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Sylvester domains and pro-p groups
Andrei Jaikin-Zapirain and Henrique Souza

Abstract. Let G be a finitely generated torsion-free pro-p group containing an open free-by-Zp
pro- p subgroup. We show that the completed group algebra [, [G] is a Sylvester domain. Moreover,
the inner rank irky 1G] (A) of a matrix A over F,[G] can be calculated by approximation by ranks
corresponding to finite quotients of G. As a consequence, we obtain a particular case of the mod p
Liick approximation for abstract finitely generated subgroups of free-by-Zj, pro-p groups.

1. Introduction

A Sylvester rank function on a ring R is a function taking non-negative real values on
matrices over R and satisfying a series of conditions (see Section 2.4) resembling the
conditions of the rank function of matrices over a field. The value of a Sylvester rank
function rk on a matrix A over R is bounded from above by its inner rank rk(A) <irkg(A).
If irkg is itself a Sylvester rank function, then the ring R is called a Sylvester domain. This
notion appeared first implicitly in the works of P. Cohn and was explicitly defined by W.
Dicks and E. Sontag [11]. One remarkable property of a Sylvester domain R is that it has
a universal division ring of fractions Dg into which it embeds and such that for every
matrix A over R, its rank over Dy is equal to its inner rank irkg (A4). In particular, R has
no zero divisors, see [11, Sec. 0].

In the case R = KJI'] is a group algebra of a free group I' over a field K, it was
proven by P. Cohn [10, Thm. 7.11.8, Prop. 5.5.1] that K[I'] is a Sylvester domain. In [17],
F. Henneke and D. Lépez-Alvarez considered the case where I is a free-by-Z group and
showed that K[I'] is a Sylvester domain if and only if every left finitely generated projec-
tive K[I']-module is free.

We would like to notice that, for an abstract group I', if K is a field of characteristic 0
and K[I'] is a Sylvester domain, then irkg(rj coincides with the von Neumann Sylvester
rank function rky (for the definition of rkr, see [21, Sec. 2]).

In this paper we want to understand for which pro-p groups G the completed group
algebra IF, [G] is a Sylvester domain. Often, the results in combinatorial group theory and
combinatorial pro- p group theory run in parallel; although their proofs are quite different.
For example, the theorem of J. Stallings [49] saying that a torsion-free and virtually free
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group is itself free was inspired by the previous and analogous result on free pro- p groups
due to J.-P. Serre in [47]. Later in [32], A. Lubotzky described how the classical theorems
of M. Hall, L. Greenberg and A. Howson about finitely generated subgroups of free groups
all have analogues for free pro-p groups. More recently, a new proof of the Hanna Neu-
mann Conjecture (first proven independently by J. Friedman and I. Mineyev in 2011) was
given by the first author in [19] using homological methods that apply both to the abstract
and pro- p versions of the conjecture. This result was later extended to non-solvable pro- p
Demushkin groups and their discrete counterparts, the hyperbolic surface groups, in [26]
and [3] respectively. Still in the theme of Demushkin groups, in [48] M. Shusterman and
P. Zalesskii extended the pro-p version of Howson’s theorem to non-solvable Demushkin
groups, for which they also proved the virtual retractions property that was established for
surface groups by P. Scott in [46].

In the case of a pro-p group G there exists a Sylvester function on F, [G], which is an
analogue of the von Neumann Sylvester rank function and we also denote it by rkg (see
Example 2.5 for the definition). Its definition resembles the Liick approximation [21,33].

If F is a finitely generated free pro-p group, then F,[F] is isomorphic to a ring of
non-commutative formal power series over F,,, and so from [9] we know that F,[F] is a
Sylvester domain. In [22], the first author proved that in this case irkg, (] = rkf. In this
paper we extend this result to finitely generated free-by-Z, pro-p groups.

Theorem 1.1. Let G be a finitely generated torsion-free pro-p group containing an open
free-by-Z, pro-p subgroup. Then F,[G] is a Sylvester domain and, moreover, irky,[6] =
I‘kg.

Question 1. Let G be a pro-p group. Assume that F,[G] is a Sylvester domain. Does
tkg coincide with the inner rank of F,[G]?

Recall that the pro-p Atiyah conjecture predicts that if G is a pro-p group with the
exponent of its torsion elements bounded by p” then rkg takes values in p™Z (see [21,
Conj. 11.1]). The following consequence of Theorem 1.1 provides new cases where this
conjecture holds.

Corollary 1.2. Let G be a finitely generated torsion-free pro-p group containing an open
free-by-Z.,, pro-p subgroup. Then kg takes only integer values.

Notice that the pro-p Atiyah conjecture implies also pro-p Kaplansky conjecture:
F,[G] does not have non-trivial zero divisors if G is torsion-free. Previously the pro-
p Atiyah conjecture was only known for pro-p groups which are residually-(torsion-free
p-adic analytic) [26, Cor. 5.5]. This class includes all infinite Demushkin groups, which
are the pro-p groups that satisfy Poincaré duality in dimension 2. Infinite Demushkin
G groups comprise an important class of free-by-Z, pro-p groups, and while the Atiyah
conjecture for them was previously known, the statement that F, [G] is a Sylvester domain
is new. In Section 2.2 we present examples of finitely generated torsion-free pro-p groups
containing an open free-by-Z, pro-p subgroup but which are not free-by-7Z, themselves.
Observe that the free kernel is abelian if and only if G is a p-adic analytic group (see
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Remark 2.10 for a full characterization of the p-adic analytic groups G for which F,[G]
is a Sylvester domain).

Let us describe the structure of the paper and the main ideas behind the proof of
Theorem 1.1 comparing it with the proof of the main result in [17]. We let d(G) denote
the cardinality of a minimal set of topological generators of a pro-p group G.

On one hand, all projective F,[G]-modules are free for the completed group algebra
F,[G], and so, in contrast to the case of abstract free-by-cyclic groups considered in [17],
there is no difference for IF, [G] to be a pseudo-Sylvester domain or a Sylvester domain.

On the other hand, if N is a normal subgroup of an abstract group I" such that I'/N = Z,
then the group algebra K[I'] is isomorphic to the crossed product K[N] % Z, which
allows easily to construct an embedding of the group algebra of a free-by-cyclic group
into a division ring. This decomposition as a crossed product does not exists in the pro-
p situation and we substitute it by presenting of F,[G], when G is a finitely generated
free-by-Z, pro-p group with free pro-p kernel N, as a skew power series ring F,[G] =
F,[N][s; o, 8] for the natural conjugation automorphism

0:F,[N] — F,[N]

and the inner o-derivation § (see Section 2.3). In Section 2 we discuss also preliminary
results and definitions about Sylvester matrix rank functions and universal embeddings
that we will use to prove Theorem 1.1.

In Section 3 we investigate pro-p groups G for which rkg = irkp, |G| or, more gen-
erally, F,[G] is a Sylvester domain. In particular, we show that if F,[G] is a Sylvester
domain then G is of cohomological dimension 2 and the properties rkg = irkp,[g] and
F,[G] being a Sylvester domain are commensurability invariants for torsion-free pro-p
groups. Thus, it is enough to prove Theorem 1.1 for an open subgroup.

Let A =F,(ay.az,...) be the free associative F-algebra with a universal division A-
ring of fractions DA . Now assume that G is a finitely generated free-by-Z, pro-p group
having a mild flag presentation in the sense of Definition 4.5, a condition that we show
is virtually satisfied for every finitely generated free-by-Z, pro-p group (Lemma 4.6).
In this case we show that the maps ¢ and § extend through the series of embeddings
F,[N] — A[t] = Da[t] in such a way that they induce embeddings of the respective
skew power series rings. We also show that the ring D [¢][s; o, 8] is a Noetherian domain
and therefore has a classical ring of fractions @ given by the Ore localization of its non-
zero elements. This provides an embedding of F, [G] into the division ring @ (Section 5).

For an arbitrary finitely generated virtually free-by-Z, pro-p group G, this construc-
tion provides an embedding of [F, [G] in an Artinian ring @. The next step is to show that
under this embedding all full matrices over [F,[G] become invertible over @. The main
tool to prove this is Theorem 2.8 proven in [22]. We achieve this in Section 6. This shows
that F,[G] is a Sylvester domain.

The last step is to show that irkp, [6] = rkg, and we prove itin Section 7. As a corollary
we obtain the pro-p Atiyah conjecture for finitely generated torsion-free virtually free-by-
7 pro-p groups.
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In Section 8, we discuss some applications of our result to the Liick approximation in
positive characteristic.

We finish the paper with an appendix where we show that if R is a profinite ring and
Ry is a localization of R with respect to a collection X of a square matrices over R, then
Ry admits a Hausdorff ring topology such that the map R — Ry is continuous. This is
used only in the proof of Lemma 3.2 (see also the remark afterwards).

2. The setup

2.1. General notation

If G is a pro- p group, we denote the Frattini subgroup of G by ®(G) = G?[G, G] and the
lower p-central series of G by G; = G and G; = Gip_l[Gi_l, G], so that G, = O(G).
We stack the commutators [a, b] = a~'b~'ab on the right:

[al)a25a35 e ,an] = [[' [[al)az]’a3]7 . ']7an]'

If I denotes the augmentation ideal of G in the completed group algebra F,[G], the
induced filtration

Di(G)={geG|g—1¢€lgs}
on G is called the dimension series mod p (or also the p-Zassenhaus filtration). We
remark that G; < D;(G) foreveryi > 1.

When we say that a pro-p group G is finitely generated, or that X is a generating set
for G, it will always mean generation in the topological sense. We recall that if wo(G)
denotes the smallest cardinality of a fundamental system of neighborhoods of 1 in G —its
local weight — then wo(G) = max{d(G), |N|} [43, Cor. 2.6.3]. In particular, every closed
subgroup of a finitely generated pro-p group is at most countably generated.

2.2. Torsion-free virtually free-by-Z, groups

There are many abstract torsion-free groups which are virtually free-by-Z but not free-
by-Z themselves. One explicit family of such groups is given by the presentations I', =
(a,b,x,y | [a,b]® =[x, y]¢) for e > 1 (see [5, Ex. 7.2]). More examples arise amongst
3-manifold groups such as fundamental groups of knot complements with Alexander poly-
nomial 1. One family of such knots is given by the Pretzel links L (2m + 1,2n + 1,2 + 1)
satisfying (m +n + 1)(m + p + 1) = m(m + 1), such as L(—3,5, 7). The condition on
the Alexander polynomial implies that [G, G] is perfect, and such groups virtually fibre
over Z by being virtually special as a combined consequence of the works of I. Agol, P.
Przytycki and D. Wise [1,2,40].

In the pro-p case we can construct examples of torsion-free pro-p groups which are
virtually free-by-Z, but not free-by-Z, themselves using the ideas of [5].

Proposition 2.1. Let G be the pro-p completion of the abstract group
T = (a1,a2,b1,b; | [ar,a2]” = [b1, b2]?).

Then G is a torsion-free pro-p group that is virtually free-by-Z, but not free-by-7,, itself.
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We divide the proof into two lemmas. Let F = F(x1, x) be another free pro-p
group on two generators and consider the surjective homomorphism ¢: G — F defined
by ¢(a;) = ¢(b;) = x; fori = 1,2.

Lemma 2.2. There exists an open subgroup V < F and a homomorphism .V — Z,
such that ¥ (x'[x1, x2]x) = 1 for every x € F(x1,x2).

Proof. Let V = ®(F). Then, it is clear that [x7, x;] is not contained in [V, V] and hence
is a non-trivial element of M = V/[V, V] =~ Z7. Observe that [xy, x2][V, V] has finitely
many F-conjugates which are linearly independent modulo [V, V], and so one can find a
homomorphism ¥o: M — Z, such that ¥o(x ™ [x1, x2]x[V, V]) = 1 for all x € F. The
desired v is then the composition of the natural projection V — M with . ]

Let U = ¢~ (V). We claim that U is free-by-Z,. More specifically, that if 0: U — Z,
is the composition ¥ o ¢, then the following lemma holds.

Lemma 2.3. K = ker @ is free pro-p.

Proof. Write G as the proper free pro- p product with amalgamation G = A Ll¢ B of the
free pro-p groups A = F(ay,a3), B = F(by,b,) and cyclic subgroup C = ([a1,az]?) ~
([b1,b2]?) [43, Exer. 9.2.6 (a)]. Let (&, X) be the graph of pro- p groups consisting of two
vertices A and B and an edge C connecting them such that 71 (¢, X) >~ G, and let Y be
the standard p-tree associated with (§, X) [42, Sec. 4]. We recall that:

V(Y)=G/AUG/B,
E(Y)=G/C,
do(gC) = gA, d(gC) = gB.

In particular, G acts on Y on the left and G\Y =~ X, the vertex stabilizers are conjugate
to A or B and the edge stabilizers are conjugate to C.

Let Z = K\Y and Z be the associated graph of pro-p groups on Z. The edge stabi-
lizers of the K action on Y are the intersections K N gCg~! for g € G, which are trivial
by construction. Since the vertex stabilizers are all free pro-p, the fundamental group
w1(Z, Z) is also free pro-p.

First, observe that U is a normal subgroup of G and G/U ~ F/®(F). Hence, UA =
UB = G. Therefore, G/A = UA/A ~ U/(U N A) and similarly for G/B. Since K is
normal in U with quotient Z,, we get homeomorphisms:

V(Z) ~ K\U/(UN A)uK\U/(U N B)~Z,/6(U N A)UZ,/8(U N B).

Given that [ay,as] = [b1, b2] is an element of both U N A and U N B that is not trivial
under 8, V(Z) is finite (and in fact consists of two elements).

Note that C is contained in U, and since it generates the image of 6 we have U ~
K x C. Also observe that by the construction of § and K we have [G, U] < K. Combining
this information with the homeomorphism K\G ~ K\U x U\ G, we get that the induced
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right action of C in K\U x U\G is given by
(Ke,Ug)c' = (Kec', Ug)
forc,c¢’ € C and g € G. Therefore,
E(Z) = K\G/C =~ K\U/C xU\G ~ U\G

and Z is finite. From [41, Thm. 6.6.1], we conclude that the induced map 7;(Z, Z) - K
is an isomorphism. ]

Proof of Proposition 2.1. Again write G as the proper free pro-p product with amalga-
mation G = A ¢ B as in Lemma 2.3. Since both A and B are torsion-free, G is also
torsion-free by [42, Thm. 4.2 (b)]. By [27, Cor. 3.5], I is residually- p, and so it embeds
into G. Since [a1, a,] and [by, b;] are distinct elements in [, '] C [G, G] with the same
p-th power, the group [G, G] cannot be free pro-p. Hence, G itself cannot be free-by-Z,.
However, we have shown in Lemma 2.3 that G contains an open subgroup U that is free-
by-Zp. m

2.3. Skew power series rings

Let R be a topological ring and ¢ a continuous automorphism of R. We define the con-
tinuous map § = o — id and observe that § is a right o-derivation, that is, § is an additive
map and for all ¢, b € R we have:

8(ab) = 8(a)b + o (a)8(b).

