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Bavard duality for the relative Gromov seminorm
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Abstract. The relative Gromov seminorm is a finer invariant than stable commutator length
where a relative homology class is fixed. We show a duality result between bounded cohomology
and the relative Gromov seminorm, analogously to Bavard duality for scl. We give an application
to computations of scl in graphs of groups. We also explain how our duality result can be given
a purely algebraic interpretation via a relative version of the Hopf formula. Moreover, we show
that this leads to a natural generalisation of a result of Calegari on a connection between scl and
the rotation quasimorphism.
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1. Introduction

Stable commutator length, or scl, is an invariant of groups that can be thought of as
a kind of homological £!-norm on the commutator subgroup. It has attracted attention
for its connections with various topics in geometric topology and group theory; see
Calegari’s book [8] for a comprehensive survey. However, scl has proved very hard to
compute: Calegari [9] showed that scl is computable and has rational values in free
groups, and Chen [14] generalised this to certain graphs of groups, encompassing
previous results of various authors [10, 13, 16,40,42], but neither computability nor
rationality of scl are known for closed surface groups.

In [34], the author approaches the problem of understanding scl in surface groups
by examining whether or not certain embeddings of surfaces are isometric for scl. A
conclusion of that paper is that some of the results that one can prove for scl in free
groups can only be generalised to closed surface groups if one works in a fixed relative
homology class. More precisely, the author generalises a result about scl in free groups
to one about the relative Gromov seminorm.
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The relative Gromov seminorm can be defined as the £!-seminorm on Hy(X, y),
where X is a topological space, and y: [[ S — X is a collection of loops in X;
see Section 2 for complete definitions. This was first introduced in [34] but the idea
is implicit in the work of Calegari (see, for instance, [7, Remark 3.18]). The relative
Gromov seminorm is connected to scl via the following proposition.

Proposition A (Gromov seminorm and scl). Let X be a path-connected topological
space and let [c] € C;{""(1X; Z) be an integral conjugacy class represented by a
map y:[[S' — X. Then

selrx(Ie]) = 3 inf ol | € Ha(X, 7:Q), o = [[ ] 8]}

where 3: Hy(X,y: Q) — Hi(] [ S': Q) is the boundary map in the long exact sequence
of the pair (X, y) (see Proposition 2.9).

The metastrategy here is that one might be able to obtain information about stable
commutator length by first understanding the relative Gromov seminorm, and then
infimising over H, (X, y).

A pioneering result in the study of stable commutator length was the discovery of
Bavard duality [1], showing that the dual space of the scl-seminorm can be understood
in terms of quasimorphisms; see [8, Section 2.5] for more details. Bavard duality
has led to a vast array of work on scl, most notably yielding various spectral gap
results [2, 11, 16,21, 28], and it is natural to ask for an analogue in the context of
the relative Gromov seminorm. Combining several well-known results, we show that
bounded cohomology provides such an analogue:

Theorem B (Bavard duality for the relative Gromov seminorm). Let X be a countable
CW-complex and y: || S' — X. Given a real class a € Hy(X, y;R), the relative
Gromov seminorm of o is given by

s = sup{M u e HE(X:R)~ {0}}.
[l oo

The purpose of the present paper is to apply Theorem B in three different directions.

The first one is in the context of graphs of groups, where we are able to use Theorem B

and an isometric embedding theorem in bounded cohomology of Bucher et al. [5] to

show that vertex groups are isometrically embedded for the relative Gromov seminorm:

Theorem C (£!-isometric embedding of vertex groups in graphs of groups). Let § be
a graph of groups whose underlying graph T is finite, with countable vertex groups
{Gv}vev(r), and amenable edge groups {Ge}ec (). Fix a vertex v and consider the
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inclusion map iy: G, <> m1§. Then for each class [c] € Cfonj(Gv; Z), the embedding
ivs: Ha(Gy, [c];R) — Hy(m1 G, [iy(c)];R)

is isometric for || - ||1.

We show in Section 4 that the analogous statement for scl does not hold, but that
Theorem C can still yield computations of stable commutator length in certain HNN-
extensions. For example, we compute the spectral gap of scl in Dyck’s surface group
and deduce from the Duncan—-Howie theorem [19] that it is not residually free.

The second application is a purely algebraic interpretation of Theorem B via the
Hopf formula. We prove in Theorem 5.2 that there is a relative version of the Hopf
formula: if G = F/R is a quotient of a free group F, and an infinite-order conjugacy
class [w] in G is represented by w € F, then there is an isomorphism

H>(G, [w]; Z) = (®)R N [F, F]/[F, R).

We obtain a new interpretation of Theorem B from this point of view.

Theorem D (Bavard duality via the Hopf formula). Consider an integral class o €
H, (G, [w]; Z) represented by a product of commutators

[@1.b1] - [ak. b] € (W)R N [F, F],

and let a; and b; be the respective images of a; and l;i under F — G. Then the Gromov
seminorm of o (seen as a rational class) is given by

1
llallr = Sup{w(‘ﬁ(ﬁll,bl) + Y (arbr.ar') + Y(aibray' b7 + -

+ ¥ (lar. b1] - [ak_l,bk_l]akbkalzl,bgl)) | ¥: G — R a bounded 2-cocycle}.

Our third application is a generalisation of a result of Calegari [7] on a connection
between scl and the rotation quasimorphism in compact hyperbolic surfaces S. Calegari
proves in particular that, when 0.5 # &, any immersed admissible surface is extremal for
scl, and when such a surface exists, then the rotation quasimorphism is also extremal [7,
Proposition 3.8]. He also proves that, in the closed surface case, immersed admissible
surfaces exist for all rational chains [7, Theorem C], and he hints at the fact that his
arguments give extremality of immersed admissible surfaces for the relative Gromov
seminorm [7, Remark 3.18]. We make this explicit, using the bounded Euler class
as the analogue of the rotation quasimorphism in the context of the relative Gromov
seminorm.
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Theorem E (Extremality of the bounded Euler class). Let y:[[S' — S be a collec-
tion of geodesic loops in a compact hyperbolic surface S. Let o € Hy(S, y; Q) be
projectively represented by a positive immersion f:(X,0%) & (S, y). Then

-2y~ (%) R
el = W = —2(eu, (5), &),
where euﬂb{ (S) € Hbz(S; R) is the real bounded Euler class of S. In other words, f is

ally € Q.

an extremal surface and — euf(S ) is an extremal class for o. In particular,

Outline of the paper. We start in Section 2 by introducing the homology of a space
relative to a collection of loops and the associated £!-seminorm; we show that it can
be given a topological interpretation and deduce Proposition A, which connects it
to stable commutator length. We then show in Section 3 how bounded cohomology
gives a homological version of Bavard duality, namely Theorem B. We give a first
application in Section 4 to the context of graphs of groups, yielding Theorem C. In
Section 5, we prove a relative Hopf formula and obtain Theorem D. Finally, Section 6
is devoted to the connection between the relative Gromov seminorm and the bounded
Euler class, leading to Theorem E.

While Section 2 and Section 3 lay the foundations of this paper, Section 4, Section 5,
and Section 6 can be read independently of each other.

2. The relative Gromov seminorm

The Gromov seminorm will be our measure of complexity for relative homology
classes. We approach it from two points of view: first as an £!-seminorm, then as a
measure of the minimal complexity of surfaces representing a given class. We will
show that, for rational classes, those two points of view coincide. This is well known for
absolute homology [8, Section 1.2.5], and we adapt previous arguments to the relative
case.

2.a. Conjugacy classes of 1-chains. Let X be a path-connected topological space,
and let G = w1 X. There is a correspondence between free homotopy classes of loops
S1 — X and conjugacy classes of elements of 771 X . In this paper, we are interested in
free homotopy classes of finite collections of loops [ [ S* — X, which can be encoded
by certain classes of 1-chains on 7 X, as we explain below.

Fix a coefficient ring R = Z or Q or R. We denote by C,(G; R) the group of
n-chains on G with coefficients in R:

Ci(GiR) = B Rigi,....gn).

81--8n€G
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These form a chain complex C«(G; R), with boundary maps
dn:Cn(G: R) - Cp1(G: R)
given by
dy(wy,...,wy) = (Wa,...,wy) — (Wyws, W3, ..., wy,) + (W1, Waw3, ..., W)
— e (D" i a2 Wastwa) + (=D (W1 Way).
The homology of the chain complex C«(G; R) is the group homology H«(G; R).
See [43, Section 6.5] for more details: our C,(G; R) is the tensor product of the

Z.G-module R (with trivial G-action) with the bar resolution of G.
We will also use the following notations:

e Z,(G;R) =Ker(d,) € C,(G; R) is the group of n-cycles;
e B,(G;R) :=1Im(dy+1) € Z,(G; R) is the group of n-boundaries.

We now focus on 1-chains, i.e. elements of C1(G; R) = (P, Rg- The support
of a l-chainc =}, Agg (with 1, € R for g € G) is the finite set

Suppc :={g € G | Ay # 0}.

We consider the sub-R-module K(G:; R) of C1(G; R) spanned by elements of the
form (w — w’) for w,t € G, where we write w’ = t~'wt.

Remark 2.1. K(G;R) € B1(G;R) € Z1(G; R) = C1(G; R).

Proof. The equality Z,1(G; R) = C1(G; R) follows from the fact that d; = 0, and the
inclusion B1(G; R) € Z1(G; R) is because C«(G; R) is a chain complex. It remains
to show that K(G; R) € B1(G; R). This follows from the following computation,
forw,t € G:
da (™ we) + (w, 1) = (71 1) = (1. 1))
=wt—w +tH+@t—wr+w)—@—14+1H—-10—-14+1)
=w—w. n
Definition 2.2. The R-module of conjugacy classes of chains on G with coefficients
in R is the quotient

C{™(G; R) = C1(G: R)/K(G; R).

We will also denote by B{(G: R) the image of B (G; R) in C{*”(G; R); elements
of B{”(G; R) are called conjugacy classes of boundaries.!

1Compare with [8, Definition 2.78], where Calegari introduces a quotient of B ;U"j (G; R).
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We denote by : C;(G; R) —> Cfonj(G; R) the projection. Given a 1-chain ¢ €
C1(G; R), we write [c] := 7(c) € C;""(G; R).
Note that there is a new chain complex

dy dn d- d§:=mod coni di=
T GG R) D B 06 R) 2 (6 R) 2T €o(G1R),

which we denote by ceom (G; R). In fact, this chain complex can be used to compute
the first homology of G.

Remark 2.3. There is an isomorphism H1(G; R) = Cfonj (G; R)/Bfonj(G; R).
Proof. There is a commutative diagram with exact rows:

da

C2(G; R) Ci(G;R) —— H1(G;R) —— 0

[ |

C2(G: R) —— C(G: R) — H\(CE™(G: R)) — 0

Given o € Kerr« € H1(G; R), pick a € C1(G; R) mapping to o under C1(G; R) —
Hi(G; R). Then (a) € Im(d5), i.e. there is b € C»(G; R) such that

a—dyb € Kerm = K(G; R).

