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Bessel models for representations of GSp(4, q)
Jonathan Cohen

Abstract. We compute the Bessel models of every irreducible representation of the finite group
GSp(4,q).

1. Introduction

For F alocal or global field, there has been significant work on Bessel models for GSp(4, F)
and their applications to Siegel modular forms and automorphic representations; see [3—6]
for some examples. In this article, we consider the analogous situation over finite fields,
and our main result is the computation of the Bessel models for all irreducible representa-
tions of GSp(4, g); see Theorem 4.1. One of our primary motivations is the determination
of the (nonsplit) Bessel models for the depth zero supercuspidals of p-adic GSp(4, F),
which we will carry out in a forthcoming paper. We also remark that there are some
notable differences between the p-adic and finite field cases. For example, it is shown
in [5] that all split Bessel models are unique (when they exist) over the p-adics, while
a consequence of our computations is that the split Bessel models over finite fields can
have multiplicity 2; see Corollary 4.2 below. On the other hand, over both p-adic and
finite fields, the generic representations admit every split Bessel model and (if ¢ > 3 in
the finite field case) this characterizes genericity.

We now briefly outline the contents of this article. In Section 2 we introduce the req-
uisite notation, in Section 3 we carry out a technical preliminary computation, and in
Section 4 we prove the main result.

2. Notations

Let {, denote a complex primitive nth root of unity and ; ; denote the Kronecker delta
for i, j varying over some set. Let ¢ be a power of a prime p and [F, denote the field of
order g. If ¢ is even then the group homomorphism I, — IF; given by x — x2 4 xis
two-to-one. Let Fj be its image and &: F; — {=£1} be the homomorphism with kernel IF;.
Let & be a fixed element of F, thatis notin Fg;so e(t? +1) = land e(1> + ¢ + §) = —1
forall 7 € F,. If g is odd let £ be a fixed nonsquare in I
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1
J =[ ! ] .1
-1

G :=GSp(4.q) = {g € GL(4.q) | "gJg = ju(g)J forsome u(g) € F ).  (2.2)

Fix the symplectic form
and define

The kernel of the multiplier homomorphism w: GSp(4, ) — T is the symplectic group
Sp(4,q). The center Z of GSp(4, q) consists of scalar invertible matrices. If ¢ is even then
G = Sp(4, gq) x Z. We further define the Siegel parabolic subgroup

P=Gﬂ|:**11} 2.3)

* 3k

and its unipotent radical N, given by

1 yz
N:{|: l’l‘y:||x,y,z€IFq}. 2.4)
1

IfA=[24]eCL.g) thenlet 4= 7t [« P so[* ] e P with muliiplier

uelkX.
q
Let ¥ be a nontrivial character of IF. For a, b,c e Fy, let ¥, p, be the character of N
given by

1 yz
I/fa,b,c< [ b y} ) = Y (ax + by + cz) (2.5)
1
for x, y, z € F;. We denote by C, 5 . the one-dimensional representation of N given by
the character V¥, p,.. We also define the group

r—bs as
—cs 1

r—bs —as
T:{|: cs 1 :||r,seIFq, r2—brs+s2ace]qu}. (2.6)

The reader may readily check that 7 normalizes N and preserves the form ax + by + cz.
Let x: T — C* be a character. The map tn — x(¢)¥4p, (1) defines a character of the
Bessel subgroup

R:= TN, 2.7)

which we denote by y ® ¥4 5,c. Let Cy 4 p . be the one-dimensional representation of R
given by the character y ® ¥, 5.c.

The irreducible characters of G have been determined in [7] (if ¢ is odd) and [2] (if g
is even). Some of the mistakes in [2, Table IV-2] have been corrected in [1, Table 7]; we
remark that the values for 8; and 6, there are transposed.
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3. Fourier coefficients

The main result of this paper is a computation of dim Homg(Vs, Cy 45,) for all irre-
ducible representations (o, V,) of G, when b? — 4ac # 0. To carry this out it is convenient
to first prove a preliminary result.

Proposition 3.1. The dimensions of the spaces Hompy (V5, C, ) for all irreducible rep-
resentations (0, Vy) of GSp(4, q) are as given in Table 1 (if q is odd) and Table 3 (if q is
even).

