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Bessel models for representations of GSp.4; q/

Jonathan Cohen

Abstract. We compute the Bessel models of every irreducible representation of the finite group
GSp.4; q/.

1. Introduction

ForF a local or global field, there hasbeen significant work on Bessel models for GSp.4;F /
and their applications to Siegel modular forms and automorphic representations; see [3–6]
for some examples. In this article, we consider the analogous situation over finite fields,
and our main result is the computation of the Bessel models for all irreducible representa-
tions of GSp.4; q/; see Theorem 4.1. One of our primary motivations is the determination
of the (nonsplit) Bessel models for the depth zero supercuspidals of p-adic GSp.4; F /,
which we will carry out in a forthcoming paper. We also remark that there are some
notable differences between the p-adic and finite field cases. For example, it is shown
in [5] that all split Bessel models are unique (when they exist) over the p-adics, while
a consequence of our computations is that the split Bessel models over finite fields can
have multiplicity 2; see Corollary 4.2 below. On the other hand, over both p-adic and
finite fields, the generic representations admit every split Bessel model and (if q > 3 in
the finite field case) this characterizes genericity.

We now briefly outline the contents of this article. In Section 2 we introduce the req-
uisite notation, in Section 3 we carry out a technical preliminary computation, and in
Section 4 we prove the main result.

2. Notations

Let �n denote a complex primitive nth root of unity and ıi;j denote the Kronecker delta
for i; j varying over some set. Let q be a power of a prime p and Fq denote the field of
order q. If q is even then the group homomorphism Fq ! Fq given by x 7! x2 C x is
two-to-one. Let Fıq be its image and "WFq ! ¹˙1º be the homomorphism with kernel Fıq .
Let � be a fixed element of Fq that is not in Fıq ; so ".t2 C t / D 1 and ".t2 C t C �/ D �1
for all t 2 Fq . If q is odd let � be a fixed nonsquare in F�q .
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Fix the symplectic form

J D

"
1

1
�1

�1

#
(2.1)

and define

G WD GSp.4; q/ D
®
g 2 GL.4; q/ j tgJg D �.g/J for some �.g/ 2 F�q

¯
: (2.2)

The kernel of the multiplier homomorphism �WGSp.4; q/! F�q is the symplectic group
Sp.4; q/. The centerZ of GSp.4; q/ consists of scalar invertible matrices. If q is even then
G D Sp.4; q/ �Z. We further define the Siegel parabolic subgroup

P D G \

"
� � � �

� � � �

� �

� �

#
(2.3)

and its unipotent radical N , given by

N D

´" 1 y z

1 x y

1
1

#
j x; y; z 2 Fq

µ
: (2.4)

If A D
�
a b
c d

�
2 GL.2; q/ then let A0 WD 1

ad�bc

h
a �b

�c d

i
so
h
A

uA0

i
2 P with multiplier

u 2 F�q .
Let  be a nontrivial character of Fq . For a; b; c 2 Fq , let  a;b;c be the character of N

given by

 a;b;c

 " 1 y z

1 x y

1
1

#!
D  .ax C by C cz/ (2.5)

for x; y; z 2 Fq . We denote by Ca;b;c the one-dimensional representation of N given by
the character  a;b;c . We also define the group

T D

´"
r�bs �as
cs r

r�bs as
�cs r

#
j r; s 2 Fq; r

2
� brs C s2ac 2 F�q

µ
: (2.6)

The reader may readily check that T normalizesN and preserves the form axC by C cz.
Let �W T ! C� be a character. The map tn 7! �.t/ a;b;c.n/ defines a character of the
Bessel subgroup

R WD TN; (2.7)

which we denote by �˝  a;b;c . Let C�;a;b;c be the one-dimensional representation of R
given by the character �˝  a;b;c .

The irreducible characters of G have been determined in [7] (if q is odd) and [2] (if q
is even). Some of the mistakes in [2, Table IV-2] have been corrected in [1, Table 7]; we
remark that the values for �1 and �2 there are transposed.



Bessel models for representations of GSp.4; q/ 3

3. Fourier coefficients

The main result of this paper is a computation of dim HomR.V� ;C�;a;b;c/ for all irre-
ducible representations .�;V� / ofG, when b2 � 4ac ¤ 0. To carry this out it is convenient
to first prove a preliminary result.

