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Hilbert’s 13th problem in prime characteristic
Oakley Edens and Zinovy B. Reichstein

Abstract. The resolvent degree rdc (1) is the smallest integer d such that a root of the general
polynomial
fE)=x"+ax" 4t ay

can be expressed as a composition of algebraic functions in at most d variables with complex coeffi-
cients. It is known that rdc (n) = 1 when n < 5. Hilbert was particularly interested in the next three
cases: he asked if rd¢ (6) = 2 (Hilbert’s Sextic conjecture), rdc (7) = 3 (Hilbert’s 13th problem) and
rdc (8) = 4 (Hilbert’s Octic conjecture). These problems remain open. It is known that rdc (6) < 2,
rdc (7) < 3 and rdc (8) < 4. It is not known whether or not rdc (n) can be > 1 for any n = 6.

In this paper, we show that all three of Hilbert’s conjectures can fail if we replace C with a base
field of positive characteristic.

1. Introduction

The algebraic form of Hilbert’s 13th problem asks for the resolvent degree rdc (1) of the
general polynomial

S =x"+ax" -+ ap1x +an,

where ay,...,a, are independent variables. Here rdc (n) is the minimal integer d such that
every root of f(x) can be obtained in a finite number of steps, starting with C (ay, ..., a,)
and adjoining an algebraic function in < d variables at each step. For a precise definition,
see [1,6, 13, 14] or Section 2 below. It is known that rdc (n) = 1 for every n < 5. It is
not known whether or not rdc (n) is bounded from above, as n tends to infinity or even
if rdc(n) can be greater than 1 for any n. Various upper bounds on rdc (n) have been
proved over the past 200 years. For an overview, see [4]. These classical bounds have
recently been sharpened by Wolfson [17], Sutherland [15], and Heberle—Sutherland [9].
All of them are of the form rdc(n) < n — «(n), where «(n) is an unbounded but very
slow-growing function of n. There is a wide gap between the best-known lower bound,
rdc (n) = 1, and the best-known upper bound, rdc (n) < n — «(n). It is fair to say that after
two centuries of research, we still know very little about rdc (n) for n = 6. Specifically,
Hilbert conjectured the following values for small 7.
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Conjecture 1.1. (a) rdc (6) = 2, (b) rdc(7) = 3, (c) rdc (8) = 4.

(a) and (c) appeared in [ 10, p. 247]; they are known as Hilbert’s sextic and octic conjec-
tures, respectively. (b) is taken from the statement of Hilbert’s 13th problem [11, p. 424].
The upper bounds,

rdc(6) <2.1dc(7) <3 and rdc(8) <4 (1.1)

go back to the work of Hamilton in the 1830s [8]; for modern treatments, see [4, p. 87]
or [6, Corollary 7.3]. The reverse inequalities remain out of reach.

Recently Farb and Wolfson [6] defined the resolvent degree rdy (G ), where G is a finite
group and k is a field of characteristic 0. Setting G to be the symmetric group S, and k
to be the field C of complex numbers, we recover rdc (7). This definition was extended
by the second author [14] to the case where k is an arbitrary field and G is an arbitrary
algebraic group over k. For a fixed algebraic group G defined over the integers, rd; (Gy)
depends only on the characteristic of k and not on k itself; see [ 14, Theorem 1.2]. We will
write rd, (G) in place of rd; (G), when k is a field of characteristic p = 0. Moreover, if G
is an (abstract) finite group, then rdo(G) = rd,(G) for any p > 0; see [14, Theorem 1.3].

In view of the last inequality, it is natural to ask if more can be said about Conjec-
ture 1.1 in the case, where the base field C is replaced by a field k of positive characteristic.
Conjecturally, one expects rd, (G) to be the same as rdo(G) when p does not divide the
order of G. We will thus examine rd, (S,) in the case whenn = 6,7, 8 and 2 < char(k) =
p < n. Our main result is as follows.

Theorem 1.2. Let S, denote the symmetric group on n letters. Then
(@) rd3(Se) <1,
(b) rd3(S7) <2
(¢) 1ds(S7) =rds5(Se) < 2,
(d) rd7(S7) <2,
(e) rdy(Sg) < 3.

In particular, every part of Conjecture 1.1 fails if C is replaced by a base field of
(suitable) positive characteristic.