Proof. By character theory we have

dlmHOmN(Vov(Ca,b,c)qu Z w(—ax—by—cz)G([ l)f)l)i|)y

x,y,z€F,

where 0 is the trace character of 0. For 2 x 2 matrices X, Y over I,, write X ~ Y if there
exist A € GL(2,F,) and u € F withuAX(A")™' =Y.
Suppose that ¢ is odd. Then, for X = [ 5],

if X # 0and det(X) =0, then X ~[}],
if det(X) € F2, then X ~ 9],
if det(X) € EFX2, then X ~ [§°F].

Here, § is a fixed nonsquare in F°. Hence

dimHomp (V, Cy p.c)

(o[ ])r = wememeera([))

x,y,z€F,
y2—xz=0
(x,,2)#(0,0,0)

+ Z w(—ax—by—cz)-G([llil:D

x,y,z€F,
y7'—sz]F‘;<2

+ Y 1,0(—ax—by—cz)-0(|:11%T:D).

x,y,z€F,
yz—xzeé‘]FqX2
The four matrices in this equation represent the conjugacy classes denoted by Ag, A1, A21
and A, in [7]. Hence the assertion follows from [7, Tables 5—11] and Lemma 3.2 below.
Now suppose that g is even. Then, for X =¥ 7],

if X # 0 and det(X) = 0, then X ~ [ 4],
if det(X) € F and x = z = 0, then X ~ [§ 9],
if det(X) € F and (x,2) # (0,0), then X ~[§1].



J. Cohen 4

o dim V, rank O rank 1 rank 2 cusp gen
square nonsquare

Xi(A,p,v) (@+1D*@+1) 4q+1) g+3 g+3  qg+1 .
X5(A,v) gt —1 20g—1) g—1 qg+1 qg—1 .
X3(A,v) gt -1 0 g+1 qg-—1 q+1 °
X4(0) (¢*—1)? 0 g—1 qg—1 q+1 o o
Xs(A,0)  (@—=D* >+ 1) 0 g—1 ¢g-1 ¢g-3 o o
x1(A,v) @+D@+1D 2¢+1D 1 2 0

2 ql@+ D@ +1) 2+ g+2 g+1  g+1 .
13(A,v) (q+D(@*+1) q+3 2 1 1

ey q@+ D@ +1) 3q+1 g+1 qg+2 q .
xs(@,v) (@-D@+1D g-1 0 1 1

xs@,v)  qlg—-D@*+1) g-1 g-1 ¢ q-2 .
x7(A) (¢—D@>+1) 0 1 0 2

xs(A) q(g —(@*+1) 0 g q-1 g—1 .
1(v) 9>+ 1 2 1 0 0

72(v) q(¢>+ 1) q+1 1 1 1

73(v) @+ 1) 2q g q+1 g-1 .
(V) ¢ —1 0 1 0 0

5(1) q*(@> - 1) 0 g qg-1 q+1 .
01(v) 3q(q + 1) q+1 1 1 0

6> (v) 1q(q —1)? 0 0 0 1 .
03(v) 34(q> + 1) 1 1 0 1

04(v) 34(q> + 1) q 0 1 0

0s5(v) q* q q q q .
Bo(v) 1 1 0 0 0

Table 1. The irreducible characters of GSp(4, g) for g odd, as listed in [7]. If (o, Vi) is the repre-
sentation in the first column, then the “rank 0” column shows dim Hompy (V. Co,0,0). The “rank
17 column shows dim Homy (Vo, Cy p ) if b2 —4ac = 0 and (a, b, ¢) # (0,0,0). The “rank 2
square” column shows dimHomy (Vo, Cy p ) if b% —4ac e IF;Z. The “rank 2 nonsquare” column
shows dim Homy (V, Cy p ) if b? —4ac € S]FqXZ. The last two columns indicate the cuspidal and
generic representations.
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Hence

dimHomy (Vo, Cyp.c)

ST

2

x,y,z€F,

2_xz=0
(x,,2)#(0,0,0)

+ Z W(—ax—by—cz)-e(_llil_)

x,y,z€F,
y2—xz#0
(x,2)=(0,0)

+ Z w(—ax—by—cz)-é(:llii-)).

x,y,z€F,

y2—xz#0

(x,2)#(0,0)

W(—ax—by—cz)-e([l Y

J)

The four matrices in this equation represent the conjugacy classes denoted by A;, A2, A3
and A3, in [2]. Hence the assertion follows from [2, Table IV-2] and Lemma 3.3 below.

