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Bavard duality for the relative Gromov seminorm
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Abstract. The relative Gromov seminorm is a finer invariant than stable commutator length
where a relative homology class is fixed. We show a duality result between bounded cohomology
and the relative Gromov seminorm, analogously to Bavard duality for scl. We give an application
to computations of scl in graphs of groups. We also explain how our duality result can be given
a purely algebraic interpretation via a relative version of the Hopf formula. Moreover, we show
that this leads to a natural generalisation of a result of Calegari on a connection between scl and
the rotation quasimorphism.
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1. Introduction

Stable commutator length, or scl, is an invariant of groups that can be thought of as
a kind of homological `1-norm on the commutator subgroup. It has attracted attention
for its connections with various topics in geometric topology and group theory; see
Calegari’s book [8] for a comprehensive survey. However, scl has proved very hard to
compute: Calegari [9] showed that scl is computable and has rational values in free
groups, and Chen [14] generalised this to certain graphs of groups, encompassing
previous results of various authors [10,13,16,40,42], but neither computability nor
rationality of scl are known for closed surface groups.

In [34], the author approaches the problem of understanding scl in surface groups
by examining whether or not certain embeddings of surfaces are isometric for scl. A
conclusion of that paper is that some of the results that one can prove for scl in free
groups can only be generalised to closed surface groups if one works in a fixed relative
homology class. More precisely, the author generalises a result about scl in free groups
to one about the relative Gromov seminorm.

https://creativecommons.org/licenses/by/4.0/
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The relative Gromov seminorm can be defined as the `1-seminorm on H2.X; 
/,
where X is a topological space, and 
 W

`
S1 ! X is a collection of loops in X ;

see Section 2 for complete definitions. This was first introduced in [34] but the idea
is implicit in the work of Calegari (see, for instance, [7, Remark 3.18]). The relative
Gromov seminorm is connected to scl via the following proposition.

Proposition A (Gromov seminorm and scl). Let X be a path-connected topological
space and let Œc� 2 C conj

1 .�1X IZ/ be an integral conjugacy class represented by a
map 
 W

`
S1 ! X . Then

scl�1X .Œc�/ D
1

4
inf
®
k˛k1 j ˛ 2 H2.X; 
 IQ/; @˛ D

�a
S1
�¯
;

where @WH2.X;
 IQ/!H1.
`
S1IQ/ is the boundary map in the long exact sequence

of the pair .X; 
/ (see Proposition 2.9).

The metastrategy here is that one might be able to obtain information about stable
commutator length by first understanding the relative Gromov seminorm, and then
infimising over H2.X; 
/.

A pioneering result in the study of stable commutator length was the discovery of
Bavard duality [1], showing that the dual space of the scl-seminorm can be understood
in terms of quasimorphisms; see [8, Section 2.5] for more details. Bavard duality
has led to a vast array of work on scl, most notably yielding various spectral gap
results [2, 11, 16, 21, 28], and it is natural to ask for an analogue in the context of
the relative Gromov seminorm. Combining several well-known results, we show that
bounded cohomology provides such an analogue:

Theorem B (Bavard duality for the relative Gromov seminorm). Let X be a countable
CW-complex and 
 W

`
S1 ! X . Given a real class ˛ 2 H2.X; 
 IR/, the relative

Gromov seminorm of ˛ is given by

k˛k1 D sup
²
hu; ˛i

kuk1
j u 2 H 2

b .X IR/ X ¹0º

³
:

The purpose of the present paper is to apply Theorem B in three different directions.
The first one is in the context of graphs of groups, where we are able to use Theorem B
and an isometric embedding theorem in bounded cohomology of Bucher et al. [5] to
show that vertex groups are isometrically embedded for the relative Gromov seminorm:

Theorem C (`1-isometric embedding of vertex groups in graphs of groups). Let G be
a graph of groups whose underlying graph � is finite, with countable vertex groups
¹Gvºv2V.�/, and amenable edge groups ¹Geºe2E.�/. Fix a vertex v and consider the
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inclusion map ivWGv ,! �1G . Then for each class Œc� 2 C conj
1 .GvIZ/, the embedding

iv�WH2.Gv; Œc�IR/ ,! H2.�1G ; Œiv.c/�IR/

is isometric for k � k1.

We show in Section 4 that the analogous statement for scl does not hold, but that
Theorem C can still yield computations of stable commutator length in certain HNN-
extensions. For example, we compute the spectral gap of scl in Dyck’s surface group
and deduce from the Duncan–Howie theorem [19] that it is not residually free.

The second application is a purely algebraic interpretation of Theorem B via the
Hopf formula. We prove in Theorem 5.2 that there is a relative version of the Hopf
formula: if G D F=R is a quotient of a free group F , and an infinite-order conjugacy
class Œw� in G is represented by xw 2 F , then there is an isomorphism

H2.G; Œw�IZ/ Š h xwiR \ ŒF; F �=ŒF;R�:

We obtain a new interpretation of Theorem B from this point of view.

Theorem D (Bavard duality via the Hopf formula). Consider an integral class ˛ 2
H2.G; Œw�IZ/ represented by a product of commutators

Œxa1; xb1� � � � Œxak; xbk� 2 h xwiR \ ŒF; F �;

and let ai and bi be the respective images of xai and xbi under F !G. Then the Gromov
seminorm of ˛ (seen as a rational class) is given by

k˛k1 D sup
²

1

k k1

�
 .a1; b1/C  .a1b1; a

�1
1 /C  .a1b1a

�1
1 ; b�11 /C � � �

C  
�
Œa1; b1� � � � Œak�1; bk�1�akbka

�1
k ; b�1k

��
j  WG2 ! R a bounded 2-cocycle

³
:

Our third application is a generalisation of a result of Calegari [7] on a connection
between scl and the rotation quasimorphism in compact hyperbolic surfaces S . Calegari
proves in particular that, when @S ¤¿, any immersed admissible surface is extremal for
scl, and when such a surface exists, then the rotation quasimorphism is also extremal [7,
Proposition 3.8]. He also proves that, in the closed surface case, immersed admissible
surfaces exist for all rational chains [7, Theorem C], and he hints at the fact that his
arguments give extremality of immersed admissible surfaces for the relative Gromov
seminorm [7, Remark 3.18]. We make this explicit, using the bounded Euler class
as the analogue of the rotation quasimorphism in the context of the relative Gromov
seminorm.
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Theorem E (Extremality of the bounded Euler class). Let 
 W
`
S1 ! S be a collec-

tion of geodesic loops in a compact hyperbolic surface S . Let ˛ 2 H2.S; 
 IQ/ be
projectively represented by a positive immersion f W .†; @†/# .S; 
/. Then

k˛k1 D
�2��.†/

n.†/
D �2heuR

b .S/; ˛i;

where euR
b
.S/ 2 H 2

b
.S IR/ is the real bounded Euler class of S . In other words, f is

an extremal surface and � euR
b
.S/ is an extremal class for ˛. In particular, k˛k1 2 Q.

Outline of the paper. We start in Section 2 by introducing the homology of a space
relative to a collection of loops and the associated `1-seminorm; we show that it can
be given a topological interpretation and deduce Proposition A, which connects it
to stable commutator length. We then show in Section 3 how bounded cohomology
gives a homological version of Bavard duality, namely Theorem B. We give a first
application in Section 4 to the context of graphs of groups, yielding Theorem C. In
Section 5, we prove a relative Hopf formula and obtain Theorem D. Finally, Section 6
is devoted to the connection between the relative Gromov seminorm and the bounded
Euler class, leading to Theorem E.

While Section 2 and Section 3 lay the foundations of this paper, Section 4, Section 5,
and Section 6 can be read independently of each other.

2. The relative Gromov seminorm

The Gromov seminorm will be our measure of complexity for relative homology
classes. We approach it from two points of view: first as an `1-seminorm, then as a
measure of the minimal complexity of surfaces representing a given class. We will
show that, for rational classes, those two points of view coincide. This is well known for
absolute homology [8, Section 1.2.5], and we adapt previous arguments to the relative
case.

2.a. Conjugacy classes of 1-chains. Let X be a path-connected topological space,
and let G D �1X . There is a correspondence between free homotopy classes of loops
S1 ! X and conjugacy classes of elements of �1X . In this paper, we are interested in
free homotopy classes of finite collections of loops

`
S1! X , which can be encoded

by certain classes of 1-chains on �1X , as we explain below.
Fix a coefficient ring R D Z or Q or R. We denote by Cn.GIR/ the group of

n-chains on G with coefficients in R:

Cn.GIR/ WD
M

g1;:::;gn2G

R.g1; : : : ; gn/:
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These form a chain complex C�.GIR/, with boundary maps

dnWCn.GIR/! Cn�1.GIR/

given by

dn.w1; : : : ; wn/ WD .w2; : : : ; wn/ � .w1w2; w3; : : : ; wn/C .w1; w2w3; : : : ; wn/

� � � � C .�1/n�1.w1; : : : ; wn�2; wn�1wn/C .�1/
n.w1; : : : ; wn�1/:

The homology of the chain complex C�.GIR/ is the group homology H�.GIR/.
See [43, Section 6.5] for more details: our C�.GIR/ is the tensor product of the
ZG-module R (with trivial G-action) with the bar resolution of G.

We will also use the following notations:
� Zn.GIR/ WD Ker.dn/ � Cn.GIR/ is the group of n-cycles;
� Bn.GIR/ WD Im.dnC1/ � Zn.GIR/ is the group of n-boundaries.

We now focus on 1-chains, i.e. elements of C1.GIR/ D
L
g2G Rg. The support

of a 1-chain c D
P
g �gg (with �g 2 R for g 2 G) is the finite set

Supp c WD ¹g 2 G j �g ¤ 0º:

We consider the sub-R-module K.GIR/ of C1.GIR/ spanned by elements of the
form .w � wt / for w; t 2 G, where we write wt D t�1wt .

Remark 2.1. K.GIR/ � B1.GIR/ � Z1.GIR/ D C1.GIR/.

Proof. The equality Z1.GIR/ D C1.GIR/ follows from the fact that d1 D 0, and the
inclusion B1.GIR/ � Z1.GIR/ is because C�.GIR/ is a chain complex. It remains
to show that K.GIR/ � B1.GIR/. This follows from the following computation,
for w; t 2 G:

d2
�
.t�1; wt/C .w; t/ � .t�1; t / � .1; 1/

�
D .wt � wt C t�1/C .t � wt C w/ � .t � 1C t�1/ � .1 � 1C 1/

D w � wt :

Definition 2.2. The R-module of conjugacy classes of chains on G with coefficients
in R is the quotient

C
conj
1 .GIR/ WD C1.GIR/=K.GIR/:

We will also denote by Bconj
1 .GIR/ the image of B1.GIR/ in C conj

1 .GIR/; elements
of Bconj

1 .GIR/ are called conjugacy classes of boundaries.1

1Compare with [8, Definition 2.78], where Calegari introduces a quotient of Bconj
1 .GIR/.
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We denote by � WC1.GIR/� C
conj
1 .GIR/ the projection. Given a 1-chain c 2

C1.GIR/, we write Œc� WD �.c/ 2 C conj
1 .GIR/.

Note that there is a new chain complex

� � �
dnC1

���! Cn.GIR/
dn
�! � � �

d3
�! C2.GIR/

dc
2
WD�ıd2

�������! C
conj
1 .GIR/

d1D0
���! C0.GIR/;

which we denote by C conj
� .GIR/. In fact, this chain complex can be used to compute

the first homology of G.

Remark 2.3. There is an isomorphism H1.GIR/ Š C
conj
1 .GIR/=B

conj
1 .GIR/.

Proof. There is a commutative diagram with exact rows:

C2.GIR/

C2.GIR/

C
conj
1 .GIR/

C1.GIR/

H1.C
conj
� .GIR//

H1.GIR/

0

0

D

� ��
d c2

d2

Given ˛ 2 Ker�� � H1.GIR/, pick a 2 C1.GIR/ mapping to ˛ under C1.GIR/!
H1.GIR/. Then �.a/ 2 Im.d c2 /, i.e. there is b 2 C2.GIR/ such that

a � d2b 2 Ker � D K.GIR/:

ButK.GIR/ � B1.GIR/ D Im d2 (see Remark 2.1), so a 2 Im d2 and ˛ D 0. There-
fore, ��WH1.GIR/! H1.C

conj
� .GIR// is an isomorphism, which proves the result

since
H1.C

conj
� .GIR// Š C

conj
1 .GIR/=B

conj
1 .GIR/:

2.b. Standard form for conjugacy classes of chains. We now give for each conjugacy
class of chains in C conj

1 .GIR/ a standard representative in C1.GIR/ having a natural
topological counterpart.

