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Bi- xQ-structures on Hermitian symmetric spaces and
quadratic relations between CM periods

Ziyang Gao, Emmanuel Ullmo, and Andrei Yafaev

Abstract. In this paper, we introduce the notion of a bi-xQ-structure on the tangent space at a CM
point on a locally Hermitian symmetric domain. We prove that this bi-xQ-structure decomposes
into the direct sum of 1-dimensional bi-xQ-subspaces, and make this decomposition explicit for the
moduli space of abelian varieties Ag .

We propose an analytic subspace conjecture, which is the analogue of the Wüstholz’s analytic
subgroup theorem in this context. We show that this conjecture, applied to Ag , implies that all
quadratic xQ-relations among the holomorphic periods of CM abelian varieties arise from elementary
ones.

1. Introduction

1.1. Prologue and motivation

In all this paper, xQ will denote the algebraic closure of Q in C. The uniformizing map
uWC ! C�, z 7! e2�iz , is a map between algebraic varieties defined over xQ. This map
is transcendental, and the Gelfond–Schneider theorem asserts the following: if ˛ 2 xQ
and u.˛/ 2 xQ�, then ˛ 2 Q. On the other hand, if we consider the usual exponential
expWC! C�, z 7! ez , the situation is different. In this case, if ˛ 2 xQ and e˛ 2 xQ�, then
˛ D 0 by a theorem of Lindemann.

We can look at this from a different viewpoint, which we will further develop and
adapt in this paper. Consider the natural xQ-structure on C� D Gm.C/ given by Gm;C D

Gm; xQ ˝ C, and the usual exponential map expWC ! Gm.C/ D C�. Endow C with two
xQ-structures: one given by W1 WD 2�i xQ � C, the other given by W2 WD xQ � C. An
˛ 2 C is called bi-xQ forWj if ˛ 2 Wj and e˛ 2 xQ�. From the previous paragraph, ˛ 2 C
is bi-xQ for W1 (resp. W2) if and only if ˛ 2 Q (resp. ˛ D 0). These two xQ-structures on
C are related by 2�i which is a transcendental number and is a period of Gm. We will
call .W1; W2/ a bi-xQ-structure on C with period 2�i .

The situation of bi-xQ-structure also occurs in the case of complex CM abelian varieties
A. Let g D dimA. By definition if

A ' A
n1
1 � � � � � A

nr
r
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is the isotypic decomposition of A, then each Ai is a simple CM abelian variety. If gi
denotes the dimension of Ai , then Ei WD End.Ai /˝Q is a CM field of dimension 2gi .
In this situation End.A/˝Q DMn1.E1/ � � � � �Mnr .Er / is a CM-algebra.

In Section 2.3, we will see that T0A is naturally endowed with a bi-xQ-structure. More-
over, we show in Proposition 2.9 that this bi-xQ-structure is split, which means

T0A D

gM
jD1

C.�j / (1.1)

where each C.�j / is a 1-dimensional complex vector subspace endowed with the induced
bi-xQ-structure. The complex number �j measures the difference between the two xQ-
structures and is defined up to multiplication by some element in xQ�, and they are pre-
cisely the holomorphic periods of A defined as follows. For each 1-form ! 2 H 1

dR.A/,R


! is independent of the choice of 
 2 H1.A;Z/ up to xQ and is non-zero for some


 2 H1.A;Z/ by Shimura [17, Rem. 3.4]. Moreover, if
R


! ¤ 0 and

R

 0
! ¤ 0, then

there exists � 2 xQ� such that
R


! D �

R

 0
!. Note that Shimura [17, Rem. 3.4] has the

hypothesis that End.A/˝Q has a totally real subfield of dimension dim.A/, but we can
apply his result to every isotypical factors of the above decomposition of A.

Convention 1.1. Let ¹!1; : : : ; !gº be an End.A/ ˝ Q-eigenbasis of �A (holomorphic
1-forms). We can choose 
j 2 � such that �j WD

R

j
!j 6D 0 for each j 2 ¹1; : : : ; gº. We

call �1; : : : ; �g the holomorphic periods of A; they are well defined up to xQ�.

A very general conjecture in transcendental number theory is Grothendieck’s period
conjecture and its generalizations by André and Konsevich–Zagier, which predicts the
polynomials relations between the periods. Wüstholz’s famous analytic subgroup theorem
(WAST) [21] gives a complete answer of the linear relations of this conjecture for linear
algebraic groups and more generally for 1-motives; it includes most known results in
transcendental number theory. We refer to [1, 13, 19] for relevant discussions. For a CM
abelian variety A and its holomorphic periods defined above, WAST implies: the �j ’s
are transcendental numbers, and that they are xQ-linearly independent if A has no square
factors.1

However, almost nothing is known beyond the linear relations (except if the question
can be reduced to linear case, for example the transcendence of �j �j 0=�). For example,
little is known for quadratic relations among the �j ’s.

In a subsequent paper by the first- and second-named authors [12], we will present an
example of non-trivial quadratic relation which takes the following simple form:

�j �j 0 � cjj 0kk0�k�k0 D 0 with ¹j; j 0º 6D ¹k; k0º and cjj 0kk0 2 xQ�: (1.2)

1By the Poincaré irreducibility theorem, A is isogenous to a product of simple CM abelian varieties.
We say that A has no square factors if these simple CM abelian varieties are all distinct.
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In this example, A is simple and has dimension 25. Based on this observation, we make
the following definition.

Definition 1.2. A quadratic relation among �1; : : : ; �g is called elementary if it is of the
form (1.2).

Now, a natural question is the following.

Question 1.3. Is it true that any non-trivial xQ-quadratic relation among the �j ’s, or
equivalently any xQ-linear relation among the �j �j 0 ’s, is a xQ-linear combination of ele-
mentary ones?

Moreover, if the Mumford–Tate group of A is a maximal torus, is it true that

dim xQ
X

1�j�j 0�g

xQ�j �j 0 D
g.g C 1/

2
‹ (1.3)

The aim of this article is to propose a possible framework to study this question. We
will introduce a natural bi-xQ-structure on the tangent space at a CM point on a Shimura
variety, prove that it decomposes into the direct sum of 1-dimensional bi-xQ-subspaces
C. j̨ / (and hence yields complex numbers j̨ which measure the differences between the
two xQ-structures on each C. j̨ /), and compute the j̨ ’s in the case of the moduli space
of abelian varieties Ag . We then propose an analytic subspace conjecture, which is the
analogue of WAST in this context, and show that this conjecture when applied to Ag
gives an affirmative answer to Question 1.3.

1.2. Bi- xQ-structure associated with Shimura varieties

For Shimura varieties, we use Deligne’s notations [9,10]. A quick summary which suffices
for our use can be found in Section 4.1.

Let .G; X/ be a connected Shimura datum. Here G is a reductive group defined over
Q and X is a Hermitian symmetric domain. Let � be an arithmetic subgroup of G.Q/C
which acts on X . The Baily–Borel theorem [4] asserts that S WD �nX has a unique struc-
ture of quasi-projective complex algebraic variety. Write

uWX �! S

for the uniformizing map. Moreover, the general theory of Shimura varieties asserts that
S admits a unique model over xQ and we write S xQ for this model.

Let Œo� 2 S.xQ/ and o 2 X such that u.o/ D Œo�. The holomorphic tangent space ToX
is a finite-dimensional complex vector space. Assume furthermore that o is special point
(or CM point). We endow ToX with two xQ-structures, the arithmetic xQ-structure and the
geometric xQ-structure as follows.

1.2.1. The arithmetic xQ-structure on ToX . The algebraic tangent space TŒo�S xQ is a
finite-dimensional xQ-vector space and we have a C-isomorphism

duWToX �! TŒo�S xQ ˝C:
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Then .du/�1.TŒo�S xQ/ defines a xQ-structure on ToX . We call it the arithmetic xQ-structure;
see Section 4.2 for more details.

1.2.2. The geometric xQ-structure on ToX . The complex dual X_ of X is a projective
algebraic variety. If a faithful rational representation � of G on a finite-dimensional Q-
vector space V , then X_ is naturally a subvariety of a flag variety defined over xQ. Write
X_
xQ

for this xQ-structure on X_. The natural inclusion �WX ! X_ is a holomorphic map
and X is an open subset of X_ in the usual topology. Since o is a special point, �.o/
is a xQ-point of X_. So T�.o/X_ is a xQ-vector space of dimension dimX . We have an
isomorphism

d�WToX �! T�.o/X
_
xQ
˝C

and .d�/�1.T�.o/X_xQ/ defines a xQ-structure on ToX . We call it the geometric xQ-structure;
see Section 4.3 for more details.

The first result of this work is the following statement.

Theorem 1.4 (Theorem 5.1). The bi-xQ-structure on ToX defined above is split, i.e., we
have a decomposition

ToX D

dimXM
iD1

C. j̨ /;

where each C. j̨ / is a 1-dimensional complex vector space endowed with the restriction
of the bi-xQ-structures on ToX and j̨ 2 C=xQ� compares the two xQ-structures on C. j̨ /.

We can be much more precise when S D Ag D Sp.2g;Z/nHg is the moduli space of
principally polarized abelian varieties of dimension g.

Theorem 1.5 (Theorem 7.1). Let Œo� be a CM point of Ag.xQ/ corresponding to a CM
abelian variety A with holomorphic periods �1; : : : ; �g . Let o 2 Hg mapping to Œo�. Then

ToHg D
M

1�j�j 0�g

C

�
�j �j 0

�

�
: (1.4)

Moreover, we prove that the decompositions (1.4) and (1.1) are compatible with the
Kodaira–Spencer map; see Theorem 7.10. Better, we show that each C

� �j �j 0
�

�
arises natu-

rally as a root space; see Theorem 7.4 and Corollary 7.5 for the precise statements.
The following conjecture of Lang was proved by Cohen–Wolfart [8]. As an application

of this framework of bi-xQ-structures and of Theorem 1.5, we give a new and simpler proof.

Proposition 1.6 (Proposition 8.1). Let C be a connected Shimura variety of dimension 1
of genus > 1. Suppose that the universal holomorphic covering map

'WE� WD
®
z 2 C W jzj < �

¯
�! C an

is normalized in such a way that '.0/ 2 C.xQ/ is a CM point and that '0.0/ 2 xQ. Then �
is a transcendental number.
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1.3. The hyperbolic analytic subspace conjecture

Another main objective of this article is to formulate a hyperbolic analytic subspace
conjecture, which is the analogue of WAST in this context, and to derive some of its
immediate consequences. We start by recalling Wüstholz’s famous analytic subgroup the-
orem.

Theorem 1.7 (WAST, [21]). Let G be a commutative algebraic group over xQ. Let g D

LieG D T0G viewed as a xQ-vector space, and consider the exponential map

expG WgC �! G.C/:

Let z 2 gC be such that expG.z/ 2 G.xQ/. Let V be a sub-vector space of the xQ-vector
subspace of g with z 2 V ˝C. Then there exists a connected algebraic subgroupH of G
defined over xQ which contains expG.z/ such that V � T0H .

In the context of Shimura varieties, the tangent space T0G corresponds to the arith-
metic xQ-structure on ToX defined in Section 1.2.1 and the natural xQ-structure on the uni-
formizing space gives rise to the geometric xQ-structure on ToX defined in Section 1.2.2.
Hence the analogue of WAST in this context, which we propose, is the following conjec-
ture.

Conjecture 1.8 (HASC; Conjecture 10.1). Let S D �nX be a connected Shimura variety.
Let o be a special point of X . Let D � ToX be the Harish–Chandra realization of X as
a bounded symmetric domain centered at o. Let uWD ! S be the uniformizing map. Let
z 2 D be such that Œz� WD u.z/ 2 S.xQ/. Let V be an arithmertic xQ-subspace of ToX .
Then V � V 0 for some bi-xQ-subspace V 0 � ToX which contains z.

If moreover MT.o/ is a maximal torus, we can take V 0 D TŒo�S 0xQ for some Shimura
subvariety S 0 of S which contains Œz� and Œo�.

An equivalent but more precise statement of this conjecture is presented as Conjec-
ture 10.1. Observe that if u.z/ 6D u.o/, then in the conclusion of the conjecture we have
dim V 0 > 0 and dim S 0 > 0. Note that the statement of the conjecture depends on the
choice of a special point of S (up to Hecke operations).

It is known that WAST implies that there exists no non-trivial xQ-linear relations
between the holomorphic periods �1; : : : ; �g of a CM abelian variety A of dimension g if
A has no square factors. In the same way we show that our hyperbolic counterpart HASC
implies the desired result for quadratic relations. More precisely, we prove the following.

Proposition 1.9 (Proposition 10.2). Assume that Conjecture 1.8 holds true for S D Ag
and the point Œo� 2 Ag.xQ/ parametrizing A. Then Question 1.3 has an affirmative answer
for A.

We think that a proof of the Conjecture 1.8 could be quite a challenge as the classical
version of WASP for commutative algebraic groups is a major achievement. Our hope is
that it could be still more tractable than Grothendieck’s period conjecture.
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1.4. Organization of the article

In Section 2, we define split bi-xQ-structures and discuss the cases of algebraic tori Sec-
tion 2.2 and CM abelian varieties Section 2.3. We also reformulate WAST in these two
cases in this language. In Section 3, we explain why WAST applied to A\, the universal
vector extension of A, yields the transcendence of �j �j 0=� with the �j ’s the holomorphic
periods of a CM abelian variety A. We also restate Question 1.3 as a motivating question
for the current article.

After this prologue, we start to build up our framework and relate it to Question 1.3 in
Sections 4–10.

The bi-xQ-structure on the tangent space of a Shimura variety at a special point is
defined in Section 4, and is proved to be split in Section 5. In Section 6, we discuss
on the family version of the de Rham–Betti comparison and the Kodaira–Spencer map,
which will be used compute the periods of the split bi-xQ-structure for Ag in Section 7. In
Section 8, we prove the conjecture of Lang (Proposition 1.6) and compute the periods for
Hilbert modular varieties.

Then after some preliminary discussion on CM points in Section 9, we propose in
Section 10 our hyperbolic analytic subspace conjecture (Conjecture 1.8), and explains
how this conjecture applied to Ag gives a positive answer to Question 1.3.

The last section Section 11 explains some consequences of Grothendieck’s period
conjecture on the algebraic relations between � and holomorphic periods of CM abelian
varieties. This section is rather independent of the rest of the article.

2. Bi- xQ-spaces and preliminary examples

The goal of this section is to define the notion of a bi-xQ-structure on a complex vector
space and to discuss examples given by algebraic tori and CM abelian varieties.

2.1. Bi- xQ-structures on a complex vector space

Let V be a complex vector space of finite dimension n. A xQ-structure on V is a xQ-vector
space W generated by a basis B D ¹e1; : : : ; enº of V . If W is xQ-structure on V , then
W ˝ xQ C ' V . A complex vector subspace V 0 of V is said to be rational for the xQ-
structure W if V 0 admits a basis consisting of elements in W . In general if V 0 is a vector
subspace of V then V 0 \W is a xQ-vector subspace of W and

dim xQ.V
0
\W / � dimC.V

0/

with equality if and only if V 0 is xQ-rational for the xQ-structure W .

Definition 2.1. Let V be a complex vector space. A bi-xQ-structure .W1; W2/ on V is the
data given by two xQ-structures W1 and W2 on V . A complex vector subspace V 0 of V is
said to be bi-xQ-rational (or simply bi-xQ) if V 0 is rational for both W1 and W2.
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If V 0 is a bi-xQ-subspace of dimension 1, then V 0 determines a complex number � D
�.V 0; W1; W2/, well defined up to multiplication by an element of xQ�, in the following
way. Let e12W1 and e22W2 be some bases of V 0 defining the corresponding xQ-structures.
Then e2 D �e1 for some � 2 C. Such a � will be called a period of V 0 for .W1; W2/.

This terminology of periods is motivated by the examples of the exponential function
and of the map uniformizing CM abelian varieties. We will explain this in later sections.

To ease notation, we use the following convention.

Notation 2.2. Let z1 and z2 be complex numbers. We will write z1 ' z2 if there exists
˛ 2 xQ� such that z2 D ˛z1.