Lemma 3.2. Let q be odd and a, b, c € Fy. Then

q* -1
) -1
) > Y(-ax—by—cz)=
q—1
x,y,z€F,
y2—xz=0 —g —
(x,7,2)#(0,0,0) q-1
q(¢> = 1)
2
.. q(q—1)
(ii) Z Y(—ax—by—cz)= Y
x,y,z€F, —q
y2—xzeF,?
0
q(q —1)?
2
q(q—1)
(iii) Z Y(—ax—by—cz)= T
x,y,2€F, 0
y2—xz€EF 2
q

Proof. Since

Z Y(—ax —by —cz) =

3
{q
x,y,z€F, 0

(iii) will follow once we prove (i) and (ii).

ifa=b=c=0,
ifb?—4ac=0, (a,c)#(0,0),
ifb? —4dac € IF;Z,

if b*> — dac € §F ;2.

ifa=b=c=0,

ifb>—dac=0, (a,c)#(0,0),
ifb? —4dac e F;z,
ifb? —4ac € EF;Z.

ifa=b=c=0,

ifb?—4ac =0, (a,c)#(0,0),
ifb?> —4dac e F;z,
ifb> —4ac € §F ;2.

ifa=b=c=0,

otherwise,
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(i) We calculate

Z Y(—ax —by —cz) = Z V(—x(a+by +cy2)) + Z Y(—cz).

x,y,z€F, xelFy zeFyf
y2—xz=0 y€F,
(x,,2)#(0,0,0)

If ¢ = 0, then we see easily that

g—1 ifb#0,
Z Y(—ax —by —cz) = q —1 ifa#0,b=0,
x,7,2€F ¢>—1 ifa=b=0.

y2—xz=0

(x,,2)#(0,0,0)
Suppose that ¢ # 0. Then
Z Y(—ax—by—cz)= Z 1//(—x(a+by+cy2))—l
x,y,z€F, xeFy
y2—xz=0 yeF,
(x,,2)#(0,0,0)

1-(g—=D+(@g—=D(=1)—1 ifb?>—4ac=0,
=92-(q-D+(g—2)(-)—1 ifb>—4aceF;?,
0-(¢g—D+q(-1)—1 ifb2—4ac€$IF;2,

—1 if b2 —4ac =0,
=1q—1 ifb>—4dac eF;?,
—q—1 ifb?—4ace SIE‘qX2.

This concludes the proof of (i).
(i) We calculate

Z W(—ax—by—cz)zé Z Z ¥ (ulax + by + cz2)).

x,y,z€F, uek; x,y,z€F,
y2—xzeF 2 y2—xz=1

The x = 0 terms contribute

1
3 2 D V()Y ub) + v (—ub)) = g8e,0(~=1 +qby0)-
uelFy z€Fy
The x # 0 terms contribute

)

u,xe€F; yely

=% > > v(u@x® + byx + cy® —c)).

u,xelF; yel,
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First suppose that ¢ = 0. Then

Z Z W(u(ax2 +byx 4+ cy? — c)) % Z Z Y (ua + by)

u,xelF; yel, u,xeF) yel,

—1
= 205, 01+ g0

This confirms the formulas when ¢ = 0. From now on suppose that ¢ # 0. Then

Z Z 1ﬂ(u(ax2 +byx 4+ cy? — c))

u,xe]qu yeF,

Z Z Y (u(y® — x*(b* — dac) — 1)). 3.1)

u,xeF; yelF,

Suppose that b2 — 4ac = 0. Then

(g—1) q(q—1)
3 = -

(31)— 5

y —1) = 2@-1)—-(¢-2)=

u€ely
yeIFq

Next suppose that b2 — 4ac € S]F;z. Then using the fact that there are g + 1 solutions
(x,y) € Fy x Fy to the equation y? — x2§ = 1, we obtain

