. Let the measure � and the weight function V satisfy the above conditions.
Then for the operator W D A� 12TA� 12 the following estimate holds for � D d

d�NC4

nsup.W; �/ � CkV k�L.�/;� ; nsup
˙
.W; �/ � CkV˙k

�
L.�/;�

:

Similarly, the eigenvalue estimates for other types of problems, obtained in Section 4
can be re-written in terms of ‘Birman–Schwinger operators’.

Theorem 5.2. (1) Let� � RN be an open set and � be a Radon measure compactly sup-
ported in�, l � 1 and let ADAN be the Neumann realization of the second order elliptic
operator L in �. Suppose that the measure � satisfies the condition (4.1) corresponding
to the relation between l and N and V 2 L.�/;�, � D d

dC4l�N . Then for the operator

Wl DWl;V;� D A�.l�1=2/TA�.l�1=2/

D .F 
A�l /�U; .F 
A�l /; F D jV j
1
2 ; U D sign.V /; (5.7)

the following estimate is valid:

nsup.Wl ; �/ � CkV k
�
.�/;� (5.8)

(2) Let � be a domain with compact C 1;1 boundary, for l D 1; 2, or a domain with
compact smooth boundary, for l > 2. Let � be a measure on � D @�, satisfying the con-
dition (4.1) corresponding to the relation between l and N and V 2 L.�/;�, � D d

dC2l�N .
Then for the operator Wl , the estimate (5.8) is valid.

Theorem 5.2 implies spectral estimates for some non-self-adjoint operators arising in
the study of the difference of powers of resolvents.

First, we consider the operator Ql D Ql;G;�, for an integer l > 0 or l D 1
2

.

Qlu D G
A�luI Ql W L2.R
N/! L2;�;

where A is a second order elliptic operator in RN and� is a measure with compact support,
� 2 Ad .

Lemma 5.3. Let G 2 L.�/;�, where � D 2d
d�NC4l . Then

nsup.Ql ; �/ � CkGk
�

.�/;�
: (5.9)
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Proof. Let l be an integer, first. Since for the operator Wl in (5.7), Wl D Q�
l
Ql with

V D jGj2, the singular numbers of Ql ar square roots of the singular numbers of Wl , and
the required estimate follows immediately from (5.8). If l D 1

2
, the same reasoning goes

through, using Q�
l
Ql D T and applying the estimate in Theorem 4.1.

Next we need a spectral estimate for the operator

Z D Zl1;l2;G1;G2;� D .Ql1;G1;�/
�.Ql2;G2;�/; l1; l2 � 1; (5.10)

this means for the product of two operators in Lemma 5.3, with different l , again with an
integer l� or l� D 1

2
. We apply Lemma 5.3 to each factor in (5.10) and then the Ky Fan

inequality (2.14), which gives the following estimate.

Lemma 5.4. Let � be a measure in Ad , N � 2 < d � N, and let the weight functions
G1; G2 satisfy the conditions of Lemma 5.3, correspondingly, with l D l1 and l D l2. Set
�� D

2d
d�NC4l�

, ��1 D ��11 C �
�1
2 D

d�NC2.l1Cl2/
d

. Then

nsup.Z; �/ � CkG1k�.�1/;�kG2k
�
.�2/;�

: (5.11)

The crucial feature of Lemma 5.4 is that the order � in the eigenvalue estimate of the
product of operators is determined by the sum l1 C l2, and not by l1; l2 separately.

Lemma 5.4 extends in the natural way to the product of several operators of the form Z.
By means of transformations applied above, in Section 4, the same estimate is justified

for the measure � supported on the boundary of a domain in RN.

5.2. Spectrum of the difference of resolvents

Now we combine the results of Sections 2 and 5.1 to obtain spectral estimates for the
difference of resolvents of singular perturbed elliptic operators.

