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Atomic representations of R. Thompson’s groups and
Cuntz’s algebra

Arnaud Brothier and Dilshan Wijesena

Abstract. We continue to study Pythagorean unitary representations of Richard Thompson’s groups
F, T,V and their extension to the Cuntz(-Dixmier) algebra (. Any linear isometry from a Hilbert
space to its direct sum square produces such. We focus on those arising from a finite-dimensional
Hilbert space. We show that they decompose as a direct sum of a so-called diffuse part and an
atomic part. We previously proved that the diffuse part is Ind-mixing: it does not contain induced
representations of finite-dimensional ones. In this article, we fully describe the atomic part it is a
finite direct sum of irreducible monomial representations arising from a precise family of parabolic
subgroups.

1. Introduction

Richard Thompson’s groups F C T C V are fascinating groups which appear in various
branches of mathematics, see [25]. Groups are often understood via their actions. Jones’
technology offers a practical machinery to construct such by leveraging that F, T, V are
fraction groups of basic categories [33, 34]. This approach has already been successfully
applied for constructing actions on operator algebras and groups, and unitary represent-
ations [2, 14, 15, 19,21, 35, 37]. Beyond producing actions of the Thompson groups we
may use this technology to produce new knot invariants, obtain natural subgroups of the
Thompson groups, and to study certain non-commutative probabilities [3, 30,31, 34, 39,
40]. Finally, this technology is useful for studying other Thompson-like groups built from
categories [14, 16—18,41]. We refer the reader to the recent surveys [1, 13,36].

The first author and Jones considered the following particular case of Jones’ techno-
logy [20]: any linear isometry R : $ — $ @ $, with $ a complex Hilbert space, permits
to construct a unitary representation (¢¥', J() of the largest Thompson group V. We write
o, oT for the restrictions to the subgroup F, T, respectively. We call these Pythagorean
representations (in short P-representations). The isometric condition translates into

A*A+ B*B = idg, (PE)

where A, B € B(9) are the legs of R. We call (4, B, $) a Pythagorean module (in short
P-module). P-modules correspond to the representations of the Pythagorean algebra &
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the universal C *-algebra defined by Relation PE. We consider maps between P-modules
that only intertwines the A’s and B’s (but not necessarily their adjoints as one would
classically require in Rep(£)). This develops a highly non-trivial representation theory
that allows us to perform powerful classifications of P-representations by solely work-
ing with P-modules. Beyond classification we are moreover able to read properties of
P-representations by only studying the operators A4, B.

By adding the relations AA* = BB* = idg we obtain a quotient > — @ on the
Cuntz(-Dixmier) algebra [26, 27]. Surprisingly, any representation of J canonically lifts
into a representation 6@ of @. Moreover, 09 restricts into 0¥ (after identifying V inside
O via the Birget-Nekrashevych embedding, see Section 2.4 and [11,45]).

In practice we mostly consider $ finite-dimensional, yet the space J{ on which V' and
O act is always infinite-dimensional and is roughly equal to trees with leaves decorated
by vectors in $. Thus, the force of this construction resides in constructing and studying
representations of F, T, V and O using only finite-dimensional data.

Brief outline of the article. In this article, we continue our systematic study of P-repres-
entations initiated in [22]. For improving the clarity of the exposition we restrict our study
to finite-dimensional P-modules in this article. Several of our results extend to the infinite-
dimensional case and will be proven in a future article. We previously defined diffuse
P-modules (i.e., increasing words in A, B tend to zero for the strong operator topology)
and proved that the associated P-representation (also named diffuse) oX of the Thompson
groups X = F, T,V are Ind-mixing (i.e., Ind[)g 6 ¢ o for all subgroups H C X and finite-
dimensional representations 6 : H — U(C?)) [22]. In this present article we define a
negation of being diffuse called aromic. We show that any P-representation o decomposes
Into Oyrom D Odgifr Where Oaom, Oqirf are themselves P-representations named the atomic
and diffuse parts of o, respectively. We then decompose 0,om into explicit irreducible
components. This is achieved by solely decomposing the underlying P-module.

Detailed content of the article and main results. For the rest of the introduction all P-
modules are finite-dimensional and all P-representations are built from finite-dimensional
P-modules.

Decomposing and classifying P-modules is more much subtle than the usual repres-
entation theory of the C*-algebra J. However, this is a small cost to pay as it allows one
to decompose P-representations of F, T, V, O at the level of . A P-module m = (A, B, $)
does not decompose in general as a direct sum of irreducible components. However, we
have the (orthogonal) direct sum

H= Qcomp D Dres

where the residual subspace 9. is the largest vector subspace that does not contain any
non-trivial sub-module and $comp 18 the complete sub-module. We will see that $H¢omp can
be decomposed into irreducible components.

Diffuse and atomic P-modules. If p is an infinite binary sequence (often called a ray
when identified with a path in the infinite rooted binary tree), then write [p] for its class
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obtained by swapping finite prefix. We set p, to be the first n digits of p that we often
identify with an operator obtained by replacing digits of p by A, B and reversing the order.
We define Hgirr C Deomp to be the subset of vectors & satisfying that lim, || p,&|| = 0 for
all rays p. This forms a sub-module that we call the diffuse part of $. In contrast, for each
periodic ray p we define ‘63[1[p()]m C Hcomp to be the span of all vectors & such that there
exists a ray g € [p] satisfying ||g,&|| = ||€]| for all n > 1. This also forms a sub-module
Satom 1= DB[p]Dstom called the atomic part of H.

The Pythagorean functor. Jones’ technology promotes a P-module into a representa-
tion of F that extends to 7, V' and even (. This process is functorial giving the four
Pythagorean functors (P-functors) X . Mod(#) — Rep(X) for X = F,T,V, O, where
Rep(X) is the usual category of representations of X, and Mod () is the category of P-
modules with same objects as Rep(J) but with more morphisms, see Section 2.5.6. We
can now state our first main theorem on decomposing P-modules and P-representations.

Theorem A. If (A, B, 9) is a P-module then the following assertions hold:

O IX(®) 2= T (Heomp):

(i) Deomp = Dutom & Dutir = B[S S Haier

(i) TX(®) = ¥ (Saom) & X (Haigr) = @[p]nx(bzgg)]m) ® X (Hqirr)
where [ p] runs over all periodic rays and X = F,T,V, 0.

The first statement is proven in Proposition 3.4 and motivates the terminology. The
second statement is proven in Theorem 3.13 and Proposition 3.16. The third statement
follows from the first two. Note that we only consider (eventually) periodic rays. In fact,
we may even restrict to classes of rays with period of length smaller than dim($).

Description of atomic P-representations. The second half of the paper is dedicated
to precisely describing and classifying atomic representations: P-representations from
atomic P-modules. Given d > 1 define W, to be a set of representatives of prime bin-
ary word of length d modulo cyclic permutations and write S; for the circle (complex
numbers of modulus 1). For each pair (w, ¢) € W; x S we define an explicit P-module
My, using d by d matrices. This P-module is atomic and irreducible. We show that con-
versely all irreducible atomic P-module is of this form (up to isomorphism) and moreover
describe explicitly their associated P-representations ITX (14, ) for the Thompson groups
X = F, T, V. These explicit descriptions together with the Mackey—Schoda criterion give
us a complete comprehension of atomic representations. We refer to Section 3.5 for nota-
tions and details. In the below theorem, statements (i), (ii), (v) are proven in Theorem 4.2
while statements (iii), (iv) follow easily from Section 4.1.

Theorem B. Let X = F, T,V and fix w € Wy, ¢ € S1. Write p for the periodic ray
w™®, X, for the parabolic subgroup {g € X : g(p) = p}, xb for the representation
Xp —> S1,8 @'°2@PYE"P) | Then the following assertions are true.
Q) If (X, |w]) # (F, 1), then TIX (my, ) = Indj’((p X& and this representation is
irreducible.



A. Brothier and D. Wijesena 358
1) Ifw=0(resp.w=1)setq =1-0% (resp. 0-1°°). We have:
1 (my ) = xh e Ind‘}q X8

which is a direct sum of a one-dimensional representation and an irreducible
one.

(iii) Given (w,p) and (v, ) and assuming that (X, |w|) # (F, 1), then HX(mw’(p) ~
1% (o) when (w. ¢) = (v, ).
(iv) Given (w, @) and (v, i) and assuming that |w| = |v| = 1, then TI¥ (m,, ,) =
¥ (my,,,) when (w,¢) = (v, u) org = p = 1.
(v)  Every atomic representation is a finite direct sum of irreducible ones appearing
in:
{Ind)}((p )(g : p eventually periodic ray, ¢ € Sl}. (AR)

This classification permits to deduce that, up to few exceptions, the P-functors preserve
irreducible classes in the atomic case (see Section 4.2). Moreover, this extends to the Cuntz
algebra (since V' C O and using items (i), (iii)). We will obtain a similar conclusion in the
diffuse case in [23] by using a direct conceptual argument.