Proposition 3.1. The dimensions of the spaces HomN .V� ;Ca;b;c/ for all irreducible rep-
resentations .�; V� / of GSp.4; q/ are as given in Table 1 (if q is odd) and Table 3 (if q is
even).

Proof. By character theory we have

dim HomN .V� ;Ca;b;c/ D
1

q3

X
x;y;z2Fq

 .�ax � by � cz/�

�� 1 y z
1 x y
1
1

��
;

where � is the trace character of � . For 2� 2matrices X;Y over Fq , write X � Y if there
exist A 2 GL.2;Fq/ and u 2 F�q with uAX.A0/�1 D Y .

Suppose that q is odd. Then, for X D
�
y z
x y

�
,

if X ¤ 0 and det.X/ D 0; then X �
�
0 1
0 0

�
;

if det.X/ 2 F�2q ; then X �
�
1 0
0 1

�
;

if det.X/ 2 �F�2q ; then X �
�
0 ��
1 0

�
:

Here, � is a fixed nonsquare in F�q . Hence

dim HomN .V� ;Ca;b;c/

D
1

q3

 
�

��
1
1
1
1

��
C

X
x;y;z2Fq
y2�xzD0

.x;y;z/¤.0;0;0/

 .�ax � by � cz/ � �

��
1 1
1
1
1

��

C

X
x;y;z2Fq
y2�xz2F�2q

 .�ax � by � cz/ � �

��
1 1
1 1
1
1

��

C

X
x;y;z2Fq

y2�xz2�F�2q

 .�ax � by � cz/ � �

 �
1 ��
1 1
1
1

�!!
:

The four matrices in this equation represent the conjugacy classes denoted by A0, A1, A21
and A22 in [7]. Hence the assertion follows from [7, Tables 5–11] and Lemma 3.2 below.

Now suppose that q is even. Then, for X D
�
y z
x y

�
,

if X ¤ 0 and det.X/ D 0; then X �
�
0 1
0 0

�
;

if det.X/ 2 F�q and x D z D 0; then X �
�
1 0
0 1

�
;

if det.X/ 2 F�q and .x; z/ ¤ .0; 0/; then X �
�
1 1
0 1

�
:
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� dimV� rank 0 rank 1
rank 2