Theorem 1.2 may be viewed as complementing the results of [7,9,15,17]. These papers
generalize the inequalities rd(Se) < 2, rdg(S7) < 3 and rdy(Sg) < 4 of (1.1) by giving
upper bounds on rdo(G), when G is the symmetric group S, (n arbitrary) [9, 15, 17] or
when G is a sporadic finite simple group [7]. Here we stay with G = S¢, S7, Sg and prove
sharper bounds on rd, (G) for suitable small primes p.

We also consider the Weyl group W(E¢) of the root system of type Es. It is shown
in [6, Section 8] that this group arises naturally in connection with Conjecture 1.1 (a), and
that rdo(W(Es)) < 3; see also [14, Proposition 15.1]. We show that in (small) positive
characteristic, this inequality can be sharpened.

Theorem 1.3. rd,(W(E¢)) <2if p =2 3o0r5.
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Characteristic
G 0o 2 3 5 7
Se 2 2 1 2 2
S7 3 3 2 2 2
Sg 4 3 4 4 4
W(Ee¢) |3 2 2 2 3

Table 1. rd, (G) < d for d as above.

In summary, rd, (G) < d, where the value of d is given in Table 1.

The remainder of this paper is structured as follows. In Section 2 we recall the defini-
tion of resolvent degree of a finite group and collect some of its properties for future use.
We believe that part (a) of Theorem 1.2 was known classically; for lack of a reference, we
include a short proof at the end of Section 2. In Section 3 we prove upper bounds on the
resolvent degree of finite symplectic and unitary groups. These upper bounds play a key
role in the proofs of parts (b) and (c) of Theorem 1.2 and of Theorem 1.3 in Section 4.
Parts (d) and (e) of Theorem 1.2 are proved in Section 6 by a different (more geomet-
ric) argument inspired by our previous work on the essential dimension of symmetric
groups [5].

2. Preliminaries

2.1. The level of a finite field extension

Let K be a field containing a base field k, and L/K be a finite extension. We say that
L/K descends to an intermediate field k C Ko C K if L = Ly ®k, K for some finite
extension Lg/Ky. The essential dimension edy (L /K) is then the smallest transcendence
degree trdeg; (Ko) such that L /K descends to K.

The level levg (L/K) of a finite extension L/K is the smallest integer d such that
there exists a tower of field extensions

Km
/‘
L :

K1

Ko=——=K

with [K; : Kj_1] < ocand edg(K;/Kj—1) < d foreveryi =1,...,m.
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The resolvent degree rdy (G ) of a finite group G over a field k is defined as the maximal
value of levy (L/K), where the maximum is taken over all fields K containing k and all
G-Galois field extensions L/K.!

Lemma 2.1. Let G be an abstract finite group and k be a field of characteristic p = 0.
Then

(@) rdx(G) = rdy/(G) for any field k' of characteristic p.

(b) If H is a subgroup of G, then rdi(H) < rdi(G). Moreover, if G # 1, then
rdg (G) = 1.

(¢) If G is abelian, then rd (G) < 1.

d If1 > A— G — B — 1 is an exact sequence of finite groups, then rd;(G) <

max{rdg (A), rdg (B)}. If additionally A is a central subgroup of G, B # 1 and
chark { |A|, then rd; (G) = rdi(B).

Proof. Part (a) is [14, Theorem 1.2].

(b) For the inequality rdg (H) < rdg(G), see [6, Lemma 3.13] or [14, Remark 10.5].
To prove the inequality rd; (G) = 1 we may replace k by its algebraic closure; see part (a).
In the case, where k is algebraically closed, levg (L/K) = 1 for every non-trivial extension
L/K; see [14, Lemma 4.5]. Thus rd; (G) = 1 for every non-trivial group G.

For (c), see [6, Corollary 3.4] or [14, Example 10.6].>

For the first inequality in (d), see [6, Theorem 3.3] or [14, Proposition 10.8 (a)]. In the
case, where A is central, [ 14, Proposition 10.8 (d)] tells us that

rd; (G) < max {rdk(B), 1} and rdg(B) < max {rdk(G), 1}. 2.1

By our assumption B # 1 and hence, G # 1. By part (b), rdg (B) = 1,1dg(G) = 1. Now
the inequalities (2.1) translate to rd; (G) = rdg (B). |

For notational simplicity, we will write rd, (G) in place of rd; (G), where p = char(k)
is either O or a prime. This notation makes sense in view of Lemma 2.1 (a). As we men-
tioned in Section 1,

rdo(G) = rd,(G) for any p > 0; (2.2)

see [14, Theorem 1.3].
Corollary 2.2. rd,(A,) = 1d,(Sy) for every p = 0 and every n = 3.

