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Weil-étale cohomology and zeta-values of arithmetic
schemes at negative integers

Alexey Beshenov

Abstract. Following the ideas of Flach and Morin (2018), we state a conjecture in terms of Weil-
étale cohomology for the vanishing order and special value of the zeta function { (X, s) ats =n <0,
where X is a separated scheme of finite type over Spec Z. We prove that the conjecture is compatible
with closed-open decompositions of schemes and with affine bundles, and consequently, that it holds
for cellular schemes over certain one-dimensional bases.

1. Introduction

Let X be an arithmetic scheme, by which we mean in this paper that it is a separated
scheme of finite type X — Spec Z. Then the corresponding zeta function is defined by

1
X,s) = _. 1.1
£(X.9) 1‘!{ e (L)
closed pt.

Here, for a closed point x € X, the norm

N(x) = |K(x)} = |Ox x/mx x

is the size of the corresponding residue field. The product converges for Re s > dim X,
and conjecturally admits a meromorphic continuation to the whole complex plane. Basic
facts and conjectures about zeta functions of schemes can be found in [42].

Of particular interest are the so-called special values of (X, s) at integers s = n € Z,
also known as the zeta-values of X. To define these, we assume that ¢(X, s) admits a
meromorphic continuation around s = n. We denote by

dy = ords=p {(X,5)

the vanishing order of (X, s) at s = n. That is, d,, > 0 (resp. d,, < 0) if {(X, s) has a
zero (resp. pole) of order d,, at s = n.
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The special value of {(X,s) at s = n is defined as the leading nonzero coefficient of
the Taylor expansion:
E*(X,n) = lim(s —n)~% ¢(X, s).
S—>n

Early on, Lichtenbaum conjectured that both numbers ords—, ¢(X, s) and ¢*(X, n)
should have a cohomological interpretation related to the étale motivic cohomology of X
(see, e.g., [33] for varieties over finite fields).

This is made precise in Lichtenbaum’s Weil-étale program. It suggests the existence
of Weil-étale cohomology, which is a suitable modification of motivic cohomology that
encodes the information about the vanishing order and the special value of (X, s) at
s = n. For Lichtenbaum’s recent work on this topic, we refer the reader to [34-37].

The case of varieties over finite fields X /I, is now well understood thanks to the work
of Geisser [15-17].

Flach and Morin considered the case of proper, regular arithmetic schemes X . In [10]
they have studied the corresponding Weil-étale topos. Later, in [39] Morin gave an explicit
construction of Weil-étale cohomology groups H &{L.(X , Z) for a proper and regular arith-
metic scheme X . This construction was further generalized by Flach and Morin in [11] to
groups HviVL.(X , Z.(n)) with weights n € Z, again for a proper and regular X .

Motivated by the work of Flach and Morin, the author constructed in [2] Weil-étale
cohomology groups Hé;/,c(X , Z(n)) for any arithmetic scheme X (removing the assump-
tion that X is proper or regular) and strictly negative weights n < 0. The construction is
based on the following assumption.

Conjecture 1.1. L¢(Xy4, n): given an arithmetic scheme X and n < 0, the cohomology
groups H' (X4, Z¢ (n)) are finitely generated for all i € 7.

For the known cases, see [2, Section 8]. Under this conjecture, we constructed in [2,
Section 7] perfect complexes of abelian groups RI'w,.(X, Z(n)) and the corresponding
cohomology groups

Hi, (X.Z(n)) := H (RTyc(X. Z(n))).
This text investigates the conjectural relation of our Weil-étale cohomology to the

special value of {(X,s) at s = n < 0. Specifically, we make the following conjectures.

(1) VO(X, n) (Conjecture 3.1): The vanishing order is given by the weighted alter-
nating sum of ranks

ords—n {(X.5) = Y (=)' i -tkg Hiy (X. Z(n)).
i€z
(2) A consequence of B(X, n) (Conjecture 2.5) and Lemma 4.2: After tensoring the

cohomology groups Hviv,c(X , Z(n)) with R, we obtain a long exact sequence of
finite-dimensional real vector spaces

> HIEY(XR()) =5 H (X R() =% HEEY (X R()) — - .
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It follows that there is a canonical isomorphism
AR S (det Ry (X. Z(n))) @ R.

Here detz RT'w.(X, Z(n)) is the determinant of the perfect complex of abelian
groups Ry, (X, Z(n)), in the sense of Knudsen and Mumford [31]. In particular,
detz RT'w,.(X, Z(n)) is a free Z-module of rank 1. For the convenience of the
reader, we give a brief overview of determinants in Section 8.

(3) C(X,n) (Conjecture 4.7): The special value is determined up to sign by

A X))z = dZetRFWC(X, Z(n)).

If X is proper and regular, then our construction of RT'y.(X, Z(n)) and the above
conjectures agree with those of Flach and Morin from [11]. Apart from removing the
assumption that X is proper and regular, a novelty of this work is that we prove the com-
patibility of the conjectures with operations on schemes, in particular with closed-open
decompositions Z &> X <= U, where Z C X is a closed subscheme and U = X \ Z is
the open complement, and with affine bundles Ay = A7, x X (see Proposition 6.3 and
Theorem 6.8). This gives a machinery for starting from the cases of schemes for which
the conjectures are known and constructing new schemes for which the conjectures also
hold. As an application, we prove in Section 7 the following result (Theorem 7.9).

Main theorem. Let B be a one-dimensional arithmetic scheme, such that each of the
generic points 11 € B satisfies one of the following properties:

(a) chark(n) =p > 0;
(b) chark(n) = 0, and k(n)/Q is an abelian number field.

If X is a B-cellular arithmetic scheme with smooth quasi-projective fiber X,.q,c, then
Conjectures VO(X, n) and C(X, n) hold unconditionally for any n < 0.

In fact, this result is established for a larger class of arithmetic schemes € (Z); we refer
to Section 7 for more details.

Qutline of the paper

In Section 2, we define the regulator morphism, based on the construction of Kerr, Lewis,
and Miiller-Stach [30], and state the associated Conjecture B(X, n).

Then Section 3 is devoted to Conjecture VO(X, 1) about the vanishing order. We also
explain why it is consistent with a conjecture of Soulé, and with the vanishing order arising
from the expected functional equation.

In Section 4 we state Conjecture C(X, n) about the special value.

We explain in Section 5 that if X is a variety over a finite field, then Conjecture C(X,n)
is consistent with the conjectures considered by Geisser in [15-17], and it follows from
Conjecture L (X4, n).
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Then we prove in Section 6 that Conjectures VO(X, n) and C(X, n) are compatible
with basic operations on schemes: disjoint unions, closed-open decompositions, and affine
bundles. Using these results, we conclude in Section 7 with a class of schemes for which
the conjectures hold unconditionally.

For the convenience of the reader, Appendix 8 gives a brief overview of basic defini-
tions and facts related to the determinants of complexes.

Notation

Inthis paper, X always denotes an arithmetic scheme (separated, of finite type over SpecZ),
and n is always a strictly negative integer.
We denote by
RTy(X,Z(n)) and RTy.(X,Z(n))

the complexes of abelian groups constructed in [2] under Conjecture L€ (X, n). We set
H (X, 200) 1= H (RT (X, Z()).
H}, (X, Z(n)) := H'(RTy(X, Z(n))).
By [2, Propositions 5.5 and 7.12], these cohomology groups are finitely generated,
assuming Conjecture L (X4, n); moreover, the groups H"%,,C(X , Z.(n)) are bounded, and
Hfi, (X, Z(n)) are bounded from below and finite 2-torsion for i > 0.

Briefly, the construction fits in the following diagram of distinguished triangles in the
derived category D(Z):

RHom (RT (X4, Z€ (n)), Q[-2]) ——— 0

Jexs |

*

RTe(Xa, Z(n)) —= RT(Gr,X(C),Z(n))

L J1

RTy(X, Z(n)) — RTy(X,Z(n)) --22> RT:(Gg, X(C), Z(n)) — [1]
RHom(RF(Xé}ZC(n)),Q[—l]) — g.
For more details, see [2]. For real coefficients, we set
RTy (X, R(n)) := Ry (X,Z(n)) ® R,
Ry (X, R(n)) := RTy(X,Z(n)) ® R.
Accordingly,
Hj (X.R(n)) := H'(RTy(X.R(n)) = Hi,(X.Z(n)) ® R,
H},.(X.R(n)) := H' (RTy(X,R(n))) = H},.(X.Z(n)) ® R.
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By X(C) we denote the space of complex points of X with the usual analytic topology.
It carries a natural action of Gg = Gal(C/R) via the complex conjugation. For a subring
A € R we denote by A(n) the Gg-module (277i)" A, and also the corresponding constant
Gr-equivariant sheaf on X (C).

We denote by RI:(X(C), A(n)) the cohomology with compact support with A(n)-
coefficients, and its Gr-equivariant version is defined by

RFC(GR, X(C), A(n)) = RF(GR, RFC(X((C), A(n))).
For real coefficients, we have
H!(Gr., X(C),R(n)) = H!(X(C),R(n))*,

where the Gg-action on H, C’ (X(C), R(n)) naturally comes from the corresponding action
on X(C) and R(n).

Borel-Moore homology is defined as the dual to cohomology with compact support.
We are interested in the real coefficients:

RFBM(X(C),R(n)) := RHom (RFC(X((C),]R{(n)),]R),
RTy(Gr, X(C),R(n)) := RHom (RT¢(Gr, X(C),R(n)).R).

2. Regulator morphism and Conjecture B(X, n)

In order to formulate the special value conjecture, we need a regulator morphism from
motivic cohomology to Deligne(—Beilinson) (co)homology. Such regulators were orig-
inally introduced by Bloch in [5], and here we use the construction of Kerr, Lewis, and
Miiller-Stach [30], which works at the level of complexes. We will simply call it “the KLM
regulator”. It works under the assumption that X,.4,c is a smooth quasi-projective variety.

