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On the finite generation of the cohomology of abelian
extensions of Hopf algebras

Nicolas Andruskiewitsch and Sonia Natale

Abstract. A finite-dimensional Hopf algebra is called quasi-split if it is Morita equivalent to a split
abelian extension of Hopf algebras. Combining results of Schauenburg and Negron, it is shown that
every quasi-split finite-dimensional Hopf algebra satisfies the finite generation cohomology conjec-
ture of Etingof and Ostrik. This is applied to a family of pointed Hopf algebras in odd characteristic
introduced by Angiono, Heckenberger and the first author, proving that they satisfy the aforemen-
tioned conjecture.

1. Introduction

1.1. The problem
Let k be an algebraically closed field. We say that an augmented k-algebra A has finitely
generated cohomology (fgc for short) when
(a) the cohomology ring H(A, k) = P, cn, Ext) (k, k) is finitely generated, and
(b) for any finitely generated A-module M, H(4, M) = Extj(k, M) is a
finitely generated H(A, k)-module.

neNy

This definition was extended in [17] as follows. A finite tensor category € (with unit
object 1) has finite generation of cohomology (or fgc) when

(a) the k-algebra H(C) = P, <, Ext" (L, 1) is finitely generated, and

(b) for any object V' in € the H(€)-module H(V) = P, cn, Ext" (L, V) is finitely

generated.

In [17], P. Etingof and V. Ostrik, drawing on fundamental results of [1, 18,20-23,45],
conjectured that finite tensor categories have fgc, in particular that finite-dimensional Hopf
algebras have fgc; this was verified in many cases [5, 10, 13-15,19,24,31,34-36,41]; see
[5, Section 1.1] for background.

1.2. Morita equivalence

Let H and U be finite-dimensional Hopf algebras. By [35, Theorem 3.4], see also [5,
Theorem 3.2.1], if the Drinfeld double D(H') has fgc, then H has fgc. The following
argument was intensively used in [5].
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We say that H and U are Morita equivalent, denoted H ~yo; U, if the finite tensor
categories rep H and rep U are Morita equivalent as in [16,33]. Equivalently, H ~yor U
if there exists an equivalence of braided tensor categories between the Drinfeld centers
Z(rep H) and Z(rep U) [16]. In other words, H ~po; U iff D(H) and D(U) are twist
equivalent quasitriangular Hopf algebras (this does not imply that H and U are Morita
equivalent as algebras). Thus to prove that H has fgc it suffices to find U such that

(i)  D(U) has fgc, and
(11) H ~Mor U.

1.3. Extensions

In this paper, we consider the question of fgc for a Hopf algebra H fitting into an exact
sequence of finite-dimensional Hopf algebras

k—K—H—L—k. (1.1)

If H has fgc, then K has fgc by [5, Theorem 3.2.1] while it is unclear whether we could
infer that L has fgc. Thus, it is natural to ask the following question.

Question 1.1. Given an extension (1.1) such that K and L have fgc, does H also have
fgc?

For instance, if K is semisimple and L has fgc, then H has fgc, see [5, Lemma 3.2.5].
The proof uses a variation of the classical Hochschild—Serre spectral sequence but it is not
clear (to us) how to proceed when the semisimplicity assumption on K is dropped.

The extension (1.1) is abelian when K is commutative and L is cocommutative. In this
case there are suitable actions of L on K and of K* on L, and a pair (o, t) of compatible
cocycles that determine the possible extensions H. The suitable actions give rise to a
double complex €. The abelian extension (1.1) is split if the pair (o, T) is trivial in the total
complex associated to €. Furthermore, by an argument due to P. Schauenburg, extending
previous work of G. I. Kac, there is a long exact sequence (the Kac exact sequence) in
which the pair (o, 7) is sent to a Sweedler 3-cocycle on the Hopf algebra L < K* with
coefficients in k as in Proposition 2.6, see [32, Remark 1.11 (3)] for details.

We shall say that an abelian extension is quasi-split if it is Morita equivalent to the
split extension (with respect to the same suitable actions); see Definition 3.1. Tautologi-
cally, split abelian extensions are quasi-split; also, abelian extensions for which the Kac
3-cocycle is trivial are quasi-split (see Corollary 3.5). The starting point of the paper is the
following result.

Theorem 1.2. If (1.1) is a quasi-split abelian extension, then H and D(H) have fgc.

See Theorem 3.6 for a precise formulation. As a consequence, the dual, any twist and
any cocycle deformation of H have fgc. In characteristic 0, Theorem 1.2 is trivial, as a
finite-dimensional abelian extension is semisimple.
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Theorem 1.2 follows by combining the next two results due to C. Negron and P.
Schauenburg respectively.

Theorem 1.3 ([34]). If U is a cocommutative Hopf algebra, dimU < oo, then D(U) has
Jec.

Notice that Theorem 1.3 is stated in [34] in the language of finite group schemes.

Theorem 1.4 ([39]). Let (1.1) be a split abelian extension of finite-dimensional Hopf
algebras. Then there exists a cocommutative Hopf algebra U such that H ~yor U.

Observe that the Drinfeld double of a finite-dimensional cocommutative Hopf algebra
is a split abelian extension.

1.4. Pointed Hopf algebras

In the paper [4] (assuming char k = 0) Nichols algebras over abelian groups with finite
Gelfand—Kirillov dimension of a certain kind were classified. It was observed later in [3]
that many of the Nichols algebras over the analogous braided vector spaces in odd charac-
teristic have finite dimension, hence give rise to finite dimensional pointed Hopf algebras
by bosonization with group algebras of finite abelian groups. See e.g. [37, Chapter 11] for
the notion of bosonization, named there biproduct. Theorem 6.7, the main result of this
paper, shows that these pointed Hopf algebras have fgc when the groups are well chosen.

In this paper we consider Nichols algebras as braided Hopf algebras in the sense of
[44], i.e., braided vector spaces with algebra and coalgebra structures suitably compatible
with the braiding. Recall that a realization of a braided Hopf algebra R in the category
Z YD of Yetter—Drinfeld modules over a Hopf algebra H is the data of an action and a
coaction of H on R such that R becomes a Hopf algebra in the category Z YD, with the
initial braiding of R equal to the categorical one. The same braided Hopf algebra might
have many realizations, thus giving rise to different Hopf algebras by bosonization.

Concretely, in the notation of Section 6, we consider a family of braided vector spaces
V(q, a), we fix a suitable finite group I" such that the Nichols algebra B(V(1, a)) can be
realized as a Hopf algebra in the category ﬁll:yi) of Yetter—Drinfeld modules over I and
proceed in two stages:

(i)  we show that the bosonization H = B(V(1,a))#kI fits into a split abelian exact
sequence, hence D(H) and H have fgc by Theorem 1.2;

(i) for a general g, we present B(V(q, a))#kI" as a cocycle deformation of H,
hence B(V(q,a))#kI has fgc too.

‘We observe:

o Not all Nichols algebras in [3] belong to the family treated here; most of the remain-
ing ones arise from abelian extensions of Hopf superalgebras and will be dealt with
elsewhere.

o Many realizations of B(V(1, a)) fit into abelian exact sequences which are not split.

o Many realizations of B(V(q, a)) fit into exact sequences which are not abelian.
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1.5. Organization

Abelian extensions are discussed in Section 2. Section 3 is devoted to Theorem 1.4. The
analysis of the Nichols algebras B(V(q, a)) is delicate as it involves a number of distinct
combinatorial features developped in [4]. For clarity, we first deal with the two simplest
examples, namely the restricted Jordan plane and the first Laestrygonian algebra, in Sec-
tions 4 and 5, respectively. In Section 6, we work out the strategy outlined above for the
general Nichols algebras B(V(q, a)).

1.6. Conventions

For{ <0 eNp,wesetlyg={{,£+1,...,0},1p =1, ¢. Let Gy be the group of roots of
unity of order N in k and G’ the subset of primitive roots of order N; Goo = | Jyeny GN
and G, = Goo —{1}.If L € N and ¢ € k*, then (L), := Z]I-‘:_Ol q’.

All vector spaces, algebras and tensor products are over k. We use V* to denote the
linear dual of a vector space V, V* = Homy (V, k).

By abuse of notation, {(a;:i € I} denotes either the group, the subgroup or the vector
subspace generated by all a; for i in an indexing set /, the meaning being clear from the
context. Instead, the subalgebra generated by all a; for i € I is denoted by k{a;:i € I).

The notation for Hopf algebras is standard: A, e, § denote the comultiplication, the
counit, the antipode (always assumed bijective), respectively. We use the Sweedler nota-
tion for the comultiplication and the coactions. Our reference for the theory of Hopf
algebras is [37]. Generalities on Nichols algebras can be found in [2].

2. Extensions of Hopf algebras

This section contains a crash exposition of extensions of Hopf algebras.

2.1. Exact sequences

Recall that a sequence of morphisms of Hopf algebras
k—>A45>C5 Bk @2.1)

is exact [7,25,40] if the following conditions holds:

(i) tisinjective.