But K(G; R) € B1(G; R) =Imd,; (see Remark 2.1), so a € Imd, and & = 0. There-
fore, 74: H1(G: R) — H{(C{™(G: R)) is an isomorphism, which proves the result
since

H (C™(G: R)) = C™(G: R)/B{*™(G: R). .

2.b. Standard form for conjugacy classes of chains. We now give for each conjugacy
class of chains in C{*”(G; R) a standard representative in C; (G R) having a natural
topological counterpart.

This standard representative will be unique up to reordering and conjugacy, and
we will use the following lemma to prove uniqueness:

Lemma 2.4. Let k € K(G; R). Suppose that there is no pair of distinct conjugate
elements in Supp k. Then k = 0.

Proof. By definition, « can be written as a linear combination
r
‘
(%) 0=y Ai(wi —wy),
i=1

with A,..., 4, € R~{0}, wy,...,w, € G, 11,...,1, € G, and w; # w! forall i.
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We choose a decomposition () such that r is minimal. Assume for contradiction
that ¥ # 0. In particular, r > 1 and Supp k # @. After reordering, we may assume
that at least one of w, and w” lies in Supp «. However, there is no pair of distinct
conjugate elements in Supp k. Without loss of generality, we can therefore assume that
w, € Suppk and w & Supp k. Now define

L={i<r|w=wr}, L:={i<r]| w? =wl}.
The sets /7 and I, are disjoint since w; # wff for all i, and we also set
10 = {1,...,7’—1}\(11 le),

so that 1o, I, I, form a partition of {1,...,r — 1}. Since the coefficient of w in

A=Y A=Y i

iely i€l

vanishes, we have

Therefore, setting p; = (w; — wfi) foreachi € {1,...,r}, we can rewrite

() k=Y Aipi+ Y Ai(pi+pr)+ Y Ai(pi — pr).

iely iely i€l

Now note that

Irt;,
r s

. foriell,pi-i—pr:wr—w?=wr—w

—1
. tit,
o fori €l pi—pr=wi—w =w —w

Therefore, (1) is a decomposition of k of the form () with at most | Io| + |11]| + | 12| =
r — 1 terms. This contradicts the minimality of r, so k = 0. [

‘We can now obtain our standard form.

Lemma 2.5 (Standard form for conjugacy classes of chains). Let [c] € C; Onj(G; R).

(i) There is a 1-chain
d

co=Y_ Aiw; € C1(G: R),
i=1
such that [cy] = [c] in Clconj(G; R), where d € N>g, A1,...,Aq € R~ {0}, and
wi, ..., Wq € G are pairwise non-conjugate.
(il) Assume that c; = Zf;l Ajw) € C1(G; R) also satisfies [co] = [cg], where wi, ..
w!;, are pairwise non-conjugate. Then d = d’, and there is a permutation o € G4,

.

and elements t; € G, such that wg(i) = w;" and A;;(i) = A, foralli.



A. MARCHAND 8

Proof. (i) We write ¢ = Zflzl Aiw; € C1(G; R), with Aq,...,A4 € R~ {0} and
wi,...,wg € G. Assume moreover that d is minimal among all representatives ¢ of
the class [c]. If there are j # k such that w; = w] for some ¢ € G, then

c=; +Aw; + Z Aiw; mod K(G; R),
1<i<d,i#j.,k

which contradicts the minimality of d. Therefore, no two of the w;’s are conjugate as
wanted.

(ii) We argue by inductionon d + d’. If d +d' = 0, then ¢o = 0 = c;. Assume
that d + d’ > 1 and consider k := ¢ — ¢ € K(G; R).If k = 0, then co = ¢, and there
is nothing to prove; otherwise, Lemma 2.4 implies the existence of a pair of distinct
conjugate elements in Supp k. But Suppk C {w; }1<j<qg U {w]}1<i<q’- By assumption
on the w;’s and w; s, this implies that one of the w;’s is conjugate to one of the w;’s.
After relabelling, we can assume that wg is conjugate to w/;,. We then consider

c1 = (Ad —/l/d/)w[i + Zkiwi’ Cll = Z A:w;

i<d i<d’

Note that ¢; = ¢} mod K(G; R), so the induction hypothesis applies to ¢; and c].
If Ag # A/, then we deduce that wg is conjugate to some w; withi < d’, and there-
fore w:i/ is conjugate to w;, which is a contradiction. Therefore, A4 = /\;,/, and the
result follows from the induction hypothesis applied to ¢; and c;. |

Remark 2.6. We make the following observations:

(i) A group element can be seen as an element of C;(G; Z), and conjugacy classes
of chains generalise conjugacy classes of group elements, in the sense that, for w € G,
Lemma 2.5 implies that 7~ (Jw]) N G is exactly the conjugacy class of w in G.

(i) The equivalence relation given by K(G; R) on 1-chains should be thought of
as the algebraic analogue of (free) homotopy. This is parallel to the equivalence relation
given by B1(G; R), which is the algebraic analogue of homology. Hence, Remark 2.1
is an algebraic formulation of the fact that homotopic maps also represent the same
class in homology.

We now see G as the fundamental group of a path-connected space X. Pick an
integral conjugacy class [c] € C;""(G;Z), and letco = Y_; Ajw; € C1(G;Z) be a
standard representative of [¢] given by Lemma 2.5. For each i, pick a loop y;: S — X

whose free homotopy class in X corresponds to the conjugacy class of w? "in G, and

y::]_[yi:]_[Sl — X.
i i

consider the map



Bavard duality for the relative Gromov seminorm 9

By Lemma 2.5 (ii), the free homotopy class [y] of y only depends on the class [c].
If E is the set of free homotopy classes of finite unordered collections of pairwise
non-homotopic oriented loops [ [ S' — X, then this defines a map

C™(G:Z) — &

given by [c] > [y]. We will say that the map y represents the conjugacy class [c].

Conversely, consider the free homotopy class of amap y:[[ S! — X, with com-
ponents {y; : S! — X};. For each i, pick an element w; € G whose conjugacy class
corresponds to the free homotopy class of y;. Sending the free homotopy class of y to
[, wi] € C{°(G: Z) defines a right inverse to the map C{*"(G:Z) — E constructed
above.

Hence, the map C1C(mj (G;Z) — E is surjective, but note that it is not injective:
given w € G ~ {1} and A € Z ~ {1}, the conjugacy classes [Aw] and [w*] are distinct
but are represented by the same (homotopy class of) loop y: S! — X.

Remark 2.7. The algebraic definition of stable commutator length (scl) in terms
of products of commutators as a function G — [0, co] can be shown to extend to
Cfonj(G; 7)), and then by linearity to Clconj(G; R); see [8, Section 2.6]. For us, scl will
be defined by its topological interpretation, given by Proposition A below, and this
definition will naturally be given for classes in C; (G, 7).

2.c. Homology of a space relative to a chain. Lety : [[S! — X be a finite (unord-
ered) collection of loops. We denote by X, the mapping cylinder of y:

Xy = (x 1 ([[s"x[0.1))/ ~.

where ~ is the equivalence relation generated by (u,0) ~ y(u) foru € [[ S!. There is
an embedding [ [ S! < X,, viau > (u, 1), and we will identify [ [ S! with its image
under this embedding.

Definition 2.8. The homology of the pair (X, y) over the coefficient ring R = Z or Q
or R is defined as the singular homology of the pair (X,,[[ S!):

Ho(X.y:R) = H.(X,.] [ S": R).

We remark that the homotopy type of the pair (X, ][ S!) — and therefore the
homology H.(X,y) — only depends on the free homotopy class of y.
It is useful to write down the long exact sequence of the pair (X, y).

Proposition 2.9. Let X be a topological space and y: || S* — X. Then there is an
exact sequence

0 — Hy(X:R) — Ho(X,y: R) > Hi(][$'R) > Hi(X: R).
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Proof. This is simply the long exact sequence of the pair (X,, [ [ S!), together with
the fact that X, deformation retracts to X (see [27, p. 2]). ]
Example 2.10. We now compute H. (X, y) in a few special cases.

(i) If y is the empty collection of loops, then
H«(X,y; R) = H«(X; R).

(ii) If y is an embedding [ [ S' < X, then the pair (X,, ][] S') deformation
retracts onto (X, (][ S1!)), and therefore there is an isomorphism

H.(X.y:R) = Ho(X.y(] [ S): R).

In general, there is still a morphism H.(X,y) — H«(X,y([]S")) given by collapsing
the mapping cylinder, but this might not be an isomorphism, as shown for instance by
item (iii) below.

(iii) If y: S — X is a contractible loop, then the quotient X v/S ! is homotopy
equivalent to X Vv S2, and collapsing the pair gives

H«(X,y:R) = Hy(X;R) ® Hy(S*; R).

(iv) Suppose that y: S' — X is rationally homologically trivial, in the sense that
ys: H{(S1;Q) — Hy{(X; Q) vanishes. Then the map ys: H;(S'; R) — H{(X;R) in
the exact sequence of Proposition 2.9 has kernel ¢[S!] for some ¢ € R, so the image
of the boundary map 9 is isomorphic to R, which gives a split short exact sequence,
and an isomorphism

Hy(X,y; R) =~ Hy(X;R) ® R.

Note that there is a natural isomorphism
H(X,y;R) = Hi(X,7;Q) ®q R,

allowing us to view H. (X, y; Q) as a subset of H.(X, y;R). We will say that o €
H.(X,y;7Z)isanintegral class, while o € Hy (X, y; Q) is rational and . € H, (X, y;R)
is real.

Definition 2.11. Let G be a group and X be a K(G, 1) space. Given [c] € C{*"(G; Z),
we set
H.(G,[c]: R) = Ho(X, y: R),

where y:[[ S! — X is a map representing [c] as explained in Section 2.b.
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Note that the homotopy type of X is uniquely defined by G, and the free homotopy
class of y is determined by [c], so the group H«(G, [c]; R) only depends on G and the
class [c].

The case where [c] = 0 corresponds to y being the empty collection of loops,
and so

H.(G,0; R) = H«(G; R)

by Example 2.10 (i).

2.d. Rational points in real vector spaces. The difference between real and rational
classes in H, (X, y) will play a role in the sequel, and we make a brief digression to
introduce some general terminology related to this.

Definition 2.12. Let V' be a R-vector space. A rational structure on V is the choice
of an equivalence class of bases of V', where two bases are considered equivalent if
each vector of one basis has rational coordinates in the second basis. Any basis in the
equivalence class is called a rational basis.

Given a rational structure on V, a rational point is a vector of V that has rational
coordinates in a rational basis. The set Vg of rational points of V' is naturally a Q-vector
space, and satisfies V' = Vg ®q R. In fact, a rational structure on V' can be defined
equivalently as the choice of a Q-subspace Vg of V such that V' = Vg ®q R.

Example 2.13. The space R” has a rational structure given by the equivalence class
of the standard basis, and its set of rational points is Q.

A rational subspace W of V' is a R-subspace spanned by rational points. It naturally
inherits a rational structure from V.

If V and W are R-vector spaces equipped with rational structures, a rational linear
map f:V — W is alinear map such that the image of each vector in a rational basis
of V has rational coordinates in a rational basis of W. This implies that the kernel and
the image of f are rational subspaces of V' and W, respectively.