Corollary C. Let X = F,T,V, 0 and $1, 9, be two atomic P-modules. If either X # F
or both $1, 9, do not contain a copy of My, , with |w| = 1 then:

()  T1X($,) is irreducible if and only if ($1)comp is irreducible;
(i) [X($91) = DX ($,) if and only if (1) comp = (H2)comp-

Recall that a representation of a group is weakly mixing (resp. Ind-mixing) if it does not
contain (resp. the induction of) a non-zero finite-dimensional representation. We proved
in [22] that a diffuse P-representation is Ind-mixing. In sharp contract, atomic represent-
ations are direct sum of monomial representations. This allows to deduce the following
characterisations (proved in Section 4.2).

Corollary D. Fix a P-module m = (A, B,9) and set X = F, T, V. We have:

(i)  the representation T1X (m) is weakly mixing if and only if either X = T,V or
lim, A"¢ = lim, B"§ = 0forall £ € &;

(i)  the representation T1X (m) is Ind-mixing if and only if m is diffuse.

Geometrical interpretation. We now introduce coordinates: $ = C? and A, B € M(C)
(they are d by d complex matrices). Denote by Irryem(d) the set of P-modules m =
(A, B, Cd) that are atomic and irreducible. Our work demonstrates that in the atomic
case the number d is an invariant of both m and I1X (m) that we name the Pythagorean
dimension (in short P-dimension). The projective special unitary group PSU(d) acts on
Irryom(d) by conjugation: u - (4, B) := (uAu*,uBu*). By definition, the PSU(d )-orbits
are the irreducible classes of atomic P-modules. Moreover, the P-modules m,, , of Sec-
tion 3.5 are representatives of these orbits. Using Corollary C we deduce that PSU(d)
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classifies the associated P-representations. Using obvious manifold structures we deduce
moduli spaces of atomic P-representations (see Section 4.3 for details).

Corollary E. Considerd > 1and X = F,T,V,O. We have:
(i) PSU)x Wy xS1 = Irtyom(d), (u, A, B) — u - (A, B) is a bijection. Hence,
Ittyom (d) has an obvious structure of compact smooth real manifold of dimen-
sion d?.
(i) For (X,d) # (F, 1) the set of irreducible classes of atomic representations of
X with P-dimension d is in bijection with Wy x S (a finite disjoint union of
circles).

(ii) Ifd # d then TIX (m) 2 TI¥ (/i) where m € Ittyom(d) and iii € Ittyom(d).

Atomic representations of Dutkay, Haussermann and Jorgensen. The family of so-
called purely atomic representations of the Cuntz algebra @ was defined in [28]. They
coincide with the atomic representations of @ considered in the current article. Simil-
arly to the current article, in [28] the authors classified the irreducible classes of purely
atomic representations of (0. Despite sharing some common features, these two studies
are rather different in nature. Notably, the classification of purely atomic representations
is accomplished by studying directly the larger infinite-dimensional Hilbert space JH via
certain projections associated to singleton sets. In contrast, our study is primarily focused
on classifying atomic representations by only studying the smaller finite-dimensional Hil-
bert space $. This allows us to follow somewhat simpler arguments and phrase many of
our results in terms of finite-dimensional liner algebra. Furthermore, we are largely con-
cerned on studying the restriction of the atomic representations to the Thompson groups
and to explicitly describe them (as direct sum of monomial representations). This takes
up the majority of the last section in the paper, where else irreducibility and equivalence
follows rather easily from classical results. Finally, our novel approach of decomposing
finite-dimensional P-modules provides an important framework for future work. This will
permit us to recover and extend, among other, results appearing in [4, 5,7, 10, 12,28, 29,
32,37,38,44,46]. This will be extensively explained in [23].

2. Preliminaries

In this section we fix notations (similar to the ones in [22]) and recall some standard
definitions and results.

Convention. We assume that all groups are discrete, all Hilbert spaces are over the com-
plex field C with inner-products linear in the first variable, and all group representations
are unitary. The set of natural numbers N contains 0 and we write N* for N \ {0}.

2.1. Monomial representations and the Mackey—Shoda criterion

If H C G is a subgroup and o a representation of H, then Indg o denotes the induced
representation of o associated to H. When o = y is one-dimensional (i.e., valued in the
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circle group Sp) then IndIG{ x is called monomial. If y = 1p is the trivial representation
then Ag g := Indg x is the quasi-regular representation.

Commensurator. Let H C G be a subgroup.

*  The commensurator of H C G is the subgroup Commg (H) C G of g € G satisfying
that H N g~! Hg has finite index in both H and g~ ' Hg.

* The subgroup H C G is self-commensurating if H = Commg (H).

We recall the celebrated Mackey—Shoda criterion [42,43] (see also [8, Theorem 1.F.11,
Theorem 1.F.16, and Corollary 1.F.18]).

Theorem 2.1. Let H; C G;, i = 1,2 be two subgroups and take one-dimensional repres-
entations y; : Hi — S1,i = 1,2. Set (H,G) := (H1, G1). We have the following.

(i)  The induced representation Indg (x) is irreducible if and only if for every g €
Commg (H) with g ¢ H, the restrictions of y : H — Sy and x& : g7'Hg >
s+ x(gsg™) to the subgroup H N g=' Hg do not coincide.

(i)  The induced representation Ind,(v_;l1 X1 is unitary equivalent to Indg2 X2 if and
only if there exists g € G such that Hy N g~Y H, g has finite index in both groups
Hy and g~ ' H,g; and moreover the restrictions of )(g and yy to HH N g7 Hyg
coincide.

In particular, all monomial representations constructed from self-commensurated sub-
groups are irreducible. Moreover, if Hy, H, are self-commensurating subgroups, then
Indffl1 X1 = Indg,2 x2 if and only if 7' Hrg = H; and y5 = xi for some g € G. Here,
unitary equivalent, denoted =2, means that there exists a unitary transformation that inter-
twines the actions.

2.2. Richard Thompson’s groups F c T Cc V

We refer to [9,24,25] for details on the Richard Thompson groups and their diagrammatic
descriptions.

Cantor space and Thompson’s groups. Let € := {0, 1}N" be the Cantor space of infinite
binary strings (also called sequences or rays). Sequences are written from left to right.
Finite binary strings or sequences are called words. We write w - u for the concatenation
of w with u. We equipped these sequences with the lexicographic order. If w is a finite
binary string (also called a word) we form [, := w - €: the set of all sequences with
prefix w. We call I, a standard dyadic interval (sdi in short). The terminology comes
from the real interval [0, 1]: the usual surjection S : € — [0, 1], x = >, 27" x,, maps
I, into an interval of the form 27"k, 2" (k 4+ 1)]. If P := (wy, ..., wy) is an n-tuple of
words such that (1, ..., Iy, ) forms a partition of €, then P is called a standard dyadic
partition (sdp in short). We say that P is oriented if w; < w;4; for 1 <i <n — 1 for the
lexicographic order. Two sdp’s P = (u1,...,u,) and Q = (vq, ..., v,) with the same
number of sdi’s defines a homeomorphism g of € such as u; - x — v; - x. The collection
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of all of those form Thompson’s group V. Let FF C V (resp. T C V') to be the subset of
g as above where P and Q are oriented (resp. oriented up to cyclic permutation). The
subsets F, T of V are groups called the Thompson groups F and T'.

Slope. Write |u| for the word-length of a word. If ¢ maps 7, onto I, viau - x — v - x,
then we say that 2/#I=1°l is the slope of g on I,, and write g’(u - x) = 2/~ for all x € €.

Trees, forests, and rays. Consider the infinite binary rooted tree /, that we geometrically
identify as a graph in the plane where the root is on top, the root has two adjacent vertices
to its bottom left and right, and every other vertex has three adjacent vertices: one above,
one to the bottom left, and one to the bottom right. The bottom two vertices are called
immediate children of the vertex (and further down vertices are called children). A pair of
edges that have a common vertex is called a caret and denoted by the symbol A. We will
constantly identify vertices of 7, with words and boundary of ¢, with sequences in the
usual manner (hence the digits 0 and 1 correspond to left-edge and right-edge, respectively,
and the trivial word corresponds to the root of f,). Elements of the boundary of 7, are
called rays. If p is aray and n > 0, then p,, is the word made of the first n digits of p and
np therest of p sothat p = p, -, p. If p = v - w*™ for some word v, w, then we say that
p is eventually periodic and that w is a period of p. Otherwise we say that p is aperiodic.
We say that w is prime when w # u” for all words u and n > 2. When p = v - w* and
w is prime, then we write | p| for the length |w|. If v is trivial, then p = w* and we say
that p is periodic. Finally, we write p ~ ¢ when p = g modulo finite prefixes, i.e., there
exists n, k > 0 such that , p = rgq. We write [p] for the class of p for ~.