cusp gen
square nonsquare

X1.�; �; �/ .q C 1/2.q2 C 1/ 4.q C 1/ q C 3 q C 3 q C 1 �

X2.ƒ; �/ q4 � 1 2.q � 1/ q � 1 q C 1 q � 1 �

X3.ƒ; �/ q4 � 1 0 q C 1 q � 1 q C 1 �

X4.‚/ .q2 � 1/2 0 q � 1 q � 1 q C 1 � �

X5.ƒ; !/ .q � 1/2.q2 C 1/ 0 q � 1 q � 1 q � 3 � �

�1.�; �/ .q C 1/.q2 C 1/ 2.q C 1/ 1 2 0

�2.�; �/ q.q C 1/.q2 C 1/ 2.q C 1/ q C 2 q C 1 q C 1 �

�3.�; �/ .q C 1/.q2 C 1/ q C 3 2 1 1

�4.�; �/ q.q C 1/.q2 C 1/ 3q C 1 q C 1 q C 2 q �

�5.!; �/ .q � 1/.q2 C 1/ q � 1 0 1 1

�6.!; �/ q.q � 1/.q2 C 1/ q � 1 q � 1 q q � 2 �

�7.ƒ/ .q � 1/.q2 C 1/ 0 1 0 2

�8.ƒ/ q.q � 1/.q2 C 1/ 0 q q � 1 q � 1 �

�1.�/ q2 C 1 2 1 0 0

�2.�/ q.q2 C 1/ q C 1 1 1 1

�3.�/ q2.q2 C 1/ 2q q q C 1 q � 1 �

�4.�
0/ q2 � 1 0 1 0 0

�5.�
0/ q2.q2 � 1/ 0 q q � 1 q C 1 �

�1.�/
1
2
q.q C 1/2 q C 1 1 1 0

�2.�/
1
2
q.q � 1/2 0 0 0 1 �

�3.�/
1
2
q.q2 C 1/ 1 1 0 1

�4.�/
1
2
q.q2 C 1/ q 0 1 0

�5.�/ q4 q q q q �

�0.�/ 1 1 0 0 0

Table 1. The irreducible characters of GSp.4; q/ for q odd, as listed in [7]. If .�; V� / is the repre-
sentation in the first column, then the “rank 0” column shows dim HomN .V� ;C0;0;0/. The “rank
1” column shows dim HomN .V� ;Ca;b;c/ if b2 � 4ac D 0 and .a; b; c/ ¤ .0; 0; 0/. The “rank 2
square” column shows dim HomN .V� ;Ca;b;c/ if b2 � 4ac 2 F�2q . The “rank 2 nonsquare” column
shows dim HomN .V� ;Ca;b;c/ if b2 � 4ac 2 �F�2q . The last two columns indicate the cuspidal and
generic representations.
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Hence

dim HomN .V� ;Ca;b;c/

D
1

q3

�
�

��
1
1
1
1

��
C

X
x;y;z2Fq
y2�xzD0

.x;y;z/¤.0;0;0/

 .�ax � by � cz/ � �

��
1 1
1
1
1

��

C

X
x;y;z2Fq
y2�xz¤0
.x;z/D.0;0/

 .�ax � by � cz/ � �

��
1 1
1 1
1
1

��

C

X
x;y;z2Fq
y2�xz¤0
.x;z/¤.0;0/

 .�ax � by � cz/ � �

��
1 1 1
1 1
1
1

���
:

The four matrices in this equation represent the conjugacy classes denoted by A1, A2, A31
andA32 in [2]. Hence the assertion follows from [2, Table IV-2] and Lemma 3.3 below.

Lemma 3.2. Let q be odd and a; b; c 2 Fq . Then

(i)
X

x;y;z2Fq
y2�xzD0

.x;y;z/¤.0;0;0/

 .�ax�by�cz/D

8̂̂̂̂
<̂
ˆ̂̂:
q2 � 1 if a D b D c D 0;

�1 if b2�4acD0; .a; c/¤.0; 0/;

q � 1 if b2 � 4ac 2 F�2q ;

�q � 1 if b2 � 4ac 2 �F�2q :

(ii)
X

x;y;z2Fq
y2�xz2F�2q

 .�ax�by�cz/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

q.q2 � 1/

2
if a D b D c D 0;

q.q � 1/

2
if b2�4acD0; .a; c/¤.0; 0/;

�q if b2 � 4ac 2 F�2q ;

0 if b2 � 4ac 2 �F�2q :

(iii)
X

x;y;z2Fq
y2�xz2�F�2q

 .�ax�by�cz/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

q.q � 1/2

2
if a D b D c D 0;

�
q.q�1/

2
if b2�4acD0; .a; c/¤.0; 0/;

0 if b2 � 4ac 2 F�2q ;

q if b2 � 4ac 2 �F�2q :

Proof. Since X
x;y;z2Fq

 .�ax � by � cz/ D

´
q3 if a D b D c D 0;

0 otherwise;

(iii) will follow once we prove (i) and (ii).
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(i) We calculateX
x;y;z2Fq
y2�xzD0

.x;y;z/¤.0;0;0/

 .�ax � by � cz/ D
X
x2F�q
y2Fq

 
�
� x.aC by C cy2/

�
C

X
z2F�q

 .�cz/:

If c D 0, then we see easily that

X
x;y;z2Fq
y2�xzD0

.x;y;z/¤.0;0;0/

 .�ax � by � cz/ D

8̂̂<̂
:̂
q � 1 if b ¤ 0;

�1 if a ¤ 0; b D 0;

q2 � 1 if a D b D 0:

Suppose that c ¤ 0. ThenX
x;y;z2Fq
y2�xzD0

.x;y;z/¤.0;0;0/

 .�ax�by�cz/D
X
x2F�q
y2Fq

 
�
� x.aC by C cy2/

�
� 1

D

8̂̂<̂
:̂
1 � .q�1/C .q�1/.�1/�1 if b2�4acD0;

2 � .q�1/C .q�2/.�1/�1 if b2�4ac2F�2q ;

0 � .q�1/Cq.�1/�1 if b2�4ac2�F�2q ;

D

8̂̂<̂
:̂
�1 if b2 � 4ac D 0;

q � 1 if b2 � 4ac 2 F�2q ;

�q � 1 if b2 � 4ac 2 �F�2q :

