Doc. Math. (Online first) © 2026 Deutsche Mathematiker-Vereinigung
DOI 10.4171/DM/1061 Published by EMS Press
This work is licensed under a CC BY 4.0 license

Bi-Q-structures on Hermitian symmetric spaces and
quadratic relations between CM periods

Ziyang Gao, Emmanuel Ullmo, and Andrei Yafaev

Abstract. In this paper, we introduce the notion of a bi-Q-structure on the tangent space at a CM
point on a locally Hermitian symmetric domain. We prove that this bi-Q-structure decomposes
into the direct sum of 1-dimensional bi-Q-subspaces, and make this decomposition explicit for the
moduli space of abelian varieties A g.

We propose an analytic subspace conjecture, which is the analogue of the Wiistholz’s analytic
subgroup theorem in this context. We show that this conjecture, applied to Ag, implies that all
quadratic Q-relations among the holomorphic periods of CM abelian varieties arise from elementary
ones.

1. Introduction

1.1. Prologue and motivation

In all this paper, Q will denote the algebraic closure of Q in C. The uniformizing map
u:C — C*, z > ¢2™Z is a map between algebraic varieties defined over Q. This map
is transcendental, and the Gelfond—Schneider theorem asserts the following: if o € Q
and u(x) € Q*, then « € Q. On the other hand, if we consider the usual exponential
exp: C — C*, z > €7, the situation is different. In this case, if « € Q and ¢ € Q*, then
o = 0 by a theorem of Lindemann.

We can look at this from a different viewpoint, which we will further develop and
adapt in this paper. Consider the natural Q-structure on C* = G,,(C) given by G, c =
G, ® C, and the usual exponential map exp: C — G(C) = C*. Endow C with two
Q-structures: one given by W; := 27iQ C C, the other given by W, := Q € C. An
o € C is called bi-Q for W;ifa € W; and e* € Q*. From the previous paragraph, o € C
is bi-Q for W, (resp. W) if and only if @ € Q (resp. @ = 0). These two Q-structures on
C are related by 27i which is a transcendental number and is a period of G,,. We will
call (Wi, Ws) a bi-Q-structure on C with period 27 .

The situation of bi-Q-structure also occurs in the case of complex CM abelian varieties
A. Let g = dim A. By definition if

A~ AT x - x Al
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is the isotypic decomposition of A, then each A4; is a simple CM abelian variety. If g;
denotes the dimension of A4;, then E; := End(4;) ® Q is a CM field of dimension 2g;.
In this situation End(4) ® Q = My, (E1) x -+ x My, (E,) is a CM-algebra.

In Section 2.3, we will see that T A is naturally endowed with a bi—@—structure. More-
over, we show in Proposition 2.9 that this bi-Q-structure is splif, which means

g
ToA =@@(9,~) (1.1

Jj=1

where each C(6;) is a 1-dimensional complex vector subspace endowed with the induced
bi-Q-structure. The complex number 6; measures the difference between the two Q-
structures and is defined up to multiplication by some element in Q*, and they are pre-
cisely the holomorphic periods of A defined as follows. For each 1-form w € Hle(A),
fy o is independent of the choice of y € H(A,Z) up to Q and is non-zero for some
y € Hi(A,Z) by Shimura [17, Rem. 3.4]. Moreover, if [, @ # 0 and [, » # 0, then
there exists 6 € Q* such that [, @ = 6 [, . Note that Shimura [17, Rem. 3.4] has the
hypothesis that End(A4) ® Q has a totally real subfield of dimension dim(A), but we can
apply his result to every isotypical factors of the above decomposition of A.

Convention 1.1. Let {w;, ..., .} be an End(A4) ® Q-eigenbasis of Q4 (holomorphic
1-forms). We can choose y; € I' such that 6; := fy,- wj # O0foreach j € {1,...,g}. We

call 0y, ..., 6, the holomorphic periods of A; they are well defined up to Q*.

A very general conjecture in transcendental number theory is Grothendieck’s period
conjecture and its generalizations by André and Konsevich—Zagier, which predicts the
polynomials relations between the periods. Wiistholz’s famous analytic subgroup theorem
(WAST) [21] gives a complete answer of the linear relations of this conjecture for linear
algebraic groups and more generally for 1-motives; it includes most known results in
transcendental number theory. We refer to [1, 13, 19] for relevant discussions. For a CM
abelian variety A and its holomorphic periods defined above, WAST implies: the 6;’s
are transcendental numbers, and that they are Q-linearly independent if A has no square
factors.'

However, almost nothing is known beyond the linear relations (except if the question
can be reduced to linear case, for example the transcendence of 6;6;//x). For example,
little is known for quadratic relations among the 6;’s.

In a subsequent paper by the first- and second-named authors [12], we will present an
example of non-trivial quadratic relation which takes the following simple form:

0;0; — cjjrir OO =0 with {j, j'} # {k,k'} and Cijikk’ € Q*. (1.2)

By the Poincaré irreducibility theorem, 4 is isogenous to a product of simple CM abelian varieties.
We say that A has no square factors if these simple CM abelian varieties are all distinct.
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In this example, A is simple and has dimension 2°. Based on this observation, we make
the following definition.

Definition 1.2. A quadratic relation among 0y, . .., 0, is called elementary if it is of the
form (1.2).

Now, a natural question is the following.

Question 1.3. Is it true that any non-trivial Q-quadratic relation among the 0;’s, or
equivalently any Q-linear relation among the 0;0;:’s, is a Q-linear combination of ele-
mentary ones?

Moreover, if the Mumford—Tate group of A is a maximal torus, is it true that

dimg Y Q6,6 = g(gz—H)? (1.3)
1=sj=<j'<g

The aim of this article is to propose a possible framework to study this question. We
will introduce a natural bi-Q-structure on the tangent space at a CM point on a Shimura
variety, prove that it decomposes into the direct sum of 1-dimensional bi-Q-subspaces
C(cj) (and hence yields complex numbers ¢«; which measure the differences between the
two Q-structures on each C(a;)), and compute the ;s in the case of the moduli space
of abelian varieties Ag. We then propose an analytic subspace conjecture, which is the
analogue of WAST in this context, and show that this conjecture when applied to Ag

gives an affirmative answer to Question 1.3.

1.2. Bi-Q-structure associated with Shimura varieties

For Shimura varieties, we use Deligne’s notations [9,10]. A quick summary which suffices
for our use can be found in Section 4.1.

Let (G, X) be a connected Shimura datum. Here G is a reductive group defined over
Q and X is a Hermitian symmetric domain. Let I" be an arithmetic subgroup of G(Q)+
which acts on X. The Baily—Borel theorem [4] asserts that S := '\ X has a unique struc-
ture of quasi-projective complex algebraic variety. Write

u:X —3S

for the uniformizing map. Moreover, the general theory of Shimura varieties asserts that
S admits a uniqu_e model over Q and we write Sg for this model.

Let [o] € S(Q) and 0 € X such that u(0o) = [0]. The holomorphic tangent space T, X
is a finite-dimensional complex vector space. Assume furthermore that o is special point
(or CM point). We endow T, X with two Q-structures, the arithmetic Q-structure and the
geometric Q-structure as follows.

1.2.1. The arithmetic Q-structure on 7, X. The algebraic tangent space Tip1Sg is a
finite-dimensional QQ-vector space and we have a C-isomorphism

du: T, X — T[O]S@ ® C.
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Then (du) ™! (T} Sg) defines a Q-structure on T, X . We call it the arithmetic Q-structure;
see Section 4.2 for more details.

1.2.2. The geometric Q-structure on T, X. The complex dual XV of X is a projective
algebraic variety. If a faithful rational representation p of G on a finite-dimensional Q-
vector space V, then XV is naturally a subvariety of a flag variety defined over Q. Write
X é for this Q-structure on X V. The natural inclusion t: X — XV is a holomorphic map
and X is an open subset of XV in the usual topology. Since o is a special point, t(0)
is a Q-point of XV. So Ty X" is a Q-vector space of dimension dim X. We have an
isomorphism
de:T, X — TL(O)X(I\_/D ®C

and (d¢)™! (Ty oy X é) defines a Q-structure on 7, X . We call it the geometric Q-structure;
see Section 4.3 for more details.
The first result of this work is the following statement.

Theorem 1.4 (Theorem 5.1). The bi-Q-structure on T, X defined above is split, i.e., we

have a decomposition
dim X

T,X = P Cy).

i=1
where each C (o) is a 1-dimensional complex vector space endowed with the restriction
of the bi-Q-structures on T, X and aj € C/Q* compares the two Q-structures on C(a;).

We can be much more precise when S = Az = Sp(2g, Z)\ 9, is the moduli space of
principally polarized abelian varieties of dimension g.

Theorem 1.5 (Theorem 7.1). Let [0] be a CM point of Ag (Q) corresponding to a CM

abelian variety A with holomorphic periods 61, . .., 0. Let 0 € $4 mapping to [0]. Then
0;6;
1,9, = ACER ]
5= D CC( - ) (1.4)
1=j=j'<g

Moreover, we prove that the decompositions (1.4) and (1.1) are compatible with the
Kodaira—Spencer map; see Theorem 7.1’. Better, we show that each C ( O"f’ ,) arises natu-
rally as a root space; see Theorem 7.4 and Corollary 7.5 for the precise statements.

The following conjecture of Lang was proved by Cohen—Wolfart [8]. As an application

of this framework of bi-Q-structures and of Theorem 1.5, we give a new and simpler proof.

Proposition 1.6 (Proposition 8.1). Let C be a connected Shimura variety of dimension 1
of genus > 1. Suppose that the universal holomorphic covering map

9:Ep:={zeC:|z| <p} —C™

is normalized in such a way that ¢(0) € C(Q) is a CM point and that ¢’ (0) € Q. Then p
is a transcendental number.
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1.3. The hyperbolic analytic subspace conjecture

Another main objective of this article is to formulate a hyperbolic analytic subspace
conjecture, which is the analogue of WAST in this context, and to derive some of its
immediate consequences. We start by recalling Wiistholz’s famous analytic subgroup the-
orem.

Theorem 1.7 (WAST, [21]). Let G be a commutative algebraic group over Q. Let q =
Lie G = TyG viewed as a Q-vector space, and consider the exponential map

expg: ac — G(C).

Let z € gc¢ be such that expg(z) € G(Q). Let V be a sub-vector space of the Q-vector
subspace of g with z € V & C. Then there exists a connected algebraic subgroup H of G
defined over Q which contains expg(z) such that V 2 ToH.

In the context of Shimura varieties, the tangent space ToG corresponds to the arith-
metic Q-structure on 7, X defined in Section 1.2.1 and the natural Q-structure on the uni-
formizing space gives rise to the geometric Q-structure on 7, X defined in Section 1.2.2.
Hence the analogue of WAST in this context, which we propose, is the following conjec-
ture.

Conjecture 1.8 (HASC; Conjecture 10.1). Let S = I'\ X be a connected Shimura variety.
Let 0 be a special point of X. Let D C T, X be the Harish—Chandra realization of X as
a bounded symmetric domain centered at o. Let u: D — S be the uniformizing map. Let
z € D be such that [z] := u(z) € S(Q). Let V be an arithmertic Q-subspace of T, X.
Then V 2 V' for some bi-Q-subspace V' € T,X which contains z.

If moreover MT(0) is a maximal torus, we can take V' = Tjn)S b for some Shimura

subvariety S’ of S which contains [z] and [o].

An equivalent but more precise statement of this conjecture is presented as Conjec-
ture 10.1. Observe that if u(z) # u(0), then in the conclusion of the conjecture we have
dim V' > 0 and dim S” > 0. Note that the statement of the conjecture depends on the
choice of a special point of S (up to Hecke operations).

It is known that WAST implies that there exists no non-trivial Q-linear relations
between the holomorphic periods 6, . .., 8¢ of a CM abelian variety A of dimension g if
A has no square factors. In the same way we show that our hyperbolic counterpart HASC
implies the desired result for quadratic relations. More precisely, we prove the following.

Proposition 1.9 (Proposition 10.2). Assume that Conjecture 1.8 holds true for § = A4
and the point [0] € Ag(Q) parametrizing A. Then Question 1.3 has an affirmative answer
for A.

We think that a proof of the Conjecture 1.8 could be quite a challenge as the classical
version of WASP for commutative algebraic groups is a major achievement. Our hope is
that it could be still more tractable than Grothendieck’s period conjecture.
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1.4. Organization of the article

In Section 2, we define split bi-Q-structures and discuss the cases of algebraic tori Sec-
tion 2.2 and CM abelian varieties Section 2.3. We also reformulate WAST in these two
cases in this language. In Section 3, we explain why WAST applied to A", the universal
vector extension of A, yields the transcendence of 6; 6,/ /7 with the 6;’s the holomorphic
periods of a CM abelian variety A. We also restate Question 1.3 as a motivating question
for the current article.

After this prologue, we start to build up our framework and relate it to Question 1.3 in
Sections 4-10.

The bi-Q-structure on the tangent space of a Shimura variety at a special point is
defined in Section 4, and is proved to be split in Section 5. In Section 6, we discuss
on the family version of the de Rham—Betti comparison and the Kodaira—Spencer map,
which will be used compute the periods of the split bi-Q-structure for A ¢ in Section 7. In
Section 8, we prove the conjecture of Lang (Proposition 1.6) and compute the periods for
Hilbert modular varieties.

Then after some preliminary discussion on CM points in Section 9, we propose in
Section 10 our hyperbolic analytic subspace conjecture (Conjecture 1.8), and explains
how this conjecture applied to Ag gives a positive answer to Question 1.3.

The last section Section 11 explains some consequences of Grothendieck’s period
conjecture on the algebraic relations between s and holomorphic periods of CM abelian
varieties. This section is rather independent of the rest of the article.

2. Bi-Q-spaces and preliminary examples

The goal of this section is to define the notion of a bi-Q-structure on a complex vector
space and to discuss examples given by algebraic tori and CM abelian varieties.

2.1. Bi-Q-structures on a complex vector space

Let V be a complex vector space of finite dimension . A Q-structure on V is a Q-vector
space W generated by a basis B = {e,...,e,} of V. If W is Q-structure on V, then
W ®g C =~ V. A complex vector subspace V' of V is said to be rational for the Q-
structure W if V' admits a basis consisting of elements in W. In general if V"’ is a vector
subspace of V then V/ N W is a Q-vector subspace of W and

dimg (V' N W) < dimc (V')
with equality if and only if V'’ is Q-rational for the Q-structure W.