For simplicity, in this section we assume that X is reduced (motivic cohomology does
not distinguish between X and X,.;), and that X¢ is connected of dimension d¢ (oth-
erwise, the arguments below can be applied to each connected component). We fix a
compactification by a normal crossing divisor

Xc % Y(C +—— D.
The KLM regulator has the form of a morphism in the derived category
2P(Xc,—9) ® Q - 'C3/ % (Xe. D, Q(p - dc)). @0

Here z?(Xc, —e) denotes the Bloch’s cycle complex [4]. To define it, consider the
algebraic simplex Afc = SpecClto, - . ., ti]/(l - Zj tj). Then, z? (X, 1) is freely gener-
ated by algebraic cycles Z C X¢ XspecC Afc of codimension p which intersect the faces
properly. It is more convenient for us to work with

Zd([j—p(X(Cvl) = Zp(X(Csl)s

generated by cycles Z C X¢ XspecC Afc of dimension p + i.
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The complex 'Cg, (Xc. D, Q(k)) on the right-hand side of (2.1) computes Deligne(—
Beilinson) homology, as defined by Jannsen [22]. If we take p = dc + 1 — n, tensor it
with R and shift it by 27, we obtain

Zn—1(Xc.—e) ® R[2n] — 'C5*(Xc, D, R(1 —n)). (2.2)

Remark 2.1. Some comments are in order.

(1) Originally, the KLM regulator is defined using a cubical version of cycle com-

plexes, but these are quasi-isomorphic to the usual simplicial cycle complexes
by [32], so we make no distinction here. For an explicit simplicial version of the
KLM regulator, see [29].

(2) The KLLM regulator is defined as a true morphism of complexes (not just a mor-

phism in the derived category) on a subcomplex zp (Xc,®) C z"(Xc, o). This
inclusion becomes a quasi-isomorphism if we pass to rational coefficients. In the
original paper [30] this is stated without tensoring with @Q, but the omission is
acknowledged later in [28]. For our purposes, it suffices to have a regulator with
coefficients in R.

(3) The case of a smooth quasi-projective X¢, where one must consider a compacti-

fication by a normal crossing divisor as above, is treated in [30, Section 5.9].

Now we make a small digression to identify the right-hand side of (2.2). Under our
assumption that n < 0, Deligne homology is equivalent to Borel-Moore homology.

Lemma 2.2. For any n < 0 there is a quasi-isomorphism

'C3(Xc, D.R(1 —n)) = RTpyu(X(C),R(n))[-1]
:= RHom (RFC (X((C), R(n)), ]R)[—l].

Moreover, it respects the natural actions of Gr on both complexes.

Proof.

where

is the

From the proof of [22, Theorem 1.15], for any k € Z we have a quasi-isomorphism
'C(Xc. D, R(k)) = RT(X(C),R(k + dc)p.g (zo.x0y)2dc).  (23)
Rj«R(k + dc)
e—1L . .
R(k + dc)@-ﬁ,(f@,X@) = Cone @ — RJ*QX((C) [—1]
QZktde (150 D)
X(©)
sheaf whose hypercohomology on X (C) gives Deligne-Beilinson cohomology

(see [9] for more details).
Here SZ;? © denotes the usual de Rham complex of holomorphic differential forms,

and Q

% C)(log D) is the complex of forms with at most logarithmic poles along D(C).
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The latter complex is filtered by subcomplexes Q?( o)

& RjuR(k) — RjxQyc)

(log D). The morphism

is induced by the canonical morphism of sheaves R(k) — Ox(c), and ¢ is induced by the
natural inclusion Q.}? ( C)(log D)= Q;((C) = Rj,« Q)’((C), which is a quasi-isomorphism
of filtered complexes.

We are interested in the case of kK > 0 when the part
we obtain

=k+dc

%, (log D) vanishes, and

R(k +dc) p.g (Fe xey = Rjx Cone (R(k + dc) = Qyc))[-1]

= Rjx Cone (R(k + dc) = Qyc)[-1])
=~ Rj« Cone (R(k + dc) — C[-1]) 2.4)
~ RjR(k + dc — 1)[-1] (2.5)

Here (2.4) comes from the Poincaré lemma C = Q)‘((C) and (2.5) from the short exact

sequence of Gg-modules R(k + d¢) > C — R(k + dc — 1).

Returning to (2.3) for k = 1 — n, we find that
'C3(Xc.D.R(1 —n)) = RT(X(C),R(dc —n))[2dc — 1]
RHom (RFC (X((C),]R{(n)),IR)[—l].

112

Here the final isomorphism is Poincaré duality. All the above is Gr-equivariant. ]

Returning now to (2.2), the previous lemma allows us to reinterpret the KLM regulator
as
zn—1(Xc,—e) ® R[2n] — RTpy(X(C),R(n), R)[1]. (2.6)

We have
Zn-1(Xc.—) ® R[2n] = z,_1(Xc. —e) ® R[2n — 2][2]
=TI'(Xc.a. R(n —1))[2], 2.7

where the complex of sheaves R¢(p) is defined by U ~> z,(U, —e) ® R[2p]. By étale
cohomological descent [18, Theorem 3.1],

T'(Xc,e RE(n — 1)) = RT (X a0, RS (n — 1)). 2.8)

(We note that [18, Theorem 3.1] holds unconditionally, since the Beilinson—Lichtenbaum
conjecture follows from the Bloch—Kato conjecture, which is now a theorem; see also [14]
where the consequences of Bloch—Kato for motivic cohomology are deduced.)

Finally, the base change from X to X¢ naturally maps cycles Z C X x AiZ of dimen-
sion 7 to cycles in X¢ XspecC Afc of dimension n — 1, so that there is a morphism

RT (X, R(n)) = RT(Xc,a. RE(n — 1))[2]. (2.9)



A. Beshenov 8

Remark 2.3. Assuming that X is flat and has pure Krull dimension d, we have R¢(n)X =
R(d —n)*[2d], where R(e) is the usual cycle complex defined by z”(_,, —e)[—2#]. Sim-
ilarly, R¢(n)X¢ = R(dc — n)*<[2dc], with dc = d — 1. With this renumbering, the
morphism (2.9) becomes

RT(Xa,R(d —n))[2d] — RT (X, R(d — n))[2d].

This probably looks more natural, but we make no additional assumptions about X and
work exclusively with complexes A€ (e) defined in terms of dimension of algebraic cycles,
rather than A(e) defined in terms of codimension.

Definition 2.4. Given an arithmetic scheme X with smooth quasi-projective X¢ and n <0,
consider the composition of morphisms

RT (X, RE () —2 RT (Xc 0, RE(n — D)[2]

T (Xem R — D)12]

Q.7 (2.6)
= z,1(Xc,—9)r[2n] — RFBM(X((C),R(n),]R)[l].
Moreover, we take the Gr-invariants, which gives us the (étale) regulator

Regy ,: RT' (X4, R°(n)) — RTpyu(Gr. X(C), R(n))[1].

Now we state our conjecture about the regulator, which will play an important role in
everything that follows.

Conjecture 2.5. B(X,n): given an arithmetic scheme X with smooth quasi-projective X ¢
and n < 0, the regulator morphism Regy ,, induces a quasi-isomorphism of complexes of
real vector spaces

Regy ,: RTc(Gr. X(C).R(n))[-1] — RHom (RT (X4, Z(n)).R).

Remark 2.6. If X /F, is a variety over a finite field, then X(C) = @, so the regulator
map is not interesting. Indeed, in our setting, its purpose is to take care of the archimedian
places of X . In this case B(X,n) implies that H? (X, Z¢(n)) are torsion groups. However,
by [2, Proposition 4.2], Conjecture L (X, n) already implies that H? (X, Z(n)) are
finite groups.

Remark 2.7. We reiterate that our construction of Regy , works for X,,s ¢ smooth quasi-
projective. In everything that follows, whenever the regulator morphism or Conjecture
B(X, n) is brought, we tacitly assume this restriction. This is rather unfortunate, since
Weil-étale cohomology was constructed in [2] for any arithmetic scheme, assuming only
Conjecture L€ (X, n). Defining the regulator for singular X,.4,c is an interesting project
for future work.
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3. Vanishing order Conjecture VO(X, n)

Assuming that ¢(X, s) admits a meromorphic continuation around s = n < 0, we make
the following conjecture for the vanishing order at s = n.

Conjecture 3.1. VO(X, n): one has
ords—n {(X.5) = Y (=)' i -tkg Hiy (X. Z(n)).
i€Z

We note that the right-hand side makes sense under Conjecture L€ (X, n), which
implies that H{V (X, Z(n)) are finitely generated groups, trivial for || > 0; see [2, Propo-
sition 7.12].

Remark 3.2. Conjecture VO(X, n) is similar to [11, Conjecture 5.11]. If X is proper
and regular, then VO(X, n) is the same as Flach and Morin’s vanishing order conjecture.
Indeed, the latter is

ords—p {(X.5) = Y _(=1)' i -dimg H, .(X.R(n)). (3.1)
i€Z

where
RTuc(X,R(n)) := RT(X,R(n)) ® RT(X,R(n))[-1].

Moreover, [11, Proposition 4.14], gives a distinguished triangle
RT4r(Xr/R)/ Fil"[~2] = RTuc(X,R(n))
— RTy(X.Z(n)) ® R
— RT4r(Xr/R)/Fil*[-1].

So, in case of n < 0 we have RI'. . (X, I@(n)) >~ RTw.(X,Z(n)) ® R and (3.1) is exactly
Conjecture VO(X, n).

Remark 3.3. The alternating sum in Conjecture VO(X, n) is the so-called secondary
Euler characteristic

X (RUw(X. Z(n))) 1= D (=) -i -tkg H, (X. Z(n)).
i€Z

The calculations below show that the usual Euler characteristic of Ry (X, Z(n)) van-
ishes, assuming Conjectures L€ (X, n) and B(X, n). See [41] for more details on the
secondary Euler characteristic and its occurrences in nature.

Under the regulator conjecture, our vanishing order formula takes the form of the
usual Euler characteristic of equivariant cohomology RT.(GRr, X(C), R(n)) or motivic
cohomology RT' (X4, Z€ (n))[1].
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Proposition 3.4. Assuming L¢(X4, n) and B(X, n), Conjecture VO(X, n) is equivalent
to

ords=n §(X,5) = x(RT(Gr, X(C),R(n)))
= 3" (1) dimg H] (X(C),R(n)) "
i€Z
= —x(RT(Xe. Z°(n))) = Y (1) tkg H' (X Z°(n)).
i€Z

Moreover, we have

1(RTwe(X. Z(n))) = 0.