253 = Y Y(-u(?=x*-1)= Y y(—u@>-1)
lefgl%q I;GE]E;{ZI

=@q@-D@+D)—(*—@+D)-(2(g-1)—(g—-2) =

Finally, suppose that b2 — 4ac € IF;Z. Then

(3.1): > v —x*-1) = Z Y (u(y* +2yx — 1))

uxEIF uxE]F><
ye]Fq yG]Fq
1 1
=3 Z W(u(yz—i—x—l))—i-z Z V(—u)
u,x,yeFfy u,xefy
-3
= Y v+ 952 Yy n)-
u,xeFy u,xefy
— -+ T3 gy
=—(-D+—-a-1-@-2)-"—F—=-¢

This concludes the proof. ]
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Lemma 3.3. Let q be even and a, b, c € F,. Then

g>—1 ifa=b=c=0,

. -1 ifb=0, (a,c) # (0,0),
—ax — by —cz) =
o x,J;]Fq yiax=byme g—1 ifb#0, elach™) =1,
y?—xz=0 —q—1 ifb#0, elach™?) = —1.

(x,5,2)#(0,0,0)
q— 1 ifa =h=c= O’
—1 ifb= 0, , 0,0),
(i) > Y(-ax—by—cz) = 1 zf (a c)_aéz( )
x,y,z€F, -1 ifb#0, e(ach™) =1,

()yczz;iz((;)eg) -1 ifb #0, e(ach™2) = —1.

(g—1D(g*>-1) ifa=b=c=0

—q+1 ifb =0, (a,c) # (0,0),
Gi) Y Y(-ax—by—cz)= q+ lf (a.c) #(0.0)
x,y,z€F, —q+1 ifb #0, g(acb_z) =1,
2—xz#0 . oy

(. 2)£0.0) q+1 ifb#0, elach™) = —1.

Proof. Since

Z Y(—ax —by —cz) =

x,y,z€F, 0 otherwise,

{f ifa=b=c=0,
(ii1) will follow once we prove (i) and (ii). Note that (ii) is an easy exercise. To prove (i),
we calculate

2
Z Y(—ax —by —cz) = Z W(—ax—by—cy;) + Z Y(—cz)

x,y,z€F, xEIF; zelFy
y2—xz=0 yeFy

(x,,2)#(0,0,0)

Z V(—x(@@+by+cy?)+ Z Y(—cz).

xelFy zeFy
y€eF,
If ¢ = 0, then we see easily that
g—1 ifb#0,
Z Y(—ax —by —cz) = —1 ifa#0, b =0,
x,y,2€Fq q2 —1 ifa=5b=0.

y2—xz=0
(x,5,2)#(0,0,0)

Suppose that ¢ # 0. Then
Z Y(—ax —by —cz) = Zw(—x(a+by+cy2))—1-

x,y,z€F, xeF)
y2—xz=0 yeF,
(x,y,2)#(0,0,0)
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If a = b = 0, this is easily seen to be —1. Suppose that b = 0 and a # 0. Thena + by +
cy? = 0 for exactly one value of y, so that

> WY(max—by—cz)=1(g-D+(@-DD-1=-1
x,y,z€F,

y2—xz=0
(x,y,2)#(0,0,0)

Suppose that b # 0 (and still ¢ # 0). Then
a+by+cy?>=0<= bcy+ (cy)® =ca <= cbh™ 'y + (cb'y)? = cab™.

If e(cab™2) = 1, then this equation has exactly two solutions, otherwise none. Hence

2 @-D+@-9=D -1 ife(cab™) =1,
Y. Y(-ax—by CZ)_{O-(q—l)+q(—1)_1 if e(cab ) =—1

x,y,z€F,
2_xz=0
(x,¥,2)#(0,0,0)
_Ja-1 ife(cab™?) =1,
—q—1 ife(cab™?) = —1.

This concludes the proof of (i). ]

4. Bessel models

We now state and prove the main result of this paper.

