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Divergence-free framings of three-manifolds
via eigenspinors

Francesco Lin

Abstract. Gromov used convex integration to prove that any closed orientable three-manifold
equipped with a volume form admits three divergence-free vector fields which are linearly inde-
pendent at every point. We provide an alternative proof of this using geometric properties of eigen-
spinors in three dimensions. In fact, our proof shows that for any Riemannian metric, one can find
three divergence-free vector fields such that at every point they are orthogonal and have the same
non-zero length.

Dedicated to Paolo Lisca in the occasion of his 60th birthday.

The following classical result of Stiefel is fundamental in three-manifold topology.

Theorem 1 ([16]). Every closed orientable three-manifold Y admits a framing, i.e., three
vector fields X1, Xo and X3 which are linearly independent at every point.

The hardest part of the standard proofs of such result is to establish that the second
Stiefel-Whitney class w,(7M) vanishes; after this, it follows from obstruction theory
because 7, (SO(3)) =0 (see [13, Chapter 12]). For alternative ‘bare hands’ proofs, see [1].

It is natural to ask whether, in the presence of an additional geometric structure on Y,
the framing can be chosen to be compatible with it. In this direction, we have the following
result of Gromov.

Theorem 2 ([6, p. 182]). Every closed orientable three-manifold Y equipped with a vol-
ume form 2 admits a framing X1, X» and X3 consisting of divergence-free vector fields.

Recall that the divergence div(X) of a vector field X (with respect to the volume form
) is defined in terms of the Lie derivative by

£xQ = div(X)Q;

a vector field is divergence-free if its divergence vanishes, or equivalently if its associated
flow is volume-preserving.
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If one fixes a Riemannian metric g on Y (and considers the volume form Q = dvolg),
the following is a very natural question with implications in hyperkéhler geometry due to
Bryant (see also [5]).

Question 1 ([2, Remark 3]). Which closed orientable Riemannian three manifolds (Y, g)
admit a divergence-free framing X1, X, and X3 which is orthonormal at every point?

Our main goal is to show that if one relaxes the condition of orthonormality to or-
thonormality up to scaling then such a framing can always be found.

Theorem 3. Every closed orientable three-manifold Y equipped with a Riemannian met-
ric g admits a framing X1, X2 and X3 consisting of divergence-free vector fields so that
atevery point pinY, X1(p), X2(p) and X3(p) are orthogonal and have the same length.

This recovers Gromov’s result because any volume form €2 is the volume form of
some Riemannian metric. While Gromov’s proof is based on h-principles and in particular
convex integration techniques (see also [3, Chapter 20] for an exposition), our approach is
based on elliptic PDEs (and inspired by Seiberg—Witten theory), in the sense that it uses
geometric properties of eigenspinors in dimension three. It is not clear whether the convex
integration approach can be adapted to prove Theorem 3; notice that the geometric setup
of our result is much more rigid because it involves three differential equations in four
(rather than nine) variables.

Preliminaries on spin Dirac operators

We begin by recalling some basic facts in spin geometry; we refer the reader to [14] for
a general discussion and [10] for a treatment specific for our three-dimensional needs.
We will begin by choosing a spin structure on Y, which exists because TY is trivial
(Theorem 1 above). Now Spin(3) = SU(2), and the spinor representation is given by the
natural vector representation on C2. We denote the associated (rank 2 hermitian) spinor
bundle by S — Y; this is equipped with the spin connection V. The associated Clifford
multiplication provides an identification

p:TY — su(S)

such that for each oriented orthonormal frame e;, 5, e3 at a point p, we can find a basis
of S, such that p(e;) = 0; where

i 0 0 -1 0 i
it R C el i SR I A
are the Pauli matrices. The spin Dirac operator
D:T(S) = I'(S)

is given by the composition

I'(S) - T(T*Y @ S) 5 T'(S),
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where we extended p to 1-forms via the musical isomorphism. The spin Dirac operator is
a first-order elliptic formally self-adjoint operator, and therefore (given that Y is closed)
diagonalizable in L? with real discrete spectrum infinite in both directions. We will be
particularly interested in its eigenspinors, i.e., non-zero solutions to the eigenvalue equa-
tion

DV = A\, 2)

especially in the situation of A # 0.