Proof. Thanks to [2, Proposition 7.13], the Weil-étale complex tensored with R splits as
RTy(X.R(n)) = RHom (RF(Xé,, Z¢(n)),R)[—1] & RT, (GR, X(C),R(n))[-1].
Assuming Conjecture B(X, ), we also have a quasi-isomorphism
RT. (GR, X(C), R(n)) [-1] = RHom (RF(Xé,, Z° (n)), ]R),
so that
dimg Hj, (X,R(n)) = dimg H:™'(X(C), R(n))°® + dimg H!72(X(C),R(n)) .
Thus, we can rewrite the sum

D (=1 ierkg Hy (X Z(n)) = Y (1) -i - dimg H};(X.R(n))

i€Z i€Z
= (1) -i -dimp HI1(X(C). R(n))°*
i€Z
+ 3 (1) i - dimg HI72(X(C). R(n))°®
i€Z

= = (= 1)’ dimp H:'(X(C),R(n)) "
i€Z

= x(RT.(Gr, X(C),R(n))).

Similarly,

> =1y i -rkg Hi (X.Z(n)) = x(RHom (RT (X4, Z¢(n)). R)[1])
i€Z
= —x(RT (Xa, Z¢ (n))).

These considerations also show that the usual Euler characteristic of RT'y.(X, Z(n)) van-
ishes. ]
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Remark 3.5. Conjecture VO(X, n) is related to a conjecture of Soulé [45, Conjecture 2.2],
which originally reads in terms of K’-theory

ordg—p {(X,8) = Y (=1 dimg K} (X))
i€Z
As explained in [24, Remark 43], this can be rewritten in terms of Borel-Moore motivic
homology as

> (=1t dimg HEM (X, Q(n)).

i€Z
In our setting, H' (X, Z¢(n)) plays the role of Borel-Moore homology, which explains
the formula

ords=n £(X.5) = Y _(=1)"*'tkg H' (Xa. Z° (n)).
i€Z
Remark 3.6 ([11, Proposition 5.13]). As for the formula
ordy—y £(X,5) = Y (~1)" dimg H](X(C).R(n))°®
i€Z

it essentially means that the vanishing order at s = n < 0 comes from the archimedian I'-
factor appearing in the (hypothetical) functional equation, as explained in [43, Sections 3
and 4] (see also [12, Section 4]).

Indeed, under the assumption that X¢ is a smooth projective variety, we consider the
Hodge decomposition

H'(X(C).C)= @ H"".

ptrq=i

which carries an action of Ggr = {id, o} such that c(H?9) = H%?. We set h?9 =
dim¢c HP?4. For p = i/2 we consider the eigenspace decomposition

HP? = P+ oy HP,—,
where

HPT = {x e H?? | o(x) = (=1)?x},
H?~ ={x e HP? |o(x) = (-1)?*'x},

and set h?** = dim¢ HP* accordingly. The completed zeta function

L(X.5) = £(X.9) {(Xoo. 5)

is expected to satisfy a functional equation of the form

AT X, d —5) = A3L(K,s).
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Here
é‘(XOO7 S) = 1_[ LOO(Hl (X), S)(—l)z ,
i€Z
Loo(H'(X).5) = [] TrGs =" TrGs—p+ D" [] Tets-p"™.
p=i/2 ptq=i

p<q
Tr(s) = 77%/?T'(s/2), Tc(s) = @r)~*T(s).

Therefore, the expected vanishing order at s = n < 0 is
ords—, {(X,5) = —ords=p {(Xoo, 5)
=D (=D ordy=y Loo(H'(X). 5)

i€Z
=S (X AT Y ),
i€Z p=i/2 pH+q=i

p<q

The last equality follows from the fact that I'(s) has simple poles at all s = n < 0. We
have
. i GRr . i o=(-1)"
dimg H (X((C),R(n)) = dimg H (X(C),]R)
— dime H'(X(C),C)"~"
= Z PO Z QP
p=i/2 p+q=i

p=q

Here the terms 47 with p < ¢ come from o (HP9) = H%?, while h?"Y""" come from
the action on H?-?. We see that our conjectural formula recovers the expected vanishing
order.

Let us look at some particular examples when the meromorphic continuation for
C(X,s) is known.

Example 3.7. Suppose that X = Spec OF is the spectrum of the ring of integers of a
number field F/Q. Let r; be the number of real embeddings F' < R and r;, be the number
of conjugate pairs of complex embeddings F < C. The space X(C) with the action of
complex conjugation can be visualized as follows:

0 G

r1 points 2r, points
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The complex RI':(X(C), R(n)) consists of a single Gg-module in degree 0 given by
R(n)®" & (R(n) & R(n))®",

with the action of Gg on the first summand R (7)®"! via the complex conjugation and the
action on the second summand (R(n) @ R(1))®"2 via (x, y) — (7, X). The corresponding
real space of fixed points has dimension

72, n odd,

dimg H?(Gr, X(C).R(n)) = {
ry +rp, neven,

which indeed coincides with the vanishing order of the Dedekind zeta function { (X, s) =
(r(s)ats =n <O.

On the motivic cohomology side, for n < 0 the groups H (X, Z(n)) are finite,
except fori = —1, where by [19, Proposition 4.14]

ra, n odd,

rkZ H_I(Xét’ Zc(n)) = {r + r n even
1 25 :

Example 3.8. Suppose that X is a variety over a finite field IF,;. Then the vanishing order
conjecture is not very interesting, because the formula yields

ords—y {(X.5) = Y _(~1)" dimp H(X(C),R(n))
1€Z
=Y (=)t rkg H (Xa. 2 (n)) =0,
i€Z

since X(C) = @, and also because L (X4, n) implies rkz H (X, Z¢(n)) = 0 for all i in
the case of varieties over finite fields, as observed in [2, Proposition 4.2]. Therefore, the
conjecture simply asserts that ¢ (X, s) has no zeros or poles at s = n < 0. This is indeed
the case. We have {(X,s) = Z(X,q~*), where

Z(X,t) = exp(zwtk)

k>1

is the Hasse—Weil zeta function. According to Deligne’s work on Weil’s conjectures [8],
the zeros and poles of Z (X, s) satisfy |s| = q_w/z, where 0 < w < 2dim X (see, e.g., [26,
pp- 26-27]). In particular, ¢~ for s = n < 0 is neither a zero nor a pole of Z(X, s).

We also note that our definition of HviVE(X , Z.(n)), and pretty much everything said
above, only makes sense for n < 0. Already for n = 0, for example, the zeta function of a
smooth projective curve X /I, has a simple pole at s = 0.

Example 3.9. Let X = E be an integral model of an elliptic curve over Q. Then, as
a consequence of the modularity theorem (Wiles—Breuil-Conrad—Diamond-Taylor), it is
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known that {(E, s) admits a meromorphic continuation satisfying the functional equation
with the I'-factors discussed in Remark 3.6. In this particular case ords—, {(E,s) = 0 for
all n < 0. This is consistent with the fact that y (R (GRr, E(C),R(n))) = 0.

Indeed, the equivariant cohomology groups H} (E(C), R (1))C® are the following:

i=0 i=1 i=2

n even: R R 0
n odd: 0 R R

—see, for example, the calculation in [44, Lemma A.6].

4. Special value Conjecture C(X, n)

Definition 4.1. We define a morphism of complexes
— 0: RTy,(X,Z(n)) ® R — RTy (X, Z(n))[1] @ R
using the splitting [2, Proposition 7.13]
RTy(X.R(n)) = RHom (RT (X4, Z¢(n)),R)[—1] & RT:(Gr, X(C),R(n))[-1]

as follows:
RTy (X, R(n)) —------ b R > Ry (X, R(n))[1]
RHom (RF (Xé[, Zc (n)), R)[—l] RHom (RF(Xé,, A (n)), R)
o _ Regy, ®
RFC(GR, X((C),]R(n))[—l] RT. (GR, X((C),R(n))

Lemma 4.2. Assuming Conjectures L (X4, n) and B(X, n), the morphism — 6 induces
a long exact sequence of finite-dimensional real vector spaces

oo HIZ(XUR()) =5 HE, (X R(n) —> B (X.R(n) — -+ .

Proof. We obtain a sequence

o ——— HL, (X R(n)) =77~ » HiP' (X, R(n)) —— -+

I I

Hom (H~'"Y(X&,Z(n)).R)  Hom (H""%(Xa, Z¢(n)).R)
® e ®
H!~'(Gg. X(C).R(n)) H}(Gr.X(C).R(n))

IR

The diagonal arrows are isomorphisms according to B(X, n), so the sequence is exact. m
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The Weil-étale complex RI'y.(X,Z(n)) is defined in [2, Section 7] up to a non-unique
isomorphism in the derived category D(Z) via a distinguished triangle

RFWC(X,Z(n)) — Rl'}g(X,Z(n)) Joo, RT, (GR,X((C),Z(n)) — [1]. 4.1

This is rather awkward, and there should be a better, more canonical construction of
RT'w.(X, Z(n)). For our purposes, however, this is not much of a problem, since the
special value conjecture is not formulated in terms of RI'y,.(X, Z(n)), but in terms of its
determinant detz RT'w.(X, Z(n)) (see Appendix 8), which is well defined.

Lemma 4.3. The determinant detz RT'w, (X, Z(n)) is defined up to a canonical isomor-
phism.

Proof. Two different choices for the mapping fiber in (4.1) yield an isomorphism of dis-
tinguished triangles

Ry (X, Z(n)) —— RT%(X,Z(n)) —= RT.(Ggr, X(C), Z(n)) — [1]

" ! b

RTyw (X, Z(n)) —— RTy(X.Z(n)) —= RT.(Ggr.,X(C),Z(n)) — [1].