(i)  m is surjective.

(iii) kerm = Cu(A)T.

iv) (A) = C*7,
Remark 2.1. The definition has a simpler shape if we assume that A < Cis faithfully
flat. In this case, if also t(A) is stable by the left adjoint action of C, then (i), (ii) and (iii)
imply (iv), see [7, Corollaries 1.2.5 and 1.2.14], [40]. Notice that a finite-dimensional Hopf

algebra is always free, hence faithfully flat, over any Hopf subalgebra by the Nichols—
Zoller theorem.
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The exact sequence (2.1) is abelian if A is commutative and B is cocommutative. We
shall also refer to C in (2.1) as an (abelian when it corresponds) extension of B by A.
The exact sequence (2.1) is cleft (see [7, Definition 3.2.13]) if there exist

(1)  aunit preserving right B-colinear section s: B — C of the projection 7 and
(i)  a counit preserving left A-linear retraction r: C — A of the inclusion ¢,

both s and r being invertible with respect to the convolution product, such that the follow-
ing equivalent conditions hold, for all ¢ € C:

@ s7'(x(e)) = S(cayrlce)-

(b) () = r~He)ee).-

© ) = s(rlc))S(c)-

@) r(e) = cays ()

(e) rs=¢eply.

The maps s and r are called cleaving maps of (2.1).

Remark 2.2 ([40]). If C is finite dimensional, then the extension (2.1) is cleft.

Definition 2.3 ([39, Definition 6.5.2]). The exact sequence (2.1) is called split if there
exist cleaving maps s and r as above, called splittings of (2.1), such that s is an algebra
map and r is a coalgebra map.

Cleft extensions can be described using suitable linear maps. A bicrossed product
datum of Hopf algebras is a collection (A, B, —, p, 0, T) where A and B are Hopf algebras,

—~B®A— A, pB—>B®A, o0:BR®B—->A and 1:B—> AR A

are maps, called, respectively, a weak action, a weak coaction, a cocycle and a dual cocy-
cle, obeying the conditions in [7, Theorem 2.20].

A bicrossed product datum (A4, B, —, p, 0, T) gives rise to a Hopf algebra A#. B,
called a bicrossed product: the underlying vector space is A ® B, while the multiplication,
comultiplication and antipode are determined by the formulas

(k#h)(t#g) = k(hqy — D)o (hw). g21)#h3)82)-
A(k#th) = kayt™ (hayp(h@)i ® kayt? (hay)p(he) #h ).
S(at) = (S((p(5)) ) —~ S (p0) )5 (D)) 1)) S@)#1.

The natural maps t: A — A#7 B and n: A# B — B fit into a cleft exact sequence
k—>AS> A#B 5 B -k,
of Hopf algebras, with cleaving maps

s:B — A#.B, s(b) =1#b, r A#.B — A, r(a#b) =¢e(b)a, a€ A, be B.
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Conversely, given a cleft exact sequence (2.1), there exists a bicrossed product datum
A, B,—, p,0, 1) such that C = A#* B; it arises from the cleaving maps s and r as follows:
p o & map

b—a=sbayas " (ba). oB#) = s(bn)sby)s™ (bybin):
p(r(e)) = m(e@) ® r(caprlca),  T(m(e) = A(r™ (cy)) r(c@) ® r(ca)),

foralla € A,b € B, c € C. See [7, Theorem 3.2.14].

A special instance of a bicrossed product datum (A, B, —, p, 0, T) occurs where the
cocycle o and the dual cocycle t are trivial maps; in this case, we omit the mention of o
and t and call the bicrossed product datum (A, B, —, p) a bismash datum. Notice that in
a bismash datum, A is a left B-module algebra and B is a right A-comodule algebra with
action — and coaction p.

Given a bismash datum (A4, B, —, p), the associated bicrossed product is denoted
A#B. The canonical cleaving maps imply that the associated exact sequence

k—> A5 A#B S B >k (2.2)

is split. Conversely, if (2.1) is a split exact sequence, then the corresponding bicrossed
product datum (A, B, —, p, 0, 7) is in fact a bismash datum (A4, B, —, p) such that C =~
A#B.

A bismash datum (A4, B, —, p) is called a Singer pair if A is commutative and B is
cocommutative. In this case (2.2) is a split abelian extension of Hopf algebras.

Remark 2.4. Observe that every abelian cleft exact sequence (2.1) gives rise to a Singer
pair through the actions —, p.

2.2. Matched pairs

We now present a way to produce extensions due to G. I. Kac for abelian extensions
and to S. Majid in general. We start by the definition, see [29, Section 7.2]. An exact
factorization of a Hopf algebra S consists of a pair (G, L) of Hopf subalgebras of S such
that the restriction of the multiplication map

mult: G ® L — S

is a linear isomorphism. Exact factorizations are classified through the following notion.

Definition 2.5 ([29, Definition 7.2.1]). A matched pair of Hopf algebras is a collection
(G, L,>, <) where L and G Hopf algebras, G is a left L-module coalgebra with action >,
L is a right G-module coalgebra with action < such that forall £,m € L, x,y € G:

(Em) 4x = (( < (m(l) > x(l)))(m(z) < )C(z)), 2.3)
> (xy) = (ﬁ(l) > X(l))((f(z) < X(z)) > y), 2.4)
((1) x1) ® 5(2) > X@2) = E(z) Ax2) ® 6(1) > X(1)- 2.5)
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Proposition 2.6. Let G and L be Hopf algebras.

[29, Theorem 7.2.2] Given a matched pair (G, L,>, <), the coalgebra G ® L with the
multiplication

x®@OH(y®@m)=x({lay>ya) ® La) <ye)m, {mel, x,yeq,

is a Hopf algebra denoted G < L. The natural inclusions G — G <t L < L
form an exact factorization of G < L.

[29, Theorem 7.2.3] If (G, L) is an exact factorization of a Hopf algebra S, then there
are actions > and < such that (G, L, 1>, <) is a matched pair and

S~Gra L.

The Hopf algebra G < L is called the double crossproduct associated to the actions
<, >. Matched pairs of Hopf algebras give rise to split exact sequences in the following
way.

Proposition 2.7 ([29, Proposition 7.2.4]). If (G, L, >, <) is a matched pair of a Hopf
algebras such that dim L < oo, then (L*, G, —, p) is a bismash datum, where — and p
are obtained by dualization; and vice versa.

In conclusion, finite-dimensional split abelian extensions are determined by exact
factorizations of cocommutative Hopf algebras (that can be thought of as finite group
schemes). We illustrate these notions with some examples, see Examples 3.7 and 3.8 for
a discussion of the fgc property.

Group algebras. The exact factorizations of a group algebra kX are in bijective corre-
spondence with the exact factorizations of the group X', [27,28,43]. Also, the matched
pairs of Hopf algebras (kI',k A, >, <) are the linearizations of the matched pairs of groups
(I, A, 1>, ).

Lie algebras. The exact factorizations of an enveloping algebra U(s) are in bijective cor-
respondence with those of the Lie algebra s; matched pairs of Hopf algebras (U(g), U(L),
>, <) are in bijective correspondence with matched pairs of Lie algebras (g, [, >, <). See
[29, Section 8.3]. More precisely,

o an exact factorization of a Lie algebra s consists of a pair (g, [) of Lie subalgebras
such that s = g & [ (as vector spaces);

o a matched pair of Lie algebras is a collection (g, [, >, <) where g and [ are Lie
algebras, > and < are left and right actions [ Sixg LN g satisfying (2.11) and
(2.12) below.

Given such a matched pair, g > [ := g @ [ with the multiplication given by (2.15) is
a Lie algebra. Up to identifications, (g, [) is an exact factorization of g > [. Also, (2.15)
is equivalent to g and [ being Lie subalgebras and

[.y]=L>y+Lay, Lel yegq. (2.6)
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Conversely if (g, ) is an exact factorization of a Lie algebra s, then (2.6) defines the
actions > and <, (g, [, >, <) is a matched pair and s ~ g >< [.