In conditions of Section 5.1, we consider the difference of resolvents. Let � � RN be
a connected open set. Let the operator A in � be defined by the quadratic form a in (5.2)
with some form-domain dŒa��H 1.�/. Further, let† be a compact subset in�, and let �
be a measure supported in†, and let the ‘��measurable weight function’ V satisfy (5.6).
Then the quadratic form vŒu� D

R
V.X/ju.X/j2�.dX/ is bounded in dŒa� and, following

the procedure described in Section 2, the perturbed self-adjoint operator AV is defined.
According to the results of Section 2, for the difference RV D A�1 � A�1V of resol-

vents of these operators, formula (2.18) is valid, with operator T � TV defined in (2.17).
Having our results about eigenvalue estimates for the operators T in Theorems 4.1 and 5.1,
together with Lemma 2.8, we arrive at the following estimate.

Theorem 5.5. Under the assumption that (5.6) is satisfied, for the resolvent difference
RV D A�1 � A�1V , the following spectral estimate is valid

nsup.RV; �/ � CkV k
�
L.�/;�

; � D
d

d � NC 4
; (5.12)

with constant C depending on the measure �, the operator A and the domain �, but not
depending on V .
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Next we consider the resolvent difference for two singular perturbations, following
Lemma 2.11.

Theorem 5.6. Suppose that the measure � and the weight functions V1; V2 satisfy (5.6).
We construct two perturbed operators AV1 ;AV2 . Then for the difference of resolvents of
these perturbed operators, R.1;2/ D A�1V1 � A�1V2 , the following spectral estimate holds

nsup.R.1;2/; �/ � CkV1 � V2k�L.�/;� ; � D
d

d � NC 4
; (5.13)

again, with constant C depending on the measure �, the operator A and the domain �,
but not depending on V .

Since v1Œu� � v2Œu� D
R
†
.V1.X/ � V2.X//ju.X/j

2�.dX/, the proof follows imme-
diately from Proposition 2.11 and Theorem 5.1 applied to V D V1 � V2.

It follows from Theorem 4.3 that the decay order of eigenvalues in (5.13) is sharp, at
least for a sign-definite weight function V1 � V2.

Remark. A natural question here is how Theorem 5.6 should be modified if the pertur-
bations V1;V2 are defined by two different measures, �1, �2, with corresponding support
†1;†2. First, if both measures belong to Ad , with the same d , we can consider their sum
�D �1C�2 with support†D†1 [†2 which belongs to Ad as well, extend the weight
functions Vj , j D 1; 2 outside †j by zero this reduces the problem to the case of one
measure.

Suppose now that �1 2 Ad1 , �2 2 Ad2 , with different dimension, d1 < d2. Then the
perturbation with larger � makes a stronger contribution to the eigenvalue estimate. The
result depends on the dimension of the space RN. If N > 4, we have

�1 D
d1

d1 � NC 4
> �2 D

d2

d2 � NC 4
;

therefore, in (2.22), the perturbation V2�2 gives a weaker contribution to the spectral
estimate. On the contrary, for N < 4, we have �1 < �2, and therefore, it is the perturbation
V2�2 that gives a stronger contribution. The most delicate case is the dimension N D 4,
where one can see that �1 D �2 D 1. Here, the contributions of two perturbations are of
the same order in the eigenvalue estimate. In this case, unlike the case of d1 D d2, above,
the contributions of positive and negative parts of V� to eigenvalue estimates do not cancel.
These estimates have the form

nsup
˙
.D.1;2/; 1/ � C

�

.V1/˙

.1/;�1 C 

.V2/�

.1/;�2�
(see details in [49]).

5.3. Estimates: some special cases

We consider two examples.
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Example 5.7. Let d D N; this means that the measure � is equivalent to the Lebesgue
measure H N. Let the densities V1; V2 be compactly supported in �. Then the exponent �
equals N

4
and Theorem 5.6, gives us the estimate

nsup.A�1V1 � A�1V2 ; �/ � CkV1 � V2k
�
.�/; � D

N
4
;

under the condition V1; V2 2 L.�/. In particular, if V2 D 0, we have

nsup.A�1 � A�1V1 ; �/ � CkV1k
�
.�/; � D

N
4
:

Essentially, these results are not new, see, in particular, [58] and references therein. Note
that in the literature on the scattering theory, it is the behavior of V at infinity, � D RN,
that is of main interest, the topic we do not touch upon in this paper.

