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Abstract. We define theta blocks as products of Jacobi theta functions divided by powers of the
Dedekind eta function and show that they give a new powerful method to construct Jacobi forms and
Siegel modular forms, with applications also in lattice theory and algebraic geometry. One of the
central questions is when a theta block defines a Jacobi form. It turns out that this seemingly simple
question is connected to various deep problems in different fields ranging from Fourier analysis over
infinite-dimensional Lie algebras to the theory of moduli spaces in algebraic geometry. We give
several answers to this question.
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1. Introduction

The Jacobi theta function #.�; z/, defined for � 2 H, z 2 C either as the theta series

#.�; z/ D

1X
rD�1

�
�4

r

�
qr
2=8�r=2 .q D e2�i� ; � D e2�iz/ (1.1)

or else by the triple product

#.�; z/ D q1=8�1=2
1Y
nD1

.1 � qn/.1 � qn�/.1 � qn�1��1/; (1.2)

is a holomorphic Jacobi form (with non-trivial character) of weight 1/2 and index 1/2.
(The definitions of holomorphic Jacobi forms with character and of their weight and index
are reviewed in Section 3.) For a 2 N, we denote by #a the Jacobi form

#a.�; z/ WD #.�; az/

of weight 1/2 and index a2=2, while

�.�/ D

1X
rD1

�1
2

�
rqr

2=24
D q1=24

1Y
nD1

.1 � qn/

denotes the Dedekind eta function. The starting point of this paper is the following obser-
vation.

Fact. Let a and b be positive integers. Then the quotient

Qa;b.�; z/ D
#a.�; z/#b.�; z/#aCb.�; z/

�.�/

is a holomorphic Jacobi form of weight 1 and index a2 C ab C b2, and is a cusp form if
3g3 j ab.aC b/, where g D gcd.a; b/.
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We will give several proofs and generalizations of this result. To do this, we first give
(in Section 4) a general criterion for the divisibility of a holomorphic Jacobi form, and
in particular of a product of #a’s, by a given power of �. This will involve defining the
notion of the order of a Jacobi form at infinity, a notion which apparently has not been
introduced previously but which seems quite fundamental to the theory. This criterion will
then be used to prove the holomorphy of Qa;b and to give many other examples—both
infinite families proved theoretically and sporadic examples found by computer—of theta
products divisible by high powers of �. A typical example is the family of holomorphic
Jacobi forms of weight 2

Ra;b;c;d D
#a#b#c#d#aCb#bCc#cCd#aCbCc#bCcCd#aCbCcCd

�6
; (1.3)

where a, b, c and d are natural numbers. In many cases, including both the familiesQa;b
and Ra;b;c;d , we will also give explicit formulas for quotients of the form ��s#a1 � � �#aN
as theta series of rank N � s. Some of these are obtained by using a general criterion
(described in Section 4) for the divisibility of one theta series by another, while others
arise by specializing the Macdonald identities (also known as Kac–Weyl denominator
formulas) for suitable root systems.

A weakly holomorphic Jacobi form of the type #a1 � � �#aN =�
d is called a theta block

of length N , and it is called a holomorphic theta block if it is a Jacobi form. Its weight is
equal to .N � d/=2, and one of the principal aims of this article is to construct explicit
examples of holomorphic theta blocks whose weight is relatively small with respect to
the length. For instance, the Jacobi form Ra;b;c;d has length 10 and weight 2, and more
generally, in Section 9, we will construct families of length n.nC 1/=2 and weight n=2.
In Section 10, we will develop a general theory for constructing such families and will
see many more concrete examples in the sections following it. We will be interested both
in theoretical bounds for the minimal weight k for given length N (in Section 5, it is
shown that the minimal weight is bounded below and above by c1 logN and c2.logN/3

for positive constants ci ) and in constructing explicit holomorphic theta blocks of small
weight.

The special families that we construct turn out to give a very useful way of con-
structing Jacobi forms, especially Jacobi forms of low weight. For instance, both the first
Jacobi form and the first Jacobi cusp form of weight 2 and trivial character, which have
indices 25 and 37, respectively, and were constructed with some effort in [7], are now
obtained immediately as the two first cases .a; b; c; d/ D .1; 1; 1; 1/ and .1; 1; 1; 2/ of the
family Ra;b;c;d , and many other interesting examples of Jacobi forms of low weight and
given character can be obtained as special cases of products of the functions Qa;b or of
the other families. Such forms have several applications, e.g., to questions concerning the
classification of moduli spaces of polarized abelian surfaces or of K3-surfaces. We will
describe these applications and give some general discussion of the situation for small
weight. In particular, we shall see that all holomorphic Jacobi forms of weight 1/2 and
weight 1 and arbitrary character can be obtained as theta quotients ��s#˙a1 � � � #

˙1
aN

, and
we will give conjectures and partial results for higher weights. We expect that the spaces
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of Jacobi forms of small weight and arbitrary index and character on the full modular
group are in fact spanned by theta quotients. As we shall see in Section 4, this statement
is, however, false for large weights.