Restricted Lie algebras. In this example chark = p > 0. Let s be arestricted Lie algebra
with p-operation s +— slPl see [26, (65), p. 187]. Concretely, given i € I,_;, recall that
Sj:% X $ — & is the homogeneous polynomial of degree p defined on a pair (s, t) as the
coefficient of X*~! in ad(Xs + )7~ (s), where X is a formal variable. Then

p—1
(s, 1
(s+0)? =s? +1? + E M, s\t €s. 2.7
i

i=1

By definition the p-operation satisfies for all k € k, s, € s the identities

(ks)["] — k”s["], (2.8)

ad(s'?l) = ad(s)?, (2.9)
Pl sis,0)

(s + 0P} = 57 4021 4 §° ll_ (2.10)

i=1
The following definitions are natural.

o An exact factorization of s is a pair (g, [) of restricted Lie subalgebras such that
s = g @ [ (as vector spaces).

o A matched pair of restricted Lie algebras is a collection (g, [, >, <) where g and
[ are restricted Lie algebras, > and < are left and right p-actions [ Jx g 5 q
satisfying for all £,m € [, x, y € g the identities

K,mlax=[L<ax,ml+[fmax]+La(m>x)—m<(>x), (2.11)

Lox,y]=>x,y]+[x,£oy]+ L<ax)py—(L<ay)>x, (2.12)

Play=">" (@) (L@ >y)). (2.13)
1<i<p-—1

toylPh = 3" ()P (@dy) (L ay? T e y). (2.14)
1<i<p-—1

Lemma 2.8. Let g and [ be restricted Lie algebras.
1)  If(g,l,>, <) is a matched pair of restricted Lie algebras, then g <11 := g @ [
is a restricted Lie algebra with the multiplication

[(x,ﬁ),(y,m)] = ([x,y]+€l>y—ml>x,[€,m]+€<1y—m <1x) (2.15)

{,mel, x,y € g; and with p-operation extending those of g and | and

p—1
(. L
(y + Ol = ylel g glrh 4 3" w yeq Lel, (2.16)

i=1

where si: g < [ X g <t [ — g < [ is defined from the Lie bracket (2.15).
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(ii) Let (g,l) be an exact factorization of a restricted Lie algebra s. Then (g, [, 1>, <)
with the actions given by (2.6) is a matched pair of restricted Lie algebras and
s ~ g < [ as restricted Lie algebras.

Proof. (i): Since 1>, <t are actions that satisfy (2.11) and (2.12), g < [ with the bracket
(2.15) is a Lie algebra [29, Section 8.3]. Thus the maps s; are defined and we just have to
check that (2.16) gives a p-operation. (2.8) holds because s; is homogeneous of degree p.
We first verify (2.9) for s = y € g. Since both sides are linear operators and the restriction
to g is a p-operation, it is enough to see that ad(y[?1)(¢) = ad(y)? (£) for £ € [. Arguing
by induction from (2.6) we prove that forevery N € N and £ € [

@OY() =Ney+ Y @O (y<a(NT e y)).
0<i<N-1

Taking N = p and again by (2.6), we conclude that x holds iff (2.13) is true. Similarly
we prove that forevery N e N,y e gand £ € [

@n¥ey = Y DV ady) ((Cay"T e y) + DN eayh
0<i<N-1
(Here (2.6) says that (ad y)({) = —¢ > y — £ < y.) Taking N = p, we conclude that
ad(£[P1)(y) = ad(£)? (y) holds iff (2.14) is true. Finally

ad(y + 0)” = ad(y)” + ad(t)” + Z adsl_(M)

i=1

= ad(y'?1) + ad(¢[?l) + Z adsi(.0)

i=1

=ad ((y + 07,

where the first equality is by (2.7), the second because these are p-operations on the
subalgebras and the third is by definition. Thus (2.9) holds.
We proceed with (2.10). Lets = x + £ and t = y 4+ m, where x, y € g, £,m €. Then

(s + 0P = ((x + y) + (€ + m))”

((x +y), + m))
i

= (x+ P+ €+ mP + Z i
i=1

p—1
SN OIS - S0 N T
1
i=1

Plsittm) N si((x+ ), (€+m)
+ZS Y ( l, ).
i=1 i=1
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On the other hand,

(p] 4 ;L] Sosilsn) ] | gl Ssilx,0)
R e Y R ) P
i=1 ! i=1 !
p—1 p—1
sily.m si(s,t
NCEC S z(yi )+Z z(i )

i=1 i=1

To show that these two expressions are equal just apply (2.7) to both sides of the equality
(x+y)+E+m)? =((x+ 0+ (y +m)”. u

Let u(s) be the restricted enveloping algebra of the restricted Lie algebra s; it has a
PBW-basis with the powers of the generators truncated at p.
Lemma 2.9. Let s be a restricted Lie algebra. The following are equivalent:

(i)  Exact factorizations of the Hopf algebra u(s).

(i)  Exact factorizations of the restricted Lie algebra s.
Proof. (1)=(ii). If (&, &) is an exact factorization of u(s), then take g = P (&), [ =
P(L). As a consequence of [42, Proposition 13.2.3], & ~ u(g), £ >~ u(l), and by the
PBW theorem, (g, 1) is an exact factorization of s.

(i)<=(ii). If (g, 1) is an exact factorization of s, then the multiplication u(g) ® u(l) —
u(s) is a linear isomorphism—apply the PBW-theorem to the union of bases of gand [. =

Here are some concrete examples of factorizations of restricted Lie algebras.

Restricted Lie bialgebras. Let us say that a finite-dimensional Lie bialgebra b is re-
stricted if and only if its Manin triple (p, b, b*) is restricted, meaning that p is restricted
and b, b* are restricted subalgebras. In particular (b, b*) is an exact factorization of p.

Restricted Lie algebras with triangular decompositions. A triangular decomposition
of a Lie algebra a is a collection (ag, a4, a—, (|)) where ag, a_, a; are subalgebras of a
and (]) : a x a — k is a non-degenerate symmetric a-invariant bilinear form such that ag
is abelian,

a=a-®ap®ay, [ar,a0] Cax, and (at|ay) = (a—|a—) = (at|ag) = (apla-) =0.
A triangular decomposition gives rise to a Manin triple (p, p1, p2) defined by
p=axa, p =diaga, and p2 = {(a— + ag.ay —ap):a. € a., x € {+,0,—}}.

If a is restricted and ag, a_, ay are restricted subalgebras, then p is restricted and (p1, p2)
is an exact factorization. There are other factorizations:

* (a4, ap @ ax) are exact factorizations of a;

* (a— @ ap,ap D a4) is an exact factorization of a x ay.
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Restricted Z-graded Lie algebras. A finite-dimensional Z-graded Lie algebra s =
®§=—r s; (where r,t € Ny) is restricted if the underlying Lie algebra s is restricted
and gl[p] C sy foralli. Then sy == @_; s; and s := EB?:

torization of s.

_, i form an exact fac-

3. Quasi-split extensions

3.1. Morita equivalence

Two finite-dimensional Hopf algebras H and U are Morita equivalent (H ~yor U) iff
there exists an equivalence of braided tensor categories between the Drinfeld centers
Z(rep H) and Z(rep U), iff D(H) and D(U) are twist equivalent quasitriangular Hopf
algebras. !

In other words, H ~or U if the tensor categories rep H and rep U are Morita equiv-
alent. Notice that our defining condition is in fact a characterization of the original defini-
tion of Morita equivalence of tensor categories in [16,33].

Instances of situations when two Hopf algebras H and U are Morita equivalent occur
when U ~ H*, or when U ~ H is obtained from H by twisting the comultiplication
by J € H® H, or when U ~ H, is obtained from H by twisting the multiplication by
o:H® H — k.

From now on, we assume that all Hopf algebras in (2.1) are finite-dimensional. In this
section, we study the following notion.

Definition 3.1. We shall say that a cleft abelian exact sequence (2.1) is quasi-split if,
for any choice of cleaving maps, the Hopf algebra C is Morita equivalent to the bismash
product A#B associated to the induced Singer pair (see Remark 2.4).

3.2. Coquasi-Hopf algebras

Recall that quasi-Hopf algebras were introduced by Drinfeld as generalizations of Hopf
algebras, where the main difference is that the coassociativity of the comultiplication holds
up to a 3-tensor called the associator [12]. Dually, a coquasi-bialgebra or coquasi-Hopf
algebra H is a generalization of a bialgebra or a Hopf algebra where the main difference is
that the associativity of the multiplication holds up to a dual 3-tensor¢p: H ® H ® H — k,
called the coassociator. See e.g. [39] for details.

Here is the starting point of our analysis.

Definition 3.2 ([39]). Let K and Q be Hopf algebras. A generalized product coquasi-
Hopf algebra of K and Q is a co-quasi Hopf algebra H together with coquasi-Hopf
algebra maps

i:K— H and j:Q — H suchthat mult(i ® j): K ® Q - H

is a linear isomorphism.

'Observe that this differs from [5], where it was claimed that H ~yo, U < D(H) ~ D(U) as quasi-
triangular Hopf algebras; we point out that this discrepancy does not affect the results of loc. cit.
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Let us say that a finite-dimensional Hopf algebra L and a coquasi-Hopf algebra U
are Morita equivalent iff there exists an equivalence of braided tensor categories between
Z(corep L) and Z(corep U) or equivalently that the quantum doubles D(L) and D(U)
are twist-equivalent. This extends the notion introduced at the beginning of Section 3.1;
also in this case we have that L and U are Morita equivalent if and only if their tensor
categories of finite dimensional corepresentations are Morita equivalent.

