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Isotrivial elliptic surfaces in positive characteristic
Pascal Fong and Matilde Maccan

Abstract. We study relatively minimal surfaces equipped with a strongly isotrivial elliptic fibration
in positive characteristic by means of the notion of equivariantly normal curves introduced and devel-
oped recently by Brion in [Pure Appl. Math. Q. 20 (2024), 1065-1095 and arXiv:2405.12020v1].
Such surfaces are isomorphic to a contracted product £ x% X, where E is an elliptic curve, G is a
finite subgroup scheme of £ and X is a G-normal curve. Using this description, we compute their
Betti numbers to determine their birational classes. This allows us to complete the classification of
maximal automorphism groups of surfaces in any characteristic, extending the result in characteris-
tic zero obtained in [Ann. Inst. Fourier (Grenoble) 74 (2024), 545-587]. When G is diagonalizable,
we compute additional invariants to study the structure of their Picard schemes.

1. Introduction

In a pioneer article [28], Kodaira classified the singular fibers of elliptic surfaces, i.e.,
smooth projective surfaces equipped with an elliptic fibration. Most of those surfaces are
of Kodaira dimension one, but may also be of negative or zero dimension. Their clas-
sification in positive characteristic, up to birational transformations, has been provided
in [7, 8]. The last reference focuses on characteristics two and three, in which the family
of quasi-hyperelliptic surfaces appears.

In this article, we study a family of smooth projective elliptic surfaces, over an alge-
braically closed field of positive characteristic, defined through the notion of equivariantly
normal curves introduced and developed recently by Brion in [10, 11]. This tool gives us
a new approach to study some elliptic surfaces.

The construction goes as follows: from a geometric point of view, we start with a rel-
atively minimal smooth projective surface S, equipped with a strongly isotrivial elliptic
fibration. To the extent of the authors’ knowledge, this notion is new, and we mean that
the generic fiber of the Jacobian is a base change of an elliptic curve over k (see Defi-
nition 3.10). To make this more concrete in terms of algebraic groups, we show that this
is actually equivalent for S to be equipped with a faithful action of an elliptic curve E.
Moreover, it is also equivalent to S being isomorphic to a contracted product

E x% X :=(E x X)/G,

for a diagonal action of G, where G is a finite subgroup scheme of £ and X is a G-normal
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projective curve. By that, we mean that every finite birational G-morphism with target X is
an isomorphism; this notion is a remedy to the fact that in positive characteristic the action
does not lift to the normalization in general. Notice that in general, the triplet (£, G, X)
is not uniquely determined. However, if S is not an abelian surface, then the elliptic curve
E is the largest abelian subvariety of the automorphism group Aut(S). If moreover S has
Picard rank two, then the fibers of the two contraction morphisms with source S uniquely
determine the finite subgroup scheme G C E and the G-normal curve X.

We aim to study the surfaces of this shape and determine some of their invariants. Those
surfaces are always relatively minimal, that means they do not contain any (—1)-curves.
Notice that this family of surfaces contains all the hyperelliptic and quasi-hyperelliptic
surfaces. In characteristic zero, the analogous construction provides families of surfaces
that have been studied intensively: in that case, the group G is always constant and the
curve X is always smooth. Quotients of products of curves by finite groups is a classical
topic, see, e.g., [4,5, 15,33, 38]. In the present work, we introduce a variant of this well-
known approach, by considering quotients by nonreduced finite group schemes in positive
characteristic, which yields new examples and a different geometric behavior. A crucial
point is that the curve Y := X /G is smooth and the elliptic fibration S — Y does not
admit a section in general.

From now on, we fix an algebraically closed field k of characteristic p > 0. The first
main result is that, using the explicit description of S as a contracted product, one can
determine its Betti numbers. This allows us to locate our surfaces in the classification of
surfaces in positive characteristic.

Theorem A. Let E be an elliptic curve, G a finite subgroup scheme of E acting on a
G-normal curve X with quotient Y := X /G. We denote by g(Y') the genus of the smooth
projective curve Y and S := E x@ X. Then S is a relatively minimal surface such that
k(S) = k'(X), where k' (X) denotes the Iitaka dimension of the dualizing sheaf wy, and
has the following Betti numbers:

© Dbi(S) =2+2g(Y),
o Dby(S)=2+44g(Y).
Moreover, the triples (S, X, Y) are classified as follows:

K(S) S X g(Y)  bi(S) b>(S)
—oo (Elliptic) ruled surface P! 0 2 2

0  Quasi-hyperelliptic Rational with a cusp 0 2 2

0  Hyperelliptic Elliptic curve 0 2 2

0  Abelian surface Elliptic curve 1 4 6

1 Properly elliptic surface Any other G-normal >0 2+2g(Y) 24 4g(Y)

In the case of abelian surfaces, X is an elliptic curve on which the finite subgroup
scheme G C E acts by translations. For properly elliptic surfaces, namely relatively min-
imal surfaces of Kodaira dimension one, X is any G-normal curve with arithmetic genus
Pa(X) = 2.
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Let us mention that the last row of the above table actually contains an infinite family
of examples of elliptic surfaces which are pairwise not birational to each other: indeed, as
justified in Remark 4.7, the genus g(Y') can be arbitrarily large, and p,(X) > 2 as well.
However, it is difficult to say more as there is no classification of G-normal curves.

To fully understand these elliptic surfaces, it is useful to determine some additional
invariants. In the case of elliptic surfaces with Kodaira dimension zero, a list of possible
configurations of invariants was recently obtained in [39].

The second main result of this paper deals with the case of quotients by a diago-
nalizable group scheme G C E. Under this additional assumption, we can extract more
information on the surface S and its Picard scheme.

Theorem B. Under the assumptions of Theorem A, assume moreover that G is diago-
nalizable. Then the strongly isotrivial elliptic fibration f:S — Y := X/G has only tame
fibers and the following equalities hold:

+ x(0s) =0,
* q(S)=1+g(),

and the Picard scheme Pic is reduced. Moreover, for every y €Y, the group Pic’(f~1(»))
is isomorphic to E. Finally, the elliptic surface S has Picard rank

p(S) = p(E x X) = 2 + rank Homg, (Alb(X), E).

Our article is organized as follows. In Section 2, we recall some classical definitions
concerning group scheme actions, as well as fundamental properties of G-normal curves.
In particular, in the case where G is a finite diagonalizable group scheme, Brion provides
a complete local description of G-normal curves in [11].

In Section 3, we first deal with the case of elliptic ruled surfaces, which has been
studied in [26,35,45]. An elliptic surface ruled over an elliptic curve E is either isomorphic
to P(Og @ £) for some line bundle &£ of finite order (notice that £ may be trivial, in which
case the ruled surface is the product E x P'), or to one among the Atiyah ruled surfaces
Ao and Ay, which are exactly the two indecomposable P!-bundles over E. The Atiyah
surface A; is obtained as the contracted product associated to an E[2]-action on E x P!,
To the extent of our knowledge, this was known in characteristic p > 3, we extend it here
to the case p = 2. In order to do this, we give an explicit description of the E[2]-action
on P! in the case of an ordinary elliptic curve, for which the two-torsion subgroup is
isomorphic to Z/27Z x p,. In the case of a supersingular elliptic curve, the subgroup E|[2]
is infinitesimal, and it is a nontrivial extension of a, by itself. In order to get an explicit
action on the projective line, we make use of results by [20,21].

We obtain that every elliptic ruled surface can be written as a contracted product
F xG P!, where F is an elliptic curve isogeneous to E such that F//G = E and G C F
is a finite subgroup scheme. This allows us to show that a smooth projective surface S is
isomorphic to a contracted product F x¢ X, where X is a G-normal curve, if and only if
S is a relatively minimal surface equipped with a strongly isotrivial elliptic fibration.
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Using the explicit description of the surface as a contracted product, we determine the
Betti numbers of S, using étale cohomology with /-adic coefficients. First, we show that S
and E x Y have the same Betti numbers. Then combining the comparison theorem, a result
of lifting to characteristic zero for curves, together with the proper base change theorem for
étale cohomology, we reduce the computation of Betti numbers to singular cohomology.

Next, we recall some generalities on the dualizing sheaf, which is a generalization of
the canonical sheaf and exists for G-normal curves. We show that the canonical ring of S,
namely

o0
R(S.ws) = P HO(S. ws™).
n=0
is a finitely generated k-algebra, which is isomorphic to the G-invariant part of the ring
of sections R(X, wy). Denoting respectively by « and «’ the Kodaira dimension and the
Iitaka dimension of the dualizing sheaf, this implies the numerical equality

k(S) = «'(X).

This leads to Theorem A.

A natural question is to describe the automorphism groups Aut(S). In the case of ruled
surfaces, the groups Aut(S) have been studied by Maruyama; and the cases of (quasi)-
hyperelliptic surfaces by Bennett—Miranda over C and by Martin as group schemes; see
[6, 34, 35]. The connected component of the identity, denoted by Aut’(S), is naturally
equipped with a structure of smooth algebraic group. Those automorphism groups play a
central role in the classification of connected algebraic subgroups of Bir(.S), particularly
those that are maximal with respect to inclusion within Bir(S), the so-called maximal
connected algebraic subgroups of Bir(S).

The pairs (S, Aut®(S)), where S is a relatively minimal surface and Aut®(S) is a max-
imal connected algebraic subgroup of Bir(S), are classified in [17] under the assumption
that k (S) <0, or that « (S') >0 and the characteristic of the base field is zero. If S is relatively
minimal and « (S) > 0, then Aut(S) = Bir(S); thus Aut®(S) is the unique maximal con-
nected algebraic subgroup. Moreover, Aut’(S) is an abelian variety of dimension at most 2.

Using Theorem A, we determine the birational classes of S according to the dimen-
sion of Aut®(S) and obtain the generalization of the above classification for «(S) > 0 in
positive characteristic.

Corollary C. The pairs (S, Aut’(S)), where S is a relatively minimal surface with k(S)
> 0, are classified as follows:

k(S) S Aut?(S)
0 Enriques surface Trivial
0 K3 surface Trivial
0 Quasi-hyperelliptic surface  Elliptic curve
0 Hyperelliptic surface Elliptic curve
0 Abelian surface Abelian surface
1 Properly elliptic surface Elliptic curve or trivial
2 General type surface Trivial
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If S is an abelian surface, then Aut’(S) = S acts on itself by translations. Moreover,
Aut®(S) is an elliptic curve E if and only if S is a contracted product E x® X where E
acts on the first factor, G C E is a finite subgroup scheme and X is a G-normal curve but
not an elliptic curve on which G acts by translations.

Apart from elliptic ruled surfaces, for which we are able to consider explicit quotients
by an arbitrary finite group scheme, we restrict ourselves to the case of quotients by a
diagonalizable finite subgroup scheme G C E. In that case, we can use representation
theory tools and thus exploit the local description given by [11].

In Section 4, we assume that G is diagonalizable. Using techniques developed in [11],
in particular the formula a la Hurwitz for the quotient 7: X — Y, we describe a relation
between the Kodaira dimension of S, the genus of ¥ and the number of multiple fibers,
as follows.