We finally mention a side result of our studies of theta blocks, namely a rather short
proof (in Section 11) of the Macdonald identities based on Jacobi forms of lattice index.

Part I
Basic theory

2. Review of Jacobi forms

We first recall the definition of Jacobi forms as given in [7]. Let k and m be non-negative
integers. Then a holomorphic Jacobi form of weight k and index m (on the full mod-
ular group � D SL.2;Z/, or more precisely on the full Jacobi group �J D � Ë Z2) is
a holomorphic function �WH �C ! C which satisfies the two transformation equations

�
�a� C b
c� C d

;
z

c� C d

�
D .c� C d/ke

� mcz2
c� C d

�
�.�; z/ (2.1)

and
�.�; z C �� C �/ D e.�m.�2� C 2�z//�.�; z/ (2.2)

for all � 2 H, z 2 C,
�
a b
c d

�
2 � and

�
�
�

�
2 Z2 (here e.x/ D e2�ix as usual), and which

has a Fourier expansion of the form

�.�; z/ D
X
n2Z
n�0

X
r2Z

r2�4mn

c.n; r/qn�r ; (2.3)

where q and � denote e.�/ and e.z/, respectively. The Fourier coefficients c.n; r/ then
automatically satisfy the periodicity property

c.n; r/ D c.nC �r C �2m; r C 2�m/ for all � 2 Z (2.4)

(this is equivalent to (2.2)), so that c.n; r/ is actually only a function of the numbers
d D 4nm � r2 and r mod 2m in Z�0 and Z=2mZ. A Jacobi cusp form of weight k and
index m is a holomorphic Jacobi form in which the condition 4nm � r2 � 0 in (2.3) is
strengthened to 4nm � r2 > 0, while a weak Jacobi form is defined like a holomorphic
Jacobi form but with the condition 4nm � r2 � 0 in (2.3) dropped entirely; the periodic-
ity property (2.4) then implies that c.n; r/ D 0 unless m�2 C r�C n � 0 for all � 2 Z
and hence that jr j is still bounded (by

p
4nmCm2) for each n, so that � still belongs

to CŒ�; ��1�JqK. Finally, a weakly holomorphic Jacobi form of weight k and index m
is a holomorphic function �WH � C ! C satisfying (2.1), (2.2) and (2.3) but without
the condition 4nm � r2 in (2.3) and with the condition n � 0 weakened to n � n0 for
some n0 2 Z. An equivalent definition is that �.�/h�.�; z/ is a holomorphic Jacobi form
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(of weight k C 12h and indexm) for some h 2 Z, where�D �24 2 S12.�/. Such a form
has a Fourier expansion in CŒ�; ��1�Jq�1; qK, the ring of Laurent series in q with coeffi-
cients which are Laurent polynomials in �.

The spaces of holomorphic Jacobi forms, Jacobi cusp forms, weak Jacobi forms
and weakly holomorphic Jacobi forms are denoted by Jk;m.1/, J

cusp
k;m

.1/, J weak
k;m

.1/ and
J Š
k;m
.1/, respectively, the latter in analogy with the more standard notationM Š

k
DM Š

k
.�/

for the space of weakly holomorphic modular forms of weight k on � (D holomorphic
functions in H which transform like modular forms of weight k but are allowed to grow
like a negative power of q as =.�/!1). The “1” in parentheses, which was not used
in [7], means that the Jacobi forms under consideration have trivial character, and will be
dropped when forms with arbitrary character are permitted. For m D 0 the Jacobi forms
are independent of z, so that we have Jk;0.1/ D J weak

k;0
.1/ D Mk.�/, J

cusp
k;0

.1/ D Sk.�/,
and J Š

k;0
.1/ DM Š

k
.�/. We also have Jk;m.1/Jk0;m0.1/ � JkCk0;mCm0.1/, so that the vec-

tor space J�;�.1/ D
L
k;m�0 Jk;m.1/ is a bigraded ring. Note that the weights of weak or

weakly holomorphic Jacobi forms can be negative, although in the case of weak Jacobi
forms they are bounded below by �2m.