By the results of [39, Section 6], a cleft exact sequence of Hopf algebras (2.1) gives
rise to a generalized product coquasi-Hopf algebra H of A* and B, where

o H =B ® A* as a coalgebra;

o the multiplication is given by
x®@OH(y®@m)=xUa) <ya) ® Ley> ye)m, L.meA* x,y€B,

where the maps <: A* ® B — A* and >: A* ® B — B are determined by the asso-
ciated weak action — and the weak coaction p by

(Lax)@) =Llx —a), {>x=px)l(p(x)), €eA* xeB;

o the coassociator ¢: H ® H ® H — k is determined by the cocycle o and the dual
cocycle 7 in the form

(xR LRYmMAz®T)
=e(x)L(y = 1V (@) p(2@)i) m(tTP(zay)p(z@)")) e(r).

Proposition 3.3. Given a cleft exact sequence of Hopf algebras (2.1), the Hopf algebra
C is Morita equivalent to the coquasi-Hopf algebra H.

Proof. The main result of [39] implies the existence of an equivalence of monoidal cate-
gories
A(corep C)y >~ corep H,

which amounts to the Morita equivalence of the categories corep C, corep H, and a fortiori
of C and H. Indeed, an equivalence of braided tensor categories between the Drinfeld
centers of corep C and corep H was established in [38]. ]

Combining Propositions 2.7 and 3.3, we obtain the following result.

Corollary 3.4. Let S be a finite-dimensional Hopf algebra and suppose that S is a double
crossproduct of its Hopf subalgebras G and L. Then S is Morita equivalent to a bismash
product L*#G. In particular, if D(S) has fgc so does L*#G.

Proof. By Proposition 2.7, the matched pair defining S gives rise to a bismash datum
(L*,G,—, p) hence to a cleft exact sequence of Hopf algebras k — L* S L4656 —
k, which is split. Let H be the coquasi-Hopf algebra described just before Proposition
3.3; then by this Proposition, L*#G is Morita equivalent to H. But by definition H is
isomorphic in this case to the double crossproduct S. ]
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3.3. Abelian extensions

Suppose now that the exact sequence (2.1) is abelian. Then the coquasi-Hopf algebra
H described above turns out to be the double crossproduct associated to the Singer pair
(A, B) with a possibly nontrivial coassociator determined by the cocycles ¢ and t. How-
ever, the coalgebra H is cocommutative in this case.

Corollary 3.5. An abelian extension of B by A is quasi-split provided that the coassoci-
ator @ is trivial.

Proof. Tt follows from the fact that the split extension A#B is Morita equivalent to A* <
B (with trivial associator) by Proposition 3.3. ]

Exactness of the Kac sequence of [39] implies that, since A is finite-dimensional, H is
isomorphic as a coquasi-Hopf algebra to the double crossproduct A™ < B (as generalized
products of A* and B) if and only if (2.1) is isomorphic (as a B-extension of A) to a
twisting (A#B) )J( of the bismash product, where

o JeAR® Aisatwistin A, and
o x:B ® Bisa?2-cocycle on B,

regarded respectively as a twist in C and a 2-cocycle on C, see [39, Theorem 6.3.6].
The next theorem is the main result of this section.

Theorem 3.6. Let (A, B) be a Singer pair of finite-dimensional Hopf algebras. Given a
quasi-split abelian extension C of B by A, the double D(C) and a fortiori C have fgc. In
particular, A#B has fgc.

Proof. We have that C is Morita equivalent to the cocommutative Hopf algebra A* >« B.
Whence D(C) is twist equivalent to D(A* > B), which has fgc by the main result of
[34]. Hence D(C) and therefore also C have fgc. |

Example 3.7. Let A and I” be finite groups. Consider an exact sequence of Hopf algebras
k—>k*—C—>kll—k

where k4 is the algebra of functions on A. Then C ~ ]kA#f,JkF is a bicrossed product.
The relevant (weak) actions in this case are determined by actions by permutations > :
I'x A — Aand <: " x A — I that make (I, A, >, <) into a matched pair of finite
groups. Let ¥ = I" > A be the associated double crossproduct group.

The Hopf algebra C is Morita equivalent to a quasi-Hopf algebra (kX, w), where
w € H3(X,kX) is the 3-cocycle attached to the class of C under the Kac exact sequence
(hence in particular, the restriction of @ to I" and A is trivial). It follows from [34] that C
has fgc whenever o is trivial.

For instance, we have kX ~por kA#k I, hence k4#kI™ has fgc. This is evident if
chark is O or coprime to |X|; otherwise it follows alternatively from [5, Lemma 3.2.5]
since k4 is semisimple.
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Example 3.8. Let (g, [, >, <) be a matched pair of restricted Lie algebras and s = g > [.
The corresponding matched pair of Hopf algebras (11(g), u(l), >, <) gives rise to an exact
sequence

k — u(0)* — u(D)*#u(g) — u(g) — k.

We have u(s) ~mor u(!)*#u(g), hence u(l)*#u(g) has fgc by [34].

4. The restricted Jordan plane

In this section and the next two, chark = p is an odd prime (except when explicitly stated
otherwise). In Section 6, we consider a subclass of the finite-dimensional Nichols algebras
introduced in [3] and show that their bosonizations with suitable group algebras are split
abelian extensions, therefore they have fgc. In this section and in the next, we work out
the two simplest examples for illustration.

4.1. The property fgc for bosonizations

In this subsection, char k is arbitrary. We record a useful result, a variation of [5, Theo-
rem 3.1.6].

Theorem 4.1. Let F be a finite group.

(1)  Assume that kF is semisimple. If R is a finite-dimensional Hopf algebra in
ﬁgiyi) that has fgc, then R#kF has fgc.

(i)  If R is a finite-dimensional Hopf algebra in ﬁlzi YD that has fgc, then R#kF has
fec.

Proof. We sketch the proof for the reader’s convenience. Let K be either k F as in (i) or
k¥ asin (i), so clearly K is semisimple. Let R be as in (i) or (ii) accordingly.

Since the proofs of [31, Corollary 3.13] and [5, Lemma 3.1.4] just require that k is
a field, we conclude that the algebra H(R, k) is Noetherian. Now [5, Lemma 3.1.1] also
holds for any field, hence H(R, k)X is finitely generated.

On the other hand, there is an isomorphism H(R#K, k) >~ H(R, ]k)K , see [41, Theo-
rem 2.17]. Hence H(R#K, k) is finitely generated.

Next, given a finitely generated R#K-module M, one can prove that H(R#K, M)
is finitely generated as an H(R#K, k)-module repeating word-by-word the proof of the
analogous fact in [5, Theorem 3.1.6]. [

For further developments, it would be useful to extend Theorem 4.1 to an arbitrary
semisimple Hopf algebra K.

Lemma 4.2. Let A be a finite-dimensional Hopf algebra and U € ﬁyi) such that B(U)
is finite-dimensional. If B(U)#A has fgc, then so does the Nichols algebra B(U).

Proof. Since B(U)#A is free over B(U), [5, Theorem 3.2.1] implies the claim. |
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4.2. The minimal bosonization

We begin with the following basic example. The block V(1,2) is the braided vector space
with a basis {x, y} such that

c(x®x)=xQx, c®Xx)=x®y, @1
cx®y)=0+0)Qx, c(y®y)=0+x)®)y.
The Nichols algebra B('V(1, 2)) is called the restricted Jordan plane.
Lemma 4.3 ([11]). The restricted Jordan plane is generated by x, y with relations
yx —xy + %xz, x?, yP. 4.2)

The set {x®y?:0 < a,b < p}is a basis of B(V(1,2)), so dim B(V(1,2)) = p2.
The minimal bosonization of 'V (1, 2) arises as follows. Let I’ =Z/p = (g). We realize
V(1,2) in KLY D by
g'x=x, g-y=y+x, degx =degy=g.

Thus the Hopf algebra H = B('V(1,2))#kI has dimension p3. We get a presentation
of H by generators x, y, g, where we identify x =x® 1,y =yQ®1l,g=1® g€ H,
with defining relations

xl’:yl’:O, gpzl, gx = xg, gy:yg_i_xg’ yx:xy_%XZ.

The comultiplication of H is determined by
Ag)=¢g®g, AX)=x®1+g®x, A)=yR1+g®y.
In addition, the monomials gixj yl, 0<i,j,f < p—1,formabasis of H.

Let K = k(x,g) C H and L = k[{]/(¢?) with ¢ primitive.

Lemma 4.4. The Hopf algebra H fits into a split abelian extension k — K SHS L
k, where v is the inclusion and 7 is defined by w(x) = 0, n(g) = 1 and n(y) = ¢.

Proof. The defining relations of H imply that K is commutative. Furthermore L is gen-
erated by the primitive element ¢, whence cocommutative. Clearly 7 is well-defined and
kerm = HK™. We thus obtain an abelian exact sequence k — K SHIS LSk

Since y? = 0= —8§(y)?, there exists a unique algebra map s: L — H such that s({) =
—8(y) = g 'y. Clearly, ns = id; . Being an algebra map, s is automatically invertible
for the convolution product. The L-colinearity of s follows from the relation

RIDAC) =g 'y ®1+1Q®¢ = (id® 1)As(l)
=(dom)(gly®g " +1®g'y).
Dually, let r: H — K be the linear map defined by
r(gixjye) =g'x/if =0, and r(gixjye) =0if £ > 0.