This standard representative will be unique up to reordering and conjugacy, and
we will use the following lemma to prove uniqueness:

Lemma 2.4. Let � 2 K.GIR/. Suppose that there is no pair of distinct conjugate
elements in Supp �. Then � D 0.

Proof. By definition, � can be written as a linear combination

(�) � D

rX
iD1

�i .wi � w
ti
i /;

with �1; : : : ; �r 2 R X ¹0º, w1; : : : ; wr 2 G, t1; : : : ; tr 2 G, and wi ¤ w
ti
i for all i .
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We choose a decomposition (�) such that r is minimal. Assume for contradiction
that � ¤ 0. In particular, r � 1 and Supp � ¤ ¿. After reordering, we may assume
that at least one of wr and wtrr lies in Supp �. However, there is no pair of distinct
conjugate elements in Supp �. Without loss of generality, we can therefore assume that
wr 2 Supp � and wtrr 62 Supp �. Now define

I1 WD ¹i < r j wi D w
tr
r º; I2 WD ¹i < r j w

ti
i D w

tr
r º:

The sets I1 and I2 are disjoint since wi ¤ w
ti
i for all i , and we also set

I0 WD ¹1; : : : ; r � 1º X .I1 q I2/;

so that I0; I1; I2 form a partition of ¹1; : : : ; r � 1º. Since the coefficient of wtrr in �
vanishes, we have

�r D
X
i2I1

�i �
X
i2I2

�i :

Therefore, setting pi D .wi � w
ti
i / for each i 2 ¹1; : : : ; rº, we can rewrite

(†) � D
X
i2I0

�ipi C
X
i2I1

�i .pi C pr/C
X
i2I2

�i .pi � pr/:

Now note that
� for i 2 I1, pi C pr D wr � w

ti
i D wr � w

tr ti
r ;

� for i 2 I2, pi � pr D wi � wr D wi � w
ti t
�1
r

i .

Therefore, (†) is a decomposition of � of the form (�) with at most jI0j C jI1j C jI2j D
r � 1 terms. This contradicts the minimality of r , so � D 0.

We can now obtain our standard form.

Lemma 2.5 (Standard form for conjugacy classes of chains). Let Œc� 2 C conj
1 .GIR/.

(i) There is a 1-chain

c0 D

dX
iD1

�iwi 2 C1.GIR/;

such that Œc0� D Œc� in C conj
1 .GIR/, where d 2 N�0, �1; : : : ; �d 2 R X ¹0º, and

w1; : : : ; wd 2 G are pairwise non-conjugate.
(ii) Assume that c00 D

Pd 0

iD1 �
0
iw
0
i 2C1.GIR/ also satisfies Œc0�D Œc00�, wherew01; : : : ;

w0
d 0

are pairwise non-conjugate. Then d D d 0, and there is a permutation � 2Sd ,
and elements ti 2 G, such that w0

�.i/
D w

ti
i and �0

�.i/
D �i for all i .
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Proof. (i) We write c D
Pd
iD1 �iwi 2 C1.GIR/, with �1; : : : ; �d 2 R X ¹0º and

w1; : : : ; wd 2 G. Assume moreover that d is minimal among all representatives c of
the class Œc�. If there are j ¤ k such that wj D wtk for some t 2 G, then

c � .�j C �k/wj C
X

1�i�d; i¤j;k

�iwi mod K.GIR/;

which contradicts the minimality of d . Therefore, no two of the wi ’s are conjugate as
wanted.

(ii) We argue by induction on d C d 0. If d C d 0 D 0, then c0 D 0 D c00. Assume
that d C d 0 � 1 and consider � WD c0 � c00 2K.GIR/. If � D 0, then c0 D c00 and there
is nothing to prove; otherwise, Lemma 2.4 implies the existence of a pair of distinct
conjugate elements in Supp�. But Supp� � ¹wiº1�i�d [ ¹w0iº1�i�d 0 . By assumption
on the wi ’s and w0i ’s, this implies that one of the wi ’s is conjugate to one of the w0i ’s.
After relabelling, we can assume that wd is conjugate to w0

d 0
. We then consider

c1 WD .�d � �
0
d 0/wd C

X
i<d

�iwi ; c01 WD
X
i<d 0

�0iw
0
i :

Note that c1 � c01 mod K.GIR/, so the induction hypothesis applies to c1 and c01.
If �d ¤ �0d 0 , then we deduce that wd is conjugate to some w0i with i < d 0, and there-
fore w0

d 0
is conjugate to w0i , which is a contradiction. Therefore, �d D �0d 0 , and the

result follows from the induction hypothesis applied to c1 and c01.

Remark 2.6. We make the following observations:

(i) A group element can be seen as an element of C1.GIZ/, and conjugacy classes
of chains generalise conjugacy classes of group elements, in the sense that, for w 2 G,
Lemma 2.5 implies that ��1.Œw�/ \G is exactly the conjugacy class of w in G.

(ii) The equivalence relation given by K.GIR/ on 1-chains should be thought of
as the algebraic analogue of (free) homotopy. This is parallel to the equivalence relation
given by B1.GIR/, which is the algebraic analogue of homology. Hence, Remark 2.1
is an algebraic formulation of the fact that homotopic maps also represent the same
class in homology.

We now see G as the fundamental group of a path-connected space X . Pick an
integral conjugacy class Œc� 2 C conj

1 .GIZ/, and let c0 D
P
i �iwi 2 C1.GIZ/ be a

standard representative of Œc� given by Lemma 2.5. For each i , pick a loop 
i WS1! X

whose free homotopy class in X corresponds to the conjugacy class of w�i

i in G, and
consider the map


 WD
a
i


i W
a
i

S1 ! X:
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By Lemma 2.5 (ii), the free homotopy class Œ
� of 
 only depends on the class Œc�.
If „ is the set of free homotopy classes of finite unordered collections of pairwise
non-homotopic oriented loops

`
S1 ! X , then this defines a map

C
conj
1 .GIZ/! „

given by Œc� 7! Œ
�. We will say that the map 
 represents the conjugacy class Œc�.
Conversely, consider the free homotopy class of a map 
 W

`
S1 ! X , with com-

ponents ¹
i W S1 ! Xºi . For each i , pick an element wi 2 G whose conjugacy class
corresponds to the free homotopy class of 
i . Sending the free homotopy class of 
 to
Œ
P
i wi � 2 C

conj
1 .GIZ/ defines a right inverse to the mapC conj

1 .GIZ/!„ constructed
above.

Hence, the map C conj
1 .GIZ/! „ is surjective, but note that it is not injective:

given w 2 G X ¹1º and � 2 Z X ¹1º, the conjugacy classes Œ�w� and Œw�� are distinct
but are represented by the same (homotopy class of) loop 
 WS1 ! X .

Remark 2.7. The algebraic definition of stable commutator length (scl) in terms
of products of commutators as a function G ! Œ0;1� can be shown to extend to
C

conj
1 .GIZ/, and then by linearity to C conj

1 .GIR/; see [8, Section 2.6]. For us, scl will
be defined by its topological interpretation, given by Proposition A below, and this
definition will naturally be given for classes in C conj

1 .GIZ/.

2.c. Homology of a space relative to a chain. Let 
 W
`
S1 ! X be a finite (unord-

ered) collection of loops. We denote by X
 the mapping cylinder of 
 :

X
 WD
�
X q

�a
S1 � Œ0; 1�

��
= �;

where� is the equivalence relation generated by .u; 0/ � 
.u/ for u 2
`
S1. There is

an embedding
`
S1 ,! X
 via u 7! .u; 1/, and we will identify

`
S1 with its image

under this embedding.

Definition 2.8. The homology of the pair .X; 
/ over the coefficient ring R D Z or Q

or R is defined as the singular homology of the pair .X
 ;
`
S1/:

H�.X; 
 IR/ WD H�
�
X
 ;

a
S1IR

�
:

We remark that the homotopy type of the pair .X
 ;
`
S1/ – and therefore the

homology H�.X; 
/ – only depends on the free homotopy class of 
 .
It is useful to write down the long exact sequence of the pair .X; 
/.

Proposition 2.9. Let X be a topological space and 
 W
`
S1 ! X . Then there is an

exact sequence

0! H2.X IR/! H2.X; 
 IR/
@
�! H1

�a
S1IR

� 
�
�! H1.X IR/:
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Proof. This is simply the long exact sequence of the pair .X
 ;
`
S1/, together with

the fact that X
 deformation retracts to X (see [27, p. 2]).

Example 2.10. We now compute H�.X; 
/ in a few special cases.

(i) If 
 is the empty collection of loops, then

H�.X; 
 IR/ Š H�.X IR/:

(ii) If 
 is an embedding
`
S1 ,! X , then the pair .X
 ;

`
S1/ deformation

retracts onto .X; 
.
`
S1//, and therefore there is an isomorphism

H�.X; 
 IR/ Š H�
�
X; 


�a
S1
�
IR
�
:

In general, there is still a morphismH�.X; 
/!H�.X; 
.
`
S1// given by collapsing

the mapping cylinder, but this might not be an isomorphism, as shown for instance by
item (iii) below.

(iii) If 
 WS1 ! X is a contractible loop, then the quotient X
=S1 is homotopy
equivalent to X _ S2, and collapsing the pair gives

H�.X; 
 IR/ Š H�.X IR/˚H�.S
2
IR/:

(iv) Suppose that 
 WS1 ! X is rationally homologically trivial, in the sense that

�WH1.S

1IQ/! H1.X IQ/ vanishes. Then the map 
�WH1.S1IR/! H1.X IR/ in
the exact sequence of Proposition 2.9 has kernel qŒS1� for some q 2 R, so the image
of the boundary map @ is isomorphic to R, which gives a split short exact sequence,
and an isomorphism

H2.X; 
 IR/ Š H2.X IR/˚R:

Note that there is a natural isomorphism

H�.X; 
 IR/ Š H�.X; 
 IQ/˝Q R;

allowing us to view H�.X; 
 IQ/ as a subset of H�.X; 
 IR/. We will say that ˛ 2
H�.X;
 IZ/ is an integral class, while ˛2H�.X;
 IQ/ is rational and ˛2H�.X;
 IR/
is real.

Definition 2.11. LetG be a group andX be aK.G;1/ space. Given Œc� 2 C conj
1 .GIZ/,

we set
H�.G; Œc�IR/ WD H�.X; 
 IR/;

where 
 W
`
S1 ! X is a map representing Œc� as explained in Section 2.b.
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Note that the homotopy type of X is uniquely defined by G, and the free homotopy
class of 
 is determined by Œc�, so the groupH�.G; Œc�IR/ only depends on G and the
class Œc�.

The case where Œc� D 0 corresponds to 
 being the empty collection of loops,
and so

H�.G; 0IR/ Š H�.GIR/

by Example 2.10 (i).

2.d. Rational points in real vector spaces. The difference between real and rational
classes in H2.X; 
/ will play a role in the sequel, and we make a brief digression to
introduce some general terminology related to this.

Definition 2.12. Let V be a R-vector space. A rational structure on V is the choice
of an equivalence class of bases of V , where two bases are considered equivalent if
each vector of one basis has rational coordinates in the second basis. Any basis in the
equivalence class is called a rational basis.

Given a rational structure on V , a rational point is a vector of V that has rational
coordinates in a rational basis. The set VQ of rational points of V is naturally a Q-vector
space, and satisfies V D VQ ˝Q R. In fact, a rational structure on V can be defined
equivalently as the choice of a Q-subspace VQ of V such that V D VQ ˝Q R.

Example 2.13. The space Rn has a rational structure given by the equivalence class
of the standard basis, and its set of rational points is Qn.

A rational subspaceW of V is a R-subspace spanned by rational points. It naturally
inherits a rational structure from V .

If V andW are R-vector spaces equipped with rational structures, a rational linear
map f WV ! W is a linear map such that the image of each vector in a rational basis
of V has rational coordinates in a rational basis of W . This implies that the kernel and
the image of f are rational subspaces of V and W , respectively.