In this paper, we will still consider Jacobi forms on the full modular group, but will
allow rational weights and indices. For such forms the transformation equations (2.1)
and (2.2) are true only up to certain roots of unity (of bounded order) depending on

�
a b
c d

�
and

�
�
�

�
, and the exponents n and r in (2.3) can be rational (though again with bounded

denominator). The quickest way to give a definition is simply to say that �.�; z/N is
a holomorphic (or cuspidal, or weak, or weakly holomorphic) Jacobi form of weight Nk
and index Nm for some positive integer N . The explicit formulas for the roots of unity
occurring in the transformation equations with respect to the action of � and Z2 (multi-
plier system) are quite complicated, but we do not have to give them explicitly because
there is an easy implicit description which suffices for the cases we are interested in
(products of the functions #a.�; z/ and of rational powers of �.�/). We use the sym-
bol " to denote the multiplier system of the function �.�/, and more generally "h for
any h 2 Q to denote the multiplier system of (any branch of) the function �.�/h. (Note
that the quotient of two branches of �.�/h is a constant, so that "h is in fact indepen-
dent of the choice of branch.) We also note that the index m of any Jacobi form �,
even a weakly holomorphic one or one with arbitrary character, is always a non-negative
half-integer, because 2m is the number of zeros of the function z 7! �.�; z/ in a funda-
mental domain for the action of the group Z� C Z of translations of C. For m integer
and k; h 2 Q, we will say that a Jacobi form � of weight k and index m has charac-
ter "h if �.�/�h�.�; z/ is a (weakly holomorphic) Jacobi form in the usual sense, i.e., if
k � h=2 2 Z and ��h� 2 J Š

k�h=2;m
.1/. For half-integral index, we observe that the square

of the Jacobi theta function #.�; z/2 is a holomorphic Jacobi form of weight 1, index 1
and character "6 in the above sense, so we simply define its character to be "3; then for
m 2Z�0C

1
2

and k;h 2Q, we define a Jacobi form of weight k, indexm and character "h

by the requirement that �.�/�h�3#.�; z/�.�; z/ belongs to J Š
k�1�h=2;mC1=2

.1/. The defi-
nitions in both cases depend only on h modulo 24, so we get spaces Jk;m."h/, J

cusp
k;m

."h/,
J weak
k;m

."h/ and J Š
k;m
."h/ for all m 2 1

2
Z�0, k 2 Q and h 2 Q=24Z with 2k � h mod 2.
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Formulas (2.1), (2.2) and (2.3) imply that � 2 qh=24�mCŒ�; ��1�Jq�1; qK for � belonging
to any of these spaces. We clearly have Jk;m."h/Jk0;m0."h

0

/ � JkCk0;mCm0."
hCh0/ and

also �a 2 Jk;a2m."h/ if � 2 Jk;m."h/, where �a.�; z/ denotes the Jacobi form �.�; az/.
In particular, we have #a 2 J1=2;a2=2."3/, and more generally

#a WD

NY
jD1

#aj 2 JN=2;A=2."
3N /

for a D .a1; : : : ; aN / 2 ZN , A D
PN
jD1 a

2
j .

It is not hard to show that every function whose N -th power, for some positive inte-
ger N , is a (weak or weakly holomorphic) Jacobi form of integer weight and index with
trivial character is indeed in Jk;m."h/ (or J weak

k;m
."h/ or J Š

k;m
."h/) for suitable rational k

and h. Moreover, it is easily verified that, for any index m in 2�1Z, the transformation
formula (2.2) remains true if one multiplies the right-hand side by the factor e.m.�C�//.
Note also, that for any rational k and h and half-integer m every element � in J Š

k;m
."h/

has still a Fourier expansion of the form (2.3), where, however, r runs through Z or 2�1Z
accordingly as m is integer or not, and n runs through all rational numbers n � no which
are in h=24C Z. The (modified) transformation formula (2.2) implies that, for any inte-
ger �,

C�.�; r/ D e.m�/C�.�; r C 2m�/; (2.5)

where C.�; r/ D c..r2 ��/=.4m/; r/.
Finally, we mention another special Jacobi form

#�.�; z/ D
X
r2Z

�12
r

�
qr
2=24�r=2; (2.6)

which appears also in the famous Watson quintuple product identity

#�.�; z/ D �.�/
#.�; 2z/

#.�; z/

D q1=24�1=2
1Y
nD1

.1� qn/.1C qn�/.1C qn�1��1/.1� q2n�1�2/.1� q2n�1��2/:

The Jacobi form #� has weight 1=2, index 3=2 and multiplier system ". For an integer a,
we will use the notation #�a for the Jacobi form #�.�; az/.