Moreover, o and § commute. A (right) skew power series ring S = R|[s; 0, 8] over R with
automorphism ¢ and derivation § consists of the topological abelian group of all formal
power series

Zsiai, witha; € R

i>0

together with a multiplication map defined by the rule:

. . i k
( s’ai)( s-’b-) = sm( ( )81‘" 0" (am—n) bk). 2.1
g ,§ : mZO ; g )5 )
While we will not use it, one can define a left skew power series ring analogously. When
R is a Noetherian pseudocompact ring, our definition agrees with the one in [45] by seeing
S simultaneously as a right and left skew power series ring in the unique compatible way
(see [45, Sec. 1)).

For the ring R[s; o, 8] to exist, one needs to ensure that the infinite sums on the right-
hand side of (2.1) converge for every possible choice of elements a; and b;. If this is the
case, then (2.1) defines a continuous multiplication on S which makes it into a topological
R-algebra satisfying

as = so(a) + §(a), foreverya € R.
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In this paper, the ring R will either be the completed group algebra F,[N] over F,, of
a free pro-p subgroup N of a pro-p group G or a power series ring A [t] over a discrete
Fp-algebra A for a fixed prime p. In both cases, R is a complete ring whose topology is
induced by a Hausdorff filtration Ry, where Ry is either the intersection of the k-th power
1 g of the augmentation ideal of F,[G] with F, [ N or the principal ideal generated by ¢¥
of A[t]. Following the nomenclature of [28,31], we have a filtration function

w(a) — p— sup{kzOlaeRk}7

which is submultiplicative, satisfies the ultrametric inequality and is such that a; — 0 if
and only if w(a;) — 0. In the F,[N] case, this filtration function is called a valuation
in [12, Sec. 2.2], though we shall reserve the name ‘“valuation” for a stronger class of
filtration functions (see Section 4).

Hence, we restrict ourselves to complete Hausdorff rings with a submultiplicative fil-
tration function w. We say that the derivation § = o — id is topologically nilpotent if
8k — 0 pointwise, that is, w(8%(a)) — 0 for any a € R. If § is topologically nilpotent,

then each infinite sum ‘
Z( )8"—" (0" (@m—n))br
n

k>n
appearing in (2.1) is convergent for any choices of a¢; and b; and therefore the ring
R[s; 0, 8] exists. One of our preliminary results is that the completed [F,-group algebra
of any free-by-Z, pro-p group G with free kernel N is isomorphic to a right skew power
series ring over F,[N].

2.4. Universal division ring of fractions

All ring homomorphisms in this paper are assumed to preserve the multiplicative iden-
tity 1. A subring S of R is division closed if for every unit x € S N R* one has x~! € §.
The division closure of a subring S of R is the smallest division closed subring of R
containing S.

Let f : R — S be a ring homomorphism. We say that f is epic if for every ring Q
and homomorphisms o, 8 : S — Q, the equality @ o f = B o f implies @ = B (i.e., the
natural map Homging (S, Q) — Homgiye (R, Q) is injective for all rings Q).

As in [10, Chap. 7.2], we define an epic division S-ring as a division ring D together
with an epic homomorphism ¢: S — D. The condition on ¢ to be epic is equivalent to the
condition that the division closure of ¢(S) is equal to D [10, Cor. 7.2.2]. Let ¢": S — D’
be another epic division S-ring. A subhomomorphism of epic division S-rings is a homo-
morphism : K — D’, where K is a local subring of £ containing ¢(S) with maximal
ideal ker ¢, such that 1 o ¢ = ¢’. Two subhomomorphisms ¥/;: K; — D and ¥»: K, — D
are equivalent if there is a subring Ko of O contained in K1 N K, such that ¥; and v,
agree on K and it is local with maximal ideal ker(y/1) N Ko = ker(y2) N Ko. A special-
ization D — D’ of epic division S-rings is an equivalence class of subhomomorphisms.
The archetypal examples are D = Q and D’ =T, for § = Z, with the local subrings K
being the localization of Z at a prime p.
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The universal division S-ring is an epic division S-ring £ such that for every other
epic division S-ring D’ there exists a specialization D — D’. It is unique up to S-
isomorphism and we will denote it by Dg. If the associated map ¢: S — Dg is injective,
we say that Dg is the universal division S-ring of fractions. In general, we will say that
S — D is universal if the division closure of the image of S in D is isomorphic (as a
S-ring) to Dg.

The universal division S-ring g need not exist in general, even if S is a domain [38].
One class of rings that possess a universal division ring of fractions is the class of Sylvester
domains [10, Thm. 7.5.13]. To define a Sylvester domain, we consider Sylvester matrix
rank functions and the inner rank. A Sylvester matrix rank function rk on a unital ring S
is a non-negative real-valued function defined on the set Mat(S) of all matrices over S
satisfying:

(SMatl) rk(A) = 0if A is a zero matrix and rk(1) = 1;

(SMat2) rk(AB) < min{rk(A4), tk(B)} for any pair of matrices A and B that can be

multiplied;

(SMat3) rk(f)1 g) = rk(A) + rk(B) for any matrices A and B;

(SMat4) rk(‘(‘)1 g) > rk(A) + rk(B) for any matrices A, B and C of appropriate sizes.

Since rk(Id, ) = n by (SMat3), one concludes that tk(A4) < min{n,m} for every matrix A €
Maty, xm (S) by property (SMat2) and the identities A = Id, A = Ald,,. If S is a division
ring, then any matrix can be put in row-echelon or column-echelon form by multiplication
with invertible matrices, an operation that does not change the rank by (SMat2). It follows
then from (SMat4) that there is a unique Sylvester matrix rank function on S, given by
the number of linearly independent rows (with a left S-action) or columns (with a right
S-action). We include a proof of the following general fact for which we could find no
reference.

Lemma 2.4. Let B be any submatrix of a matrix A € Mat(S) and 1k be any Sylvester
matrix rank function on S. Then, rk(B) < rk(A).

Proof. Any submatrix B of A € Mat, x,,(S) can be obtained by removing rows or columns
of A. Hence, it suffices to prove the claim for A = (B a) and for A’ = (f,) for arbitrary
columns a € Matyx;(S) and rows a’ € Mat;x,, (S). Since

5= (s a)'(Idr(z)—l) = (Idy_1 0) (f)

the lemma follows from property (SMat2). ]

Every Sylvester matrix rank function defines a dimension function dim for finitely
presented S-modules M ~ S /AS™ with A € Maty,x,, (S) through dim M = m — rk(A).
This dimension function is an example of a Sylvester module rank function (see [22,
Sec. 2.1]), and this correspondence gives a bijection between the sets of Sylvester matrix
rank functions and Sylvester module rank functions.
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Example 2.5. Let G be a pro-p group and G > U; > U, > --- be a sequence of open nor-
mal subgroups of G such that (72, U; = {1}. Then, for any matrix A over the completed
group algebra F,,[G], if A; denotes its reduction modulo U;, the limit

rk]F A i

— 1; p
tke (4) = 11—1:20 |G: U;|

. . . G:U; G:U; . .
exists, where A; is seen as a linear operator ]FI'," Gl _, IF;’ G:Uil after some choice of basis

for F,[G/U;), and defines a Sylvester matrix rank function on § = F,[G] that does not
depend on the choice of the chain U; [21, Prop. 11.2]. We denote the associated Sylvester
module dimension function by dimg. Observe that for a finitely presented F,, [ G]-module
M we have di F u
im A
dimg M = lim —2 2 “F[0]
i—>00 |GZ U; |

If a ring S has a universal division ring u : § — Dg, we denote by rkg the induced

Sylvester rank function:

tks (M) = rkog (u (M)) (M is a matrix over S).

It is characterized uniquely by the following universal property: for every division S-ring
y : § — & and every matrix M over S, rkg(y(M)) < rks(M).

Proposition 2.6. Let S be a ring and u : S — Dy its universal division ring. Let a : S —
S be an automorphism. Then there exists a unique & : Ds — Ds such thatu o = & o u.

Proof. The universal property of rks implies that rkg = rkg oa. Hence u o : S — Dg
is also universal. Thus, u and u o « are S-isomorphic. This implies the existence of &. =

The inner rank irks(A) of a non-zero matrix A € Mat, x»,(S) is the smallest non-
negative integer k such that A factors as a product BC with B € Mat, «x(S) and C €
Maty x,,, (S). If the inner rank of a square n x n matrix A4 is n, we call A a full matrix.
A ring S is called a Sylvester domain if the inner rank irk is a Sylvester matrix rank
function on S. Note that irk always satisfies the conditions (SMatl) and (SMat2), and
every Sylvester matrix rank function rk on S satisfies rk(4) < irk(sA) by (SMat2). In
fact, irk satisfies an even stronger property than (SMatl): irk A = 0 if and only if A is the
zero matrix. Every Sylvester domain S possesses a universal division ring of fractions Dg
such that irk = rkg,. For the construction of g, see [10, Sec. 7.4 and 7.5]. Moreover,
Ds satisfies another universal property.

Proposition 2.7 (cf. [10, Thm. 7.5.13 (e)]). If S is a Sylvester domain and ¥: S — R is
a ring homomorphism such that the image through ¥ of every full matrix A over S is
invertible over R, then \r extends uniquely to a map ¥: Ds — R.

If ¥: S — R is a homomorphism of rings and rk is a Sylvester matrix rank function
on R, then the precomposition with i defines a Sylvester matrix rank function on S,
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denoted ¥* rk. Given a Sylvester matrix rank function rk’ on S, we say that R is an
envelope for 1k’ if there exists ¥ and rk as above such that rk’ = ¥ rk.

We recall that a ring U is von Neumann regular if for every a € U there exists b € U
such that aba = a. In particular, every division ring is von Neumann regular. In [22], the
first author proved the following.

Theorem 2.8 ([22, Cor. 2.5]). Let S be a ring and 1k be a Sylvester matrix rank function
on S with an envelope ¢: S — U which is a von Neumann regular ring. Assume that:

(1) Tor‘lg(‘u, U) =0, and

(2) for any finitely generated left or right S-submodule M of U and any exact sequence
0—-1—>S"—> M — 0,1 isafree S-module.

Then tk = irk. In particular, S is a Sylvester domain and the division closure of ¢(S) in
U is S-isomorphic to Dg, the universal division S-ring of fractions.

In the same paper it is shown the following converse to Theorem 2.8.

Proposition 2.9 ([22, Prop. 2.2]). Let S be a Sylvester domain and D its universal divi-
sion S-ring of fractions. Then:

(1) For any left (resp. right) S-submodule M (resp. N ) of D", we have that
Tor (N, M) = 0.

(2) For any finitely generated left or right S-submodule M of D" and any exact
sequence 0 — I — S™ — M — 0, I is a (set-theoretic) union of submodules
isomorphic to S* where

k=n—dimM =dim]!,

where dim is the Sylvester module rank function associated to the inner rank in S.

We can see Theorem 2.8 as a homological criterion to determine whether S is a
Sylvester domain and ¢: S — U is a universal embedding for S'.

Remark 2.10. A big technical difficulty in proving Theorem 1.1 is establishing the valid-
ity of the condition (2) of Theorem 2.8 for the embedding F,[G] — @ we construct in
Section 5. If G is a non-trivial pro-p p-adic analytic group and F,[G] is a Sylvester
domain, then cd G < 2 by Proposition 3.3 and hence G >~ Z, x Zp or G > Z,,. In par-
ticular, G is free-by-cyclic and Theorem 1.1 applies, showing that those are precisely the
p-adic Lie groups G for which F,[G] is a Sylvester domain. However, for any torsion-
free p-adic Lie group G the completed group algebra F,[G] is a Noetherian domain, and
hence it possesses a classical Ore ring of fractions @. For G = Z, x Z, or G = Z, it is
straightforward to see that the map F,[G] — @ satisfies the conditions of Theorem 2.8.
Since @ is flat over F,[G], we have TorIIF” [[G]]((Q, @) = 0. Moreover, any finitely gener-
ated G-submodule M of @ is isomorphic to a finitely generated G-submodule of F,[G]
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by the Ore condition. Observe that any submodule of a finitely generated IF, [G] is finitely
generated and hence closed and profinite. Since F,[G] has global dimension at most 2,
by [8, Rem. after Thm. 3.5] we have

Tor," V(1 F,) ~ Tor?1N (1, F,) ~ Tory? 19N (M, F,) < Tory”tN (R, [G], F,) =0,
where Tor denotes the derived functor of the completed tensor product. By [8, Prop. 3.1],
I is projective, and thus 7 is a free F,[G]-module since the latter is a local ring. For the
fact that F,,[G] is a local Noetherian domain of global dimension c¢d G, see [4]. The fact
that rkg = rkg is also true for any p-adic analytic group, and is a result of M. Harris
[16, Lem. 1.10.1].

3. Sylvester domains and completed group algebras

In this section, we study pro-p groups G for which F,[G] is a Sylvester domain or
kg = irk]Fp[[G]]. It is clear that the second condition is stronger, but we believe, that in
fact they are equivalent. The main objective of this section is to show that both condi-
tions are commensurability invariants. As far as the authors are aware, no analogue of this
results is known for abstract group rings. We start with a key lemma.

Lemma 3.1. Let G be a pro-p group and suppose that F,[G] is a Sylvester domain with
universal division ring of fractions Dy, [G]- Then, for every finitely generated left (right)
F,[G]-submodule M of Dy 1) and short exact sequence

0—1—>TF,[G]" - M — 0,
the B, [G]-module I is free of finite rank.
The main step for obtaining this result is the following.
Lemma 3.2. The submodule I is closed in F,[G]".

Remark. We provide two proofs of the lemma. The first one is much easier but requires
an additional condition that irlqu [6] = k. We notice that this is the case needed for the
proof of Theorem 1.1. The second proof of Lemma 3.2 does not require any additional
hypothesis but uses a non-trivial result, proved in the appendix, that Op,[c) admits a
Hausdorff ring topology such that the embedding F,[G] — Dr, [ is continuous.