N. Andruskiewitsch and S. Natale 416

It is clear that r is K-linear, rt = idx and rs = &1 1x. We next show that r is a coalgebra
map. Since r|g = idg, we have Ar(x) = (r ® r)A(x), forall x € K.Let ] =kerr € H,
in other words, I is the linear span of all monomials g?x/ y* with £ > 0. The relation
A(Y)=y®1+g® yimpliesthat A(/) S 1 ® H + H ® I. Therefore (r ® r)A(l) =0,
implying that r is a coalgebra map. This shows that (s, r) is a splitting and finishes the
proof of the lemma. |

Remark 4.5 ([8]). The Drinfeld double of H fits into an abelian exact sequence
k—R—> D(H)— u(gfz(]k)) — k,

where R is a local commutative Hopf algebra.
The following result appeared already in [36] with a different proof.

Proposition 4.6. The Hopf algebra B(V(1,2))#KkI" and the Nichols algebra B(V(1,2))
have fgc.

Proof. By Lemma 4.4, we may apply Theorem 1.2 and Lemma 4.2. ]

4.3. More bosonizations

To deal with different realizations of the Jordan plane, we recall the notions of YD-pairs
and YD-triples that are available in any characteristic. Let A be a Hopf algebra; as usual
G (A) denotes the group of group-like elements of A.

o Apair (g, y) € G(A) x Alg(A, k) is called a YD-pair for A if
x(h) g = x(h)ha) g S(ha), heA. (4.3)
A YD-pair (g, y) gives rise to ki € jyi) of dimension 1, with action and coaction
given by y and g, respectively. Any one-dimensional object in jyi) is like this.

o A collection (g, x,n) where (g, x) is a YD-pair for 4 and n € Der,, (4, k) is called
a YD-triple for A if

n(h)g = n(h@)hwgs(ha). he A, 4.4

and x(g) = n(g) = 1. (4.5)

Notice that the existence of a YD-triple for A when dim A < oo forces that chark > 0,
since n € A* is a non-zero (y, y)- primitive.

A YD-triple (g, x,n) givesrise to Vg(x,n) € j;‘y!D, defined as the vector space with
a basis {x, y}, whose A-action and A-coaction are given by

h-x=yxy(h)x, h-y=yx(h)y+nh)x, heAd §x)=g®x, §y) =g®y.

By assumption (4.5), Vg (x,n) = V(1,2) as a braided vector space.
We now turn back to the assumption that chark = p > 2.
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Question 4.7. Let (g, x,n) be a YD-triple for A where dim A < co. Does B(V, (x,n))#A
have fgc?

We point out that Theorem 4.1 does not apply in the present situation, by the following
observation.

Remark 4.8. Let A be a finite-dimensional Hopf algebra that admits a YD-triple (g, x, ).
Then A is not semisimple.

Proof. Observe that the restriction 7: (g) — k is a morphism of abelian groups, hence
n(g?) = 0, which implies that p divides the order of g. Thus k(g) is not semisimple, and
a fortiori A is not semisimple by [37, Proposition 10.3.4]. ]

There are examples fitting into abelian exact sequences that are not necessarily split.

Remark 4.9. Let F be a finite group and let (g, y, n) be a YD-triple for kF. It con-
sists of g € Z(F), x € F = Homgp,s (F, k™) and n € Dery,, (kF, k) such that y(g) =
n(g) = 1. Let N :=ker y N Z(F) < F. On one hand we consider the subalgebra of
H =B(Vg(x,m)#kF:

K =k{x,y:y € N) >~ k(x)#kN.

Here K is commutative but not necessarily cocommutative. On the other hand, y induces

a character y of F/N.Letk¢ € ﬁg;%;y@ corresponding to the YD-pair (e, y). Then

L = B)#k(F/N) ~ Kk[{]/(P)#k(F/N);

here ¢ is primitive. Clearly L is cocommutative but not necessarily commutative.
Let i: K — H be the inclusion and let 7: H — L be the map defined by 7 (x) = 0,
w(y) = ¢ and w(y) = the class of y in F/N. Then H fits into the abelian exact sequence

k - K 4 H LN L — k, which is not split, for instance, when the exact sequence of
groups | > N - F — F/N — 1 is not split.

In the setting of the previous remark, the Hopf algebra H* has fgc.

Proposition 4.10. Let H = B(V, (x, n)#kF, where F is a finite group and (g, x,n) is
a YD-triple for K F. Then H* has fgc.

Proof. Arguing as in [8, Lemma 1.5], we see that H* ~ R#kF | where R ~ B(W) is
isomorphic to B(V(1, 2)) as algebras (although not as braided Hopf algebras). Anyway,
R has fgc by Proposition 4.6, hence H* has fgc by Theorem 4.1. ]

5. The first Laestrygonian algebra B(£,(1, G))
5.1. The Nichols algebra B(£,(1, 9))

The next example of interest to us depends on the data: ¢ € k™ and a € F,™. Let

re{l—-p,2—p,...,—2,—1}suchthatr =2a¢ mod p.
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The ghost is the integer § := —r € I,_;; since p is odd, G determines a. To this data, we
attach the braided vector space £,(1, §) with basis 6 = {x1, y1, x»} and braiding given by

X1 ® xq 1 +x1) ® x1 qx2 ® X1
(cO®b)ypes=| x1®m Or+x)®y1 gx2®y1 ). (5.1)
X1 ®x2 ¢l tax)®x2 X2 ® X2

Thus V) :=kx; +ky; @ V(1,2) and V, :=kx, satisfyc: V; @ V; =V, ® V;, i, j € {1,2};
in particular V7 and V, are braided subspaces of V. We introduce

20 = X2, Zn4+1 = Y1Zn —qZny1, n>0. (52)

Lemma 5.1 ([3, Section 4.3.1]). The algebra B(£4(1,G)) is presented by generators
X1, Y1, X2 and relations (4.2), and, in the notation (5.2),

X1X2 = ¢ X2X1, (5.3)
Zi1+g = 0, (5.4)
ZiZie1 =q ' Zep1z. 01 <G, (5.5
=0, 0<t<G. (5.6)

The algebra B(£4(1, G)) has a PBW-basis
B = {x;'“y;"zzgg szl zg% my,ng € lop). 5.7

hence dim B(&,(1,G)) = pI+3.

5.2. A suitable realization

In order to realize £,(1, 9) in E}: YD for some finite group I', we need to assume that ¢
is a root of 1. Set d := ord ¢; then d is coprime to p = char k. Fix a positive integer f
which is a multiple of pd. A suitable choice of group is

U'=2Z/f xZ/f = (g1) ®(g2), where ordg; =ordg> = f.

It is not difficult to see that £,(1, ) can be realized in ﬁ}: YD by

g1 X1 = X1, g1 Y1 =y1+x1, 81 X2 = (X2,
g@2-x1=q¢"'x1, g-yi=q ' +ax), g -x2=x2, (5.8)
degx; = g1, degy; = g1, degx, = g».

Therefore the Hopf algebra H = B(L,(1,9))#kT is presented by generators x1, y1,
X2, g1, &2, with relations (4.2), (5.3), (5.4), (5.5), (5.6), and

gl =1, ¢l =1, 8182 = 8281, (5.9)
g1X1 = X181, g1y1 = Y181 + g1x1, g1X2 = qXx281, (5.10)
g2x1 =¢q 'x182, g1 =9 (V182 +axig2), g2X2 = X282 (5.11)
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The comultiplication of H is determined by A(gi) = gi ® gi,i = 1,2, and
A(x) =x1®14+21®x1, A(y1) =y1®1+g1®y1, A(X2) =x2®1+g2®x2. (5.12)
Clearly dim H = p913 12,

5.3. The split case

In this subsection, we deal with B(£1(1, G)); Let I" be as above with f divisible by pd
withd = ordgq. Let K € H = B(£1(1, G))#kI" be the Hopf subalgebra
K =k(x1, g1, 82)-
We shall consider the restricted enveloping algebra
L =u(l),
where [ is the restricted Lie algebra defined as follows. Let V(G) be the simple s[(2)-
module of highest weight §. Let E = ({ §). Pick a basis (vn)ner, 5 of V(S) such that
E-v,,:vn+1, nEHo,g_l, E'U9=0.

Let{ = V(9) xkE, a Lie subalgebra of the motion Lie algebra V(G) x s[(2); it follows
from Lemma 2.8 that [ is restricted with p-operation equal to 0. That is, L is presented by
generators vg and E with defining relations, in terms of v,41 = Ev, — v, E,n € [ g1,

UmUn = UpUm, VP =0, mmnelyg, Evg—vgE =0, E?=0.