Proof. By part (b) of Lemma 2.1, 1 < rd,(A,) < 1d,(Sy). It remains to prove the oppo-
site inequality, rd,(S,) < rd,(A,). Indeed, applying Lemma 2.1 (d) to the natural exact
sequence 1 - A, — S, — Z/2Z — 1, and remembering that rd,(Z/2Z) < 1 by part (c),

'Note that this maximum is well defined because a G-Galois field extension L/K with k C K exists
for any finite group G. Indeed, consider the regular representation G < GL(V'), where V = k[G] is the
group algebra. Now set L = k(1) = the field of rational functions on V, and K = L.

2Note that [6] assumes that char(k) = 0. In [14], k is allowed to be of arbitrary characteristic.
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we obtain
rd,(Sy) < max {rd,(A,).1d,(Z/2Z)} = max {rd,(A,). 1} = rd,(A,),

as desired. [

2.2. Generically free actions

Consider an algebraic variety X equipped with the action of a finite group G defined over
a field k. We will sometimes refer to such X as a G-variety. We say that the G-action
on X is generically free if G acts freely on a G-invariant dense open subvariety U C X
defined over k. In other words, we require that the stabilizer of every lg-point u €U be
trivial. Here k denotes the algebraic closure of k.

Recall that the G-action on X is called faithful if every non-trivial element of G acts
non-trivially on X. We record the following easy lemma for future reference.

Lemma 2.3. Let G be a finite group and X be a G-variety.
(a) A generically free G-action on X is faithful.

(b) If X is irreducible, then the converse holds: A faithful G-action on X is generi-
cally free.

Proof. Part (a) is obvious from the definition, because X has a E-point with trivial sta-
bilizer. For part (b), assume the contrary: a G-action on X is not generically free. This
means that X is covered by the fixed point loci X8, where g ranges over the non-identity
elements of G. Since X is irreducible, we conclude that X = X 8° for some 1 # g¢ € G.
The element g then acts trivially on X, and thus the G-action on X is not faithful. [

Note that part (b) may fail if X is allowed to be reducible. For example, the natural
action of S, on a disjoint union of n points, is faithful but not generically free.

Lemma 2.4. Let V be a finite-dimensional k-vector space of dimension = 1, G be a finite
subgroup of PGL(V) and X be an irreducible G -invariant hypersurface of degree d = 2
in P(V). Then the G-action on X is generically free.

Proof. We may assume without loss of generality that the base field k is algebraically
closed. Assume the contrary: the G-action on X is not generically free. Then X is cov-
ered by the union of the fixed point loci P(V)%, as g ranges over G \ {1}. Since X is
irreducible, X C IP(V)# for one particular 1 # g € G.

Now observe that the fixed locus P(V)# is a finite union of subvarieties of the form
P(V},), where g is a preimage of g in GL(V), A is an eigenvalue of g, and V) is the
A-eigenspace of g. Note that since g # 1 in PGL(V), V) € V. Since X is irreducible,
X Cc P(V;) € P(V) for one particular A. Since X is a hypersurface, this is only possible
if X = P(V)) is a hypersurface of degree 1. This contradicts our assumption that the
degree d of X is = 2. [
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Lemma 2.5. Suppose G is a finite subgroup of PGL, 4+ (k) and there exists a G-invariant
closed subvariety X of P" of degree a and dimension b = 1 (not necessarily smooth or
irreducible). Assume further that the G-action on X is generically free. Then

rdi (G) < max {b,rdg(Sa)}.
where S, denotes the symmetric group on a letters.
Proof. See [14, Proposition 14.1 (a)] or [17, Proposition 4.11]. [