Let CQ
� be a chain complex over Q and let CR

� D C
Q
� ˝Q R. Hence, each vector

space CR
n has a rational structure whose set of rational points is CQ

n . The boundary
map dnWCR

n ! CR
n�1 is rational, and the space ZR

n D Ker dn of n-cycles is a rational
subspace. In particular, the set of rational points of ZR

n is the space ZQ
n of n-cycles

for CQ
� . Moreover, there is an isomorphism

Hn.C
R
� / Š Hn.C

Q
� /˝Q R;

giving Hn.CR
� / a rational structure whose set of rational points is Hn.CQ

� /.
The following lemma says that any real cycle representing a rational homology

class can be approximated by a rational cycle.
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Lemma 2.14 (Rational approximation in homology). Let CQ
� be a chain complex

over Q and let CR
� D C

Q
� ˝Q R. Let k � k be a norm on CR

� . Consider a real n-
cycle a 2 ZR

n whose homology class Œa� is rational:

Œa� 2 Hn.C
Q
� / � Hn.C

R
� /:

Then for any " > 0, there exists a rational n-cycle a0 2 ZQ
n such that

� Œa� D Œa0� in Hn.CR
� /, and

� ka � a0k � ".

Proof. We follow an argument of Calegari [8, Remark 1.5]. Observe that the natural
projection map

pWZR
n ! Hn.C

R
� /

is rational. Hence, since Œa� is a rational point ofHn.CR
� /, the affine subspace p�1.Œa�/

is rational inZR
n , so its rational points are contained inZQ

n . We may assume thatZR
n is

finite-dimensional by restricting to a finite-dimensional rational subspace containing a;
hence rational points are dense. Since the real n-cycle a lies in p�1.Œa�/, there is
a0 2 p�1.Œa�/ rational arbitrarily close to a for k � k. This rational n-cycle a0 lies inZQ

n

and is homologous to a as wanted.

2.e. The Gromov seminorm as an `1-seminorm. We now give a first definition of
the Gromov seminorm.

Given 
 W
`
S1 ! X , recall that H�.X
 IR/ is the homology of the singular chain

complex C sg
� .X
 IR/. Each R-vector space C sg

n .X
 IR/ can be equipped with the
`1-norm defined by 


X

�

���




1
WD

X
�

j�� j;

with �� 2 R for each singular n-simplex � W�n ! X
 . The quotient

C sg
n

�
X
 ;

a
S1IR

�
WD C sg

n .X
 IR/=C
sg
n

�a
S1IR

�
inherits a quotient seminorm that we also denote by k � k1, and that is defined by

kak1 WD inf
a2a
kak1;

where the infimum is over all absolute n-chains a 2 C sg
n .X
 IR/ representing a 2

C
sg
n .X
 ;

`
S1IR/. The restriction of k � k1 defines a seminorm on the subspace

Z
sg
n .X
 ;

`
S1IR/ of relative n-cycles, which descends to a seminorm, still denoted

by k � k1, on homology.
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Definition 2.15. LetX be a topological space and 
 W
`
S1!X . The relative Gromov

seminorm on Hn.X; 
 IR/ is defined by

k˛k1 WD inf
®
kak1 j a 2 Z

sg
n

�
X
 ;

a
S1IR

�
; Œa� D ˛

¯
:

Remark 2.16. Given a countable group G and an integral conjugacy class Œc� 2
C

conj
1 .GIZ/, the relative homologyH2.G; Œc�IR/ is by definitionH2.X;
 IR/, whereX

is a K.G; 1/, which can be chosen to be a countable CW-complex since G is count-
able, and 
 W

`
S1 ! X represents Œc�; see Definition 2.11. If X 0 is another choice of

(countable) K.G; 1/ and 
 0W
`
S1 ! X 0 is another map representing Œc�, then there is

a homotopy equivalence hWX '�! X 0 sending 
 to h
 , and a free homotopy between
h
 and 
 0. Hence, there are induced homotopy equivalences of pairs�

X
 ;
a

S1
�
'
�
X 0h
 ;

a
S1
�
'
�
X 0
 0 ;

a
S1
�
:

Since k � k1 is invariant under homotopy equivalence for countable CW-complexes,
and in fact under any map inducing an isomorphism of fundamental groups,2 the above
homotopy equivalences induce isometric isomorphisms

H2.X; 
 IR/ Š H2.X
0; h
 IR/ Š H2.X

0; 
 0IR/:

Hence, one can extend the definition of the Gromov seminorm to H2.G; Œc�IR/.

The above definitions still make sense if R is replaced with Q everywhere. Given
˛ 2 Hn.X; 
 IQ/ � Hn.X; 
 IR/, it is natural to ask whether the Gromov seminorm
of ˛ as a rational class coincides with its Gromov seminorm as a real class. The
following lemma gives an affirmative answer.

Lemma 2.17 (Equality of the rational and real Gromov seminorms). Let X be a
topological space and 
 W

`
S1 ! X . Given a rational class ˛ 2 Hn.X; 
 IQ/, the

Gromov seminorm of ˛ (seen as a real class) can be computed over rational cycles:

k˛k1 D inf
®
kak1 j a 2 Z

sg
n

�
X
 ;

a
S1IQ

�
; Œa� D ˛

¯
Proof. This follows from Lemma 2.14.

In other words, Lemma 2.17 says that the inclusion Hn.X; 
 IQ/ ,! Hn.X; 
 IR/

is an isometric embedding if Hn.X; 
 IQ/ and Hn.X; 
 IR/ are equipped with the
rational and real Gromov seminorms, respectively.

2This follows from Gromov’s Mapping theorem [22, Corollary 5.11], together with the duality principle
between `1-homology and bounded cohomology [22, Corollary 6.2].



A. Marchand 14

2.f. Topological interpretation of the Gromov seminorm. Analogously to (and
motivated by) the topological interpretation of stable commutator length in terms of
surfaces projectively bounding a given loop [8, Section 2.6], we now give a topological
interpretation of the Gromov seminorm for rational classes in H2. This extends the
topological interpretation of the absolute Gromov seminorm on H2 [8, Section 1.2.5].

An admissible surface for 
 W
`
S1!X is the data of an oriented compact (possibly

disconnected) surface †, and of maps f W†! X and @f W @†!
`
S1 making the

following diagram commute:

@† †

`
S1 X

�




@f f

where �W @† ,! † is the inclusion. Such an admissible surface will be denoted by
f W .†; @†/! .X; 
/.

Let †� be the mapping cylinder of the inclusion map �W @† ,! †:

†� WD
�
†q .@† � Œ0; 1�/

�
= �;

where � is the equivalence relation generated by .u; 0/ � �.u/ for u 2 @†. Hence,
there is a natural map of pairs

f#W .†�; @† � ¹1º/! .X
 ;
a

S1/

defined by f and @f ; see Section 2.c for the definition of the pair .X
 ;
`
S1/. Since the

pair .†�; @† � ¹1º/ deformation retracts to .†; @†/, the map f# induces a morphism

f�WH�.†; @†/! H�.X; 
/:

In particular, f represents a class f�Œ†� 2 H2.X; 
/, where Œ†� 2 H2.†; @†/ is
the (integral, rational, or real) fundamental class of †.

The topological complexity of a compact surface†will be measured by its reduced
Euler characteristic, defined by ��.†/ D

P
K min¹0; �.K/º, where the sum is over

all connected components K of †.

Proposition 2.18 (Topological interpretation of the Gromov seminorm). Let X be
a topological space and 
 W

`
S1 ! X . If ˛ 2 H2.X; 
 IQ/ is a rational class, then

there is an equality

k˛k1 D inf
f;†

�2��.†/

n.†/
;

where the infimum is taken over all admissible surfaces f W .†; @†/! .X; 
/ such
that f�Œ†� D n.†/˛ for some n.†/ 2 N�1.
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Proof. First consider an admissible surface f W .†;@†/! .X;
/with f�Œ†�D n.†/˛.
Then we can estimate

k˛k1 D
kf�Œ†�k1

n.†/
�
kŒ†�k1

n.†/
:

But the `1-seminorm of Œ†� is known as the simplicial volume of †, and it is equal
to�2��.†/ (see [22, Corollary 7.5]). This proves the inequality .�/ of the proposition.

For the reverse inequality, we follow the same line of reasoning as in Calegari’s
proof that scl is not greater than the Gersten boundary norm [8, Lemma 2.69], which is
based on an argument of Bavard [1, Proposition 3.2]. Let a 2 Z2.X
 ;

`
S1IQ/ be a

rational relative 2-cycle representing ˛, and let a0 2 C2.X
 IQ/ be a 2-chain mapping
to a. By Lemma 2.17, the infimum of ka0k1 over such a0 is equal to k˛k1.

Since a0 is rational, there exists q 2 N�1 such that qa0 is integral; we can write
qa0 D

P
j "j�j , with "j 2 ¹˙1º and �j W�2 ! X
 a singular 2-simplex. We can

assume that no singular 2-simplex appears twice with opposite signs in the above
expression, so that

kqa0k1 D
X
j

j"j j:

The fact that a is a relative 2-cycle means that da0 has support contained in
`
S1.

Therefore, we can construct a partial pairing on the edges of the simplices �j such that
paired edges have the same image in X
 , and non-paired edges all map to

`
S1. We

then construct a 2-dimensional simplicial complex † by taking a collection ¹�2j ºj of
2-simplices and gluing them along this pairing. The simplicial complex† thus construc-
ted is a surface with boundary, and the singular simplices �j define a map f W†! X


by f
j�2

j
D �j , with f .@†/�

`
S1. After homotoping f .†/ into the image ofX inX
 ,

and f .@†/ into 
.
`
S1/, this induces an admissible surface f W .†; @†/! .X; 
/,

and f�Œ†�D q˛ inH2.X; 
 IR/. As above, �2��.†/ is the simplicial volume kŒ†�k1
of † (see [22, Corollary 7.5]); on the other hand, our triangulation of † by the sim-
plices �2j gives an upper bound on the simplicial volume:

ka0k1 D
kqa0k1

q
D
1

q

X
j

j"j j �
kŒ†�k1

q
D
�2��.†/

q
:

By taking the infimum over a0 representing ˛, we obtain the inequality .�/.

The topological interpretation of k � k1 connects it to stable commutator length.

Proposition A (Gromov seminorm and scl). Let X be a path-connected topological
space and let Œc� 2 C conj

1 .�1X IZ/ be an integral conjugacy class represented by a
map 
 W

`
S1 ! X . Then

scl�1X .Œc�/ D
1

4
inf
®
k˛k1 j ˛ 2 H2.X; 
 IQ/; @˛ D

�a
S1
�¯
;
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where @WH2.X;
 IQ/!H1.
`
S1IQ/ is the boundary map in the long exact sequence

of the pair .X; 
/ (see Proposition 2.9).

Proof. This follows from the topological interpretations of k � k1 (Proposition 2.18)
and scl [8, Proposition 2.74].

We refer to Calegari’s book [8, Section 2.6] for the usual algebraic definition of scl
on chains. For our purpose, Proposition A can serve as a definition.

2.g. Simplicity and incompressibility for admissible surfaces. We will need admiss-
ible surfaces with additional properties.

Definition 2.19. Let X be a path-connected topological space and 
 W
`
S1 ! X . We

say that an admissible surface f W .†; @†/! .X; 
/ is
� incompressible if every simple closed curve in † with nullhomotopic image in X

is nullhomotopic in †;
� simple if there are no two boundary components of † whose images under f

represent powers of the same conjugacy class in �1X .

Lemma 2.20 (Simplicity and incompressibility). Let X be a topological space and

 W
`
S1 ! X . Then for every rational class ˛ 2 H2.X; 
 IQ/ and for every " > 0,

there is a simple, incompressible, admissible surface f W .†; @†/! .X; 
/ such that
f�Œ†� D n.†/˛ for some n.†/ 2 N�1, and

(‡) k˛k1 �
�2��.†/

n.†/
� k˛k1 C ":

Proof. Proposition 2.18 implies the existence of an admissible surface f W .†; @†/!
.X; 
/ satisfying (‡) with f�Œ†� D n.†/˛ for some n.†/ 2 N�1.

If f is not simple, then we can find two boundary components @1 and @2 of†whose
image under f represent powers of the same conjugacy class in�1X . Hence we can glue
a 1-handle H between @1 and @2, with H mapping to a path connecting the respective
basepoints of f ı @1 and f ı @2. This does not change f�Œ†� but increases ���.†/
by 1. In order to keep control of ���.†/=n.†/, we perform this operation only after
replacing†with a finite cover of large degreeN that preserves the number of boundary
components. Hence, the quantity ���.†/=n.†/ will only increase by 1=N (this is a
simple case of an asymptotic promotion argument, adapted from [8, Proposition 2.10];
see [14, Section 4] and [34, Section 4.d] for similar arguments). Since this operation
decreases the number of boundary components of † by 1, we will obtain a simple
admissible surface after finitely many iterations.