Definition 2.1. Let V' be a complex vector space. A bi-Q-structure (Wy, Wa) on V is the
data given by two Q-structures Wy and W, on V. A complex vector subspace V' of V is
said to be bi-Q-rational (or simply bi-Q) if V" is rational for both Wy and W5.
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If V' is a bi-Q-subspace of dimension 1, then V’ determines a complex number 0 =
6(V', Wy, Wa), well defined up to multiplication by an element of Q*, in the following
way. Let e, € W; and e, € W5 be some bases of V'’ defining the corresponding Q-structures.
Then e, = fe; for some 6 € C. Such a 6 will be called a period of V' for (W, W»).

This terminology of periods is motivated by the examples of the exponential function
and of the map uniformizing CM abelian varieties. We will explain this in later sections.
To ease notation, we use the following convention.

Notation 2.2. Let z; and z; be complex numbers. We will write z; >~ z, if there exists
o € Q* such that z, = azy.

Definition 2.3. A bi-Q-structure (W;, W») on V is said to be spliz if V is a direct sum of
bi-Q-subspaces of dimension 1. In this situation

v=@Ce =PCs
J J

for a Q-basis {e1, ..., e,} of Wy and a Q-basis { f1, ..., fu} of W, such that for each J,
there exists 6; € C* with f; = 0;e;. We say that {0, ..., 0,} is a complete set of periods
of V for (W] s W2)

Let (W1, W) be a split bi-Q-structure on V and let 6y, . .., 6, be the associated peri-
ods. These periods can be regrouped in the following way: Set (Jq,..., J;) to be the
partition of {1, ...,n} such that 6; ~ 6, if and only if j, j’ € Js forsome s € {1,...,r}.
For each Jy, denote by 8, the period 6; for any j € Jy; it is well defined up to multipli-
cation by a number in Q*.

Definition 2.4. Let s € {1, ..., r}. The sub-vector space
= @y =P
J€Js J€Js

of V is called the isotypic subspace of V associated to the period 6, .
The following simple proposition fully describes the bi-Q-subspaces of V.

Proposition 2.5. The following holds true:
(i)  There is a decomposition V. = @,V into a direct sum of isotypic subspaces.
(ii) Let V' be a subspace of some isotypic subspace_Vs. Then V' is rational for Wy
if and only ifit is rational for Wy. Thus V' is bi-Q if and only if it is rational for
one of two Q-structures.
(iii) Any bi-Q-sub-space V' of V has a dicomposition in isotypic components V' =
P V,, where V] := Vs N V' is a bi-Q-subpace of V.

An equivalent way of stating the proposition is to consider the category €I of finite-

dimensional complex vector spaces endowed with a split bi-Q-structure. The morphism
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in ‘(i’iP% are the linear maps respecting the two Q-structures. Then ‘é’—p — is a semi-simple
category and the simple objects are the one-dimensional vector spaces ((C 0) with period
6 € C*/Q*. For any n-tuples of non-zero complex numbers (0, ..., 6,) (modulo Q*),
denote by (C"; 6y, ..., 6,) the object in ‘C’ Q ' of dimension n with periods (61, ..., 6y).
The following proposmon summarizes the two extreme cases.
Proposition 2.6. Consider an object (C"; 01, ...,6,) in ‘C’g%.
(1) If6; ~ 6y ~ ...~ 6,, then any complex vector subspace V' of C" which is
Q-rational for one of the two Q-structures is bi-Q.
(i) If0; 9171 ¢ Q* forall j # j', then there are only finitely many bi-Q-subspaces
of (C™; 01, ...,6,).

In case (i), C" is isotypic. In case (ii), the isotypic subspaces are all of dimension 1,
which we denote by V7, ..., V,. Then the bi-Q-subspaces are precisely the &, ies Vi'ss
where J runs over all subsets of {1, ..., n}. The proofs of Propositions 2.5 and 2.6 are
simple linear algebra exercises and are left to the reader.

We close this subsection by defining the Tate twist in ‘C’gpht

5

Definition 2.7. The Tate twist in ‘€S—p 11 , denoted by £(1), is defined to be (C;27i).

As we will see in the next subsection, the Tate twist arises naturally from the bi—@—
structure associated with algebraic tori.

2.2. Example: Algebraic tori

We look at two concrete examples of bi-Q-structures on a complex space in the current
and next subsections. The current one is in line with Proposition 2.6 (i). The next one is
more general, and in some cases in line with Proposition 2.6 (ii).

Consider the algebraic torus (Gr’l’1 3 defined over Q and the uniformization in the cate-
gory of complex spaces

u:C" — GL(C) = (C*)", (21,...,20) F—> (€771F1, .. &2705m),

We can endow C” with two Q-structures. The geometric Q-structure on C" is the one
induced by the natural inclusion Q € C (i.e., C" = Q" ® C), and the arithmetic Q-
structure on C" is the one induced by C" ~ Lie G" ~ ® C. A natural Q-basis for the
geometric structure is the canonical basis (eq, . . en) of C". Then (2imey,...,2imey,)
is a Q-basis of the arithmetic structure. Thus they define a bi-Q-structure on C”. This
bi-Q-structure is split and all the periods are 27i. This easily follows from the fact that
the derivative of u defines the isomorphism

V= du = diag(27i,...,2ni):C"=Q"® C —>LieGI’T‘1@ ®C ~C".

Hence this bi-Q-structure on C” associated with G” -

n is the n-copy of the Tate twist
L(1)%n,
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As a consequence, a subspace V/ of C” is rational for the geometric Q-structure if
and only if it is rational for the arithmetic Q-structure.

On the other hand, the arithmetic and the geometric Q-structures on C are different.
Indeed, let x € G” (Q) and fix some ¥ € u~" (x). By Gelfond—Schneider, % is a Q-point in
C" with respect to the geometric Q-structure if and only if x is a torsion point in G, (Q)
On the other hand by Lindemann, ¥ is a Q-point in C” with respect to the arithmetic
Q-structure if and only if ¥ = 0.

We close this subsection by a reformulation of WAST, which in this case has its roots
in Baker’s theorem on Q-linear independence of Q-linearly independent logarithms of
algebraic numbers. The theorem concerns the base change of the exponential map

exp: Lie Gl,_ — GZIQ

to C, which is precisely u o ¥ 1.

Theorem 2.8 (Wiistholz). Let z € C" such that u(z) € G? (@) Let V be a Q-sub-vector
space of Lie G" o such that Y (z) € V. ® C. Then V 2 Lie H for some algebraic subgroup
H ofG" - whlch contains u(z).

2.3. Example: CM abelian varieties

In this subsection, we take a first look at CM abelian varieties defined over @ and explain
how its uniformizing space can be endowed with a bi-Q-structure which, under some
mild assumptions, fits into Proposition 2.6 (ii). More detailed discussions on CM abelian
varieties will be given in later sections.

Let A be a complex CM abelian Variety of dimension g. Then A is the extension to C
of an abelian variety Ag defined over Q. The universal covering of A* is C&. We endow
C# = Lie(4g) ® C w1th a bi-Q-structure:

* The arithmetic Q-structure on C# is defined to be the one given by
g€ ~ Lie A~
C® ~Liedg ® C.

The geometric Q-structure on C# is slightly more complicated. It is known that there
exists a matrix T € Matgx, (Q) such that A(C) ~ C# /(Z# + tZ¥). Hence,

Q- (Z% +17Z%)c C?8
gives a Q-structure on C#, and we call it the geometric Q-structure.
Let 0y, ..., 6, be the holomorphic periods of A as defined in Convention 1.1.

Proposition 2.9. The bi-Q-structure on C8 ~ Lie(Ag) ® C defined above is split, and
is isomorphic to (C8; 6y, ..., 0g).

Proof. We start with the case where A is simple. Then End®(4) := End(4) ®z Q is a
CM field E of degree 2g. Let @ be the CM type of A.
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For the arithmetic Q-structure, E acts on Lie Ac through the embeddings o: E — C
belonging to ®. For each such o, its eigenspace (Lie Ac)q has dimension 1. Moreover,
as o factors through Q C C, its eigenspace (Lie Ac)o descends to Q, i.e., there exists
es € Lie Ag such that the eigenspace for o is Ceg. Now the action of E on Lie Ac
induces

C# = Lie Ac = BsecaCeq.

For the geometric Q-structure, denote for simplicity by A := Z& + tZ#. Then the
action of End(A4) on A(C) ~ C&/A induces an action of End(4) on A € C&. Thus
tensoring Q, we obtain an action of E on QA C C¥ and hence on QA = Q¢ C C8.If
we identify C¢& with [, . C, then A equals ®(Rg) for some order Rg in O under

»:E®qR~ []C.
oed
In particular, the action of E on C# is via the embeddings o': E — Q belonging to ®. Hence
in the previous paragraph, we have C¢ = @®,coC f,, with f,, € QA an eigenvector for 0.

Now that we have two actions of E on C# via the embeddings o: £ — @, the
eigenspaces for o coincide. Hence Ce, = C f;. Hence f, = Oye, for some 6, € C*.
So in the case where A is simple, the bi-Q-structure on C# associated with 4 is split.

For a general CM abelian variety A of dimension g defined over Q, A is isogenous
to the product of simple CM abelian varieties. We use ® to denote the (disjoint) union of
all the CM types of these simple CM abelian varieties. Then we can also find {es}oeco a
Q-basis of the arithmetic Q-structure on C# and { fy }yea a Q-basis of the geometric Q-
structure on C&. Then f; = 6,¢, for some 6, € C*. Notice that 8, is uniquely determined
by o up to multiplication by a element in Q*. Hence the bi-Q-structure on C# associated
with A is split.

It remains to show that the 6, ’s are precisely the holomorphic periods of A.

It is known that Q4 (the Q-vector space consisting of invariant holomorphic 1-forms)
is the dual of Lie Ag. Set wy 1= ey for each o0 € ®. Then {ws}seq is an End®(4)-
eigenbasis of Q4. Now each f, € QA can be written as f; = ijfil ag,;yj for some
ds,j € Qand y; € A. Thus

2g 2g
=) = 0" folwn) =67y ans [ 0r =673 [ oo
j=1 Vi /

j=17"%i
But up to Q*, fy ¢ is independent of the choice of y by Shimura [17, Rem. 3.4] (see the

discussion before Convention 1.1). So 8, ~ f y Wo- We are done. ]

The following result is a consequence of Wiistholz’s analytic subgroup theorem applied
to G, x A and to A, respectively; see [19, Prop. 1.2, Thm. 1.4].

Proposition 2.10 (Wiistholz). The following statements are true:

(i)  The periods 0; are transcendental.

(ii) Assume A has no square factors up to isogeny. Then dimg Ef-’:l(@@j =g.
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On the other hand, isogenous abelian varieties have the same periods up to Q*. From
part (ii) of this proposition, we can easily deduce that the bi-Q-structure on C# defined at
the beginning of this subsection satisfies the properties of the part (ii) of Proposition 2.6,
if A has no square factors. This holds true for example when A is simple.

We close this subsection by a reformulation of Wiistholz’s analytic subgroup theorem
for this case. Consider the uniformization

u:C8 — A(C) = C8/A.

It can be shown that: for any x € C& which is Q in the geometric Q-structure, we have
u(x) € A(Q) if and only if u(x) is a torsion point. We are thus viewing C& as QA ® C.
The map u induces an isomorphism

Y :=du:C® ~ QA ® C — Lie Ag ® C ~ C¥,

which, under the bases { f;}sco and {e;}sece from the proof of Proposition 2.9, is the
diagonal matrix diag(0y)geca-
The base change of the exponential map

exp:Lied — A

to C is u o 1. WAST in this case can be rephrased to be as the following.

Theorem 2.11 (Wiistholz). Let z € C# be such that u(z) € A(Q). Let V be a sub-vector
space of Lie Ag such that y/(z) € V ® C. Then V 2 Lie B for some abelian subvariety
B of A which contains u(z).

3. A first discussion on products of periods of CM abelian varieties

In Section 2.3, or more precisely Proposition 2.10, we have seen the transcendence and
the linear relations between the holomorphic periods of CM abelian varieties, both as
consequences of WAST. In this section, we attempt to understand and ask questions about
the quadratic relations.

Let A be a CM abelian variety of dimension g defined over Q. Let 6y, ..., 0, be its
holomorphic periods as defined in Convention 1.1. Then up to Q*, each 6; is fy wj for an
End(4) ® Q-eigenbasis {w1,...,wg} of Q4 (with y € H{(A, Z)).

WAST, when applied to A" (the universal vector extension of A) implies that the quo-
tient of a holomorphic period by an anti-holomorphic period is transcendental. In the case
of CM abelian varieties, this yields a transcendence result on the product of two holo-
morphic periods. This result is well known to experts, but we will include its proof in the
current paper for the convenience of readers.

Corollary 3.1. Each 0;0;: /7 is a transcendental number for j, j' € {1,..., g}.
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Before proceeding to its proof, at this stage a natural question to ask is what are the
possible non-trivial Q-linear relations among 0;0; forall 1 < j < j' < g, or equiva-
lently what are the possible non-trivial Q-quadratic relations between the 6,’s. Unlike the
transcendence of 060,/ /, this question is still widely open; see Question 1.3 for the pre-
diction. It turns out that this question is closely related to bi-Q-structures arising from
Shimura varieties, which we will discuss from Section 4.

In the rest of this section we prove Corollary 3.1. It follows immediately from the
following proposition.

Proposition 3.2. Assume that A has no square factor up to isogeny. Then

. - = — —2mi = 2mi
dimg (QZm + Qb1 + -+ Qb +Q9— + - +Q9—) =2g+1. (3.1)

1 g
Proof of Proposition 3.2 implying Corollary 3.1. Using equation (3.1) we conclude that
0; and 27i/6;s are linearly independent over Q for each j, j’ € {1,..., g}. Dividing
both numbers by 7/6;/, we get that 6,6,/ and 2i are linearly independent over Q. But
2i € Q. Hence 6,0,/ is transcendental. L]

Now let us prove Proposition 3.2.

Proof of Proposition 3.2. We may assume A = A X --- X A, is the product of simple
CM abelian varieties which are 2-by-2 non-isogenous. We start with some preparation.