Proof of Theorem 1.2 (a). We need to show that rd3(S¢) = 1. In view of Corollary 2.2 and
Lemma 2.1 (b) it suffices to show that rd3(Ag) < 1. Recall that Ag ~ PSL,(9); see [3, p. 4].
Thus there exists a faithful action of Ag on the projective line P! defined over the field
k = Fo. We now apply Lemma 2.5 with G = Ag,n = 1 and X = P!. Here we view X as
a closed subvariety of P! of degree @ = 1 and dimension b = 1. Since X is irreducible,
the (faithful) Ag-action on X is automatically generically free; see Lemma 2.3 (b). By
Lemma 2.5 we conclude that

rd3(Ag) = rdi(Ag) < max {1,1di(S1)} = 1.

as desired. [

3. Resolvent degree of finite symplectic and unitary groups

Let n be a positive integer, ¢ = p” be a prime power, and [, be the finite field with ¢
elements. Recall that Uy, (g) is defined as the subgroup of elements of GL, (IF;2) which
preserve the hermitian form % on IF;‘Z defined by the formula

(X1, ..o Xn) (V10 ¥n)) B> X1 VT + o + Xn V.

Here F 2 /IF, is a field extension of degree 2, and x > X = x4 is the unique non-trivial
automorphism of IF,2 over IF;. The group SUy (¢) is the subgroup of elements of Uy (¢q) of
determinant 1.

The group Sp, (¢) is defined in a similar manner as the subgroup of elements of
GL, (F4) which preserve the standard symplectic form @ on (F4)". Here n is assumed
to be even, n = 2m, and

w((xl, e Xom), (Vs yzm)) = (x1y2 — X2y1) + - + (X2m—1Y2m — X2mY2m—1)-

Note that every non-degenerate hermitian form on ;’2 is equivalent to 4 and every sym-
plectic form on /' is equivalent to w.
Proposition 3.1. Let ¢ = p” be a prime power. Then

(a) rd,(Sp,(¢q)) < max{n —2,1d,(Sq+1)} for any even integer n = 4, and

(b) rd,(Un(q)) < max{n —2,1rd,(Sy+1)} for every integer n = 3.
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Proof. We will use the following notational conventions: xy, ..., x, will denote indepen-
dent variables over g, X := (x1,...,x,) and x? := (x‘ll, R xg).
(a) Consider the homogeneous polynomial

f(x) = o(x,x7)
= (x1x7 —x2x1) + - + (x2m—1 X3, — Xomxd ) € Fqlx1, ..., x4]

of degree ¢ + 1. A simple application of the Jacobian criterion shows that f(x) cuts out a
smooth hypersurface in P~ !. Denote this smooth hypersurface by X . Since n > 3, X has
to be irreducible; otherwise, irreducible components of X would intersect non-trivially,
and their intersection point would be singular on X .

We are now ready to complete the proof of part (a). Applying Lemma 2.1 (d) to the
central exact sequence

1 — Z — Sp,(q9) = PSp,(¢q) — 1. (3.1

where Z = {%1} is the subgroup of scalar matrices in Sp, (¢), we obtain rd, (Sp, (¢)) =
rd, (PSp,,(¢)). On the other hand, PSp, (¢) C PGL,(IF;) acts on the irreducible hyper-
surface X of degree ¢ + 1 > 2 in P"~!. By Lemma 2.4, the PSp, (¢)-action on X is
generically free. Applying Lemma 2.5, we obtain

rd, (Sp,(¢)) = rdr, (PSp,(¢)) < max {n —2,1dr, (Sg+1)} (3.2)

as desired.
(b) We apply a similar argument to the polynomial

Fx) =hxx) = xIT 4 x0T e Fylxy, . ]

of degree ¢ + 1. Let X C P"~! be the hypersurface cut out by f(x). Once again, X is
smooth by the Jacobian criterion, and since n = 3, this allows us to conclude that X is
irreducible.

Claim. f(x) (and hence, X) is invariant under the natural action of U, (¢).
Choose g € U, (g). Our goal is to prove that
A(x) 1= f(g-x) = f(x) € Fpax1..... xn]
is the zero polynomial. Indeed, for every a = (ay,...,a,) € IF;Z, we have
f(g-a)=h(g-a.g-a) =h(aa) = f(a).