Now if f is compressible, then there is a simple closed curve ˇ in † which is
not nullhomotopic but such that f ı ˇ is. In this case, one can cut † along ˇ and
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glue two discs onto the resulting boundary components; the map f extends onto the
new discs since f ı ˇ is assumed to be nullhomotopic. This does not change f�Œ†�
and makes ���.†/ decrease, so that (‡) still holds, and moreover the property of f
being simple is preserved. After performing this operation a finite number of times,
we therefore obtain that f is simple and incompressible.

3. Bavard duality for the relative Gromov seminorm

Bavard [1] proved that the dual space of the scl-seminorm on C conj
1 .GIR/ can be

interpreted in terms of quasimorphisms. This can be thought of as a kind of `1–`1-
duality, and has had a wide range of applications in giving lower bounds for scl [2, 11,
16,21,28]. We start with some background on classical Bavard duality and bounded
cohomology, and then we explain how a result analogous to Bavard’s theorem can be
obtained for the relative Gromov seminorm.

3.a. Bavard duality for scl. A quasimorphism on a groupG is a map �WG! R such
that

sup
g;h2G

j�.gh/ � �.g/ � �.h/j <1:

The above supremum is then called the defect of � and denoted by D.�/. We say in
addition that � is homogeneous if �.gn/ D n�.g/ for all g 2 G and n 2 Z.

We denote by Q.G/ the R-vector space of homogeneous quasimorphisms on G.
The defect defines a seminorm DWQ.G/! Œ0;1/, which vanishes exactly on the
subspace Hom.G;R/ � Q.G/ consisting of homomorphisms to R. In particular, the
defect descends to a genuine norm on the quotient Q.G/=Hom.G;R/.

If �WG ! R is a homogeneous quasimorphism, then � extends to a Z-linear map
C1.GIZ/! R. The extension satisfies

j�.w � wt /j D
1

n
j�.wn � t�1wnt /j �

2D.�/

n
����!
n!1

0

for all w; t 2 G. It follows that � vanishes on the sub-Z-moduleK.GIZ/ of C1.GIZ/
spanned by elements of the form .w � wt /, as in Section 2.a. Therefore, � des-
cends to a Z-linear map C conj

1 .GIZ/! R, which then extends to a R-linear map
C

conj
1 .GIR/! R.

Classical Bavard duality says that the (semi)normed vector space .Q.G/;D/ (or
Q.G/=Hom.G;R/, where D defines an honest norm) is dual to .C conj

1 .GIR/; scl/.

Theorem 3.1 (Bavard [1]). Let G be a countable group and Œc� 2 C conj
1 .GIR/. Then

there is an equality

sclG.Œc�/ D sup
²
�.Œc�/

2D.�/
j � 2 Q.G/ X Hom.GIR/

³
:
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3.b. Bounded cohomology of topological spaces. Our analogue of Bavard duality
for the relative Gromov seminorm will be based on bounded cohomology, of which we
recall the definition here. We refer the reader to Frigerio’s book [22] for a much more
detailed treatment.

Let X be a topological space. Recall that the singular cohomology of X (with real
coefficients) is the cohomology of the singular cochain complex C �sg.X IR/ given by

C nsg.X IR/ WD HomR.C
sg
n .X IR/; R/:

Since the n-th chain group C sg
n .X IR/ is the free R-module on the set �n of singular

n-simplices � W�n!X , the n-th cochain group C nsg.X IR/ can equivalently be defined
as the set of all maps �n ! R. The `1-norm of a cochain  2 C nsg.X IR/ D R�n is

k k1 WD sup
�2�n

j .�/j 2 Œ0;C1�:

Now the bounded cochain complex of X with coefficients in R is the sub-cochain
complex C �

b
.X IR/ of C �sg.X IR/ consisting of all bounded maps �n ! R:

C nb .X IR/ WD ¹ 2 C
n
sg.X IR/ j k k1 <1º � C nsg.X IR/;

with coboundary induced by that of C �sg.X IR/. The bounded cohomology of X is the
cohomology of this cochain complex:

H�b .X IR/ WD H
�.C �b .X IR//:

The `1-norm descends to a seminorm – still denoted k � k1 – on H�
b
.X IR/.

For us, bounded cohomology will always be understood to be with real coefficients,
and we might omit R from the notation.

It turns out that k � k1 defines a genuine norm in degree 2 if X is a countable
CW-complex.

Theorem 3.2 (Matsumoto–Morita–Ivanov [30,36]). LetX be a countable CW-complex.
Then kuk1 > 0 for every u 2 H 2

b
.X IR/ X ¹0º.

Duality between the `1-norm on bounded cohomology and the `1-norm on singular
homology plays a central role in this paper. It comes from the natural pairing

h�;�iWC �b .X IR/ � C
sg
� .X IR/! R;

which is the restriction of the duality pairing C �sg.X IR/ � C
sg
� .X IR/! R given by

h ; ci WD  .c/ for  2 C nsg.X IR/ and c 2 C sg
n .X IR/. This descends to a pairing

h�;�iWH�b .X IR/ �H�.X IR/! R;

which is called the Kronecker product. The Banach space Hn
b
.X IR/ is dual to the

seminormed space Hn.X IR/ under this pairing.
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Proposition 3.3 (`1–`1-duality in bounded cohomology [22, Lemma 6.1]). Let X be
a topological space and ˛ 2 Hn.X IR/. Then the `1-seminorm of ˛ satisfies

k˛k1 D sup
²
hu; ˛i

kuk1
j u 2 Hn

b .X IR/; kuk1 > 0

³
:

3.c. Bounded cohomology of groups. It follows from Gromov’s Mapping theorem [22,
Corollary 5.11] that, for any continuous map f WX ! Y between countable path-
connected CW-complexes inducing an isomorphism on fundamental groups, the
induced map f �WH�

b
.Y IR/! H�

b
.X IR/ is an isometric isomorphism (isometric

means that it preserves the `1-seminorm).
Hence, given a countable group G, one can define the bounded cohomology of G

to be the bounded cohomology of any countable path-connected CW-complex X with
�1X D G:

H�b .GIR/ WD H
�
b .X IR/:

Such a spaceX always exists – for instance, one can takeX to be a (potentially infinite)
presentation complex of G. Since there are isometric isomorphisms H�

b
.X IR/ Š

H�
b
.X 0IR/ for any two choices ofX;X 0 as above, there is a well-defined `1-seminorm

on H�
b
.GIR/.

But the bounded cohomology of a group can be given a more algebraic interpretation
as follows. The bar cochain complex of G with real coefficients is defined by

C n.GIR/ WD RG
n

;

where RG
n is the space of all maps Gn ! R. Coboundary maps dnWC n�1.GIR/!

C n.GIR/ are given by

dn .g1; : : : ; gn/ WD  .g2; : : : ; gn/ �  .g1g2; g3; : : : ; gn/C  .g1; g2g3; : : : ; gn/

� � � � C .�1/n�1 .g1; : : : ; gn�2; gn�1gn/C .�1/
n .g1; : : : ; gn�1/:

This is the dual of the chain complex C�.GIR/ introduced in Section 2.a.
Given a cochain  2 C n.GIR/, its `1-norm is

k k1 WD sup
.g1;:::;gn/2Gn

j .g1; : : : ; gn/j 2 Œ0;C1�:

The bounded cochain complex of G is

C �b .GIR/ WD ¹ 2 C
n.GIR/ j k k1 <1º:

It turns out that the bounded cohomology of G can be defined as the cohomology of
C �
b
.GIR/, and we now explain how to write an explicit isomorphism between this



A. Marchand 20

�g1g2

�g1

�g2

�g1;g2 	

Figure 1
Construction of the chain map h�WC�.GIR/! C

sg
� .X IR/.

cohomology and the bounded cohomology of a space X with fundamental group G as
defined in Section 3.b.

Let X be a K.G; 1/ space with countably many cells and fixed basepoint !. Each
element g ofG can be represented by a loop 
g WS1!X based at !, which can also be
described as a map �g W�1!X , where�1 is a 1-simplex (i.e. a segment), and �g maps
both endpoints of �1 to !. For all g1; g2 2 G, the concatenation �g1

� �g2
is homo-

topic (with fixed endpoints) to �g1g2
, and one can construct a map �g1;g2

W�2 ! X

(where �2 is a 2-simplex) such that the restrictions of �g1;g2
to its three faces are �g2

,
��1g1g2

, and �g1
(where ��1 is the singular simplex � with reversed orientation), as in

Figure 1. Since X is aspherical, we can iterate this construction and choose, for each
n-tuple .g1; : : : ; gn/ 2 Gn, a singular simplex �g1;:::;gn

whose restriction to its i-th
face is �"i

g1;:::;gigiC1;:::;gn
(respectively, �"0

g2;:::;gn
for i D 0 and �"n

g1;:::;gn�1
for i D n),

with "i D .�1/i .
The map hW .g1; : : : ; gn/ 7! �g1;:::;gn

induces a chain homotopy equivalence

h�WC�.GIR/
�
�! C

sg
� .X IR/

(see [4, Section I.4]), and therefore a cochain homotopy equivalence

h�WC �sg.X IR/
�
�! C �.GIR/;

which induces an isomorphism

H�.C �.GIR// Š H�.X IR/:

The image under h� of the bounded cochain complexC �
b
.X IR/ isC �

b
.GIR/. It follows

that h also induces a cochain homotopy equivalence h�WC �
b
.X IR/ ��! C �

b
.GIR/,

inducing an isomorphism

H�.C �b .GIR// Š H
�
b .X IR/;

which is in fact an isometric isomorphism [22, Theorem 5.9]. We will denote this
cohomology by H�

b
.GIR/ and interpret it using both points of view.
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Remark 3.4. There is a connection between quasimorphisms and bounded cohomo-
logy: a quasimorphism �WG ! R can be seen as an element of C 1.GIR/, and its
coboundary d2� is given by

d2�.g; h/ D �.g/ � �.gh/C �.h/:

Hence, the quasimorphism condition means exactly that d2� is a bounded cochain, and
in fact a bounded cocycle. Therefore, it defines a class Œd2�� 2 H 2

b
.GIR/. This gives

a morphism Œd2��WQ.G/! H 2
b
.GIR/ whose kernel is the subspace Hom.G;R/ of

Q.G/ consisting of homomorphisms to R. In fact, this extends to an exact sequence [8,
Theorem 2.50]

0! Hom.G;R/! Q.G/
Œd2��
����! H 2

b .GIR/! H 2.GIR/;

where H 2
b
.GIR/! H 2.GIR/ is the map induced by the inclusion C �

b
.GIR/ ,!

C �.GIR/.

3.d. Bavard duality for the relative Gromov seminorm. Our aim is now to use
bounded cohomology in order to obtain a statement analogous to Bavard duality
(Theorem 3.1) for the relative Gromov seminorm on H2.X; 
/, where 
 W

`
S1 ! X

is a collection of loops in a path-connected topological space X .
There is a notion of relative bounded cohomology, giving rise to a long exact

sequence as in the case of singular cohomology; we refer the reader to Frigerio’s
book [22, Section 5.7] for a definition. The duality principle [22, Lemma 6.1] then
implies that H 2

b
.X; 
/ WD H 2

b
.X
 ;

`
S1/ (with the `1-seminorm) is the dual of

H2.X; 
/ (with the `1-seminorm). But since �1S1 D Z is amenable, H�
b
.
`
S1/

vanishes [22, Theorem 3.6] and the long exact sequence of .X
 ;
`
S1/ gives a natural

isomorphism
H 2
b .X; 
 IR/ Š H

2
b .X IR/:

This isomorphism, together with the Kronecker product H 2
b
.X; 
/ �H2.X; 
/! R

(which is the relative analogue of the absolute Kronecker product introduced in Sec-
tion 3.b) defines a pairing

h�; �iWH 2
b .X IR/ �H2.X; 
 IR/! R:

It turns out that the `1-seminorm (which is a norm in degree 2 by Theorem 3.2) is
dual to the `1-seminorm under this pairing.