Proposition D. Under the assumptions of Theorem A, assume moreover that G is diago-
nalizable and infinitesimal. Then k(S) = 1, i.e., S is a properly elliptic surface, if one of
the following conditions is satisfied:

(1) either g(Y) > 2,
(2) or g(Y) = 1 and there is at least one multiple fiber,

(3) or Y = P! and there are at least five multiple fibers (four multiple fibers if p > 3,
three multiple fibers if p > 5).

Making use of the dualizing sheaf of the G-normal curve, as well as the Hurwitz
formula for the quotient X — Y, we compute the irregularity q(S) and the Euler char-
acteristic y(Og). Using the notions of G-linearized line bundles and of Albanese variety,
we are able to study the Picard scheme of the surface S; in particular, we see that it is
smooth and that the Picard rank only depends on the G-normal curve X and on the ellip-
tic curve E. These results are summarized in Theorem B above.

Conventions. We work in the setting of algebraic groups over an algebraically closed
field k of characteristic p > 0: by (algebraic) group we mean a group scheme of finite
type over k, which is not necessarily reduced. If G is an algebraic group, we denote by
X*(G) its character group, i.e., the group of homomorphisms G — G,. By variety, in
particular curve and surface if respectively of dimension 1 and 2, we mean a separated
integral scheme of finite type over k. We assume all of our varieties to be projective,
unless otherwise stated.

2. Preliminaries

2.1. Algebraic group actions

First, let us recall some classical definitions about algebraic group actions. For an algebraic
group G, a G-scheme is a scheme X over k equipped with a G-action

aaGxX—X, (g,x)—g-x,
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where the morphism « is also defined over k. If the group scheme G is finite, then the
action morphism « is finite and locally free. The G-action is said to be faithful if every
nontrivial subgroup acts nontrivially on X.
The stabilizer Stabg of the action is the preimage of the diagonal of the graph mor-
phism
GxX—->XxX, (g.,x)—(x,g-x).

For Y a closed subscheme of a scheme X, we say that Y is G-stable if G- Y =7 ,i.e.,if
the restriction of @ to G x Y factors through Y. When G is finite and x € X (k), we denote
by Stabg (x) the projection onto G of the fiber of Stabg above the point (x, x), and by
G - x the orbit of x, which is isomorphic to G/ Stabg (x) as a scheme.

We have that x is G-stable if and only if it belongs to X © (k), the set of rational fixed
points. On the other hand, we say that the action is free at xo € X (k) if

Stabg (x9) = 1.

We denote by X, the set of free points of X, which is a G-stable open subset of X .
We say that a morphism of G-schemes f: X — Y is G-equivariant if

flg-x)=g-f(x) onG xX.

Let us recall the following result, which is fundamental in equivariant birational geometry;
see [12, Section 4.2].

Theorem 2.1 (Blanchard’s lemma). Let g: T — W be a proper morphism of schemes of
finite type such that g..01 = Ow. Assume that T is equipped with an action of a connected
algebraic group H. Then there exists a unique H -action on W such that the morphism g
is H-equivariant.

The automorphism group Aut(X) of a projective variety has a canonical structure of
a reduced (equivalently, smooth) group scheme, locally of finite type over k. With respect
to this structure, we denote as Aut® (X) its connected component of the identity, which is
an algebraic group. Our focus will not be on the group scheme structure, thus we mainly
consider it simply as an abstract group.

Corollary 2.2. Under the assumptions of Theorem 2.1, the morphism g: T — W induces
a homomorphism of algebraic groups

g« Aut®(T) — Aut®(W),
such that for every f € Aut®(T), the following diagram commutes:

AN

T
. |

~

oQ

S
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Now assume G to be finite over k and let |G| be its order, which is defined as being
the dimension of O (G) as a k-vector space. Then G lies in a unique exact sequence

1 - G%— G — n9(G) — 1 2.1

where G is infinitesimal and 7¢(G) is a finite and constant group.

Lemma 2.3. Let X be a G-scheme of finite type such that every G-orbit is contained in
an open affine subset. Then there exists a categorical quotient by G,

X =Y :=X/G,

where Y is a scheme of finite type. The morphism p is finite and surjective, having as
set-theoretic fibers the orbits of G. If in addition the action is free, p is a (left) G-torsor.
Conversely, if the categorical quotient exists and is finite, then X is covered by open affine
G-stable subsets.

The above result is [16, II1.2.6.1] and guarantees the existence of quotients in our case:
if X is a G-curve, then the categorical quotient always exists.

Lemma 2.4. Let G be a finite and linearly reductive group. Then the operations of taking
quotients and of taking closed G -stable subschemes commute.

Proof. Let X be a scheme equipped with a G-action and having a quotient by G that we
denote by
mX —Y.

Let Z be a G-stable closed subscheme of X. The map j making the diagram below
commute
X ————Y

] d

Z—— 5 7/G

is well defined; we have to prove that it is a closed immersion.

Since the map r is finite, it follows by Lemma 2.3 that we can cover X by G-stable
affine open subsets and hence assume X = Spec A to be affine. Let I be the ideal defining
the closed subscheme Z, then we have the following short exact sequence of G-modules

0—-1—-A— A/ =0(Z)— 0.
Then one can take invariants, which is exact since G is linearly reductive; this yields
019 4% =o)L 02)° =0(Z/G) -0,

where the map y is exactly given by the morphism j. Thus, the latter is a closed immer-
sion. ]
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2.2. Equivariantly normal curves

We gather here some material on G-normal curves, which can be found in [10]; the notion
of G-normality is introduced in this paper, to deal with the fact that the action of a finite
group scheme on a variety does not lift to the normalization in general.

Definition 2.5 ([10, Definition 4.1]). A G-variety X is said to be G-normal if every finite
birational morphism of G-varieties f:Y — X is an isomorphism.

By [10, Proposition 4.2], every G-variety X admits a G-normalization, i.e., a G-
normal variety X' together with a finite, birational, G-equivariant morphism ¢: X' — X,
such that for any finite birational morphism f: Z — X of G-varieties, there exists a unique
G-morphism ¥: Z — X’ making the following diagram commutative:

X/
/ lw
Zﬁx

By definition, the G-normalization is unique up to unique G-equivariant isomorphism.

Lemma 2.6 ([10, Lemma 4.7 and Corollary 4.8]). Let X be a G-normal variety. Then its
normalization t: X — X is bijective and purely inseparable; moreover, the quotient X /| G
is normal.

Lemma 2.7 ([10, Corollary 4.14]). For a G-curve X, the following conditions are equiv-
alent:

e X is G-normal;

* the sheaf of ideals I g.x is invertible for any closed point x € X;

* the sheaf of ideals Iz is invertible for any closed G-stable subscheme Z.

Moreover, every G-normal curve is a locally of complete intersection.

Definition 2.8. Let 7 be a right G-torsor and F a G-scheme such that every G-orbit is
contained in an open affine subset. Then the contracted product of T and F is the scheme

T x% F:=(TxF)/G, whereg-(t,x)=(tg"'.g-x),
which is equipped with two projections:
TxCF—-T/G, Tx°F—F/G.

The first one is a fibration, i.e., a morphism locally trivial for the fppf topology, with
fiber F.

In particular, in this text we consider the case where G is a subgroup of an algebraic
group G”. For a subgroup K C G, we denote |K| the order of K in other words, the
dimension as a k-vector space of the corresponding Hopf algebra.
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Proposition 2.9 ([10, Proposition 4.17]). Let G be a subgroup scheme of a smooth con-
nected algebraic group G°. Then the contracted product

§S=G6"x%Xx
exists for any G-curve X. Moreover, the curve X is G-normal if and only if S is smooth.

2.3. Local description in the diagonalizable case

Let us assume the group G to be diagonalizable in this section; the following construction
isdueto [11, Section 5]. Let us consider a G-normal curve X ; then to every non-free point
x € X(k) we associate the subgroup

H(x) := Stabg (x) C G,

together with a weight v(x) of G such that its restriction to H(x) generates the character
group of H.Moreover, let n(x) denote the order of H(x). Then, let

U(x) = Xy U {Z €X:H(z) = H(x)and v(z) = v(x)}.

In particular, X is the union of all such open G-stable subsets (in higher dimensions, the
equality only holds in codimension one). By [11, Theorem 1], we have the following:
the group H(x) is cyclic; moreover, on the open G-stable subset U = U(x), the quotient
morphism factors through

v—* suH—Y UG
where ¢ is a cyclic cover of degree |H|, and v is a G/H -torsor. A G-normal curve X
is said to be uniform if it can be obtained as the Zariski closure of some U(x) as above.
Moreover, by [11, Proposition 6.5] we have the following: if the Picard group of Y has
no |G |-torsion, then there is a bijection between uniform G-curves over Y and reduced
effective divisors on Y with class divisible by |G]|.

2.4. Picard groups

For a variety X, we denote by Pic(X) the group of isomorphism classes of line bundles
over X. Let us recall a few facts concerning the Picard scheme of a projective variety;
see [27, Sections 4 and 5].

Definition 2.10. Let B be a locally Noetherian scheme: we consider the relative Picard
functor of a B-scheme Z, is defined as

Picz,p: T — Pic(Z x T)/ Pic(T),

where T is a B-scheme. If the associated sheaf for the fppf topology is representable by
a scheme, we denote it as Pic,,p and call it the (relative) Picard scheme of Z over B. If
B = Spec k, we denote it simply as Pic,, and call it the Picard scheme of Z.
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Theorem 2.11. If Z is projective over k, then the Picard scheme exists and it is locally
of finite type. If moreover Z is smooth, then the neutral component IE% of the Picard
scheme is projective.

If Z = C is a projective curve, then Pic is smooth. If moreover C is of genus at least
1, then there is a natural closed embedding

C < Pice

x — Oc(x).

The above statement can be found in [27, Corollary 4.18.4, Theorem 5.4, Remark 5.26].
We denote as Pic®(X) the connected component of the identity of the Picard group. The
Néron—Severi group is the quotient NS(X ) := Pic(X)/ Pic®(X) and is a finitely generated
abelian group; its rank is called the Picard rank of X and is denoted by p(X).

Lemma 2.12. Let X be a G-normal curve with G infinitesimal and let t: X — X beits
normalization. Then the map
*. p: .0 -0
T :Picy — &5{

is surjective, with kernel a unipotent group.

Proof. This is a special case of [32, Lemma 7.5.18], applied to the G-normal curve X,
for which t is a bijective morphism by Lemma 2.6. The (reduced and projective) curve
with ordinary singularities associated to X is isomorphic to the smooth curve X. Thus,
the kernel of t* is unipotent of dimension py(X) — pa ()? ). |

3. Isotrivial elliptic surfaces and their Betti numbers

3.1. Elliptic ruled surfaces

Definition 3.1. Let S be a surface.

(1) We say that S is a geometrically ruled surface if there exists a surjective morphism
m:S — C to a smooth curve C such that each fiber is isomorphic to P!.

2) If moreover there exists a morphism S — D to a smooth curve D such that the
p
generic fiber is a smooth curve of genus one, we say that S is an elliptic ruled
surface.

For every geometrically ruled surface S, there exists a rank-2 vector bundle & such
that P(&) = S (see, e.g., [24, V. Proposition 2.2]). Therefore, the fibration 7: S — C is
locally trivial and we say that 7 is a P!-bundle over C.