Proposition 5.2. The Hopf algebra H = B(L1(1, 9)#KT fits into a split abelian exact
sequence k — K A SN SN k, where ( is the inclusion and 1 is defined by

w(g1) =1, n(g)=1 =n(x)=0, =n(y1))=E, n(xz2)=vp. (5.13)

Proof. By assumption, the Hopf subalgebra K is commutative. In addition L is cocom-
mutative. Notice that dim K = p f2. We see by inspection that K is normal, i.e., HK T =
KT H. Thus we have an abelian exact sequence

k—> K- H— H/HKt > k.

Since dim H = pS*3 f2, dim H/HK' = p9t2 = dim L. Now (5.13) determines an
algebra map 7: H — L by (5.2) and the defining relations of B(£;(1, 9)). The map r is
surjective, has HK ' C ker 7 and preserves the comultiplication since the classes of y;
and x, are primitive in H/HK ™. By dimension counting, 7 induces an isomorphism of
Hopf algebras H/HK™ — L.

Observe that 7 (z,) = vy, for all n > 0. To define a splitting, we argue as in the proof
of Lemma 4.4. The universal property of u(l) implies the existence of a unique algebra
map s: L = u(l) — H such that

sS(E)y==8(y1), s(vy) =-8(zn), Vn=0,1,....
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Clearly ms = idy . To see that s is L-colinear, it will be enough to verify that the maps
(s®idp)A and (id ® ) As agree on E and vy, because both (s ® id;, ) A and (idg ® 7)As
are algebra maps and E and v generate L as an algebra. This follows at once from (5.12).

Let now r: H — K be the linear map defined on the basis of H arising from (5.7) by

¢ b,mi .
b ng gigyx; ', ifmy+ng+---+no=0,
r(g18ax " ¥ 2" 21 20°) = {

0, otherwise.

As in the proof of Lemma 4.4, we see that r is a K -linear retraction of ¢ and that rs = ¢ 1.

Moreover, r is a coalgebra map. To see this, we consider the subspace I = ker r which

coincides with the linear span of all monomials g§g5x{" y"zg% ... z{'z(® such that

my + ng + -+ + ng > 0. The defining relations of H imply that I is a left ideal. We
claim that A(/) € 1 ® H + H ® I. Indeed, (5.12) implies that A(y1), A(x2) € I ®
H + H ® I. By [4, Lemma 4.2.5] and the comultiplication formula of the bosonization,
there exist v; , € k such that

n
Aizp) =z, @1+ ZVL” X\ glex®zi, Vnelyg.
j=0

Thus A(z,) € I ® H + H ® I, for all n > 0. Then the claim follows. Since r|x = idk,
we conclude that r is a coalgebra map. Thus (s, r) is a splitting and the proof of the
Proposition is complete. ]

Proposition 5.3. The Hopfalgebra H = B(£1(1, §)#kTI" and its double D(H) have fgc.

Proof. This follows from Proposition 5.2 and Theorem 3.6. ]

5.4. The general case
Recall that ¢ € k™ has order d, that f is a multiple of pd and that I" = (g1, g2: glf =
g =1. 8182 = g281) ~ Z/f X L/f.
Theorem 5.4. The Hopf algebra H = B8y (1, 9)#KkT has fgc.
Proof. Consider the bilinear form o: " x I' — k™ determined by

1, i=j,

0(gi.g&)=19q. i=1j=2,

I, i=2,j=1.
Then o is a 2-cocycle in T'. Let 9: T x I' — k*, #(g. h) = o(g. h)o(h, g)~! be the
associated antisymmetric bilinear form. Thus,

1, i =],
0(gi.g))=1q i=1j=2,

g ', i=2 j=1
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As in Section A.3 of the Appendix, let F5 : %}: YD — ﬁ; Y D be the monoidal functor
associated to 0. The image under ¥, of the braided vector space V = £;(1, §) in Section
5.2is F5(V) = V with the same grading as V' and I"-action (A.4); that is,

g1 X1 = X1, g1°y1=y1+x1, 81 X2 = (¢Xx2,
g2 x1=q¢"'x1, g-yi=q ' +ax)), g -x2=x2, (5.14)
degx; = g1, degy: = g1, degx2 = g».

Hence ¥4 (V) = £4(1, 9). By Lemma A 4. the bosonization H= B(Ly(1,9))#kI isa
cocycle deformation of the bosonization H = B(£;(1, §))#kI'. By Proposition 5.3, the
double D(H) has fgc. Hence H also has fgc, as claimed. |

Corollary 5.5. Let g € Go. The Nichols algebra B(£4(1, 9)) has fgc.

6. Pointed Hopf algebras over abelian groups

6.1. A class of braided vector spaces

We now proceed with a family of Hopf algebras which are bosonizations of some Nichols
algebras introduced in [3], analogues in odd characteristic of Nichols algebras appearing
in [4]. We show that, up to a cocycle deformation, the Hopf algebra H = B(V(q, a))#kT"
fits into a split abelian exact sequence k - K — H — u(l) — k, where the restricted
Lie algebra [ is determined explicitly.

Data. We shall consider braided vector spaces depending on:

o two positive integers ¢ < 6;

o amatrix g = (¢ij)i,je1, such that

gijqji =1, qi=1, 1,je€lg, i #] (6.1)

o afamily a = (ajj)ier,,, o, With entries in [F,. We lift this family to Z as follows:
Jjel;

o when a;; # 0, we take
rije{l—p,2—p,...,=2,—1} such that r;; = 2a;; mod p, (6.2)

and then we set §; ; = —1;; € [,_;.

¢ when ajj = 0, we lift it to 9,~,,- =0.

The family G := (G j)ier, 11,00 equivalent to a, is the ghost; both a and G are needed.
Jjel;
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Definition. We define a braided vector space (V(q, a), ¢) from the data above. First, it has
a decomposition V(g,a) = Vi @ ---® V; & --- @ Vj such that
cVioV)=V,®Vi, i el
Then we assume:
» If j €Iy, then V; =~ V(1,2) (the blocks). Let {x;, y;} be a basis of V; realizing (4.1):
c(xj ® xj) = xj ® X, c(yj ® xj) = xj ® yj,
c(xj ®yj) =y +x) ®x;, ¢y ®y;) = (yj +x) ® ;.

o Ifi €41, then dim V; = 1; these are the points. We fix a basis {x;} of V;. Thus,
{x;:i €} U {y;:j €1} is abasis of V(q, a).

(6.3)

The braidings ¢ij = ¢|y;@v;. i, j € lg are given by the data g and a as follows:
o Ifi, j €Iy, then
c(x,- ®Xj) ={qijXj Q X;j. (6.4)
o Ifi, j €I, are blocks, then ¢;; = g;;j 7, T being the flip, for i # j while ¢j; is given
by (6.3).
o If j €I, ablock andi € [;11,9 is a point, then ¢|(v,v))e(v;@V;) is given by (6.4)
and
c(yj ®xi) =qjixi ®yj. ¢(xi ®yj)=qij(yj + aijXj) ® xi. (6.5)
As in [4], V(g, a) is described by a diagram of the following shape:

H
1

91,041

[ ] [
t+1 t+2 t+3 6—-1 [4

That is, there are ¢ blocks, 6 — ¢ points and a line decorated by Gx ¢ when G ¢ # 0, joining
the block k with the point £; this graph is admissible in the sense of [4, Definition 1.3.7].

Remark 6.1. The data above is an ab-triple T = (n, g, a) of rank 8, cf. Section A.1, as
follows:
* n=(nj)jer, isgivenbyn; =2,if 1 < j <t;andn; = 1,ift < j < 6.
+ the matrix g = (¢i)i,je1, is as given above with the constraint (6.1);
 the family t = (t;;); jer,, Where t;; € Endk™ is given by
t; =0, whent < j <forl <i,j<t;
tii(x;) =0, t;(yj))=aijjxj, whenl <j <rtandt <i <90.

If t = 6 = 1, then we have the restricted Jordan plane as in Section 4. If t = 1 and
6 = 2, then we recover £,(1, 9) as in Section 5.
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Grading. The subspace U of V = V(q, a) spanned by (x;);e1, is a braided subspace
and U C 'V is a filtration of braided vector spaces. The associated graded vector space
gr'V =U @ V/Uis of diagonal type; indeed, if y; is the class of y; in V/U, j € I, then
(xi)iery, LI (¥;)jer, is a basis of gr'V and the braiding of gr'V is given by

c(xi ® Xx) = qix Xk @ x5, c(y; @x;) =4q;;i xi Vi,
(xs _") Qi X S % (T’ _’) GiXt©Vis orallik €Ty, j€ €T,
c(xi ®Y;) =qij y; @ xi, ¢c(V; ® V) = qje ye Q@ yj,

Precisely, let Q ~ 7.9 be the free abelian group with basis (;)ier, 1 (Bj)jer,; then the
braiding is given by the bilinear form p: Q x Q — k™ defined by

p(ai ® aj) =p(ei ® Bj) = p(Bi ® o)) =p(Bi ® Bj) = qij
whenever i and j make sense. By (6.1), B(grV) is a quantum linear space and we have
p(y®3) =p@6®y) VydeQ.
Now consider the grading of V and its extension to 7' (V) given by
degx; =, degy; =p;.
Given points h, £ € I, 9 we set

wy, = (ade y)" -+ (ade yo)" x5, M= (n1,....n;) € N§; (6.6)
Ap ={neN§:0=<n=<G,=(%1.....5,)]} ordered lexicographically. (6.7)
In terms of the bilinear form p, we also set
Phtmn ‘= Pdeguy, p,deguy , = ( 1_[ qlr:}knj)( 1_[ q;("[k)( 1_[ qz'j{)qu
k,jel; kel; jel;
form € eA)h, nec A(.