Theorem B (Bavard duality for the relative Gromov seminorm). Let X be a countable
CW-complex and 
 W

`
S1 ! X . Given a real class ˛ 2 H2.X; 
 IR/, the relative

Gromov seminorm of ˛ is given by

k˛k1 D sup
²
hu; ˛i

kuk1
j u 2 H 2

b .X IRIR/ X ¹0º

³
:
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Proof. Duality between `1-homology and bounded cohomology [22, Lemma 6.1]
implies that

k˛k1 D sup
²
hu; ˛i

kuk1
j u 2 H 2

b .X; 
 IR/; kuk1 ¤ 0

³
:

In addition, a result proved independently by Bucher et al. [5, Theorem 1.2] and by Kim
and Kuessner [31, Theorem 1.2] implies that the isomorphism H 2

b
.X; 
/ Š H 2

b
.X/

is isometric for the `1-norm. Together with the fact that kuk1 D 0 only if u D 0
in H 2

b
.X/ (Theorem 3.2), this implies the result.

We say that a class u 2 H 2
b
.X IR/ is extremal for ˛ 2 H2.X; 
 IR/ if it realises

the supremum in Theorem B. Note that extremal classes exist for all ˛ 2 H2.X; 
 IR/
by the Hahn–Banach theorem.

4. An application to scl in graphs of groups

The aim of this section is to give an example in the context of graphs of groups
where Theorem B can be used to understand the relative Gromov seminorm, which
then yields computations of stable commutator length.

4.a. Failure of isometric embedding for scl. One of the fundamental facts in the
theory of graphs of groups is that a vertex group embeds into the fundamental group of
the graph of groups. It is natural at first to try to make this inclusion map scl-preserving,
but that unfortunately does not work in general, even if edge groups are amenable (and
hence have vanishing stable commutator length [8, Proposition 2.65]).

Example 4.1. Let S be a closed genus-3 surface, and let ˇ be a non-separating simple
closed curve in S . Consider the HNN-splitting �1S D �1T �Z obtained by cutting S
along ˇ, where T is a genus-2 surface with two boundary components, and the HNN-
extension identifies the two boundary components of T ; see Figure 2.

S

 ˇ

D T



Figure 2
HNN-splitting of a closed genus-3 surface.
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Then the embedding �1T ,! �1S is not scl-preserving. To see this, consider the
loop 
 represented in the picture. Note that T is a surface with non-empty boundary,
and 
 bounds an immersed (and in fact embedded) genus-2 surface with one boundary
component in T , so a result of Calegari [8, Lemma 4.62] (which also follows from The-
orem E below) implies that scl�1T .Œ
�/D

3
2
. In S however, 
 bounds a genus-1 surface

with one boundary component, so scl�1S .Œ
�/ �
1
2
. This shows that the morphism

�1T ,! �1T �Z

is not scl-preserving

4.b. Isometric embedding for the relative Gromov seminorm. Example 4.1 shows
that the inclusion map of a vertex group in a graph of groups can fail to be scl-preserving.
However, using Theorem B, we are able to translate an isometric embedding result of
Bucher et al. [5] in bounded cohomology into the fact that the inclusion map preserves
the relative Gromov seminorm if edge groups are amenable.

Theorem C (`1-isometric embedding of vertex groups in graphs of groups). Let G be
a graph of groups whose underlying graph � is finite, with countable vertex groups
¹Gvºv2V.�/, and amenable edge groups ¹Geºe2E.�/. Fix a vertex v and consider the
inclusion map ivWGv ,! �1G . Then for each class Œc� 2 C conj

1 .GvIZ/, the embedding

iv�WH2.Gv; Œc�IR/ ,! H2.�1G ; Œiv.c/�IR/:

is isometric for k � k1.

Proof. By [5, Theorem 1.1], there is an isometric embedding

‚W
M
v

H 2
b .GvIR/ ,! H 2

b .�1G IR/;

which is a right inverse toM
v

i�v WH
2
b .�1G IR/�

M
v

H 2
b .GvIR/:

Now let Œc� 2 C conj
1 .GvIZ/ and ˛ 2 H2.Gv; Œc�IR/. Bavard duality for k � k1 (The-

orem B) implies that

k˛k1 D sup
²
hu; ˛i

kuk1
j u 2 H 2

b .GvIR/

³
:

Since i�v‚u D u for all u 2 H 2
b
.GvIR/, and since ‚ preserves k � k1, it follows that

k˛k1 D sup
²
hi�v‚u; ˛i

k‚uk1
j u 2 H 2

b .GvIR/

³
D sup

²
h‚u; iv�˛i

k‚uk1
j u 2 H 2

b .GvIR/

³
� sup

²
hu0; iv�˛i

ku0k1
j u0 2 H 2

b .�1G IR/

³
D kiv�˛k1:
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This proves that k˛k1 � kiv�˛k1, and the reverse inequality follows from the fact that
group homomorphisms are k � k1-non-increasing.

With an extra homological condition, we can deduce an isometric embedding result
for scl.

Corollary 4.2 (scl-isometric embedding of vertex groups in graphs of groups). Let G

be a graph of groups whose underlying graph � is finite, with countable vertex groups
¹Gvºv2V.�/, and amenable edge groups ¹Geºe2E.�/. Fix a vertex v and assume that
the inclusion-induced map iv�WH2.GvIQ/! H2.�1G IQ/ is surjective. Then for
every Œc� 2 Bconj

1 .GvIZ/,

scl�1G .Œiv.c/�/ D sclGv
.Œc�/:

Proof. Fix a K.Gv; 1/ space Xv for each vertex v and a K.Ge; 1/ space Xe for each
edge e, and form the corresponding graph of spaces X, which is a K.�1G ; 1/. Let
jvWXv ,! X be the inclusion map, so that iv D jv�WGv ! �1G .

Given a map 
 W
`
S1 ! Xv representing a conjugacy class Œc� 2 Bconj

1 .GvIZ/,
the map 
�WH1.

`
S1/! H1.Xv/ vanishes, and Proposition 2.9 gives a commutative

diagram with exact rows (with omitted Q-coefficients):

0

0

H2.X/

H2.Xv/

H2.X; jv
/

H2.Xv; 
/

H1.
`
S1/

H1.
`
S1/

0

0

D

jv� jv�
@

@

Now the map jv�WH2.Xv/! H2.X/ is surjective by assumption, so the Five lemma
implies that jv�WH2.Xv; 
/! H2.X; jv
/ is surjective. Hence, given a class ˇ 2
H2.X; jv
 IQ/ with @ˇ D Œ

`
S1�, there exists ˛ 2 H2.Xv; 
 IQ/ with jv�˛ D ˇ.

Since the diagram commutes, we have @˛ D @ˇ D Œ
`
S1�. Therefore, Proposition A

and Theorem C yield

sclGv
.Œc�/ �

1

4
k˛k1 D

1

4
kjv�˛k1 D

1

4
kˇk1:

Taking the infimum over ˇ gives sclGv
.Œc�/ � scl�1G .Œiv.c/�/. The reverse inequality

follows from the general fact that group homomorphisms are scl-non-increasing.

Note that Theorem C and Corollary 4.2 recover the main theorems of [34] on
isometric embeddings of surfaces for the relative Gromov seminorm: indeed, given an
oriented, compact, connected surface S and a �1-injective subsurface T , the funda-
mental group �1S splits as a graph of groups, with vertex groups given by �1T and
the fundamental groups of all connected components of S X T , and with edge groups
isomorphic to Z – and corresponding to cutting S along simple closed curves.
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a

b

a

b
c

c

Figure 3
Side-pairing for Dyck’s surface �.

4.c. Spectral gaps in HNN-extensions. Corollary 4.2 can be used, for instance, to
estimate the spectral gap for scl of certain HNN-extensions.

Example 4.3 (Dyck’s surface). Let � be the non-orientable surface given by the side-
pairing of Figure 3, so that �1� D ha; b; c j Œa; b� D c2i. Dyck’s theorem [20] asserts
that � Š RP2#RP2#RP2. Then for all g 2 �1� X ¹1º, there is an inequality

scl�1�.Œg�/ �
1

4
:

Moreover, this bound is sharp: scl�1�.Œc�/ D
1
4
.

Proof. The group �1� splits as an HNN-extension �1� D G�Z, where

G D ha1; a2; c j a1a2 D c
2
i;

and the HNN-extension is given by the isomorphism ha1i Š ha2i sending a1 to a2.
Note that G is a free group, and both ¹a1; cº and ¹a2; cº are free bases of G. It

follows that ha1i and ha2i are left relatively convex in G, meaning that the G-sets
G=ha1i and G=ha2i admit G-invariant orders. This will allow us to apply results of
Chen and Heuer [15] on spectral gaps in graphs of groups.

For g 2 �1� X ¹1º, there are two cases:
� If g is hyperbolic for the HNN-splitting G�Z, then since ha1i and ha2i are left

relatively convex in G, it follows from [15, Theorem 5.19] that scl�1�.Œg�/ �
1
2
.

� If g is elliptic, then g is conjugate to a non-trivial element g0 of G. Since G is
a free group, the Duncan–Howie theorem [19] implies that sclG.Œg0�/ � 1

2
. Now

Corollary 4.2 implies that scl�1�.Œg�/ D sclG.Œg0�/ � 1
2

whenever some multiple
of Œg0� lies in Bconj

1 .GIZ/.

It now follows that any g 2 �1� for which scl�1�.Œg�/ <
1
2

must be conjugate to some
g0 2 G whose image inH1.GIQ/ lies in Ker.H1.GIQ/!H1.�1�IQ// (since Œg0�
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has finite scl if and only if some multiple of Œg0� lies in Bconj
1 .GIZ/, if and only if the

image of Œg0� in H1.GIQ/ vanishes; see Remark 2.3). But we have

H1.GIQ/ D Qa1 ˚Qc

a1 7!a
c 7!0
����! Qa˚Qb D H1.�1�IQ/;

so Ker.H1.GIQ/! H1.�1�IQ// D Qc. Therefore, any element g of �1� with
scl�1�.Œg�/ <

1
2

must be conjugate into hci.
Now scl�1�.Œc�/ D

1
2

scl�1�.ŒŒa; b��/ since c2 D Œa; b�. But scl�1�.ŒŒa; b��/ �
1
2

since Œa; b� is hyperbolic in G�Z, and it is a general fact that the scl of a commutator is
at most 1

2
(since any commutator is bounded by a genus-1 surface with one boundary

component, see also [17, Example 2.6]), so scl�1�.Œc�/ D
1
4

as wanted.

In particular, the Duncan–Howie theorem [19] implies that �1� is not residually
free (this also follows from a result of Lyndon [32,33]). Moreover, it follows from a
theorem of Heuer [28] (see also [35]) that �1� is not a subgroup of any right-angled
Artin group, and thus not special3 in the sense of Haglund and Wise [26]. Note however
that �1� is virtually special since its orientation double cover is an orientable closed
surface of genus 2.

5. An algebraic interpretation à la Hopf

We now prove a relative version of the Hopf formula, and explain how this can
be used to provide a purely algebraic interpretation of Theorem B. We focus on the
special case of the homology of a group relative to the conjugacy class of an element
(rather than that of a chain). An analogous Hopf formula could be given in the general
case, but the notation would become cumbersome.

5.a. A relative Hopf formula. Recall that the classical Hopf formula computesH2.G/
when G is a group given by a presentation (see [4, Theorem II.5.3]).

Theorem 5.1 (Hopf formula [29]). Let F be a free group, R E F , and G D F=R.
Then there is an isomorphism

H2.GIZ/ Š R \ ŒF; F �=ŒF;R�:

With the same setup as in Theorem 5.1, our goal is to compute H2.G; Œw�IZ/,
where Œw� 2 C conj

1 .GIZ/ is an integral conjugacy class represented by an element
w 2 G (see Remark 2.6 (i) for the relation between conjugacy classes of chains and
of elements). This is provided by the following theorem; our proof is topological and
inspired by [8, Section 1.1.6] and [39].

3To be more precise, �1� is not A-special in the terminology of [26].



Bavard duality for the relative Gromov seminorm 27

ı

˛1

˛1

˛2

˛2

ˇ1ˇ1

ˇ2 ˇ2

	 D
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˛1

˛2ˇ1
ˇ2

Figure 4
The cell structure on †k;1 (with k D 2).