Definition 2.3. A bi-xQ-structure .W1; W2/ on V is said to be split if V is a direct sum of
bi-xQ-subspaces of dimension 1. In this situation

V D
M
j

Cej D
M
j

Cfj

for a xQ-basis ¹e1; : : : ; enº of W1 and a xQ-basis ¹f1; : : : ; fnº of W2 such that for each j ,
there exists �j 2 C� with fj D �j ej . We say that ¹�1; : : : ; �nº is a complete set of periods
of V for .W1; W2/.

Let .W1; W2/ be a split bi-xQ-structure on V and let �1; : : : ; �n be the associated peri-
ods. These periods can be regrouped in the following way: Set .J1; : : : ; Jr / to be the
partition of ¹1; : : : ; nº such that �j ' �j 0 if and only if j; j 0 2 Js for some s 2 ¹1; : : : ; rº.
For each Js , denote by �Js the period �j for any j 2 Js; it is well defined up to multipli-
cation by a number in xQ�.

Definition 2.4. Let s 2 ¹1; : : : ; rº. The sub-vector space

Vs WD
M
j2Js

Cej D
M
j2Js

Cfj

of V is called the isotypic subspace of V associated to the period �Js .

The following simple proposition fully describes the bi-xQ-subspaces of V .

Proposition 2.5. The following holds true:

(i) There is a decomposition V D ˚sVs into a direct sum of isotypic subspaces.

(ii) Let V 0 be a subspace of some isotypic subspace Vs . Then V 0 is rational for W1
if and only if it is rational forW2. Thus V 0 is bi-xQ if and only if it is rational for
one of two xQ-structures.

(iii) Any bi-xQ-sub-space V 0 of V has a decomposition in isotypic components V 0 DL
V 0s , where V 0s WD Vs \ V

0 is a bi-xQ-subpace of Vs .

An equivalent way of stating the proposition is to consider the category C
split
xQ; xQ

of finite-
dimensional complex vector spaces endowed with a split bi-xQ-structure. The morphism
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in C
split
xQ; xQ

are the linear maps respecting the two xQ-structures. Then C
split
xQ; xQ

is a semi-simple
category and the simple objects are the one-dimensional vector spaces .CI �/ with period
� 2 C�=xQ�. For any n-tuples of non-zero complex numbers .�1; : : : ; �n/ (modulo xQ�),
denote by .CnI �1; : : : ; �n/ the object in C

split
xQ; xQ

of dimension n with periods .�1; : : : ; �n/.
The following proposition summarizes the two extreme cases.

Proposition 2.6. Consider an object .CnI �1; : : : ; �n/ in C
split
xQ; xQ

.

(i) If �1 ' �2 ' � � � ' �n, then any complex vector subspace V 0 of Cn which is
xQ-rational for one of the two xQ-structures is bi-xQ.

(ii) If �j ��1j 0 … xQ
� for all j ¤ j 0, then there are only finitely many bi-xQ-subspaces

of .CnI �1; : : : ; �n/.

In case (i), Cn is isotypic. In case (ii), the isotypic subspaces are all of dimension 1,
which we denote by V1; : : : ; Vn. Then the bi-xQ-subspaces are precisely the

L
j2J Vj ’s,

where J runs over all subsets of ¹1; : : : ; nº. The proofs of Propositions 2.5 and 2.6 are
simple linear algebra exercises and are left to the reader.

We close this subsection by defining the Tate twist in C
split
xQ; xQ

.

Definition 2.7. The Tate twist in C
split
xQ; xQ

, denoted by L.1/, is defined to be .CI 2�i/.

As we will see in the next subsection, the Tate twist arises naturally from the bi-xQ-
structure associated with algebraic tori.

2.2. Example: Algebraic tori

We look at two concrete examples of bi-xQ-structures on a complex space in the current
and next subsections. The current one is in line with Proposition 2.6 (i). The next one is
more general, and in some cases in line with Proposition 2.6 (ii).

Consider the algebraic torus Gn

m; xQ
defined over xQ and the uniformization in the cate-

gory of complex spaces

uWCn
�! Gn

m.C/ D .C
�/n; .z1; : : : ; zn/ 7�! .e2�iz1 ; : : : ; e2�izn/:

We can endow Cn with two xQ-structures. The geometric xQ-structure on Cn is the one
induced by the natural inclusion xQ � C (i.e., Cn D xQn ˝ C), and the arithmetic xQ-
structure on Cn is the one induced by Cn ' Lie Gn

m; xQ
˝ C. A natural xQ-basis for the

geometric structure is the canonical basis .e1; : : : ; en/ of Cn. Then .2i�e1; : : : ; 2i�en/
is a xQ-basis of the arithmetic structure. Thus they define a bi-xQ-structure on Cn. This
bi-xQ-structure is split and all the periods are 2�i . This easily follows from the fact that
the derivative of u defines the isomorphism

 WD du D diag.2�i; : : : ; 2�i/WCn
D xQn

˝C �! Lie Gn

m; xQ
˝C ' Cn:

Hence this bi-xQ-structure on Cn associated with Gn

m; xQ
is the n-copy of the Tate twist

L.1/˚n.



Bi-xQ Shimura 9

As a consequence, a subspace V 0 of Cn is rational for the geometric xQ-structure if
and only if it is rational for the arithmetic xQ-structure.

On the other hand, the arithmetic and the geometric xQ-structures on C are different.
Indeed, let x 2Gn

m.
xQ/, and fix some Qx 2 u�1.x/. By Gelfond–Schneider, Qx is a xQ-point in

Cn with respect to the geometric xQ-structure if and only if x is a torsion point in Gn
m.
xQ/.

On the other hand by Lindemann, Qx is a xQ-point in Cn with respect to the arithmetic
xQ-structure if and only if Qx D 0.

We close this subsection by a reformulation of WAST, which in this case has its roots
in Baker’s theorem on xQ-linear independence of Q-linearly independent logarithms of
algebraic numbers. The theorem concerns the base change of the exponential map

expWLie Gn

m; xQ
�! Gn

m; xQ

to C, which is precisely u ı  �1.

Theorem 2.8 (Wüstholz). Let z 2 Cn such that u.z/ 2 Gn
m.
xQ/. Let V be a xQ-sub-vector

space of LieGn

m; xQ
such that .z/2 V ˝C. Then V �LieH for some algebraic subgroup

H of Gn

m; xQ
which contains u.z/.

2.3. Example: CM abelian varieties

In this subsection, we take a first look at CM abelian varieties defined over xQ and explain
how its uniformizing space can be endowed with a bi-xQ-structure which, under some
mild assumptions, fits into Proposition 2.6 (ii). More detailed discussions on CM abelian
varieties will be given in later sections.

Let A be a complex CM abelian variety of dimension g. Then A is the extension to C
of an abelian variety A xQ defined over xQ. The universal covering of Aan is Cg . We endow
Cg D Lie.A xQ/˝C with a bi-xQ-structure:

• The arithmetic xQ-structure on Cg is defined to be the one given by

Cg
' LieA xQ ˝C:

• The geometric xQ-structure on Cg is slightly more complicated. It is known that there
exists a matrix � 2 Matg�g.xQ/ such that A.C/ ' Cg=.Zg C �Zg/. Hence,

xQ � .Zg C �Zg/ � Cg

gives a xQ-structure on Cg , and we call it the geometric xQ-structure.

Let �1; : : : ; �g be the holomorphic periods of A as defined in Convention 1.1.

Proposition 2.9. The bi-xQ-structure on Cg ' Lie.A xQ/˝ C defined above is split, and
is isomorphic to .Cg I �1; : : : ; �g/.

Proof. We start with the case where A is simple. Then End0.A/ WD End.A/˝Z Q is a
CM field E of degree 2g. Let ˆ be the CM type of A.
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For the arithmetic xQ-structure, E acts on LieAC through the embeddings � WE ! C
belonging to ˆ. For each such � , its eigenspace .LieAC/� has dimension 1. Moreover,
as � factors through xQ � C, its eigenspace .LieAC/� descends to xQ, i.e., there exists
e� 2 Lie A xQ such that the eigenspace for � is Ce� . Now the action of E on Lie AC

induces
Cg
D LieAC D ˚�2ˆCe� :

For the geometric xQ-structure, denote for simplicity by ƒ WD Zg C �Zg . Then the
action of End.A/ on A.C/ ' Cg=ƒ induces an action of End.A/ on ƒ � Cg . Thus
tensoring Q, we obtain an action of E on Qƒ � Cg and hence on xQƒ D xQg � Cg . If
we identify Cg with

Q
�2ˆ C, then ƒ equals ˆ.RE / for some order RE in OE under

ˆWE ˝Q R '
Y
�2ˆ

C:

In particular, the action ofE on Cg is via the embeddings � WE!xQ belonging to .̂ Hence
in the previous paragraph, we have Cg D˚�2ˆCf� with f� 2 xQƒ an eigenvector for � .

Now that we have two actions of E on Cg via the embeddings � W E ! xQ, the
eigenspaces for � coincide. Hence Ce� D Cf� . Hence f� D ��e� for some �� 2 C�.
So in the case where A is simple, the bi-xQ-structure on Cg associated with A is split.

For a general CM abelian variety A of dimension g defined over xQ, A is isogenous
to the product of simple CM abelian varieties. We use ˆ to denote the (disjoint) union of
all the CM types of these simple CM abelian varieties. Then we can also find ¹e�º�2ˆ a
xQ-basis of the arithmetic xQ-structure on Cg and ¹f�º�2ˆ a xQ-basis of the geometric xQ-
structure on Cg . Then f� D ��e� for some �� 2C�. Notice that �� is uniquely determined
by � up to multiplication by a element in xQ�. Hence the bi-xQ-structure on Cg associated
with A is split.

It remains to show that the �� ’s are precisely the holomorphic periods of A.
It is known that �A (the xQ-vector space consisting of invariant holomorphic 1-forms)

is the dual of Lie A xQ. Set !� WD e_� for each � 2 ˆ. Then ¹!�º�2ˆ is an End0.A/-
eigenbasis of �A. Now each f� 2 xQƒ can be written as f� D

P2g
jD1 a�;j 
j for some

a�;j 2 xQ and 
j 2 ƒ. Thus

1 D e� .!� / D �
�1
� � f� .!� / D �

�1
� �

2gX
jD1

a�;j

Z

j

!� ' �
�1
� �

2gX
jD1

Z

j

!� :

But up to xQ�,
R


!� is independent of the choice of 
 by Shimura [17, Rem. 3.4] (see the

discussion before Convention 1.1). So �� '
R


!� . We are done.

The following result is a consequence of Wüstholz’s analytic subgroup theorem applied
to Ga � A and to A, respectively; see [19, Prop. 1.2, Thm. 1.4].

Proposition 2.10 (Wüstholz). The following statements are true:

(i) The periods �j are transcendental.

(ii) Assume A has no square factors up to isogeny. Then dim xQ†
g
jD1
xQ�j D g.
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On the other hand, isogenous abelian varieties have the same periods up to xQ�. From
part (ii) of this proposition, we can easily deduce that the bi-xQ-structure on Cg defined at
the beginning of this subsection satisfies the properties of the part (ii) of Proposition 2.6,
if A has no square factors. This holds true for example when A is simple.

We close this subsection by a reformulation of Wüstholz’s analytic subgroup theorem
for this case. Consider the uniformization

uWCg
�! A.C/ D Cg=ƒ:

It can be shown that: for any x 2 Cg which is xQ in the geometric xQ-structure, we have
u.x/ 2 A.xQ/ if and only if u.x/ is a torsion point. We are thus viewing Cg as xQƒ˝C.

The map u induces an isomorphism

 WD duWCg
' xQƒ˝C �! LieA xQ ˝C ' Cg ;

which, under the bases ¹f�º�2ˆ and ¹e�º�2ˆ from the proof of Proposition 2.9, is the
diagonal matrix diag.�� /�2ˆ.

The base change of the exponential map

expWLieA �! A

to C is u ı  �1. WAST in this case can be rephrased to be as the following.

Theorem 2.11 (Wüstholz). Let z 2 Cg be such that u.z/ 2 A.xQ/. Let V be a sub-vector
space of LieA xQ such that  .z/ 2 V ˝ C. Then V � LieB for some abelian subvariety
B of A which contains u.z/.

3. A first discussion on products of periods of CM abelian varieties

In Section 2.3, or more precisely Proposition 2.10, we have seen the transcendence and
the linear relations between the holomorphic periods of CM abelian varieties, both as
consequences of WAST. In this section, we attempt to understand and ask questions about
the quadratic relations.

Let A be a CM abelian variety of dimension g defined over xQ. Let �1; : : : ; �g be its
holomorphic periods as defined in Convention 1.1. Then up to xQ�, each �j is

R


!j for an

End.A/˝Q-eigenbasis ¹!1; : : : ; !gº of �A (with 
 2 H1.A;Z/).
WAST, when applied to A\ (the universal vector extension of A) implies that the quo-

tient of a holomorphic period by an anti-holomorphic period is transcendental. In the case
of CM abelian varieties, this yields a transcendence result on the product of two holo-
morphic periods. This result is well known to experts, but we will include its proof in the
current paper for the convenience of readers.

Corollary 3.1. Each �j �j 0=� is a transcendental number for j; j 0 2 ¹1; : : : ; gº.
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Before proceeding to its proof, at this stage a natural question to ask is what are the
possible non-trivial xQ-linear relations among �j �j 0 for all 1 � j � j 0 � g, or equiva-
lently what are the possible non-trivial xQ-quadratic relations between the �j ’s. Unlike the
transcendence of �j �j 0=� , this question is still widely open; see Question 1.3 for the pre-
diction. It turns out that this question is closely related to bi-xQ-structures arising from
Shimura varieties, which we will discuss from Section 4.

In the rest of this section we prove Corollary 3.1. It follows immediately from the
following proposition.

Proposition 3.2. Assume that A has no square factor up to isogeny. Then

dim xQ

�
xQ2�i C xQ�1 C � � � C xQ�g C xQ

2�i

�1
C � � � C xQ

2�i

�g

�
D 2g C 1: (3.1)

Proof of Proposition 3.2 implying Corollary 3.1. Using equation (3.1) we conclude that
�j and 2�i=�j 0 are linearly independent over xQ for each j; j 0 2 ¹1; : : : ; gº. Dividing
both numbers by �=�j 0 , we get that �j �j 0=� and 2i are linearly independent over xQ. But
2i 2 xQ. Hence �j �j 0=� is transcendental.

Now let us prove Proposition 3.2.

Proof of Proposition 3.2. We may assume A D A1 � � � � � An is the product of simple
CM abelian varieties which are 2-by-2 non-isogenous. We start with some preparation.

The key idea is to apply Wüstholz’s analytic subgroup theorem to A\, the universal
vector extension of A. It fits into the short exact sequence

0 �! �At �! A\ �! A �! 0:

The natural projection A\ ! A induces canonical isomorphisms

H 1
dR.A

\/ D H 1
dR.A/; H 1.A\;Z/ D H 1.A;Z/:

As a complex variety,A\.C/DH1.A\;C/=H1.A\;Z/. The Lie algebra LieA\ isH 1
dR.A

\/_.
Let �j be the complex conjugation of !j . Then ¹!1; : : : ; !g ; �1; : : : ; �gº is a xQ-basis

of H 1
dR.A

\/ D H 1
dR.A/. Take any basis ¹
_1 ; : : : ; 


_
2gº of H 1.A\;Z/ D H 1.A;Z/. Then

the Hodge–de Rham comparison H 1
dR.A

\/
�
�! H 1.A\;C/ under these xQ-bases is

ˇ D
h� R


k
!j
�
1�k�2g; 1�j�g

� R

k
�j
�
1�k�2g; 1�j�g

i
:

For each j 2 ¹1; : : : ;gº, we have
R

k
!j ' �j . Since !1; : : : ;!g ; �1; : : : ; �g are eigenforms

for the CM action, the reciprocity law for the differential forms of the 1st and the 2nd kinds
implies that

R

k
�j ' 2�i=�j ; see [5, p. 36, equation (3)] for more details. Hence this

2g � 2g-matrix ˇ is similar to the diagonal matrix diag.�1; : : : ; �g ; 2�i=�1; : : : ; 2�i=�g/
over xQ. For more details about this computation we refer to the last sentence of Remark 6.5
and above.
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Denote for simplicity by gj WD dimAj , and � .j /1 ; : : : ; �
.j /
gj the holomorphic periods

of Aj . Write expj W LieA\j ! A
\
j .C/ for the exponential map, which is the composite of

LieA\j DH
1
dR.A

\
j /
_'H1.A

\
j ;C/ and the quotientH1.A

\
j ;C/!H1.A

\
j ;C/=H1.A

\
j ;Z/.