A P!-bundle P(&) admits two disjoint sections if and only if & is decomposable,
i.e., if and only if & is isomorphic to the sum of two line bundles. In that case, we also
say that P(€) is decomposable; else, it is indecomposable. By [3, Theorem 11], there
exist exactly two indecomposable P!-bundles up to isomorphism over an elliptic curve E,
which we denote by A and A;. They are respectively obtained by the projectivization of
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the indecomposable rank-2 vector bundles &; o and &, ;, which are of degree zero and
one, and which fit into the short exact sequences

OHOEHSZ,OHOE 4’0,
0— O — &, — Og(z) = 0;

where z € E, and the isomorphism class of A; is independent of the choice of z.

Remark 3.2. Elliptic ruled surfaces are classified in [35, Theorem 4]; see also [45, Propo-
sitions 2.10 and 2.15]. A ruled surface 7: S — E over an elliptic curve is an elliptic ruled
surface if and only if S is isomorphic to one of the following:

(1) P(Og & £) for some £ € Pic(FE) of finite order,
(2) Ao,
(3) A;.

Over an algebraically closed field of characteristic 0, the ruled surface Ay is not elliptic.
The ruled surfaces P(Og @ £) and Ay are elliptic if and only if the neutral components
of their automorphism groups are anti-affine: see [12, Examples 1.2.3 and 4.2.4]. From
the point of view of birational geometry, this can be understood as follows. The cone of
curves of such a surface is two-dimensional: one extremal ray corresponds to the struc-
tural morphism of the P!-bundle, while the other one corresponds to the contraction of
the numerical class of a minimal section. However, every curve lying in one of these sur-
faces intersects a minimal section of self-intersection zero; see, e.g., the proof of [18,
Lemma 2.14]. This excludes the existence of a contraction from these surfaces to a curve,
other than the two structural rulings.

By the results of [45, Theorem 1.1] (see also Remark 4.4 of loc.cit.), the surfaces
considered in [26, Examples 4.7, 4.8, 4.9] are isomorphic to the elliptic ruled surfaces of
Remark 3.2 (1) and (2).

We recall the constructions of Katsura and Ueno. In case (1), when &£ is of order p,
the surface is isomorphic to F x#» P!, where F is an elliptic curve such that F/u »=E.
In the next lemma, we recover this construction for any line bundle £ of finite order. In
case (2), the surface is isomorphic to F x¢ P!, with E = F/G and G = Z/pZ or oy,
depending whether the base elliptic curve is ordinary or supersingular.

Lemma 3.3. Let E be an elliptic curve and £ € Pic(E) of order n > 2. There exists an
elliptic curve F and an action of w,, on F x P! such that

PO ® L) =F x*P' and E =F/pn,.

Proof. Since Pic’(E) = E admits an element of order n > 2, either E is ordinary or p
does not divide n. This implies that E[n] = (Z/nZ) x p,, where the constant cyclic group
of order n is generated by £. We set F' = E/(Z/nZ), which is also an elliptic curve; by
construction the following is exact:

0—Z/nZ = (£) — E =Pic°(E) — F = Pic’(F) — 0.
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By duality, this yields a short exact sequence
0—-mp,—FSE—O.
Next, let us consider the following commutative diagram:

1 > G > GL, > PGL, —— 1

|

1 > Gy > I, . > 1,

where ft,, denotes the preimage of i, in GL, and acts diagonally on F x P! via w,,.

Write n = mp" with m and p coprime. Then w,, = p,, X pt,- and the restriction of i,
above ., is a central extension H of u,, by G.,. By [16, III, Section 6, Corollaire 4.4],
such extensions are classified by

Ext'(#,,, Gm) = Ext' (Z/mZ,G,,) = k*/k*™ =0,

since k is algebraically closed and m is coprime to p. Hence H = p,,, X Gy, and I, is
an extension of the infinitesimal group p,- by H. By [16, 1V, Section 1, Proposition 4.5],
such extensions are classified by

Ext' (-, H) = 0;

thus t,, = ., X Gp,. In particular, the group i, is diagonalizable as well.

Without loss of generality, the embedding of i, into GL, can be see as a faithful
action of Jt,, on the two-dimensional vector space ko @ k. With this notation, we mean
that the action is trivial on the first copy of k, while the second factor is acted on via the
character «: it,, — Gyy,. The line bundle £ is then isomorphic to F x*» k,, where the
structural morphism is identified with the projection on F/,, = E. This implies that

P(OF @ L) = F xP1 Pl(ko @ ko) = F x* P (ko @ ke)
and we are done. ]
Going back to the Atiyah surface A;, by Theorem 2.1, the structural morphism
w:A — F
induces a morphism of connected algebraic groups
s Aut®(A)) — Aut’(E) = E,

which is surjective and has a finite kernel by [35, Theorems 2 and 3]. This implies that
Aut®(A;) is isomorphic to an elliptic curve F; so by [10, Proposition 5.6], there exist a
finite subgroup scheme G C F and a G-normal curve Y such that A; is isomorphic to the
contracted product F x% Y.
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If p # 2, then the two torsion subgroup E[2] C E is isomorphic to (Z/2Z)? and A; is
isomorphic to the contracted product

E XE[2] Pl,

where E[2] acts on P! via z — +z%1: see, e.g., [17, Section 3.3.3].

To the extent of our knowledge, there is no description in the literature of A; as a
contracted product when p = 2. In that case, the two torsion subgroup scheme E[2] is
not constant. If E is an ordinary elliptic curve, then E[2] = Z/2Z x p,. Else E is a
supersingular elliptic curve and E[2] is an infinitesimal group scheme which is a non-
trivial extension of a, by itself (an explicit description is given in [21, Lemma 4.2]).

Lemma 3.4. Let E be an elliptic curve. Assume p # 2, or p = 2 and E is ordinary. Then
E[2] acts faithfully on P! via the embedding

Z/2Z x p, — PGL,

t e — ¢ 0

%) 0 1

0 1
IEZ/ZZ}—>(1 0).

This induces a diagonal action of E[2] on E x P! and the contracted product E xF (2] pt
is isomorphic to the ruled surface A;.

Proof. In PGL,, the following equalities hold:

t 0\(O0 1Y (0 ¢\ (0 1Yy (0 I\ (t O

o 1J\1 o/ \1t o/ \r o/ \1 0o)\0o 1)’
ast € i,. This yields the embedding of E[2] in PGL, given in the statement, and hence
an action of E[2] on P!. We obtain the following cartesian square:

ExP! -2 E xEDRIpI

lpl 17

where p; denotes the projection on the first factor, p the projection onto the first factor
modulo E[2], while g and 7 are the quotient maps by E[2].

Now we claim that E xE[I P! is isomorphic to A;. First, assume by contradiction
that p admits two disjoint sections o, and o,. Then their pullbacks 7 *o; and 7*0, are
disjoint sections of the trivial P!-bundle p;; moreover, they are given by precomposition
by 7; hence, they are E[2]-invariant constant sections of the trivial bundle p;. As the
group E[2] acts on P! without fixed point, the constant sections of p; are not obtained by
pulling back sections of 5. Hence we get a contradiction, which shows that the P!-bundle
p is indecomposable.
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Moreover, the P!-bundle j has no section of self-intersection zero (this may be seen
using the formula in [14, Proposition 1.10]). In particular, the P!-bundle  is not isomor-
phic to Ag — E, as the latter admits a unique minimal section of self-intersection zero:
see, e.g., [17, Proposition 2.21]. [

Remark 3.5. Replacing the two-torsion subgroup scheme by its reduced structure in the
proof above does not give the ruled surface A;. Instead, this construction is similar to [26,
Example 4.7] and we obtain the ruled surface Ay over an ordinary elliptic curve E. Indeed,
set F':= E/u,. Then the reduced component of the two torsion subgroup F[2]eq =
Z./27 acts on P! via z +— z*1. Also, by duality, E = F/F[2]q. This yields the following
cartesian square

FxP' —L 5 F xFlkapl

[ |

F—"  E:= F/F]2a.

Since the trivial P'-bundle pr admits a unique (Z/2Z)-invariant constant section, we
obtain by the projection formula that pg has a unique minimal section of self-intersection
zero; see, e.g., [14, Proposition 1.10]. Therefore, pg is an indecomposable P!-bundle
isomorphic to Ag or A;, but the minimal sections of the ruled surfaces Ay and A; have
respectively self-intersection zero and one (see, e.g., [17, Propositions 2.18 and 2.21]);
thus,

F xFllapl — p,.

In the following computation, the parameter 1 € E[2] is intended in a functorial sense:
for a k-algebra R, we consider ¢ € E[2](R).

Lemma 3.6. Assume p =2 and let E be a supersingular elliptic curve. Then the subgroup
scheme E[2] is a nontrivial extension of a, by itself. Moreover, E[2] acts faithfully on P!
via the embedding

E[2] — PGL,

l»—>1 t2
t 14+13)°

This induces a diagonal action of E[2] on E x P, and the contracted product E xE[21 p1
is isomorphic to the ruled surface A;.

Remark 3.7. The morphism in the statement above, since we are dealing with infinites-
imal group schemes, needs an additional argument to be well-defined: if R is a finitely
generated k-algebra, then PGL,(R) is not isomorphic to the quotient GL,(R)/R>; how-
ever, the natural short exact sequence describing PGL, as a quotient of GL, by G, implies
there is an inclusion of GL,(R)/R* into PGL, (R).
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The ideas of the proof below come from [20, Example 5.11] and [21]. We write here a
less technical description which avoids the formalism of Hopf algebras, suggested as well
by Gouthier and Tossici. Lemma 3.6 is due to them and is also partially contained in the
PhD thesis of Gouthier.

Proof of Lemma 3.6. Since the 2-torsion group E[2] is a subscheme of E of length four
with reduced subscheme a point, so it is isomorphic to

Spec (k[t]/t*)

as a scheme. By [16, III, Section 6, Corollary 7] applied to the case of an algebraically
closed base field k, there are exactly four isomorphism classes of commutative unipotent
infinitesimal groups obtained as extensions of a; by itself, corresponding to the cases
(0,0), (1,0), (0,1) and (1, 1) in the statement of the Corollary. In particular, these corre-
spond to &y X @3, to &4, tO

ker(F: W, — W) 3.1

and finally to a fourth group which we do not need in this context. Concerning notation,
W, denotes the ring scheme of Witt vectors of length two over k, while F is the Frobenius
homomorphism. Next, let us consider

G = ker(F — V: W, — W>) = Spec (k[To, T1]/(Ty . T{ — To)).

where V' is the Verschiebung homomorphism. In particular, the group law is given by the
one on W,, namely

(0. t1) B (s0,51) = (to + S0, 11 + 51 + 1050).

Both the group G and E|[2] are nontrivial extensions of &, by itself. Moreover, they cannot
be isomorphic to a4 nor to the Frobenius kernel (3.1), since the Verschiebung morphism
of these latter groups is trivial, while the one of G and of E[2] are not. Hence, both are
isomorphic to the fourth group, and in particular E[2] = G.