The key idea is to apply Wiistholz’s analytic subgroup theorem to A", the universal
vector extension of A. It fits into the short exact sequence

0—> Qq —> A" — 4 — 0.
The natural projection A" — A induces canonical isomorphisms
HL(AY = HY(4), HY (A" Z)= HY(A.7Z).

As a complex variety, A'(C)= H, (A", C)/H,(A" Z). The Lie algebra Lie A" is Hle (A%,

Let n; be the complex conjugation of w;. Then {w1,...,wg, N1, ..., Ng} is a Q-basis
of Hjp(A") = Hjy(A). Take any basis {yy'.....y5,} of H'(A",Z) = H'(A,Z). Then
the Hodge—de Rham comparison Hle(A“) 5 H! (A%, C) under these Q-bases is

B= [(fYk wf)lsks2g,lsjsg (fl/k nf)lsks2g,lsjsg] :

Foreach j €{l,...,g}, we have fyk wj ~0;.Since wy,...,wg,N1,...,Ng are eigenforms
for the CM action, the reciprocity law for the differential forms of the 1st and the 2nd kinds
implies that fyk nj =~ 2mwi/6;; see [5, p. 36, equation (3)] for more details. Hence this
2g x 2g-matrix B is similar to the diagonal matrix diag(6;,...,0¢,27i/0;,...,27i/0g)
over Q. For more details about this computation we refer to the last sentence of Remark 6.5
and above.
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Denote for simplicity by g; := dim A;, and 91(j ), cees Qg ) the holomorphic periods
of A;. Write exp;: Lie A_E. — A]u. (C) for the exponential map, which is the composite of
Lie A} = HJy (A1) 2 Hy(A}.C) and the quotient H (A}, C) — Hy (A}, C)/Hy (AL, Z).
By the conclusion of the last paragraph, under suitable (Q-bases, the isomorphism

Hp(A3)Y =~ H(4].C)

is represented by the diagonal matrix diag(@l(j), e Géf), 27ri/01('j), o, 27ri/9$(,f)). Thus
there exist %EJ)T s Afg]].). ,uy), e u((g]].) € Q* such that exp; (x(‘f)) = 0 for the point
xD = P00 AP0 pu amifo? L ug) 2mi)6f)) e Lie Al

Setx := 2xi, xM, ..., x™) € Lie(Gy, x A") and

exp = (¢, expy ..., exp,): Lie(Gp x A7) — Gy x A%,

Then exp(x) is the origin of G, x A"

Let £ > 1 be a prime number such that exp; (x4 /£) is a non-zero torsion point in
Aju. for each j. Let V be the smallest Q-subspace of Lie(Gy, x A") such that x/£ € V.
Then WAST applied to exp: Lie(Gp, x A") — Gy, x A", and the minimality assumption
made on V, ensure that VV = Lie H for some (algebraic subgroup) H of G, x A%, Since
exp(x/{) is non-zero, we have dim H > 0.

Write 7: Gy, x A" — Gy, x A. As w(H) is an irreducible subgroup of G, x 4 and
A is the product of 2-by-2 non-isogenous simple abelian varieties, we have that 7(H) =
G X Ay X ++- X Ay, x {0} up to reordering.

We claim that m = n and Lie(H) = Lie(G, x A”). Indeed, set B := A; X --- X Ay,
and B’ := A1 X+ x Ap. Then A = B x B’. Since G, X B x {0} = w(H), we have
Gm x BY x {0} € H. Hence the group H equals G, x B! x V' for some vector subgroup
V' of B’. So exp(x/£) € (G x BY x V')(Q) C (G, x A")(Q). But exp(x/£) is a torsion
point, so exp(x/{) € (Gm x BH)(Q) x {0}. By minimality of V', we then have 7(H) =
Gm X BY x {0} and V = Lie(Gyy x B") x {0} = Lie Gy, x Lie A} x - - x Lie 4% x {0}.
If m < n, then x(’”“)/ﬁ is not 0, and hence

x/€ = @i, xV, ... x"M)/l ¢ LieGy, x Lie A" x --- x Lie A}, x {0} = V.
This contradicts the choice of V. So we must have m = n. Therefore B = G, x 4 and

V = Lie(Gp x AY).
Assume there exists (c,ay,...,dg,b1,...,bg) € Q2?8+ such that

2wi
2ri 0 bj— =0.
i + Yty + Y n
Set

W::{(xo,xl,.. i Xg  Xg41s- - .,ng)ELie(GmxAn) : cx0+Zakxk +Zblxg+l:0}'
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Then W is defined over Q. It contains the point x/£. So V C W by definition of V. But
then Lie(G,, x A" € W, and hence W = Lie(G, X A" and

c=a;=-=ag=by=---=bg =0.

This finishes the proof. ]

4. Bi-Q-spaces arising from Shimura varieties: Definition

From this section, we will build up a framework to relate Conjecture 1.3 to split bi-Q-
structures arising from Shimura varieties. The plan is as follows. The current Section 4
defines the bi-Q-structure in question, and Section 5 proves that this bi-Q-structure is
split. In Section 7 we compute the periods of this split bi-Q-structure for A ¢» the moduli
space of principally polarized abelian varieties; the computation uses the discussion on
the family version of the de Rham-Betti comparison and the Kodaira—Spencer map in
Section 6. Then in Section 10, we propose the analogue of Wiistholz’s analytic subgroup
theorem for Shimura varieties, and explains how this conjecture applied to A, implies
Conjecture 1.3.

Let (G, X) be a connected Shimura datum, and fix a special point o € X; for definitions
see Section 4.1. It is known that X is a Hermitian symmetric domain. The goals of this
section are to endow 7, X with a natural bi-Q-structure. More precisely, we will endow
To X with
e the arithmetic Q-structure in Section 4.2,

« the geometric Q-structure in Section 4.3.

We also discuss in Section 4.4 on the Q-structure on the Harish—Chandra (bounded) real-
ization of X . This discussion is important when one relates the bi-Q-space arising from
Shimura varieties to transcendence theory.

4.1. Shimura data and Shimura varieties

We give a quick summary of Deligne’s language of Shimura varieties. References are
[9,10,15].

A connected Shimura datum is a pair (G, X) where G is a reductive algebraic group
over Q and X is the G(R)"-conjugacy class of a morphism

x:S — Gg

satisfying Deligne’s conditions (SV1)—-(SV3). It is known that X is a Hermitian symmetric
space, and each Hermitian symmetric space arises in this way.

Let I' € G(Q) be an arithmetic subgroup. The Baily—Borel theorem [4] asserts that
S := I'\ X has a natural structure of quasi-projective complex algebraic variety Such an
S is called a connected Shimura variety associated with (G, X).

Let u: X — S denote the uniformization.
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Consider x € X. It gives rise to a morphism x: S — Ggr. The Mumford—Tate group
of x, denoted by MT(x), is defined to be the smallest Q-subgroup H of G such that
x(S) € Hg.

A point x € X is said to be special point if MT(x) is a torus. A point in S(C) is
said to be special if it is the image of a special point in X under the uniformization u. In
the particular case S = Ag, the moduli space of principally polarized abelian varieties,
special points of S are precisely the points parametrizing CM abelian varieties.

4.2. Arithmetic Q-structure on T, X

By general theory of Shimura varieties (see also Faltings), the Shimura variety S has a
canonical model over Q which we denote by Sg. Moreover, the special point [0] := u(0)
isin Sg (Q). The differential of the uniformization u: X — S at o is then a C-linear map

W: ToX — T[O]S.

Now T[4 S has a natural Q—structure T10)S = Tio15g ®g C. Thus ¥ defines a Q-structure
on T, X as follows: For a Q-basis {e;.....en} of Tj,)Sg, the set {yy "' (e1)..... v (en)}
is a basis of T, X, and @;Vzl @1//_1(6’]‘) defines a Q-structure on T, X. It is called the
arithmetic Q-structure on T, X .

The arithmetic Q-structure on 7, X can be characterized as follows: A subspace W
of T, X is rational for the arithmetic Q-structure if and only if dimg (¥ (W) N T Sg) =
dimc ¥ (W) (i.e., ¥ (W) is rational for 77 Sg)

Using knowledge on Hecke correspondences, it is not hard to check that the arithmetic-
Q structure on T, X does not depend on the choice of the arithmetic subgroup I' € G(Q).

4.3. Geometric @-structure on T, X

In this subsection, we define a natural @—structure on X (denoted by X, @), via the Hodge
theoretic interpretation of the Borel embedding theorem given by Deligne, for which o
lies in Xg (@)._This then endows T, X with a Q-structure T Xg ®p C on T, X, called
the geometric Q-structure.

Let x: S — Gr be an element of X. Let xc: Gy,c X G, — Gc be its extension
to C, and denote the associated character by

Mx:Gmec — Ge, z+— xc(z,1).

For each rational representation (V, p) of G and any x € X, we have a Hodge structure
(VRr, p o x) and an associated Hodge filtration F(x) on V¢ induced by the cocharacter piy.
There exists a flag variety F1(X, V') defined over C such that each F(x) is parametrized by
apoint in FI(X, V)(C). Moreover, this flag variety has a natural model over Q, denoted by
FI(X,V)g, such that the Q-points correspond to ﬁltragions of Vg by Q-subvector spaces.
Since 0 € X is a special point, F (o) is a filtration by Q-spaces; see [20, Prop. 3.7]. So we
have FI(X, V)g =~ GL(Vg)/Stab(F (0)).
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The center Z(G)(R) acts trivially on X. If the kernel of the representation p: G —
GL(V) is contained in Z(G), then the map

X — FI(X,V), x+ F(x) @.1)

is injective. It factors through the G(C)-conjugacy class of u, in hom(Sc, G¢), which
by the first part of the Borel embedding theorem (Theorem 4.1) can be realized as the

compact dual XV of X. Now Ggr C G¢ LS GL (V) induces injective maps

__6®* v GO for ) = O
Stabg g+ (0) Stabg(c) (o) ’ Stabgr(v) (F(O))
X | Ux b F(x).

Borel’s embedding theorem (Theorem 4.1) asserts that the first map realizes X as an open
subset (in the usual topology) of X V. The second map makes X ¥ into a projective complex
algebraic subvariety of FI(X, V), which furthermore descends to Q since 1, descends
to @ In other words, there exists a subvariety X é of FL(X, V)@, defined over @, such
that XV = XV ®g C.

Now we are ready to define the Q-structure on X by setting X(Q) := X N X v((@) =
X NFI(X, V)Q(Q) We have seen that 0 € X(Q). Hence we obtain the geometrzc Q-
structure on T, X as explained at the beginning of this section; it equals T, X 6

We finish this subsection with the following remark. Notice that X é does not depend
on the choice of the rational representation (V, p) (with ker(p) € Z(G)). In particular,
since G is a reductive group, we can take (V, p) to be V = Lie G* and

0:G — G = G/Z(G) — GL(Lie G*) 4.2)
where the second morphism is the adjoint representation.

4.4. Bounded realization of X

To make the correct analogue of Wiistholz’s analytic subgroup theorem in the Shimura
setting, it is important to work with the Harish—Chandra realization of X which includes
two aspects:

(i) identifies T, X with a certain abelian sub-Lie algebra m™ of g¢ := Lie(G(C));

(i) realizes X as a bounded symmetric domain O in m* ~ C¥ such that 0 becomes
the origin.

Here N = dim S = dim X. We will recall both aspects in the current subsection, with
Lemma 4.2 for (i) and Theorem 4.3 for (ii). Notice that this gives an inclusion of X in 7, X .
For the purpose of our paper, it is important to understand how the various Q-structures
are related under the Harish—Chandra realization. More precisely, we will show that the
Q-structure on X and the geometric Q-structure on 7, X, both given in the previous sub-
section, are compatible under this inclusion; see the paragraph below Proposition 4.4 for
more details.
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For our connected Shimura datum (G, X), we fix the following notation. Denote by
G :=G*R)*, Gg := Gﬁ{'r and G¢ = G?Cer. The Lie algebras are denoted by using fractur
letters: denote by Lie(G%") = g, Lie(G) = gr and Lie(G(C)) = gc.

The underlying space X is a G-orbit because the center of G(R) acts trivially on X.

Our point 0 € X gives rise to a morphism 0: S — Gg. By (SV2) in the definition
of Shimura data, o(+/—1) defines a Cartan involution 6 on ggr. Write gr = £ @ m for
the associated Cartan decomposition, with £ the eigenspace of 1 and m the eigenspace
of —1. Then G = Koo M with Ko, = exp(f) a maximal compact subgroup of G and M =
exp(m). Moreover, X = G/ K as a Riemannian symmetric space. Denote by Tg (X ) the
real tangent space of X at 0. Then Tr(X) = m.

The Cartan involution 8 extends to gc and we have a corresponding Cartan decom-
position gc = ¥¢c + mc. Let g, :=f & V=Im C gc. Since G is semi-simple of non-
compact type, G, := exp(g.) is a compact Lie group and XV := G./ K is the compact
dual of the Riemannian symmetric space X = G/ K.

The complex structure on X is given by an endomorphism J of Tr(X) such that
J? = —Id. We have a decomposition

TR(X)Qr C =THX) @ T%(X)

where J acts by multiplication by ~/—1 on 71%(X) and by —v/—1 on T%'(X). In this
description T19(X) is identified with the holomorphic tangent space at o and there is a
real isomorphism Tr (X) ~ T1%(X). We have mc = m™ @ m™ where J acts by multi-
plication by ~/—1 on m™ and by —+/—1 on m™. It is not hard to check that m™ and ™~
are abelian sub-Lie algebras, i.e., [m™, m*] = 0 and [m~, m~] = 0.:

Let M+ = exp(m™), M~ = exp(m™), Kc = exp(fc) and Pc = exp(fc + m™) =
K¢ Mg . Notice that P is a subgroup of G¢ because p := ¢ @ m™ is a complex sub-Lie
algebra.

Theorem 4.1 (Borel embedding theorem). The embedding G, — G(C) induces a biholo-
morphism XV = G,/ K —> G(C)/P(C). The embedding G — G(C) induces an open
embedding

X =G/Ko — G(C)/Pc ~ XV,

realizing X as a open subset (in the usual topology) of its compact dual X" .