We conclude that A(x) is a homogeneous polynomial of degree ¢ + 1 which vanishes
at every [ 2-point of P"~1. By [12, Théoréme 2.1], the minimal degree of any non-zero
polynomial with this property is g2 + 1. This tells us that A(x) is the zero polynomial,
thus completing the proof of the claim.
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To finish the proof of part (b), we argue as in part (a). Consider the central exact
sequence
1 = Z = Uu(q) = PUn(g) — 1,

where Z = {£1} is the subgroup of scalar matrices in U, (¢). By Lemma 2.1 (d),

rd, (Un(q)) = rdp (PUA(q)) (3.3)

On the other hand, PUy, (¢) C PGL, (F,2) acts on the irreducible hypersurface X of degree
g +1=2cutoutby f(x)inP"~!. By Lemma 2.4, the PU,,(¢)-action on X is generically
free. Thus

rd, (PU,, (q)) = rd]Fq2 (PU,, (q)) < max {n - 2,rd]pq2 (Sq+1)}
= max {n - 2,rdp(Sq+1)}, 3.4)

where the first and the last equalities follow from Lemma 2.1 (a), and the inequality in
the middle from Lemma 2.5. Combining (3.3) and (3.4), we arrive at the inequality of
part (b). [

4. Proof of Theorems 1.2 (b)—(c) and 1.3

For the proofs of Theorems 1.2 (b-c) and 1.3 we use the classification results for maximal
subgroups of finite classical groups found in [2]. Occasionally, we mention groups con-
structed as central products; we recall this latter definition here. Given finite groups G, H,
central subgroups Z; C Z(G), Z, C Z(H) and an isomorphism ¢ : Z; — Z,, we may
construct the central product G o, H as the quotient (G x H)/N, where N is the normal
subgroup

{(g.h) e GXxH :g€Z,heZ,, and p(g)h = 1}.

Note that the natural maps G — G o, H and H — G o, H are injective. When the
subgroups Z1, Z, and the isomorphism ¢ are clear from the context, we write the central
productas G o H.

Proof of Theorems 1.2 (b). By Lemma 2.1 (a), it suffices to show that rdp,(S7) < 2. In
view of Corollary 2.2, we need to show that rdr, (A7) < 2. By [2, Table 8.11] we have an
inclusion Z /47 o (2 - A7) C SU4(3), which induces an inclusion 2 - A7 C U4 (3). Conse-
quently, Proposition 3.1 (b) implies that

I‘d]F3 (A7)
= 1dp, (2 - A7) < rdp, (Us(3)) < max {4 — 2,1dp,(S4)} < max {2,rdc(S4)} = 2.

Here the first equality follows from Lemma 2.1 (d), applied to the central extension 0 —
7]27 — 2 - A7 — A7 — 1. The first inequality follows from Lemma 2.1 (b) with H =2 -
A7 and G = U4(3), the second inequality from Proposition 3.1 (b), and the third inequality
from (2.2). The equality on the right follows from the fact that rdc (S4) = 1; see [14,
Example 10.8] or [6, Corollary 3.4]. [
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Proof of Theorems 1.2 (c). We need to show that rds(S¢) = rd5(S7) < 2. The inequality
rd5(S¢) < 2 follows from (2.2) and (1.1). Moreover, by Lemma 2.1 (b), rd5(S¢) < rds(S7),
while rds(S7) = rds(A7) by Corollary 2.2. Therefore it suffices to show that rdg (A7) <
rdx (S¢), where k = [F5. By Table 8.6 of [2] there is an inclusion 3 - A; C SU3(5) C Us(5).
Thus Proposition 3.1 (b) shows that

rdp; (A7) = rdps (3 - A7) < rdr, (U3(5)) < max {3 —2,1dp,(Se)} = rdr;(Se).

as desired. Here the first equality follows from Lemma 2.1 (d), applied to the central exten-
sion 0 - Z/37Z — 3 - A7 — A7 — 1. The first inequality follows from Lemma 2.1 (b)
with H = 3 - A7 and G = U;(5) and the second from Proposition 3.1 (b). The equality on
the right follows the second part of Lemma 2.1 (b), which tells us that

rds(Se) = 1. n

Proof of Theorem 1.3. We want to show that rd, (W(Es)) < 2 for p = 2,3, 5. Note first
that
rd, (W(Es)) = rd, (SU4(2)) 4.1

for any p = 0. This follows from the exact sequence 1 — SU4(2) - W(Eg) — Z./27. — 0;
see [3, p. 26]. Indeed, rd, (SU4(2)) < rd,(W(E¢)) by Lemma 2.1 (b). On the other hand,

rd, (W(Ee)) < max {rd, (SU4(2)),rd,(Z/2Z)}
= max {rd, (SU4(2)). 1} =rd, (SU4(2))
by Lemma 2.1 (b), (c) and (d). Thus it suffices to show thatrd, (SU4(2)) <2 for p =2,3,5.