Let CP be a chain complex over Q and let CF = CP ®¢@ R. Hence, each vector
space C,]lR has a rational structure whose set of rational points is C,;Q . The boundary
map d,: CR — C,IF_1 is rational, and the space ZX = Ker d,, of n-cycles is a rational
subspace. In particular, the set of rational points of ZX is the space Z ,9 of n-cycles
for C ,i@ . Moreover, there is an isomorphism

H,(CR) = H,(C2) ®¢ R,

giving H,(CR) a rational structure whose set of rational points is H, c?).
The following lemma says that any real cycle representing a rational homology
class can be approximated by a rational cycle.
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Lemma 2.14 (Rational approximation in homology). Let C2 be a chain complex
over Q and let CR = cl ®q R. Let || - || be a norm on CR. Consider a real n-
cycle a € ZR whose homology class |a] is rational:

[a] € Hy(CQ) S Ha(CY).

Then for any ¢ > 0, there exists a rational n-cycle a’ € Z? such that
o [a] =[a]in H,(CR), and

o lla—d <e

Proof. We follow an argument of Calegari [8, Remark 1.5]. Observe that the natural
projection map
P Zy = Ha(C)

is rational. Hence, since [a] is a rational point of H, (CR), the affine subspace p~!([a])
is rational in ZR, so its rational points are contained in ZQ. We may assume that ZR is
finite-dimensional by restricting to a finite-dimensional rational subspace containing a;
hence rational points are dense. Since the real n-cycle a lies in p~!([a]), there is
a’ € p~'([a]) rational arbitrarily close to a for || - ||. This rational n-cycle a’ lies in ZQ
and is homologous to a as wanted. |

2.e. The Gromov seminorm as an £ !-seminorm. We now give a first definition of
the Gromov seminorm.

Given y:[[S! — X, recall that H« (X, ; R) is the homology of the singular chain
complex C,;*(X,;R). Each R-vector space C,*(X,;R) can be equipped with the

£!-norm defined by
[ ee], = Sl
o g
with A; € R for each singular n-simplex o: A" — X,. The quotient
CrE(Xy. [ [S":R) = C(Xy:R)/CE(] [ S': R)
inherits a quotient seminorm that we also denote by || - |1, and that is defined by

lally = inf |lal|,
aca

where the infimum is over all absolute n-chains a € C,%(X. y: R) representing a €
Co¥(Xy. 11 S': R). The restriction of || - ||; defines a seminorm on the subspace
Zf,g (Xy. IS L. R) of relative n-cycles, which descends to a seminorm, still denoted
by || - |1, on homology.
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Definition 2.15. Let X be a topological space and y: | [ S' — X . The relative Gromov
seminorm on Hy, (X, y;R) is defined by

lally == inf{llalls | a € Z;E(Xy, [ [ S":R), [a] = a}.

Remark 2.16. Given a countable group G and an integral conjugacy class [c] €
Cfonj(G; 7)), the relative homology H, (G, [c];R) is by definition H, (X, y;R), where X
is a K(G, 1), which can be chosen to be a countable CW-complex since G is count-
able, and y: [ S! — X represents [c]; see Definition 2.11. If X" is another choice of
(countable) K(G, 1) and y’: ][ S! — X' is another map representing [c], then there is
a homotopy equivalence /1: X = X/ sending y to hy, and a free homotopy between
hy and y’. Hence, there are induced homotopy equivalences of pairs

(Xy. [ [8") =~ (X4, [ [S") =~ (x,.][Sh).

Since || - ||; is invariant under homotopy equivalence for countable CW-complexes,
and in fact under any map inducing an isomorphism of fundamental groups,? the above
homotopy equivalences induce isometric isomorphisms

Hy(X,y;R) =~ Hy(X', hy;R) = Hy(X',y"; R).

Hence, one can extend the definition of the Gromov seminorm to H,(G, [c]; R).

The above definitions still make sense if R is replaced with QQ everywhere. Given
a€ Hy(X,y;Q) C Hy(X, y; R), it is natural to ask whether the Gromov seminorm
of o as a rational class coincides with its Gromov seminorm as a real class. The
following lemma gives an affirmative answer.

Lemma 2.17 (Equality of the rational and real Gromov seminorms). Let X be a
topological space and y: || S — X. Given a rational class a € H,(X,y;Q), the
Gromov seminorm of o (seen as a real class) can be computed over rational cycles:

lall = inf{llalls |a € ZE(X,, [ [$":Q), [a] = o}
Proof. This follows from Lemma 2.14. u

In other words, Lemma 2.17 says that the inclusion H, (X, y; Q) — H,(X,y;R)
is an isometric embedding if H,(X, y; Q) and H, (X, y;R) are equipped with the
rational and real Gromov seminorms, respectively.

2This follows from Gromov’s Mapping theorem [22, Corollary 5.11], together with the duality principle
between £!-homology and bounded cohomology [22, Corollary 6.2].
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2.f. Topological interpretation of the Gromov seminorm. Analogously to (and
motivated by) the topological interpretation of stable commutator length in terms of
surfaces projectively bounding a given loop [8, Section 2.6], we now give a topological
interpretation of the Gromov seminorm for rational classes in H,. This extends the
topological interpretation of the absolute Gromov seminorm on H; [8, Section 1.2.5].

An admissible surface for y:] [ S — X is the data of an oriented compact (possibly
disconnected) surface ¥, and of maps f: ¥ — X and 9f: 9% — |] S! making the
following diagram commute:

)y ——— 3
3fJ f‘
st ——x

where (: 0¥ < X is the inclusion. Such an admissible surface will be denoted by
fi(Z,08) = (X,p).
Let X, be the mapping cylinder of the inclusion map ¢: 0% < X:

o= (T OO x[0,1]))/ ~,

where ~ is the equivalence relation generated by (u, 0) ~ ¢(u) for u € 0X. Hence,
there is a natural map of pairs

fir (20T x {1) — (X, ] [ SH)

defined by f and f ; see Section 2.c for the definition of the pair (X,, ][ S'). Since the
pair (X,, 9% x {1}) deformation retracts to (X, dX), the map f» induces a morphism

Ffoi Ho(S,0%) — Hy(X, 7).

In particular, f represents a class fi[X] € H2(X, y), where [X] € Hy(X,0%) is
the (integral, rational, or real) fundamental class of X.

The topological complexity of a compact surface £ will be measured by its reduced
Euler characteristic, defined by y~(X) = ) g min{0, y(K)}, where the sum is over
all connected components K of 3.

Proposition 2.18 (Topological interpretation of the Gromov seminorm). Let X be
a topological space and y: ][ S — X. Ifa € Hy(X,y; Q) is a rational class, then
there is an equality
20 (3)
leelly = inf ———=—.
£z n(%)

where the infimum is taken over all admissible surfaces f:(%,0%) — (X, y) such
that f«[X] = n(X)a for some n(X) € Nx;.
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Proof. First consider an admissible surface f:(X,0X) — (X, y) with fi[X] =n(¥)a.
Then we can estimate
1A= _ ]

n(®) T nE
But the £!-seminorm of [X] is known as the simplicial volume of ¥, and it is equal

to =2y~ (X) (see [22, Corollary 7.5]). This proves the inequality (<) of the proposition.
For the reverse inequality, we follow the same line of reasoning as in Calegari’s

lleells =

proof that scl is not greater than the Gersten boundary norm [8, Lemma 2.69], which is
based on an argument of Bavard [1, Proposition 3.2]. Leta € Z»(X,,[[ S I'Q)bea
rational relative 2-cycle representing o, and let ag € C>(X,,; Q) be a 2-chain mapping
to a. By Lemma 2.17, the infimum of ||ag||; over such ay is equal to ||x||;.

Since ay is rational, there exists ¢ € N>; such that gag is integral; we can write
qao = )_; €j0j, with &; € {£1} and 0;: A*> — X, a singular 2-simplex. We can
assume that no singular 2-simplex appears twice with opposite signs in the above

expression, so that
lgaolly = lejl-
J

The fact that a is a relative 2-cycle means that dag has support contained in [ [ S!.
Therefore, we can construct a partial pairing on the edges of the simplices o; such that
paired edges have the same image in X,,, and non-paired edges all map to [ [ S 1 We
then construct a 2-dimensional simplicial complex X by taking a collection {AJZ. }j of
2-simplices and gluing them along this pairing. The simplicial complex X thus construc-
ted is a surface with boundary, and the singular simplices o; defineamap f: X — X,
by f|A2 = 0;, with f(dX) C [ [ S1. After homotoping f(X) into the image of X in X,
and f(BE) into y(] [ S*!), this induces an admissible surface f: (X, %) — (X,y),
and fi[X] = g in H>(X, y;R). As above, —2y~(X) is the simplicial volume ||[X]]|;
of X (see [22, Corollary 7.5]); on the other hand, our triangulation of ¥ by the sim-
plices AJZ. gives an upper bound on the simplicial volume:

||qao||1 Z]||1 20 (%)
llaollx = ZI = :
q
By taking the infimum over ag representing o, we obtain the inequality (>). |

The topological interpretation of || - ||; connects it to stable commutator length.

Proposition A (Gromov seminorm and scl). Let X be a path-connected topological
space and let [c] € C;{""(1X; Z) be an integral conjugacy class represented by a
map y:[[S' — X. Then

selr,x(Ie]) = yinf{llol | € Ha(X.:Q). 3 =[[[5'])
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where 3: Hy(X,y; Q) — Hi(] [ S'; Q) is the boundary map in the long exact sequence
of the pair (X, y) (see Proposition 2.9).

Proof. This follows from the topological interpretations of || - ||; (Proposition 2.18)
and scl [8, Proposition 2.74]. [ ]

We refer to Calegari’s book [8, Section 2.6] for the usual algebraic definition of scl
on chains. For our purpose, Proposition A can serve as a definition.

2.g. Simplicity and incompressibility for admissible surfaces. We will need admiss-
ible surfaces with additional properties.

Definition 2.19. Let X be a path-connected topological space and y: [[ S — X. We
say that an admissible surface f: (X,0%) — (X, y) is

e incompressible if every simple closed curve in ¥ with nullhomotopic image in X
is nullhomotopic in ¥;

e simple if there are no two boundary components of ¥ whose images under f
represent powers of the same conjugacy class in 71 X .

Lemma 2.20 (Simplicity and incompressibility). Let X be a topological space and
v:11S! — X. Then for every rational class o € Hy(X,y; Q) and for every & > 0,
there is a simple, incompressible, admissible surface f:(X,0%) — (X, y) such that
f«[Z] = n(X)a for some n(¥) € N>y, and

—2x" (%)

) el = =

< lla|l1 + .

Proof. Proposition 2.18 implies the existence of an admissible surface f: (X, 0%) —
(X, y) satisfying () with fi[X] = n(Z)« for some n(X) € N5 ;.

If f is not simple, then we can find two boundary components d; and d, of ¥ whose
image under f represent powers of the same conjugacy class in r; X . Hence we can glue
a 1-handle H between d; and d,, with H mapping to a path connecting the respective
basepoints of f o d; and f o d,. This does not change fx[X] but increases —y~(X)
by 1. In order to keep control of —y~(X)/n(X), we perform this operation only after
replacing 3 with a finite cover of large degree N that preserves the number of boundary
components. Hence, the quantity — y~(X)/n(X) will only increase by 1/N (this is a
simple case of an asymptotic promotion argument, adapted from [8, Proposition 2.10];
see [14, Section 4] and [34, Section 4.d] for similar arguments). Since this operation
decreases the number of boundary components of ¥ by 1, we will obtain a simple
admissible surface after finitely many iterations.