Let T, X be the holomorphic tangent space of X at 0. It is canonically isomorphic to
T, X" under the Borel embedding theorem, which is furthermore canonically isomorphic
to gc/(fc + m~) = m™. Hence we have:

Lemma 4.2. Under the identification X = G/ K and the Borel embedding theorem, we
have T, X = T,XY =m™.

The Harish—Chandra embedding theorem states the following.
Theorem 4.3 (Harish—Chandra). The map

F:M*xKecx M~ — G, (m+,k,m_)|—>m+km_
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is a biholomorphism of M+ x K¢ x M~ onto an open subset of G(C) containing G. As
a consequence the map

nmt — G(C)/Pc =XV, mt+— exp(m™)Pc 4.3)

is a biholomorphism onto a dense open subset of X" containing X. Furthermore, D =
n~Y(X) is a bounded symmetric domain in m* ~ CV and n='(0) = 0.

Up to now in this subsection, we have not used any assumption on the chosen point
0 € X. From now on, recall that 0 € X(Q).

We start with understanding the geometric Q-structure on 7, X given in Section 4.3
from the Lie algebra point of view. Notice that the geometric Q-structure on T, X and the
identification of m* with T, X from Lemma 4.2 together induce a natural Q-structure on

m*, which we denote by m*t .
Q,geom

Proposition 4.4. We have:

; + — it _
@) m@’geom =m" Ngg.
(i)  The map n from (4.3) descends to a polynomial morphism mé geom XV(Q)
defined over Q.

Define the Q-structure on O by setting D(Q) := m
tion 4.4,  induces a bijection between D(Q) and X(Q).

+ .
3. zcom N O. Then by Proposi-

Proof of Proposition 4.4. From the discussion above Lemma 4.2, the identification m ™ =
T,X is given by m™ = g¢/(¥c + m™). Since 0 € X(Q), in the Cartan decomposition
fc, m™ and m~ descend to Q. Hence

+ N - ) — T _
m@,geom—g(@/(({‘c+m )ﬂgQ)—m Nag-

This proves part (i).
As m™ is an abelian Lie algebra, the exponential map on m™ is given by a polynomial
expression with coefficient in Q. Thus part (ii) holds true. ]

5. Bi-Q-spaces arising from Shimura varieties: Proof of the splitting

Let (G, X) be a connected Shimura datum, and fix a special point 0 € X. We have endowed
T, X with a bi-Q-structure in Section 4, i.e., the arithmetic Q-structure in Section 4.2 and
the geometric Q-structure in Section 4.3. The goal of this section is to prove the following.

Theorem 5.1. The bi-Q-structure on T, X thus defined is split.

Moreover, we will explain how the splitting of this bi-Q-structure on T, X is obtained;
see Theorem 5.17.
By Theorem 5.1 and the general theory from Section 2, we have an isomorphism of
bi-Q-structure
To(X) ~ (CN:0q,...,an) withe; € C*/Q*.
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If S = A, then o corresponds to a CM abelian variety A, and Lie(A4,) =~ (C8;0y,...,0;)
with o; € C*/Q* by the results of Section 2.3. We will describe relations between the «;
and the 6; using deformation theory in the next sections.

5.1. Notation

We retain the notation from Section 4.4 that g := Lie(G%"). The natural morphism G C
G — G* = G/Z(G) induces g = Lie(G™).

The point 0 € X defines a Cartan involution 8 of gr by (SV2) of Deligne’s defini-
tion of Shimura data. Write ¢ for its extension to gc. We have the following Cartan
decompositions

gr=fé&m, g.=f++—1lm and gc =fc @ wc,

with e = m™ @ m ™. See Section 4.4 for the notation.

Since o is a special point, its Mumford—Tate group MT(o) is a torus. Let T be a max-
imal torus of G which contains MT(0). Write T2 for its image under the morphism
G — G*. Then T* is a maximal torus of G*, and hence hg := Lie T*)(R) is a real
Cartan subalgebra of gr. Moreover, hr C £ since f is the eigenspace of 1 for the Cartan
involution.

5.2. Decomposition of the Geometric Q-structure on T, X

In this subsection, we will show that the TOX@, i.e., the geometric @-structure onT,X,
can be decomposed into the direct sum of 1-dimensional Q-sub-vector spaces, each being
an eigenspace for the action of a maximal torus in G which contains MT(0).

5.2.1. Statement of the result. Let 3 be the center of £. Then 3 C hr since hr is abelian.
The following result can be found in [16, p. 54, Prop. 1].

Lemma 5.2. There exists z € 3 such that the J -operator on m, which induces the complex
structure on w, is defined by J.v = [z, v] for any v € m.

Proposition 4.4 (i) gives the geometric Q-structure on 7, X a Lie algebra point of view,

i.e., it is naturally identified with m* =mt N @g Vvia Lemma 4.2.
Q,geom

Proposition 5.3. m* o CAN be decomposed into the direct sum of 1-dimensional Q-

5

spaces.

In fact, we will prove a more precise version, Proposition 5.5, which explains how this
decomposition is constructed. This construction is important.

5.2.2. Complex multiplication and root space decomposition. Let by be the dual space
of hr. Let ® C f)(vz be the set of roots of hc in gc. Then we have the root decomposition

ac =bc®(€|§g(f}), (5.1)
ped

where gﬁé ={x € gc :[h,x] = ¢(h)x forall h € hc} has dimension 1. For each root
¢ € ®, let fy be a generator of the root space g%.
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We say that a root ¢ is compact (resp. non-compact) if fy € ¢ (resp. fy € mc).
Let ®x be the set of compact roots and ®js be the set of non-compact roots. We claim
that ® = O U ®yy. Indeed, since 6 is an involution fixing ¢ and hc C £¢, we have
[h,0(f$)] =@ (h)0(fp). Hence 0( fy) € g%, and therefore 6( f3) = A f forsome A € C*.
If f3 = ak fs,x + am fe,m under the Cartan decomposition with ax,ay € C, then
0(fy) = ak fe,x — am fp,m- Then either ag = 0 or apr = 0, and hence we conclude
that fy is in ¢ or in mc.

Lemma 5.4. There exists a choice ®% of positive roots, with ® = ®+ | [ —®™, satisfying
the following property. For CIDZ'& = Dy N DT, we have

mt = P . (5.2)

ped},

Before proving this lemma, let us explain how ®* is constructed. Each ¢ € ® takes
real values on «/—_H)]R, so @ is a root system in J—_lbﬂvg. Since gc is semi-simple, ®
spans +/—1hy. From now on, we identify ~/—1hy with +/—Ihg using the Killing form
on gr.> Now consider the Weyl chambers in ~/—1hg with respect to the root system ®.
Take a Weyl chamber C such that —v/—1z € C, with z from Lemma 5.2. For each y
in the interior of C, the set @1 := {¢ € ® : ¢(y) > 0} does not depend on the choice
of y. By theory of root systems, we have ® = ®* [ [ —®T. We will show that this is our
desired ®*.

Proof. We start with the following observation: For any non-compact root ¢, either fy €
m™t or fy € m™. Indeed by Lemma 5.2, J f, = [z, f,] for some z € 3. Since hc C fc, we
have [h, z] = O for all & € hc. Hence for each i € hc, we have [h, Jfy] = [h. [z, f3]] =
[z, [h. fp]], with the last equality induced by the Jacobi identity, and further equals

[z.¢(0) fo] = oWz fo] = $ (1) T fo.

Hence Jf3 € g%. So Jfy is a scalar of fz. Now that f, € mc = m™ & m™, we have
fo=atmt +a m~ forsomemt e mt,m~ em~ anda™,a” € C. Asm™ is the J-
eigenspace associated with ~/—1 and m ™ is the J-eigensapce associated with —v/—1, we
then have Jfy = ~/—latm™ — ~/—la~m™. But J f4 is a scalar of fs. So eithera® =0
ora— = 0. Hence we are done for the claim.
This shows that m ™ = DBped, g% for a subset ®y C ®,4. It remains to show &y = CID;\}.
Assume ¢ € Dy, i.e., fp € m™T. Then

[~/ =1z, fo] = = =1Jfs = fy.

Thus ¢(—+/—1z) =1 > 0. So ¢ € ®T by construction. This proves @y C & N Py,
7.

This Killing form is positive definite when restricted to ~/—1Hg, and hence induces v—1h}

V-1bg.

12
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Assume ¢ € CIDL. Then ¢ (—+/—1z) > 0 by construction. If ¢ & Py, then
[-vV-lz. fol = =~V =1Jfs = — 1o

and hence ¢(—+/—1z) = —1 < 0, contradiction. This proves @;4 C .
Now we are done. n

5.2.3. Decomposition over @ Another way to see the root decomposition (5.1) is by the
adjoint representation restricted to the maximal torus T and the character group X *(T).
More precisely, the morphism G — G*® induces an inclusion X *(T®) € X *(T). In fact,
Z(G) < T and T* = T/Z(G), and hence

X*(T ={x e X*(D: xlz@) = 1}. (5.3)

The adjoint representation of G* on g induces

ac = bhe @ ( & gé) (5.4)

X€D(Tc,Ge)

where
®(Tc.Ge) S X*(TE) S X*(Te) and gf = {x e gc : Ad(t)(x) = x(t)x for all 1 € T(C)}

has dimension 1.

By general theory of root decomposition for semi-simple groups, the sets of spaces
{g% }oed and {gé}erTc,Gc) coincide. More precisely, there exists a bijection ® ~
®(Tc, Ge), ¢ — x4, such that g% = gé"’. Both T and G are Q-groups, so there is_a
natural isomorphism X*(Tg) = X*(Tc). Thus each g(’é is naturally defined over Q;
more precisely gf = (g% N gg) ®g C.

Let QDIE be from Lemma 5.4. By abuse of notation, we still use CIJI,I to denote the
image of dDIJ[,I C @ under =~ (T, Ge) € X*(Tc) = X*(Tg).

oge +, .
Proposition 5.5. Denote by m @’;om 1= g¢ N gg foreach y € @, Then

+ — ot _ +.x
m@,geom =m’ N 8Q = @ m@,geom’ (.5
)(ECP}T,I
Sl Qi T + . +.x _ X
with dimg MG om = 1 for each y € @y, (equivalently, M om ® C = gg).

This proposition is a more precise version of Proposition 5.3.

Proof of Proposition 5.5. The second equality follows immediately from Lemma 5.4, and
UG S : + _ v
we have seen dimg g o= 1 above. To see the first equality, recall that m B .geom — T,X o

The Q-structure X é is given by the flag variety associated with the representation (4.2),
which is precisely the representation giving the root decomposition (5.4). Hence we are
done. ]
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5.3. Decomposition of the arithmetic Q-structure on T, X

In this subsection, we turn to the decomposition of the arithmetic Q-structure on T, X into
the direct sum of 1-dimensional Q-space.

We retain the notation from Section 4.1 and 4.2. Now S is a connected Shimura variety
associated with the connected Shimura datum (G, X), and S has a canonical model S@
over Q. As a complex variety S*" = I'\ X for some arithmetic subgroup I' € G(Q).

From the uniformization u: X — S and the special point 0 € X, we get a Q-point [0] :=
u(o) € Sg (Q). The arithmetic Q-structure on T, X is the one obtained from y ! (T101Sg)s
where v is the differential du: 7, X — Tj,)S.

The point 0 € X gives rise to a Cartan decomposition gr = £ @ m, and we have
me = mt @ m; see Section 4.4. By Lemma 4.2, m™ can be identified with 7, X . Hence
the arithmetic Q-structure on 7, X defined above yields a Q@-structure on m™t, which we
denote by ma’amh.

Let T be a maximal torus in G which contains MT(0) such that Lie T(R) is contained
in ¥ modulo Lie Z(G)(R). In particular, T(R)o = 0. Then any ¢t € T(Q) induces the
following commutative diagram, and o € X is mapped

id t-

X X X 0 {0l 0
(IR Y 2 A O
S+— S, =T Nt T\ X — [o] «— [0¢] := us(0) —— [0]

where u, is the quotient. The theory of Shimura varieties asserts that every morphism in
the bottom line is algebraic, and is furthermore defined over Q. The morphism [id] induces
T10,15;.5 = Tio1Sq- Thus the differential of [7-] induces a Q-linear map

Pt T[O]S@ — T[O]SQ.
By abuse of notation, we also use p; to denote its base change to C.

Proposition 5.6. Under the identification of T, X with m™ from Lemma 4.2, we have

pr =Y oAd(t) oy L. (5.7)

Proof. Differentiating (5.6), we get that ! o p, o Y: T, X — T,X is d(t-),.

Use the notation from Lemma 4.2 and above. Recall our choice of T that Lie T(R)
is contained in ¥ modulo Lie Z(G)(R). Since [f, m] € m and [fc, m™] € m™, we have
Ad(T(R))(m) € m and Ad(T(C))(m™*) C m™.

For X = G/K as a Riemannian symmetric space, the real tangent space of X at o
ism. Themap?- X — X isinducedby G — G, g — tgt_l, and hence the differential of -
at o is induced by Ad(#): tn — m. Passing from R to C and considering the decomposition
of mc = mT @ m™, we can conclude. n

Let CD]‘} be the subset of X *(T@) defined as above Proposition 5.5. Then m™* =
EBXE%T} ag, with g& = {x € gc : Ad(t)(x) = x(t)x forall 1 € T(C)} of dimension 1.
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Proposition 5.7. For each y € ®3,

((_gjl{rith = mcg,arith nag
is a Q-space of dimension 1 (equivalently, (5,§mh RC = gé ).
As a consequence, mt = @Xeq,Jr m@’:ri[h.
Proof. By Proposition 5.6 and the definition of the arithmetic Q-structure mé aricy O1 m™t,

T(Q) acts on ma via ¢ - x = Ad(¢)(x). For each y € q>+ c X (Tg). the weight
space associated Wlth x (defined as {x € m(g s Ad(t)(x) = x(t)x forall t € T(Q)})
+.x +.x

is precisely LLF . Extend this notation and wrlte m-

G arith for the weight space associated

with y for each x € X*(Tg).
The general theory of algebraic tori and their character groups then asserts that

+ _ @ +,x
m@,arith - m@,amh'
XEX*(Tg)

Tensoring C on both sides, we get

er = @ ( Qaruh @ @ Qarlth )

xed; x€P,

By Lemma 5.4, m* = P xedt gé. Thus the conclusion follows because

Q arnth ®Cc g(c for each y € X*(T@) .