The idea is to use functoriality of determinants with respect to isomorphisms of distin-
guished triangles (see Appendix 8). The only technical problem is that whenever X (R) #4,
the complexes RIy, (X, Z(n)) and RT'¢(Gr, X(C), Z(n)) are not perfect, but may have
finite 2-torsion in H'(—) for arbitrarily big i (in [2] we called such complexes almost
perfect). On the other hand, the determinants are defined only for perfect complexes. For-
tunately, H'(i%,) is an isomorphism for i > 0 by the boundedness of H}, (X, Z(n)) [2,
Proposition 7.12], so that for m big enough we can take the corresponding canonical trun-
cations T<p:

Tem RTwe(X, Z(n)) — t<m Ry (X, Z(1)) — t<mRTc(GRr, X(C), Z(n)) — [1]

= ! ! =

RTwe(X. Z(n)) —— RTj(X.Z(n)) —=— RT¢(Gg.X(C).Z(n)) —> [1]

| ! ! |

0 ——— tomt+1RT(X. Z()) 5 tom+1RTe(Gr, X(C), Z(n)) — 0

l l |

(1] > [1] > [1] > [2].

The truncations give us (rotating the triangles)

rSmRFC(GR,X((C),Z(n))[—l] — RFWC(X,Z(n)) — rmeng(X,Z(n)) — [0]

! I b

t<m RT¢(Gr, X(C), Z(n))[-1] — RTwc(X,Z(n))" — t<mRT(X, Z(n)) — [0].
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By the functoriality of determinants with respect to isomorphisms of distinguished trian-
gles (see Appendix 8), we have a commutative diagram

detz t<m RT¢(Gr. X(C), Z(n))[-1]
® ;g> detz RTy,(X, Z(n))
detz, T<m RT (X, Z(n))

lid =~ |dety, (f)
detz t<m RTc(Gr, X(C), Z(m)[-1]
® —— detz RTy(X,Z(n))

detz 1< RIp (X, Z(n))
so thatdetz(f) =i’ oi~ L.
Lemma 4.4. The non-canonical splitting
RTy(X,R(n)) = RHom (RT (X4, Z(n)),R)[-1] & RT(Gr. X(C), R(n))[—1]
from [2, Proposition 7.13] yields a canonical isomorphism of determinants

detg RHom (RF (Xé,, Z° (n)), R) [—1]
dﬂgt RFWC(X, R(n)) o~ QR
detg RT, (G]R, X(0), R(I’l)) [—1]
Proof. This is similar to the previous lemma; in fact, after tensoring with R, we obtain

perfect complexes of real vector spaces, so the truncations are no longer needed. By [2,
Proposition 7.4] we have i5, ® R = 0, so there is an isomorphism of triangles

RT.(Gr, X(C),R(n))[-1] —— RI:(Gr, X(C),R(n))[~1]

1l

l RHom (RF(Xé[, z° (n)), R)[—l]
RUye (X, R(n)) --—-L--— ®

l RT:(Gr, X(C),R(n))[-1] (4.2)

1

RT(X.R(n)) —E2% s RHom (RT(Xa, Z¢(n)), R)[~1]
{ {

RT.(Gg, X(C),R(n)) ——%—— RT.(Ggr, X(C),R(n)).

Here the third horizontal arrow comes from the triangle defining RI, (X, Z(n)):
RHom (RT (X, Z (1)), R)[<2] 2 RT,(Xa. Z(n))
— RT,(X.Z(n))
£, RHom (RT (X, Z¢(n)), R)[—1]



17

Weil-étale cohomology and zeta-values of arithmetic schemes at negative integers

tensored with R (see [2, Proposition 5.7]). The distinguished column on the right-hand

side of (4.2) is the direct sum
RT(Gr, X(C),R(n))[-1] 0
J |
RFC(GR, X((C),]R(n))[—l] @® RHom (RF(Xét, Zc(n)), ]R)[—l]
| i
RHom (RF(Xé,, Zc(n)), R)[—l]

! |

RT.(Gr, X(C),R(n))
The splitting isomorphism f in (4.2) is not canonical at all. However, after taking the

determinants, we obtain a commutative diagram (see Appendix 8)

detr RT'w (X, R(n))

detg RT¢(Gg. X(C),R(n))[-1] .
®R +>
detg erg(X, R(n)) PPt
;lid@}dem oR) ///,; ngelR(f)
-
RHom (RT (X4, Z€ (n)), R) [—1])
@ .

/

~

detg RT¢(GRr, X(C), R(n))[~1]
detg (
RT¢(GR, X(C),R(m))[-1]

®R
detg RHom (RT' (X4, Z¢ (n)), R)[-1]
The dashed diagonal arrow is the desired canonical isomorphism.
Definition 4.5. Given an arithmetic scheme X and n < 0, assume Conjectures L€ (X, 1)

and B(X, n). Consider the quasi-isomorphism
RHom (RF(Xé,, z° (n)), ]R) [—1]

RT(Gr. X(C). R)[=2]\ Regy [~1j0ia
@ — b
RT. (Ga, X(©), R) (1] = RT(Gr, X(C),R(n))[~1]
T ROy (X.R(n). (4.3)

Rv

[

Note that the first complex has determinant
detgr RI', (GR, X((C), ]R(n))

RT,(Gg, X(C), R(n))[-2]
o) QR
(detg RT(Gr. X(C). R(n))) "

dﬂgt
RT. (GR, X(C), R(n))[—l]
and for the last complex in (4.3), by the compatibility with base change, we have a canon-

[

ical isomorphism
dﬂgtRFW,C(X,IR{(n)) ~ (dg,tRI‘WC(X, Z(n))) ® R.
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Therefore, after taking the determinants, the quasi-isomorphism (4.3) induces a canonical
isomorphism
A=AxnR> (dZetRFWC(X, Z(n))) ® R. 4.4)

Remark 4.6. An equivalent way to define A is
= - v
AR det Hy, (X, R
= @Z)( let Hyy(X. R(n)))

(® (det Hy, (X, Z(n)))(_”") ® R

i€Z

= (det RTye(X. Z(n)) ® R.

L

where the first isomorphism comes from Lemma 4.2.

At this point, we are ready to state the main conjecture of this paper. The determinant
detz RT'w,.(X,Z(n)) is a free Z-module of rank 1, and the isomorphism (4.4) canonically
embeds it in R. We conjecture that this embedding gives the special value of (X, s) at
s = n in the following sense.

Conjecture 4.7. C(X,n): let X be an arithmetic scheme and n < 0 a strictly negative
integer. Assuming Conjectures L (X4, n), B(X, n) and the meromorphic continuation of
(X, s) around s = n < 0, the corresponding special value is determined up to sign by

A Xxn)™h) -z = dgthW,C(X, Z(n)),

where A is the canonical isomorphism (4.4).

Remark 4.8. This conjecture is similar to [11, Conjecture 5.12]. When X is proper and
regular, the above conjecture is the same as the special value conjecture of Flach and
Morin, which for n € Z reads

Aoo(C*(X,n)™' - C(X,n) - Z) = AX/Z,n). (4.5)
Here the fundamental line A(X/Z, n) is defined via

AX/Z,n) := dzf;:tRI‘W,C(X, Z(n)) ® dZetRFdR(X/Z)/ Fil” .

If n <0, then A(X/Z,n) = detz RTy.(X, Z(n)). Moreover, C(X,n) in (4.5) is a ratio-
nal number, defined via ]_[p lep(X, n)|p. Here ¢, (X, n) € Q,/Z are the local factors
described in [11, Section 5.4], but [11, Proposition 5.8] states that if n <0, then ¢, (X, n) =
1 (mod Z;) for all p. Therefore, C(X,n) = 1 in our situation. Finally, the trivialization
isomorphism A is defined exactly as our A. Therefore, (4.5) for n < 0 agrees with Con-
jecture C(X, n).

Flach and Morin prove that their conjecture is consistent with the Tamagawa number
conjecture of Bloch—Kato—Fontaine—Perrin-Riou [13]; see [ 11, Section 5.6] for the details.
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Remark 4.9. Some canonical isomorphisms of determinants involve multiplication by
+1, so it is no surprise that the resulting conjecture is stated up to sign £1. This is not a
major problem, however, since the sign can be recovered from the (conjectural) functional
equation.

5. Case of varieties over finite fields

For varieties over finite fields, our special value conjecture corresponds to the conjectures
studied by Geisser in [15-17].

Proposition 5.1. Assume X /F, is a variety over a finite field. Then under the assumption
L¢ (X4, n), the special value conjecture C(X, n) is equivalent to

¢ (Xon) = £ [ |Hi (X, Zm)|© D’

i€Z

= £ [T (X 2°m))| 7
i€Z

= + [T |HE (Xar Zm)) |7 (5.1)
i€Z

where Hf (X, Z(n)) are Geisser’s arithmetic homology groups defined in [17].
Proof. Assuming L€ (X4, n), we have, thanks to [2, Proposition 7.7]
H}, (X, Z(n)) = Hom (H* (X4, Z¢ (n)),Q/Z) = Hom (Hf_, (X, Z(n)), Q/Z).

The cohomology groups involved are finite and vanish for |i| > 0 by [2, Proposition 4.2],
and by Lemma 8.5 the determinant is given by

dety, RFWC(X, Z(n)) C detyg RFWC(X, Z(n)) ®Q
H |

1

A C Q
where

m =TT | Hie (X Zm)| T "
ieZ

Remark 5.2. Formulas like (5.1) were proposed by Lichtenbaum early on in [33].

Theorem 5.3. Let X/, be a variety over a finite field satisfying Conjecture L (X4, n)
forn < 0. Then Conjecture C(X, n) holds.

We note that (5.1) is equivalent to the special value formula that appears in [17, The-
orem 4.5]. Conjecture Py(X) in the statement of [17, Theorem 4.5] is implied by our
Conjecture L€ (X4, n) thanks to [17, Proposition 4.1]. Geisser’s proof eventually reduces
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to Milne’s work [38], but for our case of s = n < 0, the situation is simpler, and we
can give a direct explanation, using earlier results of Bdyer and Neukirch [1] concerning
Grothendieck’s trace formula.