Now if f is compressible, then there is a simple closed curve 8 in ¥ which is
not nullhomotopic but such that f o 8 is. In this case, one can cut ¥ along 8 and
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glue two discs onto the resulting boundary components; the map f extends onto the
new discs since f o f is assumed to be nullhomotopic. This does not change f.[X]
and makes — y~(X) decrease, so that (%) still holds, and moreover the property of f
being simple is preserved. After performing this operation a finite number of times,
we therefore obtain that f is simple and incompressible. u

3. Bavard duality for the relative Gromov seminorm

Bavard [1] proved that the dual space of the scl-seminorm on C lc on (G;R) can be
interpreted in terms of quasimorphisms. This can be thought of as a kind of £1-£*°-
duality, and has had a wide range of applications in giving lower bounds for scl [2, 11,
16,21,28]. We start with some background on classical Bavard duality and bounded
cohomology, and then we explain how a result analogous to Bavard’s theorem can be
obtained for the relative Gromov seminorm.

3.a. Bavard duality for scl. A quasimorphism on a group G is amap ¢: G — R such
that

sup |¢(gh) — ¢(g) —p(h)| < .

g,heG
The above supremum is then called the defect of ¢ and denoted by D(¢). We say in
addition that ¢ is homogeneous if ¢(g") = n¢(g) forall g € G and n € Z.

We denote by Q(G) the R-vector space of homogeneous quasimorphisms on G.
The defect defines a seminorm D: Q(G) — [0, c0), which vanishes exactly on the
subspace Hom(G, R) € Q(G) consisting of homomorphisms to R. In particular, the
defect descends to a genuine norm on the quotient Q(G)/ Hom(G, R).

If : G — R is a homogeneous quasimorphism, then ¢ extends to a Z-linear map
C1(G;7Z) — R. The extension satisfies

oo —u)| = g — | < 228

for all w, ¢t € G. It follows that ¢ vanishes on the sub-Z-module K(G;Z) of C1(G;7Z)
spanned by elements of the form (w — w’), as in Section 2.a. Therefore, ¢ des-
cends to a Z-linear map C lc Onj(G; 7Z) — R, which then extends to a R-linear map
C™(G;R) - R.

Classical Bavard duality says that the (semi)normed vector space (Q(G), D) (or
Q(G)/ Hom(G,R), where D defines an honest norm) is dual to (C;*”(G: R), scl).

Theorem 3.1 (Bavard [1]). Let G be a countable group and [c] € C{*(G;R). Then
there is an equality

sclg ([c]) = SUP{ #(c)

2D(9)

| ¢ € Q(G) ~ Hom(G;R)}.
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3.b. Bounded cohomology of topological spaces. Our analogue of Bavard duality
for the relative Gromov seminorm will be based on bounded cohomology, of which we
recall the definition here. We refer the reader to Frigerio’s book [22] for a much more
detailed treatment.

Let X be a topological space. Recall that the singular cohomology of X (with real
coeflicients) is the cohomology of the singular cochain complex CS’; (X;R) given by

CI(X:R) := Homp(CE(X: R), R).

Since the n-th chain group C,%(X;R) is the free R-module on the set S, of singular
n-simplices 0: A" — X, the n-th cochain group Cg (X; R) can equivalently be defined
as the set of all maps §, — R. The £°°-norm of a cochain ¥ € CL(X:R) = RS” is
[¥lleo = sup |y (a)] € [0, +00].
€S,

Now the bounded cochain complex of X with coefficients in R is the sub-cochain
complex C;'(X:;R) of CSE(X; R) consisting of all bounded maps S, — R:

Cp(X:R) = {y € CLX:R) | [¥ oo < 00} € CG(X:R),
with coboundary induced by that of Cg (X R). The bounded cohomology of X is the
cohomology of this cochain complex:
Hy(X;R) = H*(C, (X;R)).

The £°°-norm descends to a seminorm — still denoted || - [|oo —on H,'(X; R).

For us, bounded cohomology will always be understood to be with real coefficients,
and we might omit R from the notation.

It turns out that || - ||co defines a genuine norm in degree 2 if X is a countable
CW-complex.

Theorem 3.2 (Matsumoto—Morita—Ivanov [30,36]). Let X be a countable CW-complex.
Then ||u||oo > O for every u € Hbz(X;R) ~ {0}

Duality between the £>°-norm on bounded cohomology and the £!-norm on singular
homology plays a central role in this paper. It comes from the natural pairing

(= —):Cy(X:R) x C*(X:R) — R,

which is the restriction of the duality pairing CS*;(X :R) x C;¥(X;R) — R given by
(¥,c) = ¢(c) for y € CL(X;R)and ¢ € C,*(X;R). This descends to a pairing

(= =) Hy (X;R) x Hi(X:R) - R,

which is called the Kronecker product. The Banach space Hj (X;R) is dual to the
seminormed space H,(X;R) under this pairing.
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Proposition 3.3 (£!—(°°-duality in bounded cohomology [22, Lemma 6.1]). Let X be
a topological space and a € H, (X ;R). Then the £'-seminorm of « satisfies

u,o
ol = sup{u lue HY(X:R). fulloo > o}.

[l 0o
3.c. Bounded cohomology of groups. It follows from Gromov’s Mapping theorem [22,
Corollary 5.11] that, for any continuous map f: X — Y between countable path-
connected CW-complexes inducing an isomorphism on fundamental groups, the
induced map f*: H;(Y;R) — H,(X;R) is an isometric isomorphism (isometric
means that it preserves the £°°-seminorm).

Hence, given a countable group G, one can define the bounded cohomology of G
to be the bounded cohomology of any countable path-connected CW-complex X with
T 1X =G:

H;(G:R) := H; (X;R).

Such a space X always exists — for instance, one can take X to be a (potentially infinite)
presentation complex of G. Since there are isometric isomorphisms H, (X;R) =
H I;“ (X’;R) for any two choices of X, X’ as above, there is a well-defined £°°-seminorm
on H; (G;R).

But the bounded cohomology of a group can be given a more algebraic interpretation
as follows. The bar cochain complex of G with real coefficients is defined by

C"(G;R) := RY",

where R®" is the space of all maps G” — R. Coboundary maps d”: C"~'(G;R) —

C"*(G; R) are given by

d"Y(g1..... gn) =V (g2.....8n) — V(8182.83... . 8n) + V(81.8283.---. &n)
e (S NG Bres Bre120) (<D (&1 ).

This is the dual of the chain complex C.(G; R) introduced in Section 2.a.
Given a cochain Y € C"(G; R), its £°°-norm is

1V loo = sup  |[¥(g1.....&n)| €0, +o0].
(g1,..-.8n)EG"

The bounded cochain complex of G is
Cy(G:R) ={y € C"(G:R) | |{]loo < 00}

It turns out that the bounded cohomology of G can be defined as the cohomology of
C;(G:R), and we now explain how to write an explicit isomorphism between this
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FIGURE 1
Construction of the chain map /4: C«(G;R) — C:5(X;R).

cohomology and the bounded cohomology of a space X with fundamental group G as
defined in Section 3.b.

Let X be a K(G, 1) space with countably many cells and fixed basepoint w. Each
element g of G can be represented by a loop y,: S! — X based at w, which can also be
described as amap o : A' — X, where Al is a 1-simplex (i.e. a segment), and Og maps
both endpoints of A! to w. For all g1, g2 € G, the concatenation oy, - 0, is homo-
topic (with fixed endpoints) to 0, ¢,, and one can construct a map g, ¢,: A% - X
(where A? is a 2-simplex) such that the restrictions of og, g, to its three faces are og,,
o, ,and og, (Where o~!

8182’
Figure 1. Since X is aspherical, we can iterate this construction and choose, for each

is the singular simplex o with reversed orientation), as in

n-tuple (g1, ...,gn) € G", a singular simplex oy, .. ¢, Whose restriction to its i-th
face is 04! ..g; g1 1,.gn (SPECtively, og)
with &; = (—1).

The map h: (g1,....8n) ¥ Og,,....z, induces a chain homotopy equivalence

he: Co(G;R) 5 C.2(X;R)

P— &n -
gp fori =0and oz o, _, fori =n),

..........

(see [4, Section 1.4]), and therefore a cochain homotopy equivalence
h*: CS’;(X;]R) = C*(G;R),

which induces an isomorphism
H*(C*(G;R)) =~ H*(X;R).

The image under 2* of the bounded cochain complex C,* (X ; R) is C;/ (G R). It follows
that & also induces a cochain homotopy equivalence 2*: C; (X ; R) = C »(G:R),
inducing an isomorphism

H*(C{(G:R)) = Hy (X:R),

which is in fact an isometric isomorphism [22, Theorem 5.9]. We will denote this
cohomology by H; (G;R) and interpret it using both points of view.
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Remark 3.4. There is a connection between quasimorphisms and bounded cohomo-
logy: a quasimorphism ¢: G — R can be seen as an element of C!(G;R), and its
coboundary d?¢ is given by

d>p(g.h) = ¢(g) — d(gh) + p(h).

Hence, the quasimorphism condition means exactly that d 2¢ is a bounded cochain, and
in fact a bounded cocycle. Therefore, it defines a class [d2¢] € H bz(G; R). This gives
a morphism [d?—]: Q(G) — Hlf (G;R) whose kernel is the subspace Hom(G, R) of
Q(G) consisting of homomorphisms to R. In fact, this extends to an exact sequence [8,
Theorem 2.50]

42—
0 — Hom(G.R) — 0(G) 5 H2(G:R) — H?(G:R),

where H?(G:R) — H?(G;R) is the map induced by the inclusion C;(G;R) —
C*(G:R).

3.d. Bavard duality for the relative Gromov seminorm. Our aim is now to use
bounded cohomology in order to obtain a statement analogous to Bavard duality
(Theorem 3.1) for the relative Gromov seminorm on H, (X, y), where y:[[ S! — X
is a collection of loops in a path-connected topological space X.

There is a notion of relative bounded cohomology, giving rise to a long exact
sequence as in the case of singular cohomology; we refer the reader to Frigerio’s
book [22, Section 5.7] for a definition. The duality principle [22, Lemma 6.1] then
implies that Hlf(X, y) = Hlf(Xy, [ISY) (with the £°°-seminorm) is the dual of
H(X.y) (with the £'-seminorm). But since 7;S' = Z is amenable, H; (]| S')
vanishes [22, Theorem 3.6] and the long exact sequence of (X, [[ S!) gives a natural
isomorphism

HZ(X,7;R) =~ HZ(X;R).
This isomorphism, together with the Kronecker product H b2 (X,y) x Hy(X,y) > R

(which is the relative analogue of the absolute Kronecker product introduced in Sec-
tion 3.b) defines a pairing

() HE(X;R) x Hy(X,7;R) — R.