This concludes the proof of (i).
(ii) We calculateX

x;y;z2Fq
y2�xz2F�2q

 .�ax � by � cz/ D
1

2

X
u2F�q

X
x;y;z2Fq
y2�xzD1

 
�
u.ax C by C cz/

�
:

The x D 0 terms contribute
1

2

X
u2F�q

X
z2Fq

 .cz/
�
 .ub/C  .�ub/

�
D qıc;0.�1C qıb;0/:

The x ¤ 0 terms contribute

1

2

X
u;x2F�q

X
y2Fq

 

�
u

�
ax C by C c

�
y2 � 1

x

���
D
1

2

X
u;x2F�q

X
y2Fq

 
�
u.ax2 C byx C cy2 � c/

�
:
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First suppose that c D 0. Then

1

2

X
u;x2F�q

X
y2Fq

 
�
u.ax2 C byx C cy2 � c/

�
D
1

2

X
u;x2F�q

X
y2Fq

 .uaC by/

D
q.q � 1/

2
ıb;0.�1C qıa;0/:

This confirms the formulas when c D 0. From now on suppose that c ¤ 0. Then

1

2

X
u;x2F�q

X
y2Fq

 
�
u.ax2 C byx C cy2 � c/

�
D
1

2

X
u;x2F�q

X
y2Fq

 
�
u
�
y2 � x2.b2 � 4ac/ � 1

��
: (3.1)

Suppose that b2 � 4ac D 0. Then

(3.1) D
.q � 1/

2

X
u2F�q
y2Fq

 
�
u.y2 � 1/

�
D
.q � 1/

2

�
2.q � 1/ � .q � 2/

�
D
q.q � 1/

2
:

Next suppose that b2 � 4ac 2 �F�2q . Then using the fact that there are q C 1 solutions
.x; y/ 2 Fq � Fq to the equation y2 � x2� D 1, we obtain

2 � (3.1) D
X
u2F�q
x;y2Fq

 
�
� u.y2 � x2� � 1/

�
�

X
u2F�q
y2Fq

 
�
� u.y2 � 1/

�
D .q � 1/.q C 1/ �

�
q2 � .q C 1/

�
�
�
2.q � 1/ � .q � 2/

�
D 0:

Finally, suppose that b2 � 4ac 2 F�2q . Then

(3.1) D
1

2

X
u;x2F�q
y2Fq

 
�
u.y2 � x2 � 1/

�
D
1

2

X
u;x2F�q
y2Fq

 
�
u.y2 C 2yx � 1/

�

D
1

2

X
u;x;y2F�q

 
�
u.y2 C x � 1/

�
C
1

2

X
u;x2F�q

 .�u/

D

X
u;x2F�q

 .ux/C
.q � 3/

2

X
u;x2F�q

 
�
u.x C 1/

�
�
q � 1

2

D �.q � 1/C
q � 3

2

�
q � 1 � .q � 2/

�
�
q � 1

2
D �q:

This concludes the proof.
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Lemma 3.3. Let q be even and a; b; c 2 Fq . Then

(i)
X

x;y;z2Fq
y2�xzD0

.x;y;z/¤.0;0;0/

 .�ax � by � cz/ D

8̂̂̂̂
<̂
ˆ̂̂:
q2 � 1 if a D b D c D 0;

�1 if b D 0; .a; c/ ¤ .0; 0/;

q � 1 if b ¤ 0; ".acb�2/ D 1;

�q � 1 if b ¤ 0; ".acb�2/ D �1:

(ii)
X

x;y;z2Fq
y2�xz¤0
.x;z/D.0;0/

 .�ax � by � cz/ D

8̂̂̂̂
<̂
ˆ̂̂:
q � 1 if a D b D c D 0;

q � 1 if b D 0; .a; c/ ¤ .0; 0/;

�1 if b ¤ 0; ".acb�2/ D 1;

�1 if b ¤ 0; ".acb�2/ D �1:

(iii)
X

x;y;z2Fq
y2�xz¤0
.x;z/¤.0;0/

 .�ax�by�cz/D

8̂̂̂̂
<̂
ˆ̂̂:
.q�1/.q2�1/ if a D b D c D 0;

�qC1 if b D 0; .a; c/ ¤ .0; 0/;

�qC1 if b ¤ 0; ".acb�2/ D 1;

qC1 if b ¤ 0; ".acb�2/ D �1:

Proof. Since X
x;y;z2Fq

 .�ax � by � cz/ D

´
q3 if a D b D c D 0;

0 otherwise;

(iii) will follow once we prove (i) and (ii). Note that (ii) is an easy exercise. To prove (i),
we calculateX

x;y;z2Fq
y2�xzD0

.x;y;z/¤.0;0;0/

 .�ax � by � cz/ D
X
x2F�q
y2Fq

 

�
� ax � by � c

y2

x

�
C

X
z2F�q

 .�cz/

D

X
x2F�q
y2Fq

 
�
� x.aC by C cy2/

�
C

X
z2F�q

 .�cz/:

If c D 0, then we see easily that

X
x;y;z2Fq
y2�xzD0

.x;y;z/¤.0;0;0/

 .�ax � by � cz/ D

8̂̂<̂
:̂
q � 1 if b ¤ 0;

�1 if a ¤ 0; b D 0;

q2 � 1 if a D b D 0:

Suppose that c ¤ 0. ThenX
x;y;z2Fq
y2�xzD0

.x;y;z/¤.0;0;0/

 .�ax � by � cz/ D
X
x2F�q
y2Fq

 
�
� x.aC by C cy2/

�
� 1:
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If a D b D 0, this is easily seen to be �1. Suppose that b D 0 and a ¤ 0. Then aC by C
cy2 D 0 for exactly one value of y, so thatX

x;y;z2Fq
y2�xzD0

.x;y;z/¤.0;0;0/

 .�ax � by � cz/ D 1.q � 1/C .q � 1/.�1/ � 1 D �1:

Suppose that b ¤ 0 (and still c ¤ 0). Then

aC by C cy2 D 0” bcy C .cy/2 D ca” cb�1y C .cb�1y/2 D cab�2:

If ".cab�2/ D 1, then this equation has exactly two solutions, otherwise none. HenceX
x;y;z2Fq
y2�xzD0

.x;y;z/¤.0;0;0/

 .�ax�by�cz/D

´
2 � .q � 1/C .q � 2/.�1/ � 1 if ".cab�2/D1;

0 � .q � 1/C q.�1/ � 1 if ".cab�2/D�1

D

´
q � 1 if ".cab�2/ D 1;

�q � 1 if ".cab�2/ D �1:

This concludes the proof of (i).

4. Bessel models

We now state and prove the main result of this paper.

Theorem 4.1. If b2 � 4ac ¤ 0 then the dimensions of the spaces HomR.V� ;C�;a;b;c/ for
all irreducible representations .�; V� / of GSp.4; q/ are as given in Table 2 if q is odd and
in Table 4 if q is even.

Proof. Let ! be the central character and � the trace character of � . By character theory,

dim HomR.V� ;C�;a;b;c/ D
1

jT jq3

X
t2T

x;y;z2Fq

�.t/�1 .�ax � by � cz/�

�
t

� 1 y z
1 x y
1
1

��
D S1 C S2;

where

S1 D
1

jT jq3

X
t2Z

X
x;y;z2Fq

�.t/�1 .�ax � by � cz/�

�
t

� 1 y z
1 x y
1
1

��
;