5.4. Conclusion for Theorem 5.1

By Propositions 5.5 and 5.7, the bi-Q-structure on T, X = m™ is split. This establishes
Theorem 5.1. In fact, these two propositions yield a more precise statement as follows.

Let qg = ¥ @ m be the Cartan decomposition of qr := Lie G*'(R) associated with
the special point 0 € X by (SV2). Let T be a maximal torus in G. By Propositions 5.5
and 5.7, we have the following.

Theorem 5.1'. Endow T, X with the bi-Q-structure from Sections 4.2 and 4.3. Then T(Q)
acts on T, X via bi-Q-automorphisms and the splitting under this action gives the bi-Q-
splitting of T, X .

6. De Rham-Betti comparison in family and the Kodaira—Spencer
map

In this section, we recall the comparison of the relative de Rham cohomology and the Betti
cohomology for families of abelian varieties. These are useful in the computation of the
periods of the Siegel modular varieties in the next section Section 7.
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Let k¥ € C be an algebraically closed field. Let S be a smooth irreducible variety and
let f: A — S be an abelian scheme of relative dimension g, all defined over k. Assume
that #4 carries a principal polarization, i.e., an isomorphism of abelian schemes A: 4 5 Al
where ' is the dual abelian scheme of A/ S.

Let u: S — S be the uniformization in the category of complex analytic spaces. Set

s A —— A

=8 x
l lf ©.1)
S

S.

Then Ag/ Sisa family of abelian varieties which carries a principal polarization.

For each s € S(C) (resp. 5 € S), denote by Ay := f1(s) (resp. Az := f_l (5)).
Notice that for each § € S, sz can be canonically identified with oAy ).

We have a canonical short exact sequence

0— f*Qf — QL — Q}A/S —0. (6.2)

It is known that the de Rham complex Q3 ¢ = (04 — Qit,/s — Qi/s —...)isa
resolution of f~10s.

6.1. De Rham cohomology and symplectic basis

The relative de Rham bundle on S is defined as follows. Let J¢ R(e/’o /S) = R! £,Q % /s it
is a locally free sheaf of rank 2g, which we view as a vector bundle of rank 2g over S. We
have a subbundle Q2 4 := f*Q;‘,/S of #};(4/S) — S which has rank g; over s € S(k),
the fiber €2 4 5 is precisely €24, and hence consists of invariant holomorphic differentials
on Ag.
Set
Hip(Ag5/S) = u*Hip (A/S) and Q. =u*Quy. 6.3)

Restricted to each § € S, the inclusion Qug € Jf(}R(zAS/f) becomes 24, C HL (A3).

The advantage of using Q4. € X, R(A /S) instead of working directly on S is that
we can take global basis. More prec1sely, we have the following.

Construction 6.1. There exists a global basis {w1, ..., wg} of nggf which can be com-
pleted into a global basis {1, ..., wg, N1, ..., Ng} of K R(J%S/S;), with 7; (5) being the
complex conjugate of w; (5) foreach s € S.

Moreover, if § € S satisfies that 4z is a CM abelian variety, then £ := End(A3;) ® Q
acts on 2,4, and we can make a choice such that each w; (5) is an eigenvector for this
action.

Namely, the o;’s are sections of Q 4 — S such that }-5_, Cw; (§) = Q4; foreach§ € §.
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Proof. The existence of {1, ..., wg} holds true since S is simply-connected. If Ay is a
CM abelian variety, then by looking at the CM type, we can make a choice such that each
w; (3) is an eigenvector for the action of £ on 2 4.

The set {1, ..., ng} can be constructed as follows. Apply (6.1) and (6.3) to the dual
abelian scheme 4" — S. Then we obtain a family of abelian varieties A =SxgA > §
and a vector bundle Q2 4 — S. The principal polarization A: A ~ A‘ induces an iso-
morphism A*: Q AL Q4 of vector bundles on S, and hence we obtain a global basis

{A*(w1),.... A" (wg)} of Q""‘E' For the exact sequence
0 — Qu; — Hip(A5/5) — Lie(As/S) = (Q4)” — 0, (6.4)

{2mi X (w1)Y,. .., 2mi A*(wg)¥ } lifts to a set of global sections {1, ..., 7g} OfJ(’le(A§/§).
For each s € S, use p to denote the complex conjugation on H, (+z). Then 7;(5) =
p(wj(3)) because p(2.4;) 5 Lie(AL), p(w) > 2mi (A*w)". We are done. [

Remark 6.2. If s € S(k) and 5 € S lies above s (i.e., u(s) = s), then the short exact
sequence (6.4) restricted over § becomes 0 — Q4. — H; (4As) — Lie(4') — 0, which
is defined over k.

6.2. Betti (co)homology and symplectic basis

Let Z 4 be the locally constant sheaf of Z on . Write Ry fxZ 4 := (R fxZ 4)". Then
Ry f+«Z 4 is a local system on S such that (R fxZ 4)s = H1 (A, Z) for each s € S(k).
Use V(4/S) to denote the vector bundle over S associated with Ry f«Z 4 ®z Os, i.e.,
V(A/S) = Spec  (Sym(R: fuZ 4 82 Os)).

Set

Ry il := u*(Ry fxy) and V(Agz/S) :=u*V(A/S). (6.5)

Then R, f* Z is a local system on S with (R; f*Z)s = H; (A3, Z) for each 5 € S, and
V(Ag/ S) — § is a vector bundle whose sheaf of sections is R, f*Z ®z Os.

Since S is simply-connected, we can take a set of global sections {)/1, cee yzg}
of le*Z which is a global basis of V(Ag /S) — §, ie., we have the following S-
isomorphism

2g
C2 x§ = V(Ag/S). ((k1.....kag).5) — Y k;y; ). (6.6)
j=1
The basis {y1, ..., y2¢} can be furthermore chosen to be symplectic in the following

sense. The principal polarization on + g endows, for each § € S, (R f* Z); = Hi(A3,7)
with a symplectic form W, which furthermore induces a pairing on Z?¢ via

2g
278 —> Hi(As5.Z). (k1.....kag) — Y kjy; ).
j=1
We say that {y1,. .., yag } is symplectic if this induced pairing on Z?¢ is [_(}g Ié’ ] for each

5eSs.
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Finally, notice that the natural differential map O — Q}i gives a natural map
Rifu, ® O5 — Ri fuL ® Q%
which in turn becomes a connection on V (Ag/ S ). Denote this. connection by d.

6.3. Gauss—Manin connection

Taking exterior powers, the canonical short exact sequence (6.2) yields a decreasing filtra-
tion Q% = Fil’Q% DFil'Q% D --- on Q¢ such that Fil’ Q% /FiI't1Q% = f*Q% ®o,,
Q% /s Thus from 0 — Fil! /Fil®> — Fil®/Fil*> — Fil°/Fil! — 0, we obtain

0— f*Q§ ®o, Qs — Q/FilP — Q5 ¢ —> 0.
Thus we have a connection map

R f, Ws — R £ (f*Q5 ®0,, Q;;/g) = Qs ®R'fu s

Recall the definition of the relative de Rham cohomology Hg (A/S) = R! £, Q5 /- Then
the co-boundary map above is precisely the Gauss—Manin connection

Vom: Hag(A/S) — Hip(A/S) ® Q.
By abuse of notation, we also use Vgy to denote the Gauss—Manin connection
Hf(A5/8) — Hh(A5/5) ® QL.

6.4. Comparison of de Rham and Betti cohomologies

By the theory of vector bundles with connections, there is an isomorphism of vector bun-
dles over §

B: (K (A5/S), Vom) —> (V(Az/S)Y,d). (6.7)
Set 2, (5)= [fy; wj (5)]151‘,15@" §2205)= [fyg+1wf (E)]lsj,lsg’ M= [fl’l i (5)]1513158’
and N>(5)=| fng nj(i)]lsj’lﬁg. Under the global basis {w1, ..., ®g, N1, ..., Ng} of
J€‘}R(,Aa§/§) and the global basis {y)’, ..., 7y} of V(Ag/s’)v, the isomorphism B is

represented by the matrix
. [216) M)
Bs = [Qz G N (g)} (6.8)

overeach § € S, i.c., the following diagram (of S -morphisms) commutes

Hk(As/S) —2— V(Ag/S)V

T: :T (6.9)

(ng X § %CZg X §
(v,5)~>(B5v.,5)
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where the left isomorphism is by sending

g g
(oo g dgire o ag). 8) — Y Liwj () + Y lgs i ().

j=1 j=1

and the right isomorphism is defined by sending ((k1, ..., k2g),5) — ij.il kj yjy (3).
We take a closer look at this comparison. Let § € S. Set 5 := Q5(3)Q1(5)"!. Under

the basis {y,'(5), ..., ¥y (5)} of V(Ag/’s“)g = H' (A3, C), we have
Bs(Qu;) = {(215)x, 22(5)x) : x € C¥}.
It is known that 21 (5) is invertible for each s € S. Hence
Bs(Qa;) = {(x, ()1 () 'x) i x e C&} = {(x.75-x) : x € C*}. (6.10)

More precisely, B5(£2.4,) is the subspace of @jz-‘il (Cy}/ (5) consisting of the vectors of
the form [y (5) - Ve )] x+ [ng(E) Vo (5)] 75 - x, with X running over all
(column) vectors in C#. Taking x to be the vector with 1 on the j-th entry and 0 elsewhere
with j running over {1, ..., g}, we obtain a basis of B5(€24,). Notice that this basis is
precisely the columns vectors of [ylv ) vy (5)] + [yg,’H(E) yﬁ’g (5)]1'5. The
comparison 85 induces the following commutative diagram

0 Qg H i (As) ——— Lie(A}) = QY% ———0

l lﬂs lﬂ 6.11)

0 —— B5(Qua;) — H' (A5, C) —— H'(Az,C)/Bs(Qa;) —— 0.
Foreach j € {1,...,2g}, write )71v (§) for the image of ij (5) under quotient
H' (A5, C) — H'(A5,C)/Bs(Qu;)-

Then {741 (5), ..., V25 ()} is a basis of H'(A5.C)/Bs(Qay)-
The following lemma follows from a direct computation.
Lemma 6.3. We have
(i)  Under the basis {w1(3), ..., wg(3)} of Qu, and the (natural choice of) basis of
B5(RQ.4;) below (6.10), the matrix for ﬂg|Q_A§ is Q1(5).
(i)  Under the basis{M1(5), . .., Ng(5)} of Lie(Ay) and the basis {Vy . 1(5), . . ., V2, (5)}
of H'(Az, C)/B5(Qay), the matrix for Bs is N2(5) — Q(5)Q1(5) ' N1 (5) =
N2(5) — w5 N1 (5).
Recall from Construction 6.1 that 77; is (A*w;)", where A: Az 5 Atg is the principal
polarization.

Proof. We only prove part (i). Part (ii) follows from a similar computation.
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From (6.8), we have

[Bs(@1(3)) - Bs(wg(3))]

=[G - w®] [g;ﬁjﬂ
=@ o WOIAE + [ G) - v (®)]2:06)
=[G - WOINE + 16 @] E6)
= (G - O+ o r®)]) 2i6).
We are done. [

6.5. Over CM fibers

In this subsection, we assume k = Q. Fix a point § € S such that Az is a CM abelian
variety. Set £ := End(Aj3) ® Q.

All CM abelian varieties over C are defined over Q. So s := u(5) € S(Q). Moreover,
it is known that t5 € Matgxg(@). The basis {@1(5), ..., wg(5), n1(5),...,ng(5)} is by
choice a Q-eigenbasis of H J, (Az) for the action of E, and {y,’(3), ..., yzvg (5)} is a Q-
basis of H!(A;, Q).

Let 6, ..., 6,4 be the holomorphic periods of ;.

Since 75 € Matgxg (Q), the subspace

Bs(Ra;) = {(x, 75%) : x € C8}

of H'(4z,C) = ®Cy,’(5) is rational for the Q-structure given by H!(Az,Q) ® C. Thus
Hl(,y‘gg, Q) gives a Q-structure on H ! (g, (C)/,Bg(SZ,A,E),for which {7, (5),. ... V5, (5)}
is a QQ-basis. Moreover, the action of E _on H'(Az, Q) induces an action of E on

H' (A3, C)/Bs(Q.4;) which preserves its Q-structure. Therefore we can find a Q-eigen-
basis {fy, ..., fg} of H'(Az, C)/Bs(Q.a4,;) with respect to the action of E.

Lemma 6.4. Under the Q-basis {7j1(3). ... . g (5)} of Lie(:A%) and a choice of the Q-
eigenbasis {f1,...,tg} of H' (Az, C)/Bs(Q4;) as above, the matrix for B5 is diag(m 07!,
N 1)

Ve

Proof. Since both bases are eigenbases for the actions of E and the linear map Eg is E-
equivariant (because f; is E-equivariant), the matrix for Bz under these bases is diagonal

up to reordering £y, . . ., fy. Call this matrix D.
Let us look at the matrix N, (5)—1t3 N1 (). By our choice of the basis, 7; (§) is the com-
plex conjugate of w; (5) foreach j€{1,..., g}. Since w1,...,wg,N1,...,ng are eigenforms

for the CM action, the reciprocity law for the differential forms of the 1st and the 2nd
spaces implies that fy nj(5) ~2mi/f; for any y € Hy (A3, Z); see [5, p. 36, equation (3)]
for more details. So both Ny (5) and N5 (5) are in Matg g (Q) - diag(z6; ..., 76, 1). So
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N3 (5) — 15 N1(5) is in Matgxg Q) - diag(m 07!, ..., 719;1) since 73 € Matgxg (Q),ie.,
N>(3) — 5 N1(5) = M - diag(w 67", ... w6, ")

for some M € Matgxg (Q). Notice that M is an invertible matrix, since ,B_g is an isomor-
phism of C-vector spaces.

Set [v1(5) -+ vg(3)]:= [77;'/—#1 (5) -+ Vo (5)] M . By Lemma 6.3 (ii), under the basis
{71(5).....7g(5)} of Lie(-A%) and the basis {vy(5), ..., vg(3)} of H' (5, C)/B5(Qa,),
the matrix for fz is M - diag(w0;,. .., 8.