It turns out that the £°°-seminorm (which is a norm in degree 2 by Theorem 3.2) is
dual to the £!-seminorm under this pairing.

Theorem B (Bavard duality for the relative Gromov seminorm). Let X be a countable
CW-complex and y: || S' — X. Given a real class a € Hy(X, y;R), the relative
Gromov seminorm of « is given by

ol = sup{ﬁ |u € HE(X:R:R) ~ {0}}.
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Proof. Duality between £!-homology and bounded cohomology [22, Lemma 6.1]
implies that

{u, o)

llee]l oo

ol = sup{ 1 [ € HZCX i), s 0}

In addition, a result proved independently by Bucher et al. [5, Theorem 1.2] and by Kim
and Kuessner [31, Theorem 1.2] implies that the isomorphism H bz X,y) = H bz (X)
is isometric for the £°°-norm. Together with the fact that ||u|c = 0 only if u = 0
in H b2 (X) (Theorem 3.2), this implies the result. [

We say that a class u € Hb2 (X;R) is extremal for @ € H»(X, y; R) if it realises
the supremum in Theorem B. Note that extremal classes exist for all « € H»(X, y; R)
by the Hahn—Banach theorem.

4. An application to scl in graphs of groups

The aim of this section is to give an example in the context of graphs of groups
where Theorem B can be used to understand the relative Gromov seminorm, which
then yields computations of stable commutator length.

4.a. Failure of isometric embedding for scl. One of the fundamental facts in the
theory of graphs of groups is that a vertex group embeds into the fundamental group of
the graph of groups. It is natural at first to try to make this inclusion map scl-preserving,
but that unfortunately does not work in general, even if edge groups are amenable (and
hence have vanishing stable commutator length [8, Proposition 2.65]).

Example 4.1. Let S be a closed genus-3 surface, and let 8 be a non-separating simple
closed curve in S. Consider the HNN-splitting ;.S = 7, T *z obtained by cutting S
along B, where T is a genus-2 surface with two boundary components, and the HNN-
extension identifies the two boundary components of 7T'; see Figure 2.

3 - (o

FIGURE 2
HNN-splitting of a closed genus-3 surface.
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Then the embedding 7, T < 7S is not scl-preserving. To see this, consider the
loop y represented in the picture. Note that 7 is a surface with non-empty boundary,
and y bounds an immersed (and in fact embedded) genus-2 surface with one boundary
component in 7', so a result of Calegari [8, Lemma 4.62] (which also follows from The-
orem E below) implies that scl, 7([y]) = % In S however, y bounds a genus-1 surface
with one boundary component, so scly, s([y]) < % This shows that the morphism

mT — mTx*g

is not scl-preserving

4.b. Isometric embedding for the relative Gromov seminorm. Example 4.1 shows
that the inclusion map of a vertex group in a graph of groups can fail to be scl-preserving.
However, using Theorem B, we are able to translate an isometric embedding result of
Bucher et al. [5] in bounded cohomology into the fact that the inclusion map preserves
the relative Gromov seminorm if edge groups are amenable.

Theorem C (£!-isometric embedding of vertex groups in graphs of groups). Let § be

a graph of groups whose underlying graph T is finite, with countable vertex groups

{Gy}vev(r), and amenable edge groups {Ge}ec g (). Fix a vertex v and consider the

inclusion map i: Gy, < m1§. Then for each class [c] € C{*"(Gy; Z), the embedding
ivu: Ha(Gy, [c; R) <> Ha (18, [iv(c)]: R).

is isometric for || - ||1.

Proof. By [5, Theorem 1.1], there is an isometric embedding

O: P HZ(Gy:R) = HE(m%;R),

which is a right inverse to

Py H (118:R) > P HZ (G R).
v v

Now let [c] € C{*(G; Z) and @ € Hy(Gy, [c]; R). Bavard duality for | - ||; (The-
orem B) implies that

u, o
lelh = supf Y | e 2GRy .
l[l00
Since i, ®u = u forallu € Hbz(Gv; R), and since ® preserves || - ||co, it follows that
(ixOu,a) 2 (Ou, iyyax) 2
ol = sup{ D [ € 2G| = s T € 26wy

(U, iysct)

2" o

< sup{ |u' e Hbz(nlﬁ;R)} = |liys]l1-
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This proves that ||||; < ||iy«@] 1, and the reverse inequality follows from the fact that
group homomorphisms are | - ||{-non-increasing. ]

With an extra homological condition, we can deduce an isometric embedding result
for scl.

Corollary 4.2 (scl-isometric embedding of vertex groups in graphs of groups). Let §
be a graph of groups whose underlying graph U is finite, with countable vertex groups
{Gv}vev(r), and amenable edge groups {Ge}ecg (). Fix a vertex v and assume that
the inclusion-induced map iyy: Ho(Gy; Q) — Hy(718; Q) is surjective. Then for
every [c] € Bfonj(Gv; 7),

scly g ([tu(0)]) = sclg, ([c]).

Proof. Fix a K(Gy, 1) space X, for each vertex v and a K(G,, 1) space X, for each
edge e, and form the corresponding graph of spaces X, which is a K(71§, 1). Let
Jv: Xy = X be the inclusion map, so that i, = j,,: Gy, = 711.

Given a map y: ][ S' — X, representing a conjugacy class [c] € B{""(Gy: Z),
the map y.: Hy (][ S') — H;(X,) vanishes, and Proposition 2.9 gives a commutative
diagram with exact rows (with omitted QQ-coefficients):

0
0 — Hy(Xy) — Ho(Xy.y) — Hi(J[SY) — 0

| o | o [

0 —— Hy(X) — Hy(X., jvy) — Hi(IIS1) — 0

Now the map j,,: H2(Xy) — H>(X) is surjective by assumption, so the Five lemma
implies that j,,: H>(Xy,y) = H2(X, jyy) is surjective. Hence, given a class 8 €
Hy (X, jyy; Q) with 8 = [[] S!], there exists & € Ha(X,, y; Q) with j,,a = B.
Since the diagram commutes, we have da = 98 = [[ [ S!]. Therefore, Proposition A
and Theorem C yield

1 1 1
sclg, ([e]) = llells = lljveerlls = 211811

Taking the infimum over g gives sclg, ([c]) < scly, g ([iv(c)]). The reverse inequality
follows from the general fact that group homomorphisms are scl-non-increasing. m

Note that Theorem C and Corollary 4.2 recover the main theorems of [34] on
isometric embeddings of surfaces for the relative Gromov seminorm: indeed, given an
oriented, compact, connected surface S and a w;-injective subsurface T, the funda-
mental group 7715 splits as a graph of groups, with vertex groups given by ;T and
the fundamental groups of all connected components of S ~ 7', and with edge groups
isomorphic to Z — and corresponding to cutting S along simple closed curves.
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FIGURE 3
Side-pairing for Dyck’s surface A.

4.c. Spectral gaps in HNN-extensions. Corollary 4.2 can be used, for instance, to
estimate the spectral gap for scl of certain HNN-extensions.

Example 4.3 (Dyck’s surface). Let A be the non-orientable surface given by the side-
pairing of Figure 3, so that m; A = {(a, b, c | [a,b] = ¢?). Dyck’s theorem [20] asserts
that A =~ RP2#RP2#RP2. Then for all g € ;A ~ {1}, there is an inequality

sclr,alg) = 5.

Moreover, this bound is sharp: sclz, A([c]) = %.

Proof. The group 1 A splits as an HNN-extension 71 A = G*z, where
G = (a1,az.¢ | araz = ¢?),

and the HNN-extension is given by the isomorphism (a;) = (a») sending a; to a.
Note that G is a free group, and both {a1, c} and {a,, c} are free bases of G. It
follows that (a;1) and (a,) are left relatively convex in G, meaning that the G-sets
G/{a1) and G/{a,) admit G-invariant orders. This will allow us to apply results of
Chen and Heuer [15] on spectral gaps in graphs of groups.
For g € my A ~ {1}, there are two cases:

o If g is hyperbolic for the HNN-splitting G *z, then since {a1) and {(a,) are left

relatively convex in G, it follows from [15, Theorem 5.19] that scl;, A([g]) > %

o If g is elliptic, then g is conjugate to a non-trivial element gy of G. Since G is
a free group, the Duncan—Howie theorem [19] implies that sclg ([go]) > % Now
Corollary 4.2 implies that scl, a([g]) = sclg([go]) > % whenever some multiple
of [go] lies in Bfonj(G; 7).

It now follows that any g € 1 A for which scly, a([g]) < % must be conjugate to some

go € G whose image in H1(G; Q) lies in Ker(H,(G; Q) — Hy (71 4;Q)) (since [go]
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has finite scl if and only if some multiple of [g¢] lies in Bfonj (G; Z), if and only if the
image of [go] in H;(G; Q) vanishes; see Remark 2.3). But we have
aj—a

H1(G:Q) = Qa; & Qc — Qa & Qb = H, (11 A: Q).

so Ker(H1(G; Q) — Hi(m14;Q)) = Qc. Therefore, any element g of 71 A with
scly, a([g]) < % must be conjugate into (c).

Now sclz, a([c]) = % sclz, a([[a, b]]) since ¢? = [a, b]. But sclg, a([[a, b]]) > %
since [a, b] is hyperbolic in G *7, and it is a general fact that the scl of a commutator is
at most % (since any commutator is bounded by a genus-1 surface with one boundary
component, see also [17, Example 2.6]), so scl, a([c]) = % as wanted. ]

In particular, the Duncan—-Howie theorem [19] implies that 771 A is not residually
free (this also follows from a result of Lyndon [32,33]). Moreover, it follows from a
theorem of Heuer [28] (see also [35]) that 1 A is not a subgroup of any right-angled
Artin group, and thus not special? in the sense of Haglund and Wise [26]. Note however
that 711 A is virtually special since its orientation double cover is an orientable closed
surface of genus 2.

5. An algebraic interpretation a la Hopf

We now prove a relative version of the Hopf formula, and explain how this can
be used to provide a purely algebraic interpretation of Theorem B. We focus on the
special case of the homology of a group relative to the conjugacy class of an element
(rather than that of a chain). An analogous Hopf formula could be given in the general
case, but the notation would become cumbersome.

5.a. Arelative Hopf formula. Recall that the classical Hopf formula computes H,(G)
when G is a group given by a presentation (see [4, Theorem I1.5.3]).

Theorem 5.1 (Hopf formula [29]). Let F be a free group, R < F, and G = F/R.
Then there is an isomorphism

H>(G;Z) =~ RN [F, F]/[F.R].

With the same setup as in Theorem 5.1, our goal is to compute H»(G, [w]; Z),
where [w] € C fonj(G; Z) is an integral conjugacy class represented by an element
w € G (see Remark 2.6 (i) for the relation between conjugacy classes of chains and
of elements). This is provided by the following theorem; our proof is topological and
inspired by [8, Section 1.1.6] and [39].

3To be more precise, 1 A is not A-special in the terminology of [26].
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FiGURE 4
The cell structure on X% | (with k = 2).

Theorem 5.2 (Relative Hopf formula). Let F be a free group, R < F, and G = F/R.
Let w be an infinite-order element of G, and let w € F be a preimage of w under
FAF /R. Then there is an isomorphism

Hy(G,[w]; Z) = (w)RN[F, F]/[F, R].