Theorem 5.2 (Relative Hopf formula). Let F be a free group, R E F , and G D F=R.
Let w be an infinite-order element of G, and let xw 2 F be a preimage of w under
F

p
�! F=R. Then there is an isomorphism

H2.G; Œw�IZ/ Š h xwiR \ ŒF; F �=ŒF;R�:

Proof. Let X be a K.G; 1/ with a fixed basepoint x0 and let 
 W S1 ! X be a loop
based at x0 representing w. Then H2.G; Œw�/ D H2.X; 
/ (see Definition 2.11), and
we construct a morphism

ˆW h xwiR \ ŒF; F �! H2.X; 
 IZ/

as follows. Let xg 2 h xwiR \ ŒF; F �. Since xg 2 ŒF; F �, one can write

xg D Œxa1; xb1� � � � Œxak; xbk�;

with xai ; xbi 2 F . Set ai D p.xai / 2G, bi D p.xbi / 2G and g D p.xg/ 2G. The assump-
tion that xg 2 h xwiR in F means that g 2 hwi in G, so one can write g D wn for
some n 2 Z. Moreover, since w has infinite order, the integer n is uniquely determ-
ined by xg. Let †k;1 be an oriented genus-k surface with one boundary component.
The surface †k;1 has a cell structure with one 0-cell �, .2k C 1/ 1-cells with labels
˛1; ˇ1; : : : ; ˛k; ˇk; ı, and one 2-cell glued along the word ı�1Œ˛1; ˇ1� � � � Œ˛k; ˇk�;
see Figure 4.

First pick a degree-nmap @f W@†k;1! S1. Then define a map f .1/W†.1/
k;1
! X on

the 1-skeleton of †k;1 by sending � to the basepoint x0 of X , each 1-cell ˛i to a loop
representing ai in �1.X; x0/ D G, each ˇi to a loop representing bi , and define f .1/

on ı by
f
.1/

jı
D 
 ı @f I

in particular, ı is mapped to a loop representing g D wn. Since g D Œa1; b1� � � � Œak; bk�
in G D �1.X; x0/, the map f .1/W†.1/

k;1
! X can be extended over the 2-cell of †k;1
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to f W†k;1 ! X . Now the data of f and @f define an admissible surface

f W .†k;1; @†k;1/! .X; 
/:

Note moreover that the homotopy types of f and @f are uniquely determined by the
choice of an expression Œxa1; xb1� � � � Œxak; xbk�; this would fail if w had torsion because in
that case, the integer n is not unique; see Remark 5.3 (ii) below.

Now we define ˆ.xg/ by

ˆ.xg/ WD f�Œ†k;1� 2 H2.X; 
 IZ/;

where Œ†k;1� 2 H2.†k;1; @†k;1IZ/ is the integral fundamental class of †k;1 (note
that †k;1 was chosen with an orientation).

The construction of ˆ.xg/ explained above depends a priori on the choice of an
expression xg D Œxa1; xb1� � � � Œxak; xbk�, which might not be unique. For now, we see ˆ as
a map defined on the monoid ‚ of all formal expressions Œxa1; xb1� � � � Œxak; xbk� whose
image in F lie in h xwiR, and we will show that this induces a well-defined map on
h xwiR \ ŒF; F �.

Claim. The map ˆW‚! H2.X; 
 IZ/ is a monoid homomorphism.

Proof of the claim. Consider two formal expressions

� D Œxa1; xb1� � � � Œxak; xbk� and � 0 D Œxa01;
xb01� � � � Œxa

0
`;
xb0`�

in ‚. As explained above, this gives rise to admissible surfaces

f W .†k;1; @†k;1/! .X; 
/ and f 0W .†`;1; @†`;1/! .X; 
/;

and we have ˆ.�/ D f�Œ†k;1� and ˆ.� 0/ D f 0�Œ†`;1�. Consider the wedge sum

†_ WD †k;1 _†`;1:

The maps f and f 0 naturally induce f_W†_ ! X , and the fundamental classes of
†k;1 and †`;1 sum to a class Œ†_� 2 H2.†_; @†_IZ/, where we define

@†_ D @†k;1 _ @†`;1 � †_:

Hence,
ˆ.�1/Cˆ.�2/ D .f_/�Œ†_�:

Now there is a homotopy equivalence .†_;@†_/' .†kC`;1;@†kC`;1/, as illustrated in
Figure 5. This yields an admissible surface .†kC`;1; @†kC`;1/! .X; 
/ representing
the classˆ.�/Cˆ.� 0/ inH2.X; 
 IZ/. But note that this admissible surface is exactly
the one obtained when the above construction is applied to �� 0. This proves that

ˆ.�/Cˆ.� 0/ D ˆ.�� 0/;

so ˆ is a monoid homomorphism.
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Figure 5
The homotopy equivalence †k;1 _†`;1 ' †kC`;1 (here k D ` D 2).

Using the claim, we now prove thatˆ induces a well-defined map on h xwiR \ ŒF; F �.
Consider two formal expressions �;� 0 2‚ defining the same element of h xwiR\ ŒF;F �.
Write

� D Œxa1; xb1� � � � Œxak; xbk�;

and consider its formal inverse

��1 D Œxbk; xak� � � � Œxb1; xa1� 2 ‚

(which, despite our choice of notation, is not an inverse of � in the monoid ‚!). Then
the formal expression ��1� 0 represents the trivial element of F . This means that
the above construction for the formal expression ��1� 0 can actually be performed
when the K.G; 1/ space X is replaced with a K.F; 1/ space XF . In other words, the
admissible surface f W .†m;1; @†m;1/! .X;
/ associated to ��1� 0 factors through the
map XF ! X induced by F ! G. Moreover, the image of @†m;1 is nullhomotopic
in XF , from which it follows that

f�Œ†m;1� 2 H2.XF IZ/ � H2.XF ; x
 IZ/;

where x
 WS1 ! XF is a representative of xw 2 F . But H2.XF IZ/ D H2.F IZ/ D 0
since F is a free group, so Œ†m;1� maps to zero in H2.XF ; x
 IZ/, and hence also in
H2.X; 
 IZ/. Therefore, it follows from the claim that

0 D ˆ.��1� 0/ D ˆ.��1/Cˆ.� 0/;

and it is clear from the construction thatˆ.��1/D�ˆ.�/, soˆ.�/Dˆ.� 0/ as wanted.
This proves that ˆ induces a well-defined map

ˆW h xwiR \ ŒF; F �! H2.X; 
 IZ/;

which is a group homomorphism by the claim.
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The homomorphism ˆ is surjective since every element of H2.X; 
 IZ/ can be
represented by a map from an orientable compact connected surface with one boundary
component – this follows from Proposition 2.18 and Lemma 2.20.

It remains to show the following result.

Claim. Kerˆ D ŒF;R�.

Proof of the claim. To prove that ŒF; R� � Kerˆ, it suffices to show that for every
xg 2 F and xr 2 R, we have Œxg; xr� 2 Kerˆ. But ˆ.Œxg; xr�/ D f�Œ†1;1�, where †1;1 is a
torus with one boundary component, with equator mapping to xg and meridian mapping
to xr . Since the image of xr in G is trivial, we may cut †1;1 along the meridian and fill
in the two resulting discs, obtaining a map

f1W .D
2; @D2/! .X; 
/:

We can glue f1 to itself with reversed orientation along @D2 to obtain f2WS2 ! X .
ButX is assumed to be aK.G;1/ so it is aspherical, and f2 is nullhomotopic. Therefore,
f1 is also nullhomotopic, and

f�Œ†1;1� D .f1/�ŒD
2� D 0:

This proves that ˆ.Œxg; xr�/ D 0, so ŒF;R� � Kerˆ.
Conversely, let xg 2 Kerˆ. Let f W .†; @†/! .X; 
/ be an admissible surface

associated to an expression of xg as a product of commutators by the above construction,
with † D †k;1. The assumption that xg 2 Kerˆ means that f�Œ†� D 0, so the map

f�WH2.†; @†IZ/! H2.X; 
 IZ/

is zero. Long exact sequences of pairs give a commutative diagram with exact rows
(with omitted Z-coefficients):

0 H2.X/

0

H2.X; 
/

H2.†; @†/

H1.S1/

H1.@†/

H1.X/

H1.†/

� � �

� � �

0
@

@

f� f�

If f�WH1.@†/! H1.S
1/ were to be non-zero, then since H1.@†/ Š H1.S1/ Š Z,

the map f�WH1.@†/!H1.S
1/ would in fact be injective. But f� ı @D 0, so the map

@WH2.†; @†/! H1.@†/

would be zero, implying by exactness that H1.@†/ D 0 since H1.@†/! H1.†/ is
zero. This is a contradiction, and therefore the map

f� W H1.@†/! H1.S
1/
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is zero. Therefore, the restriction of f to @† is nullhomotopic, which implies in
particular that the image of xg in G is trivial, i.e. xg 2 R \ ŒF; F �. Therefore, we are
reduced to the setting of the classical Hopf formula (Theorem 5.1), i.e. xg 2 R \ ŒF;F �
and ˆ.xg/ D 1 inH2.X IZ/. Since ˆ coincides with the morphism giving the classical
Hopf formula (see, for instance, [39]), it follows that xg 2 ŒF;R�.

We have constructed a surjective group homomorphism

ˆW h xwiR \ ŒF; F �! H2.X; 
 IZ/

with Kerˆ D ŒF;R�, so ˆ induces the desired isomorphism.

Remark 5.3. We note the following:

(i) In the proof of Theorem 5.2, the assumption that X is a K.G; 1/ is essential.
This is why – contrary to the rest of this paper – we state the theorem in terms of the
relative homology of groups, rather than topological spaces.

(ii) Theorem 5.2 becomes false if w has finite order q in G. Indeed, the (absolute)
Hopf formula (Theorem 5.1) says that H2.GIZ/ is isomorphic to R \ ŒF; F �=ŒF;R�,
which has finite index in the right-hand side h xwiR \ ŒF; F �=ŒF; R� of Theorem 5.2
when w has finite order. But we know from Example 2.10 (iv) that

H2.G; Œw�IZ/ Š H2.GIZ/˚ Z;

so H2.GIZ/ must have infinite index in H2.G; Œw�IZ/!
Let us explain briefly where the missing homology classes are. Pick 
 WS1 ! X a

loop at x0 2 X representing w. Then the homology class corresponding to the integer
n 2 Z in the Z-summand of H2.G; Œw�IZ/ is represented by an admissible surface

f W .D2; @D2/! .X; 
/;

where D2 is the disc, @f W @D2 ! S1 is a map of degree nq, and f WD2 ! X is an
extension of 
 ı @f to the disc (which exists since 
nq is nullhomotopic).

Note that the underlying maps f WD2! X of the admissible surfaces representing
these ‘missing classes’ are nullhomotopic since the disc is contractible. This underlines
the importance of defining an admissible surface as the data of both maps f and @f .

(iii) One can recover the classical Hopf formula (Theorem 5.1) from our proof by
observing that our isomorphism

h xwiR \ ŒF; F �=ŒF;R�
Š
�! H2.G; Œw�IZ/

sends R \ ŒF; F �=ŒF;R� toH2.GIZ/ � H2.G; Œw�IZ/. In other words, our construc-
tion maps an element xg 2 h xwiR \ ŒF; F � to an absolute homology class if and only
if xg has trivial image in G.



A. Marchand 32

5.b. Bavard duality through the lens of the Hopf formula. We next explain how
to obtain an algebraic restatement of Theorem B using the relative Hopf formula
(Theorem 5.2).

Recall from Section 3.c the definition of the bounded cochain complex C �
b
.GIR/.

We denote by Z2
b
.GIR/ the subspace of C 2

b
.GIR/ consisting of bounded 2-cocycles

on G, i.e. bounded maps  WG2 ! R such that

 .g2; g3/ �  .g1g2; g3/C  .g1; g2g3/ �  .g1; g2/ D 0

for all g1; g2; g3 2 G.

Theorem D (Bavard duality via the Hopf formula). Let F be a (countable) free group,
R E F , and G D F=R. Let w 2 G and let xw 2 F be a preimage of w under F

p
�! G.

Let ˛ 2 H2.G; Œw�IZ/ and let

Œxa1; xb1� � � � Œxak; xbk� 2 h xwiR \ ŒF; F �;

be a representative of ‰.˛/, where ‰WH2.G; Œw�IZ/ Š�! h xwiR \ ŒF; F �=ŒF; R� is
the isomorphism of Theorem 5.2. Set ai D p.xai / 2 G and bi D p.xbi / 2 G. Then

k�˛k1 D sup
²

1

k k1

�
 .a1; b1/C  .a1b1; a

�1
1 /C  .a1b1a

�1
1 ; b�11 /

C  .Œa1; b1�; a2/C  .Œa1; b1�a2; b2/C  .Œa1; b1�a2b2; a
�1
2 /C � � �

C  .Œa1; b1� � � � Œak�1; bk�1�akbka
�1
k ; b�1k /

�
j  2 Z2b .GIR/ X ¹0º

³
;

where �WH2.G; Œw�IZ/! H2.G; Œw�IQ/ is the change-of-coefficients map.