By the conclusion of the last paragraph, under suitable xQ-bases, the isomorphism

H 1
dR.A

\
j /
_
' H1.A

\
j ;C/

is represented by the diagonal matrix diag.� .j /1 ; : : : ; �
.j /
gj ; 2�i=�

.j /
1 ; : : : ; 2�i=�

.j /
gj /. Thus

there exist �.j /1 ; : : : ; �
.j /
gj ; �

.j /
1 ; : : : ; �

.j /
gj 2

xQ� such that expj .x.j // D 0 for the point

x.j / WD .�.j /1 �
.j /
1 ; : : : ; �

.j /
gj �

.j /
gj ; �

.j /
1 � 2�i=�

.j /
1 ; : : : ; �

.j /
gj � 2�i=�

.j /
gj / 2 LieA\j .

Set x WD .2�i; x.1/; : : : ; x.n// 2 Lie.Gm � A
\/ and

exp D .e�; exp1; : : : ; expn/WLie.Gm � A
\/ �! Gm � A

\:

Then exp.x/ is the origin of Gm � A
\.

Let `� 1 be a prime number such that expj .x.j /=`/ is a non-zero torsion point in

A
\
j for each j . Let V be the smallest xQ-subspace of Lie.Gm � A

\/ such that x=` 2 VC .
Then WAST applied to expW Lie.Gm � A

\/! Gm � A
\, and the minimality assumption

made on V , ensure that V D LieH for some (algebraic subgroup) H of Gm � A
\. Since

exp.x=`/ is non-zero, we have dimH > 0.
Write � WGm � A

\ ! Gm � A. As �.H/ is an irreducible subgroup of Gm � A and
A is the product of 2-by-2 non-isogenous simple abelian varieties, we have that �.H/ D
Gm � A1 � � � � � Am � ¹0º up to reordering.

We claim that m D n and Lie.H/ D Lie.Gm � A
\/. Indeed, set B WD A1 � � � � � Am

and B 0 WD AmC1 � � � � � An. Then A D B � B 0. Since Gm � B � ¹0º D �.H/, we have
Gm �B

\ � ¹0º �H . Hence the groupH equals Gm �B
\ � V 0 for some vector subgroup

V 0 of B 0. So exp.x=`/ 2 .Gm �B
\ � V 0/.xQ/ � .Gm �A

\/.xQ/. But exp.x=`/ is a torsion
point, so exp.x=`/ 2 .Gm � B

\/.xQ/ � ¹0º. By minimality of V , we then have �.H/ D
Gm � B

\ � ¹0º and V D Lie.Gm � B
\/ � ¹0º D Lie Gm � LieA\1 � � � � � LieA\m � ¹0º.

If m < n, then x.mC1/=` is not 0, and hence

x=` D .2�i; x.1/; : : : ; x.n//=` 62 Lie Gm � LieA\1 � � � � � LieA\m � ¹0º D V:

This contradicts the choice of V . So we must have m D n. Therefore B D Gm � A and
V D Lie.Gm � A

\/.
Assume there exists .c; a1; : : : ; ag ; b1; : : : ; bg/ 2 xQ2gC1 such that

c2�i C
X

ak�k C
X

bl
2�i

�l
D 0:

Set

W WD
®
.x0;x1; : : : ;xg ;xgC1; : : : ;x2g/2Lie.Gm�A

\/ W cx0C
X

akxkC
X

blxgClD0
¯
:
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Then W is defined over xQ. It contains the point x=`. So V � W by definition of V . But
then Lie.Gm � A

\/ � W , and hence W D Lie.Gm � A
\/ and

c D a1 D � � � D ag D b1 D � � � D bg D 0:

This finishes the proof.

4. Bi- xQ-spaces arising from Shimura varieties: Definition

From this section, we will build up a framework to relate Conjecture 1.3 to split bi-xQ-
structures arising from Shimura varieties. The plan is as follows. The current Section 4
defines the bi-xQ-structure in question, and Section 5 proves that this bi-xQ-structure is
split. In Section 7 we compute the periods of this split bi-xQ-structure for Ag , the moduli
space of principally polarized abelian varieties; the computation uses the discussion on
the family version of the de Rham–Betti comparison and the Kodaira–Spencer map in
Section 6. Then in Section 10, we propose the analogue of Wüstholz’s analytic subgroup
theorem for Shimura varieties, and explains how this conjecture applied to Ag implies
Conjecture 1.3.

Let .G;X/ be a connected Shimura datum, and fix a special point o2X ; for definitions
see Section 4.1. It is known that X is a Hermitian symmetric domain. The goals of this
section are to endow ToX with a natural bi-xQ-structure. More precisely, we will endow
ToX with

• the arithmetic xQ-structure in Section 4.2,

• the geometric xQ-structure in Section 4.3.

We also discuss in Section 4.4 on the xQ-structure on the Harish–Chandra (bounded) real-
ization of X . This discussion is important when one relates the bi-xQ-space arising from
Shimura varieties to transcendence theory.

4.1. Shimura data and Shimura varieties

We give a quick summary of Deligne’s language of Shimura varieties. References are
[9, 10, 15].

A connected Shimura datum is a pair .G; X/ where G is a reductive algebraic group
over Q and X is the G.R/C-conjugacy class of a morphism

xWS �! GR

satisfying Deligne’s conditions (SV1)–(SV3). It is known thatX is a Hermitian symmetric
space, and each Hermitian symmetric space arises in this way.

Let � � G.Q/ be an arithmetic subgroup. The Baily–Borel theorem [4] asserts that
S WD �nX has a natural structure of quasi-projective complex algebraic variety Such an
S is called a connected Shimura variety associated with .G; X/.

Let uWX ! S an denote the uniformization.
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Consider x 2 X . It gives rise to a morphism xW S ! GR. The Mumford–Tate group
of x, denoted by MT.x/, is defined to be the smallest Q-subgroup H of G such that
x.S/ � HR.

A point x 2 X is said to be special point if MT.x/ is a torus. A point in S.C/ is
said to be special if it is the image of a special point in X under the uniformization u. In
the particular case S D Ag , the moduli space of principally polarized abelian varieties,
special points of S are precisely the points parametrizing CM abelian varieties.

4.2. Arithmetic xQ-structure on ToX

By general theory of Shimura varieties (see also Faltings), the Shimura variety S has a
canonical model over xQ which we denote by S xQ. Moreover, the special point Œo� WD u.o/
is in S xQ.xQ/. The differential of the uniformization uWX ! S at o is then a C-linear map

 WToX �! TŒo�S:

Now TŒo�S has a natural xQ-structure TŒo�S D TŒo�S xQ˝ xQ C. Thus  defines a xQ-structure
on ToX as follows: For a xQ-basis ¹e1; : : : ; eN º of TŒo�S xQ, the set ¹ �1.e1/; : : : ; �1.eN /º
is a basis of ToX , and

LN
jD1
xQ �1.ej / defines a xQ-structure on ToX . It is called the

arithmetic xQ-structure on ToX .
The arithmetic xQ-structure on ToX can be characterized as follows: A subspace W

of ToX is rational for the arithmetic xQ-structure if and only if dim xQ. .W / \ TŒo�S xQ/ D
dimC  .W / (i.e.,  .W / is rational for TŒo�S xQ).

Using knowledge on Hecke correspondences, it is not hard to check that the arithmetic-
xQ structure on ToX does not depend on the choice of the arithmetic subgroup � � G.Q/.

4.3. Geometric xQ-structure on ToX

In this subsection, we define a natural xQ-structure on X (denoted by X xQ), via the Hodge
theoretic interpretation of the Borel embedding theorem given by Deligne, for which o
lies in X xQ.xQ/. This then endows ToX with a xQ-structure ToX xQ ˝ xQ C on ToX , called
the geometric xQ-structure.

Let xW S ! GR be an element of X . Let xCWGm;C � Gm;C ! GC be its extension
to C, and denote the associated character by

�x WGm;C �! GC; z 7�! xC.z; 1/:

For each rational representation .V; �/ of G and any x 2X , we have a Hodge structure
.VR; � ı x/ and an associated Hodge filtration F.x/ on VC induced by the cocharacter �x .
There exists a flag variety Fl.X;V / defined over C such that each F.x/ is parametrized by
a point in Fl.X;V /.C/. Moreover, this flag variety has a natural model over xQ, denoted by
Fl.X; V / xQ, such that the xQ-points correspond to filtrations of V xQ by xQ-subvector spaces.
Since o 2 X is a special point, F.o/ is a filtration by xQ-spaces; see [20, Prop. 3.7]. So we
have Fl.X; V / xQ ' GL.V xQ/=Stab.F.o//.
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The center Z.G/.R/ acts trivially on X . If the kernel of the representation �WG!
GL.V/ is contained in Z.G/, then the map

X �! Fl.X; V /; x 7�! F.x/ (4.1)

is injective. It factors through the G.C/-conjugacy class of �o in hom.SC;GC/, which
by the first part of the Borel embedding theorem (Theorem 4.1) can be realized as the
compact dual X_ of X . Now GR � GC

�
�! GL.VC/ induces injective maps

X D
G.R/C

StabG.R/C.o/
// X_ D

G.C/
StabG.C/.�o/

// Fl.X; V / D
GL.VC/

StabGL.VC/

�
F.o/

�
x
� // �x

� // F.x/:

Borel’s embedding theorem (Theorem 4.1) asserts that the first map realizes X as an open
subset (in the usual topology) ofX_. The second map makesX_ into a projective complex
algebraic subvariety of Fl.X; V /, which furthermore descends to xQ since �o descends
to xQ. In other words, there exists a subvariety X_

xQ
of FL.X; V / xQ, defined over xQ, such

that X_ D X_
xQ
˝ xQ C.

Now we are ready to define the xQ-structure on X by setting X.xQ/ WD X \X_
xQ
.xQ/D

X \ Fl.X; V / xQ.xQ/. We have seen that o 2 X.xQ/. Hence we obtain the geometric xQ-
structure on ToX as explained at the beginning of this section; it equals ToX_xQ.

We finish this subsection with the following remark. Notice that X_
xQ

does not depend
on the choice of the rational representation .V; �/ (with ker.�/ � Z.G/). In particular,
since G is a reductive group, we can take .V; �/ to be V D Lie Gad and

�WG �! Gad
D G=Z.G/ �! GL.Lie Gad/ (4.2)

where the second morphism is the adjoint representation.

4.4. Bounded realization of X

To make the correct analogue of Wüstholz’s analytic subgroup theorem in the Shimura
setting, it is important to work with the Harish–Chandra realization of X which includes
two aspects:

(i) identifies ToX with a certain abelian sub-Lie algebra mC of gC WD Lie.G.C//;
(ii) realizesX as a bounded symmetric domain D in mC'CN such that o becomes

the origin.

Here N D dim S D dimX . We will recall both aspects in the current subsection, with
Lemma 4.2 for (i) and Theorem 4.3 for (ii). Notice that this gives an inclusion ofX in ToX .
For the purpose of our paper, it is important to understand how the various xQ-structures
are related under the Harish–Chandra realization. More precisely, we will show that the
xQ-structure on X and the geometric xQ-structure on ToX , both given in the previous sub-
section, are compatible under this inclusion; see the paragraph below Proposition 4.4 for
more details.
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For our connected Shimura datum .G; X/, we fix the following notation. Denote by
G WDGder.R/C,GR WDGder

R andGC DGder
C . The Lie algebras are denoted by using fractur

letters: denote by Lie.Gder/ D g, Lie.G/ D gR and Lie.G.C// D gC .
The underlying space X is a G-orbit because the center of G.R/ acts trivially on X .
Our point o 2 X gives rise to a morphism oW S ! GR. By (SV2) in the definition

of Shimura data, o.
p
�1/ defines a Cartan involution � on gR. Write gR D k ˚m for

the associated Cartan decomposition, with k the eigenspace of 1 and m the eigenspace
of �1. ThenG DK1M withK1 D exp.k/ a maximal compact subgroup ofG andM D
exp.m/. Moreover, X D G=K1 as a Riemannian symmetric space. Denote by TR.X/ the
real tangent space of X at o. Then TR.X/ D m.

The Cartan involution � extends to gC and we have a corresponding Cartan decom-
position gC D kC CmC . Let gc WD k ˚

p
�1m � gC . Since G is semi-simple of non-

compact type, Gc WD exp.gc/ is a compact Lie group and X_ WD Gc=K1 is the compact
dual of the Riemannian symmetric space X D G=K1.

The complex structure on X is given by an endomorphism J of TR.X/ such that
J 2 D �Id. We have a decomposition

TR.X/˝R C D T 1;0.X/˚ T 0;1.X/

where J acts by multiplication by
p
�1 on T 1;0.X/ and by �

p
�1 on T 0;1.X/. In this

description T 1;0.X/ is identified with the holomorphic tangent space at o and there is a
real isomorphism TR.X/ ' T

1;0.X/. We have mC D mC ˚m� where J acts by multi-
plication by

p
�1 on mC and by �

p
�1 on m�. It is not hard to check that mC and m�

are abelian sub-Lie algebras, i.e., ŒmC;mC� D 0 and Œm�;m�� D 0.:
Let MC D exp.mC/, M� D exp.m�/, KC D exp.kC/ and PC D exp.kC Cm�/ D

KCM
�
C . Notice that PC is a subgroup ofGC because p WD kC ˚m� is a complex sub-Lie

algebra.

Theorem 4.1 (Borel embedding theorem). The embeddingGc!G.C/ induces a biholo-
morphism X_ D Gc=K1 �! G.C/=P.C/. The embeddingG! G.C/ induces an open
embedding

X D G=K1 �! G.C/=PC ' X
_;

realizing X as a open subset (in the usual topology) of its compact dual X_.

Let ToX be the holomorphic tangent space of X at o. It is canonically isomorphic to
ToX

_ under the Borel embedding theorem, which is furthermore canonically isomorphic
to gC=.kC Cm�/ D mC. Hence we have:

Lemma 4.2. Under the identification X D G=K1 and the Borel embedding theorem, we
have ToX D ToX_ D mC.

The Harish–Chandra embedding theorem states the following.

Theorem 4.3 (Harish–Chandra). The map

F WMC �KC �M
�
�! GC; .mC; k;m�/ 7�! mCkm�
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is a biholomorphism of MC �KC �M
� onto an open subset of G.C/ containing G. As

a consequence the map

�WmC �! G.C/=PC D X
_; mC 7�! exp.mC/PC (4.3)

is a biholomorphism onto a dense open subset of X_ containing X . Furthermore, D WD

��1.X/ is a bounded symmetric domain in mC ' CN and ��1.o/ D 0.

Up to now in this subsection, we have not used any assumption on the chosen point
o 2 X . From now on, recall that o 2 X.xQ/.

We start with understanding the geometric xQ-structure on ToX given in Section 4.3
from the Lie algebra point of view. Notice that the geometric xQ-structure on ToX and the
identification of mC with ToX from Lemma 4.2 together induce a natural xQ-structure on
mC, which we denote by mC

xQ;geom
.

Proposition 4.4. We have:

(i) mC
xQ;geom

D mC \ g xQ.

(ii) The map � from (4.3) descends to a polynomial morphism mC
xQ;geom

! X_.xQ/

defined over xQ.

Define the xQ-structure on D by setting D.xQ/ WD mC
xQ;geom

\D . Then by Proposi-

tion 4.4, � induces a bijection between D.xQ/ and X.xQ/.