The term tree refers to any finite non-empty rooted sub-tree of #o, whose each vertex
has either none or two immediate children. They form the set 7. If ¢ is a tree, then the
vertices of ¢ with no children are called leaves. The relation “being a rooted sub-tree”
defines a partial order < on 7 for which T is directed. If s < ¢, then the diagram obtained
by removing s from ¢ is called a forest. A forest f is interpreted as a finite ordered list of
trees (f1,..., f») that has n roots. Hence, ¢ is obtained by stacking s on top of /. We then
write f o s for ¢. This extends to an associated partially defined binary operation on the
set ¥ of all forests. This confers to F a structure of a small category. Now, concatenating
list of trees:

((flv"'vfn)?(glv"'7gm)) H(fls-"sfn’gls"'sgm)

defines an associative binary operation on ¥ . This is a monoidal product that we denote
by ®. It corresponds to concatenating horizontally forests.

Tree-diagrams for the Thompson groups. We now describe the Thompson groups using
trees. Consider (, k, s) where ¢, s are trees with same number of leaves, say n, and « is
a permutation on {1, ...,n}. If the jth leaf of s and ¢ correspond to the words u;, v;,
respectively, then the triple defines the map u; - x > v,(;) - x for x € €. This is an element
of V' and all elements of V' can be achieved in that way. Itis in F (resp. T) if and only if x
is trivial (resp. cyclic). Assume for simplicity that « is trivial and write (z, s) for (¢, id, s).
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If f is a forest composable with z, then note that (f o ¢, f o s) defines the same element of
F as (t,s). Let ~ be the equivalence relation generated by (¢,s) ~ (f ot, f os) and write
[t, 5] for the class of (z, s). The set of these classes admits a group structure, isomorphic to
F, via the composition [t, s] o [s, 7] = [t,r] and inverse [t,s]~! = [s,¢]. Similarly, we can
define 7" and V using classes of triples [z, k, s]. We call the triples (z, «, s) tree-diagrams
and say that u; and v, ;) are corresponding leaves of (¢, k, s).

Specific notations. The trivial tree (the tree with one leaf equal to its root) is denoted [
or e. We write fx, =1 ®k=1 @ A ® I®" for the so-called elementary forest that has
n roots, n + 1 leaves, all of its trees trivial except the kth one that is equal to a caret A.
The complete tree with 2" leaves all at a distance n from the root is denoted #,. If f is a
forest, then Root( /) and Leaf( /) denote its root-set and leaf-set, respectively. We write
Ver for the vertex-set of the rooted infinite complete binary tree 7. If p € €, then Ver,
denotes all the finite prefixes p, of p (i.e., the vertices that the ray p is passing through).

2.3. Parabolic subgroups of the Thompson groups

For this subsection we shall take X to denote any of F, T, V. Given p € € we form the
so-called parabolic subgroups

X, ={geX:g(p)=p}
Note that X, # X except when X = F and p is an endpoint of €.

2.3.1. Description of parabolic subgroups using tree-diagrams. Consider aray p with
nth digit x,. Given g = [t, x, s] € X we have that there exists a unique leaf v of  and w
of s so that v, w lie in the ray p (equivalently p € I,, N I,). If [v| = m and |w| = n, then
V = pp and w = p,. By definition of the action V ~, € we have that g € X, if and only
if p,, and p, are corresponding leaves of g and ,, p = , p.

Assume that p is eventually periodic such that p = v - w®. Take v as small as possible.
Then from the preceding paragraph we have

2.1

m=n, ifm,n < |v|
n—me|w|Z, ifm,n>|vl.

In the case when p is not eventually periodic we obtain that X, is the group elements
acting trivially on a neighbourhood of p (i.e., have slope 1 at p).

2.3.2. Monomial representations associated to parabolic subgroups. It is standard

that X;, C X is self-commensurating. Then Mackey—Schoda implies the following.

Lemma 2.2. Consider rays p; and one-dimensional representations y; of Xp, fori =1,2.
(i)  The monomial representation Indj)((p1 x1 of X is irreducible.

Gi) If (X.|pil) # (F.1) then Ind§p1 1~ Ind))((pz X2 if and only if y1 = ya, and
[p1] = [p2]
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2.4. Universal C *-algebras

The Cuntz algebra. The Cuntz algebra O := 9, is the universal C *-algebra with two
generators sg, 51 satisfying the below relations:

SgS0 = Sys1 = Sosy + s187 = L.

Thus, any representation of @ on a Hilbert space H is given by two isometries, Sy and S1,
with orthogonal ranges that span J{. If v is a binary word in 0’s and 1’s, then denote s,, to
be the corresponding composition respecting the order of the digits (hence if v = 01 then
sy = $oS1). Birget and Nekrashevyvch independently made the remarkable discovery that
Thompson’s group V' embeds inside the unitary group of the Cuntz algebra U(O) [11,45].
Indeed, take g € V and let {v; }7_,, {w; }7_, be vertices in Ver such that g (w; - X) = v,() - x
for x € € and some permutation x. The formula

n
|4 BgHstis:;i €0
i=1

defines an embedding of V into U(O). In fact, V corresponds to the normaliser subgroup
of the diagonal sub-algebra +4 inside @ (where s is generated by all the projections s, s);).

From now on we identify I and its image inside O.
Consequently, every representation of @ restricts to a (unitary) representation of V.

The Pythagorean algebra. The Pythagorean algebra is the universal C *-algebra J with
two generators a,b satisfying the Pythagorean equality:

a*a+b*bh =1.
Hence, a — s, b — s defines a surjective *-morphism # — . Note that $ has many
(non-zero) finite-dimensional representations while ( has none.
2.5. Pythagorean representations

We introduce the specific class of Jones’ representations that we will focus on.
2.5.1. Pythagorean module. Here is the main concept of our study.

Definition 2.3. A Pythagorean module (in short P-module) is a triple m = (A, B, )
where & is a Hilbert space and A, B € B($) are bounded linear operators satisfying the
so-called Pythagorean equality

A*A+ B*B = idg

where idg is the identity operator of $ and A* is the adjoint of A. For convenience, we
may interchangeably refer to $ and m as being a P-module.

For P-modules m = (A, B, $), i = (A4, B, §)) we say that:

* K C 9 defines a sub-module if K is closed under A and B, in which case we equip &
with the P-module structure obtained by taking the restrictions of A and B;
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* m is irreducible if m does not contain any proper non-trivial sub-modules;

e 0:% — $ is an intertwiner or morphism between m and i if it is a bounded linear
operator satisfying
foA=AobBandfo B = Bod,

» m and m are unitarily equivalent (we often drop the term “unitarily”) if there exists a
unitary intertwiner between them. In that case we write m = i;

+ K C & is a complete sub-module of m if the orthogonal complement & of the sub-
space $ inside $ does not contain any non-trivial sub-modules;

* m is afull sub-module if m does not contain any proper complete sub-modules;

* 3 C 9 is a residual subspace if 3 does not contain any non-trivial sub-modules and
31 is a sub-module of m.

Remark 2.4. The P-modules and their morphisms form a category denoted Mod(&). Let
Rep (&) denote the usual category of representations of the C *-algebra &. Then Mod(P)
and Rep(%) have same class of objects. However, there are more morphisms in Mod(J)
than there are in Rep(J). Although, it can be proven that a morphism between two full
P-module is in fact a morphism of the associated representations.

2.5.2. From a P-module to a Hilbert space. Fix a P-module (A4, B, $). For each tree ¢
with 1 leaves we consider the Hilbert space $; := $(®) of all maps from the leaves-set
of t to $. We identify $, with $®" and write (¢, £) for an element of it. We may write &
or §; for the component corresponding to the leaf £ of 7 or to the ith leaf. For each forest
f with n roots and m leaves we have an isometry

O(f): 9: — Dy

obtained by placing the operator R := A @ B : 9 — $ @ H ateach node of f. For instance
D @ NN E) = (I @A), &1, A&y, BE,). This defines a functor @ : ¥ — Hilb from
the category of binary forests to the category of Hilbert spaces. It is monoidal for the
horizontal concatenation of forests and the direct sum of Hilbert spaces.