Proof. By the previous proposition, the conjecture reduces to
. —l)i
¢Xon) = [[|H (Xan Z° )|
ieZ
By duality [2, Theorem I]
|H> 7 (Xe, Z€ ()| = |HE (X e, Z(n))

)

where

e 11— nr_11 -— : ®np__
Z(n) := P Qe/Ze()[-1] := P u-1] == P lim p" [-1],
{#p L#p t#Ep T

and p is the characteristic of the base field. Now HZ (X4, Q¢(n)) = 0 for n < 0, and
therefore H: (X4, Z¢(n)) = H: ™Y (X4, Q¢/Z¢(n)). This means that our formula can be

written as Ciy

. —1)i
cX.ny=[]]]H:(Xa Ze)| (5.2)

L#pi€Z
Grothendieck’s trace formula (see [21] or [7, Rapport]) reads

R _1)i+1
Z(X.1) = [[det(1 —¢F | HX(X, Q)"
i€Z
where X 1= X XSpecTF, ]Fq and F is the Frobenius acting on H, C’ ()? , Q). Substituting
t=q7",
(_1)i+1

((X.n) = []det(1—¢™"F | H(X.Qp)

i€Z
Then, by the proof of [1, Theorem 3.1], for each £ # p, we obtain
. (_1)i+1
cX,m], = [T [HAX. Ze))| : (5.3)

i€Z
On the other hand, for n < 0 we have
L(X.m)|, = 1. (5.4

This fact can be justified, without assuming that X is smooth or projective, e.g., using
Kedlaya’s trace formula for rigid cohomology [27, p. 1446], which gives

Z(X.0) =[PV, where Pi(r) € Z[r] and P;(0) = 1.
i
In particular, P;(¢™") = 1 (mod p).
The product formula recovers from (5.3) and (5.4) our special value formula (5.2). m

Remark 5.4. The fact that |{(X,n)|, = 1, as observed in the argument above, explains
why our Weil-étale cohomology ignores the p-primary part in some sense.
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Let us consider a few examples to see how the special value conjecture works over
finite fields.

Example 5.5. If X = SpecFy, then {(X,s5) = 1_—;,S. In this case for n < 0 we obtain

. Z/(qg™"=1), i=1,
H'(SpecFy u, Z¢(n)) = {0/(q ) i 4 (5.5)

(see, for example, [19, Example 4.2]). Therefore, formula (5.1) indeed recovers ¢ (X, n)
up to sign.
Similarly, if we replace Spec I, with Spec IFym, considered as a variety over IF,, then
¢(SpecFgm,s) = {(SpecF,, ms), and (5.5) also changes accordingly.
Example 5.6. Consider X = P]éq /(0 ~ 1), or equivalently, a nodal cubic. The zeta func-
tion is {(X, ) = Tll_s. We can calculate the groups H' (X, Z¢(n)) using the blowup
square
SpecF, U SpecFy —— ]P’]%q
L
SpecFy ——— X.
This is similar to [16, Section 8, Example 2]. Geisser uses the eh-topology and long exact

sequences associated to abstract blowup squares [16, Proposition 3.2]. In our case the
same reasoning works, because by [2, Theorem I], one has

H' (X4, Z(n)) = Hom (H> ™ (X4, Z(n)), Q/Z),

where Z(n) = h_rr)1 " u&n[—1], and étale cohomology and eh-cohomology coincide for
such sheaves by [16, Theorem 3.6].
Using the projective bundle formula, we calculate from (5.5)

Z/(g'™—=1), i=-1,

H'(Pg, 4 Z°(n) = Y Z/(g" = 1), i=+1,
: .y

(=}

By the argument from [16, Section 8, Example 2], the short exact sequences
0— Hi(P]%q’ét,Zc(n)) — H'(Xa,Z(n)) — H'T'((SpecFy)a, Z¢(n)) — 0

give
L)@ =1, i=-1,
H' (X Z0)) = Y Z/(g" = 1), i=0,1,
0, otherwise.

The formula (5.1) gives the correct value ¢ (X, n).
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Example 5.7. In general, if X/F, is a curve, then Conjecture L¢(X, n) holds; see
for example [19, Proposition 4.3]. The cohomology H' (X, Z¢(n)) is concentrated in
degrees —1, 0, +1 by duality [2, Theorem I] and the reasons of cohomological dimension,
and the special value formula is

[0 (X 2 (n) |

*X, =4 .
SO = T, 2 ) [H (X 26 G)]

6. Compatibility with operations on schemes

The following basic properties follow from the definition of ¢ (X, s) (formula (1.1)).

(1) Disjoint unions:if X =1, <i<r Xi 1s a finite disjoint union of arithmetic schemes,
then

(X9 = ] ¢xivs). 6.1)

1<i<r
In particular,

ordy=n £(X.5) = ) ords=n {(Xi.5),

1<i<r

¢*(X,n) = 1—[ ¢ (Xi,n).

1<i<r

(2) Closed-open decompositions: if Z C X is a closed subscheme and U = X \ Z is
its open complement, then we say that we have a closed-open decomposition and
write Z > X <= U. In this case

{(X.5) = §(Z.5) - ¢ (U.s). 6.2)
In particular,
ordy—y L(X,5) = ords—y (Z, 5) + ordy— £ (U, 5),
¢*(X.n) = £5(Z.n) - £*(U.n).

(3) Affine bundles: for any r > 0 the zeta function of the relative affine space A}, =
A7 x X satisfies

LAY, s) =C(X,s—T). (6.3)
In particular,
ords=p é‘(AS(v §) = ordg=p—r é‘(X7 s),
I*(Ay.n) =" (X,n—r).

This suggests that Conjectures VO(X, n) and C(X, n) should also satisfy the corre-
sponding compatibilities. We verify in this section that this is indeed the case.
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Lemma 6.1. Letn < 0.
) IfX = ]_[lﬁisr X; is a finite disjoint union of arithmetic schemes, then
L (X4, n) < L(X, 4, n) foralli.
(2) For a closed-open decomposition Z 4~ X <= U, if two of the three conjectures
L°(Xg,n), LY(Zg,n), L°(Ugk n)

are true, then the third is also true.

(3) For an arithmetic scheme X and any r > 0, one has
LE(Ay 4 n) <= L (Xa,n — ).
Proof. See the proof of [39, Proposition 5.10]. ]
Lemma 6.2. Letn < 0.

) IfX = ]-Ilsisr X; is a finite disjoint union of arithmetic schemes, then

Regy , = @ Regy, »:

1<i<r
@ Rr(XiaRm) — €@ RTpu(Gr. X:(C).Rm)[L].
I<i=r i<i<r

In particular,
B(X,n) <= B(X;,n) foralli.

(2) For a closed-open decomposition of arithmetic schemes Z 4> X <= U, the cor-
responding regulators give a morphism of distinguished triangles

RT(Z 4 RE(n)) _ Reezn RTsy(Gr. Z(C), R(n))[1]

| |

RT (Xer, RE (1)) — "5 RTpys(Gr, X(C), R(m)[1]

| |

RT (Uss RE (1)) ——2 5 RTpyy(G, U(C), R(m))[1]

| |

c REgZ,n[l]
RT(Zg. RE(n))[1] —=" RTpy(Gr. Z(C).R(n))[2].
In particular, if two of the three conjectures
B(X,n), B(Z,n), B(U,n)

are true, then the third is also true.
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(3) Foranyr > 0, the diagram

RT (Xg. R¢(n —r))[2r] ———=—— RT (A} . R°(n))

J/RegX,n—r lRegA)'( n

RTpy(Gr. X(C).R(n —r))[2r] —== RTpy(Gr.A%(C).R(n))
commutes. In particular, one has
B(A%,n) <= B(X,n —r).

Proof. Part (1) is clear because all cohomologies that enter the definition of Regy , decom-
pose into direct sums over i = 1,...,r. Parts (2) and (3) boil down to the corresponding
functoriality properties for the KLM morphism (2.1), namely that it commutes with proper
pushforwards and flat pullbacks by [47, Lemmas 3 and 4]. For closed-open decomposi-
tions, the distinguished triangle

RT(Z 4, R¢(n)) - RT (X4, R¢(n)) = RT(Us, R(n)) = RT(Za, R¢(n))[1]

comes exactly from the proper pushforward along Z < X and flat pullback along U «— X
(see [18, Corollary 7.2] and [4, Section 3]). Similarly, the quasi-isomorphism

RT(Xe. RE(n —r))[2r] = RF(A;MI, R¢(n))
results from the flat pullback along p: A} — X. ]

Proposition 6.3. For each arithmetic scheme X below and n < 0, assume L¢(X4, n),
B(X, n), and the meromorphic continuation of (X, s) around s = n.

) IfX = L[lsiﬁr X; is a finite disjoint union of arithmetic schemes, then
VO(X,n) <= VO(X;,n) foralli.

(2) For a closed-open decomposition Z 4> X <= U, if two of the three conjectures
VO(X,n), VO(Z,n), VO(U,n)

are true, then the third is also true.

(3) Foranyr > 0, one has
VO(AY,n) < VO(X,n —r).

Proof. We have already observed in Proposition 3.4 that under Conjecture B(X, n) we
can rewrite VO(X, n) as

ordg—p £(X.s) = x(RTe(Gr. X(C),R(n))).
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In part (1), we have

ords=n £(X.5) = ) ords=n {(Xi.5),

1<i<r

and for the corresponding Gr-equivariant cohomology,

RT(Gr. X(C),R(n)) = €P RTc(Gr.X(C).R(n)).

1<i<r

The statement follows from the additivity of the Euler characteristic:

ords=, { (X, 5) VO(Xn)

YiVO(X;,n)
Doi<i<r O1ds=p (X, 8) =———

x(RT¢(Gr. X(C),R(n)))

Y i<i<r X(RTc(GR, Xi(C),R(n))).
Similarly in part (2), we can consider the distinguished triangle
RT:(Gr,U(C),R(n)) - RI:(Gr. X(C),R(n))
— RT¢(Gr, Z(C),R(n))
— RT(Gr.U(C),R(m)[1]

and the additivity of the Euler characteristic gives

ords—y £(X.5) =222 y(RT(Gr. X(C). R(n)))

ordy—y £(Z.5) =2E2= y(RT,(Gr. Z(C). R(n)))
+ +
ords—y £(U. s) =222 (RT(Gr. U(C), R(n))).

Finally, in part (3), we assume for simplicity that X¢ is connected of dimension dc.
Then the Poincaré duality and homotopy invariance of the usual cohomology without
compact support give us

RT(Ggr,A™(C) x X(C),R(n))

PD.
=~ RHom (RT(Gr,A"(C) x X(C),R(dc +r —n)),R)[-2dc —2r]

T
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RHom (RT(Gr, X(C),R(dc + r —n)),R)[-2dc — 2r]

=~ RT:(Gr.X(C),R(n —r))[-2r].