Since in E[2] we have the equality 7o = ¢, we can just work with the second coordi-
nate and simply call it # = #;. Thus, the group scheme structure is as follows:

E[2] ~ Spec (k[t]/1*), tBs=1+s+17s>

We can verify that the embedding into PGL; given in the statement respects this group
law. On one hand, we have

1 12 + 52
t B . 3.2
SH(z+s+z2s2 1413 + 512 4 521 + 3 3-2)

On the other hand,

1 12 1 52 B 1+ 1% s2 412 + 1253
t 1+23)\s 1+453)  \t+s+s3 ts24+1+3+53+1353)°
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Since we are in PGL,, we can multiply the last matrix by the nonzero scalar 1 + 2s.
Using the fact that 4 = s* = 0, we get exactly the same thing as in (3.2).

Therefore, the subgroup scheme E[2] C E acts diagonally on the product E x P!, and
as in the proof of Lemma 3.4, we obtain the following commutative square:

ExP! 1 E xERIp!

lpl 17

E—~ 5 E/E[2].

Since the action of E[2] on P! has no fixed point, it follows that the constant sections
of p; are not obtained by pulling back sections of p. Thus there is no section of p of
self-intersection zero, and this implies once more that £ xERlpl — Ar. [

Remark 3.8. The constructions of Lemmas 3.4 and 3.6 give an explicit embedding of
E[2] into PGL;. An alternative argument for the existence of such embedding is the fol-
lowing: E[2] commutes with the sign involution o on E, so E[2] acts faithfully on the
quotient E /o = P1.

The following proposition seems to be a folklore result, known by the experts of sur-
faces in positive characteristic, but we cannot locate any reference.

Proposition 3.9. Let S be a ruled surface. Then S is elliptic if and only if there exist
an elliptic curve F and a finite subgroup scheme G C F such that S = F xG P!, In
particular, S is equipped with a faithful action of the elliptic curve F.

Proof. By Remark 3.2, S is elliptic if and only if S is isomorphic to P(Og & £) with
£ € Pic®(E) \ {Of} of finite order, or Ag or A;. Each of these surfaces can be expressed
in the form of a contracted product as in the statement, by [26, Examples 4.7 and 4.9] (see
also Remark 3.2) for the case S = Ay, and Lemmas 3.3, 3.4 and 3.6 for the remaining
cases. |

3.2. Strongly isotrivial elliptic fibrations
Let S be a smooth projective surface and Y be a smooth projective curve with generic
point 7.
Definition 3.10. A morphism
f:S-Y

is a strongly isotrivial elliptic fibration if there exists an elliptic curve E over k such that

@g’/Y)n =E XSpeck Speck(Y).

In particular, such fibration is automatically an elliptic fibration, i.e., the generic fiber
is a torsor under an elliptic curve.

We would like to work with a regular action of an elliptic curve on this family of
surfaces; it turns out that it is enough to assume minimality in order to have one.
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Lemma 3.11. Let S as above be relatively minimal. Then the action of E on the generic
fiber of S induces a regular faithful action of E on S.

Proof. Tfk(S) < 0, the statement follows from Proposition 3.9. From now on, assume that
k(S) = 0. Then Picg” /y 1s an elliptic curve over 7 and it comes equipped with a natural
action on
~ 1
Sn — Esn/n .

By the hypothesis on f, there is an elliptic curve E (over k) such that
Egn/n =E XSpeck Spec k(n).

Thus we can reformulate the above by saying that the curve Ej, acts on Sy; by the asso-
ciativity of the fiber product, this yields a morphism

E Xspeck Sy — Sy (3.3)

The last map is an action of E of S;: indeed, E, acts on Sy, and all the isomorphisms
considered just above commute with taking products. Next, let us show that this action
extends to a non-empty open subset of S. Let I' be the graph of (3.3) inside of £ x § x S
then we have the following commutative diagram, where pry is the composition of the
projection on S and the fibration f.

N— ExSxS

o
l AS

Y <—— ExS
pry
By construction, o is an isomorphism over £ x Sy; hence there exists an open subset

ExSDUDEXS,

such that o defines an isomorphism over U (namely, the open subset U on which the
birational inverse of ¢ is defined). Let Z := (E x §) \ U; then as underlying sets:

|Z] CI(E x S)\ (E x Sy)l.

Therefore, pry (Z) C Y does not contain the generic point 7; hence, it must coincide with
a finite subset W of Y. The open subset U then contains E x f~1(Y \ W); hence there
is a well-defined morphism

wEx ffYY\w)—S

i.e., a rational E-action on S. Composing o with f yields an E-invariant morphism;
hence, there is a unique factorization through Y \ W. Thus, E actson f~1(Y \ W).

By the Weil regularization theorem, there exists a birational model 7" of S on which
E acts regularly. By [9, Corollary 3], we may assume that 7" is normal and projective.
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Replacing by its desingularization, which is obtained by successive blowups of the singu-
lar points and normalizations (see [31, Remark B p. 155]), we may furthermore assume
that 7" is smooth. Contracting successively the (—1)-curves, we arrive to a relatively min-
imal surface equipped with a regular action of E. Since «(S) > 0 and S is relatively
minimal, it follows that the obtained surface is isomorphic to S itself; hence, the action of
E on the non-empty open subset f ~1(Y \ W) extends to the whole surface S, and we are
done. |

Thanks to Lemma 3.11, from now on we can (and we do) place ourselves in the follow-
ing setting: let £ be an elliptic curve, acting faithfully on a smooth projective surface S.
As illustrated in [10, Section 5], there exist a finite subgroup scheme G C E and a G-
normal curve X such that
S =Ex%X,

where the isomorphism is E-equivariant.

Remark 3.12. Let us fix the following notation for the maps involving S

ExX 59 h L E/G
pry f

X —" 5Y:=X/G

The quotient morphism ¢ is a G-torsor, hence it is a finite morphism. The map 4 is a
surjective morphism locally trivial for the fppf topology, with fiber X, and whose target
is an elliptic curve isogenous to E. The morphism 7 is the quotient by the group G, it
restricts to a G-torsor

Xg — Yy

over the largest open G-stable subset Xi on which G acts freely, and Yy is open in Y.
As noticed in the proof of [10, Proposition 5.6], the G-action is generically free (which is
not automatically implied by faithfulness of the action, since we are dealing with group
schemes) so that Xy, is non-empty. Finally, the map f is the categorical quotient by E; itis
an elliptic fibration with fiber E over Yy, while on the complement it might have multiple
fibers; we describe these fibers in Proposition 4.3 below.

Remark 3.13. A crucial point to notice is that the elliptic fibration f:S — Y does not
admit a section in general. Let us assume such a section ¢ exists, then it defines a map
£ E xY — S, defined by the action of E and by o. Since the action of E is generically
free, i.e., it is free at the generic point 7, the restriction £ x n — §, is an isomorphism.
Thus, the morphism £ is a birational morphism and decomposes as a product of contrac-
tions of (—1)-curves. The surfaces £ x Y and S being minimal, this implies that £ is an
isomorphism between S and E x Y, which is in general not the case.
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Let us now prove a kind of a converse implication to Lemma 3.11.

Lemma 3.14. Assumption as above. Then any curve on S has non-negative self-intersec-
tion; in particular, S is minimal.

Proof. Let us assume that the surface S is not minimal and let us consider a (—1)-curve
C and the morphism
g:S—S

obtained by contracting C to a point s. By Theorem 2.1 applied to the E-action, the curve
C must be E-stable, hence
Stabg (s) = E.

However, the stabilizer of a point (for a faithful action of an algebraic group) must be a
linear subgroup, hence we get a contradiction. |

Let us also mention that such surfaces S have few rational curves. Indeed, either X is
rational, in which case the rational curves are exactly the fibers of £, or X is not rational,
which implies that S does not contain any rational curve.

Proposition 3.15. Let S be a smooth projective surface. The following are equivalent:

(1) There exists an elliptic curve E acting faithfully on S,

(2) There exist an elliptic curve E, a finite subgroup scheme G C E and a G-normal
curve X such that S = E x% X,

(3) The surface S is relatively minimal and is equipped with a strongly isotrivial ellip-
tic fibration S — Y.

Proof. (1) implies (2) is proven in [10, Proposition 5.6]; and conversely, the elliptic curve
E acts on the first coordinate of the contracted product of E xG X . The equivalence with
(3) follows from Lemma 3.11. [ ]

3.3. Betti numbers

We now compute the Betti numbers of the elliptic surface S. Let / be a prime number
distinct from p. As in [30, Section 3.2], we define the i -th Betti number of S as

bi(S) := dim H.(S,Q)),

which is independent of the choice of [. It is useful to fix the following notation for a
scheme X:

Hi (X, Qo) = (lim Hy(X. Z/1"Z)) ®z, Q = Hy(X.Z1) ® Q.

Let us recall a few results of étale cohomology which we are going to need in our com-
putation below. The first one is a rather fundamental property, which turns out useful
when dealing with infinitesimal group schemes. It is the fopological invariance of étale
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cohomology [44, Proposition 03SI]: let j: Z — X be a universal homeomorphism (for
example, the closed immersion defined by a nilpotent sheaf of ideals) and let ¥ be an
abelian sheaf on X. Then

HI(X,¥)=HL(Z,j*F) forallr. (3.4)

The second one is an application of the proper base change theorem stated in [44,
Lemma ODDF]: let f: X — S be a proper morphism of schemes, and let s be a geometric
point of S. Then for any torsion abelian sheaf ¥ on X¢ we have

(R fF)s = H!(X,. F5) foralli. (3.5)

Let us first clarify what we mean by a G-action on the étale cohomology with coeffi-
cients in Q. If G is a constant group, one can look at [22, Chapter 5]. By dévissage, it is
enough to define such an action for an infinitesimal group scheme, as follows.

Lemma 3.16. Let G a finite group scheme acting on a variety T. Then every étale map
U — T has a G-equivariant refinement U' — U — T.

Proof. Since the field k is algebraically closed, there is a semidirect product decomposi-
tion G ~ 1mo(G) x G°. Let f : U — T be an étale morphism. By the infinitesimal lifting
property [19, Remark 18.4 (3)], themap f*: G'xU — U, (g° u)— g°- f(u) liftsto U:

By uniqueness of the lifting, this is an action of G® on U. We extend this to an action of
G on U’ := 71y(G) x U as follows. Let f' : U’ — T be defined by f'(h,u) = h- f(u).
The formula

(h,k)-(g.u) = (hg,g 'kg-u) forall (h,k) € mo(G) x G°

defines a G-action on U’ such that the map f’ is G-equivariant. Moreover, one checks
that this action does not depend on the initial choice of a splitting. ]

Corollary 3.17. Let G a finite group scheme acting on a quasi-projective variety. Then

there is a natural action of G on H; (T, Qy) for all i > 0. Moreover, the corresponding
GO-action is trivial.