Case p = 2. By Lemma 2.1 (b) and Proposition 3.1 (b),
rdy (SU4(2)) < rdz (U4(2)) < max {4 —2,1d»(S3)} = 2.
Combining this with (4.1), we obtain the desired inequality, rd, (W(Es)) < 2.

Case p = 3. Here we use the exceptional isomorphism SU4(2) = PSp,(3); see [3, p. 26].
Combining (4.1) and Proposition 3.1 (a) we obtain

rd3 (W(Es)) = rd3 (SU4(2)) = rd3 (PSp,(3)) = rdr, (Sp4(3))
< max {4 — 2, rdp, (S4)} < 2.
Here, the equality
rds (PSP4 (3)) =rd; (SP4 (3))

follows from Lemma 2.1 (d), because Sp,(3) is a central extension of PSp,(3).

Case p = 5. Table 8.11 of [2] gives an inclusion 2 - SU4(2) C SU4(5) C Uy(5). By
Lemma 2.1 (d), we have rds(2 - SU4(2)) = rd5(SU4(2)). Combining this with (4.1) and
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Proposition 3.1 (b), we obtain

rds (W(Ee)) = 1ds (2- SU4(2)) < rdp; (Us(5)) < max {4 — 2, rdp(Se) }
< max {2,rdc(S6)} <2,

where the inequality on the right follows from (1.1). ]

5. The varieties Y153

Let n be a positive integer. We define the closed subvariety X;,3 of A" by

X123 1= {(xl,---,xn) € A" | s1(x1,.. . X0) = $2(X1, 000, Xn) = 53(X1,. ., Xp) = 0}-

Here s;(x1, ..., X,) denotes the jth elementary symmetric polynomial in x1, ..., x,. We
denote by Y123 C P! the projective variety cut out by the same equations. Note that
X123 and Yi,3 depend on n, which is assumed to be fixed throughout. The symmetric
group S, acts on both X153 and Y13 by permuting the variables.

Lemma 5.1. Let k be a field of characteristic p = 0 and n = 7 be a positive integer. Then

(a) the symmetric group S, acts transitively on the irreducible components of X123
(respectively Y123), each of which has dimension n — 3 (respectively, n — 4).

(b) The projective variety Y123 is of degree 6 in P"~1. It has either one or two irre-
ducible components. If there are two components, then odd permutations in S,
interchange them, and even permutations leave each component invariant.

(c) The Sy-action on Y123 is generically free.

(d) If p>0andn = p" is a power of p, then the projective variety Y153 is a cone
over the S,,-fixed point (1:1:---: 1) in P71,

Proof. (a) The ring of invariants k[X23]%" is the free polynomial k-algebra generated
by the elements a4, as, ..., a,, where a; = s;(x1,...,Xx,) € k[x1, ..., x,]. Hence, the
geometric quotient X,3/S,, is isomorphic to the affine space A”~3. The natural inclusion
k[X123]%" < k[X 23] gives rise to a (finite) geometric quotient map 7: X123 — AZ_S'.
The assertions about X,3 in part (a) now follow from the fact that A"3 is an irreducible
variety of dimension n — 3. The assertions about Y123 follow from the fact that X;53 is
the affine cone over Y753.