I}
o
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The twist [-2r] is even and therefore has no effect on the Euler characteristic, so that we
obtain

ords_p, L(AL ., 5) Bk X(RT(Gr, A™(C) x X(C), R(n)))

ords—p_r L(X.5) =2E2D 5 (RT (GR. X(C). R(n — r))). »

Our next goal is to prove similar compatibilities for Conjecture C(X, n), as was just
done for VO(X, n). We split the proof into three technical Lemmas 6.4, 6.5, 6.7, each for
the corresponding compatibility.

Lemma 6.4. Letn < 0 and let X = Ulsisr X; be a finite disjoint union of arithmetic
schemes. Assume L€ (X4, n) and B(X, n). Then there is a quasi-isomorphism of complexes

D RTw.(Xi.Z(n)) = RTy(X. Z(n)). (6.4)
1<i<r

which after taking the determinants gives a commutative diagram

X1 Q- @Xp>X1 Xy

R®r---Qr R = s R

%J/)-Xl,n ®"'®AX,,n g\[A'X,n (6.5)
Q) 1<i<r (detz RTywe(Xi, Z(n))) ® R —=— (detz RTy.(X;.Z(n))) ® R.

Proof. For X = [],.;-, Xi, all cohomologies in our construction of RI'w (X, Z(n))
in [2] decompose into the corresponding direct sum overi = 1,...,r, and (6.4) follows.
After tensoring with R, we obtain a commutative diagram

RT(Gr. Xi(C).RM)[-2]\ ~  RT(Gr.X(C).R(n)[-2]
D ® — ®
RT(Gr. X;(C),R(n))[-1] RT(Gr. X(C),R(n))[-1]
glEB,- Regy ,[—1]®id gkeg}’" [—1]eid
RHom (RF(XM,, Zc(n)), R)[—l] RHom (RI‘(Xé,, Zc(n)), R) [—1]
D D = ®
RT¢(Gr. Xi(C),R(n))[-1] RT:(Gr. X(C).R(n))[-1]

glsplit ;’lsplit

@D, RTw.(Xi. R(n)) > RTy(X,R(n)).

IR

Taking the determinants, we obtain (6.5). ]
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Lemma 6.5. Letn < 0 and let Z > X <= U be a closed-open decomposition of arith-
metic schemes, such that the conjectures

LC(Uél’n)a Lc(Xétan)7 Lc(Zétvn)a
B(U,n), B(X,n), B(Zs,n)

hold (it suffices to assume two of the three conjectures thanks to Lemmas 6.1 and 6.2).
Then there is an isomorphism of determinants

det RTy, (U, Z(n)) ® det RTy(Z,Z(n)) = det RTy, (X, Z(n)) (6.6)

making the following diagram commute up to signs:

R SR R XQy=>xy s R
= Aun®izn
l = 6.7)
(detz RTw (U, Z(n))) ® R ©
®R —=— (detz RTy.(X.Z(n))) ® R.

(detz RI‘WC(Z, Z(n))) R
Proof. A closed-open decomposition Z ¥ X <— U induces the distinguished triangles

RT(Zg, Z¢ (n)) —— RT(Xa. Z€(n)) ——— RT(Ug. 2 (n)) — [1]
RT¢(Us, Z(n)) —— RT¢(Xea. Z(n)) ——— RTc(Ze, Z(n)) — [1]

RFC(GR,U((C),R(n)) — RFC(GR,X((C),]R(n)) — RFC(GR,Z((C),]R(n)) — [1].

The first triangle is [18, Corollary 7.2] and it means that RI'(—, Z¢(n)) behaves like
Borel-Moore homology. The following two are the usual triangles for cohomology with
compact support. These fit together in a commutative diagram shown in Figure 1. Figure 2
shows the same diagram tensored with R.

In this diagram we start from the morphism of triangles (xy ., @x,n, ®z,») and then
take the corresponding cones RIy(—, Z(n)). By [2, Proposition 5.6], these cones are
defined up to a unique isomorphism in the derived category D(Z), and the same argument
shows that the induced morphisms of complexes

RTy,(U, Z(n)) — RTy(X, Z(n)) — RYy(Z, Z(n)) — RIy (U, Z(n))[1] (6.8)

are also well defined (see [2, Corollary A.3]). A priori, (6.8) need not be a distinguished
triangle, but we claim that it induces a long exact sequence in cohomology.
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RTy (U, Z(n))

N\

RHom(RT (U, Z¢ (1)), Q[—2]) —22% RTu(Us Z(n)) —————— RT(U,Z(n) —— ---[~1]

RT:(Gr,U(C),Z(n)) A RTw(X,Z(n))

I
I
I
N < <+

RHom(RT (X&, Z¢ (n)), Q[-2]) ﬂ) RT: (X4, Z(n)) — RT(X,Z(n)) — ---[-1]

~

N\

Uoo loo
<~

|

I
RT.(Gr,X(C),Z(n)) |31 RTw.(Z,Z(n)

|

)

N\

~ ~ ~-

RHom(RT(Z4, Z¢ (n)), Q[-2]) ﬂ) RT(Z &, Z(n)) — RIW(Z,Z(n)) — ---[-1]

Uoo loo
<~

|
I
RT.(GRr, Z(C), Z(n)) 131 RTy (U, Z(m)[1]
|
)

~

N\

~ ~ ~-

nl1 g
RHom(RT (Us, Z¢ (1)), Q[—1]) au’—>[] RT(Us, Z(n))[1] —— | —> RTw(U,Z(n)[1] — ---[0]

w i wy

RTc(Gr,U(C), Z(n))[1].

~

Figure 1. Diagram induced by a closed-open decomposition Z > X <= U.

To this end, note that tensoring the diagram with Z/mZ gives us an isomorphism

RT (U, Z/mZ(n)) — RT¢(Xa, Z/mZ(n)) — RTc(Zg. Z/mZ(n)) — [1]

= = e E

RTy,(U. Z(n)) RTy (X, Z(n)) RTy(Z.Z(n))
L — L — L — [1].
7./ mZ 7./mZ 7./ mZ

More generally, for each prime p we can take the corresponding derived p-adic comple-
tions (see [3] and [46, Tag 091N])

Ry (= Z(n), = Rlim (RTy(— Z(n)) ®" Z/p*Z),
k

which give us a distinguished triangle for each prime p

RT(U, Z(n)); — RT4(X, Z(n)); — RTy(Z, Z(n)); — RT,(U, Z(n));[l].
At the level of cohomology, there are natural isomorphisms [46, Tag 0A06]
H'(RTy (=, Z(n)))) = Hfy(—, Z(n)) ® Zy.
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RHom(RT (Uy, Z¢ (n)),R[~2]) —F 0 ———— RT,(U,R(n)) —>

N

RT:(Gg,U(C),R(m)); 31 RTw(X,R(n))

~

RHom(RT (X,

~

RHom(RT(Z4,

»

~

»

Z¢(n),R[-2)) —

N

N

L

Z¢(n),R[-2]) —> 0 —

.

0o —

.

N

RHom(RT (Ug, Z€ (n)), R[-1]) —> 0 ——

A\

v

rd

e

RTyw:(U,R(n))

/

|

|

|
~

)

L

>~

|
~

L

RT:(Gr, U(C),R(m)[1].

—— RIL(X.R(n) —>

»

RT(Gr, X(C),R(n)); 3! RTy(Z,R(n))

»

RT:(Gr, Z(C),R(n))| 3IRTw, (U, R(m))[1]

RHom(RT (Uy, Z¢ (n)), R[—-1])

~

RHom(RT (X4, Z¢ (1)), R[—1])

~

— RI%,(Z,R(n)) —> RHom(RT(Z4,Z°(n)),R[—1])

~

— RTL(U,R@m)[1] —= RHom(RT(Us, Z* (n)), R)

Figure 2. Diagram induced by a closed-open decomposition Z & X < U, tensored with R.

In particular, for each p there is a long exact sequence of cohomology groups

coo > HL(U.Z(n)) ® Zp, — H}(X.Z(n)) ® L, — H}(Z.Z(n)) ® Ly
— Hf2+1(U,Z(n)) Ly — -+

induced by (6.8). By finite generation of Hf; (=, Z(n)) and flatness of Z, this implies that

the sequence

coo = H (U, Z(n)) — Hi (X, Z(n)) — Hi(Z,Z(n)) - HFY(U, Z(n)) — -+ (6.9)

is exact.

Now we consider the diagram

T<mRT¢(Gr.U(C). Z(n))[-1] — RTw(U.Z(n)) — t<mRT4(U. Z(n)) — [0]

!

! |

t<mRT¢(GRr. X(C). Z(n))[-1] — RTwc(X.Z(n)) — t<mRT%(X,Z(n)) — [0]

!

l |

t<mRT¢(GRr, Z(C), Z(n))[-1] — RTwc(Z,Z(n)) — t<mRTy(Z, Z(n)) — [0]

!

! l

t<m RT¢(GR, U(C), Z(n)) — RTyc(U, Z(m)[1] — t<m RT (U, Z(m))[1] — [1].



A. Beshenov 30

Here we took truncations for m big enough, as in the proof of Lemma 4.3. There are
canonical isomorphisms

detz (t<m RT¢(Gr, U(C), Z(n))[1])
dZetRFWC(U,Z(n)) ~ ®
dety, (ISmRng(U, Z(n)))
detz (t<m RT¢(Gr. X(C). Z(n))[~1])
®
detz, (t<m RTy(X, Z(n))),
detz (t<m RT¢(GRr, Z(C), Z(m))[-1])
®
detz (t<m Ry (Z, Z(n))),
detz (t<m RT:(Gr, U(C), Z(n)))
®
detz, (rSmRFc (GR, Z(C), Z(n))),
dety, (rSmRng (U, Z(n)))
dZet (tSmRng(X,Z(n))) s ®
detz (t<m RTp(Z. Z(n))).
The first four isomorphisms arise from the corresponding distinguished triangles, while
the last isomorphism comes from the long exact sequence (6.9), which gives an isomor-
phism

& (det HE(U.200) T @ det H, (X, Z)

i<m

I

dgt RTy. (X, Z(n))

12

det RTy(Z, Z(n))

I

dgt (l’ngFc (G]R, X(C), Z(”)))

O @ deni(z.zm) ) 2 2.