Now we have two Q-bases {f;,. .. Lo} and {v1(5),. .., ve (3)} of H! (A3, C)/B5(R24;)-
Let T € GL4(Q) be the transition matrix. Then D = (TM) - diag(z6; ', ..., m8, ). So
TM is diagonal because both D and diag(rz@l_ Lo 0, 1) are diagonal. Thus we can
conclude by replacing each f; by a suitable Q-multiple. ]

Remark 6.5. Similar to the proof of Lemma 6.4 and using Lemma 6.3 (i), we can prove

the following assertion. Under the basis {w1(5), ..., wg(5)} of Q4. and a Q-eigenbasis
{e1, ..., ez} of B5(Q4,), the matrix for Bs|q ,_is diag(6,...,0q).
Therefore the matrix for By is diag(6;, ..., 0. 7191_1, e neg_l) under suitable @-

bases of Hj,(+;z) and H'(A;z, C).

6.6. Kodaira—Spencer map

Consider the maps defined over the field &

V
Qi © Hig(A/S) = Hip(A/S) a5 Ry —> Hiz(A/S)/Qa B0 2
~ Lie(A'/S) ®0s Q5. (6.12)
Thus for the tangent bundle 7S = (2})" we have
TS —> Lie(A'/S) Qo Lie(4/S). (6.13)

Using the principal polarization A: A >~ A', the right-hand side is isomorphic (over Og)
to Lie(4/S) ®o; Lie(A/S) = Symg_ Lie(4/S) @ Altg Lie(+4/S). We introduce the
following (non-standard) notation:

S? Lie(A/S) := (A« 1)(Symg, Lie(4/S)) C Lie(A'/S) ®og Lie(A/S).  (6.14)
It is known that the image of (6.13) lies in S? Lie(A/S), i.e., we have
KS: TS —> S? Lie(#4/S) C Lie(A'/S) ®og Lie(A/S). (6.15)
Let s € S(k). Then (6.15) restricted over s becomes
KS;: Ty S —> S? Lie(s;) C Lie A ® Lie . (6.16)

We close this section by the following discussion, which will be used in the computa-
tion of the periods of the Siegel modular varieties.
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For the universal covering u: S — S, the sequence of maps (6.12) exists with #A/S
replaced by Ag/ S. Then combined with the isomorphism f: (H L (A 5/ S). Vaom) =
(V(4A5/S)Y,d) from (6.7), we obtain

Q> K (Ag/S) Jaw, Hh(As/S) ® QL — Hia(Ag/5)/Qa; ® QL = Lie(A%) ® Q

J BJ P@m 5@{ 6.17)

B(Qus)— V(Ag/5)Y —= V(Az/5)" @ QL ———— V(A5/8)V/B(Qua;) ® L,
from which we get the commutative diagram

7§ K8, Lie(A%) ® Lie(Ag)

= L’?@ﬂv (6.18)

= V(45/5)Y v

Take § € u~!(s). Then (6.18) yields, after the natural identification Az = s under u,

ToS — Lie(AL) ® Lie(ss)

duT: lmﬂg (6.19)

~ 1 ~

7. Periods of the Siegel modular variety

In this section, we turn to the Siegel case. Let A, be the moduli space of principally
polarized abelian varieties of dimension g. The associated connected Shimura datum is
(GSpyg, $g), where ;g is the Siegel upper half space {T € Matgxg (C) : T = 17T, Im 7 >0}.

Let 0 € H, be a CM point. The goal of this section is to compute the periods of the
(split) bi-Q-structure on T, defined in Section 4, or more precisely in Sections 4.2
and 4.3.

The abelian variety A, := C8 /(Z8 + 0Z¥) is a CM abelian variety. Let 0y, ..., 6,
be its holomorphic periods as defined in Convention 1.1.

Theorem 7.1. The periods of the (split) bi-Q-structure on T, defined in Section 4 are
0;0/mwithl < j < j <g.

Our proof of Theorem 7.1 uses the Kodaira—Spencer map and does not use the root
space decompositions discussed in Sections 5.2 and 5.3. At the end of this section, we will
show in Section 7.4 that the computation with the Kodaira—Spencer map is compatible
with the root space decomposition.
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We have the following more precise formulation of Theorem 7.1 in view of the lan-
guage of split bi-Q-structures introduced in the current paper. By dimension comparison,
the Kodaira—Spencer map (6.16) applied to the universal abelian variety 2, — A, at the
point [0] € A4(Q) gives an isomorphism KSp,): TjpjAg =~ S? Lie(A,) over Q. Thus for
the uniformization u: $, — A, the composite

KSo: Ty$Hg —5> TioAg — $%Lied,
[o]
is an isomorphism of C-vector spaces. The split bi-Q-structure on Lie A, ~ C#& given by
Section 2.3 induces a natural split bi-Q-structure on S? Lie A,.

Theorem 7.1'. KS, induces an isomorphism of bi-Q-structures between T,9: ® £(1)
and S? Lie A,, where £(1) is the Tate twist from Definition 2.7.

7.1. Universal abelian variety and eigen-symplectic bases

By abuse of notation, denote by Az be the fine moduli space of principally polarized
abelian varieties of dimension g with level-£-structure for some £ > 3. Then there exists
a universal abelian variety

fiUg — Ag,
which is an abelian scheme of relative dimension g defined over Q and is endowed with
a principal polarization A: g = A ; here ﬂfg — Ay is the dual abelian scheme.

For each v € g, denote by A, the abelian variety parametrized by [7]. If [t] = [¢/] €
Ag (k) (for an algebraically closed field k C C), then A; and A/ are k-isomorphic as
polarized abelian varieties. All discussions in Section 6 apply to k = Q, (7: A — §) =
(f: Uy = Ag) and (u: S — 8§y = (u: g — AY). In particular, one has

» a symplectic global basis {w,...,we, N1,..., g} Of delR(Agg/ﬁg) — g asin
Construction 6.1, such that when evaluated at o we get precisely the w; (0)’s as above
Theorem 7.1;

* asymplectic global basis {y1, ..., y2g} as in (6.6) of the vector bundle V(Ag, /Hg)
over ., (whose fiber over each v € ¢ equals H; (A, C)).

7.2. Realization of $,
Let
0 I
AW = (2% 2mi &
(A9 ( ! [_Ig 0})

where W is viewed as a symplectic form on A.. Moreover, let E act on Aé via the
isomorphism Ag =~ H'(4,,Q).
Let $ be the parametrizing space of Lagrangians in A ¢, i.e.,
35; = {[W CA{]dime W =g, Y(W, W) = 0}.

Then $ has a natural Q-structure, for which a point [ € A{] € Hy isa Q-point if and
only if W descends to Q, i.e., there exists a Q-subspace V C Aé suchthat W =V ®g C.
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Construction 7.2. The map (4.1) for the Siegel case (in particular, X = $,) factors
through an injective map ¢: $, — 85; with the following property: For any t € $g, the
entries of 7 are in Q if and only if (() is a Q-point.*

This construction of ¢ is important. It implies that the Q-structure on $ ¢ constructed
in Section 4.3, denoted by £, 5, is equivalent to the following simple construction: $g is
a semi-algebraic open subset of {T € Matgxg (C) : 1 = 17} = {r € Matgy, (Q):7 =17}
®gp C,andapointt € Hg isa Q-point if all entries of 7 are in Q.

Proof. The vector bundle of Betti cohomology in family V(Ag,/$g)" over $H, can be

trivialized by the dual basis {y,’, ..., y,,} in a similar way as (6.6)
2g

AL X &g —> V(g /D). ((kr.... kag). T) — D kv (D). (7.1)
j=1

We work under this identification. Then the comparison between de Rham and Betti coho-
mologies (6.7) (applied to the current situation) becomes

B: Hge (Ao, /Dg) —> AE x §g.

For each 7 € H, set B, H le(At) = A ¢ to be the restriction of this comparison over 7.
We claim that 8;(€24,) is a Lagrangian. By (6.10), we have

B:(R24,) = {(x,7x) : x € C¥} (7.2)

under the basis {y)'(7), ..., 7y, (v)} of A¢. Since dim B:(S24,) = g, it suffices to prove
U(B(Q4,), B+(S24,)) =0. This follows from the direct computation (X, Tx) [_Olg I{)”] (x, 7x)'
= 0. Hence we are done.

Now we are ready to define
19, — H), T [B:(Q4,) € A (7.3)

It is clear that (4.1) factors through ¢ and that ¢ is injective.
By (7.2), t has entries in Q if and only if B; (24, ) is defined over Q. Hence the entries
of 7 are in Q if and only if ¢(7) is a Q-point. We are done. |

7.3. Proof of Theorems 7.1 and 7.1’

From
Hg —— Y, 0 ——1(0) = [Bo(Ru,) € AY]
Ag [o]

“In fact, &7 is the compact dual of §, with ¢ the map in the Borel embedding theorem.
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we get

T,9g —% TS

]

T[O]Ag.

The Kodaira—Spencer map (6.16) applied to A, — A, at the point [0] € A, (Q) gives
KS(o): TjojAg — S?Lie(Ay). In this particular case (of moduli space), this map is injective;
moreover, both sides have the same dimension g(g + 1)/2. Hence KS[,] is an isomor-
phism of Q-vector spaces. To sum it up, we have

KSpo): TojAg =~ S? Lie(4,) C Lie(A}) ® Lie(4,) (7.4)

and KSy, is defined over Q.
By knowledge on the tangent space of Grassmannian, we have

\

A
T (0)$y < Hom (B5(Q4,). AL/Bo(R4,)) = WSECA) ® Bo(24,)". (7.5)

Recall from (6.11) the map B,: Hjg (4o) — H'(A,, C) = A and the induced maps
Bo:Lie(AL) —> AL/Bo(R4,). By :Bo(Ru,) —> Lied, = QY. (7.6)

Apply (6.19) to (§,5) = (9, 0), and notice that the bottom arrow in this case is
precisely di: 7,9, — TL(,,)SB;f composed with (7.5). Thus du o (dt)™! is the restriction of
Byl @By _ _

By Lemma 6.4, B! is diagonalizable under Q-bases to be diag(6; /7, . .., 0 /7). By
Remark 6.5, 8 is diagonalizable under Q-bases to be diag(6;, ..., 0¢). Hence under
suitable Q-bases of T )y and Ti,)Ag, the matrix of the linear map du o (d)~" is
diag(0;0;//m)1<j<j'<g- _

This yields Theorem 7.1, because the geometric Q-structure on 7,5, is by definition
given by the Q-structure on TL(O)SBéY.

We can do better. The computation above and (6.19) applied to (S, 5) = (9. 0) yield
the following assertion: KS[,) maps a 1-dimensional bi-Q-subspace of Tio)A ¢ with period
0,0,/ /7 to a 1-dimensional bi-Q-subspace of S? Lie(A,) with period 0;0;:. This proves
Theorem 7.1’. We are done. m

Remark 7.3. By general knowledge on symplectic vector spaces, for the Lagrangian
Bo(R24,) of A we have a decomposition Al = B,(R4,) P Bo(24,)" given as follows:
take a Q-basis {x1,...,xg} of B,(£24,), and then one has a dual Q-basis for a complement
defined by W(x;, y;) = 27id;;, and this complement is canonically isomorphic over C to
Bo(R4,)V. Over Q, this decomposition then becomes Aé = Bo(Qu,) P27if0o(Qa,)".
Hence we have a canonical isomorphism

27iBo(Q4,)” = A¢/Bo(Qa,) (1.7)
defined over Q.
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We close this subsection with the following (slightly more precise) formulation of
Theorem 7.1, which follows immediately from the computation above. Denote by $ 2.0
the Q-structure on $, explained below Construction 7.2. Consider the tangent of the
uniformization u at the CM point o

Yi=du:To9He — TpA,.

Theorem 7.1”. Under a suitable Q-basis of T:95¢ = 105, g ®g C and a suitable Q-
basis of Tio)Ag = Tio)A, g ®g C. the matrix of ¥ is diag(6; 0/ /) 1< </ <g-

7.4. In relation to the root space decomposition

Let T be a maximal torus which contains MT(0). The last sentence of Remark 6.5 yields
a Z-basis {eg, &7, ..., &z} of X*(T) such that 8;(,30) = f; foreach j € {I,..., g} and
&g is a character of Gy,. The root system ®(T, GSp,,) € X *(T) defined in [6, §13.18] is
{5}‘ +E;‘, l<j<j <g} U{sj* —87, 11 <j < j' < g} The set @L defined above
Proposition 5.5 is {8;-‘ + 8}“, l<j<j <g}h

Theorem 7.4. The 1-dimensional bi-Q subspace of Ty$ ¢ associated with 8}‘ + 8}‘, has
period 0;0;: /7.

Proof. All vector spaces in the proof are C-spaces unless otherwise stated. We start by
defining an action of T(Q) on Lie 4, = QXO. By (7.2), we have B,(Q24,) = {(0X,X) :
x € C#} under the basis {y,;(0),...,¥5,(0),7)(0), ..., v, (0)} of H'(4,,C). The
action of Gszg(R)Jr on $g is defined by [é g]r = (At + B)(Ct + D)™'. By the
discussion at the end of Section 5.1, T(R)o = o. So for each [é g] € T(R), we have
(Ao + B)(Co + D)~! = 0, and hence

A Bl[ox (Ao + B)x oy
[C D][x]:[(cwmx}:[y}Eﬁ”(QA”)

with y = (Co + D)x. This defines an action of T(Q) on Lie 4,, and hence an action
of T(Q) on S? Lie A,. Notice that the Kodaira—Spencer map KS,, is T(Q)-equivariant
because every morphism on the bottom line of (6.17), when restricted to o, is T(Q)-
equivariant. Thus the 1-dimensional bi-Q subspace of T,%¢ associated with 6; + 8}‘, is
the eigenspace of s}‘ + e_;.‘, for the action of T(Q) on S? Lie A,.

Recall the bi-Q structure on Lie A, defined in Section 2.3. By the first part of Re-
mark 6.5 and the choice of 8}‘, the eigenspace of 8;‘ for the action of T(Q) on Lie A4, is

the 1-dimensional bi-Q subspace of Lie A, associated with 6;. Hence we are done by the
conclusion of the previous paragraph. ]

Theorem 7.4 yields the following immediate corollary. By a root space, we mean a
1-dimensional bi-Q-subspace of T, associated with some &} + ¢7,.