Proof of Proposition 4.4. From the discussion above Lemma 4.2, the identification mC D

ToX is given by mC D gC=.kC Cm�/. Since o 2 X.xQ/, in the Cartan decomposition
kC , mC and m� descend to xQ. Hence

mC
xQ;geom

D g xQ=
�
.kC Cm�/ \ g xQ

�
D mC \ g xQ:

This proves part (i).
As mC is an abelian Lie algebra, the exponential map on mC is given by a polynomial

expression with coefficient in Q. Thus part (ii) holds true.

5. Bi- xQ-spaces arising from Shimura varieties: Proof of the splitting
Let .G;X/ be a connected Shimura datum, and fix a special point o2X . We have endowed
ToX with a bi-xQ-structure in Section 4, i.e., the arithmetic xQ-structure in Section 4.2 and
the geometric xQ-structure in Section 4.3. The goal of this section is to prove the following.

Theorem 5.1. The bi-xQ-structure on ToX thus defined is split.

Moreover, we will explain how the splitting of this bi-xQ-structure on ToX is obtained;
see Theorem 5.10.

By Theorem 5.1 and the general theory from Section 2, we have an isomorphism of
bi-xQ-structure

To.X/ ' .C
N
I˛1; : : : ; ˛N / with ˛i 2 C�=xQ�:
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If S DAg , then o corresponds to a CM abelian varietyAo and Lie.Ao/' .Cg I�1; : : : ; �g/

with ˛i 2 C�=xQ� by the results of Section 2.3. We will describe relations between the ˛i
and the �i using deformation theory in the next sections.

5.1. Notation

We retain the notation from Section 4.4 that g WD Lie.Gder/. The natural morphism Gder �

G! Gad D G=Z.G/ induces g D Lie.Gad/.
The point o 2 X defines a Cartan involution � of gR by (SV2) of Deligne’s defini-

tion of Shimura data. Write �C for its extension to gC . We have the following Cartan
decompositions

gR D k ˚m; gc D k C
p
�1m and gC D kC ˚mC;

with mC D mC ˚m�. See Section 4.4 for the notation.
Since o is a special point, its Mumford–Tate group MT.o/ is a torus. Let T be a max-

imal torus of G which contains MT.o/. Write Tad for its image under the morphism
G ! Gad. Then Tad is a maximal torus of Gad, and hence hR WD Lie Tad.R/ is a real
Cartan subalgebra of gR. Moreover, hR � k since k is the eigenspace of 1 for the Cartan
involution.

5.2. Decomposition of the Geometric xQ-structure on ToX

In this subsection, we will show that the ToX xQ, i.e., the geometric xQ-structure on ToX ,
can be decomposed into the direct sum of 1-dimensional xQ-sub-vector spaces, each being
an eigenspace for the action of a maximal torus in G which contains MT.o/.

5.2.1. Statement of the result. Let z be the center of k. Then z � hR since hR is abelian.
The following result can be found in [16, p. 54, Prop. 1].

Lemma 5.2. There exists z 2 z such that the J -operator on m, which induces the complex
structure on m, is defined by J:v D Œz; v� for any v 2 m.

Proposition 4.4 (i) gives the geometric xQ-structure on ToX a Lie algebra point of view,
i.e., it is naturally identified with mC

xQ;geom
D mC \ g xQ via Lemma 4.2.

Proposition 5.3. mC
xQ;geom

can be decomposed into the direct sum of 1-dimensional xQ-
spaces.

In fact, we will prove a more precise version, Proposition 5.5, which explains how this
decomposition is constructed. This construction is important.

5.2.2. Complex multiplication and root space decomposition. Let h_R be the dual space
of hR. Let ˆ � h_C be the set of roots of hC in gC . Then we have the root decomposition

gC D hC ˚

�M
�2ˆ

g
�
C

�
; (5.1)

where g
�
C D ¹x 2 gC W Œh; x� D �.h/x for all h 2 hCº has dimension 1. For each root

� 2 ˆ, let f� be a generator of the root space g
�
C .
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We say that a root � is compact (resp. non-compact) if f� 2 kC (resp. f� 2 mC).
Let ˆK be the set of compact roots and ˆM be the set of non-compact roots. We claim
that ˆ D ˆK [ ˆM . Indeed, since � is an involution fixing kC and hC � kC , we have
Œh;�.f�/�D �.h/�.f�/. Hence �.f�/ 2 g

�
C , and therefore �.f�/D �f� for some � 2 C�.

If f� D aKf�;K C aMf�;M under the Cartan decomposition with aK ; aM 2 C, then
�.f�/ D aKf�;K � aMf�;M . Then either aK D 0 or aM D 0, and hence we conclude
that f� is in kC or in mC .

Lemma 5.4. There exists a choiceˆC of positive roots, withˆDˆC
`
�ˆC, satisfying

the following property. For ˆCM WD ˆM \ˆ
C, we have

mC D
M
�2ˆCM

g
�
C: (5.2)

Before proving this lemma, let us explain how ˆC is constructed. Each � 2 ˆ takes
real values on

p
�1hR, so ˆ is a root system in

p
�1h_R. Since gC is semi-simple, ˆ

spans
p
�1h_R. From now on, we identify

p
�1h_R with

p
�1hR using the Killing form

on gR.2 Now consider the Weyl chambers in
p
�1hR with respect to the root system ˆ.

Take a Weyl chamber C such that �
p
�1z 2 xC , with z from Lemma 5.2. For each 


in the interior of C , the set ˆC WD ¹� 2 ˆ W �.
/ > 0º does not depend on the choice
of 
 . By theory of root systems, we have ˆ D ˆC

`
�ˆC. We will show that this is our

desired ˆC.

Proof. We start with the following observation: For any non-compact root �, either f� 2
mC or f� 2m�. Indeed by Lemma 5.2, Jf� D Œz; f� � for some z 2 z. Since hC � kC , we
have Œh; z� D 0 for all h 2 hC . Hence for each h 2 hC , we have Œh; Jf� � D Œh; Œz; f� �� D
Œz; Œh; f� ��, with the last equality induced by the Jacobi identity, and further equals�

z; �.h/f�
�
D �.h/Œz; f� � D �.h/Jf� :

Hence Jf� 2 g
�
C . So Jf� is a scalar of f� . Now that f� 2 mC D mC ˚m�, we have

f� D a
CmC C a�m� for some mC 2 mC, m� 2 m� and aC; a� 2 C. As mC is the J -

eigenspace associated with
p
�1 and m� is the J -eigensapce associated with �

p
�1, we

then have Jf� D
p
�1aCmC �

p
�1a�m�. But Jf� is a scalar of f� . So either aC D 0

or a� D 0. Hence we are done for the claim.
This shows that mCD˚�2ˆ0g

�
C for a subsetˆ0�ˆM . It remains to showˆ0DˆCM .

Assume � 2 ˆ0, i.e., f� 2 mC. Then

Œ�
p
�1z; f� � D �

p
�1Jf� D f� :

Thus �.�
p
�1z/ D 1 > 0. So � 2 ˆC by construction. This proves ˆ0 � ˆC \ˆM D

ˆCM .

2This Killing form is positive definite when restricted to
p
�1hR, and hence induces

p
�1h_R 'p

�1hR.
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Assume � 2 ˆCM . Then �.�
p
�1z/ � 0 by construction. If � 62 ˆ0, then

Œ�
p
�1z; f� � D �

p
�1Jf� D �f�

and hence �.�
p
�1z/ D �1 < 0, contradiction. This proves ˆCM � ˆ0.

Now we are done.

5.2.3. Decomposition over xQ. Another way to see the root decomposition (5.1) is by the
adjoint representation restricted to the maximal torus T and the character group X�.T/.
More precisely, the morphism G! Gad induces an inclusion X�.Tad/ � X�.T/. In fact,
Z.G/ < T and Tad D T=Z.G/, and hence

X�.Tad/ D
®
� 2 X�.T/ W �jZ.G/ � 1

¯
: (5.3)

The adjoint representation of Gad on g induces

gC D hC ˚

� M
�2ˆ.TC ;GC/

g
�
C

�
(5.4)

where

ˆ.TC;GC/�X
�.Tad

C /�X
�.TC/ and g

�
CD

®
x2gC WAd.t/.x/D�.t/x for all t 2T.C/

¯
has dimension 1.

By general theory of root decomposition for semi-simple groups, the sets of spaces
¹g
�
Cº�2ˆ and ¹g�Cº�2ˆ.TC ;GC/ coincide. More precisely, there exists a bijection ˆ '

ˆ.TC;GC/, � 7! �� , such that g
�
C D g

��
C . Both T and G are Q-groups, so there is a

natural isomorphism X�.T xQ/ D X�.TC/. Thus each g
�
C is naturally defined over xQ;

more precisely g
�
C D .g

�
C \ g xQ/˝ xQ C.

Let ˆCM be from Lemma 5.4. By abuse of notation, we still use ˆCM to denote the
image of ˆCM � ˆ under ˆ ' ˆ.TC;GC/ � X

�.TC/ D X
�.T xQ/.

Proposition 5.5. Denote by m
C;�
xQ;geom

WD g
�
C \ g xQ for each � 2 ˆCM . Then

mC
xQ;geom

D mC \ g xQ D
M
�2ˆCM

m
C;�
xQ;geom

; (5.5)

with dim xQ m
C;�
xQ;geom

D 1 for each � 2 ˆCM (equivalently, m
C;�
xQ;geom

˝C D g
�
C).

This proposition is a more precise version of Proposition 5.3.

Proof of Proposition 5.5. The second equality follows immediately from Lemma 5.4, and
we have seen dim xQ g

�
xQ
D 1 above. To see the first equality, recall that mC

xQ;geom
D ToX

_
xQ

.

The xQ-structure X_
xQ

is given by the flag variety associated with the representation (4.2),
which is precisely the representation giving the root decomposition (5.4). Hence we are
done.
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5.3. Decomposition of the arithmetic xQ-structure on ToX

In this subsection, we turn to the decomposition of the arithmetic xQ-structure on ToX into
the direct sum of 1-dimensional xQ-space.

We retain the notation from Section 4.1 and 4.2. Now S is a connected Shimura variety
associated with the connected Shimura datum .G; X/, and S has a canonical model S xQ
over xQ. As a complex variety S an D �nX for some arithmetic subgroup � � G.Q/.

From the uniformization uWX!S and the special point o2X , we get a xQ-point Œo� WD
u.o/2 S xQ.

xQ/. The arithmetic xQ-structure on ToX is the one obtained from �1.TŒo�S xQ/,
where  is the differential duWToX ! TŒo�S .

The point o 2 X gives rise to a Cartan decomposition gR D k ˚ m, and we have
mC DmC˚m�; see Section 4.4. By Lemma 4.2, mC can be identified with ToX . Hence
the arithmetic xQ-structure on ToX defined above yields a xQ-structure on mC, which we
denote by mC

xQ;arith
.

Let T be a maximal torus in G which contains MT.o/ such that Lie T.R/ is contained
in k modulo LieZ.G/.R/. In particular, T.R/o D o. Then any t 2 T.Q/ induces the
following commutative diagram, and o 2 X is mapped

X

u

��

X
idoo t � //

ut
��

X

u

��

o_

��

o
�oo � //
_

��

o_

��

S St WD .� \ t
�1�t/nX

Œid�
oo

Œt ��
// S Œo� Œot � WD ut .o/

�oo � // Œo�

(5.6)

where ut is the quotient. The theory of Shimura varieties asserts that every morphism in
the bottom line is algebraic, and is furthermore defined over xQ. The morphism Œid� induces
TŒot �St; xQ D TŒo�S xQ. Thus the differential of Œt �� induces a xQ-linear map

�t WTŒo�S xQ �! TŒo�S xQ:

By abuse of notation, we also use �t to denote its base change to C.

Proposition 5.6. Under the identification of ToX with mC from Lemma 4.2, we have

�t D  ı Ad.t/ ı  �1: (5.7)

Proof. Differentiating (5.6), we get that  �1 ı �t ı  WToX ! ToX is d.t �/o.
Use the notation from Lemma 4.2 and above. Recall our choice of T that Lie T.R/

is contained in k modulo LieZ.G/.R/. Since Œk;m� � m and ŒkC;m
C� � mC, we have

Ad.T.R//.m/ � m and Ad.T.C//.mC/ � mC.
For X DG=K1 as a Riemannian symmetric space, the real tangent space of X at o

is m. The map t �X!X is induced byG!G, g 7! tgt�1, and hence the differential of t �
at o is induced by Ad.t/Wm!m. Passing from R to C and considering the decomposition
of mC D mC ˚m�, we can conclude.

Let ˆCM be the subset of X�.T xQ/ defined as above Proposition 5.5. Then mC DL
�2ˆCM

g
�
C , with g

�
C D ¹x 2 gC W Ad.t/.x/ D �.t/x for all t 2 T.C/º of dimension 1.
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Proposition 5.7. For each � 2 ˆCM ,

m
C;�
xQ;arith

WD mC
xQ;arith

\ g
�
C

is a xQ-space of dimension 1 (equivalently, m
C;�
xQ;arith

˝C D g
�
C).

As a consequence, mC D
L
�2ˆCM

m
C;�
xQ;arith

.

Proof. By Proposition 5.6 and the definition of the arithmetic xQ-structure mC
xQ;arith

on mC,
T.Q/ acts on mC

xQ;arith
via t � x D Ad.t/.x/. For each � 2 ˆCM � X

�.T xQ/, the weight
space associated with � (defined as ¹x 2 mC

xQ;arith
W Ad.t/.x/ D �.t/x for all t 2 T.xQ/º)

is precisely m
C;�
xQ;arith

. Extend this notation and write m
C;�
xQ;arith

for the weight space associated

with � for each � 2 X�.T xQ/.
The general theory of algebraic tori and their character groups then asserts that

mC
xQ;arith

D

M
�2X�.T xQ/

m
C;�
xQ;arith

:

Tensoring C on both sides, we get

mC D
M
�2ˆCM

�
m
C;�
xQ;arith

˝C
�
˚

M
�62ˆCM

�
m
C;�
xQ;arith

˝C
�
:

By Lemma 5.4, mC D
L
�2ˆCM

g
�
C . Thus the conclusion follows because

m
C;�
xQ;arith

˝C � g
�
C for each � 2 X�.T xQ/:

5.4. Conclusion for Theorem 5.1

By Propositions 5.5 and 5.7, the bi-xQ-structure on ToX D mC is split. This establishes
Theorem 5.1. In fact, these two propositions yield a more precise statement as follows.

Let gR D k ˚m be the Cartan decomposition of gR WD Lie Gder.R/ associated with
the special point o 2 X by (SV2). Let T be a maximal torus in G. By Propositions 5.5
and 5.7, we have the following.

Theorem 5.10. Endow ToX with the bi-xQ-structure from Sections 4.2 and 4.3. Then T.Q/
acts on ToX via bi-xQ-automorphisms and the splitting under this action gives the bi-xQ-
splitting of ToX .

6. De Rham–Betti comparison in family and the Kodaira–Spencer
map

In this section, we recall the comparison of the relative de Rham cohomology and the Betti
cohomology for families of abelian varieties. These are useful in the computation of the
periods of the Siegel modular varieties in the next section Section 7.
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Let k � C be an algebraically closed field. Let S be a smooth irreducible variety and
let f WA! S be an abelian scheme of relative dimension g, all defined over k. Assume
that A carries a principal polarization, i.e., an isomorphism of abelian schemes �WA

�
�!At

where At is the dual abelian scheme of A=S .
Let uW zS ! S an be the uniformization in the category of complex analytic spaces. Set

A zS WD
zS �S A //

Qf
��

A

f

��
zS

u // S:

(6.1)

Then A zS=
zS is a family of abelian varieties which carries a principal polarization.

For each s 2 S.C/ (resp. Qs 2 zS ), denote by As WD f �1.s/ (resp. AQs WD Qf �1.Qs/).
Notice that for each Qs 2 zS , AQs can be canonically identified with Au.Qs/.

We have a canonical short exact sequence

0 �! f ��1S �! �1A �! �1A=S �! 0: (6.2)

It is known that the de Rham complex ��
A=S
D .OA ! �1

A=S
! �2

A=S
! � � � / is a

resolution of f �1OS .