Example 5.8. Let d D N � 1. The condition � 2 AN�1 is satisfied, for example, for the
case of the Hausdorff measure � D Hd on a Lipschitz hypersurface † � �. Then the
spectral problem for the operator AV is the transmission problem, consisting of finding
the solution of the equation Lu D �u with jump condition on †:

Œ@�.L/u�j†.X/ � V.X/u.X/ D 0; X 2 †;

where brackets denote the jump in the conormal derivative of uwhen crossing†, while the
direction of the differentiation coincides with the direction of crossing. From a formally
different point of view, this problem was considered in [8, 9, 12], where such perturbation
was understood as a weighted ı-interaction supported on a hypersurface †. The condi-
tions in these papers were rather restrictive, in particular, both the hypersurface † and the
weight function were supposed to be smooth. The correct order for the spectral asymp-
totics was found there.

Using the results of this paper, due to Theorem 5.6, the exponent � equals N�1
3

, and
our general eigenvalue estimates take the form

nsup.A�1V1 � A�1V2 ; �/ � CkV1 � V2k
�
.�/; � D

N � 1
3

:

We return to this setting in the next Section, where we justify the spectral asymptotics for
A�1V1 � A�1V2

5.4. Singular Robin problem

We recall that the classical Robin problem for the second order elliptic operator L in a
domain � � RN consists in finding the solution of the equation Lu D f with boundary
conditions on � D @�:

@�.L/.X/u.X/ � V.X/u.X/ D 0; X 2 �; (5.14)
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where @�.L/.X/ is the conormal boundary derivative associated with the operator L. As
mentioned in the Introduction, under certain regularity conditions, the singular numbers
asymptotics for the difference of resolvents of two operators of this form, was found in
[34]; we return to this issue later on.

In the present subsection we consider a more general spectral problem, with the den-
sity V in (5.14) replaced by a measure ��� D V� on the boundary. For the statement of the
problem and initial estimates, this boundary is supposed to be of the class C 0;1. Namely,
we consider the spectral problem

A�;Vu D �u;

with A�;V being the operator L in � with, formally, Robin type boundary conditions on
@�

Œ@�.L/u�j�.X/ � V.X/u.X/� D 0; (5.15)

where� is a measure on � , possibly, singular, and V is a real�-measurable function on � .
This operator is defined variationally, by means of a quadratic form. Namely, generalizing
[13], we associate with the Robin problem (5.15) the quadratic form

avŒu� D aŒu�C vŒu�; u 2 H 1.�/; (5.16)

where the perturbing quadratic form is

vŒu� D
Z
�

V.X/
ˇ̌

u.X/

ˇ̌2
�.dX/I (5.17)

where 
 , as before, is the restriction operator of functions in H 1.�/ to the boundary.
Since the quadratic form (5.16) is defined on the space H 1.�/, the Robin problem, thus
stated, is a quadratic form perturbation of the Neumann operator A D AN .

Proposition 5.9. Suppose that the boundary � is Lipschitz and the measure � on �
belongs to Ad , N � 2 < d � N � 1. Let V 2 L.#/;�, # D d

d�NC2 . Then the quadratic
form (5.17) is bounded in H 1.�/, the quadratic form (5.16) is semi-bounded. The oper-
ator T defined in (2.17), where, as previously, F is the operator of multiplication by the
function F D jV j

1
2 and U is the operator of multiplication by U D signV , is compact and

for its spectrum the estimates hold:

nsup
˙
.T; #/ � CkV˙k#L.#/;� ; nsup.T; #/ � CkV k#L.#/;� (5.18)

Proof. Two first statements follow directly from Lemma 3.5, with use of the Stein exten-
sion operator J W H 1.�/! H 1.RN/. The same extension operator takes care of carry-
ing over eigenvalue estimates in the whole space to the ones in the domain �, using
Lemma 2.3.