We can rearrange the terms (at the expense of introducing a 1 sign), to obtain
det (t<m Ry (X, Z(n))) = ® det H(X.Z(n))
I1<m
= Q) det H, (U. Z(n) ® Q) det Hi,(Z. Z(n))
i<m i<m
= dgt (t<m RT3 (U. Z(n))) ® dgt (t<m RT3 (Z, Z(n))).
All this gives us the desired isomorphism of integral determinants (6.6).
Let us now consider the diagram with distinguished rows in Figure 3. Here the three

squares with the regulators involved commute thanks to Lemma 6.2. Taking the determi-
nants, we obtain (6.7), by the compatibility with distinguished triangles. ]

Remark 6.6. Morally, we expect that a closed-open decomposition induces a distin-
guished triangle of the form

RTy, (U, Z(n)) - RTw(X,Z(n)) - RTw(Z,Z(n)) — [1]. (6.10)

However, RT'y,.(X, Z(n)) is defined in [2] as a mapping fiber of a morphism in D(Z), so
it is not quite functorial.
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RTc(GR,U(C), R()[-2] RTc(GR, X(C), R(n)[-2] RTc(GR, Z(C), R(n))[-2] RTc(GR,U(C), R(m)[-1]
@ — @ — ® — @
RTc(GR,U(C), R(m)[-1] RTc(GR, X(C), R(m)[-1] RT¢(GR, Z(CT), R(m)[-1] RTc¢(GR,U(C),R(n))
;lReg\é,n [—1]®id ;lReg)\an [-1]®id gleg%’n [~1]®id ;lReg\é,n ®id
RHom(RT (Ug, Z€ (n)), R)[-1] RHom(RT (X4, Z€ (n)), R)[-1] RHom(RT(Z g, Z€ (n)), R)[-1] RHom(RT (Ug, Z€ (n)), R)
@ — @ — ® — @
RT¢ (GR,U(C), R(m)[-1] RT¢ (G, X(C), R(m)[-1] RTc (G, Z(C),R(m)[-1] RTc(GR,U(C),R(n))

glsplit glsplit ;lsplit glsplit

RTy(U,R(n)) E—— RTy (X, R(n)) EEE— RTy(Z,R(n)) e RTy (U, Rm)[1].

Figure 3. Diagram induced by a closed-open decomposition Z > X <= U.

We recall that in the usual derived (1-)category D(+), taking naively a “cone of a
morphism of distinguished triangles”

A B* Cc* A°[1]

Ao/ B./ CO/ A./[l]

A -3 B -5 C* --> Ao//[l]
| | L9

usually does not yield a distinguished triangle A*” — B*” — C*” — A*"[1]. For a thor-
ough discussion of this problem, see [40].

For lack of a better definition for RT'w.(X, Z(n)), we constructed the isomorphism
(6.6) ad hoc, without the hypothetical triangle (6.10).

Lemma 6.7. Forn <0andr > 0, let X be an arithmetic scheme satisfying L€ (Xg,n —r)
and B(X,n — r). Then there is a natural quasi-isomorphism of complexes

RTy (A%, Z(n)) = RTwe(X. Z(n —r))[-2r]. (6.11)

which after passing to the determinants makes the following diagram commute:

AAS(!" R AX,nfr
/ = (6.12)

(detz RTy (AL, Z(n))) ® R —=— (detz RTw(X.Z(n —r))) ® R.

Proof. We refer to Figure 4, which shows how the flat morphism p: A} — X induces the
desired quasi-isomorphism (6.11). It all boils down to the homotopy property of motivic
cohomology, namely the fact that p induces a quasi-isomorphism

p*: RT (X, Z€ (n — r))[2r] = RT (A Z€ ());
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Ry (A%, Z(n)

|
|
o[A;( . / !

RHom(RT(Ag . Z€ ), Q1=2) —> RTc(A) ;0 Z(m) ——————> RIp(A}.Zm) ————> -[-1]

=|[(p*)Y =~ | P« RTc(GR, A% (©), Z(n) = ROy (X.Z(-r)l-2r] | =

IR

ax n—r[—2r] o~ | pe
= ~

RHom(RT (Xg, Z€ (n — r)[2r], Q[-2]) — RT¢(Xg, Z(n — r)[-2r] — RT(X.Z(n—r)l-2r] ———> -[-1]

~ L2

RT¢(GR,X(C),Z(n —r))[-2r]

Ry (A, R(n)

i

> RIG (AL, Rm) —————> -[-1]

0\%

IR

~

RHom(RT (A . Z€ (n)), R[~2])

I
I
: v
~|[(p*)V RTc(GR, A% (C),R(n)) :E RTw, (X, R(n —r)[-2r] | =
I
= | Px \",
RHom(RT (X4, Z€ (n — r))[2r], R[-2]) > 0 > RTf(X,R(n—r)[-2r] ——> -[-1]

T~

Rl (G, X(C),R(n —r))[-2r].

Figure 4. Isomorphism RTw. (A%, Z(n)) = RTw.(X,Z(n — r))[—2r] and its splitting after ten-
soring with R.

see, e.g., [39, Lemma 5.11]. After passing to real coefficients, we obtain the following
diagram:

RTc(Gr. A% (C).R(m)[-2] ~  RT(Gr.X(C).R(n—r))[-2][-2r]

® — ®
RT¢(Gr, A% (C).R(n))[—1] RT¢(Gr, X(C).R(n — r))[=1][-27]
glRngAg(’n [—1]®id glReg}’nir[—l][—Zr]éBid
RHom (RF(A;(,ét’ Zc(n)), ]R) 1] RHom (RF(Xé,, Z¢(n — r)) [2r], R)[—l]
@ = @
RT:(Gr, AL (C),R(n))[~1] RT¢(Gr. X(C),R(n — r))[-1][-2r]
glsp]it glsplit
RTy (A%, R(n)) = > RTywe(X,R(n —r))[-2r]

Here the first square is commutative due to the compatibility of the regulator with affine
bundles (Lemma 6.2), and the second square commutes because the quasi-isomorphism
(6.11) gives compatible splittings (see again Figure 4). Taking the determinants, we obtain
the desired commutative diagram (6.12). [
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Theorem 6.8. For an arithmetic scheme X and n < 0, assume L° (X4, n), B(X, n), and
the meromorphic continuation of (X, s) around s = n.

) IfX = ]_[lﬁisr X; is a finite disjoint union of arithmetic schemes, then
C(X,n) < C(X;j,n) foralli.
(2) For a closed-open decomposition Z > X <= U, if two of three conjectures
C(X,n), C(Z,n), C(U,n)
are true, then the third is also true.
(3) Foranyr > 0, one has
C(Ay,n) < C(X,n—r).

Proof. Follows from Lemmas 6.4, 6.5, 6.7, together with the corresponding identities for
the zeta functions (6.1), (6.2), (6.3). ]

The following is a special case of compatibility with closed-open decompositions.
Lemma 6.9. For an arithmetic scheme X and n < 0, the conjectures
L¢(X4,n), B(X,n), VO(X,n), C(X,n)
are equivalent to
L (Xpeaa:n), B(Xweasn), VO(Xyea, 1),  C(Xrea )
respectively.

Proof. Apply Lemma 6.1, Lemma 6.2, Proposition 6.3, and Theorem 6.8 to the canonical
closed embedding X,.; — X. [

The above lemma can be proved directly, by going through the construction of Weil-
étale cohomology in [2] and the statements of the conjectures. In particular,

RTyo(X, Z(1)) = RTye(Xeas Z(n)).

It is important to note that the cycle complexes do not distinguish X from X .y, and neither
does the zeta function: £(X,s) = ¢(X,eq, 5).

Remark 6.10. If X /IF, is a variety over a finite field, then the proof of Theorem 6.8
simplifies drastically: we can work with the formula (5.1) and the following properties of
motivic cohomology:

(1) RU(LI; Xia Z°(n)) = B; RT (Xi,a, Z€(n));
(2) triangles associated to closed-open decompositions

RF(Zé,,ZC(n)) — RT(Xa, Z¢(n)) — RF(Uét,Zc(n)) — RT(Za, Z¢ (n))[1]
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(3) homotopy invariance RT' (X4, Z¢(n —r))[2r] = RT'(AY ,.. Z¢(n)).
In this case, no regulators are involved, so we do not need the technical Lemmas 6.4, 6.5,
and 6.7.

If we consider the projective space Py = P; x X, we have a formula for the zeta
function

tPr.s)= [] ¢X.s—i). (6.13)

o<i<r
Our special value conjecture satisfies the corresponding compatibility.
Corollary 6.11 (Projective bundles). Let X be an arithmetic scheme, n < 0, and r > 0.

Forall 0 < i <r assume Conjectures L (X4, n — i), B(X,n — i), and the meromorphic
continuation of (X, s) around s = n —i. Then

C(X,n—1i)for0<i <r = C(Pyg,n).
Proof. Applied to the closed-open decomposition ]P’}?_1 o> Pg <= A%, Theorem 6.8 gives
C(X,n—r) and C(P{',n)= C(A%,n) and C(PL ' ,n) = C(P%,n).

The assertion follows by induction on r. (The same inductive argument proves the iden-
tity (6.13) from (6.3).) [ ]

7. Unconditional results

Now we apply Theorem 6.8 to prove the main theorem stated in the introduction: the
validity of VO(X, n) and C(X, n) for all n < 0 for cellular schemes over certain one-
dimensional bases. In fact, we will construct an even larger class of schemes €(Z) whose
elements satisfy the conjectures. This approach is motivated by [39, Section 5].

Definition 7.1. Let €(Z) be the full subcategory of the category of arithmetic schemes
generated by the following objects:
» the empty scheme @,
* SpeclF, for each finite field,
* Spec OF for an abelian number field F/Q,
 curves over finite fields C/F,,
and the following operations.
(€0) X isin €(Z) if and only if X,., is in €(Z).
(€1) A finite disjoint union ]_[151-5, X; isin €(Z) if and only if each X; is in €(Z).

(€2) Let Z > X <= U be a closed-open decomposition such that Z,.4.c, Xeq,C,
U.q,c are smooth and quasi-projective. If two of the three schemes Z, X, U lie
in €(Z), then the third also lies in €(Z).