This forms a directed system of Hilbert spaces, indexed by the directed set of trees T,
with maps being the ®( f). The limit is a pre-Hilbert space X := lim___ &, that we
complete into . (It indeed has an inner-product because all the <1>(‘f_))t€ar%e isometric.)
Equivalently, H is the disjoint union of the $; modulo the equivalence relation generated
by (¢, &) ~ (ft, P(f)E). We write [z, ] for the class of (¢, £) inside H and note that
(,&) — [t, &] defines an isometric embedding $; < 3. Moreover, £ — (I, §) defines an
isomorphism $ ~ $;. We will often identify $ with $; and $; with its image inside K.
We note that dim(H) = oo (except when $ = {0}).

2.5.3. Partial Isometries on J(. Fix v € Ver (i.e., v is a finite binary sequence) and
consider [z, £] € K. Up to growing ¢ we can assume that v is a vertex of ¢. Define #, to be
the sub-tree of ¢ with root v and whose leaves are the leaves of ¢ which are children of v.
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Then we set 7, ([t, £]) := [t,, n] where 7 is the decoration of the leaves of ¢ in [¢, £] that
are children of v. It can be shown that 7, is well defined and extends to a surjective partial
isometry from I onto itself (see [22, Section 2.1] for details).

We will be considering projections p, := t,t,. More generally, consider 7,7, the
partial isometry which “snips” the tree at w and attaches the resulting sub-tree, along with
its components, at the vertex v while setting all other components to 0. Here is an example:

(51 179
AOAE ANE
B E BT M g g

Observation 2.5. Note that (g, 11, H) forms a P-module. Moreover, 19 |¢= A and
71 = B. Hence, (A, B, D) is a sub-module of (to, 71, H).

2.5.4. Pythagorean representations from P-modules. Consider as above our fixed P-
module m = (A4, B, 9), the functor ® : ¥ — Hilb, and the Hilbert space . Take g € F
and [r, £] € H. There exists some trees ¢, s such that g = [¢, s]. Now, there exists forests
f,h such that f's = hr. We set

g-[r.§]:=[f1. 2(M)E].
In particular, if s = r, then [z, s] - [s, §] := [¢, £]. This defines a unitary representation
0 : F ~y, I called the Pythagorean representation (in short P-representation) associated
to the P-module m. Now, if v € V, then v = [t, k, 5] for some permutation x. We set
v-[s,&] := [t, &] where £(i) := &) (the ith coordinate of &, is the x(i)th coordinate
of ). This define a unitary representation 67, " of T,V on the same Hilbert space (.
Using the partial isometries of the previous subsection we deduce the following formula:

n
o) =D T Tars 2.2)

i=1

where v;, w; are the ith leaves of 7, s, respectively, and where ¢ has n leaves.

Example 2.6. An example of the action o is shown below. In this case, o only changes
the tree while retaining the original decoration.

O O = A

Extension to @. Using the partial isometries 7, we can easily observe that ¥ extends to
a representation 0@ of @ via the formula

0% :0 - B(H). So > Ty, S1H> T

Using (2.2) we deduce that the representation 0 restricted to V' is equal to o¥ . Surpris-
ingly, every representation of (9 can be obtained in this manner ([20, Proposition 7.1]).
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Indeed, if (;r, H) € Rep(O), then m = (w(s9)*, w(s1)*, H) is a P-module. If we re-apply
the construction of above to 7 we obtain a new representation 0@ of @ which is equivalent
to 7.

Remark 2.7. We thank the anonymous reviewer for observing the following interesting
parallel between Pythagorean technology and the work of Arveson in [6]. The Toeplitz
algebra 7 := T is the C*-algebra generated by the d-tuple of shift operators acting on
the symmetric Fock space of C?. There is an exact sequence

0> K —>T —>C(S24-1)—0

where K is the C*-algebra of compact operators and C(S,;—1) the continuous func-
tions on the (2d — 1)-sphere. All representations of 7 decompose into a direct sum of
the natural representation of I on the symmetric Fock space and a representation that
factors through C(S54—1). This latter is then commutative and thus decomposes into
one-dimensional representations. A spherical operator in the sense of Arveson is a tuple
(Z1,...,Zy) of normal and mutually commuting operators satisfying the Pythagorean
equality Z;i:l VA ;.‘ Z; =1id, see [0, Section 8]. It defines a representation of 7 factorising
through C(S,4—1). Hence, modulo the natural representation, the representation theory of
T is described by spherical operators.

Let us relate these notions with the Pythagorean algebra and our machinery. To fit
with our framework we fix d = 2. A spherical operator is then a P-module (A, B) where
A, B are moreover normal and mutually commute. They define a representation of C(S3)
and thus of 7. Additionally, they define a representation of # that decomposes into one-
dimensional representations. These latter are parameterised by points of the 3-sphere S3.
Hence, the spherical operators of Arveson corresponds to the one-dimensional representa-
tion theory of 7 and of #. It is interesting to see that each of these representations lift into
representations of the Cuntz algebra (and of the Thompson groups) via the Pythagorean
functor T19, thus connecting the representation theory of 7~ with the one of F, T, V, ©.

2.5.5. Sub-modules and sub-representations. Sub-modules of { define sub-represent-
ations of ¢ as explained below.

Definition 2.8. Let X C H be a sub-module (i.e., 7; (X) C X for i = 0, 1). Define the
closed subspace
(X) := spﬁ{ U t:(f)C)} c K.
VEVer
By construction X is closed under the action of 0@ and defines a sub-representation
denoted 03(? . Similarly, we define ogg forY =F,T,V.

Informally, (X) is the closure of the set of trees with leaves decorated by vectors in X.

Observation 2.9. If X is a sub-module of H, then the P-representation associated to the
P-module (tg x, 71 [x,X) is equivalent to ox. Hence, all sub-representations that are
induced by sub-modules are also Pythagorean. For the remainder of the article we will
freely identify these two representations.
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2.5.6. Functoriality of Jones’ technology. Recall that Mod(J) denotes the category
of P-modules with morphisms being bounded linear maps intertwining the A’s and B'’s.
Moreover, Rep(X') denotes the usual category of unitary representations when X = F, T,V
and the usual category of bounded linear *-representations when X = O.

Letm =(A,B,$)andm = (,Zf , B , .%) be two P-modules with associated P-representa-
tions (o, H) and (o, JA%) and functors @, 313 respectively. Let 6 :  — $ be an intertwiner
between the two P-modules. For any tree 7, this gives a map 6; : $; — S, by

92‘ : (t’élvi:z»"' 75’1) = (I’Q(El)’e(gz)v cee ’Q(Sn))

where n is the number of leaves of 7. Diagrammatically, 6, works as follows when t = A:

AN AN

&1 LT 0¢) 0&)

Since 6 is an intertwiner this implies
b0 ®(f) = D(f)ob, (2.3)
for any composable forest f. From there we deduce a bounded linear map
O:H -3, [t,& > [1,0:5)]

that intertwines the P-representations. We deduce four functors that we name the Py-
thagorean functors:
¥ : Mod(£) — Rep(X).

Notation 2.10. From a P-module m = (A4, B, $) we have canonically constructed the P-
representations oX =1¥X (m),for X = F,T,V,0, all acting on the same Hilbert space .
We may drop the super-script X if it is clear from context or when making statements that
hold true for all X. Additionally, despite all representations of () coming from P-modules,
we may term a representation of (9 as being “Pythagorean” to emphasise we are viewing
it as arising from a P-module

For the remainder of the paper, we shall assume that all P-modules are finite-
dimensional.

3. Decomposition of P-modules

In this section, we will introduce the important notions of the “atomic” and “diffuse” parts
of a P-module. Furthermore, we will develop a powerful decomposition theory.
3.1. Complete sub-modules

It should be emphasised that sub-modules of P-modules are only required to be closed
under A and B, but not necessarily under A* or B*. Hence, the orthogonal complement
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of a sub-module may not be a sub-module making Mod(J) not semi-simple (unlike
Rep(#)). However, a weaker property holds as shown below. We refer to Section 2.5.1
for the definition of residual and complete.

Lemma 3.1. Let © be a P-module. There exists n > 1, some irreducible sub-modules
$; C 9,1 =i < n, and a vector subspace Hye; C 9 such that H = (B7_9;) D Dyes. We
call e, the residual subspace of  and Heomp := BF_,$H; the complete sub-module of 5.