6.1. De Rham cohomology and symplectic basis

The relative de Rham bundle on S is defined as follows. Let H1
dR.A=S/ WDR

1f��
�
A=S

; it
is a locally free sheaf of rank 2g, which we view as a vector bundle of rank 2g over S . We
have a subbundle �A WD f��

1
A=S

of H1
dR.A=S/! S which has rank g; over s 2 S.k/,

the fiber �A;s is precisely �As
and hence consists of invariant holomorphic differentials

on As .
Set

H1
dR.A zS=

zS/ WD u�H1
dR.A=S/ and �A zS

WD u��A: (6.3)

Restricted to each Qs 2 zS , the inclusion �A zS
� H1

dR.A zS=
zS/ becomes �AQs � H

1
dR.AQs/.

The advantage of using �A zS
� H1

dR.A zS=
zS/ instead of working directly on S is that

we can take global basis. More precisely, we have the following.

Construction 6.1. There exists a global basis ¹!1; : : : ; !gº of �A zS
,3 which can be com-

pleted into a global basis ¹!1; : : : ; !g ; �1; : : : ; �gº of H1
dR.A zS=

zS/, with �j .Qs/ being the
complex conjugate of !j .Qs/ for each s 2 zS .

Moreover, if Qs 2 zS satisfies that AQs is a CM abelian variety, then E WD End.AQs/˝Q
acts on �AQs and we can make a choice such that each !i .Qs/ is an eigenvector for this
action.

3Namely, the !j ’s are sections of �A zS
! zS such that

Pg
jD1 C!j .Qs/ D �AQs for each Qs 2 zS .
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Proof. The existence of ¹!1; : : : ; !gº holds true since zS is simply-connected. If AQs is a
CM abelian variety, then by looking at the CM type, we can make a choice such that each
!i .Qs/ is an eigenvector for the action of E on �AQs .

The set ¹�1; : : : ; �gº can be constructed as follows. Apply (6.1) and (6.3) to the dual
abelian scheme At! S . Then we obtain a family of abelian varieties At

zS
D zS �S At! zS

and a vector bundle �At
zS
! zS . The principal polarization �WA ' At induces an iso-

morphism ��W�At
zS
' �A zS

of vector bundles on zS , and hence we obtain a global basis
¹��.!1/; : : : ; �

�.!g/º of �At
zS
. For the exact sequence

0 �! �A zS
�! H1

dR.A zS=
zS/ �! Lie.At

zS
= zS/ D .�At

zS
/_ �! 0; (6.4)

¹2�i��.!1/
_; : : : ; 2�i��.!g/

_º lifts to a set of global sections ¹�1; : : : ; �gº ofH1
dR.A zS=

zS/.
For each s 2 zS , use � to denote the complex conjugation on H 1

dR.AQs/. Then �j .Qs/ D
�.!j .Qs// because �.�AQs /

�
�! Lie.At

Qs
/, �.!/ 7! 2�i.��!/_. We are done.

Remark 6.2. If s 2 S.k/ and Qs 2 zS lies above s (i.e., u.Qs/ D s), then the short exact
sequence (6.4) restricted over Qs becomes 0! �As

! H 1
dR.As/! Lie.At

s/! 0, which
is defined over k.

6.2. Betti (co)homology and symplectic basis

Let ZA be the locally constant sheaf of Z on A. Write R1f�ZA WD .R
1f�ZA/

_. Then
R1f�ZA is a local system on S such that .R1f�ZA/s D H1.As;Z/ for each s 2 S.k/.
Use V .A=S/ to denote the vector bundle over S associated with R1f�ZA ˝Z OS , i.e.,
V .A=S/ D Spec

S
.Sym.R1f�ZA ˝Z OS //.

Set
R1 Qf�Z WD u

�.R1f�ZA/ and V .A zS=
zS/ WD u�V .A=S/: (6.5)

Then R1 Qf�Z is a local system on zS with .R1 Qf�Z/Qs D H1.AQs;Z/ for each Qs 2 zS , and
V .A zS=

zS/! zS is a vector bundle whose sheaf of sections is R1 Qf�Z˝Z O zS .
Since zS is simply-connected, we can take a set of global sections ¹
1; : : : ; 
2gº

of R1 Qf�Z which is a global basis of V .A zS=
zS/ ! zS , i.e., we have the following zS -

isomorphism

C2g
� zS

�
��! V .A zS=

zS/;
�
.k1; : : : ; k2g/; Qs

�
7�!

2gX
jD1

kj 
j .Qs/: (6.6)

The basis ¹
1; : : : ; 
2gº can be furthermore chosen to be symplectic in the following
sense. The principal polarization on A zS endows, for each Qs 2 zS , .R1 Qf�Z/Qs DH1.AQs;Z/
with a symplectic form ‰Qs , which furthermore induces a pairing on Z2g via

Z2g
�
��! H1.AQs;Z/; .k1; : : : ; k2g/ 7�!

2gX
jD1

kj 
j .Qs/:

We say that ¹
1; : : : ; 
2gº is symplectic if this induced pairing on Z2g is
� 0 Ig

�Ig 0

�
for each

Qs 2 zS .
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Finally, notice that the natural differential map O zS ! �1
zS

gives a natural map

R1 Qf�Z˝O zS �! R1 Qf�Z˝�
1
zS
;

which in turn becomes a connection on V .A zS=
zS/_. Denote this. connection by d.

6.3. Gauss–Manin connection

Taking exterior powers, the canonical short exact sequence (6.2) yields a decreasing filtra-
tion��

A
D Fil0��

A
� Fil1��

A
� � � � on��

A
such that Filr��

A
=FilrC1��

A
D f ��rS ˝OA

���r
A=S

. Thus from 0! Fil1=Fil2 ! Fil0=Fil2 ! Fil0=Fil1 ! 0, we obtain

0 �! f ��1S ˝OA
���1A=S �! ��A=Fil2 �! ��A=S �! 0:

Thus we have a connection map

R1f��
�
A=S �! R2f�.f

��1S ˝OA
���1A=S / D �

1
S ˝R

1f��
�
A=S :

Recall the definition of the relative de Rham cohomology H1
dR.A=S/DR

1f��
�
A=S

. Then
the co-boundary map above is precisely the Gauss–Manin connection

rGMWH
1
dR.A=S/ �! H1

dR.A=S/˝�
1
S :

By abuse of notation, we also use rGM to denote the Gauss–Manin connection

H1
dR.A zS=

zS/ �! H1
dR.A zS=

zS/˝�1
zS
:

6.4. Comparison of de Rham and Betti cohomologies

By the theory of vector bundles with connections, there is an isomorphism of vector bun-
dles over zS

ˇW
�
H1

dR.A zS=
zS/;rGM

� �
��!

�
V .A zS=

zS/_; d
�
: (6.7)

Set�1.Qs/D
�R

l
!j .Qs/

�
1�j;l�g

,�2.Qs/D
�R

gCl

!j .Qs/
�
1�j;l�g

,N1.Qs/D
�R

l
�j .Qs/

�
1�j;l�g

,

and N2.Qs/D
� R

gCl

�j .Qs/
�
1�j;l�g

. Under the global basis ¹!1; : : : ; !g ; �1; : : : ; �gº of
H1

dR.A zS=
zS/ and the global basis ¹
_1 ; : : : ; 


_
2gº of V .A zS=

zS/_, the isomorphism ˇ is
represented by the matrix

ˇQs WD

�
�1.Qs/ N1.Qs/

�2.Qs/ N2.Qs/

�
(6.8)

over each Qs 2 zS , i.e., the following diagram (of zS -morphisms) commutes

H1
dR.A zS=

zS/
ˇ

�
// V .A zS=

zS/_

C2g � zS
�

.v;Qs/7!.ˇQsv;Qs/
//

'

OO

C2g � zS

'

OO

(6.9)
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where the left isomorphism is by sending

�
.l1; : : : ; lg ; lgC1; : : : ; l2g/; Qs

�
7�!

gX
jD1

lj!j .Qs/C

gX
jD1

lgCj�j .Qs/;

and the right isomorphism is defined by sending ..k1; : : : ; k2g/; Qs/ 7!
P2g
jD1 kj 


_
j .Qs/.

We take a closer look at this comparison. Let Qs 2 zS . Set �Qs WD �2.Qs/�1.Qs/�1. Under
the basis ¹
_1 .Qs/; : : : ; 


_
2g.Qs/º of V .A zS=

zS/_
Qs
D H 1.AQs;C/, we have

ˇQs.�AQs / D
®�
�1.Qs/x; �2.Qs/x

�
W x 2 Cg

¯
:

It is known that �1.Qs/ is invertible for each Qs 2 zS . Hence

ˇQs.�AQs / D
®
.x; �2.Qs/�1.Qs/�1x/ W x 2 Cg

¯
D
®
.x; �Qs � x/ W x 2 Cg

¯
: (6.10)

More precisely, ˇQs.�AQs / is the subspace of
L2g
jD1 C
_j .Qs/ consisting of the vectors of

the form
�

_1 .Qs/ � � � 
_g .Qs/

�
xC

�

_gC1.Qs/ � � � 
_2g.Qs/

�
�Qs � x, with x running over all

(column) vectors in Cg . Taking x to be the vector with 1 on the j -th entry and 0 elsewhere
with j running over ¹1; : : : ; gº, we obtain a basis of ˇQs.�AQs /. Notice that this basis is
precisely the columns vectors of

�

_1 .Qs/ � � � 
_g .Qs/

�
C
�

_gC1.Qs/ � � � 
_2g.Qs/

�
�Qs . The

comparison ˇQs induces the following commutative diagram

0 // �AQs
//

��

H 1
dR.AQs/

//

ˇQs

��

Lie.At
Qs
/ D �_

At
Qs

Ň
Qs

��

// 0

0 // ˇQs.�AQs /
// H 1.AQs;C/ // H 1.AQs;C/=ˇQs.�AQs /

// 0:

(6.11)

For each j 2 ¹1; : : : ; 2gº, write x
_j .Qs/ for the image of 
_j .Qs/ under quotient

H 1.AQs;C/ �! H 1.AQs;C/=ˇQs.�AQs /:

Then ¹x
_gC1.Qs/; : : : ; x

_
2g.Qs/º is a basis of H 1.AQs;C/=ˇQs.�AQs /.

The following lemma follows from a direct computation.

Lemma 6.3. We have

(i) Under the basis ¹!1.Qs/; : : : ; !g.Qs/º of �AQs and the (natural choice of) basis of
ˇQs.�AQs / below (6.10), the matrix for ˇQsj�AQs

is �1.Qs/.

(ii) Under the basis¹x�1.Qs/; : : : ;x�g.Qs/ºof Lie.At
s/and the basis¹x
_gC1.Qs/; : : : ; N


_
2g.Qs/º

of H 1.AQs;C/=ˇQs.�AQs /, the matrix for ŇQs is N2.Qs/ ��2.Qs/�1.Qs/�1N1.Qs/ D
N2.Qs/ � �QsN1.Qs/.

Recall from Construction 6.1 that x�j is .��!j /_, where �WA zS
�
�! At

zS
is the principal

polarization.

Proof. We only prove part (i). Part (ii) follows from a similar computation.
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From (6.8), we have�
ˇQs.!1.Qs// � � � ˇQs.!g.Qs//

�
D
�

_1 .Qs/ � � � 
_2g.Qs/

�
�

�
�1.Qs/

�2.Qs/

�
D
�

_1 .Qs/ � � � 
_g .Qs/

�
�1.Qs/C

�

_gC1.Qs/ � � � 
_2g.Qs/

�
�2.Qs/

D
�

_1 .Qs/ � � � 
_g .Qs/

�
�1.Qs/C

�

_gC1.Qs/ � � � 
_2g.Qs/

�
�Qs�1.Qs/

D
��

_1 .Qs/ � � � 
_g .Qs/

�
C
�

_gC1.Qs/ � � � 
_2g.Qs/

�
�Qs
�
��1.Qs/:

We are done.

6.5. Over CM fibers

In this subsection, we assume k D xQ. Fix a point Qs 2 zS such that AQs is a CM abelian
variety. Set E WD End.AQs/˝Q.

All CM abelian varieties over C are defined over xQ. So s WD u.Qs/ 2 S.xQ/. Moreover,
it is known that �Qs 2 Matg�g.xQ/. The basis ¹!1.Qs/; : : : ; !g.Qs/; �1.Qs/; : : : ; �g.Qs/º is by
choice a xQ-eigenbasis of H 1

dR.AQs/ for the action of E, and ¹
_1 .Qs/; : : : ; 

_
2g.Qs/º is a xQ-

basis of H 1.AQs; xQ/.
Let �1; : : : ; �g be the holomorphic periods of AQs .
Since �Qs 2 Matg�g.xQ/, the subspace

ˇQs.�AQs / D
®
.x; �Qsx/ W x 2 Cg

¯
ofH 1.AQs;C/D˚C
_j .Qs/ is rational for the xQ-structure given byH 1.AQs; xQ/˝C. Thus
H 1.AQs; xQ/ gives a xQ-structure onH 1.AQs;C/=ˇQs.�AQs /, for which ¹x
_gC1.Qs/; : : : ; x


_
2g.Qs/º

is a xQ-basis. Moreover, the action of E on H 1.AQs; xQ/ induces an action of E on
H 1.AQs;C/=ˇQs.�AQs / which preserves its xQ-structure. Therefore we can find a xQ-eigen-
basis ¹f1; : : : ; fgº of H 1.AQs;C/=ˇQs.�AQs / with respect to the action of E.

Lemma 6.4. Under the xQ-basis ¹x�1.Qs/; : : : ; x�g.Qs/º of Lie.At
Qs
/ and a choice of the xQ-

eigenbasis ¹f1; : : : ; fgº ofH 1.AQs;C/=ˇQs.�AQs / as above, the matrix for x̌Qs is diag.���11 ;

: : : ; ���1g /.

Proof. Since both bases are eigenbases for the actions of E and the linear map x̌Qs is E-
equivariant (because ˇQs is E-equivariant), the matrix for x̌Qs under these bases is diagonal
up to reordering f1; : : : ; fg . Call this matrix D.

Let us look at the matrixN2.Qs/��QsN1.Qs/. By our choice of the basis, �j .Qs/ is the com-
plex conjugate of!j .Qs/ for eachj2¹1; : : : ;gº. Since!1; : : : ;!g ;�1; : : : ;�g are eigenforms
for the CM action, the reciprocity law for the differential forms of the 1st and the 2nd
spaces implies that

R


�j .Qs/' 2�i=�j for any 
 2H1.AQs;Z/; see [5, p. 36, equation (3)]

for more details. So both N1.Qs/ and N2.Qs/ are in Matg�g.xQ/ � diag.���11 ; : : : ; ���1g /. So
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N2.Qs/ � �QsN1.Qs/ is in Matg�g.xQ/ � diag.���11 ; : : : ; ���1g / since �Qs 2 Matg�g.xQ/, i.e.,

N2.Qs/ � �QsN1.Qs/ DM � diag.���11 ; : : : ; ���1g /

for some M 2 Matg�g.xQ/. Notice that M is an invertible matrix, since x̌Qs is an isomor-
phism of C-vector spaces.

Set
�
v1.Qs/ � � � vg.Qs/

�
WD
�
x
_gC1.Qs/ � � � x


_
2g.Qs/

�
M . By Lemma 6.3 (ii), under the basis

¹x�1.Qs/; : : : ; x�g.Qs/º of Lie.At
s/ and the basis ¹v1.Qs/; : : : ; vg.Qs/º of H 1.AQs;C/=ˇQs.�AQs /,

the matrix for ŇQs is M � diag.���11 ; : : : ; ���1g /.
Now we have two xQ-bases ¹f1; : : : ; fgº and ¹v1.Qs/; : : : ;vg.Qs/º ofH 1.AQs;C/=̌ Qs.�AQs /.

Let T 2 GLg.xQ/ be the transition matrix. Then D D .TM/ � diag.���11 ; : : : ; ���1g /. So
TM is diagonal because both D and diag.���11 ; : : : ; ���1g / are diagonal. Thus we can
conclude by replacing each fj by a suitable xQ-multiple.