Remark 6.2. In the definition (6.6), ad, means the braided adjoint. However, it could
be replaced by a sequence of g-commutators (with various ¢). More precisely, given h €
I;+1, andn = (ny,...,n;) € Nj, set my = myy, ,. Then
m = y; I — ¢ M, y;, (6.8)
where j = min{i € I;:n; # 0}, = (0,...,0,n; —1,n;41,...,n;), i = 1y, 5 and
a=qn [] 4}
J<i<t

See the proof of [4, Lemma 7.2.3]. In particular, if ¢ = 1 is the matrix with all entries
equal to 1, then ¢ = 1 and we can replace ad. by the usual adjoint in (6.6).



N. Andruskiewitsch and S. Natale 424

The Nichols algebra B(V(q,a)). The following result is not included in [3] but its proof
is similar to that of [3, Sections 4.3.1 and 6.1].

Lemma 6.3. The algebra B(V(q, a)) is presented by generators x;, i € lg, y;, j € L4,
and relations

xf =0, 90 =0, yixj —x;y; + 37 =0, j € Ls; (6.9)

XkXj = qkj XjXks XkYj =qkj YjXks YV =qkj i Yk kK #j €1l;; (6.10)

Xjxp = qjpnxpXj, j €Lz, h €141 6; (6.11)

(ade y) ' *9i (x) = 0, j € Ly, h € Ly g (6.12)
ng,n =0, n€e Ay hel, g (6.13)

Uy Il n = Ph,Cmn g ,nm, 7,8 € 1419, m € Ay, n € Ay (6.14)

A basis of B(V(q,a)) is given by B =

n . .
{x;nly;'lz oo xM2=1 g Mt 1_[ thf;n:O Snpn.mj<pifjely, hel;f19,ne Ah}-
heliyi9
nEAh

(6.15)
Hence dimB(V(g,a)) = p2t+2h€]1t+1,6 Il

Proof. Argue as in the proofs of [3, Sections 4.3.1 and 6.1]; relation (6.14) follows as in
the discussion in [4, p. 107]. [

6.2. A suitable realization

In order to realize V(q, a) in ﬁ}:yﬂ) for some finite group I', we need to assume that the
entries of the matrix g are roots of 1. Set

d :=1lecm{ordq;; : i, j € lp};

then d is coprime to p = chark. Fix a positive integer f which is a multiple of pd. A
suitable choice of group is

T =(Z/f) =(g1) ®---®(gg), where ordg; =ordg, =---ordgg = f.
In other words, I' is generated by gy, ..., gg with relations

S 1,

& = gig& = &g, i,j€lp. (6.16)

It is not difficult to see that V(q, a) can be realized in ﬁj\ll: YD by
8k Vi =quidy,, kel;,, Lely, k#L ork, L el;114;
i~ Xj = qijXj, & -yj =qij(yj +aiyx;), i €liprg, jel,
g Xj =X, & Vi =Y tXj, J el

degxy = gy, degy; = gj. Lely, jel;.

(6.17)
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Let H denote the Hopf algebra B(V(q,a))#kI; it has a presentation by generators x;,
Vi, 8k, 1.k € lg, j € I; with relations (6.9), (6.10), (6.11), (6.12), (6.13), (6.14), (6.16)
and those induced by (6.17). The comultiplication is given by

A(xi)=xi®1+gi®xi, A(yj)=y;®1+g;®y;, A(gi)=gi®gi,i€ly, jel;. (6.18)

One has
dim A = p2l+2he]1,+1,9 |'A>h|f9.

6.3. The split case

In this subsection we deal with B(V(1, a)), where 1 € k? has all entries equal to 1. Let
I" be as above with f divisible by pd with d = ord q. Consider the Hopf subalgebra
K € H=3BMV@1,a))#kI'

K=Kk{x1,...,x:, g1,--.,80)-
‘We shall consider the restricted enveloping algebra
L =u(l),

where [ is the restricted Lie algebra defined by the following steps.
o g:=gq1 ®- - P g, is the direct sum of r copies g; ~ s[(2), j € ;.
o E; € g; is the element corresponding to (§ § );n :=kE; & --- ® kE; — g.

o For any point & € I;; g, let V(G ;) be the simple g;-module of highest weight
Sh,j- Pick a basis (vp,j;n)nely g, ; of V(Gp, ;) such that

Ej-vhjim = Vhjsm+1, 0 =m <Gpnj, Ej-vng, =0
o For any point i € 1,119, let V(Gp) be the simple g-module
V(Sn) ==V (Gr1) @+ Q@ V(Sn,e).
Recalling the notation (6.7), a basis of V(9;) is formed by the elements
Vhm = Vh1m] ® " @ Vpy[m,], M= (mi,...,m;) € Ap.
Forh € I;11,6, set vj, == Vp,1,[0] ® -+ @ Vp,[0]- Then for any m € Ay, we have
Vhm = E7" - EJ" - v

Indeed, V' (Gy,) is the simple g-module of highest weight G, = (Sp,1...., Gn,)-
o Finally, let [ = V(9) x u, where

V(G) = V(Gi+1) ® - @ V(S0)-



N. Andruskiewitsch and S. Natale 426

By Lemma 2.8, [ is a restricted Lie algebra with p-operation equal to 0. The restricted
enveloping algebra L = u([) is presented by generators E;, j € I;, and vy, h € ;41 6;
set

Uhm = (ad E1)™ -+~ (ad E0)™ (vy).

Then the defining relations are

E;Ex = ExE;,  j kel (6.19)
(ad E;)'+9in(vy) = 0, jel, helie; (6.20)
VamVin = UinUhm, I.he€l;y19, me Ay nea; (6.21)
EF =0, jels (6.22)
v =0, heliiig, me Ay (6.23)
One has
dim L = pt+Zhen,+1,9 I4nl

Remark 6.4. Clearly [ is a Lie subalgebra of V(9) x g; we do not need the reference to
g here but it will be necessary in further developments.

Proposition 6.5. The Hopf algebra H = B(V(1, a))#kT fits into a split abelian exact

sequence k — K Y & SNy SN k, where ( is the inclusion and w: H — L is determined by
n(gi))=1i€ely, n(x;) =0, n(y;) =Ej, j €ly, n(xg) =vg, L €ls41,9. (6.24)
The proof has the same pattern as the proof of Proposition 5.2.

Proof. Evidently K is commutative, L is cocommutative and dim K = p’ f?. By inspec-
tion, K is normal, i.e., HKt = KT H. Thus we have an abelian exact sequence

k - K - H — H/HK" — k.

We have dim H/HK™ = dim L. By the defining relations of B(V(1,a)), see Remark 6.2,
the assignment (6.24) determines a Hopf algebra map w: H — L, which is surjective and
has HK™ C ker 7. Thus 7 induces an isomorphism of Hopf algebras H/HK™ — L.

Observe that 7 (111, ,) = Vp n, for all 2, n. The section s: L = u(l) — H is the unique
algebra map such that

s(Ej) = =8(yj) = —g; 'vj. s(on) =—=8(xp) = =g, ' xn. Vj €l helipyp.

We appeal again to Remark 6.2 to see that s is indeed well defined. As in the proof of
Proposition 5.2, we get that s is an L-colinear section of .
Observe that the generic element of the basis of H arising from (6.15) can be expressed
as
uzgll’l...g’;ex;m...x;"ryfl...y;'r HLZf’,’,“.
hel;i10
neAy,
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Let r: H — K be the linear map defined on u by the formula

gll71 ---gé"’xi"l coexpt, ifng =npn =0, Yk, h,n;
r(u) = .
0, otherwise.

Clearly, r is a K-linear retraction of ¢ and rs = g7 1x. We claim that r is a coalgebra
map. To see this, we consider the subspace I = ker r which is the linear span of the
monomials

b by m m; n n Rhn,

g11...g9 XMLy 1_[ e ny+ - +np+ Z Npn > 0.
helit1,0 helit1,0
nE;Ah nEAh

By the defining relations of H, I is a left ideal.