Next, we obtain spectral estimates for the operator

W D A�
1
2TA�

1
2 D .F
A�1/�U.F
A�1/ (5.19)

in L2.�/. Here we will need some more regularity of the boundary of �.
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Lemma 5.10. Let the boundary � belong to C 1;1 and the measure � and the weight V
on � satisfy (5.6). Then the singular numbers of W satisfy estimate

nsup.W; �/ � CkV k�.�/;�; � D
d

d � 2N C 4
;

and similar estimates are valid for positive and negative eigenvalues of W separately.

Proof. The operator W is unitarily equivalent to the operator defined by the quadratic
form vŒu� in D.A/. Due to the C 1;1 regularity of the boundary, by Lemma 3.1, the domain
D.A/ of the Neumann operator A is contained in H 2 in a neighborhood of the boundary.
We apply, first, the restriction to this neighborhood and then the H 2-extension to the
whole RN, both times using Lemma 2.3. Therefore the task of estimating eigenvalues of
the operator W is reduced to estimating the singular numbers of the operator defined by
the quadratic form (5.17) in the space H 2.RN/, and the required estimate is provided by
Theorem 5.6 with l D 2.

Having established the required estimates for the operators T and W, we can now
apply the abstract results of Section 2.

Theorem 5.11. Let the boundary � D @�, the measure � and the weight functions V1, V2
satisfy the conditions of Lemmas 5.9 and 5.10. Then for the generalized Robin operators,
the following estimates hold with � D d

d�NC4 :

(1) For the operator RV1 D A�1 � A�1V1 ,

nsup
˙
.RV1 ; �/ � CkV1;˙k

�
.�/;�I

(2) For the operator R.1;2/ D A�1V1 � A�1V2

nsup
˙
.R.1;2/; �/ � C



.V1 � V2/˙

�.�/;�:
Remark. The same discussion as in Remark 5.2 clarifies the situation with two different
measures for two generalized Robin problems.

For the case when the measure � coincides with the surface measure on the boundary,
d D N� 1, we obtain the eigenvalue estimate for the classical Robin problem in terms of
integral characteristics of the density, improving the results of [9, 16, 34, 44].

Corollary 5.12. Let � be the surface measure on � D @�, d D N� 1, and the conditions
of Lemma 5.9 and 5.10 be satisfied. Then

� D
d

d � NC 4
D

N � 1
3

and

nsup
˙

�
AV1 �AV2 ;

N � 1
3

�
� C



.V1 � V2/˙

�L.�/;�; � D
d

d � NC 4
D

N � 1
3

: (5.20)
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6. Eigenvalue asymptotics for resolvent difference

For the case when † is a Lipschitz hypersurface in RN, this means of dimension d D
N � 1, and � is the surface measure on †, thus, belonging to AN�1, we can obtain the
asymptotics of eigenvalues of the operator

R.1;2/ D A�1V1 � A�1V2 :

Moreover, when � is the Hausdorff measure H N�1 (and we can restrict ourselves to this
case), such asymptotics can be proved for certain more general sets †.

In our initial motivation, namely, for the difference of Robin resolvents with different
densities, we can prove Weyl-type asymptotic formulas for a measure � 2AN�1, however
under the condition that the boundary is smooth. This latter condition is explained by
the fact that we use a perturbation approach based upon Lemma 2.5. This means that we
approximate the ‘singular’ problem under consideration by more regular ones, where the
eigenvalue asymptotics is already known. When we consider the perturbation contained
strictly inside our domain, we can use as approximating, the results on the asymptotics for
Lipschitz surfaces, obtained in [53]. On the other hand, for the Robin problem, the only
approximating results available are the ones in [34], where the boundary is smooth. It is
unclear at the moment, how far one can relax these smoothness conditions, using either
the pseudodifferential approach in [35] or the approximation approach developed in [51].

6.1. ı-potentials

We consider first a more simple case, namely, when the measure � is in Ad , d D N � 1,
on some compact set † inside �; equivalently, � is the Hausdorff measure H N�1 on †.
In other words, we study the difference of resolvents of two Schrödinger-type operators

R.1;2/ D A�1V1 � A�1V2 ;

in L2.�/, with Hd -measurable functions V1; V2 on †. When the set † is a hypersurface
in �, say Lipschitz one, this setting corresponds to considering ı-potentials on †, with
weights V1; V2.