First proof of Lemma 3.2. In this proof we not only assume that F,[G] is a Sylvester
domain but that irkg, [6] = rkg. Let

G>N>Ny>---

be a chain of normal open subgroups of G with trivial intersection. By [24, Prop. 2.15],
for every finitely generated left ', [G]-module N,

dimg. F, ®p v N
dimg N = lim —2 2 ZEIN]
i—>00 |GIN,‘|
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If I denotes the closure of I in F,[G]", let M = F,[G]"/I. Since the image J; of I and
I in F,[G/N;]" coincide, we get

dimopy, 16, (Dr, [6] ®F,[6] M) = dimg M

dim]Fp IFP QF, [N:] M

= lim
i—>00 |G2Ni|
— lim dimeFp[G/Ni]"/Ji
T iS00 |GN,|
~ lim dim]Fp Fp ®]Fp|INi]] M
i—>00 |G1Ni|

=dimg M = dimi)Fp 161 (OF, [6] ®F,[6] M).
The embedding M — J)]I'?'; [G] factors through the map M — D, (6] ®F,[c] M given

by m +— 1 ® m, so the latter must also be injective. Hence, any x € I not in I is such
that 1 ® x is a non-zero element of JD]FP 16] ®F,[6] M. This element lies in the kernel
of the surjection @]Fp 6] ®F, 61 M — @JFPHG]] ®F,[6] M, which is an isomorphism by
comparing dimensions. Therefore, I = I is closed in F, [G]". |

Second proof of Lemma 3.2. We can identify Dp,[G] with the universal localization of
Fp [G] at the set of all full matrices. Thus, by Theorem A.1, @FpHG]] admits a Haus-
dorff ring topology such that the embedding F,[G] — D, [c] is continuous. Hence, if
my, ..., my is a set of generators for M, the map F,[G]" — M sending (dy,...,dy,) to
diymy + --- 4+ dymy is also continuous. In particular, the kernel I of this map is closed in
F,[G]". [

Proof of Lemma 3.1. We recall that by Proposition 2.9 the F,[G]-module [ is the direct
union of submodules /; isomorphic to I, [G]¥. We claim that I is itself isomorphic to
Fo[G]F.

Let J = I/IgI, where I is the augmentation ideal of F,[G]. Since [ is the direct
union of submodules isomorphic to I, [[G]]k, the IF,-vector space J must be isomorphic
to the direct union of subspaces of dimension at most k. Therefore dimg, J < k and there
exists i such that J = I; 4+ Ig 1. Since I is closed by Lemma 3.2, it is finitely generated.
Hence, by Nakayama’s lemma, / must be equal to /;. ]

The following observation is an immediate consequence of the previous lemmas.

Proposition 3.3. Let G be a finitely generated pro-p group. If F,[G] is a Sylvester
domain, then G is finitely presented and cd G < 2.

Proof. Apply Lemma 3.1 with M being the augmentation ideal of F,[G]. Observe that
G is finitely presented if and only if

Hy(G.F,) = Tory’ 'V, . F,) ~ Tor,?1V (M. F,) < Torg? 11, F,)

is finite, that is, if 7 is finitely generated. [
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Before we proceed, we recall the definition of a crossed product between a ring and
a group. Let R be an associative and unital ring and G be a group. We say that S is a
crossed product of R and G if § = @,ecSg such that for every g,h € G, SgSi € Sgp,
S1 = R and for every g € G there exists a unit uy € Sg. We will write S = R * G. Itis
clear that the multiplication is uniquely determined by the rules

Ug Ug, = Ug g,T(g1,82), TUg = Ug0(g1)(r),

where t: G Xx G — R* and 0: G — Aut(R) are functions satisfying the identities

1(g182.£3)0(g3)(t(g1. 82)) = 7(g1.£283)7(82. 83).

i 3.1
0(g2)(0(g1)(r)) = 1(g1.82) "0 (g182)(r)T(g1. 82).

for every g1, g2, 83 € G and r € R — this follows directly from the associativity of the
product in S [39, Lem. 1.1]. Since u, are invertible in S, {u, | g € G} is a free basis of
S as a left R-module.

Let G be a pro-p group, U a normal open subgroup of G and 7 a transversal of U
in G. Since F,[G] = @®:erF,[U]t, we obtain that F,[G] = F,[U] * G/U. For every
g € G, let g be its representative in 7. For any ¢t € T, we put u,;yy = ¢. In this case the
maps t and o can be explicitly described as follows: o (g1U) is conjugation by g7 and

1(g1U.8U) = (512" 21 &

Proposition 3.4. Let G be a pro-p group and U a normal open subgroup of G. Suppose
F,[U] has a universal division ring of fractions Q. Then:

(a) The conjugation action of G onF,[U] extends to a homomorphism G — Aut(@).

(b) For a fixed transversal T of G/ U, the maps from the crossed product decompo-
sition Fp[G] ~ F,[U] * G/ U can be extended to maps o: G/U — Aut(Q) and
:G/U x G/U — @ satisfying the identities (3.1). In particular, the crossed
product @ x G/ U exists and F,[G] embeds into it.

(¢) If E is the ring of right @-endomorphisms of @ * G/ U, then left multiplication
induces an embedding of rings @ * G/U — E such that it makes E a free @ %
G/ U-module on both sides.

(d) As a right F,[G]-module, the crossed product @ x G/U is isomorphic to the
induced module @ ®y,[u] Fp[G].

Proof. (a) This follows from Proposition 2.6.

(b) Since U C @, one can take the same 7 as in the crossed product decomposition
of F,[G]. It is then only a matter of checking whether or not the map G/U — Aut(Q)
induced through o by T also satisfies the second identity in (3.1). However, for each
fixed pair g1, g» € G, both the left and the right-hand side of that identity define ring
automorphisms of @ which coincide on F,[U]. Since the inclusion of F,[U] into @ is
an epimorphism of rings, both sides must indeed be equal as automorphisms of @.
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(c)Let T be atransversal of U in G. Then T ={g;,...,gn}isa @-basisof @ * G/ U.
foreveryi =1,...,n we define y; € E such that y; (g;) = 8;; g;. We identify the elements
of the ring @ * G/U with its images in E.

We have that £ = @;_;(Q = G/U) o y;. To see it, it is enough to show that if
a1,...,0, € Q*xG/U and o = Z;’:lai oy; =0, then oy = --- = o, = 0. This fol-
lows from the equality a(g;) = ; g;. We also have that E = @@_, y; o (@ * G/U), for
which it is enough to show thatif ¢y, ...,0, € @ * G/U and @ = Z;’zl yi ooy = 0, then

ap =--=o0o, =0. Write o = Z;-’zl @;jg;. Then
a(gr) = Y. T8k g
g 'gjgkelU

Now it is clear that if all ®(gx) = O then for every i, j, a;; = 0.

(d) Just observe that the map @ ®r,[u] F,[G] — @ * G/U sending a ® b to ab is
an isomorphism of right I, [G]-modules, whose inverse is given by sending g1g1 + -+ +
dngn1t0g1 @ g1+ -+ + ¢n @ gn. u

Theorem 3.5. Let G be a torsion-free finitely generated pro-p group. Then the following
are equivalent:

(A) F,[G] is a Sylvester domain.
(B) F,[U] is a Sylvester domain for every open subgroup U of G.
(C) Fo[U] is a Sylvester domain for some open subgroup U of G.

Moreover, in case one of the above holds and U is an open normal subgroup of G with a
universal embedding F,[U] — @, then @ * G/ U is a division ring and the induced map
F,[G] — @ = G/U is a universal embedding.

Proof. (A)=-(B) Suppose first that F,[G] is a Sylvester domain with universal division
ring of fractions @. We want to show that the induced embedding F,[U]] — F,[G] — @
satisfies the hypothesis of Theorem 2.8.

First, we claim that the right F,, [G]-module @ ®F,[v] F,[G] is a submodule of Q"
for some r. Indeed, as a left @-vector space, it has a basis {1 ® g | g € T} for some
transversal 7 of G/ U. One then checks that the map that sends ) geTTg ® g0 (rgg)ger
in @QIG°U1 is right F,[G]-equivariant. This implies that for every finitely generated right
[Fp[U]-submodule M of @, the right I, [G]-module M ®,[v] F,[G] is a submodule of
@!%:Ul Hence

Tory” 1 (M. @) = Tory” ' (M @, v) F,[G]. @) = 0

by Proposition 2.9. Since @ is the direct limit of its finitely generated submodules, we
conclude that Tor]IF” HU]]((Q, Q)=0.
Now take a short exact sequence

0— 1 —>TF,[U]" > M —0.
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Tensoring once more with F,,[G] over F,[U], we get a short exact sequence
0 — I ®F,[u] Fp[G] — Fp[G]" - M ®F,[u] Fp[G] — 0.

Since M ®r,[u] Fp[G] is a submodule of @9Vl by Lemma 3.1 the module 1 ®F,[U]
F,[G] is free of finite rank. By tensoring over F,[G] with F,, we conclude that I is
finitely generated over F,[U].

Then, I is itself a finitely generated F,[U]-submodule of @”", so one can repeat the
prior argument with the short exact sequence

0—J > F,JUF—>1T-0

to conclude that 7 must be finitely presented and hence of type FPo, over F,[U]. There-
fore, by [8, Lem. 2.1] we conclude that

Tor, V(1. Fy) = Tor "1 (1. Fy) = Tor{" ' (1 @, 1) F,[G]. F,) =0,

where Tor is the derived functor of the completed tensor product of profinite modules.
Since I is profinite, J must be projective over F,[U] by [8, Prop. 3.1] and hence free
(and of finite rank) by Kaplansky’s theorem on projective modules over local rings. By
Theorem 2.8, F, [U] is a Sylvester domain and its division closure @ inside @ is F, [U]-
isomorphic to its universal division ring of fractions.

(B)=(C) is immediate.

(C)=(A) Now, suppose that ', [U] is a Sylvester domain with universal division ring
of fractions @ for some open subgroup of G. It suffices to prove the theorem for the case
|G:U| = p, so we may assume U is a normal subgroup of G. Then, by Proposition 3.4,
the embedding F,[U] — @ induces an embedding F,[G] — @ * G/U — E where E
is the ring of right @-endomorphisms of @ * G/ U, and we will check the conditions of
Theorem 2.8 for this embedding. The ring E is von Neumann regular as it is isomorphic
to a matrix ring over a division ring, and since @ * G/U is isomorphic to the induced
module @ ®r, (] Fp[G] as right F,[G]-modules, we have:

Tor,” IV (E, E) ~ Tory? 1l (@ « G/U)P . (@ « G/U)P)
~ Tor,”l V@ « G/U. @ « G/ U)P?
~ Tor? 1V (@ @, jv) F,[G]. @ + G/ U)”
o~ TorJIFI’[[UH (@, (,‘2"’)1’2 =0.

Now, take any finitely generated right F, [G]-submodule M of E ~ (Q * G/U)? and
a short exact sequence
0—1—F,[G]" - M — 0.

As an F,[U]-module, I must be free of finite rank by Lemma 3.1. Hence, [ is finitely
generated over IF, [G]. Taking another short exact sequence

0—J > TF,[G]* -1 -0
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and repeating this argument, one obtains that J must also be finitely generated, so that /
is finitely presented. In particular,

Tor]fp [e1 (I,Fp) ~ Tor]g”[[G]] (M, Tp).

By Proposition 3.3, U is of cohomological dimension 2. By Serre’s theorem [47] (see
also [15]), G is also of cohomological dimension 2. Thus, since M is a finitely presented
submodule of (@ * G/U)P, there is an exact sequence of Tor groups:

0 — Tor? V. 7,) > Tors? V@ « G/ U.F,)? ~ Torz? V@, F,)7.

By Proposition 2.9, the I, [U ]-module @ has weak dimension at most 1, so that all the Tor
groups above vanish. Since Tor]f" [[G]](I ,F,) = 0 and I is finitely generated, the F,[G]-
module 7 is free of finite rank and one can apply Theorem 2.8.

Observe that @ * (G/U) is then a domain since it embeds into a division ring. Given
that it is also a finite-dimensional @-algebra, it must be itself a division ring, so we have
shown that @ x (G/U) is the universal division ring of fractions of F,[G]. |

Corollary 3.6. Let G be a torsion-free finitely generated pro- p group. Then the following
are equivalent:

(A) tkg = irkg,[G]-

(B") rky = irkg,[u] for every open subgroup U of G.

(C) tky = irkg, [ for some open subgroup U of G.

Proof. We first observe that if rkyy = irkg, [y, then the inner rank is a Sylvester matrix
rank function on F, [U] and therefore it is a Sylvester domain having a universal division
ring of fractions.

(A")=(B’) Let @ be the universal division ring of fractions of F,[G], A be an x m
matrix over [F, [U] (which we also see as a matrix over F, [G]) and define the left F, [U]-
module M = F,[U]™/F,[U]"A. Note that F,[G] ®F,ju; M >~ Fp[G]™/F,[G]" A.
Hence:
dimy F,[G] ®x, 1] M

|G:U|
= dimg @ ®F,[G] FP HGH QF, [U] M

= dimg @ ®F,[u] M.

dimy M = = dimg F,[G] ®,[ju] M

(B")=(C") Is immediate.

(C")=(A’) We have shown in Theorem 3.5 that if @ is the universal division ring of
fractions of F,,[U], then @ % G/U is the universal division ring of fractions of F,[G].
Hence, for any n x m matrix A over F,[G] which we see as a matrix over @ * (G/U)
and as an|G: U| x m|G: U| matrix over F,[U]:

rk@A _ irk]Fp[[Uﬂ A . rkUA
|G:U| ~ |G:U| ~— |G:U|

il‘k]Fp[G]] A= er*(G/U) A= = I‘kG A. ]
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4. Mild flag pro-p groups

Let G be a pro-p group with a closed normal subgroup N such that N = F(xq,x2,...)
is a free pro-p group of at most countable rank and G/N ~ Z,. Let g € G be such that
gN topologically generates G/ N, and consider the group algebra § = F,[G]. We want
to decompose it as a skew power series algebra over R = F,[N] with the automorphism
o of S is given by x > g~ !xg and the derivation § is 0 —id. If welets = g —1¢€ S,
observe that we get the relation

xs = so(x) + 6(x)

forany x € S.

To better understand the filtered structure of S and R and their respective associated
graded rings, we fix the notation for the following filtration on S: if / is the augmentation
ideal of S, welet Sy =1 g for k>0and Sy =S for k <0. We define the continuous function
w: S — [0, 1] through:

w(a) — pfsup{kEZklESk}. @.1)

It is directly verified that w(a) is a filtration function in the sense of [31, Def. 1.2.1.1] (or
a valuation in the sense of [12, Sec. 2.2]), that is, w satisfies:

(i) w(a) =0ifandonlyifa = 0;

i) w(@)=1;

(iii)) w(a + b) < max{w(a), w(b)} for any paira,b € S.