Proof. Tt suffices to define a natural G-action on the groups H;l(T, F), where ¥ :=
Z/1"Z, for all n and i; then the desired G-action is obtained by taking the inverse limit.
Since T is by assumption quasi-projective, by [37, Chapter III, Theorem 2.17], the étale
cohomology groups can be computed using Cech cohomology H*(T, ¥). By construc-
tion, the latter is defined as being the inverse limit of the Cech cohomologies Hi Uu,s),
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where U = (U; — T); ranges among all the étale covers of 7. It is enough to restrict
to equivariant étale covers, because by Lemma 3.16 they form a cofinal system. Each
component of the Cech complex €/ (U, ¥) is now equipped with a canonical action of
G coming from the action on 7. It follows that the same holds for Hi (U, F), and we
obtain our action. Notice that, by construction, such a G-action is functorial with respect
to G-equivariant morphisms of quasi-projective varieties. We can apply this to the quotient
T — T/GP, which is equivariant and whose G°-action on the target is trivial. Moreover,
this map is a universal homeomorphism; hence, it induces an isomorphism in étale coho-
mology as in (3.4), so this way

Hi(T, Qi) = Hi(T/G°,Qu)
is equipped with the trivial G°-action. ]

Lemma 3.18. Let G be a finite constant group acting on a variety T and let 0: T — S
be the quotient by G. Assume that S exists in the category of schemes. Then

HL(S,Q)) = HL(T, Q)¢ forallr.

Proof. Let s be a geometric point of S. The fiber T above s is finite; hence, it has coho-
mological dimension 0 by [36, Chapter VI, Theorem 1.1], i.e.,

H!(Ts,Z/1"Z) =0 foralli > 0.

The above vanishing, together with the equality (3.5), guarantees that the Leray spectral
sequence
EP? = HP(S,R10.Z/1"Z) = HEYU(T, 2/1"Z)

€t

degenerates at the page E,. Next, taking the inverse limits to Z; and tensoring by Q;, we
obtain
HI(T, Q) = H}(S,0.Qy) forallr.

Finally, an explicit computation yields that Q; ~ (0+Q;)?. Hence, by taking G-invari-
ants on both sides, since the G-action on S is trivial, we get the desired equality. ]

As a consequence of the above computations, we get the following result, which
implies that the Betti numbers of S are the same as those of E X Y.

Corollary 3.19. Let G be any finite group scheme acting on a variety T andleto:T — S
be the quotient by G. Assume that S exists in the category of schemes. Then

HI(S.Q)) = HI(T.Q)C forallr.

Proof. Thanks to the connected-étale exact sequence of G recalled in (2.1), we have a

factorization

aoT%UuLs,
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where ¢ and yr are respectively the quotient by G° and by 7o(G). Thus, it suffices to apply
Lemma 3.18 to the morphism ¥ and then Corollary 3.17 to the morphism ¢ in order to
get isomorphisms

HE(S, Q) = HL(U.Q)™ D = HL(U,Q)¢ = H(T.Q)°,
and we conclude. n

Lemma 3.20. Let Y be a smooth projective curve over k. There exists a smooth complex
projective curve Yy such that

H (Y. Q) = H,,(Y0.Q))  forall i,

i
where Hg,,

denotes the singular cohomology. In particular, g(Y') = g(¥y).

Proof. Let A := W(k) be the ring of Witt vectors. In particular, A4 is a discrete valuation
ring of characteristic 0 with residue field k. Let s be the closed point of Spec A4; by [23,
Exposé 111, Théoreme 7.3], there exists a smooth proper morphism ¥ — Spec A4 such that
Y5 =Y, and the fiber ¥, above the generic point 7 is a smooth projective curve Yo over
Frac A. By the Lefschetz principle, Y, is defined over a subfield ko C Frac A, which can
be embedded in C. So now we can assume that Yy is a complex smooth projective curve.
Next, by [36, VI, Corollary 4.2], it follows that

He (Y, Q1) = Hj (Yo, Qo).
Since Yy is complex, the comparison theorem — see [1, Theorem 2] — gives that
H{ (Yo, Q1) = Hjjpo (Yo, Qo). -

Proposition 3.21. Let S = E x% X with G any finite subgroup scheme of E and X a
G-normal curve. Then the Betti numbers of S are as follows:

bi(S) =2+2g(Y) and by(S) =2+ 4g(Y).

Proof. Thanks to Corollary 3.19 applied to the map g, in order to compute the étale coho-
mology of S it is enough to compute the G-invariant part of the étale cohomology of
E x X. More precisely, we aim to compute the dimensions of H éit(E x X,Qp). Let us
start by the computation of 1: by Kiinneth’s formula, together with the fact that both E
and X are connected,

HAE x X, Q)¢ = HY{E, Q) & HA(X,Q)°.

Let us consider the first term on the right-hand side: by applying Lemma 3.20 to the
smooth curve F := E /G, there exists a smooth elliptic curve Fy over C such that

HAE.Q)® = HY(F.Q) = H}y(Fo. Q) = Hing(Fo. Q). (3.6)
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where the last isomorphism comes from Poincaré duality. The latter has dimension 2,
because Fj is a complex elliptic curve hence topologically it is a complex torus. Moving
on to the second term, let us apply Corollary 3.19 to the morphism 7: X — Y and then
apply Lemma 3.20 to the smooth curve Y. This yields that there is a smooth curve Yy
over C, with same genus as Y, such that

Hy(X.Q)% = Hi(Y. Q1) = H,,(Yo.Qp) ~ Hing(Yo. Q). 3.7

The last term, for the same reason as for the elliptic curve above, has dimension 2g(Y).
Thus, we get the desired value for the first Betti number.

Moving on to b,(S), the Kiinneth’s formula together with Corollary 3.19 applied to
the quotient morphism n yields

HZ(E x X, Q)¢ = H3(Y,Q) & (HA(F.Q)) ® Ha(Y.Q))) ® HZ(F,Q)).

Concerning the middle term, taking G-invariants commutes with the tensor product due
to the fact that G C E acts on E by translations and that E is connected, and hence the
G-action on Hélt (E, Qy) is trivial. Thanks to Poincaré duality, together with the isomor-
phisms (3.7) and (3.6), computing dimensions yields

ba(S) = bo(E x X) = bo(Y) + b1 (Fo)b1(Yo) + bo(F) = 2 + 4g(Y)

and we are done. [

3.4. Dualizing sheaf and Kodaira dimension

Let Y be a locally Noetherian scheme and let g: X — Y be a quasi-projective morphism
which is a locally of complete intersection, i.e., which factors through a scheme Z into a
regular embedding i followed by a smooth morphism. Then the canonical sheaf of g is
defined as

wx/y ‘= det(fx/z)v ® i*(detQIZ/Y),

where € is the conormal sheaf. If Y is a smooth variety of dimension d over k, its canon-
ical sheaf can just be defined as being the sheaf of regular d-forms.

Since in our context we deal with non-smooth G-curves, it is convenient to use the
following object, which plays the analogous role of the canonical sheaf and generalizes it.
The r-th dualizing sheaf of a proper morphism g: X — Y, with fibers of dimension < r,
is a quasi-coherent sheaf wg, equipped with a canonical isomorphism

g+ Homg, (-rF»wg) >~ Homg, (Rrg*‘(f", Oy).

for all quasi-coherent Oy -modules ¥ ; for more details on this topic, see [32, Section 6.4].

When it is defined, we denote as wr the dualizing sheaf of the structure morphism
T/ k, which in particular is the same as the canonical sheaf when T is smooth. The dual-
izing sheaf satisfies the following adjunction formula: for g: X — Y a flat projective l.c.i.
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morphism of pure relative dimension r, the r-th dualizing sheaf w, is isomorphic to the
canonical sheaf wy,y . Moreover, for Y — Z flat, projective, of pure relative dimension r
and l.c.i., we have

wy/z = wx)y @ g wy)z. (3.8)

Remark 3.22. The following results on the dualizing sheaf can be found in [32, Sec-
tion 6] (see, e.g., Corollary 4.29 and Theorem 4.32) or in [24, III. Section 7] (see, e.g.,
Proposition 7.5, Theorem 7.6 and Corollary 7.7). For every projective variety, the dual-
izing sheaf exists. As a direct consequence of the fact that every G-normal curve X is
locally of complete intersection, see Lemma 2.7, the dualizing sheaf wy is invertible. Its
degree is defined as the integer

deg(wx) := y(wx) — x(Ox).

Moreover, X is Cohen—Macaulay; hence, we have the Serre duality on X (see [24, III. Corol-
lary 7.7]); i.e., for any locally free sheaf ¥ on X:

HY(X, %) ~H' (X, 7Y ® wy)".

The morphism 7 being flat and 1.c.i., the relative dualizing sheaf of & is isomorphic
to the relative canonical sheaf wy,y; in particular, it is equipped with a G-linearization
(see [11, Section 7]). This implies that the dualizing sheaf wy is equipped with natural
G-action, which extends the G-action on the canonical sheaf on the smooth locus of X.

Lemma 3.23. Let S be the surface as in Remark 3.12. Then the canonical sheaf is
described in terms of the dualizing sheaf of X as follows:
ws = (¢x)°pry*ox.
Proof. By [11,Lemma 7.1], we have that the relative canonical sheaf of ¢ is trivial. Hence,
q*ws = wgxx = prg*(0E) ® pry* (wx) = pry * (wx).
Taking the push-forward via ¢, and taking G-invariants then yields
ws = (4:)°q"ws = (gx) “pry*(@x)

and we are done. [

The guiding idea of this section is to show that the Kodaira dimension of .S should be
the same as the one of X; since X is non-smooth in general we need to make use of the
notion of dualizing sheaf. If H°(X, L) # 0, we denote by ®.;: X --> PV the rational
map induced by L.

Definition 3.24. Let L be a line bundle on X and

N(L):={n>1, H(X.L") # 0}.



Isotrivial elliptic surfaces in positive characteristic 335

The litaka dimension «(X, L) of L on X is defined as —oo if N(L) = @, else as the
quantity

dim @7 (X)).
nénz\?()i)( im ®p,1)(X))

If moreover X is smooth, then the canonical sheaf wy on X exists and the Kodaira
dimension of X is the litaka dimension of wy, which provides a birational invariant for
smooth varieties. For a G-normal curve X, we denote as

K'(X) == k(X, wx)

the Iitaka dimension of its dualizing sheaf, which is well defined thanks to Remark 3.22.
This notion coincides with the classical one of Kodaira dimension when X is smooth, but
it can be different when X is not a normal curve; see e.g. [13, Example 2.9].

Lemma 3.25. The canonical ring

R(S,ws) := @ HO(S, wg)

n=0

is a finitely generated k-algebra, isomorphic to the G-invariant part of R(X, wx). More-
over, the equality k(S) = k' (X) holds.

Proof. As noticed in the proof of Lemma 3.23, we have the equality ¢*ws = prywy.
Taking on both sides the n-th tensor powers, then the direct image ¢+ and using that g is a
G -torsor, we obtain that

0l = g« (pr}"( (a)X)")G.

Finally, by taking the global sections, we get:
HO(S. 0}) = HO(E x X, pry (@) = H'(X. ), foralln.  (3.9)

The ring of sections R(X, wy) of the dualizing sheaf is a finitely generated k-algebra,
because X is a projective curve; moreover, it is integral over

R(S,ws) = R(X,wx)® C R(X, wy).

Thus, we can conclude that R(S, wg) is also finitely generated, and that the two Iitaka
dimensions coincide. [

3.5. Proofs of Theorem A and Corollary C

Proof of Theorem A. By Lemmas 3.14 and 3.25, S is a relatively minimal surface such
that k(S) = k’(X). The computations of the Betti numbers of S are given in Proposi-
tion 3.21.