The corresponding expression is formally the same as in [9, 12]. We are pretty sure
that for sufficiently regular † and piecewise smooth functions V1; V2, it might be proved
following the approach in [1,31,34] with use of the calculus of non-smooth singular Green
operators. We, however, aim for obtaining the eigenvalue asymptotics under considerably
less restrictive conditions. We follow essentially the pattern elaborated in [49, 52, 54];
therefore, we skip technical details and restrict ourselves to explaining main steps only.

For a point X on a Lipschitz hypersurface †, the density !.X/ is determined by the
principal symbol

a.X I �/ D
X
j;j 0

aj;j 0.X/�j �j 0

of the operator L at this point. This density is defined �-almost everywhere on†, namely,
at those points X 2 † where there exists the tangent hyperplane TX†, with the tangent
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unit sphere SX†, and the corresponding normal vector ���.X/:

!.X/ D
1

d.2�/d

Z
SX†

r.X; � 0/�d�.� 0/; � D
N � 1
3
I

r.X; � 0/ D .2�/�1
Z 1
�1

a
�
X I � 0; ����.X/

��2
d�;

(6.1)

see [54], where � is the natural measure on the unit cotangent sphere in Rd�1, see [53,
Theorem 6.2] (for N ¤ 4) and [52, Theorem 2.4] (for N D 4).

Theorem 6.1. Let † � � be a Lipschitz hypersurface in �, and V1; V2 be functions in
L.#/;�, # D N � 1. Then for the difference of resolvents R.1;2/ D A�1V1 � A�1V2 the asymp-
totic formulas hold:

n˙.R.1;2/; �/ D .2�/�d
Z
†

!.X/
�
V2.X/ � V1.X/

��
˙

Hd .dX/; � D
N � 1
3

;

where !.X/, X 2 † is the density determined by the coefficients of the operator L at X ,
see (6.1).

Proof. As explained above, the asymptotics of eigenvalues of R.1;2/ is the same as the
one for the compact operator

W DW.1;2/
D
�
jV1 � V2j

1
2 
A�1

��U�jV1 � V2j 12 
A�1
�
;

U D sign.V1 � V2/; such operators were considered systematically in [49,52,54]. In fact,
the statement in the theorem above is a particular case of [52, Theorem 2.4] and [49,
Theorem 6.6] for the critical dimension N D 4, and [54, Theorem 6.4] for the non-critical
dimension, N ¤ 4, granted that the estimate in Theorem 5.11 is already established.

For the benefit of the Readers, we explain here the structure of the proof, addressing
to the above sources for technical details.

We will use Lemma 2.5 systematically. Having obtained spectral estimates, as in Theo-
rem 5.11, involving integral norm of the weight functions, we approximate in this integral
norm over † the given weight functions by more and more regular or more convenient
ones, arriving at last to the situation where the eigenvalue asymptotics is already known.
We denote V D V1 � V2 and perform the following steps:

(1) The function V.X/ is approximated (in the above integral norm) by the restriction
to † of a smooth function V .1/.X/, X 2 RN belonging to C10 in a neighborhood
of †.

(2) The function V .1/ is approximated (in the above integral norm, again) by a smooth
function V .2/ such that the set where it is positive and the set where it is nega-
tive are separated, dist.supp.V .2/C /; supp.V .2/� // > 0. After this, the property ‘sign
separation’ established in the papers cited above, is used: for such weight function
V .2/, the leading order asymptotic characteristics of positive eigenvalues of W do
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not depend on the negative part, V .2/� , and vice versa. Therefore, we can restrict
our considerations to a smooth non-negative function V .2/ � 0.

(3) Consider now the spectrum of the (non-negative) operator

W.2/
D
�
.V .2//

1
2 
A�1

���
.V .2//

1
2 
A�1

�
:

Here we may commute the (smooth!) function .V .2//
1
2 and the restriction opera-

tor 
 ,
W.2/

D
�

.V .2//

1
2A�1

���

.V .2//

1
2A�1

�
: (6.2)

The non-zero (in fact, positive) eigenvalues of the operator (6.2) in L2.�/ coin-
cide with non-zero eigenvalues of the operator

W.3/
D
�

.V .2//

1
2A�1

��

.V .2//

1
2A�1

�� (6.3)

acting in L2.†;�/.