Remark 6.5. Similar to the proof of Lemma 6.4 and using Lemma 6.3 (i), we can prove
the following assertion. Under the basis ¹!1.Qs/; : : : ; !g.Qs/º of �AQs and a xQ-eigenbasis
¹e1; : : : ; egº of ˇQs.�AQs /, the matrix for ˇQsj�AQs

is diag.�1; : : : ; �g/.
Therefore the matrix for ˇQs is diag.�1; : : : ; �g ; ���11 ; : : : ; ���1g / under suitable xQ-

bases of H 1
dR.AQs/ and H 1.AQs;C/.

6.6. Kodaira–Spencer map

Consider the maps defined over the field k

�A � H1
dR.A=S/

rGM
���! H1

dR.A=S/˝OS �
1
S �! H1

dR.A=S/=�A ˝OS �
1
S

' Lie.At=S/˝OS �
1
S : (6.12)

Thus for the tangent bundle TS D .�1S /
_ we have

TS �! Lie.At=S/˝OS Lie.A=S/: (6.13)

Using the principal polarization �WA ' At, the right-hand side is isomorphic (over OS )
to Lie.A=S/˝OS Lie.A=S/ D Sym2

OS
Lie.A=S/

L
Alt2OS Lie.A=S/. We introduce the

following (non-standard) notation:

S2 Lie.A=S/ WD .��; 1/
�
Sym2

OS
Lie.A=S/

�
� Lie.At=S/˝OS Lie.A=S/: (6.14)

It is known that the image of (6.13) lies in S2 Lie.A=S/, i.e., we have

KSWTS �! S2 Lie.A=S/ � Lie.At=S/˝OS Lie.A=S/: (6.15)

Let s 2 S.k/. Then (6.15) restricted over s becomes

KSs WTsS �! S2 Lie.As/ � Lie At
s ˝ Lie As : (6.16)

We close this section by the following discussion, which will be used in the computa-
tion of the periods of the Siegel modular varieties.
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For the universal covering uW zS ! S , the sequence of maps (6.12) exists with A=S

replaced by A zS=
zS . Then combined with the isomorphism ˇW .H1

dR.A zS=
zS/; rGM/

�
�!

.V .A zS=
zS/_; d/ from (6.7), we obtain

�A zS

� � //

��

H1
dR.A zS=

zS/
rGM //

ˇ

��

H1
dR.A zS=

zS/˝�1
zS

//

ˇ˝id
��

H1
dR.A zS=

zS/=�A zS
˝�1

zS
D Lie.At

zS
/˝�1

zS

Ň˝id
��

ˇ.�A zS
/
� � // V .A zS=

zS/_
d // V .A zS=

zS/_ ˝�1
zS

// V .A zS=
zS/_=ˇ.�A zS

/˝�1
zS
;

(6.17)

from which we get the commutative diagram

T zS
KSıdu //

D

��

Lie.At
zS
/˝ Lie.A zS /

Ň˝ˇ_

��

T zS //
V .A zS=

zS/_

ˇ.�A zS
/
˝ ˇ.�A zS

/_:

(6.18)

Take Qs 2 u�1.s/. Then (6.18) yields, after the natural identification AQs D As under u,

TsS
KSs // Lie.At

Qs
/˝ Lie.AQs/

Ň
Qs˝ˇ

_
Qs

��

TQs zS

du '

OO

// H
1.AQs ;C/
ˇQs.�AQs

/
˝ ˇQs.�AQs /

_:

(6.19)

7. Periods of the Siegel modular variety

In this section, we turn to the Siegel case. Let Ag be the moduli space of principally
polarized abelian varieties of dimension g. The associated connected Shimura datum is
.GSp2g ;Hg/, where Hg is the Siegel upper half space ¹� 2Matg�g.C/ W � D �|; Im � >0º.

Let o 2 Hg be a CM point. The goal of this section is to compute the periods of the
(split) bi-xQ-structure on ToHg defined in Section 4, or more precisely in Sections 4.2
and 4.3.

The abelian variety Ao WD Cg=.Zg C oZg/ is a CM abelian variety. Let �1; : : : ; �g
be its holomorphic periods as defined in Convention 1.1.

Theorem 7.1. The periods of the (split) bi-xQ-structure on ToHg defined in Section 4 are
�j �j 0=� with 1 � j � j 0 � g.

Our proof of Theorem 7.1 uses the Kodaira–Spencer map and does not use the root
space decompositions discussed in Sections 5.2 and 5.3. At the end of this section, we will
show in Section 7.4 that the computation with the Kodaira–Spencer map is compatible
with the root space decomposition.
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We have the following more precise formulation of Theorem 7.1 in view of the lan-
guage of split bi-xQ-structures introduced in the current paper. By dimension comparison,
the Kodaira–Spencer map (6.16) applied to the universal abelian variety Ag ! Ag at the
point Œo� 2 Ag.xQ/ gives an isomorphism KSŒo�W TŒo�Ag ' S2 Lie.Ao/ over xQ. Thus for
the uniformization uWHg ! Ag , the composite

KSoWToHg
du
�! TŒo�Ag

�
���!
KSŒo�

S2 LieAo

is an isomorphism of C-vector spaces. The split bi-xQ-structure on LieAo ' Cg given by
Section 2.3 induces a natural split bi-xQ-structure on S2 LieAo.

Theorem 7.10. KSo induces an isomorphism of bi-xQ-structures between ToHg ˝ L.1/

and S2 LieAo, where L.1/ is the Tate twist from Definition 2.7.

7.1. Universal abelian variety and eigen-symplectic bases

By abuse of notation, denote by Ag be the fine moduli space of principally polarized
abelian varieties of dimension g with level-`-structure for some ` � 3. Then there exists
a universal abelian variety

f WAg �! Ag ;

which is an abelian scheme of relative dimension g defined over xQ and is endowed with
a principal polarization �WAg

�
�! At

g ; here At
g ! Ag is the dual abelian scheme.

For each � 2 Hg , denote by A� the abelian variety parametrized by Œ� �. If Œ� � D Œ� 0� 2
Ag.k/ (for an algebraically closed field k � C), then A� and A� 0 are k-isomorphic as
polarized abelian varieties. All discussions in Section 6 apply to k D xQ, .� WA! S/ D

.f WAg ! Ag/ and .uW zS ! S an/ D .uWHg ! Aan
g /. In particular, one has

• a symplectic global basis ¹!1; : : : ; !g ; �1; : : : ; �gº of H1
dR.AHg=Hg/ ! Hg as in

Construction 6.1, such that when evaluated at o we get precisely the !j .o/’s as above
Theorem 7.1;

• a symplectic global basis ¹
1; : : : ; 
2gº as in (6.6) of the vector bundle V .AHg=Hg/

over Hg (whose fiber over each � 2 Hg equals H1.A� ;C/).

7.2. Realization of Hg

Let

.ƒ;‰/ WD

�
Z2g ; 2�i

�
0 Ig
�Ig 0

��
;

where ‰ is viewed as a symplectic form on ƒ_C . Moreover, let E act on ƒ_Q via the
isomorphism ƒ_Q ' H

1.Ao;Q/.
Let H_g be the parametrizing space of Lagrangians in ƒ_C , i.e.,

H_g D
®
ŒW � ƒ_C� W dimC W D g; ‰.W;W / D 0

¯
:

Then H_g has a natural xQ-structure, for which a point ŒW � ƒ_C� 2 H_g is a xQ-point if and
only ifW descends to xQ, i.e., there exists a xQ-subspace V �ƒ_

xQ
such thatW D V ˝ xQ C.
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Construction 7.2. The map (4.1) for the Siegel case (in particular, X D Hg ) factors
through an injective map �WHg ! H_g with the following property: For any � 2 Hg , the
entries of � are in xQ if and only if �.�/ is a xQ-point.4

This construction of � is important. It implies that the xQ-structure on Hg constructed
in Section 4.3, denoted by Hg; xQ, is equivalent to the following simple construction: Hg is
a semi-algebraic open subset of ¹� 2Matg�g.C/ W � D �|º D ¹� 2Matg�g.xQ/ W � D �|º
˝ xQ C, and a point � 2 Hg is a xQ-point if all entries of � are in xQ.

Proof. The vector bundle of Betti cohomology in family V .AHg=Hg/
_ over Hg can be

trivialized by the dual basis ¹
_1 ; : : : ; 

_
2gº in a similar way as (6.6)

ƒ_C �Hg
�
��! V .AHg=Hg/

_;
�
.k1; : : : ; k2g/; �

�
7�!

2gX
jD1

kj 

_
j .�/: (7.1)

We work under this identification. Then the comparison between de Rham and Betti coho-
mologies (6.7) (applied to the current situation) becomes

ˇWH1
dR.AHg=Hg/

�
��! ƒ_C �Hg :

For each � 2 Hg , set ˇ� WH 1
dR.A� /

�
�! ƒ_C to be the restriction of this comparison over � .

We claim that ˇ� .�A� / is a Lagrangian. By (6.10), we have

ˇ� .�A� / D
®
.x; �x/ W x 2 Cg

¯
(7.2)

under the basis ¹
_1 .�/; : : : ; 

_
2g.�/º of ƒ_C . Since dimˇ� .�A� / D g, it suffices to prove

‰.ˇ�.�A� /;ˇ�.�A� //D0. This follows from the direct computation .x; �x/
� 0 Ig
�Ig 0

�
.x; �x/|

D 0. Hence we are done.
Now we are ready to define

�WHg �! H_g ; � 7�!
�
ˇ� .�A� / � ƒ

_
C

�
: (7.3)

It is clear that (4.1) factors through � and that � is injective.
By (7.2), � has entries in xQ if and only if ˇ� .�A� / is defined over xQ. Hence the entries

of � are in xQ if and only if �.�/ is a xQ-point. We are done.

7.3. Proof of Theorems 7.1 and 7.10

From
Hg

u

��

� // H_g ; o_

��

� // �.o/ D Œˇo.�Ao/ � ƒ
_
C�

Ag Œo�

4In fact, H_g is the compact dual of Hg , with � the map in the Borel embedding theorem.
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we get

ToHg

du
��

d� // T�.o/H
_
g

TŒo�Ag :

The Kodaira–Spencer map (6.16) applied to Ag ! Ag at the point Œo� 2 Ag.xQ/ gives
KSŒo�WTŒo�Ag! S2Lie.Ao/. In this particular case (of moduli space), this map is injective;
moreover, both sides have the same dimension g.g C 1/=2. Hence KSŒo� is an isomor-
phism of xQ-vector spaces. To sum it up, we have

KSŒo�WTŒo�Ag ' S2 Lie.Ao/ � Lie.At
o/˝ Lie.Ao/ (7.4)

and KSŒo� is defined over xQ.
By knowledge on the tangent space of Grassmannian, we have

T�.o/H
_
g � Hom

�
ˇo.�Ao/;ƒ

_
C=ˇo.�Ao/

�
D

ƒ_C
ˇo.�Ao/

˝ ˇo.�Ao/
_: (7.5)

Recall from (6.11) the map ˇoWH 1
dR.Ao/! H 1.Ao;C/ D ƒ_C and the induced maps

x̌
oWLie.At

o/ �! ƒ_C=ˇo.�Ao/; ˇ_o Wˇo.�Ao/
_
�! LieAo D �_Ao : (7.6)

Apply (6.19) to . zS; Qs/ D .Hg ; o/, and notice that the bottom arrow in this case is
precisely d�WToHg ! T�.o/H

_
g composed with (7.5). Thus du ı .d�/�1 is the restriction of

x̌�1
o ˝ ˇ

_
o .

By Lemma 6.4, x̌�1o is diagonalizable under xQ-bases to be diag.�1=�; : : : ; �g=�/. By
Remark 6.5, ˇ_o is diagonalizable under xQ-bases to be diag.�1; : : : ; �g/. Hence under
suitable xQ-bases of T�.o/H_g and TŒo�Ag , the matrix of the linear map du ı .d�/�1 is
diag.�j �j 0=�/1�j�j 0�g .

This yields Theorem 7.1, because the geometric xQ-structure on ToHg is by definition
given by the xQ-structure on T�.o/H_g .

We can do better. The computation above and (6.19) applied to . zS; Qs/ D .Hg ; o/ yield
the following assertion: KSŒo� maps a 1-dimensional bi-xQ-subspace of TŒo�Ag with period
�j �j 0=� to a 1-dimensional bi-xQ-subspace of S2 Lie.Ao/ with period �j �j 0 . This proves
Theorem 7.10. We are done.

Remark 7.3. By general knowledge on symplectic vector spaces, for the Lagrangian
ˇo.�Ao/ ofƒ_C we have a decompositionƒ_C D ˇo.�Ao/

L
ˇo.�Ao/

_ given as follows:
take a xQ-basis ¹x1; : : : ;xgº of ˇo.�Ao/, and then one has a dual xQ-basis for a complement
defined by ‰.xj ; yl /D 2�iıjl , and this complement is canonically isomorphic over C to
ˇo.�Ao/

_. Over xQ, this decomposition then becomes ƒ_
xQ
D ˇo.�Ao/

L
2�iˇo.�Ao/

_.
Hence we have a canonical isomorphism

2�iˇo.�Ao/
_
D ƒ_C=ˇo.�Ao/ (7.7)

defined over xQ.
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We close this subsection with the following (slightly more precise) formulation of
Theorem 7.1, which follows immediately from the computation above. Denote by Hg; xQ
the xQ-structure on Hg explained below Construction 7.2. Consider the tangent of the
uniformization u at the CM point o

 WD duWToHg �! TŒo�Ag :

Theorem 7.100. Under a suitable xQ-basis of ToHg D ToHg; xQ ˝ xQ C and a suitable xQ-
basis of TŒo�Ag D TŒo�Ag; xQ ˝ xQ C, the matrix of  is diag.�j �j 0=�/1�j�j 0�g .

7.4. In relation to the root space decomposition

Let T be a maximal torus which contains MT.o/. The last sentence of Remark 6.5 yields
a Z-basis ¹"�0 ; "

�
1 ; : : : ; "

�
gº of X�.T/ such that "�j .ˇo/ D �j for each j 2 ¹1; : : : ; gº and

"�0 is a character of Gm. The root system ˆ.T;GSp2g/ � X
�.T/ defined in [6, §13.18] is

¹"�j C "
�
j 0 W 1 � j � j

0 � gº
S
¹"�j � "

�
j 0 W 1 � j < j

0 � gº. The set ˆCM defined above
Proposition 5.5 is ¹"�j C "

�
j 0 W 1 � j � j

0 � gº.

Theorem 7.4. The 1-dimensional bi-xQ subspace of ToHg associated with "�j C "
�
j 0 has

period �j �j 0=� .

Proof. All vector spaces in the proof are C-spaces unless otherwise stated. We start by
defining an action of T.Q/ on LieAo D �_Ao . By (7.2), we have ˇo.�Ao/ D ¹.ox; x/ W
x 2 Cgº under the basis ¹
_gC1.o/; : : : ; 


_
2g.o/; 


_
1 .o/; : : : ; 


_
g .o/º of H 1.Ao;C/. The

action of GSp2g.R/
C on Hg is defined by

�
A B
C D

�
� D .A� C B/.C� C D/�1. By the

discussion at the end of Section 5.1, T.R/o D o. So for each
�
A B
C D

�
2 T.R/, we have

.AoC B/.CoCD/�1 D o, and hence�
A B

C D

� �
ox
x

�
D

�
.AoC B/x
.CoCD/x

�
D

�
oy
y

�
2 ˇo.�Ao/

with y D .Co C D/x. This defines an action of T.Q/ on LieAo, and hence an action
of T.Q/ on S2 LieAo. Notice that the Kodaira–Spencer map KSo is T.Q/-equivariant
because every morphism on the bottom line of (6.17), when restricted to o, is T.Q/-
equivariant. Thus the 1-dimensional bi-xQ subspace of ToHg associated with "�j C "

�
j 0 is

the eigenspace of "�j C "
�
j 0 for the action of T.Q/ on S2 LieAo.

Recall the bi-xQ structure on LieAo defined in Section 2.3. By the first part of Re-
mark 6.5 and the choice of "�j , the eigenspace of "�j for the action of T.Q/ on LieAo is
the 1-dimensional bi-xQ subspace of LieAo associated with �j . Hence we are done by the
conclusion of the previous paragraph.