Next we prove the table of classification. Assume «(S) = —oo. The surface S is not
isomorphic to the projective plane, so S is equipped with a structure of P!-bundle and
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has Picard rank two. Since the morphism f:S — Y has general fiber E, the structural
morphism of P!-bundle is the fibration 4: S — E/G. Hence X = P!, this implies Y = P!
and we deduce the invariants of S. Conversely, if X = P!, then 4 is a P1-bundle over the
elliptic curve E/G, which is isogenous to E, so k(S) = —oo.

Assume now that ¥ (S) = 0. Then X is a curve with arithmetic genus

pa(X) =K'(X)+1=1,

where k/(X) is the Iitaka dimension of the dualizing sheaf on X. Now notice that the
morphism X — Y factorizes through the quotient X — X/G° and X/G? is a smooth
curve with geometric genus g(X/G®) = g(X) (see [10, Corollary 4.8 and Remark 5.2]).
This implies that

g¥) = pa(Y) < g(X) < pa(X),

where the second inequality follows from [24, IV. Exercise 1.8].

Therefore, Y = P! or an elliptic curve, and p,(X) € {0,1}.If p,(X) =0, then X = P!
as X is an irreducible curve (see again [24, IV. Exercise 1.8]). Then h is again a P!-
bundle, which contradicts that k(S) = 0. Hence p,(X) = 1, so X is either an elliptic
curve, or a rational curve with a cusp or a node (again by [24, IV. Exercise 1.8]). By [10,
Corollary 4.6], the latter case is prohibited because G-normal curves admit only cusps as
singularities. It suffices to see that the cases where X is a rational curve with a cusp or an
elliptic curve correspond to the surfaces of Kodaira dimension zero.

Now, if X is a rational curve with a cusp, then Y = P!, s0¢(S) =1, 51(S) = b,(S) =
2, and S is a quasi-hyperelliptic surface: see [8, Proposition, p. 26]. If X is an elliptic
curve, then we distinguish two cases: either G acts by translations on X, in which case Y
is an elliptic curve and S is an abelian surface; or G acts on X not only by translations,
Y = P! and S is a hyperelliptic surface: see [8, Theorem 4]. This proves that if S is a
properly elliptic surface, then X is a G-normal curve which was not considered above
(i.e., X is not isomorphic to P!, a rational curve with a cusp or an elliptic curve); and any
of these G-normal curves gives rise to a surface of Kodaira dimension one. ]

Proof of Corollary C. By [17, Proposition 3.24], Aut’(S) is an abelian variety; and if
S is an abelian surface, then Aut’(S) = S acts on itself by translations. To extend the
classification of pairs (S, Aut’(S)) in positive characteristic, where S is relatively minimal
with k(S) > 0, it suffices to determine the surfaces S for which Aut®(S) is an elliptic curve
(see [17, Remark 3.26]). Such surfaces are isomorphic to a contracted product £ x9 X,
where E is an elliptic curve, G C E a finite subgroup scheme and X a G-normal curve.
Assume that Aut®(S) is an elliptic curve. By Theorem A, if (S) = 0, then S is a
quasi-hyperelliptic surface or a hyperelliptic surface. Conversely, every quasi-hyperelliptic
and hyperelliptic surface is a contracted product S = E x¢ X equipped with a faithful
action of E = Aut®(S). If k(S) = 1, then Aut®(S) is an elliptic curve if and only if S is
also a contracted product of that form. Finally, in all remaining cases from the classifica-
tion of surfaces, we obtain that Aut®(S) is trivial. |
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4. The diagonalizable case: on the multiple fibers and the Picard
scheme

From now on, we keep the notation of Remark 3.12, and assume moreover the group G
to be a finite diagonalizable subgroup scheme of E, unless explicitly stated otherwise.
Under this assumption, the elliptic fibration f satisfies the following: all multiple fibers
are tame, and we have a Hurwitz formula for the G-normal curve X.

4.1. Multiplicity of fibers

Let us keep the notation of the diagram in Remark 3.12 and denote as

f_l(y) = m(y) : f_l(y)red’

the schematic fiber over the point y € Y, seen as a divisor in S, with m(y) its multiplicity.
We assume in this part that E is ordinary, so that G is a finite diagonalizable group. Let us
recall that we denote as H (x) the stabilizer of the action at the point x € X and as n(x)
its order.

We distinguish two types of multiple fibers for (quasi)-elliptic surfaces.

Definition 4.1 ([8, Section 1]). A fiber above y € Y is called a wild fiber if

dimg O(f 7' (»)) = 2.
Otherwise, it is called a tame fiber.

In order to study multiple fibers, it is useful to look at the quotient map
X —-Y =X/G.

Lemma 4.2. Let us keep the above assumptions and let G be a finite diagonalizable
group. Then R! f,Os = Oy.

Proof. By definition Qs = (¢4)® Opxx. Since G is diagonalizable and g, exact,
G G
R' fi(Os) = R' fx(q+)° Oxx = (R' fx(4x(OExx)))” = (R'(f@)«Opxx)" -
Let ¢ = fq.Taking U C Y affine and V := 7~ 1(U), we get that

(R'$x0px (V) = H' (¢7'(U). Opxx)® = H'(E x V. Opr)°
= (H'(E,0) ® 0(V))% = 0(U).
Thus R! fx(Os) = Oy and we find that there are no wild fibers. |

Proposition 4.3. With the same assumption as in Lemma 4.2, the following holds: for
every x € X and y := m(x), the multiplicity m(y) is equal to n(x).
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Proof. Recall that H = H(x) is the stabilizer of G at the point x; let Z := X /H. Then
we get the following commutative diagram:

X —F—— Y

N o

First, the morphism g,y is a G/H -torsor over an open neighborhood of y; this holds by
the local description of Section 2.3. Next, let us consider the restriction of g to the fibers
over the point y, which gives a G-equivariant morphism

Xy =mn" (Y)—”TG/H()’) G/H.
Thus we can write the fiber of 7 over y as the following contracted product:
X, =G x X,,

where X is the fiber of g over the point z = 7y (x). Taking the preimages of ¢ on both
sides, then taking the quotient by G gives

SN0 = (ExX,)/G=Ex"X.. .1
with reduced subscheme being E/H . Thus, the regular functions on the fiber satisfy
O(f71(») = 9(E x X)) = 0(X,/H) =k,
where we use again that H is linearly reductive; this implies that every multiple fiber is
tame. The fact that the multiplicity is equal to n(x) follows again from Section 2.3. ]
4.2. Dualizing sheaf formula

Theorem 4.4 (Dualizing sheaf formula). Let G be diagonalizable. Then the quotient mor-
phism w: X — Y is flat, locally of complete intersection and we have an isomorphism of
G-linearized sheaves

wx ~ (r*wy) ®(9X(Z(n(x)— 1)G -x) 4.2)

where the sum is taken over the G-orbits of rational points of X.

The above fundamental result is [11, Corollary 7.1]; a way to reformulate it is as
follows:
wx ® Ox(G - Ax) = n*(wy ® Oy (Ay)) (4.3)

where Ay = X \ Xy is the divisor of the non-free points and Ay = Y \ Y} is the branch
divisor.
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Corollary 4.5. The degree of the dualizing sheaf of X can be calculated as follows

degwy = degwy - |G| + Z (IGI-[G: H(x)]).
yeyY

where [G: H(x)] only depends on the image y = mw(x).

Corollary 4.6. We have that k(S) = 1 if the degree of wx is positive, that k(S) = 0 if wy
is trivial, and that k(S) < 0 if the degree of wx is negative.

Let us apply the above Corollary to deduce information on the Kodaira dimension
k(S) from the genus of the smooth curve Y and from the number of multiple fibers of f.
Let us notice that the Kodaira dimension of S cannot be 2, since the self-intersection of
ws is never strictly positive in our context.

Higher genera. If Y is of genus at least two, then wy is ample, hence the Kodaira dimen-
sion of S is equal to one.

Remark 4.7. Let us notice that such actions actually exist: let us fix some g > 1 and some
r > 1 and consider the action of the trivial group on a smooth projective curve of genus
g. By applying [11, Remark 9.4] to this case, we get the following: for any genus g and
for any r, there exists a u,--normal projective curve X, , with geometric genus g.

Genus one. If Y is an elliptic curve, then wy is trivial, thus there are two different cases
to deal with. In the first case, there is at least one multiple fiber, which implies that the
degree of wy is strictly positive, and thus by (3.23) we once again get k(S) = 1. In the
second case, we have no multiple fibers which means that 7 is a G-torsor. In this case,
we now show that X is also an elliptic curve; for example, when G = u P then X is
isomorphic to the quotient of Y by the constant group Z/p”Z which is the Cartier dual
of G.

Lemma 4.8. A nontrivial reduced p,--torsor over an elliptic curve is itself an elliptic
curve.

Proof. LetY be an elliptic curve and 7: X — Y a p,r-torsor such that X is reduced. We
denote by F”: X — X (") the r-th iterated (relative) Frobenius morphism of X . Then by
the universal property of the quotient, there exists a unique morphism ¢: Y — X ") such
that the following diagram commutes

x —F 5 x@)

ToT Y
T ¢
FV‘

where 7: X — X is the normalization morphism. Since ¢ is a birational morphism and Y
is smooth, it follows that ¢ is the normalization map. In particular, the geometric genus of
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X s equal to one; hence, the same holds for X by [24, IV, Proposition 2.5]. Then Xis
an elliptic curve. It remains to show that X is smooth. Moreover, t being an isomorphism
at the generic point, the generic fiber of the morphism 7 o 7 is w,-. Moreover, up to
automorphism of Y, we can assume that & o 7 is an isogeny of elliptic curves, i.e., has
finite kernel g ,,-. Thus 7 is an isomorphism and X is also an elliptic curve. ]

The following provides a family of examples (over an elliptic curve) with an arbitrarily
large number of multiple fibers, all of Kodaira dimension one.

Lemma 4.9. Let p > 5 and consider the following elliptic curve

Y ={g(x,y,2) = y*2 —x(x + 2)(x —2) = 0} C P}

XY,z

embedded as a smooth cubic in the projective plane. Then we define the curve
pon v X = {w?" =zh(x.2)+y”", g =0} CP}, ., —7Y,

the p ,n-action being by multiplication on the w-coordinate. We assume moreover that

pn
h(x,z) = H(aix +2)
i=2

is a homogeneous polynomial of degree p™ — 1, suchthat a; € k \ {0, 1,—1} are all distinct
and such that their sum equals zero. We claim that X is singular at exactly three points, all
belonging to Xy, and that it is . pn-normal. The number of multiple fibers is p" and this
provides a family of examples (over an elliptic curve) with an arbitrarily large number of
multiple fibers, all of Kodaira dimension one.

Proof. We denote as (—)x, (—), and (=) the respective partial derivatives. Let us explic-
itly compute the singular points of X: both derivatives with respect to w vanish, while
taking derivatives with respect to x, y and z yields the conditions 2yz = 0 and

zhy = A(3x? = 2?),
h(x,z) + zh, = A(—y? — 2x2z),

for some A € k*. In particular, either y or z must vanish. If z = 0, then using the equations
of X we have that x also vanishes, so the point we have to consider is x, = (x, y,z,w) =
(0:1:0: 1), which is indeed singular and a free point for the p ,»-action.