@iv) w(ab) < w(a)w(b).
The conditions above also imply a stronger version of (iii) called the strong ultrametric
inequality: if moreover w(a) # w(b), then w(a + b) = max{w(a), w(b)}. Following
[31, Def. 1.2.2.1], we shall say that w is a valuation if w satisfies a stronger version of (iv):
w(ab) = w(a)w(b) for any pair a, b € S. This is the definition also adopted in [28].

Proposition 4.1. The completed group algebra S is isomorphic to the right skew power
series ring R[s; o, §].

Proof. From the homeomorphism G ~ N x G/N, we obtain that S is the free profinite
R-module on the profinite space G/N ~ {1, g, g2,...}. Through a base change, we get
that the set of powers of s = g — 1 also form a topological basis for S over R, from which
we can identify it as a topological abelian group with the group of formal power series
in s over R. Hence, it suffices to show that the formula (2.1) defining the multiplication
always converges. For this, it is also sufficient to check that § is topologically nilpotent in
the induced filtration of R, that is, §¥ converges to zero pointwise. Observe that /g and R
are o-invariant because o is an inner automorphism of S and N is normal in G.

To show that § is topologically nilpotent, it also suffices to show that §(S) € I¢ and
that §(Ig) C 12, for then we inductively get from the inclusions §(/X) € §(I1£~1)Ig +
Ig_IS(Ig) C Ié“ for all k > 2 that §K(S) C Ié. This gives us that §5 converges to zero
uniformly and hence is topologically nilpotent in S and thus in R. ]
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The proof of Proposition 4.1 also shows the following result.

Corollary 4.2. For every free-by-Z, group G and any non-zero a € S, we have w(8(a)) <
w(a), where w is the function defined in (4.1).

To describe some cases in which w(a) is actually a valuation, we will make use of the
following definition given in [13, Def. 1.1].

Definition 4.3. Let Fj,(a;, . ... a,) be the free F,-algebra on n generators with augmen-
tation ideal / = (ay, ..., a,). Choose [ elements p1,...,p; € [ andlet J = (p1,...,p;)
be the two-sided ideal generated by them. We say that the sequence of elements py, ..., p;
is strongly free if J/JI is afree Fp{(ay, ..., a,)/J-module with basis {p; + JI}.

Let F = F(g1,...,&n) be a free pro-p group on n generators. With respect to the
filtration induced by augmentation ideal, the graded ring Gr(F, [ F]) is isomorphic to the
free IF,-algebra on n generators @; = g; — 1. A minimal pro-p presentation

(g1,---,8&n |71, 17)

is a called a strongly free presentation if the homogeneous components p; = r; — 1 form
a strongly free sequence in Gr(F,[F]). A pro-p group is mild if it has a strongly free
presentation.

To highlight the choice of filtration on I, [F], one says in that case that G is a mild
pro- p group with respect to the p-Zassenhaus filtration, that is, the filtration by dimension
series mod p — cf. [35, Def. 4.4], [13, Lem. 1.3 and Rem. 1.6] and [28, Def. 1.1]. We will
concern ourselves solely with mild groups with respect to this filtration.

We observe that if Gr(IF,[G]) is an integral domain, then w must be a valuation. The
mildness condition gives us the following result.

Proposition 4.4 ([35, Prop. 4.5], cf. [14, Thm. 2.11]). If
G>(g1,---» & | F1,---,717)

is a strongly free presentation, then Gr(F,[G]) ~ Gr(F,[F])/J, where J is the two-sided
ideal generated by the p; = r; — 1.

Hence, our strategy is to use mildness and an explicit description of Gr(F,[F])/J
to obtain that Gr(F,[G]) is a domain, and thus that w is a valuation on F,[G]. Before
establishing mildness, we prove a technical lemma that will give us a “canonical” minimal
presentation for free-by-Z, pro-p groups.

Definition 4.5. A flag presentation of a pro-p group G is a finite presentation given by
the quotient of the free pro-p group F on a set of generators {x1,...,x,, g} by [ relations
of the form

[xi.g.....g] =hi forh; e ®(N)and1<i <I, 4.2)
N——
a; times



Sylvester domains and pro-p groups 471

where the a; are positive integers and N is the normal subgroup of F generated by
{x1,...,x,}. If all the @; are equal to 1, we shall say that the flag presentation is mild. A
pro-p group with a mild flag presentation will be called a mild flag pro-p group.

If G has a mild flag presentation as in (4.2), then G is a mild group. Indeed, if [ = 0,
the presentation shows that the group is free and vacuously satisfies the hypothesis of
mildness. Otherwise, let 7; and y be the elements in H (G, F,) that are dual to the basis
{xi,g |1 =i <n}of G/P(G):

ni(x;) =8, mi(g =0 y)=0 1y =1L
There is an F,-vector space decomposition of H!(G,F,) ~ V & W such that V = (y)
and W = (n; | 1 <i < n), and the identities in (4.2) show that the restriction of the cup
productto V ® W — H?(G,F,) is surjective and that y U y = 0 by [37, Prop. 3.9.13].
Hence, G satisfies the cup-product criterion of [35, Prop. 5.8] to being a mild group (cf.
[13, Sec. 6]). Later on we shall see that mild flag presentations are also strongly free
presentations, and can be used to describe the graded ring Gr(F, [G]).

Lemma 4.6. Every finitely generated free-by-7., pro-p group G has a flag presentation.
Moreover, G has a normal open subgroup U, inverse image of an open subgroup of Z,,
such that U has a mild flag presentation.

Proof. Let G >~ N »x G/N be a free-by-Z,, pro-p group with G/N =~ (gN) ~ Zpand N
free pro-p. Let A = N/®(N) and consider it as an [F,[G/N ]-module through the action
of g. Since F,[G/N] is a PID and 4 is finitely generated over it, it can be decomposed as
a direct sum F,[G/N]* @ @5:1 F,[G/N]/(d;) with 0 # d; € Ig/n for all i. Its Pon-
tryagin dual Hom(N/®(N), Q/Z) must then decompose as Q% @& @le F,[G/N]/(d;)
where Q is an injective F, [G/N ]-module.

Since 0 # d; € Ig/n, we obtain that H'(G/N,F,[G/N]/(d;)) >~ F, forall i. By the
Lyndon—-Hochschild—Serre spectral sequence, we have:

H*(G,F,) ~ H'(G/N.H'(N,F,))
~ H'(G/N,Hom (N/®(N).Q/Z))

I
~ @ H'(G/N.F,[G/N]/(d)) ~F,. (4.3)
i=1

Choose representatives X1, ..., Xk, Z1,...,2; in N for the [F,, [G]-cyclic generators of
each factorin N/ ®(N) such that {x1,...,Xk,21,...,2;, g} is a minimal generating set for
G —this is possible because the map A — G/ P(G) is a homomorphism of G/ N -modules.
If A is a free F,[G/N]-module, then (4.3) shows that H?(G,F,) = 0 and therefore G is

a free pro-p group with the mild flag presentation

G~ (x1...,x¢,8 | D).

Hence, we can assume that A is not a free I, [G/N]-module, and in particular that
H?(G,F,) is non-zero.
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Since the G/ N -action on the finite module F,[G/N]/(d;) is unipotent, there exists

some positive a; such that [z;, g, ..., g] is a fixed point, or equivalently, there exists 4; in
N———’
®(N) such that a; times
[zi.g.....¢ ] =hi. (4.4)
N——
a;+1 times

Then, by the isomorphism in (4.3), we find that the identities (4.4) for 1 <i </ form a
generating set of relations for G, yielding the desired flag presentation.

By taking in G the intersection U of the stabilizers of the G-action in each finite
module F,[G/N]/(d;), we can assume that each non-free direct factor of A is isomorphic
to I, that is,

I/
A~TF,[U/NM¢U & BT,
i=1
as IF, [U]-modules. We note that N < U and that U ~ N xU/N ~ N x Z,. By repeating
the steps above, we obtain a mild flag presentation for U. ]

Remark 4.7. Conversely, every pro-p group G with a flag presentation is also free-by-Z,.
If N is the normal subgroup of G generated by the x;, then G/N =~ Z, so that G ~
N % Z,. Taking the non-negative powers of g as a continuous section G/N — G, the
Reidemeister—Schreier rewriting process shows that N has a presentation with a generat-
ing set converging to 1 [43, Sec. 2.4] given by all the elements

Xik = [xi,g,...,g]
‘,—/
k times
and relations
k—1
—k+1 k—1—j —ky  k
Xiai+k = (1_[ g’ Xia;+k—1—j8 j) -8 " hig
Jj=0

for 1 <i <[ and k > 0. These relations allows us to eliminate the generators X; 4, 1
for 1 <i </ and k > 0, showing that N is free pro-p. Alternatively, the LHS spectral
sequence gives us

I > dimg, H*(G,F,)
= dimg, H*(N,F,)%/N @ H'(G/N. H'(N.F,))
> | + dimg, H*(N,F,)°/¥,
where the last inequality is obtained by a computation of H'(G/N, H!(N,F,)) as in

Lemma 4.6. Hence H?(N, ]FP)G/ N =0, and since the cohomology groups are discrete
torsion G/ N -modules, one gets H 2(N, Fp) = 0 as desired.
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We now turn to the problem of showing that mild flag presentations of G are strongly
free, and to characterize the graded ring of F,,[G]. We recall that

Q = @Di(F)/DiJrl(F)

i>1

has the structure of a free restricted Lie algebra over I, in the sense of [18, Sec. V.7]. A
free generating set of this Lie algebra is the image &;1,...,&,,y of x1,...,x,, g, and we
can identify Gr(F,[F]) with the universal restricted enveloping algebra Ug of £ ([30,
Thm. 6.5] and [31, Thm. A.3.5]). If the elements pq, ..., p; associated to a presentation of
G lie in £ and r is the restricted ideal of £ they generate, then for J the ideal of Gr(F,[F])
generated by the p; the Gr(F,[F])/J-modules J/J Gr({) and M = v/[r, ] + Pl are
isomorphic. We recall Lazard’s elimination theorem for free (unrestricted) Lie algebras.

Theorem 4.8 ([7, Prop. 10]). Let R be a non-zero commutative ring, X a set and S a
subset of X. If (X)) is the free Lie R-algebra on X, then £(X) is isomorphic as a Lie
algebra to the direct sum £(S) @ b, where ) is the ideal of (X ) generated by X\S and
is isomorphic to the free Lie algebra on the set

{[x,sl,...,sk] | x € X\S, $1,...,85¢ € S}.

Note that since £ is a free restricted Lie algebra it is also a free unrestricted IF,-Lie

j j . . .
algebra on the p-th powers El.p ,¥P?’ of the restricted basis &1, .. ., £,, . The following is
an immediate consequence of Lazard’s elimination theorem.

Theorem 4.9 ([50, Sec. 1.2]). If'}) is the restricted ideal generated by the §;, then £ ~
(y?' |i = 0) @ Y and Yy is itself a free restricted Lie algebra with free generating set
{[&.v.....v] 11 <i<n, k=0}.
N——
k times

From this, we are able to deduce a restricted variant of [28, Thm. 3.3], keeping the
above notation and using the fact that the universal restricted enveloping algebra of £/§
is a polynomial algebra generated by y.

Proposition 4.10. If p1,..., p; are homogeneous elements of ) with respect to the canon-
ical grading of & which are linearly independent over Fp[y] modulo [h), ] + b1 then
they are strongly free. Moreover, the restricted Lie algebra Y /(p1, ..., p1) is free, so that

&/ (1o pt) = B/(p1.-. ) x (yP' i =0)

is a free-by-(free of rank 1) restricted Lie algebra.

Proof. If r and J denote the restricted ideal of £ and the two-sided ideal of Gr(IF,[F1])
respectively generated by the p;, we must show that

M =rx/[r,v] + 12l
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is a free Gr(IF, [ F])/J-module with basis given by the image of the p;. Observe that r is
generated, as a restricted ideal of j, by the elements

pik = [pi ... 7]
~——

k times

with £k > 0 and 1 <i <. Hence, it suffices to show that these elements are part of a

free restricted generating set of I, for which it is enough to show that the py, ..., p; are
Fp[y]-independent modulo [h, ] + H!P1. Since this holds by assumption, we are done.
Moreover, as the p; x form part of a free restricted basis of b, the quotient h/(p1, ..., p;)
is a free restricted Lie algebra, so the latter part follows. ]

Corollary 4.11. The n elements p; = [&;, y] are strongly free, as so is, modulo [}, h] +
H?1 any Fp-linearly independent subset of the F,-subspace that they span.

Proof. The first part follows from Theorem 4.9 and Proposition 4.10. For the second patrt,
note that an [F,-linear independent subset of their F,-span will remain F,[y]-linear inde-
pendent modulo [5, §] + 7. L]

Corollary 4.12. Every mild flag presentation of a free-by-7., pro-p group G is strongly
free, and Gr(F,[G1]) is the skew polynomial ring generated by g — 1 over the free algebra
Gr(F,[N]). In particular, it is a domain.

Proof. The [ relations in (4.2) of a mild flag presentation lie in the Fp-span of [&;, y]
modulo [h, h] + b7 in the language of Corollary 4.11. This can be seen by observing
that: (1) the p; have degree two and (2) writing them in the basis of D, (F)/D3(F) given
by the commutators [x;, x;], [x;, g] and possibly the squares xi2 and g2 if p = 2 for
1 <i < j <n,the image of CI>(]\7 ) in this quotient does not include expressions involving
[x;. g] and g2. The last part follows from the universal property of restricted enveloping
algebras and the identification Gr(F,[G]) >~ Gr(F,[F])/J = Ug/x of Proposition 4.4.

L]

Corollary 4.13. The completed group algebra S is a domain for every mild flag free-by-
Zp, pro-p group G.
Proof. We have shown that the function w: S — [0, 1] defined in (4.1) is a multiplicative
valuation. In particular, w(ab) = w(a)w(b) # 0 for any a, b non-zero. [
Assume now that G has a mild flag presentation
G~ (x1,....xn, 8| [xi,g] = hi € ®(N), 1 <i <I).