(4) The operator .V .2//
1
2A�1 is, in fact, up to a smoother remainder, an integral

operator in � with kernel .V .2//
1
2 .X/G�2.X; Y /, where G�2 is the fundamen-

tal solution of the operator A. The leading term of this fundamental solution is
the Fourier transform of the inverse symbol a.X; �/�1 in RN and, therefore, is
the integral kernel with singularity at the diagonal. On this stage, we pass from
the pseudodifferential setting, where certain regularity of symbols and surfaces is
required, to the setting involving integral operators, where considerably less reg-
ularity is needed. After the restriction to †, this means, after the application of 
 ,
it follows that 
 ı .V .2//

1
2A�1 is the integral operator with the same kernel, but

acting from L2.�/ to L2.†;�/. The adjoint, Œ
 ı .V .2//
1
2A�1��, is, therefore, the

integral operator with the kernel .V .2//
1
2 .Y /G�2.X; Y / acting from L2.†; �/ to

L2.�/. This kernel has power type or (for N D 2) logarithmic singularity at the
diagonal X D Y . Finally, for the composition in (6.3), we see that W.3/ is the
integral operator on � , with leading singularity in the kernel:

W.X; Y / D
�
V .2/.X/

� 1
2

Z
�

G�2.X;Z/G�2.Y;Z/dZ
�
V .2/.Y /

� 1
2 : (6.4)

(5) The composition of two copies of the fundamental solution of L in (6.4) pro-
duces, again, up to some smoother remainder terms, the fundamental solution of
the fourth order elliptic operator L2. The leading term in this fundamental solu-
tion has the power, or log-power for N D 2, or logarithmic for N D 4, singularity
at the diagonal X D Y .

(6) We can apply now the results of the paper [53], where for integral operators
on a Lipschitz surface, with power or log-power singularity at the diagonal, the
eigenvalue asymptotic formulas were obtained. This takes care of the statement of
Theorem 6.1 for a single Lipschitz surface.
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In the papers [49, 54], asymptotic formulas for operators of the type W were estab-
lished for the case when the Lipschitz surface † is replaced by a more general, uniformly
rectifiable, set.

Definition 6.2. Let d D N� 1. The set† � RN is called uniformly rectifiable (of dimen-
sion d ) if it is, up to a set of zero Hausdorff measure Hd , the union of a countable
collection of Lipschitz surfaces.

A detailed description of uniformly rectifiable sets and an extensive discussion of their
properties can be found in the books [21, 25, 45] and other sources on geometric measure
theory.

In the papers [49, 54], the eigenvalue asymptotic formulas were obtained for the case
when the operator L is the Laplacian, where the density !.X/ in (6.1) can be calculated
explicitly. For a general second order elliptic operator L, the expression for this density is
quite unwieldy.

In the proof, in order to pass to the set † consisting of a finite collection of Lipschitz
surfaces, one more approximation is used, reducing the problem to disjoint surfaces; here
the spectrum of the integral operator, again, up to a weaker term, is the union of the
spectra operators on separate surfaces, which justifies the asymptotic formula for this case.
Finally, for a uniformly rectifiable set, the final approximation is performed, reducing the
problem to the previous case, using, for the last time, the estimate in Theorem 5.11. The
detailed procedure is described in [49, 54].

6.2. Regular Schrödinger operator

For completeness, we explain here, how the general approach works when the measure �
is the Lebesgue measure on RN, and thus the potentials V��, �D 1; 2 can be considered as
usual functions. In this case, d D N and the exponent � equals d

4
, while # equals d

2
.