S2 D
1

jT jq3

X
t2T nZ

X
x;y;z2Fq

�.t/�1 .�ax � by � cz/�

�
t

� 1 y z
1 x y
1
1

��
:
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� square nonsquare

X1.�; �; �/ 1C .�C; � C ��C ��C ���/ 1

X2.ƒ; �/ 1C .�C; � C �ƒjF�q / 1 �
�
�;ƒ.� ıN/Cƒq.� ıN/

�
X3.ƒ; �/ 1 1

X4.‚/ 1 1

X5.ƒ; !/ 1 1 � .�;ƒCƒq Cƒz! Cƒq z!q/

�1.�; �/ .�C; � C ��/ 0

�2.�; �/ 1C .�C; � C ��/ 1

�3.�; �/ .�C; ��/
�
�; .��/ ıN

�
�4.�; �/ 1C .�C; � C ��C ��

2/ 1 �
�
�; .��/ ıN

�
�5.!; �/ .�C; �/ .�; � ıN/

�6.!; �/ 1C .�C; �/ 1 � .�; � ıN C z!� ıN C z!q� ıN/

�7.ƒ/ 0 .�;ƒCƒq/

�8.ƒ/ 1 1 � .�;ƒCƒq/

�1.�/ 0 0

�2.�/ .�C; �/ .�; � ıN/

�3.�/ 1C .�C; � C �˛0/ 1 �
�
�; � ıN C .�˛0/ ıN

�
�4.�

0/ 0 0

�5.�
0/ 1 1

�1.�/ .�C; �/ 0

�2.�/ 0 .�; � ıN/

�3.�/ 0 .�; � ıN/

�4.�/ .�C; �/ 0

�5.�/ 1C .�C; �/ 1 � .�; � ıN/

�0.�/ 0 0

Table 2. The irreducible characters of GSp.4; q/ for q odd, as listed in [7]. If .�; V� / is the repre-
sentation in the first column, the remainder shows dim HomR.V� ;C�;a;b;c/ assuming �jZ D !� .
In the square column, in which b2 � 4ac 2 F�2q , we write �C D �jTC and use the canonical iso-
morphism TC Š F�q to identify �C with a character of F�q . In the square column the inner product
is for characters of F�q while in the nonsplit column it is for F�

q2
. By N WF�

q2
! F�q we denote the

norm map.

Clearly if �jZ ¤ ! then S1 D S2 D 0, so assume that �jZ D !. Then

S1 D
q � 1

jT jq3

X
x;y;z2Fq

 .�ax � by � cz/�

�� 1 y z
1 x y
1
1

��
:

Up to the factor of .q � 1/=jT j, this was computed in the previous section.
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� dimV�
b D 0 b ¤ 0 cusp gen

.a; c/ D .0; 0/ .a; c/ ¤ .0; 0/ ". ac
b2
/ D 1 ". ac

b2
/ D �1

�0 1 1 0 0 0

�1
1
2
q.q C 1/2 q C 1 1 1 0

�2
1
2
q.q2 C 1/ 1 1 0 1

�3
1
2
q.q2 C 1/ q 0 1 0

�4 q4 q q q q �

�5
1
2
q.q � 1/2 0 0 0 1 �

�1.k; l/ .q C 1/2.q2 C 1/ 4.q C 1/ q C 3 q C 3 q C 1 �

�2.k/ q4 � 1 2.q � 1/ q � 1 q C 1 q � 1 �

�3.k; l/ q4 � 1 0 q C 1 q � 1 q C 1 �

�4.k; l/ .q � 1/2.q2 C 1/ 0 q � 1 q � 1 q � 3 � �

�5.k/ .q2 � 1/2 0 q � 1 q � 1 q C 1 � �

�6.k/ .q C 1/.q2 C 1/ q C 3 2 1 1

�7.k/ .q C 1/.q2 C 1/ 2.q C 1/ 1 2 0

�8.k/ .q � 1/.q2 C 1/ q � 1 0 1 1

�9.k/ .q � 1/.q2 C 1/ 0 1 0 2

�10.k/ q.q C 1/.q2 C 1/ 3q C 1 q C 1 q C 2 q �

�11.k/ q.q C 1/.q2 C 1/ 2.q C 1/ q C 2 q C 1 q C 1 �

�12.k/ q.q � 1/.q2 C 1/ q � 1 q � 1 q q � 2 �

�13.k/ q.q � 1/.q2 C 1/ 0 q q � 1 q � 1 �

Table 3. The irreducible characters of GSp.4; q/ for q even. Shown are the irreducible characters
of Sp.4; q/ as determined in [2]. The irreducible characters of GSp.4; q/ follow from GSp.4; q/ D
F�q � Sp.4; q/. If .�; V� / is the representation in the first column, then columns 3, 4, 5, 6 show
dim HomN .V� ;Ca;b;c/ under the indicated conditions. The last columns indicate the cuspidal and
generic representations.