In particular, G is mild with respect to the dimension series and w is a valuation on S.
Let Ry be as in the introduction, that is, the induced filtration of R with respect to the
filtration S of S. Then, w restricts to a valuation function on R as well.
If we set
Xi,j = [x,‘, g,... ,g] and X,"_,' = Xi,j — l,
—_———

J times
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then the group algebra R=IF, [N ] is isomorphic to the Magnus algebra F, {(X; j---| j =0
if i < 1)), the F,-algebra of non-commutative power series in at most countable variables

X100 X1,0, X141,0. X141+ Xy Xins1s -0 -y

this follows from the finitely generated case of [31, Prop. 11.3.1.4] by taking the inverse
limit of finite sets of generators. Moreover, as a subring of S = IF,, [G]., it inherits the
valuation w. Since this ring has a simple description by power series, it would be desirable
to have the property that

w( Z )tmm) = max {w(m) | Am # 0}, 4.5)

mEMOH({Xi,j b

where Mon({X; ;}) denotes the set of all non-commutative monomials in the X; ;. How-
ever, this is not true for arbitrary valuations on Magnus algebras, and the valuations on
R that do satisfy (4.5) are called weight functions with respect to the basis {X; ;} in
[12, Sec. 2.4]. By [12, Prop. 3.2], w is a weight function with respect to {X; ;} if and
only if the restricted IF,,-Lie algebra generated by T] is free in this basis. This is exactly
what we have shown in Proposition 4.10; hence, the following result holds.

Corollary 4.14. The induced valuation w on R is a weight function with respect to the
basis {X; ;} of R associated to a mild flag presentation.

5. The embeddings of the group algebra

We keep the notation of Section 4, and throughout this section we assume that G has a
mild flag presentation

G (x1,....xn g | [xi,g] =hi € ®(N), 1 <i <),

We recall that R = F,[N] and S = F,[G] ~ R[s; 0, ] by Proposition 4.1. In this section
we embed the ring S into a division ring @.
We set

g, ,g]
————
J times

xij =[x,

Then N is the free pro- p group on the set {x; ;}. Put A =, ({a; ;}) be the free associative
algebra over I, in the same number of variables a; ; and consider the power series ring
A[t] in a variable ¢. Through the universal property of the Magnus algebra, there exists
a unique ring homomorphism ¢: R — A[t] sending x; ; — 1 to a; jt“/, where w; ; =
—log, w(x;,; — 1) is the logarithm of the valuation defined in (4.1) by the filtration Ry =
RN 1L of R.

Lemma 5.1. The map ¢ is an embedding of topological rings that preserves the valuation
(i.e. an isometric embedding).
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Proof. We must show that r € R belongs to Ry if and only if its image ¢(r) € A[¢]
belongs to ¥ A[[t]). Since we have shown in Corollary 4.14 that the valuation w induced
by the filtration Ry is a weight function, we see that the valuation of r expressed as a non-
commutative power series equals the valuation of its monomial of least total weighted
degree (with the weight of x; ; being w;_ ;). Hence, it suffices to check this condition only
for monomials x;, j, --- X, j,.» which is immediate. Moreover, any valuation preserving
map must be injective, from which the lemma follows. ]

Proposition 5.2. Both o and § extend from R to A[t] in such a way that ¢ is an automor-
phism, § is a o-derivation, o(t) =t, §(t) =0,

_ o)

o(a;) = ;

L(S(yi)).

twi

and §(a;) =

Moreover, 3(A[t]) € tAft] and therefore it is also topologically nilpotent on A[t]. In
particular, the embedding R < A[t] induces an embedding S — A[t][s; o, d].

Proof. Once we set that o(¢) = ¢ (and thus §(¢) = 0), we can define ¢ arbitrarily on the
generators a; of A, and for this map to extend the o from R the formula must be as given.
The same applies for the derivation § = o — Id. From Corollary 4.2 and Lemma 5.1,
combined with the fact that ¢ and § thus defined commute, we conclude that §(A[¢]) <
¢tA[t] and thus the successive compositions § (1) converge to zero for any element A €
A[t]. Hence, the formulas in (2.1) are well defined for a; and b; in A[] and allows us to
construct the ring A[¢][s; o, ], into which S embeds. L]

As we stated in Section 2.4, the free algebra A is a Sylvester domain, and therefore it
has a universal division A-ring of fractions D.

Proposition 5.3. The maps o and § extend from A[t] to D[t]. Moreover, 5(D[t]) <
tD(t], and thus we get an embedding AN[t][s; o,8] — D[t][s; o, 8].

Proof. Since § = o — 1, it suffices to show that o extends from A[¢]] to D[¢]. Let us
consider o as a map o: A — D[t] through the usual embedding Aft] — D[¢]. If we
show that the image of every full matrix A € Mat, , (A) through o is invertible, by the
Proposition 2.7 we get an extension of ¢ to a map o: D — D[¢]. Moreover, this suffices
to define o on D[¢], since we must have o (¢) = ¢.

By Proposition 5.2, for each generator a; ; € A there exists b; ; € A[t] such that
o(a;i,;) = ai,; + b; ;jt. This implies that for every matrix A € Mat, x,(A) there exists a
matrix B € Mat,x, (D][t]) such that 0(4) = A + Bt. However, a matrix over D[¢] is
invertible if and only if its projection over D is invertible, which is the case when A4 is a
full matrix. Therefore, we can extend o (and hence §) from A[¢] to D[¢].

To show that §(D[¢]) < rD[¢] and thus it is still topologically nilpotent, we will use
the fact that D is the division closure of A in 9 and hence can be recursively obtained by
adding inverses to A and closing under the ring operations. This implies that it suffices to
show that §(a™1) € tD[t] whenever §(a) € tD[t] for a € D non-zero. In this case, write
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8(a) = th for b € D[t], and observe that we must have
$(a™V) = —o(a) '8(a)a! = —o(a) 'ba"'t. |
We already have the following chain of embeddings for the group algebra S':
S ~ R[s;0,8] < A[t][s; 0, 8] — D[t][s;0,8]-

In order to construct our candidate for the universal division S-ring of fractions, we will
complete this chain by showing the existence of a universal D [¢][s; o, §]-ring of fractions.
To shorten the notation, we denote the ring D[¢]|[s; o, §] simply by D.

Let J be the two-sided ideal of D generated by ¢ and s. By the construction of the
embedding, the restriction of the J-adic topology to S as a subspace of D coincides with
the topology given by the powers of the augmentation ideal on S. Since §(D[t]) St D[¢].
the skew relation defining s gives us

D[t]s € sD[t] + tD[¢],
and therefore J is contained in the right ideal generated by ¢ and s. Inductively we have
the identities:
J =sD + D,
J? =5?D + stD + ?D,

" 5.1
J' = Zsil"_iID),
i=1

and therefore the intersection ()72, J ! is trivial: a power series on s belongs to J” only
if the coefficient of s? is a multiple of " . In other words, the J-adic topology on I is
Hausdorff. It also follows from (5.1) that the J-adic topology on D is complete.

Proposition 5.4. The maps o and § induce maps
G Jn gL o gn gt g §ogn ) gntl o gntly pnt2
such that § is a right o -derivation on
GrD ~D/J @ J/J*®J*|J*D---.

Ift=t+J%>and 5 = s + J?, then the graded ring GrD is isomorphic to the skew
polynomial ring D|t][5;0, §].

Proof. From (5.1) and the fact that (D) S D[] we see that J” is o-invariant and that
8(J™) € J*T1. Hence, the maps o and § are well defined, and direct calculations on
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representatives of homogeneous elements shows that indeed Sisa right o-derivation on
the subring D|t] of Gr(D) generated by D and 7.

Hence, it remains to check that the powers st =5t + JitL for g > 0 form a basis
of Gr(D) over D[t], since the skew commutation relations for § are inherited from those
of D. From (5.1), we can deduce that

n
Jn/Jn+1 — @Sitnfic(D
i=1
as O-modules. Therefore, if Y r;5° = 0 is any relation among the powers of §, isolating
the homogeneous components in GrD gives us that r; = 0. ]

Corollary 5.5. The ring D is a Noetherian domain. In particular, it has a classical Ore
ring of fractions @.

Proof. To show that it is a domain, note that the product of homogeneous elements in D is
non-zero in the graded ring, and see, for instance, [36, Cor. D.IV.5] for lifting the Noethe-
rian property from GrD to D. Then, the existence of @ follows from [34, Thm. 2.1.15]. =

6. Homological finiteness properties

Throughout this section, we fix a mild flag free-by-cyclic pro-p group G, with free kernel
N = F(x1,x2,...). We let R = F,[N] and S = F,[G]. By Proposition 4.1, we can
identify S with a skew power series algebra R[s; o, 8] over R, which can be embedded
into the division ring @ of Corollary 5.5, the classical ring of fractions of the ring D =
Dt][s; o, 8] where D is the universal division ring of fractions of the free I,-algebra
A= ]Fp(al,az, . )

The objective now is to show that S is a Sylvester domain and that the embedding
S < @ is universal. First, however, we need to prove some homological vanishing results
about S-submodules of @ and Gr S-submodules of GrD ~ D[7][5; 7. §].

6.1. Filtered modules

If M is a finitely generated right (respectively, left) S-submodule of @, then there exists an
element ¢ € D such that c M (respectively, Mc) is a finitely generated right (respectively,
left) S-submodule of D). This gives us a bijective correspondence between isomorphism
classes of S-submodules of @ and S-submodules of D, so we can always assume that a
finitely generated S-submodule of @ is contained in D.

If we consider S as an filtered ring with the filtration S = I(’g and S_p = S fork >0,
the S-module D becomes a filtered S-module (and even a filtered ring) with the positive
filtration given by the powers of J, its two-sided ideal generated by ¢ and s. Hence, for
every S-submodule M C D, we can endow M with an induced filtered structure:

My=MnJK, M_,=M, Vk>o.
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Since we must state general results about filtered rings that will apply both to S and D,
we will denote a general filtered ring by 2 with a filtration by Q-submodules Q, k € Z.
Following the terminology in [22, Sec. 4.1], a filtration { M} } on a Q2-module M is:

(Separated) The intersection [,z M is trivial;

(Complete) M is complete with respect to the metric
dy(a.b) = inf{p™ |a—b e My}

(Bounded) Each quotient My / My 1 is an 2/ Q1-module of finite length.

In particular, the filtrations on the S-modules M = S and M = D are separated and
complete, and moreover the filtration on M = S is bounded. Observe that the induced
filtration on an S-submodule of a separated module is again separated.

If Q is bounded and complete as a left 2-module and M is a finitely generated and
separated 2-module, then M is also complete [22, Prop. 4.2].

We recall that a homomorphism ¢: M — N of filtered ©2-modules is called strict if
©(My) = @(M) N Ny for every k € Z, that is, if the filtrations on Im(¢) induced by ¢
and by N coincide. A sequence of filtered 2-modules M — N — Q is strict exact if the
sequence is exact and each homomorphism is strict. Observe that an strict exact sequence
as above induces an exact sequence Gr M — Gr N — Gr Q of Gr 2-modules.

To obtain free resolutions in the category of finitely generated filtered $2-modules
and strict homomorphisms, we must make a slight change to natural filtration of the free
Q-modules P ; 2. Let V' be a multiset of integers, that is, a set of integers that allows
for repetition of elements. We say that V' is bounded if for every k € Z the multiset
f{lv e V | v < k}} is finite. In particular, every element of a bounded multiset V' is belongs
Zskx ={z €Z |z >k} forsome k = k(V) € Z. If necessary, one can realize a multiset
V as a proper set V' by taking the disjoint union of singletons of its repeating elements. If
V' is bounded, V can be made into a profinite set by adjoining a point at infinity.

For any separated, bounded and complete 2-module M, let M (V') be the 2-module
@D,y M with the following filtration:

MV = D Mi—.

veV

Then, for M = Q, we have that Q(1/) is a free 2-module satisfying the following univer-
sal property: identifying V' with the set of elements (0,...,1,...) € Q(V), any function
f:V — N from V to a filtered 2-module N such that f(v) € N, extends uniquely to
a strict homomorphism ¢: Q(V) — N. Moreover, observe that (V) is bounded as a
filtered 2-module if and only if V is bounded as a multiset of integers.

Let 1\7(7 ) = 1(21 M(V)/ M (V)i denote the completion of M (V') for each multiset V.
If N is a separated, complete and bounded 2-module and M (V) — N is a strict homo-
morphism, then there is a unique strict extension W ) = N. We recall the following
result of [22].
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Proposition 6.1 ([22, Prop. 4.5 and Cor. 4.6]). Let M be a complete and bounded filtered
Q-module for a complete and bounded filtered ring 2. Then, there are bounded multisets
of integers V; and a strict exact sequence of filtered Q2-modules

eST(W)—)—)SﬂVT)—)Sﬁ)—)M—)O

While the modules ST(—I7) are no longer free over 2 even if V' is bounded, if €2 is
pseudocompact in the sense of [8] then they are still flat with respect to complete tensor
product

M ®s N = lim M/ M ®q N/ Nk
keZ

of filtered 2-modules M and N [8, Cor. 1.3 and Lem. 2.1], for in this case Q/(V) can be
identified as a topological ©2-module with the free pseudocompact 2-module Q[V] on
set V' [8, p. 444]. This applies in particular to 2 = § and to Q2 = D.

Let us denote by ’Eorfz (—, —) the i-derived bifunctor obtained from the complete
tensor product, hereby referred to as the i -th continuous Tor group, in order to differentiate
it from the usual i-derived functor ToriQ (—, —) obtained from the usual tensor product
— ®gq —. Therefore, we already know that ?or? (57(—17) M) = ’Qor? (N, ST(?)) = 0 for
any i > 0 and 2-modules M and N. The following proposition gives us a way to compare
both functors.

Proposition 6.2 ([22, Prop. 4.9]). Let M be a separated, filtered and complete Q2-module
for some filtered ring 2 and V' a bounded multiset of integers. Then, the following hold:

(1) If M is finitely presented, then the natural maps M Q¢ 82/(7) — M ®q 52/(7)
and M ®q QV) — M(V) are strict isomorphisms.

(2) Letk > 2. If M is of type FPy, then Tor?_ (M, Q(V)) = 0.

This result implies the following proposition, well known to the specialist, but for
which we have found no reference in the literature. Observe that the isomorphisms of
Proposition 6.2 are all functorial in M . First we show a partial form of [29, Lem. XX.6.3].

Lemma 6.3. Let Q2 be any ring, M a Q2-module and suppose that the Q2-modules on a
exact sequence

satisfy TorlQ (M, X;j) = 0 for every j and every 1 <i <k —2withk > 2. Then,
MRPFXy >Ma X1 —>—>MQa X1 > M RQRq Xog—> 0
is exact.