Theorem 4.1. Ifb* — 4ac # O then the dimensions of the spaces Homg (Vy, Cy 4.p.¢) for
all irreducible representations (o, Vi) of GSp(4, q) are as given in Table 2 if q is odd and
in Table 4 if q is even.

Proof. Let w be the central character and 6 the trace character of . By character theory,

1 1 yz
dimHomg(Vo, Cy 4p.c) = WP Z 1) ' (—ax — by —cz)@(t [ by yi| )

teT 1
x,y,2€F,

=81+ S,

where

1 z
Si= g X a0 war—by—can(e] 137]),
1

teZ x,y,zef,

1 'Y
Sy = e Z Z ¥ Y (—ax —by — cz)@(t |: by

teT\Z x,y,z€lF,

- <N
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o square nonsquare

Xi(A, m,v) 14 (g+.v+vu+vA +vud) 1

X5(A,v) 1L+ (x4, v+ vAlpy) 1—(x,A(woN)+ A%(voN))
X3(A,v) 1 1

X4(0) 1 1

Xs(A, ) 1 1— (. A+ A7 + A& + A159)
x1(A,v) (X+.v +vA) 0

x2(A,v) 1+ (x+.v+vd) 1

130 v) (e 0h) (1. () o N)

xa(A,v) 1+ (x4,v+vA +vA?) 1—(x.(Av) o N)
x5(@,v) (X+.v) (x,voN)

x6(w,v) 14+ (x+,v) I1—(y,voN +@voN +@ivoN)
x7(A) 0 (X, A+ A7)

xs(A) 1 1—(x. A+ A7)

71 (v) 0 0

2(v) (X+.v) (x,voN)

73(v) 1+ (4. v + vag) 1—(x,voN + (vag) o N)
4(A) 0 0

(V) 1 1

61(v) (X+:v) 0

62(v) 0 (x,voN)

63(v) 0 (x,voN)

04(v) (x+.v) 0

05(v) L+ (x+.v) I1—(x,voN)

Bo(v) 0 0

Table 2. The irreducible characters of GSp(4, g) for ¢ odd, as listed in [7]. If (o, Vi) is the repre-
sentation in the first column, the remainder shows dim Homg (Vo, Cy 4 p ) assuming y|z = wo-.
In the square column, in which % — 4ac € ]F;Z, we write x+ = x|r, and use the canonical iso-
morphism 74 =~ ]F; to identify y4 with a character of IF;. In the square column the inner product
is for characters of IF; while in the nonsplit column it is for IF;Z. By N: IF;Z — g we denote the
norm map.

Clearly if y|z # w then S = S = 0, so assume that y|z = . Then

-1 1 yz
netih ool 1)),

x,y,2€F, 1

Up to the factor of (¢ — 1)/|T|, this was computed in the previous section.
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o dim V, b=0 b#0 cusp gen
(a,¢) =(0,0) (a,c) #(0,0) e(33)=1 e(53)=-1

6o 1 1 0 0

6, 1q(g + 1)? g+1 1 1 0

6> 1q(@*+1) 1 1 0 1

63 Lq(@® +1) q 0 1 0

B4 q* q q q q .

65 1q(g—1)? 0 0 0 1 .

kD) (g+D* >+ 1) 4g+1) q+3 q+3 q+1 .

x2(k) gt -1 2(q—1) g-1 q+1 g-—1 .

13k, 1) q* -1 0 g+1 q—1 q+1 .

xak.l) (g—=1*g*>+1) 0 g-1 q-1 q-3 o o

x5(k) (¢*>—-1? 0 q—1 q—1 q+1 o e

xs(k) (g + D> +1) q+3 2 1 1

k) @+ D@+ 20g+D 1 2 0

xs(k) (¢—D@>+1 q—1 0 1 1

Ko (k) (¢—D@>+1 0 1 0 2

x10(k)  gq(g+1D(g>+1) 3g+1 q+1 q+2 q .

k) ql@+D@>+1)  2g+1D) q+2 q+1 q+1 .

xa2(k)  qlg =G>+ 1) q—1 q-1 q q-2 .

xik)  qlg—1(G*+1) 0 q q-—1 q-—1 .