Proof of the lemma. Consider a P-module $. If $ is not irreducible, then there exists an
irreducible sub-module & C $ (since $ is finite-dimensional). If K is an irreducible sub-
module or a residual subspace we are done. Otherwise, & - contains a proper non-trivial
sub-module and iteratively repeat the above process which must eventually terminate since
$ is finite-dimensional. |

Example 3.2. Here is an example where the decompositions in Mod(#) is thinner than
in Rep(). Consider

L 0 L 1 0 S
70 (E N TE)
0 0 NG 0 0 7

Let e1, ea, e3 be the standard basis elements of C3. We have Heomp = Cey ® Cey which
decomposes into irreducible sub-modules (1 V2,142, O (-1 V2.,—14/2, C),and Hs=
Ces. Yet, it is easy to verify that the associated *-representation of & on C3 is irreducible.

Remark 3.3. If $ is full (that is, Hcomp = $H and Hrs = {0}) then the decomposition
with respect to the action of the P-module and the action of the Pythagorean algebra
do coincide. This is because in a full P-module, every A, B-invariant subspace is also a
A*, B*-invariant subspace.

Proposition 3.4. Let m = (A, B, 9) be a P-module decomposed as in Lemma 3.1 and let
K C 9 be a sub-module. For each X = F,T,V,O we have:

() TX(K) = IIX(9) if and only if K is a complete sub-module;
(ii)  there exists a sub-module ¥ C K+ C $ such that TIX (R) & TTX(¥) = TX($);
(i) M*(9) = o7, X ().

Proof. The last two items immediately follows from the first item and Lemma 3.1. Hence
we only need to prove the first item. For the forward implication, let X C & be a sub-
module. Then (¥) C (K)*. However, (R) = K and thus (R)* = {0}. This implies that
X is the trivial sub-modules and K is a complete sub-modules.

The converse of item i is equivalent to showing that {(Scomp) = H as Heomp is contained
inside every complete sub-module of $. Since ($) = K, it is suffice to show that H,.; =
6;@ C ($comp). Heuristically we will proceed as follows: fix § € $r and let & its
representative in $; inside H (i.e., & = ®(¢)&). Then, when ¢ grows we note that the
distance between each component of &; and $comp tends to zero. Moreover, we will show
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that this convergence is “global” among all the leaves in such a way that the distance
between the whole vector §; and ($comp) is manifestly small for ¢ large. This will be
achieved by making a compactness argument on the closed unit ball (9yeg) .-

Assume $,es is non-zero (the zero case being trivially true). Let P : & — $ be the
orthogonal projection onto $,s. For each n consider #,, the complete binary with 2" leaves
all at distance n from the root and the isometry

On O — Oy, £ (18,

Note that ,, is isomorphic to the 2”-fold direct sum of $ and the map is conjugated to
& > @) yy|=n w& Where w is any word in A, B made of n letters. Define now

Vo O >R E Y [P

|lw|=n

which is the restriction to 9, of the composition of ¢,, P ® id, and the norm square.
This is obviously continuous with operator norm smaller or equal to 1. Since the space
9, and thus $y, is finite-dimensional its closed unit ball ($,e5); is compact. Therefore,
each of the maps V¥, restricted to ($e)1 attain a maximum value M, < 1 at some vector
&n € (Hres)1- The remainder of the proof will be separated into individual claims.

Claim 1. There exists a natural number N > 0 such that My < 1.

Suppose that M,, = 1 for all n. Again, by appealing to the compactness of the closed
unit ball, there exists a sub-sequence (&,,)» Which converges to some & € ()1 and
satisfies ¥, (§) = 1. This implies that necessarily wé is in $, for all words w. Hence, &
defines a non-zero sub-module of $,s yielding a contradiction.

For the remainder of the proof we fix a unit vector § € Hy. Since Heomp is @ sub-
module it is clear that (V,(§) : n > 0) forms a decreasing sequence which is bounded
below by 0. Hence, the sequence limits to some constant Mg € [0, 1).

Claim 2. The constant M¢ is equal to zero.

Assume Mz is strictly positive. Using Claim 1 we fix N > 1 such that My < 1. There
exists K > 0 such that ¥ (§) — Mg < Mg(1 — My) for all k > K. We can then write for
any j > O:

Vi® =Y |Pup)|*= > [Pu@ud)|* =Y v;(Pup)
lvl=j, lul=k [vl=7, lu|=k lu|=k

where the second equality follows by noting that PvP = Pv for all words v because
Heomp is invariant under A, B. Hence we obtain for k > K:

Ve —Un® = > [P — v (Pwd)= Y | Pwe)|* — My | P(wt)|?

lw|=k lw|=k
=y (§)(1 — My) = Mg(1 — My).

‘We have obtained a contradiction.
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We are now able to conclude. Indeed, by Claim 2, for each ¢ > 0 there exists k > 1
such that ¥ (§) < &. Hence, for all v of length k there is 1, € Hcomp S0 that

le= > wmn)|® = v <e.
lv|l=k

Since 7, the vector of $;, with v-coordinate being 7.y (1,,), is in (Heomp) We deduce that the
distance d (&, (Dcomp)) between & and (Heomp) is smaller than e. Hence, d (£, (Deomp)) = 0
and thus § € (Hcomp) since the latter is topologically closed. ]

Remark 3.5. The above proposition motivates the terminology of complete sub-modules
and residual subspaces. Indeed, complete sub-modules contain the “complete” informa-
tion of I1($) while in contrast residual subspaces are the “residual” space left over from
complete sub-modules and do not contain any information of I1($).

3.2. Classes of vectors in P-modules

We now introduce two classes of vectors in $ that will play an important role in our
decomposition of Pythagorean representations. Recall we identify rays in € as an infinite
sequence of 0, 1 which is read from left to right.

Definition 3.6. Fix a P-module (4, B, ). Let p be a ray and £ a vector in $. For a
finite word w in binary digits we write wé to denote the action of the operator obtained
by replacing the digits of w with A, B and reversing the order (e.g. if w = 011 then
wé = BBAE). Recall py, is the first n digits of p for n € N. If £ is non-zero then we say:
* £is contained in the ray p if lim,— ool pr &l = €| Gie., || P&l = ||€] for all n € N);
* £ is annihilated by all rays if lim, . ||g&|| = O for all rays q.

The following observation explains the diagrammatic natures of the definitions of
above.

Observation 3.7. Consider a ray p and recall that Ver, denotes the vertices equal to all
finite prefixes p,, of p. A non-zero vector & €  is contained in p if and only if |7, (§)| =
lov )l = €]l for v € Ver, and 7, (§) = py(§) = 0 for v ¢ Ver,.

Example 3.8. Consider the P-module

()6 o))

Then e; = (1 0)7 € $ is contained in the zig-zag ray (01)® = 0101 ... as shown below.

e

/N

1
1

) 0
VN
0 e

VN

(%) 0

Similarly, the diagram shows that e, is contained in the ray (10)°°.
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Lemma 3.9. Let &, 7 € © be two vectors contained in rays p, q, respectively. If p # ¢
then &, n are orthogonal vectors.

In particular, if € € $ is contained in a ray, then p is eventually periodic and the length
of a period of p is smaller or equal to dim(9).

Proof. We will show the first statement by identifying &,  with their images inside I1($).
Since p # ¢, there exists n € N such that p, # g,. We have:

(E.m) = ([e, £, le, 77]) = ([[nv CD(l‘,,)S], [tnv q)(tn)n])

where recall ® is the functor ¥ — Hilb used to construct the P-representation. Now,
(tn, ®(t,)&) corresponds to a map Leaf(t,) — $ supported at p,. Since p, # g, we
deduce that (¢,, ®(z,)&) and (t,, ®(t,)n) have disjoint support. Therefore, (£, n) = 0.
Consider now a periodic ray p and £ € $ contained in p. If p has a period of length
m, then note that the ,, p are all distinct for 0 < n < m — 1. Since p,§ is contained in , p
we deduce that the p,& are mutually orthogonal giving m < dim($), and that no vector
can be contained in an aperiodic ray. |

We deduce below a strong dichotomy using the compactness of the unit ball of $.

Proposition 3.10. Let $ be a P-module. Then either:
e every non-zero vector in $ is annihilated by all rays, or

* there exists a vector contained in some periodic ray p.

Proof. Consider a P-module (A4, B, $). Assume that there exists a unit vector £ that is not
annihilated by all rays. Thus, there exists a ray p satisfying lim, o || pr&|| # 0. Since
both A, B have norm smaller than 1, the sequence (|| p»§||)»>1 is decreasing. It must then
converge to a certain £ > 0. The sequence (p,&),>1 is contained in the closed unit ball
of $ which is compact since dim($) < oo. Therefore, this sequence admits at least one
accumulation point 7. We necessarily have that ||5|| = £ and thus 7 is non-zero. We now
construct a new ray p satisfying || p,n| = € foralln > 1.