Proof. Let X be a K(G, 1) with a fixed basepoint xo and let y: S — X be a loop
based at xq representing w. Then H, (G, [w]) = H»(X, y) (see Definition 2.11), and
we construct a morphism

®: (w)RN[F,F] — Hy(X,y:7Z)
as follows. Let g € (w)R N [F, F]. Since g € [F, F], one can write
g = [a, b1l [a, bx),

with@;,b; € F.Seta; = p(@;) € G,b; = p(b;) € G and g = p(g) € G. The assump-
tion that g € (w)R in F means that g € (w) in G, so one can write g = w” for
some n € Z. Moreover, since w has infinite order, the integer n is uniquely determ-
ined by g. Let X ; be an oriented genus-k surface with one boundary component.
The surface X ; has a cell structure with one 0-cell o, (2k + 1) 1-cells with labels
a1, Bi,....ak, Bk, 8, and one 2-cell glued along the word §~![ay, B1] - [k, Bil;
see Figure 4.

First pick a degree-n map df: 0%;,; — S'. Then define amap f1: E;cl)l — X on
the 1-skeleton of X ; by sending e to the basepoint xo of X, each 1-cell oZ,- to a loop
representing a; in 71 (X, xo) = G, each ; to a loop representing b;, and define )
on § by

S =y odf:
|8

in particular, § is mapped to a loop representing g = w”. Since g = [a1,b1]-- - [ak, bi]
in G = m1(X, xo), the map fO: E,(cl)l — X can be extended over the 2-cell of X ;
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to f: X1 — X. Now the data of f and df define an admissible surface

Ji(Zg1,02k1) = (X, p).

Note moreover that the homotopy types of f and df are uniquely determined by the
choice of an expression [@1, b1] - - - [@k. bx]; this would fail if w had torsion because in
that case, the integer n is not unique; see Remark 5.3 (ii) below.

Now we define ®(g) by

D(g) = fulZk 1] € Ha(X,y: Z),

where [Zg 1] € H(Zk,1. 0Xk,1: Z) is the integral fundamental class of X ; (note
that 3¢ ; was chosen with an orientation).

The construction of ®(g) explained above depends a priori on the choice of an
expression g = [@1, by]- - - [@x., bx], which might not be unique. For now, we see ® as
a map defined on the monoid © of all formal expressions [@;, b;]-- - [ax. bx] whose
image in F lie in (w) R, and we will show that this induces a well-defined map on
(WYRN[F, F].

Claim. The map ®: ® — H,(X, y;Z) is a monoid homomorphism.

Proof of the claim. Consider two formal expressions
0 = (@b [ax.b] and 0" = [@.by]-[ag. by]
in ©. As explained above, this gives rise to admissible surfaces
f1(Ck1,08,1) = (X,y) and  f'1(2g,1,0%¢,1) — (X, p),
and we have ®(0) = fi[Z 1] and ®(0') = f,/[X,1]. Consider the wedge sum
Xy =2Zk1VE0.

The maps f and f” naturally induce f,: X, — X, and the fundamental classes of
Yk,1 and Xy ; sumto aclass [Xy] € Ho(2y, 0Xy; Z), where we define

ISy = 0%k, VS, C Sy,
Hence,

D(61) + @(62) = (fv)«[Zv].

Now there is a homotopy equivalence (Xv,0Xy) >~ (Zk4¢,1, 02k +¢,1), as illustrated in
Figure 5. This yields an admissible surface (Xx4¢,1,0Zg+¢,1) — (X, y) representing
the class ®(0) + ®(0’) in Ho (X, y; Z). But note that this admissible surface is exactly
the one obtained when the above construction is applied to 86’. This proves that

D(0) + B(O) = B(OY),

so @ is a monoid homomorphism. |
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FIGURE 5
The homotopy equivalence Xy 1 V Xp | >~ Zg4e.q (herek =L = 2).

Using the claim, we now prove that ® induces a well-defined map on (w)R N [F, F].
Consider two formal expressions 8, 6" € © defining the same element of (w) R N [F, F].
Write

0 = ar.bi]---[ak. bl

and consider its formal inverse
07! = [by.ay]- - [b1.a1] € ©

(which, despite our choice of notation, is not an inverse of 6 in the monoid ®!). Then
the formal expression 816’ represents the trivial element of F. This means that
the above construction for the formal expression =16’ can actually be performed
when the K(G, 1) space X is replaced with a K(F, 1) space XF. In other words, the
admissible surface f: (Z.1,0m.1) — (X, y) associated to 616’ factors through the
map Xr — X induced by F — G. Moreover, the image of 0%, ; is nullhomotopic
in X, from which it follows that

S«[Zm.al € Ho(XF:Z) € Hy(XF,V: Z),

where ¥: S! — X is a representative of 0 € F. But Hy(Xfp;Z) = Hy(F;Z) =0
since F is a free group, so [X,,,1] maps to zero in H»(XF, y; Z), and hence also in
H, (X, y;Z). Therefore, it follows from the claim that

0=0(0710") = o0 + (9,

and it is clear from the construction that ®(0~1) = —®(0), so ®(6) = P(#’) as wanted.
This proves that ® induces a well-defined map

O (W)RN[F,F] - Hy(X,y;7Z),

which is a group homomorphism by the claim.
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The homomorphism & is surjective since every element of H,(X, y;Z) can be
represented by a map from an orientable compact connected surface with one boundary
component — this follows from Proposition 2.18 and Lemma 2.20.

It remains to show the following result.

Claim. Ker ® = [F, R].

Proof of the claim. To prove that [F, R] C Ker ®, it suffices to show that for every
g € Fand7 € R, we have [g, 7] € Ker ®. But ®([g,7]) = fi[X1,1], where X; j isa
torus with one boundary component, with equator mapping to g and meridian mapping
to 7. Since the image of 7 in G is trivial, we may cut 2 ; along the meridian and fill
in the two resulting discs, obtaining a map

f1:(D?%,dD?) — (X, p).

We can glue f; to itself with reversed orientation along dD? to obtain f>:S? — X.
But X is assumed tobe a K (G, 1) so it is aspherical, and f is nullhomotopic. Therefore,
/1 is also nullhomotopic, and

felZ1.1] = (fi)«[D?] = 0.

This proves that ®([g,7]) = 0, so [F, R] C Ker ®.

Conversely, let g € Ker ®. Let f: (X, 0X) — (X, y) be an admissible surface
associated to an expression of g as a product of commutators by the above construction,
with ¥ = Xj ;. The assumption that g € Ker ® means that f,[X] = 0, so the map

fei Ha(2,0%:Z) — Ho(X,y;7Z)

is zero. Long exact sequences of pairs give a commutative diagram with exact rows
(with omitted Z-coefficients):

0 Hy(5.9%) 2 H(0%) —— Hi(%)

o | |

Hy(X) —— Hy(X.y) —0 Hy(S1) —— Hy(X)

0

If fu: H(0X) — H,{(S') were to be non-zero, then since H;(0%) = H,(S!) = Z,
the map fx: H1(0%) — H;(S!) would in fact be injective. But fi o d = 0, so the map

0: Hz(z, 82) — H1(8E)

would be zero, implying by exactness that H;(0X) = 0 since H1(0X) — H{(X) is
zero. This is a contradiction, and therefore the map

fe t HH(OZ) — H(SY)
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is zero. Therefore, the restriction of f to 0¥ is nullhomotopic, which implies in
particular that the image of g in G is trivial, i.e. g € R N [F, F]. Therefore, we are
reduced to the setting of the classical Hopf formula (Theorem 5.1),i.e. g € RN [F, F]
and ®(g) = 1 in H>(X;Z). Since ® coincides with the morphism giving the classical
Hopf formula (see, for instance, [39]), it follows that g € [F, R]. ]

We have constructed a surjective group homomorphism
O (W)RN[F,Fl— Hy(X,y:7Z)
with Ker ® = [F, R], so ® induces the desired isomorphism. ]

Remark 5.3. We note the following:

(i) In the proof of Theorem 5.2, the assumption that X is a K(G, 1) is essential.
This is why — contrary to the rest of this paper — we state the theorem in terms of the
relative homology of groups, rather than topological spaces.

(ii) Theorem 5.2 becomes false if w has finite order ¢ in G. Indeed, the (absolute)
Hopf formula (Theorem 5.1) says that H,(G; Z) is isomorphic to R N [F, F|/[F, R],
which has finite index in the right-hand side (w)R N [F, F]/[F, R] of Theorem 5.2
when w has finite order. But we know from Example 2.10 (iv) that

H>(G,[w];Z) = H2(G;Z) & Z,

so H»(G; Z) must have infinite index in H»(G, [w]; Z)!

Let us explain briefly where the missing homology classes are. Pick y: S! — X a
loop at x¢ € X representing w. Then the homology class corresponding to the integer
n € Z in the Z-summand of H,(G, [w]; Z) is represented by an admissible surface

f:(D%,3dD?%) — (X.y),

where D? is the disc, df: dD? — S! is a map of degree nq, and f: D? — X is an
extension of y o df to the disc (which exists since y"¢ is nullhomotopic).

Note that the underlying maps f: D? — X of the admissible surfaces representing
these ‘missing classes’ are nullhomotopic since the disc is contractible. This underlines
the importance of defining an admissible surface as the data of both maps f and df .

(iii) One can recover the classical Hopf formula (Theorem 5.1) from our proof by

observing that our isomorphism

~

(W)RN[F, F]/[F.R] = H»(G.[w]:Z)

sends R N [F, F]/[F, R]to H,(G;Z) € H>(G, [w]; Z). In other words, our construc-
tion maps an element g € (w) R N [F, F] to an absolute homology class if and only
if g has trivial image in G.
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5.b. Bavard duality through the lens of the Hopf formula. We next explain how
to obtain an algebraic restatement of Theorem B using the relative Hopf formula
(Theorem 5.2).

Recall from Section 3.c the definition of the bounded cochain complex C;'(G: R).
We denote by Zl% (G;R) the subspace of C bz(G; R) consisting of bounded 2-cocycles
on G, i.e. bounded maps ¥: G2 — R such that

V(g2,83) — V¥ (g182,83) + ¥ (g1,8283) — ¥ (g1,82) =0
forall g1,g82,23 € G.

Theorem D (Bavard duality via the Hopf formula). Let F be a (countable) free group,
R A F,and G = F/R. Let w € G and let w € F be a preimage of w under F 2 6.
Let o € H»(G, [w]; Z) and let

[@1.b1]- - [ak. bk] € (W)R N [F, F],

be a representative of V(«), where V: Hy(G, [w]; Z) =, (wW)RN[F, F1/[F, R] is
the isomorphism of Theorem 5.2. Set a; = p(a;) € G and b; = p(b;) € G. Then

W(Vf(ahbl) +ylaby, a) + Ylarbiart, b

+ ¥ (la1, b1l. az) + ¥ (lar, bilaz, bo) + Y (la1, bilazby.a5") + -+

+ ¥ (lar, b1l lak—1, bk—1lagbrai ' b)) | ¥ € ZZ (G R) ~ {0}},

|mm=wq

where 1. Hy (G, [w]; Z) — H»(G, [w]; Q) is the change-of-coefficients map.