Proof. LetX be aK.G;1/ and let 
 WS1!X representw. Recall that the isomorphism

‰WH2.G; Œw�IZ/
Š
�! h xwiR \ ŒF; F �=ŒF;R�

was constructed in the proof of Theorem 5.2 by starting with a product of k commutators
in h xwiR \ ŒF; F �, labelling the edges in a cellular decomposition of the compact
surface †k;1 with those commutators, mapping †k;1 to X and considering the image
of the fundamental class Œ†k;1� in H2.X; 
/ D H2.G; Œw�/. We will now be a bit
more specific about the choice of the map †k;1 ! X . We start by picking singular
simplices �g1;:::;gn

W�n ! X for each n-tuple .g1; : : : ; gn/ 2 Gn as in Section 3.c
(see, in particular, Figure 1), so that the map .g1; : : : ; gn/ 7! �g1;:::;gn

induces a chain
homotopy equivalence

C�.GIR/
�
�! C

sg
� .X IR/:

Take a one-vertex triangulation of †k;1 as in Figure 6.
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ı

˛1

˛1

˛2

˛2

ˇ1
ˇ1

ˇ2
ˇ2

Figure 6
One-vertex triangulation of †k;1.

We can construct the map f W†k;1! X explicitly by sending each triangle of†k;1
to the correct singular 2-simplex among the �g1;g2

’s. We obtain in particular that

˛ D f�Œ†k;1� D Œ�a1;b1
C �a1b1;a

�1
1
C �a1b1a

�1
1
;b�1

1
C �Œa1;b1�;a2

(§)

C �Œa1;b1�a2;b2
C � � � C �Œa1;b1����Œak�1;bk�1�akbka

�1
k
;b�1

k
� 2 H2.X; 
 IZ/:

Now Bavard duality for H2.X; 
/ (Theorem B) gives

k�˛k1 D sup
²
hu; ˛i

kuk1
j u 2 H 2

b .X IR/ X ¹0º

³
:

Pick some u 2H 2
b
.X IR/ŠH 2

b
.GIR/ and let  2 Z2

b
.GIR/ be a 2-cocycle such

that uD Œ �. The chain homotopy equivalence .g1; : : : ; gn/ 7! �g1;:::;gn
tells one how

to evaluate on singular (relative) 2-cycles spanned by the �g1;g2
’s in C2.X IR/: there

is an equality
h ; �g1;g2

i D  .g1; g2/:

Therefore, (§) implies that the Kronecker product hu; ˛i is given by

hu; ˛i D  .a1; b1/C  .a1b1; a
�1
1 /C  .a1b1a

�1
1 ; b�11 /C  .Œa1; b1�; a2/

C  .Œa1; b1�a2; b2/C � � � C  .Œa1; b1� � � � Œak�1; bk�1�akbka
�1
k ; b�1k /:

The result follows, remembering that kuk1 D inf¹k k1 j Œ � D uº.

Remark 5.4. As explained in Remark 3.4, a quasimorphism � 2 Q.G/ defines a
bounded 2-cocycle d2� 2 Z2

b
.GIR/. Given an integral class ˛ 2 H2.G; Œw�IZ/ with

@˛ D nŒS1�, one can use the formula of Theorem D to obtain

hŒd2��; ˛i D n � �.w/:
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Using the lower bound on k � k1 given by Theorem D together with the connection
between scl and k � k1 (Proposition A), it follows that

scl.Œw�/ �
1

2
sup

�2Q.G/

�.w/

2kd2�k1
:

On the other hand, classical Bavard duality (Theorem 3.1) says that

scl.Œw�/ D sup
�2Q.G/

�.w/

2kd2�k1
:

Feeding quasimorphisms into Theorem D has yielded a non-optimal lower bound
on scl. The reason for this is the difference between a cocycle  2 Z2

b
.GIR/ and its

class Œ � 2 H 2
b
.GIR/: given � 2 Q.G/, there are inequalities [8, Lemma 2.58]

1

2
kd2�k1 � kŒd

2��k1 � kd
2�k1;

and kŒd2��k1 might not be realised by the coboundary of a quasimorphism.

6. The bounded Euler class

Calegari [7] exhibited a connection between the rotation quasimorphism, area, and
stable commutator length in fundamental groups of compact hyperbolic surfaces with
non-empty boundary. We explain how this generalises to a statement about the relative
Gromov seminorm in possibly closed hyperbolic surface groups.

6.a. Equivariant (bounded) cohomology. To define the bounded Euler class, we
will use the language of equivariant cohomology.

Given a set X with an action of a group G, a degree-n homogeneous G-cochain
(with real coefficients) is a map  WXnC1 ! R which is invariant under the diagonal
action of G on XnC1, in the sense that

 .x0; : : : ; xn/ D  .gx0; : : : ; gxn/

for all x0; : : : ; xn 2 X and g 2 G. We denote by C n.G Õ X IR/ the R-vector space
of such cochains; they form a cochain complex C �.GÕ X IR/ with coboundary maps
dnWC n�1.G Õ X IR/! C n.G Õ X IR/ given by

dn .x0; : : : ; xn/ WD

nX
iD0

.�1/i .x0; : : : ; yxi ; : : : ; xn/;

where the hat denotes omission. The cohomology of C �.G Õ X IR/ is denoted by
H�.G Õ X IR/.
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Remark 6.1. We note the following:

(i) If G acts on itself by (left) multiplication, then there is an isomorphism

H�.G Õ GIR/ Š H�.GIR/;

which is induced by the map � WC �.GIR/! C �.G Õ GIR/ given by

.� /.g0; : : : ; gn/ WD  .g
�1
0 g1; g

�1
1 g2; : : : ; g

�1
n�1gn/

for  2 C n.GIR/ (see Section 3.c for our definition of C �.GIR/).

(ii) Given a choice of basepoint x in a G-set X , there is a morphism

H�.G Õ X IR/! H�.G Õ GIR/

induced by the map $x WC
�.G Õ X IR/! C �.G Õ GIR/ given by

.$x /.g0; : : : ; gn/ D  .g0x; : : : ; gnx/

for  2 C n.G Õ X IR/. In fact, this morphism is independent of the choice of x.
Combining this with (i), we obtain a morphism

�WH�.G Õ X IR/! H�.GIR/:

Similarly to the definition of bounded cohomology for spaces and groups (see Sec-
tion 3.b and Section 3.c), there is a bounded version of equivariant cohomology: the
complex C �

b
.G Õ X IR/ of bounded homogeneous G-cochains is the subcomplex of

C �.G Õ X IR/ consisting of bounded G-equivariant maps XnC1 ! R. The corres-
ponding cohomology is denoted by H�

b
.G Õ X IR/, and there is a morphism

H�b .G Õ X IR/! H�b .GIR/

as in Remark 6.1(ii). We refer the reader to [6, Section 3.1] for more details on equivari-
ant cohomology.

6.b. Bounded Euler class of a circle action. A choice of hyperbolic structure on a
connected surface S defines an action of �1S on the hyperbolic plane H2. This induces
an action on the boundary of H2, which is homeomorphic to the circle S1. In general,
the dynamics of an action of a group G on the circle is encoded by the bounded Euler
class, which is a class in H 2

b
.G/ that was introduced by Ghys [24] as a generalisation

of Poincaré’s rotation number [37, 38].
The bounded Euler class has several equivalent definitions [6], and for our purpose,

it will be helpful to define it from the point of view of the orientation cocycle.
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Consider the action of the group HomeoC.S1/ of orientation-preserving homeo-
morphisms of the circle on S1. The orientation cocycle is the bounded 2-cochain
Or 2 C 2

b
.HomeoC.S1/Õ S1IR/ given by

Or.x; y; z/ D

8̂̂<̂
:̂
C1 if the triple .x; y; z/ 2 .S1/3 is positively oriented;
�1 if the triple .x; y; z/ 2 .S1/3 is negatively oriented;
0 if the triple .x; y; z/ 2 .S1/3 is degenerate:

This turns out to be a cocycle, so it defines ŒOr� 2 H 2
b
.HomeoC.S1/Õ S1IR/.

Definition 6.2. The universal real bounded Euler class for circle actions is

euR
b D �

1

2
�ŒOr� 2 H 2

b .HomeoC.S1/IR/;

where �WH 2
b
.HomeoC.S1/Õ S1/! H 2

b
.HomeoC.S1// is the morphism described

in Remark 6.1 (ii).

Given an action � W G! HomeoC.S1/ of a group on the circle, the (real) bounded
Euler class of the action is

euR
b .�/ D �

� euR
b 2 H

2
b .GIR/:

This measures how far � is from being a rotation action on S1 [22, Corollary 10.27].
By definition,

k euR
b .�/k1 � k euR

b k1 �
1

2
kOr k1 D

1

2
:

See [6, 25] for more details on the bounded Euler class.

6.c. Area of a relative 2-class. In [7], Calegari defines a notion of area for a homo-
logically trivial 
 W

`
S1 ! S in an oriented, connected, hyperbolic surface S with

non-empty boundary. In his definition, it is crucial that S has non-empty boundary
because then H2.S/ D 0, so the map @WH2.S; 
/! H1.

`
S1/ is injective and there

is a unique class ˛ 2 @�1.Œ
`
S1�/. We now explain how to generalise Calegari’s notion

of area to the case where S is closed by defining the area of a class in H2.S; 
 IR/.
Let S be a hyperbolic surface with (possibly empty) geodesic boundary. Let


 W
`
S1 ! S be a collection of geodesic loops in S , and let ˛ 2 H2.S; 
 IR/. By

definition,
H2.S; 
 IR/ D H2

�
S
 ;

a
S1IR

�
:

The mapping cylinder S
 has no geometric structure allowing us to measure areas, but
there is a map of pairs �

S
 ;
a

S1
�
!
�
S; 


�a
S1
��
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defined by collapsing the cylinder. This induces a morphism

H2.S; 
 IR/! H2
�
S; 


�a
S1
�
IR
�
;

and we will measure the area of ˛ in the image. We pick a cell structure on S such that
� the 0-skeleton of S contains all multiple points of 
 (i.e. all points p 2 S for which

there are s ¤ t 2
`
S1 such that p D 
.s/ D 
.t/);

� the 1-skeleton of S contains 
.
`
S1/; and

� each 2-cell is positively oriented (for the orientation inherited by S ).

One can choose a cellular relative 2-cycle c representing the image of ˛ in the homology
H2.S; 
.

`
S1/IR/, and c is in fact unique because both C cell

3 .S/ and C cell
2 .
.

`
S1//

are zero.

Definition 6.3. Let 
 W
`
S1 ! S be a collection of geodesic loops in a hyperbolic

surface S . Given ˛ 2 H2.S; 
 IR/, the area of ˛ is defined by

area.˛/ D
X
�

�� area.�/;

where
P
� ��� 2 Z

cell
2 .S; 
.

`
S1/IR/ (with �� 2 R for each 2-cell � ) is the unique

cellular relative 2-cycle representing the image of ˛ in H2.S; 
.
`
S1/IR/.

Remark 6.4. Let f W .†; @†/! .S; 
/ be an admissible surface. Assume that † is
equipped with a hyperbolic structure with respect to which the map f W†! S is a
local isometric embedding. Then there is an equality

area.f�Œ†�/ D area.†/;

where f�Œ†� is seen as a class in H2.S; 
 IR/.

6.d. Pleated surfaces. In order to obtain good estimates on the Gromov seminorm
for a hyperbolic surface S , it will be helpful to measure it with special admissible
surfaces, called pleated surfaces. The heuristics behind pleated surfaces is the following:
if † is an orientable compact connected surface, then its simplicial volume is given
by kŒ†�k1 D �2��.†/; however, there is no triangulation of † realising this equality.
Instead, the simplicial volume is realised by an ideal triangulation. The idea is therefore
to endow admissible surfaces † with ideal triangulations that are compatible with the
hyperbolic structure on S .

Pleated surfaces, which were introduced by Thurston [41, Section 8.8], will achieve
this.