In these conditions, by Theorems 5.5 and 5.6, the estimate

nsup.W; �/ � CkV1 � V2k
�
.�/; � D

N
4
;

is valid, under the condition that V1; V2 2 L.#/. Now, similarly to our reasoning above, we
obtain the asymptotics

n˙.R.1;2/; �/ D CN

Z �
V1.X/ � V2.X/

� d
4

˙
det

�
a.X/

�� 14 dX:
For the Laplacian, such result seems to be folklore since early1970s, hinted for byBirman–
Solomak, Simon, Rozenblum.

6.3. The Robin problem

Here, we suppose that the boundary is C1-smooth. This restriction is caused by the fact
that the existing results on the eigenvalue asymptotics for the difference of Robin resol-
vents are established for smooth boundaries only. As soon as the asymptotic formulas
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are proved for less smooth boundary and for a smooth weight function, the asymptotic
formula for non-smooth weights will follow automatically.

Theorem 6.3. Let � be a domain with smooth boundary and let L be a second order
elliptic operator. We suppose that � is the Hausdorff measure Hd on @� and, finally,
V1; V2 satisfy (5.6). Then for the eigenvalues of the resolvent difference of Robin operators
in � with densities V1; V2, the asymptotic formulas hold, with d D N � 1, � D d

3
:

n˙.R.1;2/; �/ D
1

d.2�d /

Z
@�

!R.X/
�
V1.X/ � V2.X/

� d
3

˙
dX; (6.5)

where !R.X/ is given by the integrand in [34, Theorem 3.5].

The proof, up to the step 3, follows the one in Theorem 6.1. The difference is that in
the expression for the operator W in (5.19), the unperturbed operator A is not an elliptic
operator in RN but the Neumann operator in �. Under the condition that @� is of class
C 1;1, the spectral estimate for the operator W in Theorem 5.11 has the same form as for
the interior potential; it involves some integral norm of V D V1 � V2. Using this estimate,
we can repeat the reasoning in Theorem 6.1, this means, separate positive and negative
parts of the density V and then perform the approximation by smooth positive densities,
using Lemma 2.5.

6.4. The case of a fractional dimension d

A natural question arises, whether there are asymptotic eigenvalue formulas for the oper-
ator R.1;2/ with measure �, Ahlfors regular with a fractional dimension d . Our reference
to the result by H. Triebel [57] shows that, generally, the asymptotic order � D d

d�NC4 is
sharp.

In the literature, there are a number of studies of the spectrum of operators of the form
T above; sometimes they are called Krein–Feller operators. Main interest there is directed
to the cases when the measure � and the density V have some regular fractal structure;
in such cases, the spectrum can be studied using arithmetic and algebraic relations. The
leading examples of measures in Ad with fractional d (the construction is valid for integer
d as well, of course) are the ones obtained as self-similar measures, see Section 3.2.

The results existing in the literature concern the spectrum of operators of the form T.
The author failed while searching for the results for the operator W.

For T, even in the one-dimensional case, the asymptotics for n.�/ can be non-power-
like.Namely, see, e.g., [55],where, depending on the arithmetic structure of the self-similar
singular measure, the class of measures was described, where the eigenvalue asymptotics
is

n.T; �/ � ��dˆ.log�/C o.��d /; (6.6)

with d being the Hausdorff dimension andˆ being a bounded periodic function. By pass-
ing to the direct product, one obtains similar examples with non-power asymptotics in
higher dimensions. This effect was also studied in [39, 47] and many other papers in an
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arbitrary dimension. Thus, at least for now, it seems to be non-realistic to search for eigen-
value asymptotics in a general case, without structural regularity. Nevertheless, our results
in Section 3 demonstrate that the upper eigenvalues estimates are order sharp.

7. The difference of powers of resolvents

The reasoning leading to the eigenvalue estimates above, produces spectral estimates for
the difference of powers of resolvents. In order to simplify the presentation, we discuss
Schrödinger-like operators in RN with singular potentials only. The case of Robin opera-
tors is treated similarly.