Theorem 7.4 yields the following immediate corollary. By a root space, we mean a
1-dimensional bi-xQ-subspace of ToHg associated with some "�j C "

�
j 0 .

Corollary 7.5. The following statements are equivalent:

(i)
�j �j 0

�k�k0
62 xQ� for all distinct pairs ¹j; j 0º and ¹k; k0º;
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(ii) each 1-dimensional bi-xQ-subspace of ToHg is a root space;

(iii) each bi-xQ-subspace of ToHg is the direct sum of root spaces.

In particular, if there exists a special subvariety (i.e., a connected sub-Shimura variety)
S of Ag passing through Œo� such that TŒo�S is not the direct sum of root spaces of TŒo�Ag ,
then the holomorphic periods of Ao satisfy some elementary non-trivial quadratic relation
as defined in Definition 1.2. We shall elaborate this phenomenon in a subsequent work
[12, §9] by the first- and second-named authors.

8. Shimura curves and Hilbert modular varieties

Let S be a connected Shimura variety associated with a connected Shimura datum .G;X/.
Let SH be a connected Shimura subvariety associated with .H; XH/. We have seen that X
can be endowed with a split bi-xQ-structure in Section 4, and the restriction of this split
bi-xQ-structure on XH gives precisely the bi-xQ-structure defined for XH in Section 4. In
particular, each period of XH is a period of X by Proposition 2.5 (iii).

In this section, we see two aspects of this discussion. The first is about Shimura curves,
for which we use Corollary 3.1 (which is a consequence of WAST) and our Theorem 7.1
to give a new proof of a conjecture of Lang. The second is to compute the periods of
Hilbert modular varieties.

8.1. Shimura curves

Lang [14] raised the following transcendence question in uniformization theory. Let C
be a smooth projective algebraic curve of genus > 1 defined over xQ. Suppose that the
universal holomorphic covering map

'WE� WD
®
z 2 C W jzj < �

¯
�! C an (8.1)

is normalized in such a way that '.0/ 2 C.xQ/ and that '0.0/ 2 xQ. Is the covering radius
� then a transcendental number?

This question was answered affirmatively by Cohen and Wolfart [8] when C is a
Shimura variety of dimension 1 and '.0/ is a CM point. Apart from Wüstholz’s result
on transcendental numbers, their proof relies on some hard computation of Shimura [18,
Thm. 1.2, Thm. 7.1, Thm. 7.6].

We hereby give a new and easier proof using the framework of this paper which does
not use Shimura’s computation. More precisely we use the bi-xQ-structure on the Hermi-
tian symmetric space and our Theorem 7.1, in addition to the consequence of Wüstholz
prsented in our paper (Corollary 3.1).

Proposition 8.1. The question of Lang mentioned in the paragraph of (8.1) has an affir-
mative answer if C is a Shimura variety of dimension 1 and '.0/ is a CM point.
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Proof. By general theory of Shimura varieties, C is of abelian type, i.e., there exists a
connected Shimura subvariety C 0 of Ag (for some g � 1) of dimension 1 together with
a finite map C 0 ! C . Moreover, it is known that this finite map is defined over xQ, and
hence it suffices to prove the result with C replaced by C 0.

Now let us explain how the uniformization ' is obtained from the Shimura setting.
Take o 2 Hg which maps to '.0/ under the uniformization Hg ! Ag . Let Ao be the CM
abelian variety parametrized by '.0/, and let �1; : : : ; �g be its holomorphic periods.

Write Dg for the bounded realization of Hg based on o.
As a sub-Shimura variety of Ag of dimension 1, C D �nD where D D ¹z 2 C W

jzj < 1º is the Poincaré unit disk and � is a subgroup of Sp2g.Z/. The Shimura sub-
datum with which C is associated can be recovered as follows. Let H0 be the neutral
component of the Zariski closure of � in GSp2g , then it is known that D D H0.R/Co.
Now let HDGm �H0 < GSp2g . Then D D H.R/Co� GSp2g.R/

CoDDg , and thus we
have the sub-Shimura datum .H;D/ of .GSp2g ;Dg/. Now C is associated with .H;D/,
and we have a uniformization uC WD ! C D �nD .

Now ' from (8.1) is the composite of ��1�WE�!D and uC . Thus '0.0/D ��1u0C .0/.
Since '0.0/ 2 xQ by assumption, we have that � D u0C .0/ up to xQ�. Hence it suffices to
prove that u0C .0/ is a transcendental number.

By Theorem 7.1 (and the formulation Theorem 7.100) and Proposition 2.5 (iii), we
have u0C .0/ D �j �j 0=� for some j and j 0. Thus u0C .0/ is a transcendental number by
Corollary 3.1. We are done.

8.2. Hilbert modular varieties

Let F be a totally real field with ŒF WQ�D g. Let G WDGm �ResF=QSL2. Then Gder.Q/D
SL2.F /, and Gder.R/ D

Q
� WF!R SL2.R/. For the Siegel upper half plane H D ¹� 2 C W

Im� > 0º, G WD G.R/C acts on Hg componentwise. The pair .G;Hg/ is a connected
Shimura datum. For each congruence subgroup � of G.Q/, the connected Shimura variety
�nHg is, by Baily–Borel, the analytification of an algebraic variety, which furthermore
is defined over xQ. This Shimura variety, which we denote by HF , is called the Hilbert
modular variety defined by G (or, more simply, associated with F ). Then HF is a Shimura
subvariety of Ag .

Let OF be the ring of integers of F . An abelian scheme A!S of relative dimension g
is said to have RM by F if there exists an injective ring homomorphism �WRF ,! EndS .A/
(for some order RF in OF ) such that Lie.A=S/ is a locally free RF ˝ OS -module. It is
known that the Hilbert modular variety HF parametrizes abelian varieties with RM by F
and some extra structures.

The goal of this section is to prove the following theorem. Let Œo� 2 HF .xQ/ be a CM
point. LetAo be the CM variety parametrized by Œo�, and let �1; : : : ; �g be the holomorphic
periods of Ao as defined in the introduction (Convention 1.1).

Let o 2 Hg be a point such that o 7! Œo�. The natural inclusion Hg � Hg induces
ToH

g � ToHg . Thus the split bi-xQ-structure on ToHg defined in Section 4 gives a split
bi-xQ-structure on ToHg .
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Theorem 8.2. Under suitable xQ-bases of

ToH
g
D ToH

g
xQ
˝ xQ C and TŒo�HF D TŒo�HF; xQ ˝ xQ C;

the matrix of the linear map du is 1
�

diag.�2j /j2¹1;:::;gº. In particular, the periods of the
split bi-xQ-structure on ToHg are �2j =� for j 2 ¹1; : : : ; gº.

Proof. We write for simplicity H for HF .
The following holds true by the modular interpretation of H above. For a suitable � ,

the Hilbert modular variety H is a fine moduli space with the following property: the
universal family A ! H satisfies that Lie.A=H / is a locally free RF ˝ OS -module.
Hence Lie.Ao/ is a freeRF -module. But Lie.Ao/ has dimension g andRF is a Z-module
of rank g. so Lie.Ao/ has rank 1 as an RF -module. We write Lie.Ao/ D RF f with f a xQ-
element of Lie.Ao/.

As H � Ag , the Kodaira–Spencer map (7.4) gives, in combination with At
o ' Ao,

TŒo�H � TŒo�Ag
KSŒo�
���! Lie.Ao/˝ Lie.Ao/:

TheRF -action on each fiber of Lie.A=H / (and of Lie.At=H /) then implies KSŒo�.TŒo�H /

� Lie.Ao/ ˝RF Lie.Ao/. By comparing dimensions of both sides, we have equality.
Hence we have the isomorphism defined over xQ

KSŒo�WTŒo�H
�
��! Lie.Ao/˝RF Lie.Ao/:

Similarly, by using (7.5) and taking into consideration of (7.7) we get

ToH
g
D 2�iˇo.�Ao/

_
˝RF ˇo.�Ao/

_:

Similarly to Lie.Ao/, ˇo.�Ao/
_ is a free RF -module of rank 1. Write ˇo.�Ao/

_ D RF e
with e a xQ-element of ˇo.�Ao/

_. The following diagram commutes, with all horizontal
maps defined over xQ:

ToH
g D //

du

��

2�iˇo.�Ao/
_ ˝RF ˇo.�Ao/

_
2�if1e˝f2e7!2�if1f2e

�
//

1
2�i ˇ

_
o ˝ˇ

_
o

��

2�iˇo.�Ao/
_

1
2�i .ˇ

_
o /
2

��

TŒo�H
KSŒo�
�

// Lie.Ao/˝RF Lie.Ao/
f1f˝f2f7!f1f2f

�
// Lie.Ao/:

Thus the conclusion follows from the first part of Remark 6.5.

9. Some general discussion on CM points

In this section, we gather some preliminary results regarding the Mumford–Tate group of
CM abelian varieties and on CM points in Ag . They will be used in later discussions.
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9.1. Mumford–Tate group of CM abelian varieties

Let A be a CM abelian variety, and let To WD MT.A/. Let E WD End.A/˝Z Q.
If A has no square factors, then E D E1 � � � � � Ek is a product of CM fields. In this

case, there exists an element � 2 E such that N� D ��. Then E can be endowed with the
Q-symplectic form

hx; yi WD TrE=Q. Nx�y/:

This makes .E; h; i/ '
�
Q2g ;

� 0 Ig
�Ig 0

��
into a symplectic space. Set GUE to be the sub-

group of GSp2g generated by Gm D Z.GSp2g/ and

UE WD ¹x 2 ResE=QGm;E W x Nx D 1º:

Lemma 9.1. Assume A has no square factors. Then GUE is a maximal torus of GSp2g
and equals ZGSp2g .To/.

Proof. For each j 2 ¹1; : : : ; kº, let Fj be the largest totally real subfield of Ej . Set F WD
F1 � � � � � Fk . Then

UE D ker.NmWResE=QGm;E �! ResE=QGm;F/:

Hence UE is a torus. Moreover,
Pk
jD1ŒFj W Q� D g. So dim UE D g.

Therefore GUE is a torus of dimension g C 1. But rk GSp2g D g C 1. So GUE is a
maximal torus of GSp2g .

Now let us prove GUE D ZGSp2g .To/. Since To < GUE and GUE is a torus, we have
GUE < ZGSp2g .To/. Hence it suffices to prove that ZGSp2g .To/ is a torus.

Write V D H1.A;Q/, which is a Q-Hodge structure of type .�1; 0/C .0;�1/ and
whose Mumford–Tate group is To. Then for any ˛ 2End.VQ/, we have ˛ 2EndQ-HS.V / if
and only if ˛ commutes with all elements in To.Q/. Thus EndQ-HS.V /D LieZGSp2g .To/.
Observe that EndQ-HS.V / is abelian because A has no square factors. So ZGSp2g .To/ is a
torus. We are done.

9.2. Weyl points

Let Œo� 2 Ag.xQ/ be a CM point, and let Ao be the associated CM abelian variety. Assume
that Ao is simple. Then E WD End0.Ao/ is a CM field. Let F be the maximal totally real
subfield of E, then ŒF W Q� D g and ŒE W F � D 2.

Write Ec and F c for the Galois closures of E and F in xQ. Then Gal.F c=Q/ < Sg

and Gal.Ec=Q/ < .Z=2Z/g Ì Sg .
The point Œo� is called a Weyl point (or Galois generic) if Gal.Ec=Q/D.Z=2Z/gÌSg .

Proposition 9.2. For each Weyl point Œo� 2 Ag.xQ/, there are precisely 3 special subvari-
eties of Ag which pass through Œo�: ¹Œo�º, Ag , and the Hilbert modular variety defined by
Gm � ResF=QSL2.5

5For readers who are not familiar with this terminology, we refer to Section 8.2 for the definition.
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Proof. The result is clearly true if g D 1. From now on, assume g � 2.
Let S be a special subvariety of Ag , which passes through Œo�, associated with the

connected Shimura datum .H; XH/. Assume S 6D ¹Œo�º.
Let To WD MT.Œo�/. Then To < H, To is a maximal torus of GSp2g , and the Galois

closure of the splitting field of To is Ec . There exists a maximal torus T0o of Sp2g such
that To D Gm � T0o, where Gm D Z.GSp2g/. In particular, dim T0o D g.

We claim that T0o � Hder. Indeed, T0o \Hder is a non-trivial subtorus of T0o, and hence
T0o D .T0o \ Hder/T00o for some subtorus T00o of T0o. Let r1 WD dim.T0o \ Hder/ and r2 WD
dim T00o. Let Lc1 (resp. Lc2) be the Galois closure of the splitting field of T0o \ Hder (resp.
of T00o). Then Gal.Lci =Q/ < .Z=2Z/

ri Ì Sri for i 2 ¹1; 2º. Since Ec is the Galois closure
of the splitting field of T0o, we then have that

Gal.Ec=Q/ <
2Y
iD1

.Z=2Z/ri Ì Sri :

But Gal.Ec=Q/ D .Z=2Z/g Ì Sg since Œo� is Weyl. Notice that r1 C r2 D g and r1 > 0.
So r1 D g and r2 D 0. Therefore T0o D T0o \Hder, and hence T0o < Hder.

The upshot is that T0o is a maximal torus of Hder. Hence rkHder D g. For the root
system of .T0o;Hder/, the Weyl group of Hder is then .Z=2Z/g Ì Sg .

We claim that Hder is a Q-simple algebraic group. Assume not, then we can get a
contradiction to Gal.Ec=Q/ D .Z=2Z/g Ì Sg with a similar argument as for T0o < Hder.

The upshot is that Hder D ResF 0=Q zH for some F 0 totally real and zH simply-connected.
Thus

HC D
M

� WF 0!R

zH�;C:

For r WD ŒF 0 W Q�, we then have r � rk.H�;C/ D g.
Let ˆ be the root system of HC , and let ˆ� be the root system of H�;C . Then ˆ D`

� WF 0!Rˆ� . Then

Aut.ˆ/ D
�Y
�

Aut.ˆ� /
�

Ì Sr :

By the theory of root systems, Aut.ˆ� / D W� Ì Aut.�� /, where W� is the Weyl group
of H�;C , and Aut.�� / is the transformation group of the Dynkin diagram �� associated
with H�;C . ThenW� is a Weyl group of typeAr , Br , Cr , orDr with r dividing g. We may
therefore haveW� D SrC1,W� D .Z=2Z/r Ì Sr orW� D .Z=2Z/r�1 Ì Sr . Moreover,
Aut.�� / equals 1, Z=2Z, or S3 (in which case H�;C is of type D3).

Assume g � 4. Notice that Aut.ˆ/ contains the Weyl group of Hder, which is .Z=2Z/g

Ì Sg . So we must have r D 1 or r D g. The same holds true for g D 2 and g D 3 because
r jg.

If r D 1, then F 0 DQ and Hder is a simple-connected simple group of rank g. Then it
is of type Ag , Bg , Cg , or Dg . Since the Weyl group of Hder is .Z=2Z/g Ì Sg and Hder is
a subgroup of Sp2g , we conclude that Hder D Sp2g . And hence S D Ag .
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If r D g, then ŒF 0 WQ�D g � 2 and rkzHD 1. So zH is a simple simply-connected group
of type A1. Therefore zH xQ is either SL2 or PSL2. As Hder D ResF 0=Q zH is a subgroup of
Sp2g , we have zH xQ D SL2. Hence zH is a form of SL2 over F 0. Hence zH is either SL2;F 0
or a quaternion algebra over F 0 which is non-split at some real place � of F 0. We exclude
the second case as follows. Recall that rkHder D g. Since rkH � rk GSp2g D g C 1, we
then have H D Gm � Hder D Gm � ResF 0=Q zH. Thus zH is split at some real place � 0 of F 0

by (SV3) of the definition of Shimura data. Write V for the Q-vector space of dimension
2g on which GSp2g naturally acts. If zH is a quaternion over F 0 which is non-split at � ,
then the action of H�;R on V�;R has weight 0, while the action of H� 0;R on V� 0;R has
weight 1. This is impossible by definition of Shimura data. Hence zH D SL2;F 0 . Thus S
is the Hilbert modular variety defined by the totally real field F 0 of degree g. By the
modular interpretation at the beginning of Section 8.2, an order of OF 0 is thus contained
in the endomorphism ring of Ao. This obliges F 0 D F . Hence we are done.