For any ¢ > 0 define /. the set of indices n > 1 satisfying that ||n — p,&|| < €. By
definition /; is infinite for any choice of ¢ > 0 (and obviously nested in €). If n < m we
write pit for the word in a, b satisfying p,, = p};' - pn. Observe that if n,m € I, and
n < m, then

In—punll < In— pméll + | pmé — py'nl
< In— pm&ll + | 23 (puE = 1)
<ln—pm&l + ol - || (pnE — )| < 2e.
This implies that

s’ nll = Il = llps'n = nll = lInll — 2.
Write xy, the kth digits of p. The previous inequality implies that

[xn1nll = Inl —2¢  foralln € I.



A. Brothier and D. Wijesena 372

From now on we choose ¢ > 0 small enough with respect to £ = ||n|| so that ||n| — 2¢ >
Inll/+/2. This implies that I > n > x,41 is constant. Indeed, if both digits 0, 1 would
appear as x,+1 and x,,+1 for n,m € I, we would contradict the Pythagorean equation of
(A, B) since we would have:

171 = 140> + 1Bl = lxa+1001? + |Xm+1001? > 0],
a contradiction. Let y; € {0, 1} be the digits equal to x,4+; for n € 1. Observe that
lyinll = linll —2¢ forall0 < & <e.

We deduce that ||y17|| = ||n]|. A similar reasoning can be applied to the second digits of
py (form > n 4+ 2 and n,m € I,) and the vector yn to prove that n 3 Iy = X, 45 is
constant equal to a certain y, and moreover ||y2y17| = ||7]. By induction we obtain a
sequence (y,)n>1 and thus a new ray p from it satisfying that

Il = llyk .. yanll = lInll -~ forallk = 1. =

3.3. Atomic and diffuse P-modules

The next lemma will permit to only consider periodic rays rather than all eventually peri-
odic ones.

Lemma 3.11. If & € 9 is contained in an eventually periodic ray p that is not periodic,
then § € Hyes.

Proof. Consider p and & as above. We have that p = v - w* for some words w, v. We
choose v with the smallest possible length n which is non-zero by assumption. By restrict-
ing to sub-modules we can assume that £ generates the P-module $. This means that $
is the span of all the u¢ with u any finite word in binary digits. Since £ is contained in
p we can restrict to words u = py for all kK > 0. Define K as the span of the pi¢ with
k > n. Lemma 3.9 shows that & is the span of p;€ with 0 < j < n. Therefore, KL s
residual. ]

Definition 3.12. For a P-module $ define the following subspaces:

Datom = span{§ € Heomp : § is contained in some periodic ray p}

Daitr 1= {€ € Deomp : & is annihilated by all rays}.

Then we say:
Datom (resp. Hgirr) is the atomic (resp. diffuse) part of H;
*  $is atomic (resp. diffuse) if Haom = Dcomp (1€SP. it = Dcomp)-

Theorem 3.13. The subspaces $a1om and g are sub-modules of 9. Furthermore,

Sﬁcomp = ‘6al0m S?) g)diff
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giving the decomposition
£ = Datom D Dditr © Dres and 0 = Oarom B Ouifr

where Oyom = O, and Ogifi := Og are the atomic and diffuse parts of o, respectively.

atom

Proof. Let & be a non-zero vector in $eomp. If & is contained in a periodic ray p, then
either A¢ is contained in the periodic ray ; p and B = 0 or vice versa. In contrast, if £
is annihilated by all rays, it is clear that A and B¢ are also annihilated by all rays. Thus,
this shows that £, and g are sub-modules.

For the second statement, since $¢omp decomposes as a direct sum of irreducible sub-
modules, it is suffice to show that every irreducible P-module is either atomic or diffuse.
Suppose & is an irreducible P-module which is not diffuse. Then by Proposition 3.10
there exists a vector 7 € & which is contained in some periodic ray p. Consider the sub-
module generated by n which must be equal to & by assumption of irreducibility of K.
Observe that for a binary word w, if w = p, for some n then wn is contained in the ray
n D, otherwise wé§ is zero. Thus, we deduce K is equal to the linear span of the vectors
{pr&}ren Where pi€ is contained in the periodic ray i p. Therefore, we can conclude &
is an atomic P-module. The rest of the theorem follows from Propositions 3.4. ]

Remark 3.14. Before continuing, it is important to caution the reader of the subtleties
present in the above definitions and explain the choice of definitions.

(i) By Lemma 3.11, the requirement for the ray to be periodic in the definition of
Datom 18 superfluous.

(i) If 9 is an atomic (resp. diffuse) P-module, then this does not necessarily imply
that $ = Hyom (resp. = Hir). For example, consider the P-module (A4, B, C?)
with Ae; = Bey, = e7 and Aey, = Bey = 0 (here ey, e, denote the standard basis
vectors of C2). Then Heomp = Cey, Hres = Ce, and the vector e; is contained
in the ray 0°°. Thus, $aom = Ce1 = Heomp and $ is atomic, but the atomic part
of $ does not coincide with $. An analogous example can be constructed for
diffuse P-modules. However, at the level of P-representations, we do define o to
be atomic (resp. diffuse) if and only if ¢ is equal to its atomic (resp. diffuse) part.
This is because the residual subspace 9, is “forgotten” by the P-representation.

(iii) The atomic and diffuse parts of $ have been defined to be sub-modules of $¢omp.
This is to ensure that ., and Sy are full P-modules and can be decomposed
into a direct sum of irreducible atomic and diffuse P-modules, respectively. It is
p0s51ble to alternatlvely define the atomic and diffuse parts of $ as sub-modules
Sf)dwm and -6dlff, respectively, of $ by using the same definitions for ., and
$Haifr, respectively, but instead taking £ € $ rather than £ € $eomp. This will
still yield a canonical decomposition $ = dem @ .Sf)d,ff @ 3, where 3 is some
residual subspace, and 0 = Gyom @ Gqitr. We have that Gyom = Gatom, Odift = Oditt»
and by Lemma 3.11, $0m = ‘galom- Additionally, 3 C $,s and -%diff D Hyier but
these inclusions may be proper.
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(iv) The notion of diffuse P-modules were first introduced in [22] where it was also
defined for infinite-dimensional P-modules using the same definition.

(v)  The notions of diffuse and atomic are automatically well defined for P-modules
but for P-representations this requires a non-trivial argument. One approach
consists in applying Theorem A and Corollary D. Indeed, if a representation is
diffuse (resp. atomic) then it is Ind-mixing (resp. not Ind-mixing) which is a
property preserved by the class of representations.

The remainder of the paper will solely study full atomic P-modules and atomic
P-representations.

We aim to provide a complete classification up to unitary equivalence for such objects.
3.4. Atomic sub-representations associated to rays

We now provide a decomposition of the atomic part of a sub-module using periodic rays.

Definition 3.15. For a P-module $ and equivalence class [p] of a periodic ray p define
the sub-module

ng’o]m := span{§ € Hyom : & is contained in g p for some k} C H
and define the sub-representation Ua[f(’)!n = H(ﬁgﬁ]m) C o :=I1(9).

Note that the space 6£{§,]m is indeed a sub-module since if £ is contained in the ray g p
then A is either O or contained in x4 p, and similarly for B£. Moreover, note that if p, g
are periodic and p ~ ¢, then Qgﬂn = 9£‘{§m. Hence, $5£fi,]m only depends on the class [p].

Proposition 3.16. Given a P-module $ with associated P-representation o we have the
following direct sum decomposition of the atomic part:

Datom = ea[p]g);[;ﬁ)]m and Oyom = ea[p]ca[t}(:ln

where the direct sum runs over all equivalence classes of periodic rays whose period has
length smaller or equal to dim($om ).