Suppose first that q is odd. Evidently T Š F�q � F�q if b2 � 4ac is a square and
T Š F�

q2
otherwise. Let

g D

24 r�sb=2 �sa

sc rCsb=2

r�sb=2 sa

�sc rCsb=2

35" 1 y z

1 x y

1
1

#
2 TN:

The eigenvalues of g are ˛˙ D ˛˙.g/ D r ˙ s.b2=4 � ac/1=2. If s D 0, the conjugacy
class of g was determined in the previous section. Suppose s ¤ 0. If b2 � 4ac is a square
then

g is in a conjugacy class of type

´
D0.˛C; ˛�/ if ax C by C cz D 0;

D1.˛C; ˛�/ if ax C by C cz ¤ 0;
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� ".acb�2/ D 1 ".acb�2/ D �1

�0 0 0

�1 ıj;0 0

�2 0 ıj;0

�3 ıj;0 0

�4 1C ıj;0 1 � ıj;0

�5 0 ıj;0

�1.k; l/ 1C ıj;k˙l+ıj;�k˙l 1

�2.k/ 1C ıj;˙k 1 � ıj;˙k

�3.k; l/ 1 1

�4.k; l/ 1 1 � ıj;k˙l � ıj;�k˙l

�5.k/ 1 1

�6.k/ ıj;0 ıj;0

�7.k/ ıj;˙k 0

�8.k/ ıj;0 ıj;0

�9.k/ 0 ıj;˙k

�10.k/ 1C ıj;0 C ıj;˙k 1 � ıj;0

�11.k/ 1C ıj;˙k 1

�12.k/ 1C ıj;0 1 � ıj;0 � ıj;˙2k

�13.k/ 1 1 � ıj;˙k

Table 4. The irreducible characters of GSp.4; q/ for q even. Shown are the irreducible char-
acters of Sp.4; q/ as determined in [2]. The irreducible characters of GSp.4; q/ follow from
GSp.4;q/D F�q � Sp.4;q/. If .�;V� / is the representation in the first column, the next columns give
dim HomR.V� ;C�;a;b;c/ assuming �jZ D !� . If ".acb�2/D 1 then we identify T \ Sp.4; q/with

h
i, define the index j by �.
/ D �jq�1, and ıy;z denotes the Kronecker delta over Z=.q � 1/Z. If

".acb�2/ D �1 then we identify T \ Sp.4; q/ with h�i, define the index j by �.
/ D �jqC1, and
ıy;z denotes the Kronecker delta over Z=.q C 1/Z.

while if b2 � 4ac is a nonsquare then

g is in a conjugacy class of type

´
F0.˛C/ if ax C by C cz D 0;

F1.˛C/ if ax C by C cz ¤ 0:

Here we are using the notation of [7].
Suppose b2 � 4ac is a square, so jT j D .q � 1/2. Define the subgroups T˙ D ¹t 2 T j

˛�.t/ D 1º and write �˙ WD �jT˙ . Clearly T D TCT� D T˙Z Š TC � T� Š Z � T˙
and T˙ Š F�q via t 7! ˛˙.t/. The reader can check that if t 2 T˙ then ˛˙.t/ D 2r � 1.
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Let td denote the unique element of TC with eigenvalues d and 1. From the above we
have

S2 D
1

q3.q � 1/2

X
t2T nZ

� X
x;y;z2Fq

axCbyCzcD0

�.t/�1 .�ax � by � cz/�
�
D0
�
˛C.t/; ˛�.t/

��
C

X
x;y;z2Fq

axCbyCzc¤0

�.t/�1 .�ax�by�cz/�
�
D1
�
˛C.t/; ˛�.t/

���

D
1

q.q � 1/2

X
t2T nZ

�.t/�1
�
�
�
D0
�
˛C.t/; ˛�.t/

��
� �

�
D1
�
˛C.t/; ˛�.t/

���
D

1

q.q�1/2

X
t2T nZ

�

�
1

˛�.t/
t

��1�
�
�
D0
�
˛C.t/=˛�.t/; 1

��
��

�
D1
�
˛C.t/=˛�.t/; 1

���
D

1

q.q � 1/

X
1¤t2TC

�.t/�1
�
�
�
D0
�
˛C.t/; 1

��
� �

�
D1
�
˛C.t/; 1

���
D

1

q.q � 1/

X
r2Fqn¹1=2;1º

�.t2r�1/
�1
�
�
�
D0.2r � 1; 1/

�
� �

�
D1.2r � 1; 1/

��
D

1

q.q � 1/

X
1¤d2F�q

�C.d/
�1
�
�
�
D0.d; 1/

�
� �

�
D1.d; 1/

��
:

In the last line we identify d and td via the isomorphism TC Š F�q . The value of S2 can
now readily be computed from the character table in [7].