Table 3. The irreducible characters of GSp(4, ¢) for ¢ even. Shown are the irreducible characters
of Sp(4, q) as determined in [2]. The irreducible characters of GSp(4, g) follow from GSp(4, q) =
IF; x Sp(4, q). If (0, Vi) is the representation in the first column, then columns 3, 4, 5, 6 show
dim Homy (Vo, Cg4 p ) under the indicated conditions. The last columns indicate the cuspidal and
generic representations.

Suppose first that ¢ is odd. Evidently T = F x F if b? — 4ac is a square and
T ~ IF;Z otherwise. Let

r—sb/2 —sa 1 yz
_ sc  r+sb/2 1xy
&= r—sb/2  sa |: 1 €TN.

—sc  r+sb/2 1

The eigenvalues of g are o+ = a4 (g) = r + s(b%/4 —ac)V/2. If s = 0, the conjugacy
class of g was determined in the previous section. Suppose s # 0. If b2 — 4ac is a square
then

Do(at,a-) ifax +by +cz =0,

is in a conjugacy class of type
& Jueaey P {Dl(a+,a_) ifax + by +cz #0,
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o glach™?) =1 elach™2) = -1
6o 0 0
01 j.0 0
0> 0 80
03 j.0 0
N 1+60 1 —38j,0
05 0 80
x1(k, 1) 1+ 8 kxi+8),—k+1 1
x2(k) 1+ 8 4k 1 =38 4k
x3(k, 1) 1 1
xa(k, 1) 1 1 =8 ktr — 8j,—kx1
xs(k) 1 1
x6(k) 8j.0 8j.0
x7(k) 8j,+k 0
xs(k) 8j,0 8j,0
xo(k) 0 8j,+k
x10(k) 14680+ 6 +k 1-360
x11(k) 1+ 81k 1
x12(k) 1+ 380 1 —38j,0 — 8,42k
x13(k) 1 1 =84k

Table 4. The irreducible characters of GSp(4, ¢) for ¢ even. Shown are the irreducible char-
acters of Sp(4, ¢) as determined in [2]. The irreducible characters of GSp(4, q) follow from
GSp(4,q) = ]F; x Sp(4,q).If (0, Vi) is the representation in the first column, the next columns give
dimHomg (Vo,Cy 4 p.c) assuming x|z = wg-. If e(ach™2) = 1 then we identify T N Sp(4, ¢) with
(y), define the index j by x(y) = C;_l, and 8y, denotes the Kronecker delta over Z /(g — 1)Z. If
e(ach™?) = —1 then we identify T N Sp(4, ¢) with (), define the index j by x(y) = §é+1’ and
dy,z denotes the Kronecker delta over Z /(g + 1)Z.

while if 52 — 4ac is a nonsquare then

Fo(ay) ifax +by +cz =0,

is in a conjugacy class of type
& jmeacy P {Fl(a+) iftax +by +cz #0.

Here we are using the notation of [7].

Suppose b? — 4ac is a square, so |T| = (¢ — 1)2. Define the subgroups 7+ = {t € T |
ax(t) = 1} and write x4+ 1= y|7,. Clearly T = T4 T =T+ Z =Ty xT_ = Z x Ty
and Ty = F viat > a4 (7). The reader can check that if 7 € Ty then a4 (1) = 2r — 1.
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Let ¢4 denote the unique element of 7 with eigenvalues d and 1. From the above we
have

1 -
S= e 2 (X 0T vax by —ea)(Dofe (1), (1))

teT\Z x,y,z€F,

ax+by+zc=0
+ Y O (—ax—by—cn)f(Di (@4 (1).a- (1))
ax)-ci-,l);;’szgaéo

= 2 07 B(Dofe (0. -0) = (D1 (o), - (1)]

teT\Z

-1
—q(ql_l)z ) X(—a_l(,)f) [6(Do (o4 (1) /- (1), 1)) = O(D1 (a4 (1) /a— (1), 1))]

teT\Z

= —q(ql_ 1) Z X([)_I[Q(DO(OZ+([), 1)) — 9(D1(0l+(t), 1))]
1#teTy

i
= @D S 27 (Do2r — 1. 1) — §(D12r — 1,1))]
ref,\{1/2,1}

Zq(ql_l) Z x+(d)'[0(Do(d, 1)) — 6(D1(d. 1))].