Next, assuming y = 0 gives the three points x = (0:0: 1: 1), x’ = (1: 0: 1: @) and
x” = (1:0:—1: B), with , B € k* determined by the equation involving w. All three are
free points for the u ,»-action, because the non-free points have the first and third coordi-
nates corresponding to zeros of the polynomial zA(x, z). At the first point, computing the
derivatives with respect to x gives /i, (0, 1) # 0, which is a contradiction with the assump-
tion that the sum of the a; vanishes; hence, x is not a singular point. Next, computing
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derivatives at the second and third point yields that they are singular respectively if and
only if
hx(1,1) +h(1,1) + h;(1,1) =0 and h,(1,-1)+h(1,—1)—h;(1,-1) =0 (4.4)

An explicit computation yields that

n

D
h(. 1) = [J@ + 1),

i=2

p" p" " 1
hy(1,1) = i i+ 1)=— + D1 ,
(D=3 ai[]@ +n [W””(+Zw+0

=2  j#i i=2 j=2

n

p p" 1
he(L ) =[J@+13 —

i=2 j=2%7

which means that the first equality of (4.4) is satisfied and thus that x’ is a singular point.
An analogous computation shows that the same holds for x”. Since the quotient Y is
smooth, and since all the singular points are free for the p ,.-action, by Lemma 2.7 the
curve X is indeed p,»-normal. ]

Genus zero. Finally, let us assume that we are over ¥ = P!.
Lemma 4.10. If G is infinitesimal, then there must be at least two multiple fibers.

Proof. First, let us show that 7: X — Y cannot be a G-torsor. Let us recall that by Kummer
theory, the following

O—>l,(,n—>Gm(_l>Gm—>O

is a short exact sequence for the fppf topology, over any scheme Z. This can be interpreted
by saying that the data of a u,-torsor over Z is the same as the data of a line bundle
L over Z, together with a section o: L®" = @ trivializing its n-th power. Hence, a
R pr-torsor over the projective line is a line bundle over P! whose p”-th tensor power is
trivial. The only line bundle satisfying this condition is the trivial one; however, since by
assumption X is reduced, it cannot be the trivial G-torsor over Y. Next, we also want to
exclude that there is only one multiple fiber. By assuming the action to be generically free,
one has that G = - for some r; in particular, again by the Kummer sequence, this would
give a G-torsor over the affine line A!. The latter is affine and its invertible functions are
non-zero constants; thus, it does not admit any non-trivial G-torsor. [

When considering elliptic surfaces over P!, in negative Kodaira dimension we have
ruled surfaces, discussed in Section 3.1, while if p < 3, the class of quasi-hyperelliptic
surfaces provides examples of Kodaira dimension zero. Thus, we now focus on showing
that we very often get a surface of Kodaira dimension one, namely as soon as the number
of multiple fibers is big enough.



P. Fong and M. Maccan 342

Lemma 4.11. Assumption as above; let G be infinitesimal and Y = P'. If one of the
following conditions is satisfied, then k(S) = 1:

* p > 5and there are at least 3 multiple fibers;

* p > 3 and there are at least 4 multiple fibers;

* there are at least 5 multiple fibers.

Proof. We can assume that G = o for some r > 1; hence for any non-free point x € X
we can denote as p*™® = n(x) the order of the stabilizer H(x). Let N be the number of
multiple fibers. Then

degoy ==2p"+ Y (p"—p'™*W)
xEX\Xf,—
==2p"+ > (p—p W)
s(x)>1
>-2p"+N(p"—p'"
=p"'(p(N —2)—N)

is strictly positive if one of the three above conditions are satisfied. Thus we can conclude
by Corollary 4.6. ]

Example 4.12. Let us consider any p and the action of w, on X = P! by multiplication
on the first homogeneous coordinate. This action has two fixed points, namely x = 0 and
x = oo such that 5(0) = s(c0) = 1, where p*® = n(x) is the order of the stabilizer at
the point x. Then we get

degox = =2p+ (p—p' )+ (p—p' =) =-2p+2(p-1) = 2
which gives a negative Kodaira dimension.

Example 4.13. The following class of examples is already mentioned in [10]: let us
consider the group G = p,- acting on the projective plane by multiplication on the z-
coordinate. This action stabilizes the curve

X ={z"" = f(x.y)} CP?,

where f is a homogeneous polynomial of degree p” with pairwise distinct roots. The
curve X has then exactly p” fixed points. In particular, if p” > 5, by Lemma 4.11 this
provides an infinite family (with arbitrary large number of fibers) of elliptic fibrations
with target P! and with Kodaira dimension 1. All of them, as we will see in Theorem A,
are properly elliptic surfaces. On the other hand, a case in which we get trivial Kodaira
dimension is when p” = 3, in characteristic three, for which

degwy =—-2-3+3(3-1) =0,

Let us also notice that, if p = 3 and there are at least three multiple fibers, by the compu-
tation of Lemma 4.11 we have that «(S) cannot be strictly negative.
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Example 4.14. Let p = 2 and consider the action of G = u, on the curve
X ={z*=g(x.y)} CP?

where g is a homogeneous polynomial of degree 4 with four distinct roots and G acts on
P? by multiplication on the z-coordinate again. This action has exactly four fixed points,
which yields a zero Kodaira dimension. Notice that, for the same reason as in Exam-
ple 4.13, the Kodaira dimension can never be strictly negative if there are at least four
multiple fibers.

Let us note that when p = 2, every p,-normal variety is uniform, since (with the
notation of Section 2.3) there is only one possible choice both for the subgroup H = H(x)
and for the weight v = v(x); see [11, Remark 6.5] for a more detailed explanation. On the
other hand, in Example 4.12 we have a non-uniform g p-curve for any p > 3. Moreover,
by [11, Section 5], there is a bijection between uniform g ,-normal curves over P! and
reduced effective divisors A in P! of degree divisible by n. The divisor A corresponds to
the divisor of the branch points. In particular, a pt,-normal curve over the projective line,
being necessarily uniform, always has an even number of non-free points.

4.3. Irregularity and Euler characteristic

In this section, we focus on computing some invariants of the surface S, mainly coming
from the study of the G-module

H'X.0x)= @ H'X.0x0),
AeX*(G)

which decomposes into its G-weight spaces. We compute the irregularity 4!(S, Og) of
the elliptic surface S, as well as its Euler characteristic. Let us fix the following notation
for the dimension of the weight spaces:

h%(wx); = dim H*(X,wx);. for A € X*(G).

Let apply once again a result of [11] concerning the above integers. Let G be diagonal-
izable and A be a character of G. If A is nonzero, for any y € Y \ Yy, let n(y) be the
order of the stabilizer H(y) at some x € w~!(y). Moreover, let v(y) be the associated
weight, as in the local description recalled in Section 2.3 and let m(y, A) be the integer
such that 1 < m(y,A) < n(y) — 1 and the character A — m(y, A)v(y) restricts trivially
to H(y). Then [11, Proposition 8.2] specializes to the following statement (since here we
work over an algebraically closed field k).

Lemma 4.15. Assumptions as above. Then h®(wy)o = g(Y) and

_m(y. )
n(y)

o =sn -1+ 2 (I

YEY\Yy

) for A # 0.
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Let us emphasize that a key ingredient in order to make the computation of Lemma 4.15

is the dualizing sheaf formula of (4.3).

Corollary 4.16. Let G be diagonalizable. Then the following hold:
h’(ws) = h*(Os) = g(Y), and h'(Os) = h'(ws) = g(¥) + 1.
In particular, the Euler characteristic of S satisfies x(Og) = 0.

Proof. First, let us compute h°(ws). By (3.9), we have that
H°(X,wx)® = H°(S, ws):

hence it suffices to compute the dimension of the left-hand side term. By Lemma 4.15, we
have
h°(ws) = dim (H®(@x)®) = h’(@x)o = g(¥).

Next, let us move on to the computation of 4! (Og). Since E x X — S is a G-torsor,
we have
H'(S,05) = H'(E x X,0pxx)® foralli.

Applying this to 7 = 1 and using Kiinneth’s formula, we get

H'(05) = H'(0pxx)® = (H*(Or) ® H'(0x))° & (H'(0£) ® H*(0x))°
= (H°(X,0x)")¢ @ k.

By taking dimensions on both sides, we get the desired equality. ]

4.4. Picard group and Albanese variety

For a smooth projective surface S, the Picard scheme Picg can be non-reduced in positive
characteristic. For elliptic fibrations, this phenomenon is related to the existence of wild
fibers, as explained in [29]. In the case where G is diagonalizable, the surfaces £ x% X
have only tame fibers, as we showed in Proposition 4.3. The computations of the irregu-
larity and of the Betti numbers give the following result.

Corollary 4.17. Let G be diagonalizable. Then the Picard scheme of S = E xS X is
reduced.

Proof. The vector space H'(S,Os) can be seen as the Lie algebra of Picg, while b (S)/2
is the dimension of Picg. By Corollary 4.16 and Proposition 3.21,

h'(S,05) =1+ g(Y) = bi1(S)/2.
Therefore, the group scheme Picg is reduced (see, e.g., [30, Section 3.3]). n

Since we are interested in G-varieties, when G is a finite group scheme, let us intro-
duce an equivariant version of the Picard group: for a G-variety X and n: L — X aline
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bundle over X, a G-linearization of L is a G-action on L such that 7 is G-equivariant and
which commutes with the G,,-action by multiplication on the fibers. The tensor product
of two G-linearized line bundles is also G-linearized, and the analogous property holds
for the dual; thus we can define the following.

Definition 4.18. The equivariant Picard group Picg(X) of a G-variety X is the abelian
group of G-linearized line bundles up to isomorphism; it comes with a homomorphism

¢:Picg (X) — Pic(X) 4.5)
which forgets the linearization.

Lemma 4.19. Assume G is finite (not necessarily diagonalizable). Then the kernel of ¢
is of |G |-torsion.

Proof. The kernel of ¢ can be seen as all the G-linearizations of the trivial line bundle on
X up to isomorphism. Since all regular functions on X are constant, such linearizations
are Zariski-locally all of the form

G XxA', g-(x,2)=(g-x, f(g)2) (4.6

where f is a character of G. Now, the group G is obtained as an extension of 7y(G) by
G, as in (2.1). Since G is infinitesimal, the ring @ (G?) is local and we can write its
invertible elements as k™ + m, where m is the maximal ideal, satisfying

WGl =0 forallh € m.

This yields that f 6% e x *(70(G)). Next, the characters of o(G) form a finite abelian
group of |mo(G)|-torsion, and hence we can conclude that

FI61 = (f\GOI)\ﬂo(G)I -1
and we are done. |

Lemma 4.20. Let p: T — W :=T/G be either a G-torsor, or assume that W is a smooth
curve. If G acts generically freely on T, then the kernel and cokernel of

p*:Pic(W) — Pic(T)
are of |G |-torsion.