Corollary 7.5. The following statements are equivalent:

(1) g/iz:/ & Q* for all distinct pairs {j, j'} and {k, k'};
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(ii)  each 1-dimensional bi-Q-subspace of T,$g is a root space;

(iii) each bi-Q-subspace of T,9¢ is the direct sum of root spaces.

In particular, if there exists a special subvariety (i.e., a connected sub-Shimura variety)
S of A passing through [o] such that T,]S is not the direct sum of root spaces of T[5)A,
then the holomorphic periods of A, satisfy some elementary non-trivial quadratic relation
as defined in Definition 1.2. We shall elaborate this phenomenon in a subsequent work
[12, §9] by the first- and second-named authors.

8. Shimura curves and Hilbert modular varieties

Let S be a connected Shimura variety associated with a connected Shimura datum (G, X).
Let Sy be a connected Shimura subvariety associated with (H, Xg). We have seen that X
can be endowed with a split bi-@-structure in Section 4, and the restriction of this split
bi-Q-structure on Xy gives precisely the bi-Q-structure defined for Xy in Section 4. In
particular, each period of Xg is a period of X by Proposition 2.5 (iii).

In this section, we see two aspects of this discussion. The first is about Shimura curves,
for which we use Corollary 3.1 (which is a consequence of WAST) and our Theorem 7.1
to give a new proof of a conjecture of Lang. The second is to compute the periods of
Hilbert modular varieties.

8.1. Shimura curves

Lang [14] raised the following transcendence question in uniformization theory. Let C
be a smooth projective algebraic curve of genus > 1 defined over Q. Suppose that the
universal holomorphic covering map

9:Ep:={zeC:|z| <p} —C™ (8.1)

is normalized in such a way that ¢(0) € C(Q) and that ¢’(0) € Q. Is the covering radius
p then a transcendental number?

This question was answered affirmatively by Cohen and Wolfart [8] when C is a
Shimura variety of dimension 1 and ¢(0) is a CM point. Apart from Wiistholz’s result
on transcendental numbers, their proof relies on some hard computation of Shimura [18,
Thm. 1.2, Thm. 7.1, Thm. 7.6].

We hereby give a new and easier proof using the framework of this paper which does
not use Shimura’s computation. More precisely we use the bi-Q-structure on the Hermi-
tian symmetric space and our Theorem 7.1, in addition to the consequence of Wiistholz
prsented in our paper (Corollary 3.1).

Proposition 8.1. The question of Lang mentioned in the paragraph of (8.1) has an affir-
mative answer if C is a Shimura variety of dimension 1 and ¢(0) is a CM point.
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Proof. By general theory of Shimura varieties, C is of abelian type, i.e., there exists a
connected Shimura subvariety C’ of A, (for some g > 1) of dimension 1 together with
a finite map C’ — C. Moreover, it is known that this finite map is defined over @, and
hence it suffices to prove the result with C replaced by C’.

Now let us explain how the uniformization ¢ is obtained from the Shimura setting.
Take 0 € $, which maps to ¢(0) under the uniformization $, — A,. Let A4, be the CM
abelian variety parametrized by ¢(0), and let 6, . . ., 8¢ be its holomorphic periods.

Write D, for the bounded realization of $, based on o.

As a sub-Shimura variety of A, of dimension 1, C = I'\®D where O = {z € C :
|z| < 1} is the Poincaré unit disk and I" is a subgroup of Sp,,(Z). The Shimura sub-
datum with which C is associated can be recovered as follows. Let H' be the neutral
component of the Zariski closure of T" in GSp,,, then it is known that & = H' (R)To.
Now let H = G, - H' < GSp,,. Then D = H(R)*0 € GSp,, (R) "o = D, and thus we
have the sub-Shimura datum (H, D) of (GSp,,, Dg). Now C is associated with (H, D),
and we have a uniformization uc: D — C = I'\D.

Now ¢ from (8.1) is the composite of p~'-: E, — D and uc. Thus ¢’(0) = p~'u/- (0).
Since ¢’(0) € Q by assumption, we have that p = U (0) up to Q*. Hence it suffices to
prove that u- (0) is a transcendental number.

By Theorem 7.1 (and the formulation Theorem 7.1”) and Proposition 2.5 (iii), we
have u (0) = 6;0;//m for some j and j’. Thus u (0) is a transcendental number by
Corollary 3.1. We are done. u

8.2. Hilbert modular varieties

Let F be a totally real field with [F : Q] = g. Let G := Gy, - Resp;@SL,. Then G*'(Q) =
SLy(F), and G* (R) = [],.r_g SL2(R). For the Siegel upper half plane $ = {t € C :
Imz > 0}, G := G(R)™ acts on $¢ componentwise. The pair (G, $¥) is a connected
Shimura datum. For each congruence subgroup I" of G(Q), the connected Shimura variety
'\ $¢ is, by Baily-Borel, the analytification of an algebraic variety, which furthermore
is defined over Q. This Shimura variety, which we denote by H#F, is called the Hilbert
modular variety defined by G (or, more simply, associated with F). Then #r is a Shimura
subvariety of Ag.

Let OF be the ring of integers of F'. An abelian scheme 4 — S of relative dimension g
is said to have RM by F if there exists an injective ring homomorphism ¢: R < Endg (+4)
(for some order R in Q) such that Lie(4A/S) is a locally free RF ® (Og-module. It is
known that the Hilbert modular variety # parametrizes abelian varieties with RM by F
and some extra structures.

The goal of this section is to prove the following theorem. Let [0] € # £ (Q) be a CM
point. Let A, be the CM variety parametrized by [0], and let 6, . . ., 8¢ be the holomorphic
periods of A, as defined in the introduction (Convention 1.1).

Let 0 € $8 be a point such that o — [o0]. The natural inclusion $¢ C $, induces
T,9% C Ty9,. Thus the split bi-Q-structure on 7,$ ¢ defined in Section 4 gives a split
bi-Q-structure on 7, 8.
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Theorem 8.2. Under suitable Q-bases of

T,9% = ng)% ®g C and TygHF = T[g]](]F,@ ®g C,

.....

split bi-Q-structure on T,$% are 9]-2/7{ forje{l,..., g}

Proof. We write for simplicity J¢ for HF.

The following holds true by the modular interpretation of # above. For a suitable I,
the Hilbert modular variety J¢ is a fine moduli space with the following property: the
universal family A — J satisfies that Lie(4A/#) is a locally free RF ® O s-module.
Hence Lie(A,) is a free Rp-module. But Lie(A4,) has dimension g and R is a Z-module
of rank g. so Lie(A4,) has rank 1 as an R z-module. We write Lie(4,) = Rrf with fa Q-
element of Lie(A4,).

As Jt C A, the Kodaira—Spencer map (7.4) gives, in combination with A‘o ~ A,,

KSj,
Ty H C Tighy —=> Lie(4,) ® Lie(A,).

The R r-action on each fiber of Lie(+4/#) (and of Lie(A'/#)) then implies KS(,) (7o) #)
C Lie(A4o) ®r, Lie(4,). By comparing dimensions of both sides, we have equality.
Hence we have the isomorphism defined over Q

KS: T H —> Lie(A,) ®r, Lie(A,).
Similarly, by using (7.5) and taking into consideration of (7.7) we get
T,9% = zniﬁa(QAg)v Ry ,BO(QAO)V-

Similarly to Lie(4,), Bo(24,)" is a free Rp-module of rank 1. Write 8,(Q24,)Y = Rre
with e a Q-element of B,(4,)". The following diagram commutes, with all horizontal
maps defined over Q:

T,5¢ = 2iBo(2,) Ory Pola,) — L BLENLE s iBy(Ra,)Y

d"‘ lz},iﬂ: ®B lz,‘,i(ﬂ:)z
KS[y) S1E® fof—> fi1 fof

T[o]]( Lie(4,) ® gy Lie(4,) Lie(A,).

Thus the conclusion follows from the first part of Remark 6.5. ]

9. Some general discussion on CM points

In this section, we gather some preliminary results regarding the Mumford—Tate group of
CM abelian varieties and on CM points in Ag. They will be used in later discussions.
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9.1. Mumford-Tate group of CM abelian varieties

Let A be a CM abelian variety, and let T, := MT(A). Let E := End(4) ®z Q.

If A has no square factors, then £ = E; X --- X Ey is a product of CM fields. In this
case, there exists an element ¢ € E such that t = —t. Then E can be endowed with the
Q-symplectic form

(x,y) = Trg/Q(Xwy).

This makes (E, (,)) ~ (ng , [_(}g I(f ]) into a symplectic space. Set GUg to be the sub-

group of GSp,, generated by Gy, = Z(GSp,,) and
Ug = {x € Resg;QGnE : XX = 1}.

Lemma 9.1. Assume A has no square factors. Then GUE is a maximal torus of GSp,,
and equals ZGsng (Ty).

Proof. Foreach j € {1,...,k}, let F; be the largest totally real subfield of E;. Set F :=
Fy x---x Fy. Then

Ug = ker(Nm:Resg/@Gme — Resg/oGmF).

Hence Ug is a torus. Moreover, Z?Zl[}?j :Q] =g.SodimUg = g.

Therefore GUg is a torus of dimension g + 1. But tk GSp,, = g + 1. So GUg is a
maximal torus of GSp,,.

Now let us prove GUg = ZGszg (T,). Since T, < GUg and GUg is a torus, we have
GUg < ZGsng (T,). Hence it suffices to prove that ZGszg (T,) is a torus.

Write V = H;(A, Q), which is a Q-Hodge structure of type (—1,0) + (0, —1) and
whose Mumford-Tate group is T,. Then for any & € End(Vg), we have o € Endg.ps(V) if
and only if o commutes with all elements in T, (Q). Thus Endg.ps(V') = Lie ZGsng (T,).
Observe that Endg.us (V') is abelian because A4 has no square factors. So Zgsp,, (To) is a
torus. We are done. ]

9.2. Weyl points

Let [0] € A, (Q) be a CM point, and let A, be the associated CM abelian variety. Assume
that A, is simple. Then E := End®(4,) is a CM field. Let F be the maximal totally real
subfield of E, then [F : Q] = gand [E : F] = 2.

Write E€ and F€ for the Galois closures of E and F in Q. Then Gal(F¢/Q) < s
and Gal(E€/Q) < (Z/27Z)8 x G,.

The point [o] is called a Weyl point (or Galois generic) if Gal(E¢/Q) = (Z /27)8 x©,.

Proposition 9.2. For each Weyl point [0] € Ag (Q), there are precisely 3 special subvari-
eties of Ag which pass through [0]: {[0]}, Ag, and the Hilbert modular variety defined by
Gm . RCSF/QSL2.5

SFor readers who are not familiar with this terminology, we refer to Section 8.2 for the definition.



Bi-Q Shimura 39

Proof. The result is clearly true if g = 1. From now on, assume g > 2.

Let S be a special subvariety of Az, which passes through [0], associated with the
connected Shimura datum (H, Xg). Assume S # {[o]}.

Let T, := MT([0]). Then T, < H, T, is a maximal torus of GSp,,, and the Galois
closure of the splitting field of T, is £€. There exists a maximal torus T;, of Sp,, such
that T, = Gy, - T}, where Gy, = Z(GSp,, ). In particular, dim T, = g.

We claim that T/, C HY’ Indeed, T, N HA%" is a non-trivial subtorus of T/, and hence
= (T, N H¥*")T” for some subtorus T/ of T,. Let r; := dim(T,, N H*") and r; :
d1m T). Let L (resp. L%) be the Galois closure of the splitting field of T,, N HY (resp
of T})). Then Gal(L{ /Q) < (Z/2Z)" x &,, fori € {1,2}. Since E€ is the Galois closure

of the splitting field of T/, we then have that

2
Gal(E€/Q) < [[(Z/22) x &,,.
i=1

But Gal(E€/Q) = (Z/27Z)% x G, since [0] is Weyl. Notice that 7} + r, = gand ry > 0.
So r; = g and r, = 0. Therefore T, = T/, N H*', and hence T/, < H%".

The upshot is that T, is a maximal torus of H%'. Hence rkH%" = g. For the root
system of (T/,, H%r), the Weyl group of H%*" is then (Z/27Z)& x G,.

We claim that H%*" is a Q-simple algebraic group. Assume not, then we can get a
contradiction to Gal(E€/Q) = (Z/ 2Z)g X ©g with a similar argument as for T/, < HY%r.

The upshot is that HY" = Res - QH for some F’ totally real and H simply-connected.
Thus

o:F'—>R
For r := [F' : Q], we then have r - tk(Hy,c) = g.
Let ® be the root system of Hc, and let ®, be the root system of Hy c. Then & =
]—[O'ZF’—)]R @0—. Then

Aut(®) = (HAut(CDU)) % G,

By the theory of root systems, Aut(®,) = Wy x Aut(Ay), where Wy is the Weyl group
of Hy ¢, and Aut(A) is the transformation group of the Dynkin diagram A, associated
with Hg, c. Then W, is a Weyl group of type A,, B, C,, or D, with r dividing g. We may
therefore have W, = &, 1, Wy = (Z/2Z)" x &, or Wy = (Z/27Z) "' x &,. Moreover,
Aut(Ay) equals 1, Z /27, or 3 (in which case Hy ¢ is of type D3).

Assume g > 4. Notice that Aut(®) contains the Weyl group of H*", which is (Z /27Z)&
X Gg. So we must have r = 1 or r = g. The same holds true for g = 2 and g = 3 because
rlg.

If r = 1, then F’ = Q and H%" is a simple-connected simple group of rank g. Then it
is of type Ag, Bg, Cg, or Dy. Since the Weyl group of H*" is (Z/27)8 x G, and H*" is
a subgroup of Sp,,, we conclude that Hr = Spye- And hence S = Ag.
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Ifr =g, then[F’:Q] =g >2and rkH =1.SoHisa simple simply-connected group
of type A;. Therefore fl@ is either SL; or PSL,. As H*" = Resz /@ﬁ is a subgroup of
szg, we have ﬁ@ = SL,. Hence H is a form of SL, over F’. Hence H is either SLy F/
or a quaternion algebra over F’ which is non-split at some real place o of F’. We exclude
the second case as follows. Recall that tkH?" = g. Since rkH < rk GSpye =g+ 1, we
then have H = G, - H¥* = G, - ResF//Qﬁ. Thus H is split at some real place o’ of F’
by (SV3) of the definition of Shimura data. Write V' for the Q-vector space of dimension
2g on which GSp,, naturally acts. If Hisa quaternion over F’ which is non-split at o,
then the action of Hy g on Vg has weight 0, while the action of Hy» g on V4 r has
weight 1. This is impossible by definition of Shimura data. Hence H= SL; pr. Thus §
is the Hilbert modular variety defined by the totally real field F’ of degree g. By the
modular interpretation at the beginning of Section 8.2, an order of O is thus contained
in the endomorphism ring of A,. This obliges F' = F. Hence we are done. ]

Corollary 9.3. Let [0] be a CM point in Ag (Q). Set

Y= {[Z] €A, (Q) : [z] is CM, the only special subvariety of
Ay passing through [o] and [z] is Ag}.