3. The order of a weakly holomorphic Jacobi form at infinity

Let � be a weakly holomorphic non-zero Jacobi form � of index m with Fourier coeffi-
cients c�.n; r/. We associate to � a function ord.�; x/ of a real variable x by setting

ord.�; x/ D min¹nC rx Cmx2 W n; r such that c�.n; r/ 6D 0º: (3.1)
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This function has several remarkable properties and it will play a key role in the construc-
tion of theta blocks of small weights. In particular, as the following theorem shows, the
map � 7! ord.�; �/ defines a valuation with values in the (additive) group of continuous
functions on R=Z. A similar valuation could be associated to other cusps if one had to
consider Jacobi forms on subgroups of SL.2;Z/ which have more than one cusp, which
justifies calling ord.�; �/ the order of � at infinity.

Theorem 3.1. The function ord� D ord.�; � / defined by (3.1) has the following prop-
erties:

(1) It is continuous, piecewise quadratic, and periodic with period 1.

(2) If � is of index m D 0 (i.e., if � is a weakly holomorphic elliptic modular form,
independent of z), then ord� is constant and equals the usual order of � at the cusp
infinity.

(3) For any fixed real u, x and y, there is a constant C D C.u; x; y/ such that one has

�.�; x� C y/e.mx2�/ D .C C o.1//e�2� ord.�;x/v

as � D uC iv and v tends to infinity. The constant C depends only on u, x, y modulo
NZ for a suitable integer N � 1 and is different from zero for almost all u, x, y.

(4) For any two weakly holomorphic Jacobi forms � and  , one has

ord� D ord� C ord :

(5) Let � be in J Š
k;m
."h/. Then � is in Jk;m."h/ if and only if ord� � 0, and � is in

J
cusp
k;m

."h/ if and only if ord� > 0.

(6) For any integer l and any weakly holomorphic Jacobi form �, one has ordUl�.x/ D
ord�.lx/, where Ul denotes the operator .Ul�/.�; z/ D �.�; lz/.

Proof. For proving (1), we note that ord� is locally equal to the minimum of finitely many
quadratic polynomials, hence is continuous and piecewise quadratic. If we write

ord.�; x/ D min
° .r C 2mx/2 ��

4m
W �; r; such that c�

�r2 ��
4m

; r
�
6D 0

±
;

we see that the periodicity is an immediate consequence of identity (2.5).
Statements (2) and (6) are obvious, and (4) follows immediately from (3).
For (3), we observe that the left-hand side of the claimed identity equalsX

n;r

c�.n; r/e..nC rx Cmx2/� C ry/

D

X
.n;r/2S

c�.n; r/e.ord.�; x/� C ry/C o.e�2� ord.�;x/v/;

where S is the (finite) set of pairs .n; r/ of rational numbers such that nC rx Cmx2 D
ord.�; x/ and c�.n; r/ 6D 0.
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Finally, for (5) we note that � is a holomorphic (cusp) form if and only if c�.n; r/D 0
unless the discriminant r2 � 4mn of the quadratic polynomial f .x/ D n C rx C mx2

is (strictly) negative, i.e., unless f .x/ is (strictly) positive for all x. This proves the
theorem.

The order of Jacobi theta function #.�; z/ (introduced in (1.1)) will play an important
role in the following. We shall use the letter B for it, i.e., we set B.x/ D ord.#; x/. From
the Fourier development (1.1) of # , i.e., from the property that c#.n; s/ 6D 0 if and only if
n D r2=8 and s D r=2 for an odd integer r , we see that ord.#; x/ equals the minimum of

1

8
r2 C

1

2
rx C

1

2
x2 D

1

2

�
x C

r

2

�2
;

where r ranges through the odd integers. In other words

B.x/ WD ord.#; x/ D min
k2Z

1

2

�
x �

1

2
C k

�2
D
1

2

�
x � bxc �

1

2

�2
: (3.2)

Note also that

ord
�#
�
; x
�
D
1

2
B.x/;

where B.x/ is the periodic function with period 1 which, for 0� x � 1, equals the second
Bernoulli polynomial x2 � x C 1=6. Indeed, for �, viewed as Jacobi form of index 0,
we have immediately from the definition of ord that ord.�; x/ D 1=24, so that with
Theorem 3.1 (4) we obtain ord.#=�; x/ D ord.#; x/ � 1=24 D B.x/ � 1=24 D B.x/=2,
by (3.2).

4. Theta blocks

Recall from Section 2 that #a.�; z/D #.�; az/ defines an element of J1=2;a2=2."3/. From
Theorem 3.1, we deduce that ord.#a; x/DB.ax/with the function B.x/ defined in (3.2).
From the product expansion (1.2) of # , we deduce that, for fixed � , the set of zeros
of #.�; �/ coincides with the lattice Z� CZ. Accordingly, we find that the zeros of #a.�;z/
are all simple and are given by the a-division points of the lattice Z� C Z., i.e., by the
points of the lattice a�1.Z� C Z/.