The quadratic map

Given any section W € I'(S) we can consider the traceless hermitian endomorphism
(WU*)p el (isu(S)). Choosing coordinates so that Clifford multiplication is given by (1),
if U = («, ), then

3(lal> = 1B1%) af
(V") = [2 - ] .
ap 3 (B2 —lal?)
The key computation for our purposes is the following.

Lemma 4. If W is an eigenspinor, then the vector field X := p~1 (i (W W*)y) is divergence-
free.

Remark 1. While our inspiration for considering the quantity X and the Lemma comes
from Seiberg—Witten theory, both appear very classically in physics when considering the
conserved current for the Dirac eigenvalue equation in three-dimensions, cf. [15, Chap-
ter 8]. Furthermore, the result also readily follows from the (more general) computations
in the proof that the Dirac operator is formally-self-adjoint, see [14, Proposition 3.11].

Proof. We will check that the statement holds at any fixed p in Y. Fix a local orthonormal
frame e;, which we assume to be syncronous at p, i.e., V., e;j(p) = 0. Using (1) we see
that

1y, 1 _ _
X =p 1 (i(WW*)o) = §(|Ol|2 —|B*)e1 + Im(aB)ex + Re(af)es. (3)
Because the framing is syncronous at p, in these coordinates the Dirac operator at p is
3
DV = Zai V0,
i=1
where V; is the standard derivative in the direction e;, so that the eigenvalue equation (2)
is written explicitly in terms of ¥ = («, B) at the point p as
ilet—Vzﬂ+iV3ﬂ=)tOt, VzOl—i—ng,Ol—iV],B:Aﬂ.

Because the frame is syncronous at p, we also have that for a vector field Y = Z?:l Yie;
the divergence at p is given by

3
div(Y) = ZV,-Yi.
i=1
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Applying this to the vector field (3), we compute directly that the divergence of X at p is

Re(@(Via)) — Re(B(V1B)) + Im((Vae)B) + Im(x(V2))
+Re((Vaw)B) + Re(a(V3h))
= Re((V1a)@) — Re((V18)B) — Re((i V2o) B) + Re((i V2 p)@)
+Re((Vaa)B) + Re((V3h)a)
= Re((—V18 —iVoa + V3a)B) + Re((Via + i V2 + V38)@)
= Re((=iAB)B) + Re((—ira)&) = 0,

where in the first equality we used Im(z) = —Re(iz), in the third equality we used the
eigenvalue equations above, and in the last equality we used that A is real. ]

Remark 2. The result is still true if we consider more generally spin® Dirac operators
Dp (as it is customary in Seiberg—Witten theory). Indeed, we performed the computation
pointwise, and any spin¢ connection B can be made into the spin connection at a point via
a gauge transformation. Furthermore, we can also allow A to be any real valued function
onY.

The quaternionic structure

A fundamental feature of the spin Dirac operator in three dimensions is its additional
quaternionic structure (see for example [11, Chapter 1.4] for more details). Namely, we
can identify the spinor representation as

C’=H
(v,w)—>v+ jw

and consider the right action of H by multiplication; in particular, complex scalars act as
usual while the action of j under identification is given by
. w)-j = (-w,v).

This induces a complex antilinear map squaring to —1 on the spinor bundle S — Y (i.e.,
a quaternionic structure) which we still denote by j. The spin Dirac operator D is com-
patible with this action in the sense that

DV j) = (DV¥)- .

In particular, its eigenspaces are naturally equipped with a quaternionic structure (hence
are even dimensional as complex vector spaces). In what follows, we will say that an
eigenvalue D is simple if the corresponding eigenspace is one dimensional over H.