Proof. Lemma 3.9 shows that if [p] # [¢] then 85£ﬁ,]m, bg‘{jm are orthogonal sub-modules.
By definition, every vector in $yn, belongs in .7 for some periodic ray p. Therefore,
we immediately obtain the decomposition:

Hatom = @[p]*g‘[npo]m and Oyom = @[p]aa[tgln

where the direct sum runs over all equivalence classes of periodic rays. Lemma 3.9 implies
that if | p| > dim(©om), then HLZ = (0} n

3.5. Irreducible classes of atomic P-modules

We construct explicit representatives of irreducible classes of atomic P-modules.
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Notation 3.17. Fix W to be a set of representatives of all prime binary words w of length
d up to cyclic permutation (by prime we mean there does not exist a word v and n > 1 such
that w = v"). Set W := | J;.; Wy. Consider a prime word w € W,. Write {e1, ..., eq}
for the standard basis of C¢. Define matrices Ay, By € B(C?) such that (Aw)n+1n =1
if the nth digit of w is 0, otherwise (By)n4+1,, = 1forn =1,...,d (by (Aw)a+1,a4 We
mean (Ay)1,4). Set all other entries of A,, and B, to be 0. Thus, 4,,, By, represent partial
shift maps such that A,, + By, maps e; to e;+; with j modulo d. For ¢ € S; define D,
to be d by d diagonal matrix whose diagonal entries are all ones except for the last entry
which is ¢. We then set
M. = (AwDgy, By Dy, CY).

Proposition 3.18. Consider two atomic P-modules my, o, and mg g for any two prime
words w, W € W and unital scalars ¢, € Sy. Then we have the following:

(1)  my.g is an irreducible P-module and is equal to (Cd)gﬁ,]m where p = w* and

d = |wl;
(ii) If © is atomic and irreducible then $ >~ m,, ) for some v € Wy, A € S; with
d = dim(9);

(iil) mw,p and mg gz are equivalent if and only if (w, ) = (W, §).

Proof. Proof of (i). Let & = Z;jzl aje; € C be anon-zero vector and let k be the smallest
number such that o # 0. Define W to be the cyclic permutation of w so that the first digit
of W is the kth digit of w. Of the basis elements {e; };, only ey, is contained in the ray w>°.
Thus, W€ = arper. We now apply (Ay, + By) D, which is the shift map times D,. We
obtain all the basis elements e; proving that m,, , is irreducible.

Proof of (ii). Consider an irreducible and atomic P-module $. By Proposition 3.16
there exists v € Wy such that $ = Qg‘gm where d < dim($) and ¢ = v*°. Since $ # {0}
there exists & in it of norm one. Up to applying a sub-word of ¢ to & we may assume
that £ is contained in ¢. Lemma 3.9 implies that E := {£,¢1§, ..., qq—1&} are pairwise
orthogonal and of norm one. Moreover, g;£ is orthogonal to ¢;€ fori =1,...,d — 1.
Irreducibility of $ forces to have g;& = A£ for some A € S;. Hence, E is an orthonormal
basis of $. By taking matrices over & we obtain £ ~ m,, ;.

Proof of (iii). Let U : C!*! — C!®| be a unitary intertwiner between My, and mg 5.
Write d for |w| and note that d = |@| since U is unitary. If £ € C? is contained in a
ray p then the intertwining conditions gives that U£ must also be contained in p. This
immediately implies that W is some cyclic permutation of w and thus w = @ by definition
of W. Since Ay, + By, is the shift operator S we deduce that USD, = SDzU. Taking
the determinant yields ¢ = @. |

Corollary 3.19. The set of equivalence classes of irreducible atomic P-modules is in
bijection with W x S1. Geometrically, this is a disjoint union of circles indexed by W.

Remark 3.20. One could define a more general class of atomic P-modules by

My.p = (AwD, ByD,C%)
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where D is any d by d diagonal unitary matrix. However, we do not obtain more irredu-
cible classes of P-modules. Indeed, if U is the unitary diagonal matrix with j th coefficient
]_[l];ll Dy 1, then U conjugates m,, p with my, , where ¢ = det(D).

3.6. Examples of decomposition of Pythagorean representations

To conclude this section we provide some instructive examples of the decomposition of
P-modules.

Example 3.21. Consider the P-module m = (A4, B, C*) with A, B given by the below
matrices

1

i) e
A:()Qé)L’B:O-OO
7 0 —i 0 0

00 0 O 0O 0 0 O

The vector e; is contained in the ray £ := 0°° which is the ray going down the left
side of 5, while e,, e3 are contained in the zig-zag rays p := (10)* and 1 p = (01)*°,
respectively. Hence, Ce; and Ce; @ Ces are atomic sub-modules of C*. However, since
Aeyg =1/ V2e3 and Bey = 1 / /2eq, Cey is not a sub-module. Therefore, we obtain the
following decomposition:

4
Cct = (cHl & (CHP @ (CH.s,

where
(CHi = Cer,  (CHIEL = Cer ® Ces,  (C*)yes = Cea.

By Proposition 3.18, we obtain that the complete sub-module of m is equivalent to mg , ®
mio,e, Where ¢ is the scalar 1 € S;. By Proposition 3.4, we deduce

H(m) = H(mo,,,,) (&) H(ml()’(p).

The following section will provide a precise classification for the above sub-representations.

Example 3.22. Consider the P-module m = (4, B, C*) where

1 1 1 1
75?00 72?00
A0 300 L O 5 00
0 000 0 0 00
0 0 10 0 0 01

We have that
(C4)comp = Ce; @ Cey, (C4)res = Cey @ Ces.

Additionally, (C*)gisr = Ce; and (C*)yom = Cey as the vector ey is contained in the ray
r := 1°°. Note that Ce; @ Ce, forms a sub-module of m and is diffuse, but is not equal to
the diffuse sub-module of C* since it contains a residual subspace. Similarly, Ce; @ Ceq
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forms a sub-module of m and is atomic with e3 being contained in theray 0 - r = 0 - 1°°.
However, Cez C (C*)cs. The sub-module Cey is equivalent to My, Where w is the prime
word 1 and ¢ the scalar 1. Hence, we obtain:

TI(m) = T(my.,) ® T(1/4/2,1/4/2,C).

The diffuse representation TT¥ (1/+/2,1/+/2, C) is the Koopman representation of F
[0, 1] as explained in [20, Section 6.2].

4. Classification of atomic Pythagorean representations

In this section we describe and classify the atomic part of arbitrary P-representations. For
this section X denotes any of the Thompson groups F, T, V unless specified otherwise.

4.1. Family of one-dimensional representations of the Thompson groups and their
parabolic subgroups

Recall the family of parabolic subgroups X, := {g € X : g(p) = p} C X given by
periodic rays p = w® and let |p| be the length w. Each of these subgroups are proper
except for Foeo, F1o which are both equal to F. Define the family { Xg,p }oes, of one-
dimensional representations of X, given by

Xéﬁp(g) — (plog(lel)(g’(P)) forall g € X,

where log(2!?!) is the logarithm function in base 2!7! and recall the definition of the deriv-
ative from Section 2.2. To lighten notation, we shall drop the super-script X .
We consider the following class of monomial representations of X:

{Indj’((p Xg 1@ € 7 and p is an eventually periodic ray}.

Each of the representations are irreducible by Lemma 2.2. When (X, | p|) # (F, 1), then
the above representations are infinite-dimensional since X, C X has infinite index and
otherwise Indgp xh= )(g is one-dimensional. When (X, | p|) # (F, 1), then the equivalence

class of Indg((p x4 only depends on the ray p up to finite prefixes and ¢ (see Lemma 2.2).

Definition 4.1. Write £ := 0°°, r := 1°° for the endpoints of € and let d > 1 be a natural
number. Define:

RF = {Xi @Indgw )(;,'e tpeSi}uU {)(; @Ind,@o'r )(2," tp €Sy, @ # 1Y,
R} ={Ind¥ x5 :p=w’forwe Wy, p €51}, (X.d)# (F1).
4.2. Decomposition of atomic P-representations

Propositions 3.16 and 3.18 showed that all complete atomic P-modules can be decom-
posed into a finite direct sum of irreducible atomic P-modules of the form m,, , for



A. Brothier and D. Wijesena 378

some w € W, ¢ € S;. Hence, to classify all atomic representations, it is sufficient to
only classify the class of representations {0} wJweW,pes, Where aulf,w := 1Y (my,,) and
Y=FT,V,0.

Theorem 4.2. Tuke X = F,T,V, ¢ € S1, w € W and set p := w°. We have the following.
() If(X,|w]) # (F,1) then

X X .p
Opp = Inpr Xo-

) If(X,|w|) = (F,1) then

Guli(p = ) Ind?q xe

whereq =1-Lifw =0andq =0-r when w = 1.
(iii) A representation of X is atomic if and only if it is a finite direct sum of ones
belonging in R(}; ford > 1.