Proof. In both assumptions, the Oy -module p.Or is finite and locally free of rank |G|.
This guarantees the existence of a canonical norm homomorphism of abelian groups

Np:Pic(T) — Pic(W)

such that N,(p*(L)) =~ L®IG! for all invertible Oy -modules. From this we can conclude
that the cokernel of p* is of |G |-torsion.
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Moving on to the kernel, let us consider the group Picg (7) defined in Definition 4.18.
Next we see that p* factorizes through Picg (7') and we get the following commutative
diagram

Pic(W) o s Pic(T).

Picg(T)

By Lemma 4.19, it suffices to see that the induced morphism pg;: Pic(W) — Picg(T) is
injective. Let L be a line bundle over W such that pf;(L) = Or equipped with the trivial
action of G. Then p* (L) = Or and applying p., we obtain by the projection formula

p«(O1) = pxp™(L) = L ® p«(O7),
as G-linearized sheaves. Taking the G-invariants, we get that L = Oy . |

Remark 4.21. Notice that, in the case where p is a G-torsor, the map pg; is an isomor-
phism. This is because a G-linearization of a line bundle on 7 is exactly a descent datum
for the finite and faithfully flat map p: T — T/G. However, in general pg; is not surjec-
tive, even when the target W is a smooth curve. To see this, let T be an elliptic curve and
G = Z/27Z acting by multiplication by £1 on T'; then the quotient map p is a ramified
covering of the projective line W = P!, In this example, the invertible sheaf O (¢), where
t € T[2] is a ramification point, is G-linearized but is not in the image of p*.

Remark 4.22. More precisely, we have just showed that for a line bundle L on W such
that p*(L) = O, we have a G-invariant section

5107 = p*(L)®°],
Taking the pushforward by p and taking invariants on both sides yields a section
s' = pSs: 0 = L2IC]
trivializing the |G |-th power of L as wanted.
Corollary 4.23. The kernel and cokernel of
q*:Pic(S) — Pic(E x X) and n*:Pic(Y) — Pic(X)
are of |G |-torsion.

Let us mention the following result, which seems to be a folklore statement known by
experts but for which the authors could not find any explicit reference in the literature.

Lemma 4.24. The functor Pic® is multiplicative on projective varieties. More precisely,
let Z and W be projective varieties, then P_ic%xW = P_icOZ X P_ic%,.
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Proof. Let us fix z € Z(k) and w € W(k); this gives the following two natural maps
between the Picard schemes
a:Picy x Picy, — Picy, . (L. M)+ przL ® pryy M
where pr; and pry, denote the two projections, and
B:Picyw — Picy xPicy,, N — (Nizxfw}, Nizixw)-

By construction, the composite map § o « is the identity, so in particular ker(e) is trivial.
Moreover, the induced map of « on the Lie algebras is

dao=HYZ,02)® H'(W,O0w) — H(Z x W, Ozxw).

Since both varieties are projective by assumption, it follows by the Kiinneth formula
that do is an isomorphism. The injectivity of  implies that Pic, .y, is the product of
im(«) and of ker(B). Since da is an isomorphism, we have moreover that ker() is a con-
stant group, so its neutral component is trivial. In conclusion, @ induces an isomorphism
between the neutral components which are given by the functors Pic®, as wanted. ]

Corollary 4.25. The equality
Picy, x = E x Pick

holds. Moreover, by Lemma 2.12, the right-hand side is the extension of an abelian variety
by a unipotent group.

In order to compute more explicitly the Picard rank of S, we make use of the notion
of Albanese variety.

Definition 4.26. Let Z be a projective variety and let us fix a base point zg € Z(k). Its
Albanese variety is the abelian variety Alb(Z), equipped with a morphism

albz: Z — AIb(Z), zo+ 0

satisfying the following universal property. For any abelian variety A and any morphism
g:Z — A sending zy to the neutral element of A, there is a unique factorization as

7z — P2\ Alb(Z)

b

where g is a group homomorphism.
Proposition 4.27. The Néron—Severi groups of S and of E x X have same rank, equal to
p(E x X) = 2 + rank Homyg,, (A]b(X), E)

For instance, if X is rational then S has Picard rank two, and the two contraction mor-
phisms f, h are respectively with targets Y = P! and E/G.
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Proof. By Theorem 2.11, the Picard functor Picy is representable. The projection
pry: ExX — X

induces an inclusion
pry: Pic(X) < Pic(E x X),

which comes with a natural section given by the restriction over {Ofg } x X. This yields
Pic(E x X) = Pic(X) & Picg(X). 4.7

By Theorem 2.11 again, together with the fact that E is an elliptic curve, we have the
following short exact sequence of group schemes:

0 — PicY — Picy — NS(E) — 0,

where the map from the Picard scheme of E to the constant scheme NS(E) = Z is given
by the degree. The following morphism

Z—Picg, m— Op(m-0g)

is a section of the degree map. Moreover, there is a natural isomorphism E =~ P_ic%, send-
ing a point x € E to O (x — 0g). Hence applying the Picard functor of E to X we get

Pic(E x X) =Pic(X) @ Picg (X) ~Pic(X) & (E x Z)(X) =Pic(X) ® Hom(X,E) B Z.
Moreover, for every xo € X(k), recall that we have
Hom(X, E) = E & Hom(X, E; xg — Of),

where Hom(X, E; xo — Of) is the group of morphisms from X to E sending x¢ to the
neutral element Og. By the rigidity lemma of abelian varieties, the latter group equals
Homg, (Alb(X), E) which is of finite rank by [40, IV.19, Theorem 3]. We conclude by
taking the quotient by Pic® and then taking the rank, on both sides of the equality. ]

The next natural question arising from the study of the Picard group of S would be
to understand the relative Picard functor of S/Y. A general result by Deligne, illus-
trated in [27, Remark 5.27], is that the relative Picard functor Picg /Y is represented by
a scheme if the morphism f is proper and flat, with geometric fibers which are connected
and reduced. In our situation, these assumption are rarely satisfied because the elliptic
fibrations often have nonreduced fibers. The results collected in [41, Théoréme 1.5.1] give
an answer to the representability in more general situations. In our context, S/Y is flat,
projective and of finite presentation, and its fibers are all irreducible varieties: by the the-
orem of J. P. Murre, this implies that the relative Picard functor of §/Y is an algebraic
group over k, that is possibly non-reduced. However, its reduced structure can be easily
described, as we show in the following lemma.
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Lemma4.28. Lety € Y \ Y}, be a branch point and let f~1(y) C S be the corresponding

fiber. Then the Picard group Pic®(f~'(y)), seen as an abstract group, is isomorphic to
E (k).

In particular, this excludes the possibility of a multiplicative or additive reduction, i.e.,
some fiber over a branch point y € Y \ Y} being isomorphic to G,, or to G, respectively,
as illustrated in the survey paper [42, Section 4.2] on elliptic surfaces with sections.

Proof. We make use of the local structure of Proposition 4.3. Let x € X such that 7(x) =
y and let H = p,, be the stabilizer of the G-action at the point x. Then the fiber of f
above y, as described in (4.1), satisfies

) =Ex® F, where F ="' (y) = Spec (k[T]/(T")). (4.8)

In particular, the variable 7" has weight equal to 1 € X*(H). Let prg: E x F — E
denote the projection on E. Since @ (F) is a local ring, its invertible elements are those in
k> 4+ m, where m is generated by 7. In particular, this yields

(prp)e O r = (O£[T1/(T) = 0F & 0%
Next, we claim that
Rl(prE)*ngF = 0.

Taking higher direct images commutes with taking stalks (see [2, Exposé VIII, Theo-
rem 5.2]) and over any point of E, the fiber is isomorphic to the local scheme F. Hence,
we can use that H!(F, G,,) = 0 to conclude that the above direct image is trivial. When
putting together the two equalities that we just proved, we get

Pic(E x F) = HY(E x F,O%«r)
=HYE,0F ® 0%
= Pic(E) x HY(E,Og)"!
= Pic(E) x k"7 L.
Now, in order to get back to the Picard group of f~!(y), let us consider the map

Pic (f7'(»)) = Pic(E x* F) = Picy (E x F) — Pic(E x F).

The second equality is due to the fact that the map E x F — E xf F is an H-torsor (see
Remark 4.21). The image of the above map is given by Pic(E), because the H -invariant
part of O(F) is just k, since T, ..., T"! have all nontrivial weights. In particular, con-
sidering the degree O part, we get that it is given simply by the group E. ]

4.5. The unipotent case: an example

At the moment we are unable to deal with more general classes of groups, such as linearly
reductive or unipotent ones. This is due to the fact that the methods used for diagonalizable
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groups clearly do not apply. We set up here some notation and treat one example, and
leave the more general case as an open question. Similar problems, involving wild Z/ pZ
singularities, have been recently dealt with in works such as [25,33, 38].

Let us consider a finite and constant group G of arbitrary order. Let L and K be the
function field of X and Y respectively, so that G is the Galois group of the field extension
L/K.Letx € X be some non-free point and y € Y its image. Then the local rings Ox x
and Oy,, are discrete valuation rings; let v(x) be the valuation at x. If L, and K, denote
the respective completions of L and K, then

H(x) := Stabg (x) = Gal(Ly/K,).

Let ¢ be a local uniformizer at x, and let us consider the following integer (coming from
the so-called Artin representation of G):

a(x) = [G:H(x)] Z ix(g), whereix(g):=v(x)(g-t—1).
geH(x)\{1}

Following [43, Chapter VI, Proposition 7], the Hurwitz formula becomes

degwy = |G| - degwy + Z a(x). 4.9)
XGX\Xﬁ-

Unlike in the diagonalizable case, the ramification factors a(x) can be strictly bigger than
| H(x)| — 1; for instance in Example 4.29 below, where a factor 2 appears.

Example 4.29. Let us assume that the characteristic is any prime number p > 0 and
consider the action of G = Z/ pZ on P! given on the local chart A! with coordinate ¢ by

g-t=t+g, forgeZ/pZ,

so that the only fixed point is x = oo with local uniformizer v = 1/¢. By the Hasse—Arf
theorem, there exists a unique integer m = mg such that

v(ix)(g-t—t)=1+mo forall g #0.

Let us compute it for g = 1: locally around x we have

1 .
1- = — = = — P — — 2 3
u 1 ul—i—u M,Z( u) u—u"+u’ +

In particular any g € G distinct from O satisfies i, (g) = 2, and hence we get mo = 1 and
a(x) =2(p = 1).

Let us notice that this corresponds exactly to the realization of the surface Ao for an ordi-
nary elliptic curve E, which is described in Remark 3.5.
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4.6. Proofs of Theorem B and Proposition D

Proof of Theorem B. By Lemma 4.2, the elliptic fibration f has only tame fibers. The
equality k (S) = «’(X) follows from (3.25), the computations of y(Os) and the irregular-
ity g(S) are done in Corollary 4.16. The neutral component of the Picard group (seen as
an abstract group) of each fiber f~!(y) is isomorphic to E thanks to Lemma 4.28, while
the fact that the Picard scheme of S is reduced is shown Corollary 4.17. Finally, the Picard
rank of S is computed in Proposition 4.27. ]

Proof of Proposition D. The Kodaira dimension is determined by the degree of the dual-
izing sheaf, as illustrated in Corollary 4.6. The different cases are analyzed in Section 3.4,
the case where Y is the projective line being formulated in Lemma 4.11. ]
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