Now suppose b2 � 4ac is not a square, so jT j D q2 � 1. For t 2 T n Z, let ˛t ; ˛
q
t

denote the eigenvalues of t . By the above considerations,

S2 D
1

q3.q2 � 1/

X
t2T nZ

� X
x;y;z2Fq

axCbyCzcD0

�.t/�1 .�ax � by � cz/�
�
F0.˛t /

�
C

X
x;y;z2Fq

axCbyCzc¤0

�.t/�1 .�ax � by � cz/�
�
F1.˛t /

��

D
1

q3.q2 � 1/

X
t2T nZ

�.t/�1
�
q2�

�
F0.˛t /

�
C

� X
x;y;z2Fq

 .�ax � by � cz/ �
X

x;y;z2Fq
axCbyCzcD0

 .�ax � by � cz/
�
�
�
F1.˛t /

��

D
1

q.q2 � 1/

X
t2T nZ

�.t/�1
�
�
�
F0.˛t /

�
� �

�
F1.˛t /

��
:

The value of S2 can now readily be computed from the character tables in [7].
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Now suppose q is even, so b ¤ 0. Following [2], we fix elements 
 and � of Fq2
of orders q � 1 and q C 1, respectively. Evidently T Š F�q � F�q if ".acb�2/ D 1 and
T Š F�

q2
otherwise. Let

g D

�
rCbs as
sc r

rCbs as
cs rs

� � 1 y z
1 x y
1
1

�
2 TN: (4.1)

Note �.g/�1=2g 2 Sp.4; q/ and if s D 0 then the conjugacy class of �.g/�1=2g D r�1=2g
was found in the previous section. So assume s ¤ 0. If ".acb�2/D 1 then the eigenvalues
of g are 
˙i for some i and

�.g/�1=2g is in a conjugacy class of type

´
C2.i/ if ax C by C cz D 0;

D2.i/ if ax C by C cz ¤ 0;
(4.2)

while if ".acb�2/ D �1 then the eigenvalues of g are �˙i for some i and

�.g/�1=2g is in a conjugacy class of type

´
C4.i/ if ax C by C cz D 0;

D4.i/ if ax C by C cz ¤ 0:
(4.3)

Here we are using the notation of [2]. We identify T \ Sp.4;q/with F�q D h
i if ".acb�2/
D 1 and with h�i if ".acb�2/ D �1. Arguing in a similar manner to the odd q case, we
obtain

S2D
1

q3jT j

X
t2T nZ

X
x;y;z2Fq

�.t/�1!
�
�.t/I4

�1=2
 .�ax�by�cz/�

�
�.t/�1=2t

� 1 y z
1 x y
1
1

��
D
q � 1

q3jT j

X
t2.T nZ/\Sp.4;q/

X
x;y;z2Fq

�.t/�1 .�ax � by � cz/�

�
t

� 1 y z
1 x y
1
1

��

D

8<: 1
q.q�1/

Pq�2
iD1 �

�1.
 i /
�
�
�
C2.i/

�
� �

�
D2.i/

��
if ".acb�2/ D 1;

1
q.qC1/

Pq
iD1 �

�1.�i /
�
�
�
C4.i/

�
� �

�
D4.i/

��
if ".acb�2/ D �1:

The value of S2 can now readily be found from the character tables in [2].

Corollary 4.2. Let .�;V� / be an irreducible representation of GSp.4; q/, and a; b; c 2 Fq
with b2�4ac¤0. LetRDTN be the associated Bessel subgroup and .�˝ a;b;c ;C�;a;b;c/
a one-dimensional representation of R.

(a) Suppose T Š F�q � F�q . If � is generic then

1 � dim HomR.V� ;C�;a;b;c/ � 2

and if � is nongeneric then

dim HomR.V� ;C�;a;b;c/ � 1:
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In addition, if � is nongeneric then dim HomR.V� ;C�;a;b;c/D 1 for at most one �, except
for � D �7.k/ (when q is even) and � D �1.�; �/ (when q is odd), in which case there
are two such �.

(b) If T Š F�
q2

then
dim HomR.V� ;C�;a;b;c/ � 1:

In addition, if � is nongeneric then dim HomR.V� ;C�;a;b;c/D 1 for at most one �, except
for � D �9.k/ (when q is even) and � D �7.ƒ/ (when q is odd) in which case there are
two such �.

Acknowledgments. The author thanks Ralf Schmidt for many useful conversations dur-
ing the writing of this article.
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