(v) If TX($) = ®q,j7q,j With g j € Rc)f and j is in some index set Jg, then
Zd,j d= dim(g)atom)'

Proof. Most of the proof consists in showing the first two statements. This will be achieved
by finding suitable cyclic vectors and by comparing matrix coefficients. Fix d > 1 and
consider an atomic P-module my, 4 = (Aw Dy, By Dy, Cd) for (w, ) € Wy x S and
take X in F, T, V. Hence, |w| = d. Recall that (e, ..., eg) is the standard basis of C¢.
We first assume that (X,d) # (F,1). Define p := w* and 0 := U,ff’w. Here we identify
w with a vertex in Ver. Observe that w lies in the ray p and by definition of m,, , we have

Tyn(e1) = ¢"eq and 1. (e1) = ¢ "eq foralln > 1.

Claim 1. The vector e; is cyclic for o.

It is suffice to show that 7 (e;) € span{o(X)e;} for all words v andall 1 < j <d.
Fix such v and j. Note that e; = @1, (e1) and moreover there exists a sub-word x of w
and a scalar A € S such that e; = t(e;). Moreover, if g = [¢t,«,s] € T and y, w are
corresponding leaves, then

o(g)(e1) = iy Twet,(e1) = oty (e1) = QAT Tx(e)).

Since T acts transitively on the non-trivial sdi’s and w is non-trivial we can choose y to be
anything we want. Taking y := vx yields the result. This proves the 7 -case. The V' -case
follows since T C V. Now, for the F-case we proceed in the same way. Since |w| # 1
and is prime we must have that w does not lie on any of the two endpoints of €. We then
use the fact that F acts transitively on sdi’s that do not contain an endpoint of €.

Denote 6, to be the cyclic representation of X, given by the sub-representation of
o x, (the restriction of o to the subgroup X)) generated by e;.

Claim 2. The representation 6, of X, is equivalent to x4 .

We shall make use of the description of X, using tree-diagrams as discussed in Sec-
tion 2.3.1. Let g := [t, k, 5] € X,. Since g(p) = p there exists i, j > 1 such that g restricts
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into p; -z — p; - z. Moreover, we must have ; p = ; p implying that |i — j| = |w|n for

some n € Z. We deduce that 6 (g)e; = ¢"e;. Hence, 0, is one-dimensional and equivalent
P

to Y-

Now consider g := [t,k, s] € X and set Leaf(t) = {v; }ies and Leaf(s) = {w; };ies. Let
Vg, wy be the leaves of ¢ and s, respectively, which the ray p passes through. Denote

¢:X >R, gr(o(ger.en)

the associated matrix coefficient.

Claim 3. If g ¢ X, then ¢(g) = 0.

By the discussion in Section 2.3.1, g ¢ X, if and only if k # [ (equivalently, v and w;
are not corresponding leaves of g) or k = [ and equation 2.1 is not satisfied. First suppose
k # . Then by equation 2.2:

¢(g) = <U(g)€1,€1) = Z(Twi (6‘1), Ty; (el))
iel
= > (tw(er). (1)) + (Tay (€1). Tuy (€1)) + (7 (€1). Ty, (e1)).

i#k,l

From Observation 3.7, t,, (e1) = 0 for i # k since v; ¢ Ver. Similarly 7, (¢1) = 0 for
J # 1. Thus, each of the terms in the above equation is 0 and we obtain ¢(g) = 0.

Then suppose k = [ and equation 2.1 is not satisfied for m = length(vg) and n =
length(wy). Subsequently, vg, w; are corresponding leaves and m — n ¢ dN. Then by a
similar reasoning as before we have

#(g) = Z(Tw,- (e1). T, (e1)) + (tyy (€1), Twy (€1)) = (pner. pmer).
i£k

Since m —n ¢ dN and the length of a period of p is d it follows that p,e;, pme; are
vectors contained in different rays. Therefore, (p,e1, pme1) = 0 by Lemma 3.9 and thus
$(g) = 0.

The three claims yield item (i).

We shall now treat the remaining case (X,d) = (F, 1). There are only two cases to
consider here: w = 0 or w = 1. We consider the first. The second one follows via a similar
proof. Set p =£ =0%and g = 1-£ = 1-0°. Note now that m,, , = (¢, 0, C). Write §
for a unit vector of C. The dense subspace K of J{ are then trees with leaves decorated by
scalars. Given g = [t, s] € F we have that

0(9) = (r) & = " k¢

where k = |y|,n = |x| and y, x are the first leaves of ¢, s, respectively. We deduce that
H; := C& C K defines a sub-representation o1 of o equivalent to y5.

Consider now the vector 7] (£). It is orthogonal to £ inside J{ and thus span a sub-
representation (03, H,) C (0, H) so that H; L H,. Consider any word v # 0" for all n. By
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transitivity of the action of F on sdi’s not containing endpoints there exists g = [t,s] € F
where v - 0 and 10 are corresponding leaves of (¢, s). Then, o(g)t{ (§) = v (§). The
space J{ is the closed linear span of the t;(§) with u any word. Moreover, note that
15 (§) = ¢~ €. From there we deduce that H = 3(; @ H. By slightly adapting the proof
of item (i) we deduce that o >~ Ind,@q X% This yields item (ii).

The third and fourth statements follow from the fact that: P-functors preserve direct
sums, the classification of all atomic irreducible P-modules from Proposition 3.18, and the
first two statements of the theorem. ]

We can now prove several useful corollaries.

Proof of Corollary C. Take X = F,T,V, ¢; € §1,w; € W and set p; := w° fori = 1,2.
It is elementary to show that all the parabolic subgroups X, C X are self-commensurated.
Hence, by the Mackey—Shoda criterion we have that Ind))gp )(g is irreducible. Moreover,
the representations Ind))((p )(gll , Indggp xé?% are equivalent if and only if either (wy, ¢1) =
(wa, @) or X = F and (Jw;i|, ¢;) = (1,1) fori = 1,2 (note we only require w, to be
a cyclic permutation of w;; however, by definition of W this implies w; = w,). Then
the corollary for F, T, V, and thus (9, immediately follows from Proposition 3.4 and The-
orem 4.2. ]

Recall that a representation of a group G is weakly mixing (resp. Ind-mixing) when it
does not contain any (resp. induction of a) non-zero finite-dimensional representation.

Proof of Corollary D. Consider a P-module m = (A4, B, %) and X = F, T, V. Using the
main results of our previous article we only need to prove the two reverse implications
that is: TTX (m) weak-mixing (resp. Ind-mixing) implies either X = T, V or lim, A"§ =
lim, B"& = 0 (resp. lim, p,& = 0 for all rays p) for all vectors & € $ [22].

Assume X = F and there exists £ € $ so that lim,, A7 # 0. Then the proof of Pro-
position 3.10 implies there exists a vector 1 € $ contained in the ray £ = 0°°. Then from
Theorem 4.2 we obtain that TT¥ (m) contains a one-dimensional representation Xé- Hence,
1% (m) is not weakly mixing. A similar proof works by swapping A4 by B and the end-
points of €. For X = T,V Theorem 4.2 shows that ITX () is always weak-mixing. This
proves the first statement of the corollary.

Assume now that there exists £ € $ and a ray p so that lim, p,& # 0. Applying
Proposition 3.10 again implies there exists a vector n € $ contained in a periodic ray gq.
By Theorem 4.2, T1X (m) contains a monomial representation induced from a parabolic
subgroup of X . Therefore, ITX (m) is not Ind-mixing. |

4.3. Manifolds of atomic representations

From the above proof of Corollary C we can deduce that for an atomic P-module &, if
Heomp = My, for some ¢ € 1, w € W then |w] is an invariant for IT1($). That is, if v
is any prime word (not necessarily in W) and A € S; such that $¢omp == m,, 4 then neces-
sarily |v| = |w| (i.e., they have minimal periods of same length). Hence, this provides a
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dimension number dimgp (I1($)) = dimp (9H) := |w| for both the atomic representation
and underlying P-module which we term as the Pythagorean dimension (P-dimension for
short). Observe the P-dimension coincides with the usual dimension of $comp as a com-
plex vector space. Using the results from the previous subsection, we obtain a powerful
classification result for atomic representations for each P-dimension.

Fix d > 1 and consider the Hilbert space C¢ equipped with its standard basis. Let
PM(d) be the set of all P-modules (4, B, C?) where now A, B are d by d matrices.
The group PSU(d) acts by conjugation on PM(d) and by definition two P-modules are
equivalent if they are in the same PSU(d)-orbit. Define now Irryom(d) C PM(d) as the
subset of irreducible atomic P-modules. It is of course globally stabilised by PSU(d).
Section 3.5 implies that {m., , : (w, @) € Wy x S1} forms a set of representatives of the
orbit space of Irtyem(d). Then Corollary C shows that if (X, d) # (F, 1), then IT¥ (M)
is irreducible for all (w, ¢) € Wy x S; and moreover ITX preserves equivalence classes.
All together this proves Corollary E.
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