(€3) If X lies in €(Z), then the affine space A} for each r > 0 also lies in €(Z).
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Recall that the condition that X,.s,c is smooth and quasi-projective is necessary to
ensure that the regulator morphism exists (see Remark 2.7).

Proposition 7.2. Conjectures VO(X, n) and C(X, n) hold for any X € €(Z) andn < 0.

Proof. Finite fields satisty C(X, n) by Example 5.5.

If X = Spec OF for a number field F/Q, then Conjecture C(X, n) is equivalent to
the conjecture of Flach and Morin [11, Conjecture 5.12], which holds unconditionally for
abelian F/Q, via reduction to the Tamagawa number conjecture; see [11, Section 5.8.3],
in particular [ibid., Proposition 5.35]. The condition VO(X, n) is also true in this case (see
Example 3.7).

If X = C/F, is a curve over a finite field, then C(X, n) holds thanks to Theorem 5.3.
Conjecture L¢(Xg4, n) is known for curves and essentially goes back to Soulé; see, for
example, [19, Proposition 4.3].

Finally, the fact that the Conjectures L€ (X4, n), B(X, n), VO(X, n), C(X, n) are
closed under the operations (€0)—(€3) is Lemma 6.9, Lemma 6.1, Lemma 6.2, Propo-
sition 6.3, and Theorem 6.8, respectively. [

Lemma 7.3. Any zero-dimensional arithmetic scheme X is in €(7Z).

Proof. Since X is a Noetherian scheme of dimension O, it is a finite disjoint union of
Spec A; for some Artinian local rings A;. Thanks to (€1), we can assume that X =
Spec A, and thanks to (€0), we can assume that X is reduced. But then A = k is a field.
Since X is a scheme of finite type over Spec Z, we conclude that X = SpecF, € €(Z). m

Proposition 7.4. Let B be a one-dimensional arithmetic scheme. Suppose that each of the
generic points 11 € B satisfies one of the following properties:

(a) charx(n) = p > 0;
(b) chark(n) =0, and k(n)/Q is an abelian number field.
Then B € €(Z).

Proof. We verify that such a scheme can be obtained from Spec @ for an abelian number
field F/Q, or a curve over a finite field C/F,, using the operations (€0), (€1), (€2)
which appear in the definition of €(Z).

Thanks to (€0), we can assume that B is reduced. Consider the normalization v: B’ —
B. This is a birational morphism, so there exist open dense subsets U’ € B’and U C B

such that v|g: U’ = U.Now B \ U is zero-dimensional, and therefore B \ U € €(Z) by
the previous lemma. Thanks to (€2), it suffices to check that U’ € €(Z), and this would
imply B € €(Z).

Now U’ is a finite disjoint union of normal integral schemes, so according to (€1) we
can assume that U’ is integral. Consider the generic point € U’ and the residue field
F = k(n). There are two cases to consider.

(a) Ifchar F = p > 0, then U’ is a curve over a finite field, so it lies in € (Z).
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(b) If char F = 0, then by our assumptions, F/Q is an abelian number field.
We note that if V' C U’ is an affine open neighborhood of 7, then U" \ V' € €(Z)
by the previous lemma. Therefore, we can assume without loss of generality that
U’ is affine.
We have U’ = Spec (9, where O is a finitely generated integrally closed domain.
This means that

OrF CO =0r;s
for a finite set of places S. Now U’ = Spec OF \ S, and S € €(Z), so everything
reduces to the case of U’ = Spec O, which is in €(Z). |

Remark 7.5. Schemes like the above were considered by Jordan and Poonen in [23],
where the authors write down a special value formula for s = 1 that generalizes the classi-
cal class number formula. Namely, they consider the case where B is reduced and affine,
but without requiring x (1)/Q to be abelian.

Example 7.6. If B = Spec O for a nonmaximal order O C O, where F/Q is an abelian
number field, then our formalism gives a cohomological interpretation of the special val-
ues of {p(s) at s = n < 0. This already seems to be a new result.

Definition 7.7. Let X — B be a B-scheme. We say that X is B-cellular if it admits a
filtration by closed subschemes

X=ZN2ZN122202Z1=0 (7.1)
suchthat Z; \ Z;_ =~ ]_L- Azj is a finite union of affine B-spaces.

For example, projective spaces Py and, in general, Grassmannians Gr(k, £) g are cellu-
lar. Many interesting examples of cellular schemes arise from actions of algebraic groups
on varieties and the Bialynicki-Birula theorem; see [6,48].

Proposition 7.8. Let X be a B-cellular arithmetic scheme, where B € €(Z), and X e4,c
is smooth and quasi-projective. Then X € €(Z).

Proof. Considering the corresponding cellular decomposition (7.1), we pass to open com-
plements U; = X \ Z; to obtain a filtration

X=U12U,2--2Un-1 2Un =90,
where U; ¢ are smooth and quasi-projective, being open subvarieties in X¢. Now we have

closed-open decompositions ]_[j Ag’j > U; <= Uj 41, and the claim follows by induction
on the length of the cellular decomposition, using operations (€1)—(€3). |

As a corollary of the above, we obtain the following result, stated in the introduction.

Theorem 7.9. Let B be a one-dimensional arithmetic scheme satisfying the assump-
tions of Proposition 7.4. If X is a B-cellular arithmetic scheme with smooth and quasi-
projective fiber X,.q.c, then Conjectures VO(X, n) and C(X, n) hold unconditionally for
anyn < Q0.

Proof. Follows from Propositions 7.2, 7.4, and 7.8. [



Weil-étale cohomology and zeta-values of arithmetic schemes at negative integers 37

8. Appendix A: Determinants of complexes

Here we give a brief overview of the determinants of complexes. The original construction
goes back to Knudsen and Mumford [31], and useful expositions can be found in [20,
Appendix A] and [25, Section 2.1].

For our purposes, let R be an integral domain.

Definition 8.1. Denote by #;(R) the category of graded invertible R-modules. It has as
objects (L, r), where L is an invertible R-module (i.e., projective of rank 1) and r € Z.
The morphisms in this category are given by

Isomg(L, M), r =s,

Homgp, (g) ((L, r), (M, s)) = { g s

This category is equipped with tensor products
(L,r)®r (M,s) = (L ®r M,r +5)

with (graded) commutativity isomorphisms

(L,r) @R (M,s) = (M,s) @z (L,r), £@m> (=1)*m & L.

The unit object with respect to this product is (R, 0), and for each (L, r) € P;;(R)
the inverse is given by (L~!, —r) where L™! = Homg (L, R). The canonical evaluation
morphism L ® g Homy (L, R) — R induces an isomorphism

(L,r)®g (L7, —r) = (R,0).

Definition 8.2. Denote by €;(R) the category whose objects are finitely generated pro-
jective R-modules and whose morphisms are isomorphisms. For A € €;;(R) we define the
corresponding determinant by

rkr A

det(4) = ( N\ A.tkg A) € P4(R). (8.1)

R

Here rkg A is the rank of A, so that the top exterior power /\%R 4 4 is an invertible R-
module.

This yields a functor detg: €;(R) — P;(R). For (L,r) € P;;(R) we usually forget
about r and treat the determinant as an invertible R-module.

The main result of [31, Chapter I] is that this construction can be generalized to com-
plexes and morphisms in the derived category.

Definition 8.3. Let D(R) be the derived category of the category of R-modules. Recall
that a complex A® is perfect if it is quasi-isomorphic to a bounded complex of finitely
generated projective R-modules. We denote by Parf; (R) the subcategory of D(R) whose
objects consist of perfect complexes, and whose morphisms are quasi-isomorphisms of
complexes.
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Theorem 8.4 (Knudsen—Mumford). The determinant (8.1) extends to perfect complexes
of R-modules as a functor

dlgt: Parf;;(R) - Pis(R),

satisfying the following properties.

detg(0) = (R, 0).

For a distinguished triangle of complexes in Parf,,(R)
A5 B SctS oA
there is a canonical isomorphism
ir(u, v, w): det A° @ det C* = det B®.
R R R

In particular, there exist canonical isomorphisms

det(A® @ B®) = det(A*® det(B®).

1‘3’( ® B*) = dey( )®R§( )

For the triangles
A 2 40— 00— A°[1],
0° — A° 4 4° — 0°[1]

the isomorphism ig comes from the canonical isomorphism detg A®* Qg (R, 0) =
detp A°.

For an isomorphism of distinguished triangles
“ s B* —— C* —— A°[l]

4°
;lf g Elh glf[l]

A My pre Yy o Wy g

~

IR

-

the diagram

detg A®* ®p detg C* L;’W)} detg B*®
gldet R(f)®detg (h) Eldet r(g)
ir(u' v w’)

detg A’* Qg detg C'* detg B’®

is commutative.

The determinant is compatible with base change: given a ring homomorphism R — S,
there is a natural isomorphism

det(A* ® §) = (det4%) @r S,

Moreover, this isomorphism is compatible with ig and is.
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 If A® is a bounded complex where each object A is perfect (i.e., admits a finite length
resolution by finitely generated projective R-modules), then

det A° = (R)(det AV,
A" = Qe
i€Z
If each A’ is already a finitely generated projective R-module, then detg A' in the
above formula is given by (8.1).

s Ifthe cohomology modules H'(A®) are perfect, then

. | . (—1)i
d ~ ! . .
let 4 ®(d§>tH (4%) (8.2)
i€Z
We refer the reader to [31] for the actual construction and proofs. Here is a particularly
simple case of interest.

Lemma 8.5. When R = 7 and cohomology groups H'(A®) are finite, we have the fol-
lowing.

(1) If A is a finite abelian group, then

(dZetA) C (dgtA) ®Q = d(St(A ®Q) = d(gt(O) ~Q

corresponds to the fractional ideal ﬁZ Cc Q.

(2) In general, let A® be a perfect complex of abelian groups such that the cohomology
groups H'(A®) are all finite. Then detz A® corresponds to the fractional ideal

1
%Z C Q, where .
m=T|H @A

i€Z

Proof. Since detz (A @ B) =~ detz A ® detz B, in part (1) it suffices to consider the case
of a cyclic group A = Z/mZ. Using the resolution

Z/mZ|0] = [mZ de%O],

we calculate
dZet(Z/mZ) ~7® mZ) ' = mz)™ !,

which corresponds to %Z in Q. Part (2) follows directly from (1) and (8.2). ]
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