Then X is dense in Ag' in the usual topology.

Proof. Let W be the set of all Weyl points in Ag. It is known that W is dense in Ag' in
the usual topology; see [7, Prop. 2.1].

Consider End®(4,). There are only finitely many totally real fields of degree g which
are contained in End®(4,). For each such totally real field F’, one can associate a Hilbert
modular variety #r obtained from Gy, - Resp//q SL. Then W\ Up: H# p/(Q) is dense
in A" in the usual topology. B

It remains to show that W\ |, #F/(Q) is contained in X. Indeed, for any [z] € W\ X
with F the maximal totally real subfield of End®(A.), Proposition 9.2 implies that [0] is
contained in the Hilbert modular variety defined by G, - Resg/q@ SL», and hence F is a
subfield of End®(4,) and has degree g. So we are done. ]

10. Analytic subspace conjecture and its consequence on
transcendence

Let S be a connected Shimura variety associated with the Shimura datum (G, X), and let
u: X — S™ be the uniformization. Endow X with the Q-structure as in Section 4.3. Fix
a special point [0] € S(Q) and some o € u~"([0]). Then o is a Q-point of X. The goals of
this section are to formulate an analogue of Wiistholz’s analytic subgroup theorem for the
holomorphic tangent space T, (X ), which we call the analytic subspace conjecture, and to
show how this conjecture gives an affirmative answer to Question 1.3.



Bi-Q Shimura 41

10.1. Analytic subspace conjecture

Inspired by the reformulations of WAST for tori (Theorem 2.8) and for CM abelian vari-
eties (Theorem 2.11), we make the following conjecture, which is precisely the analogous
statement for Shimura varieties.

Let T, X and T{,)S be the tangent space defined over C. Set

1/f = du: TOX —> T[O]S.

Then the Harish—Chandra realization of X makes X into a bounded symmetric domain
D C T,X centered at 0. By abuse of notation, we also write u: D — S.
Recall that 7, X has a bi-Q-structure defined in Section 4.

Conjecture 10.1. Let z € D be such that [z] := u(z) € S(Q). Let V be a sub-vector space
of Tio}Sq with ¥ (z) € V @ C. Then V 2 ¢ (V') for some bi-Q-subspace V' € T, X which
contains z.

If moreover MT(0) is a maximal torus, then we can take V' = Tjn)S é for some

Shimura subvariety S’ of S which contains [z] and [o].

The linear map v was computed for the Siegel case, i.e., S=Ag, (G, X)= (Gszg, He)
and O = Dy. Indeed by Theorem 7.1”, under suitable Q-bases, the map ¥ is the diagonal
matrix % diag(6;0;/)1<j<j <g. Where the 6;’s are the holomorphic periods of the CM
abelian variety A, parametrized by [0]. Note that in this case, if MT(0) is a maximal
torus, then A, has no square factors.

10.2. Consequence on quadratic relations of holomorphic periods

Let A be a CM abelian variety of dimension g defined over Q with no square factors. Let
01, ....0g be its holomorphic periods as defined in Convention 1.1.

Proposition 10.2. Assume that Conjecture 10.1 holds true for S = A, the point [0] €
Ag (Q) parametrizing A, and any V' of dimension dim S — 1. Then Question 1.3 has an
affirmative answer for A.

Proof. Each 6; is well defined up to Q*. By abuse of notation, we write 0, € C for a
representative. It is known by WAST that §; ¢ Q foreach j € {1,...,g}.
For the uniformization u: $, — A, take 0 € u~1([0]) and the derivative of u at o

v To$5g — T[O]Ag.

We start the proof by fixing Q-bases of 1,9, and of Tj,)Ag. We have seen in
Theorem 7.1” that the matrix for ¥ is diag(6;6;//7)1<j<j'<g under suitable Q-bases
{fiih=jzir<g of To$, g and {ejjr}1<j<jr<g of Tjg)A, 5. Moreover, by Theorem 7.4,
these Q-bases can be chosen such that each C f;;; = Ce;;/ is a root space.

Write &g for the bounded realization of §, based at 0. Then 0 € D, 5 S TZQ 2.0
and o is the origin. For each z € Dy, write [z] for the image of z under Dy ~ H, — Ag.
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Claim. There exists a Q-basis { fj;'}1<j<j<g Of T, g as above such the point z :=
3" fijr satisfies that [z] € Ag(Q).

Let us prove this claim. Set

s = {Z € Dy : z is CM, the only special subvariety of
Ay passing through [o] and [z] is Ag}.

Then ¥ is dense in Dy in the usual topology by Corollary 9.3. Since ¥ is dense in Dy,
there exists z = ) kjjs fjjr € ¥ with kjjr # 0 for each j, j’. Moreover, as each CM point
isQinT7, 09, , we have that k;;r € Q. Thus z = > kjjir fijr € ¥ with each kjj e Q*. Now
the claim holds true by replacing each fj;s by kj; f;.

Finally, set

R 1010}
00
By Theorem 7.1” {e;/}1<j<jr<¢ is a Q-eigenbasis of TiolA, 5
Now assume
> ity =0 (10.1)
I<j<j'<g
with ¢jjr € @
Define
V.= {Zajj/ejj/ € T[O]Ag’@ . chj/ajj/ = O};
it is a Q-subspace of TinA .0 Decause each ¢jjr € Q. A direct computation shows that
V() =y (X fii) = 7 X 0i0yejr. Soy(z) € V ® C by (10.1).

Hence we can apply Conjecture 10.1 to the point z € D, and V. So there exists a
bi-Q-subspace V' of T,H, g containing z =} fj;- such that y (V') C V.

If MT(0) = MT(A) is a maximal torus, then the “moreover” part of Conjecture 10.1
furthermore implies that we can take V' = T}, S é for some special subvariety S’ of A.
But then by choice of z, we have §'=A,. So V =Tj,)A, 5 and hence ¢;;»=0forall j, j’.

In general, there exists an equivalence relation among the pairs in {1, ..., g}? defined
as follows: (j, j') ~ (k,k’) if and only if 6,0, ~ 6 0,. Let {1,...,g}*> =[], Js be the
partition into equivalence classes, and for each s let us fix a pair (Js, j;) € Js. Then (10.1)
can be rewritten such that ¢jj» = 0if (j, j') # (Jjs, j;) for any s. Then our goal is to prove
that ¢; ;; = 0 for each s. With this choice

V= {Zau/eu’ €TojA, g ¢ Zcimam’ = 0}

By Proposition 2.5, the bi-Q-subspace V' equals ), V/ for some Vi<®D.ines,Clij
Since z =} fjj» € V', wehave C -} _(; inc; fij» © Vy for each s. Therefore, the sub-

space ¥ (V') D V contains the point e; ;: + Z(, INET NG iD} 9”99 ej; for each s. But

from the last paragraph we assumed c;;» = 0 for any (j, j') € JS\{(jS, J}-Socj =0
by definition of V. Hence we are done. ]
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11. Grothendieck’s period conjecture and consequences on CM
periods

This section is rather independent of the rest of the paper. We recall the basic versions
of Grothendieck’s period conjecture, and explain some consequences on the algebraic
relations among 7 and holomorphic periods of CM abelian varieties. We show that all
non-trivial such algebraic relations are generated by a fixed set of monomials (Proposi-
tion 11.4).

11.1. Statement of the conjecture

Let X be a smooth projective irreducible variety defined over Q. Let
B: Hj: (X) ®g C — H*(X,Q) ®q C

be the de Rham-Betti comparison. Under suitable bases, 8 is a matrix in GLy (C). Write
(Bjj")1<j,j'<n for this matrix.

For each n € N, each algebraic cycle in X” induces Q-polynomial relations, all
homogenous of degree n, for the B;;-’s. Indeed, for n = 1, an algebraic cycle of X of
codimension d gives an element in Hdsz (X) N B~ (H?4(X,Q)). Hence there exists a
vector v = [v1 .. vN]T € QY such that Bv € QV. Writing it out, we obtain N linear
relations over Q among the f8;;-’s. For general n, the assertion follows from Kiinneth’s
Formula.

Notice that among such relations, some of them are products of polynomials of lower
degrees. This notably happens for elements in End(X), which are cycles in X2 but give
linear relations. Indeed, for each & € End(X'), we have the following commutative diagram

Hip(X) ®5 C — H*(X.Q) 8q C

Hi(X) ®5 C —— H*(X,Q) ®q C.

Under suitable bases, the o™ on the left is an N x N -matrix with entries in @ and the o™
on the right is an N x N -matrix with entries in Q. Thus this commutative diagram gives
linear relations over Q among the f;;:’s.

Conjecture 11.1 (Grothendieck, strong version). Consider the Q-variety GLy. Set I to
be the ideal of the subvariety B Then I is generated by the polynomial relations
obtained from all algebraic cycles in all powers of X.

Let us take a closer look at this conjecture. Write [/ = @j>1 I; the homogenous

decomposition. A consequence of this conjecture for /; is that /; is generated by relations

5Thus B is the generic point of this subvariety.
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obtained from elements in End(X). In case of commutative algebraic groups, this conse-
quence can be deduced from Wiistholz’s analytic subgroup theorem. Little is known for
j=2

There is also a weaker version of this conjecture, sometimes also known as Grothen-
dieck’s period conjecture. Let Gpoq be the motivic Galois group defined by Nori [11] and
Ayoub [3]. In case of the first cohomology for abelian varieties, G4 1S precisely the
Mumford-Tate group by André [2].

Conjecture 11.2 (Grothendieck, weak version). trdegg (Bj;7)1<j,j'<N = dim Gmod.

The strong version implies the weak version. Conversely, the weak version implies the
strong version if the universal period torsor is connected. We refer to [1, 7.5.2.2. Prop] for
more details.

11.2. Consequences on holomorphic CM periods

Let A be a CM abelian variety over @ with no square factors. Let 61, .. ., 8¢ be its holo-
morphic periods.

Let To := MT(A). Then Ty is a subtorus of GSp,,; it contains Gy, the center of
GSp,,- Thus the multiplier GSp,, — G, & det()'/#, is non-trivial when restricted
to Ty. Hence there is a non-constant homomorphism X *(Gn) — X*(Tp). Let & be the
image of 1 of this homomorphism.

By Lemma 9.1, T := Zgsy,, (To) is a maximal torus of GSp,,. The last sentence of
Remark 6.5 yields a Z-basis {eg, €], ..., &5} of X*(T) satisfying the following prop-
erty: For de Rham-Hodge comparison 8 € GSp,,(C), we have s;'f (B) = 6; for each
jed{l,..., g}

Proposition 11.3. Assume the weak version of Grothendieck’s period conjecture for A.
Then each 0;0;: is a transcendental number.

Proof. Consider the root system ®(T, GSp,,) € X *(T) defined in [6, §13.18]; it contains
28;‘, 8;‘ + 8;‘, and s}* —8]".‘, foralll < j < j' <g.

As ZGsng (Tp) is solvable, Ty is a semi-regular torus by [6, §13.1, Prop.]. So Ty &
ker y for any y € ®(T, GSp,,) by [6, §13.2, Prop.]. In particular,

(] +&)lr, #0 foralll <j < <g. (11.1)

By our choice of &7, we have (e;'.‘ + 8;/)(,3) =6;0; foreachl < j < j <g.
Now comes the step where we assume the weak version of Grothendieck’s period
conjecture for A. Then f is the generic point of Ty. Hence (11.1) implies (87 + 8;‘.‘,)(/3) g

Qforalll < j < j’' < g. We are done. (]

Proposition 11.4. Assume the weak version of Grothendieck’s period conjecture for A.
Then there exist monomials over Q in w and the 0;’s (with j € {1,..., g}) such that each
algebraic relations over Q among these numbers are generated by these monomials.
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Proof. Set!l := dimT — dim T.
The inclusion Ty < T induces a group homomorphism X *(T) — X*(Ty), which is
furthermore surjective. The kernel of this homomorphism, denoted by N, is a free-Z-

module of rank /. Let {ajoeq + -+ + ajgeg : j = 1,...,1} be a set of generators of N.
Then
g
To={reT: [[er@)¥ =1forall j =1,....0} (11.2)
k=0
_ g1 _ G
Denote by (¢, 11, .. ..tg) the coordinates of A@ . The image of T@ _ Gm o C

A%H is an open @—Eubvariety. Foreach j € {I,....1},set P; == [[§_, 1" — L.
By (11.2), as a Q-subvariety we have

To=TNZ(Pi,....P).

As | = dim T — dim Ty and Tg is open in }P’gﬂ, by Hilbert Nullstellensatz, each poly-
nomial P € Qlty, ..., tg] which vanishes identically on Ty is in the radical of the ideal
(Py, ..., P;), which is precisely (Py, ..., P;) since the kernel of X*(T) — X *(Ty) is
torsion free.

Now let us study the algebraic relations over @ among 2mi, 0y,...,0,. Assume P €
Qlto. - .., t¢] is a polynomial such that P(2ri, 6y, ..., 0,) = 0. Since e5(B) = 2mi and
;(B) = 0; foreach j € {l...., g}, we have P(eg(B).7(f).....&5(B)) = 0.

Now comes the step where we assume the weak version of Grothendieck’s period
conjecture for A. Then B is the generic point of Tg. Thus from the last paragraph we have
P|1, = 0. Hence P is in the ideal (Py, ..., P;). Therefore each algebraic relation among
7, 01, ..., 0, is generated by the /-monomials

Qri)4oo" .. 0% € Q, jell,..., I}
We are done. ]
This proposition yields the following immediate corollary.

Corollary 11.5. The weak version of Grothendieck’s period conjecture for A gives an
affirmative answer to Question 1.3 for A.
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