(b) Y123 is an (n — 4)-dimensional closed subvariety of P”~! cut out by the polyno-
mials s; (x1,...,X,) of degree i fori = 1,2, 3. Hence, the degree of Y;,3 is 6. Denote the
number of irreducible components of Y13 by m. The group S, acts transitively on these
components. Hence, m < deg(Y123) = 6. The S, -action on the m irreducible components
of Y53 gives rise to a transitive permutation representation S, — S,,. Since n = 7, this
permutation representation has a non-trivial kernel. An easy exercise in finite group the-
ory shows that either (i) m = 1, i.e., Y123 is irreducible or (ii) m = 2, i.e., Y123 has two
irreducible components, and each component is preserved by the alternating group A,,.
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(c) Assume the contrary. From the description of the irreducible components of Y;,3
it follows that the action of A, on each irreducible component is not generically free. By
Lemma 2.3 (b), this implies that the action of A, on each irreducible component of Y;53 is
not faithful. In other words, for every irreducible component of Y753, there is a non-trivial
normal subgroup N of A, which acts trivially on that component. Since A4, is a simple
group, N = A, is the only possibility for N. In other words, A, acts trivially on Yj53.

This means that for every element (y; : ---: y,) C Y123 and every 0 € A,,, we have

(ya(l)v cee 7y0(n)) = A(O)(yl’ cee ’yn)v

in A", where A(0) is a non-zero scalar in k. It is easy to see that the map o — A(0)
is a multiplicative character A, — k*. Since A, is a simple group, it has no non-trivial
multiplicative characters. We conclude that (ys(1), ..., Yo@m)) = (¥1....,yn) in A" for
every o € A,. Since the natural action of A,, on {1, ..., n} is transitive, this is only possible
if yy = -+ = y,. In other words, Yj,3 is either empty or consists of the single point
(1:---:1)inP"~!. This contradicts the assertion of part (a) that dim(Y123) =n — 4 > 3.

(d) Suppose y = (¥1,...,¥n) € X123. We need to show that the point y, g = (ay1 +
B,...,ay, + B) also lies in X153 forevery a, B € k. In other words, if s1(y) = s2(y) =
s3(y) = 0, then s1(Ya,p) = 52(Va,p) = 53(Va,8) = 0.

Indeed, 51(ya,8) = s1(y)a +nB = 0, since we are assuming that s;(y) = 0 and 7 is
a power of p = char(k). Similarly,

52(Va,p) = s2(»)e” + (n — sy (y)aB + (Z)ﬂz =0

in k (recall that we are assuming that n > 7 is a power of p). Finally,

53(Va,p) = s3(»)o® + @*B(n — 2)s2(y) + aﬂz(n ; 1)sl(y) + (Z) =0,

again because s1(y) = s2(y) = s3(y) and (3) = 0 in k under our assumptions on n and
char(k). |

Remark 5.2. The condition on n and char(k) in part (d) can be weakened: our proof goes

through whenever
n n n
= = = O

in k. In the next section, we will only need the special case, where n = p” = 7, considered
above.

Remark 5.3. The variety Y153 is, in fact, irreducible. This can be deduced from [16,
Corollary 2]. We chose to go with the weaker assertion of Lemma 5.1 (b) because its
proof is short and self-contained, and because it suffices for the purpose of establishing
Theorem 1.2 (d) and (e) in the next section.
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6. Proof of Theorem 1.2 (d)—(e)

We continue with the notational conventions introduced in the previous section. Recall
that Y753 in the closed subvariety of P”~1 given by

S1(x1, .o xn) = 82(x1, ..., xp) = 53(X1, ..., X)) =0,

where 51, 55 and s3 are the first three elementary symmetric polynomials. Lemma 5.1 (d)
asserts that when char(k) = p > 0 and n > 7 is a power of p, Yj,3 is a cone over the
point (1 :---: 1) in P"~!, Let us denote the “base” of this cone by Z1,3 C P(V) ~ P"~2,
where V' = k" /A. Here A denotes the small diagonal Span, {(1,1,...,1)} in k”. In other
words, points of Z 1,3 are in bijective correspondence with lines in P! passing through
(1:1:---:1) and contained in Y7,3.

Proposition 6.1. Suppose p > 0andn = p" = 7.
(@) Zi23 is a variety of dimension n — 5 and degree 6 in P"~2.
(b) The Sy,-action on Y123 descends to a generically free action on Z133.
(¢) rdy(Sy) <n—>5.

The inequalities of Theorem 1.2 (d) and (e) are immediate consequences of Propo-
sition 6.1 (c). Indeed, setting n = p = 7, we obtain rd7(S7) < 2 and setting » = 8 and
p = 2, we obtain rd;(Sg) < 3. It thus remains to prove Proposition 6.1.