1#deFy

In the last line we identify d and 7 via the isomorphism 7 = [F*. The value of S can
now readily be computed from the character table in [7].

Now suppose h? — 4ac is not a square, so |T| = g?> — 1. Fort € T \ Z, let ay, af
denote the eigenvalues of 7. By the above considerations,

1 _
$2= mgon o (X xO'wax—by —en)0(Fo@)
teT\Z x,y,2€Fq
ax+by+zc=0

+ Y a0 wax—by —en)f(Fi())
x,y,2€F,
ax+by+zc#0

1
== X0 (4%6(Folar))
7°>(@*—1) ,e;z (

+ ( Z V(—ax —by —cz) — Z V(—ax —by — cz))Q(Fl (a,)))

x,y,2€F, x,y,z€F,
ax+by+zc=0

1
= —— x() N (0(Fo(ar)) — O(Fi(ay))).
q(q*—1) ,e;z 0 !

The value of S, can now readily be computed from the character tables in [7].
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Now suppose ¢ is even, so b # 0. Following [2], we fix elements y and 1 of F,2
of orders ¢ — 1 and g + 1, respectively. Evidently 7' = F x F¢ if e(ach™?) =1 and
T ~ IF;Z otherwise. Let

r+bs as llyZ
g:I:SC rr+bsasi||: )lcyjIETN. “.1)

cs rs 1

Note 1u(g)~"/2g € Sp(4,q) and if s = 0 then the conjugacy class of (g)~"/2g = r~1/2g
was found in the previous section. So assume s # 0. If e(ach™2) = 1 then the eigenvalues
of g are y*! for some i and

C(@@) if b =0,
,u(g)_l/2g is in a conjugacy class of type 2() ifax +by +cz 4.2)
D,(i) ifax +by+cz #0,

while if e(ach~2) = —1 then the eigenvalues of g are n** for some i and

Cs(@) if b =0,
,u(g)_l/2g is in a conjugacy class of type 4l) ifax +by +cz 4.3)
D4(i) ifax +by +cz #0.

Here we are using the notation of [2]. We identify 7 N Sp(4,q) with F;* = (y) if e(ach™2)
= 1 and with (n) if e(ach™2) = —1. Arguing in a similar manner to the odd ¢ case, we
obtain

1 z
Sr= i O X a0 o) yax—by—exp (w157 )
1

3
q |T| teT\Z x,y,z€lF,

1 z
S Y Y o vearn et 13])
eI te(T\Z)NSp(4,q) x,y,z€F, 1
7o 2ot 1 O[0(C2()) = 8(D2())] ife(ach™) = 1,
D Lty XN OD[0(Ca() — 0(Da())] if (ach™?) = —1.

The value of S, can now readily be found from the character tables in [2]. ]

Corollary 4.2. Let (0, V) be an irreducible representation of GSp(4,q), and a,b,c € F,
with b®>—4ac #0. Let R=TN be the associated Bessel subgroup and (x ® Y a.p.c.Cy.a,b.c)
a one-dimensional representation of R.

(a) Suppose T = x F . If o is generic then

1 <dimHompgr(V5,Cyapc) <2
and if o is nongeneric then

dimHompg (V5,Cy ap.c) < 1.
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In addition, if o is nongeneric then dimHomg (Vy, Cy 4 5.c) = 1 for at most one y, except
for a = y7(k) (when q is even) and 0 = y1(A,Vv) (when q is odd), in which case there
are two such y.
b IfT = IF;Z then
dimHomg(V5, Cy ap,c) < 1.

In addition, if o is nongeneric then dimHomg (Vo , Cy 4.5.c) = 1 for at most one x, except
for o = xo(k) (when q is even) and 0 = y7(A\) (when q is odd) in which case there are
two such y.

Acknowledgments. The author thanks Ralf Schmidt for many useful conversations dur-
ing the writing of this article.
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