Geometry of eigenspinors

With this in mind, we will now state the two main results [4, 7] about the geometry of
eigenspinors on three-manifolds that will be fundamental for our purposes: informally
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speaking, for a generic metric the spin Dirac operator has no kernel and only simple eigen-
values; furthermore all eigenspinors are nowhere vanishing. Intuitively speaking, the latter
should be expected as the spinor bundle S — Y has real rank 4. Of course, the proof of
such results is quite technical in nature as the Dirac operator depends on the metric in a
complicated way. Furthermore, we will need the following more refined version for our
purposes.

Theorem 5 ([4, 7]). Consider a closed three-manifold Y equipped with a Riemannian
metric g and a spin structure. Then for a generic metric g’ conformal to g, all non-zero
eigenvalues of the spin Dirac operator are simple, and all eigenspinors corresponding to
non-zero eigenvalues are nowhere vanishing.

It is important in the statement to focus on non-zero eigenvalues, because the kernel
of D (i.e., the space of harmonic spinors) is conformally invariant [8]. On the other hand,
for a generic metric (not necessarily conformal to a given one) the kernel is trivial [12].
Notice that while the main statements of [4, 7] concern the space of all metrics, the proof
is based on a careful analysis of a given conformal class; in particular the result we stated
consists of [4, Remark 1.3] and [7, Theorem 4.3]. Finally, for our purposes we will only
need the statement that non-harmonic eigenspinors have no zeroes, but we emphasized the
role of simple eigenvalues as it is an assumption in its proof.

Proof of the main result

Fix a spin structure and choose a metric g’ conformal to g such that the conclusion of
Theorem 5 holds, and consider an eigenspinor ¥’ corresponding to an eigenvalue A" # 0.
Using the quaternionic structure, we consider the three A’-eigenspinors

Ltk g Lt
N V2

all of which are nowhere vanishing (here k = ij € H). By Lemma 4 the quadratic map

associates to them nowhere-vanishing vector fields X7, X}, X} which are divergence-free

(with respect to dvolg/). Furthermore, they are readily checked to be orthogonal and to

have the same length with respect to g’ at every point. Indeed, we can identify S 1/7 =C?=
H by setting

V=0, W=U.

V' =(a,00 and V'-j=(0,a) wherea = |V (p)| R

This determines a g’-orthonormal basis of 7, Y (denoted by {e;}) via the identification (1).
Then we have that at the point we can identify the three spinors as

a —ia a a
V) = (a,0), W =(——) v =(——)
1 ( ) 2 \/5 \/5 3 ﬁ \/E
which correspond via the quadratic map to the vectors

a2 a2 2

/o / / ’ r /
X = 761’ X, = 762v X3 =€
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respectively. Finally, we can write g = f2g’ for some positive function f, and the vector
fields
1 !/
Xl' = FX,
are divergence-free with respect to dvoly = f 3d volg because by Cartan’s formula
LxQ =d(xQ) + 1xdQ =d(xQ)

the vector field X is divergence-free with respect to €2 if and only if the 2-form tx Q2 is
closed. ]

Remark 3. Notice that the proofs of Theorems 2 and 3 both take as input Theorem 1.
Indeed, a key ingredient in our proof is the existence of a spin structure, which is equiv-
alent to w2 (T'Y) = 0. On the other hand, Gromov’s approach shows that any framing of
Y is homotopic (through framings) to a framing by divergence-free vector fields. It is an
interesting question to understand which homotopy classes of framings admit represen-
tatives as in Theorem 3. Referring to [9] for details, given a framing all other ones are
classified up to homotopy by the set of homotopy classes [, SO(3)]. To a homotopy class
one can associate an element

Hom(m(Y), 71(SO(3))) = H (Y Z/2)

which corresponds to the underlying spin structure. Our proof shows that any spin struc-
ture admits a framing as in Theorem 3. On the other hand, the homotopy classes inducing
the same spin structure form an affine space over

H?(Y;73(SO(3))) = Z.

and it is not clear from our approach whether all of them can be realized. More in general,
it is an interesting question to understand the topological features of eigenspinors on three-
manifolds for generic metrics.
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