Corollary 9.3. Let Œo� be a CM point in Ag.xQ/. Set

† WD
®
Œz� 2 Ag.xQ/ W Œz� is CM, the only special subvariety of

Ag passing through Œo� and Œz� is Ag
¯
:

Then † is dense in Aan
g in the usual topology.

Proof. Let W be the set of all Weyl points in Ag . It is known that W is dense in Aan
g in

the usual topology; see [7, Prop. 2.1].
Consider End0.Ao/. There are only finitely many totally real fields of degree g which

are contained in End0.Ao/. For each such totally real field F 0, one can associate a Hilbert
modular variety HF 0 obtained from Gm � ResF 0=Q SL2. Then Wn

S
F 0 HF 0.xQ/ is dense

in Aan
g in the usual topology.

It remains to show that Wn
S
F 0HF 0.xQ/ is contained in†. Indeed, for any Œz� 2Wn†

with F the maximal totally real subfield of End0.Az/, Proposition 9.2 implies that Œo� is
contained in the Hilbert modular variety defined by Gm � ResF=Q SL2, and hence F is a
subfield of End0.Ao/ and has degree g. So we are done.

10. Analytic subspace conjecture and its consequence on
transcendence

Let S be a connected Shimura variety associated with the Shimura datum .G; X/, and let
uWX ! S an be the uniformization. Endow X with the xQ-structure as in Section 4.3. Fix
a special point Œo� 2 S.xQ/ and some o 2 u�1.Œo�/. Then o is a xQ-point of X . The goals of
this section are to formulate an analogue of Wüstholz’s analytic subgroup theorem for the
holomorphic tangent space To.X/, which we call the analytic subspace conjecture, and to
show how this conjecture gives an affirmative answer to Question 1.3.



Bi-xQ Shimura 41

10.1. Analytic subspace conjecture

Inspired by the reformulations of WAST for tori (Theorem 2.8) and for CM abelian vari-
eties (Theorem 2.11), we make the following conjecture, which is precisely the analogous
statement for Shimura varieties.

Let ToX and TŒo�S be the tangent space defined over C. Set

 WD duWToX �! TŒo�S:

Then the Harish–Chandra realization of X makes X into a bounded symmetric domain
D � ToX centered at o. By abuse of notation, we also write uWD ! S .

Recall that ToX has a bi-xQ-structure defined in Section 4.

Conjecture 10.1. Let z 2D be such that Œz� WD u.z/ 2 S.xQ/. Let V be a sub-vector space
of TŒo�S xQ with .z/ 2 V ˝C. Then V � .V 0/ for some bi-xQ-subspace V 0 � ToX which
contains z.

If moreover MT.o/ is a maximal torus, then we can take V 0 D TŒo�S
0
xQ

for some
Shimura subvariety S 0 of S which contains Œz� and Œo�.

The linear map was computed for the Siegel case, i.e., SDAg , .G;X/D.GSp2g;Hg/
and D DDg . Indeed by Theorem 7.100, under suitable xQ-bases, the map  is the diagonal
matrix 1

�
diag.�j �j 0/1�j�j 0�g , where the �j ’s are the holomorphic periods of the CM

abelian variety Ao parametrized by Œo�. Note that in this case, if MT.o/ is a maximal
torus, then Ao has no square factors.

10.2. Consequence on quadratic relations of holomorphic periods

Let A be a CM abelian variety of dimension g defined over xQ with no square factors. Let
�1; : : : ; �g be its holomorphic periods as defined in Convention 1.1.

Proposition 10.2. Assume that Conjecture 10.1 holds true for S D Ag , the point Œo� 2
Ag.xQ/ parametrizing A, and any V of dimension dim S � 1. Then Question 1.3 has an
affirmative answer for A.

Proof. Each �j is well defined up to xQ�. By abuse of notation, we write �j 2 C for a
representative. It is known by WAST that �j 62 xQ for each j 2 ¹1; : : : ; gº.

For the uniformization uWHg ! Ag , take o 2 u�1.Œo�/ and the derivative of u at o

 WToHg �! TŒo�Ag :

We start the proof by fixing xQ-bases of ToHg and of TŒo�Ag . We have seen in
Theorem 7.100 that the matrix for  is diag.�j �j 0=�/1�j�j 0�g under suitable xQ-bases
¹fjj 0º1�j�j 0�g of ToHg; xQ and ¹ejj 0º1�j�j 0�g of TŒo�Ag; xQ. Moreover, by Theorem 7.4,
these xQ-bases can be chosen such that each Cfjj 0 D Cejj 0 is a root space.

Write Dg for the bounded realization of Hg based at o. Then o 2 Dg; xQ � ToHg; xQ
and o is the origin. For each z 2Dg , write Œz� for the image of z under Dg ' Hg

u
�! Ag .
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Claim. There exists a xQ-basis ¹fjj 0º1�j�j 0�g of ToHg; xQ as above such the point z WDP
fjj 0 satisfies that Œz� 2 Ag.xQ/.

Let us prove this claim. Set

z† WD
®
z 2 Dg W z is CM, the only special subvariety of

Ag passing through Œo� and Œz� is Ag
¯
:

Then z† is dense in Dg in the usual topology by Corollary 9.3. Since z† is dense in Dg ,
there exists z D

P
kjj 0fjj 0 2 z† with kjj 0 6D 0 for each j; j 0. Moreover, as each CM point

is xQ in ToHg , we have that kjj 0 2 xQ. Thus z D
P
kjj 0fjj 0 2 z† with each kjj 0 2 xQ�. Now

the claim holds true by replacing each fjj 0 by kjj 0fjj 0 .
Finally, set

ejj 0 WD
 .fjj 0/

�j �j 0=�
:

By Theorem 7.100 ¹ejj 0º1�j�j 0�g is a xQ-eigenbasis of TŒo�Ag; xQ.
Now assume X

1�j�j 0�g

cjj 0�j �j 0 D 0 (10.1)

with cjj 0 2 xQ.
Define

V WD
°X

ajj 0ejj 0 2 TŒo�Ag; xQ W
X

cjj 0ajj 0 D 0
±
I

it is a xQ-subspace of TŒo�Ag; xQ because each cjj 0 2 xQ. A direct computation shows that
 .z/ D  .

P
fjj 0/ D

1
�

P
�j �j 0ejj 0 . So  .z/ 2 V ˝C by (10.1).

Hence we can apply Conjecture 10.1 to the point z 2 Dg and V . So there exists a
bi-xQ-subspace V 0 of ToHg; xQ containing z D

P
fjj 0 such that  .V 0/ � V .

If MT.o/ D MT.A/ is a maximal torus, then the “moreover” part of Conjecture 10.1
furthermore implies that we can take V 0 D TŒo�S 0xQ for some special subvariety S 0 of Ag .
But then by choice of z, we have S 0DAg . So V DTŒo�Ag; xQ and hence cjj 0D0 for all j; j 0.

In general, there exists an equivalence relation among the pairs in ¹1; : : : ; gº2 defined
as follows: .j; j 0/ � .k; k0/ if and only if �j �j 0 ' �k�k0 . Let ¹1; : : : ; gº2 D

`
s Js be the

partition into equivalence classes, and for each s let us fix a pair .js; j 0s/ 2 Js . Then (10.1)
can be rewritten such that cjj 0 D 0 if .j; j 0/ 6D .js; j 0s/ for any s. Then our goal is to prove
that cjsj 0s D 0 for each s. With this choice

V WD
°X

ajj 0ejj 0 2 TŒo�Ag; xQ W
X
s

cjsj 0sajsj 0s D 0
±
:

By Proposition 2.5, the bi-xQ-subspaceV 0 equals
L
sV
0
s for someV 0s�

L
.j;j 0/2Js

Cfjj 0 .
Since z D

P
fjj 0 2 V

0, we have C �
P
.j;j 0/2Js

fjj 0 � V
0
s for each s. Therefore, the sub-

space  .V 0/ � V contains the point ejsj 0s C
P
.j;j 0/2Jsn¹.js ;j

0
s/º

�j �j
0

�js �j 0s
ejj 0 for each s. But

from the last paragraph we assumed cjj 0 D 0 for any .j; j 0/ 2 Jsn¹.js; j 0s/º. So cjsj 0s D 0
by definition of V . Hence we are done.
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11. Grothendieck’s period conjecture and consequences on CM
periods

This section is rather independent of the rest of the paper. We recall the basic versions
of Grothendieck’s period conjecture, and explain some consequences on the algebraic
relations among � and holomorphic periods of CM abelian varieties. We show that all
non-trivial such algebraic relations are generated by a fixed set of monomials (Proposi-
tion 11.4).

11.1. Statement of the conjecture

Let X be a smooth projective irreducible variety defined over xQ. Let

ˇWH�dR.X/˝ xQ C
�
��! H�.X;Q/˝Q C

be the de Rham–Betti comparison. Under suitable bases, ˇ is a matrix in GLN .C/. Write
. ǰj 0/1�j;j 0�N for this matrix.

For each n 2 N, each algebraic cycle in Xn induces xQ-polynomial relations, all
homogenous of degree n, for the ǰj 0 ’s. Indeed, for n D 1, an algebraic cycle of X of
codimension d gives an element in H 2d

dR .X/ \ ˇ
�1.H 2d .X;Q//. Hence there exists a

vector vD
�
v1 � � � vN

�|
2 xQN such that ˇv 2QN . Writing it out, we obtain N linear

relations over xQ among the ǰj 0 ’s. For general n, the assertion follows from Künneth’s
Formula.

Notice that among such relations, some of them are products of polynomials of lower
degrees. This notably happens for elements in End.X/, which are cycles in X2 but give
linear relations. Indeed, for each ˛ 2End.X/, we have the following commutative diagram

H�dR.X/˝ xQ C
ˇ
//

˛�

��

H�.X;Q/˝Q C

˛�

��

H�dR.X/˝ xQ C
ˇ
// H�.X;Q/˝Q C:

Under suitable bases, the ˛� on the left is an N �N -matrix with entries in xQ, and the ˛�

on the right is an N �N -matrix with entries in Q. Thus this commutative diagram gives
linear relations over xQ among the ǰj 0 ’s.

Conjecture 11.1 (Grothendieck, strong version). Consider the xQ-variety GLN . Set I to
be the ideal of the subvariety ˇ xQ-Zar.6 Then I is generated by the polynomial relations
obtained from all algebraic cycles in all powers of X .

Let us take a closer look at this conjecture. Write I D
L
j�1 Ij the homogenous

decomposition. A consequence of this conjecture for I1 is that I1 is generated by relations

6Thus ˇ is the generic point of this subvariety.
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obtained from elements in End.X/. In case of commutative algebraic groups, this conse-
quence can be deduced from Wüstholz’s analytic subgroup theorem. Little is known for
j � 2.

There is also a weaker version of this conjecture, sometimes also known as Grothen-
dieck’s period conjecture. Let Gmod be the motivic Galois group defined by Nori [11] and
Ayoub [3]. In case of the first cohomology for abelian varieties, Gmod is precisely the
Mumford–Tate group by André [2].

Conjecture 11.2 (Grothendieck, weak version). trdeg xQ. ǰj 0/1�j;j 0�N D dimGmod.

The strong version implies the weak version. Conversely, the weak version implies the
strong version if the universal period torsor is connected. We refer to [1, 7.5.2.2. Prop] for
more details.

11.2. Consequences on holomorphic CM periods

Let A be a CM abelian variety over xQ with no square factors. Let �1; : : : ; �g be its holo-
morphic periods.

Let T0 WD MT.A/. Then T0 is a subtorus of GSp2g ; it contains Gm, the center of
GSp2g . Thus the multiplier GSp2g ! Gm, ˛ 7! det.˛/1=g , is non-trivial when restricted
to T0. Hence there is a non-constant homomorphism X�.Gm/! X�.T0/. Let "�0 be the
image of 1 of this homomorphism.

By Lemma 9.1, T WD ZGSp2g .T0/ is a maximal torus of GSp2g . The last sentence of
Remark 6.5 yields a Z-basis ¹"�0 ; "

�
1 ; : : : ; "

�
gº of X�.T/ satisfying the following prop-

erty: For de Rham–Hodge comparison ˇ 2 GSp2g.C/, we have "�j .ˇ/ D �j for each
j 2 ¹1; : : : ; gº.

Proposition 11.3. Assume the weak version of Grothendieck’s period conjecture for A.
Then each �j �j 0 is a transcendental number.

Proof. Consider the root systemˆ.T;GSp2g/�X
�.T/ defined in [6, §13.18]; it contains

2"�j , "�j C "
�
j 0 and "�j � "

�
j 0 for all 1 � j < j 0 � g.

As ZGSp2g .T0/ is solvable, T0 is a semi-regular torus by [6, §13.1, Prop.]. So T0 6�
ker� for any � 2 ˆ.T;GSp2g/ by [6, §13.2, Prop.]. In particular,

."�j C "
�
j 0/jT0 6� 0 for all 1 � j < j 0 � g: (11.1)

By our choice of "�j , we have ."�j C "
�
j 0/.ˇ/ D �j �j 0 for each 1 � j < j 0 � g.

Now comes the step where we assume the weak version of Grothendieck’s period
conjecture for A. Then ˇ is the generic point of T0. Hence (11.1) implies ."�j C "

�
j 0/.ˇ/ 62

xQ for all 1 � j < j 0 � g. We are done.

Proposition 11.4. Assume the weak version of Grothendieck’s period conjecture for A.
Then there exist monomials over xQ in � and the �j ’s (with j 2 ¹1; : : : ; gº) such that each
algebraic relations over xQ among these numbers are generated by these monomials.
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Proof. Set l WD dim T � dim T0.
The inclusion T0 < T induces a group homomorphism X�.T/! X�.T0/, which is

furthermore surjective. The kernel of this homomorphism, denoted by N , is a free-Z-
module of rank l . Let ¹aj0"�0 C � � � C ajg"

�
g W j D 1; : : : ; lº be a set of generators of N .

Then

T0 D ¹t 2 T W
gY
kD0

"�k.t/
ajk D 1 for all j D 1; : : : ; lº: (11.2)

Denote by .t0; t1; : : : ; tg/ the coordinates of AgC1
xQ

. The image of T xQ
."�0 ;:::;"

�
g /

������!GgC1

m; xQ
�

AgC1
xQ

is an open xQ-subvariety. For each j 2 ¹1; : : : ; lº, set Pj WD
Qg

kD0
t
ajk
k
� 1.

By (11.2) , as a xQ-subvariety we have

T0 D T \Z.P1; : : : ; Pl /:

As l D dim T � dim T0 and T xQ is open in PgC1
xQ

, by Hilbert Nullstellensatz, each poly-
nomial P 2 xQŒt0; : : : ; tg � which vanishes identically on T0 is in the radical of the ideal
.P1; : : : ; Pl /, which is precisely .P1; : : : ; Pl / since the kernel of X�.T/! X�.T0/ is
torsion free.

Now let us study the algebraic relations over xQ among 2�i , �1; : : : ; �g . Assume P 2
xQŒt0; : : : ; tg � is a polynomial such that P.2�i; �1; : : : ; �g/ D 0. Since "�0.ˇ/ D 2�i and
"�j .ˇ/ D �j for each j 2 ¹1; : : : ; gº, we have P."�0.ˇ/; "

�
1.ˇ/; : : : ; "

�
g.ˇ// D 0.

Now comes the step where we assume the weak version of Grothendieck’s period
conjecture for A. Then ˇ is the generic point of T0. Thus from the last paragraph we have
P jT0 � 0. Hence P is in the ideal .P1; : : : ; Pl /. Therefore each algebraic relation among
� , �1; : : : ; �g is generated by the l-monomials

.2�i/aj0�
aj1
1 � � � �

ajg
g 2 xQ; j 2 ¹1; : : : ; lº:

We are done.

This proposition yields the following immediate corollary.

Corollary 11.5. The weak version of Grothendieck’s period conjecture for A gives an
affirmative answer to Question 1.3 for A.
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