Proof. We already have exactness up to

M ®q Xo - M ®a X1 — M ®q Xo — 0. 6.1)
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Let Z; be the image of X; in X;_, that is, the kernel of X;_; — X;_,. We have the exact
sequence:
0 = Tor (M, Xo) > M ®q Z, - M ®q X1 — M ®q Xo — 0,

which shows that M ®q Z, is the kernel of M ®q X1 —> M ®q Xo. Since it is also fits
in the exact sequence

M®QX3—>M®QX2—)M®922—>O

by right exactness, we are able to extend the sequence (6.1) by one degree more.
Observe that Z, also satisfies Torisz (M, Z,) = 0 now for every 1 <i <k — 3, since
we have the exact sequence

0 = Tor{% | (M, Xo) — Tor*(M, Z5) — Tors (M, X;) = 0.

Hence, by taking X = Z; and X] = X; 4 fori > 0, we are reduced to showing that the
exact sequence
o> X > X > X1 > X —0

induces the exact sequence
M®QX;€_1—)M®QX]/€_2—>"'—)M®QX1—)M®QX6—)0,

which now follows from induction on k since we have already proven the base step
k=2 (]

Proposition 6.4. If Q2 is a bounded and complete filtered ring, M is a filtered 2-module
of type F Py, for some k > 2, N is a separated, bounded and complete Q2-module and

o= Q) == QM) > Qo) > N >0 (*)

is a strict exact sequence with each V; bounded (such as in Proposition 6.1), then the
groups ToriSz (M, N) can be computed as the i-th homology of the complex

fori <k — 1, where this complex is obtained by applying M ®¢q — to the sequence (*).
In particular, one has "‘Jorig2 (M,N) ~ Torf2 (M,N) fori <k —1.

Proof. This can be thought as a “partial”” analogue of how one may compute derived func-
tors through acyclic resolutions (cf. [29, Thm. XX.6.2]). We consider another resolution
of N by projective 2-modules:

..._>Pi—)---—)P1—)P0—>N—)0, (**)

and we will show that there exists a morphism of complexes P; — Q/(—IZ) extending the
identity on N and satisfying

Hi(M ®q x) >~ Hi(M ®qg *x) forall0 <i <k —1.
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Since Torl-Q (M, N) does not depend on the choice of projective resolution (xx), we
can inductively choose the P; such that we have a commuting diagram with surjective
columns:

~

——

~

> Py > Py s N

T

i Q) — - —— QW) —— Qo) —— N.

For each i > 0, we let X; be the kernel of the map P; — m Then, Proposi-
tion 6.2 (2) and the long exact sequence

oo = Tor | (M, Q(V))) — Tor (M, X;) — Tor (M, P}) — ---

shows that TorlQ (M, X;j) =0 forevery 1 <i <k — 2. Hence, by Lemma 6.3, we know
that the diagram

Mo Xy ——— M Qq X1 > e s M ®qg Xo —— 0
Mo Pr ——— M ®q Pr_1 > .- > M Qg Pp ———— 0

| l |

M®QQ/(—V;)—>M®QSYVIC_\1)—>”'—>M®QQ/(—%)—>O

has an exact top row and each column is a short exact sequence because of the vanishing
of Tor; (M, 2(V;)). Then, applying the Snake Lemma to each column one finds the exact
sequences

0= Hi(M Rq X*) — H,‘(M ®XRa *) — H,'(M Rq **) — Hi_l(M XKRq X*) =0,

yielding the desired isomorphism for every i < k — 1. The last part follows from the
isomorphisms in part (1) of Proposition 6.2. ]

We also state the following result of [22], which we will use to lift vanishing results
about the Tor groups over Gr S to those over S.

Theorem 6.5 ([22, Thm. 4.10]). Let  be a filtered ring and k > 1. Assume that Q2 is
complete and bounded as a left and right Q-module. Let M and N be complete filtered
right and left Q-modules respectively and assume that:

(1) M isof type FPy41,

(2) N is bounded, and

(3) Tor{"®(GrM,GrN) = 0.
Then Tori}(M, N) = 0.
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6.2. Graded modules over Gr S

We have shown in Corollary 4.12 that the ring Gr S is a skew polynomial ring over the
graded ring Gr R, the latter which can be identified with A. Hence, we shall see Gr S
as isomorphic to A[S; &, 5] where § = 5 = g — 1. Moreover, since this isomorphism is
compatible with the isomorphism GrD ~ D[7][5; &, §] under the injective map Gr S —
GrD, the maps & and § are restrictions of & and § to Gr S respectively. Hence, there are

unique extensions &, § from A to D that make the following diagram commute:

D — O[]

53 l&,g
\:/

D —— Dfr].

The ring Gr S = A[5; 7, E] can then be embedded in the skew polynomial ring D[5; 7, g]
through the inclusion A — D, and such embedding is an epic ring homomorphism. We
note the following lemma.

Lemma 6.6 (cf. [17, Lem. 2.11). The left (resp. right) Gr S-modules Gr S @ 5 D (resp.
D ®p GrS)and DI[5s; 5, 8] are isomorphic.

Proof. Consider the additive map p:GrS ® D — D [5;0, g] given by the unique exten-
sion of the A-balanced map m:Gr S x D — D[s; 7, §] defined by

m@",r) = 3§"r.

Indeed, it is bi-additive, satisfies m (5", r'r) = m(5"r’, r) for any r’ € A and therefore
extends to an abelian group homomorphism w. It is a direct verification that p is left
Gr S-linear, and to see that it is an isomorphism, it suffices to observe that it is also right
D-linear and maps the basis {§" ® 1} of Gr.S ® 5 D to the basis {§"} of D[5; T, 8~]. The
proof for the right module case is similar. ]

From this and the fact that DI[5; 7, g] is an Ore domain [34, Thm. 1.2.9 and 2.1.15],
the same argument in [17] gives us the following result.

Proposition 6.7 (cf. [17, Lem. 2.7 and 2.8]). Let M (resp. M’) be a left (resp. right)
Gr S-module and N (resp. N') be a left (resp. right) Gr S-submodule of Ore(D[5; 5, §])*
for some k > 1. Then the following holds:
(1) ExB,g(M, M’) = 0;
2) DIs; 0, 8~] has projective dimension at most 1 as a left and right Gr S-module;
(3) Every left or right Gr S-submodule of D[5; 5, g]k for k > 1 has projective dimen-
sion at most 1;

(4) Every finitely generated left or right Gr S -submodule of Ore(D]5; o, 5~])k fork >1
has projective dimension at most 1;

(5) Tor§"S(D[5:5,8], M) = 0;
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6) TorS"S(D[5;5 LN ”) = Ofor every left D[5; 5, 8]-module N"';
@) TorGrS(!D[s o, g]
(8) Tor{"S (Ore(D[5; 5 ]) N) =0;
(9) Tor§*S(N’, Ore(D[5: . 8])) = 0;

(10) Tor§"S (Ore(D[5: 5. 8]), Ore(D[5: 5. 8])) = 0.

Proof. (1) Since the skew polynomial ring Gr S over the free algebra Gr R has global
dimension at most 2 by [34, Thm. 7.5.3] and [10, Cor. 2.5.2], every left or right module
M has a projective resolution of length at most 2. Hence, the claim follows.

(2) Let 0 - P; — Py — D — 0 be a projective resolution of the left A-module D
over A, which exists because A is a free algebra and hence has global dimension at most 1.
Applying the functor Gr S ® o — to this sequence we obtain the sequence

0—>GrSQ®A P1 >GrS®p Pp—>GrS @, D —0
which is again exact by the freeness of Gr .S over A (by both sides!). Since each Gr § ® 5

P; is again projective, this is a projective resolution of Gr S ®p O over Gr S. We know
that Gr S ® D is isomorphic to D[s: 7, 8] as a left Gr S-module by Lemma 6.6, so the
claim for the left module DIs; o 8] follows. The proof for D[s; 7, 8] as a right Gr S-
module is analogous, exchanging the functor Gr S ® 5 — for — ® 5 Gr S.

(3) Let A be an Gr S-submodule of D[s; 5, §] and B be another Gr S-module. The
short exact sequence

0> A4A— D[s;0,8] >C -0
induces a long exact sequence
- — Ext, 5 (D[5;5,8], B) — Ext?,5(4, B) — Ext, 5(C, B) —
where the first term vanishes by (2) and the third term vanishes by (1). Hence,
Extg, g(4,B) =0

for all Gr S-modules B, and the claim follows from [44, Prop. 8.6].

(4) Every finitely generated Gr S-submodule of Ore(D][5; 7, g]) is Gr S-isomorphic to
an Gr S-submodule of D[5; T, g] by taking the smallest common multiple of the denomi-
nators of a generating set. Hence, the claim follows from (3).

(5) The right Gr S-module D|5; 7, g] has projective dimension at most 1 by (2), so the
claim follows.

(6) By Lemma 6.6, the right Gr S-modules D[5; 7, E] and D @ Gr S are isomorphic.
Since Gr S is a free left A-module, we have isomorphisms:

Tor{™S (D[5; & L8], N") =~ Tor$S (D ®4 GrS,N")
~ Tord (D, N”), by [44, Cor. 10.72]
~ Tor? (D, N”), by [17, Thm. 2.5 (2)]

~ 0, because D has dimension 0.
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(7) The short exact sequence 0 — N — Ore(D[s])* — C — 0 induces the long exact
sequence

co = Tors™S (D[5; 5, 8], C) — Tor$™S (D[3;5, 8], N)
— Tor§"s (@[E;E,:ﬂ,Ore (@[s])k) — -
The first term vanishes by (5) and the third term vanishes by (6), so that
Tor{"S (D[5:5,8),N) =0

as well.
(8) Let
o> P —>-+-- > Py—>N-—>0

be a projective resolution of N over Gr S. The natural isomorphism of functors
Ore (D[5;5,8]) ®ars — = Ore (D[5:5,8]) ® p5.5.5 (D155, 5] ®crs —)
gives us an isomorphism of complexes
Ore (D[§:5,8]) ®ars Pe = Ore (D[5:5.5]) ® o555 (DF:5.8] ®crs P). (%)

Since the Ore localization is flat by [34, Prop. 2.1.16 (ii)], the homology of the right-hand
side of (x) is isomorphic to the homology of DI5; 7, g] ®ars P«. Hence, we get isomor-
phisms ToriGrS(Ore(éD [5;0, g]) N) ~ Tor?’S(JO [5;0, g], N) for all i > 0. In particular,
Tor%"S (Ore(D[5:5.8]), N) = 0 by (7).

Finally, (9) Is analogous to (8), and for (10) note that the proof of parts (5)—(8) also
holds in the right Gr S-module setting, and that (10) is a special case of (8). [

Observe that the embedding Gr S — GrD (induced by Gr ) can be extended to an
embedding DI[5; 7, g] — Ore(Gr D) satisfying § — 5 in the following way: the image
of A in the latter is contained in D|¢], and the map D[t] — D defined by ¢ > 1 splits
this homomorphism. Hence, the image of every full matrix is again full, and the uni-
versal property of O gives us the desired extension. Therefore, every finitely generated
Gr S-submodule of Ore(Gr D) is isomorphic to a finitely generated Gr S-submodule of
Ore(i)[§;5,g])k for some k > 1.

Corollary 6.8. The following hold:
(1) GrD has projective dimension at most 1 as a left and right Gr S-module;
(2) Every left or right Gr S -submodule of Gr D has projective dimension at most 1;

(3) Every finitely generated left or right Gr S-submodule of Ore(GrD) has projective
dimension at most 1.

@) Torgrs (GrD, N) = 0 for every left Gr S-module N ;
(5) Tor$"S(GrD, N) = 0 for every left Gr D-module N
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6) Tor‘frs (GrD, N) = 0 for every left Gr S-submodule N < Ore(GrD);

@) Tor?rs (Ore(GrD), N) = 0 for every left Gr S-submodule N < Ore(GrD);
®) Tor(frs (M, Ore(GrD)) = 0 for every right Gr S-submodule M < Ore(GrD);
(9) Tor{"S (Ore(GrD), Ore(GrD)) = 0.

Remark 6.9. The vanishing results of Corollary 6.8 can also be proven directly, through
an argument similar to that of Proposition 6.7, once one has shown that Gr ¢ makes A[f]
into a free A-module on both sides. Indeed, the set

{t_k, w | k > 1, w a monomial in the letters ay, as, ...}

is a basis for A[f] as a right and as a left A-module.

6.3. F,[G] is a Sylvester domain

Since every free-by-Z, pro-p group has cohomological dimension at most 2, our ring
S = F,[G] has “continuous” global dimension at most 2 in the sense of A. Brumer [8,
Sec. 3]. By the characterization of P being a projective profinite S-module if and only if
’i‘orf (Fp, P) = 0 given in [8, Prop. 3.1], through dimension shifting we can improve the
results of Proposition 6.1.

Corollary 6.10. Let M be a complete and bounded filtered S-module. Then, there are
bounded multisets of integers Vo, V1 and V, and a strict exact sequence of filtered S -

modules
0— S(s)—> S(V) —> S(Vy) > M — 0.

Proof. Take the exact sequence of Proposition 6.1. If K; denotes the kernel of @ —
S(Vi—1), then we know that

Tor) (Fp, K;) =~ -+ = Tord,  (Fy, Ko) = Tord,,(F,, M).

Since the continuous global dimension of S is 2, we have that ?orf (F,, K1) = 0, that is,
K is a projective and hence free S-module.

Inducing a filtration on K; from S/(_VT) it becomes again a separated, complete and fil-
tered S-module with a strict inclusion map K; — S/(W) Since S/(—VT) >~ S[(Vy U{oo},00)]
is countably based, then so is K;, which we identify with a free profinite S-module
ST(X, %)] on a countable profinite pointed set (X, *). By counting how many elements
of X have a non-trivial image in each homogeneous component of Gr K;, one obtains a
multiset of integers V' such that the induced map S(V) — K is injective and has a dense
image. This implies that S/(V\) — K is an isomorphism, completing the proof. ]

We can now prove the main finiteness result of this section.

Proposition 6.11. Let M be a finitely generated left (resp. right) S -submodule of Q. Then,
Torf (Fp, M) (resp. Torf (M, Fp)) is finite and Tor*zg (Fp, M) =0 (resp. Torf (M,Fp)=0).
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Proof. We follow the ideas of [22, Prop. 4.13]. We will prove the proposition for left
modules only, since the proof for right modules is analogous. We can assume that M C D,
so that M is a filtered, separated, bounded and complete S-module. Let us take

0= S(2) 2 57 L 5(Vo) & M -0 )

the strict exact sequence of Corollary 6.10. Since Gr S/(—IZ) ~ (Gr S)(V;), we have another
exact sequence

0— (GrS)(12) E (GrS)(Vy) E) (GrS) (Vo) ﬁ GrM — 0. (Grt)

We know, through Proposition 5.4, that Gr M is a Gr S-submodule of the skew poly-
nomial ring

D[7][5;5.8] ~ GrD wheref =1+ J and5 = s + J.
By Corollary 6.8, we know that
TorgrS(GrID),GrM) = Tor(l}rS(Gr]D),GrM) =0.