Proof. Let X bea K(G,1)andlety:S! — X represent w. Recall that the isomorphism

>~

V: Hy (G, [w]; Z) = (W)R N [F, F]/[F, R]
was constructed in the proof of Theorem 5.2 by starting with a product of X commutators
in (w)R N [F, F], labelling the edges in a cellular decomposition of the compact
surface X ; with those commutators, mapping ¥ ; to X and considering the image
of the fundamental class [Xx 1] in H»(X, y) = H2(G, [w]). We will now be a bit
more specific about the choice of the map X ; — X. We start by picking singular
simplices 0y, ,...¢,: A" — X for each n-tuple (g1, ..., gn) € G" as in Section 3.c

(see, in particular, Figure 1), so that the map (g1, ..., &x) = Og,.....g, induces a chain

.....

homotopy equivalence
C«(G;R) = C5(X;R).

Take a one-vertex triangulation of X ; as in Figure 6.
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FIGURE 6

One-vertex triangulation of X 1.

We can construct the map f: Xx ; — X explicitly by sending each triangle of Xy ;
to the correct singular 2-simplex among the oy, ,,’s. We obtain in particular that

®) @ = fulZka] = (00161 + 4y, a7t + Tayp1art o1t + Olarbilas
+ Olay.bilazby T+ Olay by Jofag_y berJagbrag o) € H2(Xo v Z).
Now Bavard duality for H,(X, y) (Theorem B) gives
(u, )

2]l oo

lleee | =sup{ | u EH,JZ(X;]R)\{O}}.

Pick some u € HZ(X;R) = HZ(G;R) andlet € Z2(G;R) be a 2-cocycle such
that u = [/]. The chain homotopy equivalence (g1, ....gx) > Og,.....g, tells one how
to evaluate ¥ on singular (relative) 2-cycles spanned by the o, ¢,’s in C2(X;R): there
is an equality

(¥, Ggl,gz) = V(g1 82).

Therefore, (§) implies that the Kronecker product (u, ) is given by
(u,@) = Y(ar, b)) + y(abr,ay’) + y(aibiay', by + ¥ ([ar, bil, az)
+ ¥ ([a1,b1]az, ba) + -+ + ¥ ([ar,b1] -+ [ag—1, bk—l]akbkalzl,blzl)-
The result follows, remembering that ||u||cc = inf{||¥||co | [¥] = u}. ]

Remark 5.4. As explained in Remark 3.4, a quasimorphism ¢ € Q(G) defines a
bounded 2-cocycle d?¢ € ZZ (G:;R). Given an integral class a € H,(G, [w]; Z) with
da = n[S'], one can use the formula of Theorem D to obtain

([d*¢l.a) = n - ¢(w).
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Using the lower bound on || - ||; given by Theorem D together with the connection
between scl and || - ||; (Proposition A), it follows that

¢ (w)

1
scl(w]) = = sup ————.
2 p€Q(G) 2||d2¢”oo

On the other hand, classical Bavard duality (Theorem 3.1) says that

¢ (w)
scl(w]) = sup —————.
P (G) 2||d2¢||oo
Feeding quasimorphisms into Theorem D has yielded a non-optimal lower bound
on scl. The reason for this is the difference between a cocycle ¥ € Z g(G; R) and its
class [y] € Hlf(G; R): given ¢ € Q(G), there are inequalities [8, Lemma 2.58]

1
5I|d2¢lloo < 1d*¢]lloo < lld*¢lloo,

and ||[d?@]||co might not be realised by the coboundary of a quasimorphism.

6. The bounded Euler class

Calegari [7] exhibited a connection between the rotation quasimorphism, area, and
stable commutator length in fundamental groups of compact hyperbolic surfaces with
non-empty boundary. We explain how this generalises to a statement about the relative
Gromov seminorm in possibly closed hyperbolic surface groups.

6.a. Equivariant (bounded) cohomology. To define the bounded Euler class, we
will use the language of equivariant cohomology.

Given a set X with an action of a group G, a degree-n homogeneous G-cochain
(with real coefficients) is a map ¥: X1 — R which is invariant under the diagonal
action of G on X!, in the sense that

W(XO’---,xn) = w(gx()v""gxn)

for all xg,...,x, € X and g € G. We denote by C"*(G ~ X;R) the R-vector space
of such cochains; they form a cochain complex C *(G ~, X ; R) with coboundary maps

d":C" (G ~ X;R) = C"(G ~, X;R) given by
n .
d" Y (xo.....xn) =Y (=1 ¥(xo..... % ... xn),
i=0

where the hat denotes omission. The cohomology of C*(G ~, X;R) is denoted by
H*(G ~ X;R).
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Remark 6.1. We note the following:

(i) If G acts on itself by (left) multiplication, then there is an isomorphism
H*(G ~ G;R) = H*(G;R),
which is induced by the map 6: C*(G;R) — C*(G ~, G;R) given by

(0V)(go.-...8&n) == V(Lo ' 81,8182+ 8nl18n)

for v € C"(G;R) (see Section 3.c for our definition of C*(G; R)).

(ii) Given a choice of basepoint x in a G-set X, there is a morphism
H*(G ~ X;R) - H*(G ~, G;R)
induced by the map w,: C*(G ~ X;R) - C*(G ~ G;R) given by

(WXW)(g()’ e ’gn) = w(goxv e ’gnx)

for ¥ € C"(G ~ X;R). In fact, this morphism is independent of the choice of x.
Combining this with (i), we obtain a morphism

n:H*(G ~ X;:R) - H*(G:R).

Similarly to the definition of bounded cohomology for spaces and groups (see Sec-
tion 3.b and Section 3.c), there is a bounded version of equivariant cohomology: the
complex C; (G ~ X;R) of bounded homogeneous G-cochains is the subcomplex of
C*(G ~ X;R) consisting of bounded G-equivariant maps X”+! — R. The corres-
ponding cohomology is denoted by H,' (G ~ X;R), and there is a morphism

HY(G ~ X:R) > H}(G:R)

as in Remark 6.1(ii). We refer the reader to [6, Section 3.1] for more details on equivari-
ant cohomology.

6.b. Bounded Euler class of a circle action. A choice of hyperbolic structure on a
connected surface S defines an action of 771 S on the hyperbolic plane H?. This induces
an action on the boundary of H?2, which is homeomorphic to the circle S!. In general,
the dynamics of an action of a group G on the circle is encoded by the bounded Euler
class, which is a class in H bz(G) that was introduced by Ghys [24] as a generalisation
of Poincaré’s rotation number [37, 38].

The bounded Euler class has several equivalent definitions [6], and for our purpose,
it will be helpful to define it from the point of view of the orientation cocycle.
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Consider the action of the group Homeo™ (S!) of orientation-preserving homeo-
morphisms of the circle on S!. The orientation cocycle is the bounded 2-cochain
Or € CZ(Homeo™* (S') A S';R) given by

+1 if the triple (x, y, z) € (S1)3 is positively oriented,
Or(x,y,z) = 4 —1 ifthe triple (x, y,z) € (S')3 is negatively oriented,
0 if the triple (x, y, z) € (S1)3 is degenerate.

This turns out to be a cocycle, so it defines [Or] € HZ(Homeo™t(S!) ~, S';R).

Definition 6.2. The universal real bounded Euler class for circle actions is
1
eug,R = —En[Or] € Hbz(Homeo’L(Sl);R),

where 11: H bz (Homeo™ (S1) ~, S1) - H Z (Homeo™ (S1)) is the morphism described
in Remark 6.1 (ii).

Given an action p : G — Homeo™ (S') of a group on the circle, the (real) bounded
Euler class of the action is

eu]}f(,o) =p* eu]}} € HZ(G;R).

This measures how far p is from being a rotation action on S! [22, Corollary 10.27].

By definition,
1 1
ey (Plloo < Il euy loo < 511 Orlloo = -
See [6,25] for more details on the bounded Euler class.

6.c. Area of a relative 2-class. In [7], Calegari defines a notion of area for a homo-
logically trivial y:[[ S! — S in an oriented, connected, hyperbolic surface S with
non-empty boundary. In his definition, it is crucial that S has non-empty boundary
because then H,(S) = 0, so the map d: H»(S,y) — Hi(] [ S?) is injective and there
is a unique class o € 971 ([[ [ S!]). We now explain how to generalise Calegari’s notion
of area to the case where S is closed by defining the area of a class in H,(S, y; R).

Let S be a hyperbolic surface with (possibly empty) geodesic boundary. Let
y:]1IS' — S be a collection of geodesic loops in S, and let & € H,(S, y:R). By
definition,

Hy(S.y:R) = Hy(S,. [ [ S":R).

The mapping cylinder S, has no geometric structure allowing us to measure areas, but
there is a map of pairs

(Sy. [Is") = (s.»(L]s")
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defined by collapsing the cylinder. This induces a morphism

Hy(S.y:R) — Ha(S.y(] [ S"):R).
and we will measure the area of « in the image. We pick a cell structure on S such that

o the O-skeleton of S contains all multiple points of y (i.e. all points p € S for which
there are s # ¢ € [ [ S! such that p = y(s) = y());

o the 1-skeleton of S contains y(] [ S!); and
e each 2-cell is positively oriented (for the orientation inherited by §).

One can choose a cellular relative 2-cycle ¢ representing the image of @ in the homology
H>(S,y(LI S"); R), and ¢ is in fact unique because both C5(S) and C5(y (1 S'))
are zero.

Definition 6.3. Let y:[[S! — S be a collection of geodesic loops in a hyperbolic
surface S. Given o € H,(S, y; R), the area of « is defined by

area(o) = Z Ao area(o),

where Y, Ago € ZSU(S, y(11 S1); R) (with A, € R for each 2-cell o) is the unique
cellular relative 2-cycle representing the image of a in Ha (S, y([ [ S1); R).

Remark 6.4. Let f:(X,0%) — (S, y) be an admissible surface. Assume that ¥ is
equipped with a hyperbolic structure with respect to which the map f: X — Sisa
local isometric embedding. Then there is an equality

area( fx[X]) = area(X),

where f.[X] is seen as a class in H>(S, y; R).

6.d. Pleated surfaces. In order to obtain good estimates on the Gromov seminorm
for a hyperbolic surface S, it will be helpful to measure it with special admissible
surfaces, called pleated surfaces. The heuristics behind pleated surfaces is the following:
if X is an orientable compact connected surface, then its simplicial volume is given
by [[Z]]l1 = —2x~ (X); however, there is no triangulation of X realising this equality.
Instead, the simplicial volume is realised by an ideal triangulation. The idea is therefore
to endow admissible surfaces 3 with ideal triangulations that are compatible with the
hyperbolic structure on S.

Pleated surfaces, which were introduced by Thurston [41, Section 8.8], will achieve
this.

A geodesic lamination A in a hyperbolic surface X is a closed subset of ¥ which
decomposes as a disjoint union of complete embedded geodesics. Each such geodesic
is called a leaf of A.