A geodesic lamination ƒ in a hyperbolic surface † is a closed subset of † which
decomposes as a disjoint union of complete embedded geodesics. Each such geodesic
is called a leaf of ƒ.
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Definition 6.5. Let M be a hyperbolic manifold. A pleated surface in M is a map
f W†!M , where † is a finite-area hyperbolic surface, such that

(i) f sends each arc in † to an arc of the same length in M ;

(ii) there is a geodesic lamination ƒ � † such that f sends each leaf of ƒ to a
geodesic of M , and f is totally geodesic (i.e. sends every geodesic to a geodesic)
on † Xƒ; and

(iii) if † is non-compact, then f sends each small neighbourhood of each cusp of †
to a small neighbourhood of a cusp of M .

The geodesic lamination ƒ is called a pleating locus for f .

For a more detailed introduction to pleated surfaces in hyperbolic manifolds, we
refer the reader to [3, 12, 23].

We now show, following Calegari [8, Section 3.1.3], how to obtain pleated admiss-
ible surfaces. The fundamental tool for this is Thurston’s spinning construction.

Lemma 6.6 (Thurston [41, Section 8.10]). Let P be a pair of pants (i.e. a compact
hyperbolic surface of genus 0with three boundary components) and letM be a compact
hyperbolic surface or a closed hyperbolic manifold. Given a map f WP !M , either
(i) the image of �1P under f� is a cyclic subgroup of �1M ; or
(ii) the map f can be homotoped to a pleated surface.

Proof. Consider a lift zf W zP ! zM of f to universal covers. Note that zM is a convex
subset of the hyperbolic n-space Hn, and zP is a convex subset of H2. Pick a geodesic
triangle � in P with one vertex on each boundary component. This lifts to a geodesic
triangle z� in a fundamental domain of zP � H2.

Now the spinning construction consists in dragging vertices of z� along the lifts
of @P to H2, and moving them to the boundary @H2. See Figure 7. This construction
is called spinning because, in P , the triangle � has been spun around the boundary
components of P . In this way, one obtains a geodesic lamination ƒ on P with three
leaves, whose complement consists of two open ideal triangles.

There are two cases:

(i) If f .ƒ/ is degenerate (i.e. the images of the three leaves of ƒ have the same
axis in zM ), then f�.�1P / generates a cyclic subgroup of �1M .

(ii) Otherwise, construct a map f 0WP !M homotopic to f as follows. For each
boundary component @i of P , we define f 0.@i / to be the unique closed geodesic in the
homotopy class of f .@i /. Each leaf �i of ƒ is mapped under f to a quasi-geodesic
in M , which can be straightened to a geodesic 
i . Set f 0.�i / D 
i . Finally, each
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H2

z�
zv1

zv2

zv3

z@1
z@2

z@3

 

H2

Figure 7
Thurston’s spinning construction.

component of P Xƒ is an open ideal triangle, and since its image is non-degenerate
in M , there is a unique totally geodesic extension of f 0 to this triangle.

Using Thurston’s spinning construction, we can obtain pleated admissible surfaces.
This is an adaptation of a lemma of Calegari [8, Lemma 3.7].

Lemma 6.7 (Pleated admissible surfaces). Let M be a compact hyperbolic surface
or a closed hyperbolic manifold. Let 
 W

`
S1 !M be a collection of geodesic loops

inM , no two components of which have the same image inM . Then for every rational
class ˛ 2 H2.M; 
 IQ/ and for every " > 0, there is a pleated admissible surface
f W .†; @†/! .M; 
/ such that f�Œ†� D n.†/˛ for some n.†/ 2 N�1, and

(¶) k˛k1 �
�2��.†/

n.†/
� k˛k1 C ":

Proof. By Lemma 2.20, there is a simple, incompressible, admissible surface

f W .†; @†/! .M; 
/

satisfying (¶), with f�Œ†� D n.†/˛ for some n.†/ 2 N�1. Now take a pants decom-
position ¹Piºi of †, as in Figure 8. The idea is to apply the spinning construction
(Lemma 6.6) to eachPi . We can perform the construction separately on each connected
component of †; to simplify notations, we therefore assume that † is connected. Fix a
pants component Pi . We want to apply Lemma 6.6 to the restriction fjPi

WPi !M ;
we need to ensure that f�.�1Pi / is non-cyclic. We distinguish three cases, based on
the type of Pi .
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†

P1 P2 P3 P4 P5 P6

P0

@�

@C @1

˛ ˇ

Figure 8
Pants decomposition of †.

There are three types of components in the pants decomposition:

(i) pairs of pants that are part of a twice-punctured torus (e.g.P2; : : : ;P5 in Figure 8);

(ii) pairs of pants that are glued to themselves to form a once-punctured torus (e.g. P6
in Figure 8);

(iii) pairs of pants that are not of type (i) or (ii) (e.g. P0; P1 in Figure 8).

We first show that, if Pi of type (iii), then f�.�1Pi / cannot be cyclic. Recall
from Section 2.a that 
 represents Œc� D Œ

P
j wj � 2 C

conj
1 .�1M IZ/, where no two of

the wj ’s are conjugate or generate a cyclic subgroup of �1M (by assumption on 
).
Since f is an admissible surface, each boundary component of † maps to a power
of some wj , and simplicity implies that no two boundary components of † map to
powers of the same wj . We can assume that the components ¹Piºi of type (iii) are
ordered as ¹P0; : : : ; Pkº, in such a way that P0 has two boundary components on @†,
and each Pi is glued to Pi�1 along one boundary component and has one boundary
component on @† (this is consistent with the notations of Figure 8, where k D 1).
With these notations, we can order the wj ’s in such a way that f�.�1P0/ D hw0; w1i,
and each Pi has one boundary component glued to Pi�1 and whose image represents
an element of hw0; : : : ; wi i, and one boundary component lying on @†, and whose
image represents a power of wiC1. In particular, it follows that f�.�1Pi / is not cyclic
for any Pi of type (iii).

Now assume thatPi is of type (i). Two of the boundary components @C and @� ofPi
are meridians in a twice-punctured torus (@˙ are depicted in Figure 8 for Pi D P4).
Let ˛ be the equator of this twice-punctured torus and let ı˛W†! † denote the Dehn
twist along ˛. If f�.�1Pi / D hf�.@C/; f�.@�/i is cyclic, then replace @˙ with ı˛@˙;
this amounts to defining a new pants decomposition of†. For this pants decomposition,
hf�.@C/; f�.@�/i is not cyclic because f�˛ and f�@˙ do not commute by incompress-
ibility (otherwise Œ˛; @˙� would be represented by a simple closed curve in † with
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nullhomotopic image in M ). It might be that, after this modification, the adjacent pair
of pants Pj in the same twice-punctured torus as Pi has cyclic image in �1M . In this
case, one applies the Dehn twist ı˛ a second time.

Assume finally that Pi is of type (ii). Then Pi is glued to itself to form a once-
punctured torus. Denote by @1 one of the two boundary components of Pi that is glued
to form a meridian in the once-punctured torus, and by ˇ the equator (@1 and ˇ are
depicted in Figure 8 for Pi D P6). Then f�.�1Pi / D hf�.@1/; f�.@1/f�.ˇ/i, where
the exponent denotes conjugation. If f�.�1Pi / is cyclic, then there are w 2 �1M and
k; ` 2 Z such that

f�.@1/ D w
k
D f�.ˇ/w

`f�.ˇ/
�1:

But �1M is Gromov-hyperbolic, and therefore it is known to be a CSA group, in the
sense that all its maximal abelian subgroups are malnormal; see [18, Example 10].
Hence hwi is malnormal (after possibly replacing w with a generator of a maximal
abelian subgroup containing it), and f�.@1/ 2 hwi \ hwif�.ˇ/ X ¹1º, so f�.ˇ/ 2 hwi.
In particular, f�Œ@1; ˇ� D 1, which contradicts incompressibility. This proves that
f�.�1Pi / cannot be cyclic.

Therefore, after performing the above modifications, we have a pants decomposition
of † for which f�.�1Pi / is never a cyclic subgroup of �1M . By Lemma 6.6, the
restriction of f to each Pi can be homotoped to a pleated map. Moreover, these
homotopies can be performed simultaneously as the image of each boundary component
of a pair of pants is homotoped to the unique geodesic in its homotopy class. Hence,
we obtain a pleated map homotopic to f , which is still an admissible surface and
satisfies (¶).

Remark 6.8. In fact, we will not need the estimate (¶) on the Gromov seminorm in
Lemma 6.7: it will be enough for us to know that every rational class is represented by
a pleated admissible surface.

6.e. Bounded Euler class and area. A hyperbolic structure on a surface S induces
an action of �1S on the boundary of the hyperbolic plane, which is a circle. Hence, we
get a circle action �W�1S ! HomeoC.S1/, defining a bounded Euler class euR

b
.�/ 2

H 2
b
.�1S IR/ as explained in Section 6.b. We will call it the bounded Euler class of S

and denote it by euR
b
.S/. It can also be seen as an element ofH 2

b
.S IR/; see Section 3.c.

The following is implicit in Calegari’s book [8, Lemma 4.68].

Lemma 6.9 (Bounded Euler class and area). Let 
 W
`
S1 ! S be a collection of

geodesic loops in a compact hyperbolic surface S . Let ˛ 2 H2.S; 
 IQ/ be a rational
class. Then

area.˛/ D �2�heuR
b .S/; ˛i:
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Proof. Lemma 6.7 yields a pleated admissible surface f W .†; @†/ ! .S; 
/ with
f�Œ†� D n.†/˛ for some n.†/ 2 N�1. Hence,

heuR
b .S/; ˛i D

1

n.†/
heuR

b .S/; f�Œ†�i:

Recall that euR
b

is defined as the image of �1
2
ŒOr� in H 2

b
.HomeoC.S1//; see Sec-

tion 6.b. The pleated structure on † defines an ideal triangulation, and the Kronecker
product heuR

b
.S/; f�Œ†�i is therefore given by

heuR
b .S/; f�Œ†�i D �

1

2

X
�

Or.f .�//;

where the sum is over all triangles � in this ideal triangulation, and Or.f .�// isC1
if f .�/ is positively oriented, �1 if f .�/ is negatively oriented, and 0 if f .�/ is
degenerate. But each f .�/ is an ideal triangle in S , and contributes � Or.f .�//
to area.

P
� f .�// by the Gauß–Bonnet theorem. Therefore,

area.˛/ D
1

n.†/
area.f�Œ†�/ D

1

n.†/
area

�X
�

f .�/
�

D
�

n.†/

X
�

Or.f .�// D �
2�

n.†/
heubR.S/; f�Œ†�i

D �2�heuR
b .S/; ˛i:

A class ˛ 2 H2.S; 
 IR/ is said to be projectively represented by a positive immer-
sion if there is an admissible surface f W .†; @†/! .S; 
/ with f�Œ†� D n.†/˛ for
some n.†/ 2 N�1, and such that f is an orientation-preserving immersion.

The following is now a straightforward generalisation of a result of Calegari [8,
Lemma 4.62].

Theorem E (Extremality of the bounded Euler class). Let 
 W
`
S1 ! S be a collec-

tion of geodesic loops in a compact hyperbolic surface S . Let ˛ 2 H2.S; 
 IQ/ be
projectively represented by a positive immersion f W .†; @†/# .S; 
/. Then

k˛k1 D
�2��.†/

n.†/
D �2heuR

b .S/; ˛i:

In other words, f is an extremal surface and � euR
b
.S/ is an extremal class for ˛.

In particular, k˛k1 2 Q.

Proof. Note that † inherits a hyperbolic structure from S for which f is a local
isometric embedding, and area.†/ D n.†/ area.˛/ (see Remark 6.4). By the Gauß–
Bonnet theorem,

�2���.†/ D �2��.†/ D area.†/ D n.†/ area.˛/:
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Therefore (using the topological interpretation of k � k1; see Proposition 2.18),

k˛k1 �
�2��.†/

n.†/
D
1

�
area.˛/ D �2heuR

b .S/; ˛i;

where the last equality follows from Lemma 6.9. We have k euR
b
.S/k1 �

1
2
, so Bavard

duality for k � k1 (Theorem B) gives

�2heuR
b .S/; ˛i �

h� euR
b
.S/; ˛i

k euR
b
.S/k1

� k˛k1:

Remark 6.10. In the case where S has non-empty boundary, the converse of The-
orem E holds: if k˛k1D�2heuR

b
.S/;˛i, then ˛ is projectively represented by a positive

immersion [8, Lemma 4.62]. However, this uses the existence of extremal surfaces
for k˛k1 (see [8, Remark 4.65]), which is not known if S is closed.
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