Since Tor?rs (GrD, (Gr S)(V;)) = 0 for every i > 0 by the freeness of each (Gr S)(V;),
we can apply Lemma 6.3 with k = 4 to deduce that GrD ®g; s Gr 1 is exact. Observe that
we have

—

D &s S(V;) ~D(V;)

by Proposition 6.2.
We now claim that the sequence
——  id®d; —— id®d; —— id®dy _ ~
0—D(V) — D(11) D (Vo) D®s M —0 D®&sT)

is again exact. There is a commutative diagram

— id®d. — id®d —
0 ——— > GrD(1L) L} GrD(Vy) L} GrD(Vp)

I I I

0 — GrD Qs (GrS)(V2) TE> GrD Qg s (GrS)(V1) T GrD Qg s (GrS)(Vy),
i i 1

where the vertical arrows are isomorphisms by [22, Lem. 4.8]. Since we have shown the
bottom row is exact, the same holds for the top row, showing by [22, Prop. 4.4] that the
sequence (D®s ) is exact at IDT(?,) for i € {1,2}. That the map id ® dy is surjective is
also clear, so it remains to show exactness at m).

Let x € kerid ® g d. For each k > 0, we have the following short exact sequence:

0~ SVD/d (STolk) <> STo)/SWol <> M/do(S(To)e) — 0.
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Tensoring with D/ J* over S, we obtain the exactness of

id®sd;

D/J* ®s SWV1)/d7 (SVo)) ——> D/ J* @5 S(Vo)/S(Volk

d®sd —
DI @5 M/do(S(Vo)k)-

Let x; be the image of x in the middle term. Since xj belongs to the kernel of id® s dy,
there exists
vk €D/J* @5 SOV1)/dy " (S(Volk)

such that (id ® s d1)(yx) = xx. We then choose a sequence zx € D ®g @ such that
each z; maps to yy in the quotient. By construction, we have hmk_mo dy (zk) = x. How-
ever, since id ®g d; is a filtered homomorphlsm the topology on D ®g S (Vl) coincides
with the topology induced by id ® ;. In particular, the the sequence zj converges to some
z such that d;(z) = x, as desired. The exactness at ]D)(Vo) follows, and thus (D®g 1) is
exact as we claimed.

By Proposition 6.4, the complex (D& s ) is a resolution of M over I that can be used
to compute

Tor® (D, D ®s M) ~ Tor?(D,D &s M).

The isomorphisms of complexes

D Rp (D Rs 1)~ D& (D &s 1),
~ (D &p D) ®s 1,
~ D R®s T

also gives us the isomorphisms
Tor? (D, D &s M) ~ Torf (D, M) ~ H;(D Rs 1).

Since M is a finitely generated S-module, then D ®g M is a finitely generated D-
module [22, Cor. 4.3], so that

dimgp Tor? (D, D &s M) < . 6.2)
On one hand, Shapiro’s isomorphism [44, Cor. 10.72] gives us:
Tori)[’-] [5:3.5] (D, DIF][5;5, 8] ®crs Gr M) = Tors™ (D, Gr M) =~ 0, by Corollary 6.8.
On the other hand, since
Gr(D ®s M) ~ Gr(D ®s M) ~ D[1][5:5.8] Qcrs Gr M by [22, Lem. 4.8],

and as a finitely generated module over the Noetherian ring D the module D is of type
F P, we get by Theorem 6.5 that

Tors (D, D ®s M) = 0. (6.3)
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Since [F,-linear independent elements in F, ®s S/(—\) remains {-linear independent in
D ®s S(—) through tensoring with D®F,, we have that

dimg, ker (F, (V) — F,(Va1)) < dimp ker (D (V) > D(Vo1))
for n € {1, 2}. Then, the claims follow from equations (6.2) and (6.3). ]

Corollary 6.12. Let M be a finitely generated left or right S-submodule of Q. Then for
any exact sequence 0 — I — S% — M — 0 of left S-modules, I is free of finite rank.

Proof. Again, we will only prove the corollary for left S-submodules. Since [F, with
trivial G-action is the only simple and pseudocompact S-module, by Proposition 6.11
and [8, Cor. 3.2], we know that M has projective dimension at most 1 as an S-module.
Hence, I is projective by [44, Prop. 8.6] and thus free by Kaplansky’s theorem on local
rings. Its rank as a free S-module is then given by

dimg, F, ®s I = d —dimg, F, ®s M + dimg, Tor{ (F,, M),
which is once again seen to be finite by Proposition 6.11. ]
We can now prove the main theorem of this section.

Theorem 6.13. Let G be a torsion-free finitely generated virtually free-by-Z, pro-p
group. Then F,[G] is a Sylvester domain.

Proof. By Lemma 4.6 and Theorem 3.5, we can assume that G is a mild flag free-by-Z,
pro-p group. We use the notation of this section.

We want to apply Theorem 2.8 to the embedding S — @ constructed throughout Sec-
tion 5. The condition (2) was shown in Corollary 6.12, so it only remains to show that

Tors (@, @) = 0.

Since @ is flat as a D-module [34, Prop. 2.1.16], if P, — Q is a projective resolution of
@ over S we have the isomorphisms:

@ ®p Tor} (D, Dy, [6]) = @ ®p Hi(D ®s Px)
~ Hi(Q®p D ®s Ps)
~ H/(Q ®5 Py)
= Tor} (Q, Q).

Hence, if Tor;g (D, @) vanishes, then so does Torf (@, @). The same reasoning, now
applied to the right factor, gives us

Tor;s(]D),]D)) =0 = Tor;g(@,@) = 0.

Hence, because the Tor functor commutes with direct limits, it suffices to show that
for every finitely generated right and left S-submodules M and N of D, one has

Tor‘lg(M, N) =0.
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Note that Gr M and Gr N are Gr S-submodules of GrD in the filtration induced by the
powers of the ideal J generated by ¢ and s. The short exact sequence

0—>GrM -GrD—- Q0 —0
induces the long exact sequence
R TorgrS(Q,GrN) — Tor?rS(GrM, GrN) — Tor(er(Gr]D),GrN) — ..

on the Tor groups. Since by Corollary 6.8 the module Gr N has projective dimension at
most 1 and Tor?rS(GrID), GrN) =0, we get

Tor$"S(Gr M,Gr N) = 0.
We have shown in Proposition 6.11 that M is of type F'Px: given a presentation
0-K—>S">M—0,

with n minimal we have that K is finitely generated and thus profinite as Torf (M, TFp,) =
Torg (K, Fp) is finite, an argument we can now repeat with M replaced by K. Moreover,
the vanishing of

Tory (K, F,) ~ Tors (K, F,) ~ Tors (M,TF,)

shows that it is projective by [8, Lem. 2.1 (ii) and Prop. 3.1] and hence free. Since S is
bounded and N is finitely generated, it is also bounded, and thus the claim now follows
from Theorem 6.5. ]

7. The equality rkg = irkp,[g]

The main result of this section is the following theorem.

Theorem 7.1. Let G be a pro-p group, (&, w) a division ring with a non-archimedean
discrete valuation w: @ — {p¥ | k € Z} U {0} and ¢: F,[G] — @ a continuous embedding
with respect to the topology on @ induced by w. Then

qo# kg <r1kg .

We split again the proof into several lemmas. For each i € Z define following subsets
of G:

Gi={geGluw(pg—-1)=<p}.

Each G; is a clopen and non-empty subset of G, as 1 € G; for every i. Moreover, since
G is compact, there exists a minimum

ko = min{k € Z | w(p(g — 1)) < p~* forall g € G}.

This implies that G; = G for every i < ko. We note the following lemma.
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Lemma 7.2. The integer kg is non-negative. In particular, Go = G. Moreover, w(¢(g)) =
1 for every g € G.

Proof. Suppose by contradiction that kg < 0 and let g € G be such that w(e(g — 1)) =
p 0. Observe that since F,[G] embeds into a division ring, G is torsion-free, and in
particular g? # 1. Since @ has characteristic p, we get

w(p(g? — 1) = w(p(g — 1)?) = p~Pko > p~ko,

contradicting the definition of k.
Suppose now that w(¢(g)) > 1 for some g € G. Then, since w(p(g)) # w(—1) =1,
we have
w(e(g — 1) = max {w(p(g)), w1} = w(pg) > 1,
a contradiction. On the other hand, if w(¢(g)) < 1, then the same argument shows that
w(p(g — 1)) = 1. We get a contradiction by considering:

w(pE™ = D) =w(e(g™'(1-2)) =wleE Hw(eE—-1)) =w(eE™")>1. =

By the continuity of w it follows that the G; form a chain of normal open subgroups
of G, for it is easily verified that each G; contains 1 and is closed under products, inverses
and conjugation. Since w(q) = 0 if and only if ¢ = 0, we can also conclude that ;. , G;
= {1}, that is, the chain G; is residual in G. Hence, this chain can be used to compu?e the
rank function rkg of Example 2.5.

Let @; be the set of elements ¢ € @ with v(g) < p~. In particular, @y is an [F,-algebra
containing ¢(F,[G]) with ideals @; for each i > 0.

Lemma 7.3. There exists a division ring extension @ < Q' and an extension w’ of the val-
uation w to @’ such that Q' contains a central element z with w'(z) = p~'. In particular,
Q) = ' Q( foreveryi € Z.

Proof. Consider the polynomial ring @[z] and define w’: @[z] = {p¥ | k € Z} U{0} to be

w’(Zqizi) = max {w(g;)p~"}.
i=0

We check that w’ is an additive non-archimedean valuation on @[z], for it is immediate
that it is discrete.

Letr =) 7 ¢z andr’ =) q/z' be two arbitrary elements in @[z]. We have
w’(r) = 0 if and only if all of the ¢; have valuation 0, that is, if and only if ¢; = 0 for
all i. Hence, w’(r) = 0 implies r = 0. Suppose the minimal w’ valuation on r and r’ is
attained at the terms ¢, z™ and ¢),z" with m and n minimal for this properties. Then, for
all0 <i,j <n,wehave:

w(gm)p™™ > w(gi)p~",
w(gy)p™ = w(ghp™.
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Multiplying both inequalities implies:

w(gmgy)p" " = w(qig))p~' ) Vil .

In particular, for every 1 < k < 2n, we have:

w(gmgy)p """ = max{w(qiqg)) | i +j =kjp* = w( > qiq,’-)p_k- (7.1)
i+i=k

Suppose now, by contradiction, that there exists i # m and j #n withi + j =m +n
such that w(q,-q]’.) > w(gmq,,). Without loss of generality, we may suppose that i < m,
so that n < j. By the minimality of m and n, we must have w(g;)p~*
w(g;)p~/ < w(gy)p~". This implies:

< w(gm)p™™ and

w(gi)/wlgm) < p'~" = p"~7 < w(g,)/w(g)).

and thus w(giq}) < w(gmgy), a contradiction. Therefore, if i + j = m + n, we have
w(q,-q]’-) < w(gmq,). Hence

wna)p " =w( Y qig)p (7.2)
i+j=m+n
We have
2n
rr’ = Z( Z qiq})zk.
k=0 i+j=k
Since
w( 3 qiq_;)p—k < w(gmg,)p" ™ = w( 3 qiq;.)p—"—'" by (7.1) and (7.2),
i+j=k i+j=m+n

the minimal w’ valuation on rr’ must be attained in the z-degree m + n, with value exactly
w’ (rw'(r').

At last, we must show that w’(r + r’) < max{w’(r), w’(r")}. We may suppose, without
loss of generality, that w(g,)p™™ = w'(r) < w'(r') = w(g,)p~". Observe that in this
case

w(gi +q)p~" <max{w(g;). wg)}p™" <wlgm)p™ =w'(r).

Since
n
r+r’ =Y (g + a7
i=1

we are done.

Now @|z] is a Noetherian domain and thus we can construct the division ring of ratio-
nal functions @ = @(z) by localizing at the non-zero elements. Hence, the valuation w’
also extends to @', which concludes the proof. [
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By virtue of Lemma 7.3, we can suppose that @ contains a central element z of val-
uation p~!, for a division ring extension does not change the induced rank function on
F,[G]. Consider now @, the ring of elements with non-negative valuation. We note that
¢(F,[G]) < Qo and the non-zero left or right ideals of @ are the two-sided ideals 1@
fori >0:if ziu = uz' € Qg with w(u) =1, then u~! € Qg and hence the ideals generated
by z'u and z* coincide. This implies that @y /z@, is the only simple @y-module, and the
length of the @-modules Qg /z* @ are precisely i.

Let A € Mat,x, (F,[G]) be a matrix such that ¢(A) is invertible in @, that is,

" kg (A) = n.

We define the left F, [G]-module M = F,[G]"/F,[G]" A and the @o-length of M over
an open subgroup U to be

ly(M) = leng,(Qo ®r,[u] M),

the length of the induced @y-module. The proof henceforth will follow similar arguments
to the ones in [22, Sec. 5].

Let dimg/ g, and ¢" dimg be the Sylvester module rank functions associated to tkg /Gi
and ¢* rkg. Then, since it suffices to show that 1k (4) = lim; o0 kg /G; (A) = n, by the
relation rkg (4) = n — dimg (M) it only remains to show that

ll_1)r(r>10 dimg,g, (M) = 0.
Lemma 7.4. We have that lg(M) is finite.
Proof. Since A is invertible over ¢, we have
¢"dimg M = dimg @ ®g,jg] M = 0.
Observing that

@ ®r,[6] M ~ @ Rq, (o ®F,[6] M),

this implies that the @o-module Qo ®F,[G] M is torsion. Given that M is finitely gener-
ated and every proper quotient of @ is of the form @y/z' @ and thus has finite length,
that module must have finite length over Q. ]

Lemma 7.5. Let U <V be open subgroups of G with |V:U| = p. Then, ly(M) <
ply (M). In particular, [y (M) < |G:U|lg(M).

Proof. Let L = Qo ®r,ju] M and take any element g € V\U. Define the function
7:@Qo x M — L by

1

t(q.m) =qg®g m—qm.