A. MARCHAND 38

Definition 6.5. Let M be a hyperbolic manifold. A pleated surface in M is a map
f: X — M, where X is a finite-area hyperbolic surface, such that

(i) f sends each arc in X to an arc of the same length in M ;

(ii) there is a geodesic lamination A C X such that f sends each leaf of A to a
geodesic of M, and f is totally geodesic (i.e. sends every geodesic to a geodesic)
on X~ A;and

(iii) if ¥ is non-compact, then f sends each small neighbourhood of each cusp of £
to a small neighbourhood of a cusp of M.

The geodesic lamination A is called a pleating locus for f.

For a more detailed introduction to pleated surfaces in hyperbolic manifolds, we
refer the reader to [3, 12,23].

We now show, following Calegari [8, Section 3.1.3], how to obtain pleated admiss-
ible surfaces. The fundamental tool for this is Thurston’s spinning construction.

Lemma 6.6 (Thurston [41, Section 8.10]). Let P be a pair of pants (i.e. a compact
hyperbolic surface of genus 0 with three boundary components) and let M be a compact
hyperbolic surface or a closed hyperbolic manifold. Given a map f: P — M, either

(i) the image of w1 P under fy is a cyclic subgroup of w1 M ; or

(ii) the map f can be homotoped to a pleated surface.

Proof. Consider a lift ]7 P — M of f to universal covers. Note that M is a convex
subset of the hyperbolic n-space H”, and P is a convex subset of HZ2. Pick a geodesic
triangle A in P with one vertex on each boundary component. This lifts to a geodesic
triangle A in a fundamental domain of P C HZ2.

Now the spinning construction consists in dragging vertices of A along the lifts
of P to H?, and moving them to the boundary dH?. See Figure 7. This construction
is called spinning because, in P, the triangle A has been spun around the boundary
components of P. In this way, one obtains a geodesic lamination A on P with three
leaves, whose complement consists of two open ideal triangles.

There are two cases:

(1) If f(A) is degenerate (i.e. the images of the three leaves of A have the same
axis in M), then fi(7y P) generates a cyclic subgroup of 71 M .

(ii) Otherwise, construct a map f’: P — M homotopic to f as follows. For each
boundary component 9; of P, we define f’(9;) to be the unique closed geodesic in the
homotopy class of f(d;). Each leaf A; of A is mapped under f to a quasi-geodesic
in M, which can be straightened to a geodesic y;. Set f’(A;) = y;. Finally, each
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HZ

FiGure 7
Thurston’s spinning construction.

component of P ~ A is an open ideal triangle, and since its image is non-degenerate
in M, there is a unique totally geodesic extension of f” to this triangle. |

Using Thurston’s spinning construction, we can obtain pleated admissible surfaces.
This is an adaptation of a lemma of Calegari [8, Lemma 3.7].

Lemma 6.7 (Pleated admissible surfaces). Let M be a compact hyperbolic surface
or a closed hyperbolic manifold. Let y: ]| S' — M be a collection of geodesic loops
in M, no two components of which have the same image in M. Then for every rational
class @ € Hy(M,y; Q) and for every ¢ > 0, there is a pleated admissible surface
f1(2,0%) — (M, y) such that fi[X] = n(X)a for some n(X) € N>y, and

—2x" (%)
M ol < W

< llafl; +e.

Proof. By Lemma 2.20, there is a simple, incompressible, admissible surface
f1(2,0%) — (M. y)

satisfying (1), with fi[X] = n(X)« for some n(X) € N5 ;. Now take a pants decom-
position {P;}; of X, as in Figure 8. The idea is to apply the spinning construction
(Lemma 6.6) to each P;. We can perform the construction separately on each connected
component of X; to simplify notations, we therefore assume that X is connected. Fix a
pants component P;. We want to apply Lemma 6.6 to the restriction fp,: P; — M
we need to ensure that f, (7T, P;) is non-cyclic. We distinguish three cases, based on
the type of P;.
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FiGURE 8

Pants decomposition of 3.

There are three types of components in the pants decomposition:
(i) pairs of pants that are part of a twice-punctured torus (e.g. P,,.. ., P5 in Figure 8);

(ii) pairs of pants that are glued to themselves to form a once-punctured torus (e.g. Pg
in Figure 8);

(iii) pairs of pants that are not of type (i) or (ii) (e.g. Py, P; in Figure 8).

We first show that, if P; of type (iii), then fi (1 P;) cannot be cyclic. Recall
from Section 2.a that y represents [c] = [}, w;] € C} M(7ry M ; Z)), where no two of
the w;’s are conjugate or generate a cyclic subgroup of 71 M (by assumption on y).
Since f is an admissible surface, each boundary component of ¥ maps to a power
of some w;, and simplicity implies that no two boundary components of % map to
powers of the same w;. We can assume that the components {P;}; of type (iii) are
ordered as { Py, ..., P}, in such a way that Py has two boundary components on 0%,
and each P; is glued to P;_; along one boundary component and has one boundary
component on dX (this is consistent with the notations of Figure 8, where k = 1).
With these notations, we can order the w;’s in such a way that fi (71 Po) = (wo, w1),
and each P; has one boundary component glued to P;_; and whose image represents
an element of (wy, ..., w;), and one boundary component lying on 93, and whose
image represents a power of w; 1. In particular, it follows that f, (71 P;) is not cyclic
for any P; of type (iii).

Now assume that P; is of type (i). Two of the boundary components 0+ and 0_ of P;
are meridians in a twice-punctured torus (04 are depicted in Figure 8 for P; = Py).
Let o be the equator of this twice-punctured torus and let 4: X — X denote the Dehn
twist along o, If fu(r1 P;) = (f«(0+), f«(9-)) is cyclic, then replace 04 with 8404 ;
this amounts to defining a new pants decomposition of 3. For this pants decomposition,
(f«(04), f«(d-)) is not cyclic because fyxa and fyd+ do not commute by incompress-
ibility (otherwise [a, d+] would be represented by a simple closed curve in X with
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nullhomotopic image in M). It might be that, after this modification, the adjacent pair
of pants P; in the same twice-punctured torus as P; has cyclic image in 7r; M . In this
case, one applies the Dehn twist §, a second time.

Assume finally that P; is of type (ii). Then P; is glued to itself to form a once-
punctured torus. Denote by d; one of the two boundary components of P; that is glued
to form a meridian in the once-punctured torus, and by 8 the equator (d; and § are
depicted in Figure 8 for P; = Pg). Then fi(m1 P;) = (f«(31), fx(31)/*®)), where
the exponent denotes conjugation. If f, (71 P;) is cyclic, then there are w € 71 M and
k,{ € Z such that

fe@) = w* = fuBw' f(B) .

But 7y M is Gromov-hyperbolic, and therefore it is known to be a CSA group, in the
sense that all its maximal abelian subgroups are malnormal; see [18, Example 10].
Hence (w) is malnormal (after possibly replacing w with a generator of a maximal
abelian subgroup containing it), and fi(91) € (w) N (w)*®) < {1}, s0 fu(B) € (w).
In particular, fx[d, 8] = 1, which contradicts incompressibility. This proves that
f« (1 P;) cannot be cyclic.

Therefore, after performing the above modifications, we have a pants decomposition
of ¥ for which fx (1 P;) is never a cyclic subgroup of 7y M. By Lemma 6.6, the
restriction of f to each P; can be homotoped to a pleated map. Moreover, these
homotopies can be performed simultaneously as the image of each boundary component
of a pair of pants is homotoped to the unique geodesic in its homotopy class. Hence,
we obtain a pleated map homotopic to f, which is still an admissible surface and
satisfies (). ]

Remark 6.8. In fact, we will not need the estimate () on the Gromov seminorm in
Lemma 6.7: it will be enough for us to know that every rational class is represented by
a pleated admissible surface.

6.e. Bounded Euler class and area. A hyperbolic structure on a surface S induces

an action of 7r;.S on the boundary of the hyperbolic plane, which is a circle. Hence, we

get a circle action p: 71§ — Homeo™ (S1), defining a bounded Euler class eu,;R (p) €

Hb2 (1 S; R) as explained in Section 6.b. We will call it the bounded Euler class of S

and denote it by eu})R (S). It can also be seen as an element of H bZ(S ;R); see Section 3.c.
The following is implicit in Calegari’s book [8, Lemma 4.68].

Lemma 6.9 (Bounded Euler class and area). Let y:[[ S! — S be a collection of
geodesic loops in a compact hyperbolic surface S. Let @ € Hy(S, y; Q) be a rational

class. Then
area(o) = —2n(euﬂb§(S),a).
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Proof. Lemma 6.7 yields a pleated admissible surface f: (X, dX) — (S, y) with
J«[Z] = n(X)« for some n(X) € N>j. Hence,

1
n(x)

Recall that eu,;R is defined as the image of —%[Or] in Hbz(HomeoJr (S1)); see Sec-
tion 6.b. The pleated structure on X defines an ideal triangulation, and the Kronecker
product (euiR (S), f«[X]) is therefore given by

(euy (S), @) = (euy (S), fu[Z]).

(e} (9). £u[5)) = —3 Y Or(/ @)

where the sum is over all triangles o in this ideal triangulation, and Or( f(0)) is 41
if f(o) is positively oriented, —1 if f(o) is negatively oriented, and O if f (o) is
degenerate. But each f(o) is an ideal triangle in S, and contributes 7 Or( f (o))
to area() . f (o)) by the GauB—Bonnet theorem. Therefore,

area(a) = " 12) area(fx[X]) = n(IE) area(z f(o))
_ n(”_z) > 0r(f(0) = _nz(’; ) (euk (S). fx[Z])
= —2n(eu§(S),a). "

A class @ € Hy(S, y; R) is said to be projectively represented by a positive immer-
sion if there is an admissible surface f: (X, 0X) — (S, y) with fi[X] = n(Z)a for
some n(X) € N5y, and such that f is an orientation-preserving immersion.

The following is now a straightforward generalisation of a result of Calegari [8,
Lemma 4.62].

Theorem E (Extremality of the bounded Euler class). Let y:[[S' — S be a collec-
tion of geodesic loops in a compact hyperbolic surface S. Let o € Hy(S, y; Q) be
projectively represented by a positive immersion f:(X,0%) & (S, y). Then

loll = =22 — i s).a).

In other words, f is an extremal surface and — euélf (S) is an extremal class for a.

In particular, ||a|; € Q.

Proof. Note that X inherits a hyperbolic structure from S for which f is a local
isometric embedding, and area(X) = n(X) area(«) (see Remark 6.4). By the Gaufi—
Bonnet theorem,

=2ny () = 27y (X) = area(X) = n(X) area(c).
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Therefore (using the topological interpretation of || - ||1; see Proposition 2.18),

2y _1 — _2(eyR
—E =7 area(a) = —2(eu; (S), ),

lleelly <
where the last equality follows from Lemma 6.9. We have || eu]}f (oo < %, so Bavard
duality for || - || (Theorem B) gives

w < e -

_ R <
2w (50) = TR () S

Remark 6.10. In the case where S has non-empty boundary, the converse of The-
orem E holds: if ||¢|; = —2(eu]}§ (S),a), then « is projectively represented by a positive
immersion [8, Lemma 4.62]. However, this uses the existence of extremal surfaces
for ||e||1 (see [8, Remark 4.65]), which is not known if S is closed.
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