We claim that A(/) €1 ® H + H ® . First, A(y;), A(xp)) e I H+ H® I
for all j € I;, h € I;41,9 by (6.18). Next, by [4, Lemmas 7.2.3 (b) and 7.2.4] and the
comultiplication formula of the bosonization, we have

Amy,) ey, ® 14+ Y H@muCI®H+H®I Vhn

0<k<n

Let u, v be monomials in / such that A(u), A(v) € I ® H + H ® I. Then A(uv) €
I ® H+ H ® I. By arecursive argument, the second claim follows. Since r|x = idg,
we get the first claim, i.e., that r is a coalgebra map. Thus (s, r) is a splitting and the proof
of the Proposition is complete. ]

Proposition 6.6. The Hopf algebra H = B(V(1, a))#kI" and its double D(H ) have fgc.

Proof. This follows from Proposition 6.5 and Theorem 3.6. ]

6.4. The general case
Theorem 6.7. The Hopf algebra H= B(V(q,a))#kD has fgc.

Proof. By Corollary A.8, the bosonization H = B(V(a,a))#kT is a cocycle deformation
of the bosonization H = B(V(1, a))#kI". By Proposition 6.6, the double D(H) has fgc.
Hence H also has fgc, as claimed. ]

Since H is free over B(V(q,a)), Theorem 6.7 together with [5, Theorem 3.2.1] implies
the following result.

Corollary 6.8. The Nichols algebra B(V(q, a)) has fgc.

A. Cocycle-equivalence of Nichols algebras

In this appendix, we describe braided vector spaces over abelian groups and spell out con-
ditions for their Nichols algebras being twist-equivalent. Except in Corollary A.8, char k
is arbitrary.



N. Andruskiewitsch and S. Natale 428

A.1. Braided vector spaces over abelian groups

Definition A.1. Let # € N. An ab-triple (of rank 0) is a collection T = (n, g, t) where

* n = (nj)jer, is a family of positive integers, normalized by ny > ny > --- > ng;

* q = (qij)i,jer, is a matrix with invertible entries and

* t=(t;)i jer, is a family where t;; € Endk™ satisfies t;; = O when dim V; = 1 and
tixtix = tjctyg foralli, j k.

An ab-triple is nilpotent if every t;; is nilpotent.
We attach a braided vector space to an ab-triple (n, g, t) by the following recipe. Let

V = e, Vj be a vector space with a decomposition such that dim V; = n; for all
J € lp; pick a basis of V;, pull back t;; to t;; € End V; and define c € GL(V ® V) by

c(x®y)=qi;(y +t;(»)®x, xeVi yeV. (A.D)
The proof of the following result is left to the reader.

Lemma A.2. The pair (V, c) is a braided vector space that can be realized over ﬁﬁ Y0,
where A ~ 7.9 with canonical basis o1,...,09, by

Vo, = Vi, oe,-—\x:qij(x—l—tij(x)), xeV;, i, jelp.

A.2. Cocycle equivalence

We start by discussing the relationship between cocycle deformation and bosonization, as
it appears in [30]. Let H be a Hopf algebra; let 0: H ® H — k be an invertible 2-cocycle;
let H, be the Hopf algebra which is H as coalgebra and has multiplication

Xy =0(X1), Y)X@) Y20 (X@3).¥3), X,y € H. (A2)

Let now R be a Hopf algebra in Z YD and A .= R#H the bosonization with canonical
projection and injection 7: A — H and i: H — A.Leto™: A ® A — k be given by 0™ :=
o (w ® m); this is an invertible 2-cocycle on A. Then 7w: Agn — Hy and t: Hy — Ay are
still Hopf algebra maps. Hence As» >~ Ry#H; where R, is a Hopf algebra in gg YD that
coincides with R as vector subspace of A, with multiplication

Xy =0(X0),Y0)XWmYa), X,y € R;. (A.3)

Lemma A.3 ([9, Lemma 2.13]). If R = D, cn, R(n) is a graded Hopf algebra in giy{D,
then Ry is a graded Hopf algebra in ZZ YD with R(n) = Ry (n) as vector spaces for all
n > 0. Also, R is a Nichols algebra if and only if Ry is.

A.3. Cocycles over an abelian group

We fix an abelian group I". Let 0: T" x I' — k™ be a group 2-cocycle: o(gh,k)o (g, h) =
o(g,hk)o(h,k),forall g,h,k € T. Then the map : " x ' — k™ given by

g h) =o(g. o~ (hg), ghel,
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is bilinear and antisymmetric. Let %5 : ﬁ;yc‘l) — ﬁzll: YD be the monoidal functor that
assigns V +— F5 (V) = V with the same grading and action

g—=cv=0(g hg—v, ghel,veV, (A4)
where — is the action on V. The braiding ¢, in 5 (V) ® F, (W) is given by
cc(v®w)=3(g. hHclvew), vel, weW, g hel. (A5)

FixV € Fy@ and let A = B(V)#kT'; as before 7: A — kI" and i: kI" — A are the
canonical projection and the inclusion. Clearly, the linear extension o: kI" @ kI' — k of
o is a 2-cocycle as in the previous subsection. Let 6™ = o(r ® ) be as above.

Lemma A.4. The Hopf algebra Ay~ is isomorphic to B(V)o#k D with the same comulti-
plication of B(V') and the multiplication given by

X.gry =0(g. h)xy, xe€BWV)e, yeB(V)p g hel. (A.6)
Furthermore B(V)y >~ B(F5(V)).

Proof. The first part follows from the discussion above; (A.6) is particular instance of
(A.3). For the second part we show that the degree one homogenous component of B(V)4
is 5 (V') and apply Lemma A.3. If y € 1/, then

gory =0(g.7(y))go " (g. 1) + o(g.h)gyo ' (g. 1) + o(g.h) gho ' (g.7(y))
=o(g,h)gy.
1

Similarly, (gy).o7g~ ! = o(gh.g V)gyg o1 (g. g™ ") so the action is given by

(807))org ' =0(g. ) (gy.org™ ") = 0(g.h)o(gh.g " )gyg "o " (g.g7")

=o(g.hoh,g) g =~y =g ¢ y. =
Definition A.5 ([6], [9, Section 2.4]). Two braided Hopf algebras R and S are cocycle-

equivalent if there exist a Hopf algebra H and an invertible 2-cocycle 0: H ® H — k
such that

* Risrealizable in Z YD;
e S isisomorphic to R, as a braided Hopf algebra.
The following definition extends [6, Lemma 4.3] and [9, Section 2.4].
Definition A.6. Two braided vector spaces (V, ¢) and (V’, ¢’) arising from ab-triples
(n, g, t) and (', a’, t') are twist-equivalent if
n=n', t=t., qi=qj. 449 =4;4 i.J€le. (A7)

Lemma A.7. If the braided vector spaces (V,c) and (V', ') arising from the ab-triples
(n, q,t) and (0, q’,t') are twist-equivalent, then the Nichols algebras B(V') and B(V’)
are cocycle-equivalent.
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Proof. By (A.7) there exists a linear isomorphism {: V' — V' preserving the decomposi-
tions V = P, ¢, Vi and V' = D, 1, V; and intertwining the endomorphisms t;; and t};.
We realize (V, ¢) as in Lemma A.2. We consider the unique bilinear form o: A x A — k*,
hence a group 2-cocycle, given by

=1 ; ;
4ij4i; > 1=

1, i> ]

o(a;, o)) = { (A.8)

We claim that ¥: V; — V' is an isomorphism in ﬁﬁyi). Clearly y preserves the
grading. Assume i < j andletx € V;, y € V. Then

(A4) _
aj o x = o(aj. )0 o, aj)gji (x + tji (x))
— (A7)
= (q}) " qijqji (x + i (x)) =" qj; (x + t;i (x)):
(A4) _ . .
w0 —oy = ol )0 o, a)gi (v + i (i) = qj; (v + ti; (D).

Thus v preserves the action of A, hence it extends to an isomorphism W: B(V,) — B(V’)
of Hopf algebras in ]ﬂéﬁyc@. Now B(F5(V)) ~ B(V), by Lemma A 4. |

The following statement is needed in the paper. Assume that chark = p is odd. Let
V(ag,a) and V(a’, a) be two braided vector spaces as in Section 6 with the same 6. By
hypothesis, ¢;; = g;; = 1, and gijq;i = q};q}; = 1,foralli, j € Ip.

Corollary A.8. Assume that there exists a positive integer [ such that

p divides f, (A.9)
ord g;; divides f, ordql{j divides f, Vi, j € lj. (A.10)

Let T = (Z/f)?. Then V(q,a) and V(q’, a) are realizable in HEFZyJD and there exists an
invertible 2-cocycle o:kI" ® kI — k such that B(V(q’, a)) is isomorphic to B(V(q, a))y
as Hopf algebras in ]ﬁgyi).

Proof. The proof of the first claim on the realizations is straightforward using the hypothe-
ses (A.9) and (A.10). By (A.10), there is a unique bilinear form o: " x I' — k™ given by
(A.8). Then the second claim follows as in the proof of Lemma A.7. ]
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