We recall the expressions for A�1V in (2.9),

.AV/
�1
D A�

1
2 .1C T/�1A�

1
2 ; T D .F
A�

1
2 /�U.F
A�

1
2 /; (7.1)

thus,
.1C T/�1 D 1 � TC T.1C T/�1T � 1 � TC T0: (7.2)

We consider the operator

.AV/
�m
D
�
A�

1
2 .1 � TC T0/A�

1
2
�m
; (7.3)

for an integer m > 1. The operator in (7.3) splits into the sum of terms of the following
form:

(H1) A�m;

(H2) m terms containing one factor W D A� 12TA� 12 and m � 1 factors A�1;

(H3) terms containing two factors W and m � 2 factors A�1;

(H4) the remaining terms, those that have at least one factor A� 12T0A� 12 and those
that have at least three factors W.

In calculation of the resolvent difference A�mV � A�m, the term of the form (H1) cancels.
Consider some term of the form (H2). Such term is obtained from (H1) by means of
replacing one of m factors A�1 by W, so it has the form

Rm1;m2A�m1A�1=2TA�1=2A�m2 D Q�1Q2; m1 Cm2 D m � 1; (7.4)

where Q1DUF
A�m1�1, Q2DF
A�m2�1, and as previously,F D jV j
1
2 ,U D sign.V /.

The singular numbers of such operator are estimated by means of Lemma 5.4, with
l1 D m1 C 1, l2 D m2 C 1. This gives

nsup.Rm1;m2 ; �/ � CkF1k
�
.�1/;�

kF2k
�
.�2/;�

;

��1 D
d � NC 2.m1 Cm2 C 2/

d
D
d � NC 2.mC 1/

d
:

(7.5)

Note that all terms of this form produce the same order of eigenvalue estimates, with
� D d

d�NC2.mC1/ . This will be the leading term in the spectral estimate for A�1V � A�1.
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Next, we consider terms of type (H3); each such term is now obtained by replacing
two factors A�1 in A�m by W. So, such operator can be represented as

Rm1;m2;m3 D A�m1A�1=2TA�1=2A�m2A�1=2TA�1=2A�m3 ;
m1 Cm2 Cm3 D m � 2:

(7.6)

Such operator can be represented as the product of two operators of the form (H2),

Rm1;m2;m3 D
�
A�m1A�1=2TA�1=2A�m

0
2
��

A�m
00
2A�1=2TA�1=2A�m3

�
: (7.7)

with m02 C m
00
2 D m2. We apply the previous calculation, using Lemma 5.4, for each of

factors in (7.7) and then the Ky Fan inequality for the product of operators, to obtain

n.�;Rm1;m2;m3/ D O.�
�� .3//;

� .3/ D
d

d � NC 2.mC 2/
< � D

d

d � NC 2.mC 1/
:

(7.8)

For terms of type (H4), similar calculation shows that the more factors A�1=2TA�1=2

are inserted in the term of the expansion of A�mV , the faster is the singular numbers decay
for this term.

Finally, if some factor A�1 is replaced by T0 D T.1C T/�1T, the resulting operator
R0 can be represented as

R0 D A�m1�
1
2T0A�m2�

1
2 D Q�1Q2.1C T/�1Q�2Q3;

Q1 D F
A�m1�1; Q2 D F
A�
1
2 ; Q3 D F
A�m2�1:

To estimate the singular numbers of the latter operator we again apply Lemma 5.4 and
then the Ky Fan inequality, which gives, again,

n.�;R0/ D O.���
.3/

/:

Terms of the type (H4) containing more additional compact factors T or T0, have, by
Lemma 2.2 a faster singular numbers decay than the main term (H2).

The passage to estimates for the resolvent difference for two perturbations, V1 and V2
follows the pattern of Theorem 5.6, with the same use of Lemma 2.11. As a result, we
have the following estimate for eigenvalues of the difference of powers of resolvents.

Theorem 7.1. Let the measure � and the weight functions V1; V2 satisfy condition (5.6).
Then for the singular numbers of the operator A�mV1 � A�mV2 the estimate holds

nsup.A�mV1 � A�mV2 ; �/ � CkV1 � V2k
�
.�/;�; � D

d

d � NC 2.mC 1/
: (7.9)

It follows, in particular, that for m large enough, the difference of resolvents belongs
to the trace class, which leads to standard consequences of the scattering theory.
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