Proof of Proposition 6.1. (a) By Lemma 5.1 (a), dim(Y;23) = n — 4. Since Y7,3 is a cone
over Z123, we conclude that dim(Z;53) = dim(Y123) — 1 =n — 5.

To find the degree of Z1,3, note that Z;53 is isomorphic to the intersection of the cone
Y123 in P~ with a hyperplane H ~ P"~2 not passing through the vertex (1 : ---: 1).
More precisely, the closed embedding Z1,3 — P*2 s isomorphic to the closed embed-
ding (Y123 N H) < H. It s clear from this description that the degree of Z;,3 in P"~2
is the same as the degree of Y;,3 in P”~!. By Lemma 5.1 (b) the degree of Y53 in P"~!
is 6, and part (a) follows.

As an aside, we remark that the isomorphism between Z;,3 and Y123 N H is not S;-
equivariant, since H may not be invariant under S,. We can still use this isomorphism
because the S;-action plays no role in part (a).

(b) The fact that the S, -action on Y;,3 descends to Z1,3 is clear from our construc-
tion. To show that this action is generically free, we argue by contradiction. Assume the
contrary.

Claim. A, acts trivially on Z53.

To prove the claim, recall that by Lemma 5.1 (b) either (i) Y;,3 is irreducible or (ii)
Y123 has exactly two irreducible components. In case (i), Z;23 is also irreducible (since
Y123 is a cone over Z;,3). By Lemma 2.3 (b) the S,-action on Z;53 is not faithful. The
kernel of this action is a non-trivial normal subgroup of S,, i.e., either the alternating
group A, or all of S,. Either way, A, acts trivially on Z;,3. In case (ii), each irreducible
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&

Zl23

Figure 1. The picture on the left shows the variety Y123 in P 7=1 and the line L C Y123, which has
a faithful action of A,. The picture on the right shows the variety Z123 in P"2 with the A,,-fixed
point z = [L] € Z123.

component Y{,, and Y%, of Y23 is a cone with the vertex (1 : ---: 1). Thus Z;,3 has
two irreducible components Z',, and Z7,,, where Y{,; (respectively, Y/,) is a cone
over Z,5 (respectively, of Z7,,). Recall from Lemma 5.1 (b) that odd permutations in
S» interchange Y|, and Y{,5; hence, they also interchange Z/,, and Z{,;. Thus the
stabilizer of any point of Z1,3 away from the intersection of the two components lies in
the alternating group A,. We conclude that the action of A, on either of the components
Z',5 and ZY, is not generically free. Now the same argument as in case (i) shows that
A,, acts trivially on both Z{,5 and Z{,5. This proves the Claim.

Continuing with the proof of part (b), recall that by Lemma 5.1 (c), S, acts generically
freely on Yj,3. Choose a lg—point y € Y123 whose stabilizer in S, is trivial. Note that
y # (1 :---:1), because the stabilizer of (1 : ---: 1) is all of S,,. Let z be the point of
Z 123 corresponding to the line L joining y to the vertex (1 : ---: 1); see Figure 1. By our
assumption A, fixes z and hence acts on the line L ~ P!. Since L passes through the
point y with trivial stabilizer in A,, we conclude that this action is faithful. On the other
hand, A, fixes the point (1 : ---: 1) on L. This means that A, embeds into the subgroup
B C Aut(L) ~ PGL,(k), where B consists of automorphisms of L ~ P! fixing the point
(1:---:1). This group is isomorphic to the subgroup of upper-triangular matrices of the
form (g ‘f ) in PGL, (lg). Note that B decomposes as a semidirect product G, (k) % G (k),
where G, is the additive group of strictly upper-triangular matrices, with @ = 1, and G,
is the multiplicative group of diagonal matrices, with 8 = 0. This semidirect product
decomposition shows that B is solvable. On the other hand, A, is not solvable; hence, it
cannot embed into B. This contradiction completes the proof of part (b).

(c) Parts (a) and (b) allow us to apply Lemma 2.5 with G = S,,, X = Z33,a = 6 and
b = n — 5. We conclude that

rd,(Sy) < max {n — 5,1d,(S¢)} < max {n —5,1do(Se)} < max{n —5,2} =n—5.

Here the first inequality follows from Lemma 2.5, the second from (2.2), and the third
from (1.1). The last equality follows from our assumption thatn > 7. |
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