Since U must be normal in V', we have that t(qu, m) = ©(q,um) for every u € U, that
is, T induces a homomorphism of left @y-modules y: L — L such that

V(@Rm)=qg®g 'm—qem.
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It is immediate to verify that ¥ (¢ ® m) = Z;-:o(—l)j (;)qgi_j ® g/~im and there-

fore 7 = 0. Moreover, L/ (L) ~ Qo ®r,[v] M, and by applying ¥ we find that this
surjects onto ¥ (L)/¥+1(L) for every i. Hence:

ly(M) =leng, L < p-leng, @ ®F,[V] M = ply(M). |

Recall that @ = @/ @, is a division ring.
Lemma 7.6. We have that

lGi(M)'

dimg @ ®F,[6,] M < -

Proof. When we view M as a left F,[G;]-module, it has a presentation of the form
Fp [[Gi]]nIG:Gi \ /Fp [[Gi]]n\GlGi \ B

for some matrix B € Maty|g.6,|xn|G:G;|(Fp[Gi]). By projecting the matrix onto [, and
applying elementary matrix operations, we can find one such matrix B satisfying

5 (da+Bi B
“\ B B’

where the B; are matrices with entries in the augmentation ideal Ig, of F,[G;] and
n|G:G;| —a = dimg, M/Ig,. Since the B; vanish when acting on @, one gets that

dima Q ®]Fp[[Gi]] M = dime Fp ®]Fp[[Gi]] M = dime M/IGl.M = n|G:G,'| —a.

By definition, we have that for any x € Ig,, v(p(x)) > i, so that ¢(Ig,) < z' Q.
Hence, there are matrices B/, and B} over @ such that we can express ¢(B) as

Id, + ¢(B1) Bé) (Ida 0 )
¢(B3) B:; 0 ZlIdan:Gil—a .

C1 C2

@(B) = (

This implies that
(@O/ZiQO)an:Gilfa — @8|G1Gi|/@g|GiGi|C2
. . anZGil nIGZG,‘I .
is a quotient of Qo ®F,[6,] M = Q, /@, ¢(B). Therefore, we obtain that
ZG,- (M) = lenao & ®]Fp[[Gi]] M

> lenao (ao/zi@o)an:Gil—a

=i(n|G:Gi| —a)

= idim@é@)Fp[[Gi]] M. [ ]
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Proof of Theorem 1.1. Note that, by Lemma 2.4, to show that ¢* rkg < rk¢ it suffices
to show that they coincide over square matrices invertible under ¢. Indeed, any matrix
A € Mat,;; (F,[G]) contains a maximal submatrix B € Matyx (F,[G]) such that

" 1tkg(B) = ¢* kg A =k,

and if rkg (B) = k the lemma shows us that k& < rkg (A).
Thus, let M = F,[G]"/F,[G]" A where A € Mat,x,(F,[G]) is invertible under ¢.
We want to show that dimg M = 0. We have that

dimg, F, ®r,jc,) M _ dimg Q ®,[6,] M

|G: G;| N |G: G;|
lg, (M)
< — , by L 7.6,
=116 Gy y Lemma
le(M
< G(, ), by Lemma 7.5.

l

Since g (M) is finite by Lemma 7.4, we have lim;_, o lG(l—M) = 0, which concludes the
proof.

Now we are ready to finish the proof of Theorem 1.1. By Lemma 4.6 and Corollary 3.6,
we can assume that G is a mild flag free-by-Z, pro-p group. Let @ and D = D[¢][s; 0, 8]
be as in Section 5. Observe that the valuation w on D naturally extends to @ and the
embedding F,[G] — @ is continuous by Lemma 5.1. By Theorem 7.1, ¢* tkg < rkg. In
the proof of Theorem 6.13 we showed that ¢* tkg = irkp »[G]- Since irkg, (6] > kg, we
have that irk]pp 16] = tkg. [

8. Abstract subgroups of free-by-Z, pro-p groups

In this section we discuss some consequences that Theorem 1.1 implies in the study of
the Liick approximation for finitely generated (abstract) subgroups of a free-by-Z,, pro-p
groups.

Let us first recall the statement of the Liick approximation. Let I" be a group and let
K be a field. For every matrix A € Mat, x,, (K[I']) and every normal subgroup N of I" of
finite index let us define

oty K[[/N]" — K[[/N]"

(X1,...,x0) > (X1, ..., x0)A.

This is a K-linear map between two finite-dimensional K-vector spaces. Thus, we can
define a Sylvester rank function of K[I'] by means of

dimg Im (pf}/N dimg ker goli‘/N

thpyy (4) = ——— =

8.1
T : N| T : N| (8.1
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Conjecture 2 (The Liick approximation conjecture). Let I" be a group, K be a field and
I' > Ny > Ny > -+ a descending chain of normal subgroups of I" of finite index with
trivial intersection. Let A be a matrix over K[I']. Then the following holds.

(1) The sequence {rkr,n,(A)}i=1 converges.
(2) The limit lim; o0 tkp/ N, (A) does not depend on the chainI' > Ny > Np > ---.

(3) If moreover I is locally indicable, then there exists a universal embedding K[T'] —
@ and limi—)oo rkl"/N,- (A) = I‘kK[p] (A)

If K is of characteristic 0, the parts (1) and (2) of Conjecture 2 are known to be true
[20], and for part (3) we know that there exists an embedding ¢ : K[I'] — @ into a division
ring @ such that lim; oo tkr/n, (4) = rkg (¢(A4)) [25], but we still do not know whether
@ is universal in general [23]. If K is of positive characteristic, the parts (1), (2) and (3)
are only known when I" is amenable [21,23].

Letnow G be a free-by-Z, pro-p group and I' a finitely generated (abstract) subgroup
of G. It is clear that T is locally indicable and from [23, Thm. 3.7] we know that there
exist a universal division I [T"]-ring of fractions O, r]. The following theorem provides
a particular case of Conjecture 2 for T'.

Theorem 8.1. Let G be a free-by-7Z, pro-p group and I" a finitely generated (abstract)
subgroup of G. Let G > Uy > U, > -+ be a chain of normal open subgroups of G with
trivial intersections. Let H; = I N U;. Then for every matrix A over Fp[I'],

lim rkr/g, (4) = tkg,ry(4).
1—>00

Proof. Since the closure of I" in G is a finitely generated free-by-Z, pro-p group, we
can assume that I" is dense in G, so that G is topologically finitely generated. Hence, this
implies that the inclusion map I' — G induces isomorphisms I'/H; ~ G/ U; for every
i>1.

By Theorem 1.1, there exists Df, [¢]. Denote by ¢ : F[['] — Dr, 6] the correspond-
ing embedding. Theorem 1.1 implies also that for every matrix 4 over F,[I'],

11—1>I£o rkF/Hi (A) = 11—1>Igo I‘kG/Ui (A) = rk:l)]}rp[g]] (‘P(A))

Thus, we have to show that ¢ is universal. Let N be a normal free pro-p subgroup of G
such that G/N = Z,. Put H = N N I". Denote by Dr (resp. Op ) the division closure of
F,[T'] (resp. F,[H]) in D, (6] and by R the subring generated by Dy and F,[I'].

In [24, Prop. 3.5], it was shown that Dy is the universal division ring of fractions
of F,[H]. We also claim that the induced surjective map Oy * (I'/H) — R is an iso-
morphism. Let yy, ..., y, lie in different classes modulo H . There exists an open normal
subgroup U of G containing N such that y, ..., y, lie in different classes modulo U. By
Proposition 3.4 (d), >/, Dmy; is direct. Hence, it sends linearly independent elements
to linearly independent elements, establishing its injectivity.
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These two facts together imply that the ring R is isomorphic to a crossed product
Dy, ) * (I'/H). Since I'/H is finitely generated, R a Noetherian ring. Thus, Dr is
isomorphic to the Ore division ring of fractions of R. Hence, we obtain that Dr will be
the universal division ring of fraction of F,[I']. L]

Appendix: Localization of profinite rings

Let R be an associative ring and X a collection of square matrices over R. The universal
localization of R with respect to X is a ring Ry that comes with a ring homomorphism
A: R — Ry such that A(A) is invertible for every A € X, and Ry is universal for that
property.

We denote by S the set of all square matrices over R that become invertible under A.
In general, S is greater than X. However Rg is R-isomorphic to Rx. We say that X is
complete if ¥ = X.

It is clear that a complete collection of square matrices is multiplicative, that is it
contains GL, (R) for every n, is closed under products when defined and if A, B € X then
(61 g) € X for any matrix C of the appropriate size. It also has the following property
regarding diagonal summands on X:

A 0
If (O B)GE, then A, B € X. DS)

J. Beachy has shown in [6] that Ry and A can be constructed as follows. From now
on we assume that ¥ is complete. Let R"” denote the rows of n elements in R, " R the
columns of n elements in R and ¥, denote the subset of n-by-n matrices in X. Consider
the set Tz given by the disjoint union of all the products R” x X, x " R, that is, the triples
(a, C, x) where a is a row matrix over R of length n, C € ¥, and x is a column matrix
over R of height n. We define two binary operations of sum and product in Ty, as follows:

(@.C.x)+ (b, D.y) = ((a b),(g g)(;))

wen- e =(t 0.(S 3)-(9))

where the matrices make sense because ¥ is multiplicative, x is an n x 1 matrix and b is
an 1 X m matrix.

We define an equivalence relation Ry C Tx x Tx on Ty by means of (a, C, x) ~g,
(b, D, y) if there exists invertible matrices U, V' over R such that b = aU, y = Vx and
D = VCU. Observe that in particular C and D must have the same size if (a, C, x) ~g,
(b, D, y). We denote the quotient T/ ~&, by Z~! R and the equivalence class of a triple
(a,C.x)in Z7'R by (a: C: x).

The operations of sum and product are well defined on the equivalence classes and
descend to a sum and a product on the quotient 7x. With the sum, it becomes a com-
mutative semigroup. To obtain an abelian additive group, we further introduce a new
equivalence relation.



A. Jaikin-Zapirain and H. Souza 498

Let EO_IR be the subsemigroup of ¥~ R generated by all the elements of the form
(a:C:0) and (0: C: y). It is shown in [6] that all the elements of X! R are either of
that form or of the form (( ao): (‘g 2): (2)) for blocks of the appropriate sizes. This
subsemigroup allows us to define the congruence relation R, C Z 'R x X" 'Ron 27! R,
where two elements p, g € 7! R are equivalent if there exists Z1, Z, € 5! R such that
p+zii=q+2.

The quotient space X! R/ ~ g, inherits the sum and product, under which it becomes
an associative ring with trivial element being the class [(1 : 1 : 0)] and the identity element
being the class [(1 : 1 : 1)]. The additive inverse of [(a: C: x)] is [(a: C: —x)]. One of the
main results of [6] is that this quotient space is precisely the universal localization Ry,
where the map A: R — Ry is given by x — [(1:1: x)].

Suppose now that R is a topological ring. In that case, all the spaces "R and R" have
a natural product topology, and %, also becomes a topological space as it is contained in
Mat, (R) =~ R™ . Hence, Ts, becomes a topological space endowed with the direct union
topology on which the operations of sum and product defined are continuous. Under the
quotient topology, those operations are still continuous on ¥~!R and Ry, so that Ry
becomes a topological ring. We call this topology structure on Ry, the induced topological
structure from R. Itis clear that A: R — Ry is a continuous ring homomorphism. The main
result of the appendix is the following theorem.

Theorem A.1. Let R be a profinite ring and X a collection of square matrices over R.
Then Ry, admits a Hausdorff ring topology such that A: R — Ry, is continuous. In partic-
ular, every finitely generated R-submodule of Ry is profinite.

Proof. Without loss of generality we assume that ¥ is complete. Since R is profinite, then
Ty, is a Hausdorff space under the induced topology.
Claim 1. We have that X! R is Hausdorff.
Proof. We must show that the equivalence relation JR; is a closed subspace of Tx x Tx.
Since Ty is given the union topology and each equivalence class under R is entirely
contained in one of the subsets 7, = R" x X, x " R, it suffices to prove that X,, = (R; N
(T, x Ty)) is closed in T), x T,.
Consider the continuous maps v¥: T, x T,, x GL,(R)?> — R" x Mat,(R) x "R and
7: Ty x T, x GL,(R)? — T, x T, given by
Y(@a,C,x,b,D,y,U, V)= (aU—-b,VCU — D,Vx —y),
w(a,C,x,b,D,y, U, V)= (a,C,x,b,D,y).
It is clear that X,, = m(y¥~1(0, 0, 0)). Since GL, (R)? is compact, 7 is a closed map, so
we are done. |

The kernel of ¥~ 'R — Ry is the subsemigroup
Y'R-3;'R={pe='R| 3z e ;' Rsuchthat p +Z € ;' R},

which contains £5' R but it might be strictly larger.
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Claim 2. We have that EglR is closed in 71 R.

Proof. It again suffices to consider X' R, = (R" x ¥, x"R)/ ~g, and show that ¥,, =
EO_I RN X71R, is closed in X! R,, as we have a homeomorphism between >~1R and
the disjoint union | J,;-; =71 R,.

Decompose Y, = Z; U Z;; U U:’;ll Z111.i Where

Z; ={(a:C:0) € Yy},
Zir = {(OICI)C) € Yn},
C 0 0 ac R, xe" R,
Z ;= 0): : €Y, .
m={( 05 p)(0) e cs b
We only need to show that each one of the Zy, Z;; and Zy1; is closed in >71R,.
The inverse image of Zy in R" x X, x "R is the set of triples of the form (a, C, 0),

which immediately shows that it is closed. An analogous description holds for the inverse
image of Zy, hence it is also closed. The only case requiring a finer description is that of

ZiIni-
The inverse image of Zy77; in R” x ¥, x "R is

{((a O)U,V(g g)U,V(g))|U,VeGLn(R)}.
Ziz{((a 0),(3 g),(g))}gR”xan”R.

Then, the inverse image in question is the image of Z; x (GLj, (R))? under the continuous
right group action map u: (R" x ¥, x "R) x (GL,(R))?> — R" x X, x "R given by

Define

wb, A, y, U, V)= (bU, VTAU, V™ 1y).

Since X satisfies property (DS), the set Z; is closed, and because (GL, (R))? is compact
the map 1 is closed. Hence, j(Z; x (GL,(R))?) and Z;; are both closed. |

Claim 3. We have that {[(1: 1: 0)]} is closed in Ry.

Proof. We must show that EO_I R — Eal R is a closed subset of ™! R. Consider the map
@: T 'R x 3R — SR given by ¢(p,Z) = p + Z. The inverse image ¢ 1 (X, 1 R) is
closed in the product by Claim 2. Since this inverse image is precisely (20_1 R — 261 R) x
Zo_lR, it proves that EO_IR — EO_IR is closed in T ™! R. n

By Claim 3, the ring topology constructed on Ry is such that {0} is closed. Since
(Ryx, +) is a topological abelian group, it must also be Hausdorff.

For the last statement of the theorem, take one such M < Ry and observe that the
kernel I of any surjection R” — M must be closed in R". Therefore, M ~ R"/I is
profinite. ]
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