Definition. A theta block of length r is a function of the form

#a1#a2 � � �#ar�
n; (4.1)

where n is an integer and aj are integers different from zero. A generalized theta block is
a holomorphic function in H �C of the form

#a1#a2 � � �#ar
#b1#b2 � � �#bs

�n; (4.2)
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where n is an integer and aj , bj are non-zero integers. We call a theta block or generalized
theta block holomorphic if it is holomorphic also at infinity, i.e., if it is a Jacobi form.
Conversely, an arbitrary function of form (4.2), without the requirement of holomorphy
in H �C, is called a theta quotient.

We note that the length r of a theta block, i.e., the number of #-factors in (4.1) is
indeed uniquely determined by the theta block as follows, for example, from Theorem 4.6
below.

Occasionally, we will also allow rational values for n, and will then call the corre-
sponding function a theta block, generalized theta block or theta quotient with fractional
�-power. Clearly, any such function is a meromorphic Jacobi form in Jmer

k;M=2
."h/, where

k D
r � s C n

2
; M D

rX
jD1

a2j �

sX
jD1

b2j ; h D 3r � 3s C n:

If f is a generalized theta block (with integral or fractional �-power), then f is a weakly
holomorphic Jacobi form in J !

k;M=2
."h/.

Example 4.1. The function #�.�; z/ defined in (2.6) is a generalized theta block. More
generally, for every positive integer a we have the generalized theta block

Sa D
Y
d ja

#
�.a=d/

d
; (4.3)

where � denotes the Möbius function. Note that Sa is holomorphic in H � C, its zeros,
as function of z for fixed � , are simple and are given by the primitive a-division points of
the lattice L� D Z� CZ, i.e., by those points of a�1L� whose images in a�1L�=L� have
exact order a. Hence Sa defines an element of J Š

0; .a/'.a/=2
.1/ for a � 2 (whereas, for

a D 1, we have S1 D #), where '.a/ is the Euler '-function and  .a/ denotes the sum
of all positive divisors d of a such that d=a is squarefree. Its order at infinity is given by

ord.Sa; x/ D
X
d ja

�
� a
d

�
B.dx/:

Note that the theta blocks form a semigroup with respect to the usual multiplication of
functions. We shall denote this semigroup by B. Similarly, the generalized theta blocks
form a semigroup which we shall denote by B�. The theta quotients, finally, form a group
denoted by G.B/. We shall determine the structure of this group.

For a fixed � , the divisor of a theta block f .�; z/, viewed as a theta function on
C=.Z� C Z/, is of the form

P
a na…a, where a runs through Z>0, the integers na van-

ish for almost all a, and …a is the (formal) sum of the primitive a-division points of
C=.Z� C Z/. The formal sum

Div.f / WD
X
a

na.a/ 2 ZŒZ>0�

does not depend on � . Moreover, the map f 7! Div.f / defines a group homomorphism.
Using this map, the structure of G.B/ can be described as follows.
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Theorem 4.2. The map f 7! Div.f / defines an exact sequence

1! �Z
! G.B/

Div
��! ZŒZ>0�! 1:

The sequence splits via the map D D
P
na.a/ 7! SD WD

Q
a S

na
a .

Proof. From the discussion in Example 4.1, it is clear that D 7! SD defines a section of
the map Div, which is then, in particular, surjective. If a theta block, for each fixed � , has
no zeros or poles in C=.Z� C Z/, then it is of index 0, hence an elliptic modular form
without zeros in the upper half-plane (but with possibly a pole at the cusp infinity), hence
a power of �.

There are two immediate consequences of the theorem.

Corollary 4.3. A theta quotient is a generalized theta block (i.e., weakly holomorphic) if
and only if it equals a product of the functions Sa and a power of �.

Theorem 4.4. For any positive integer or half-integerm, the number of generalized theta
blocks of indexm, counted up to multiples of powers of �, is finite. It equals the coefficient
of q2m in the power series expansion of 1=

Q1
aD1.1 � q

'.a/ .a//.

Proof. Indeed, according to the theorem, the number in question equals the number of
D D

P
a na.a/ in ZŒZ>0� such that all na are non-negative and m D .1=2/

P
a na �

'.a/ .a/. But this number is finite since

'.a/ .a/ D a2
Y
pja

�
1 �

1

p2

�
> a2

Y
p

�
1 �

1

p2

�
D
6a2

�2
;

which is bigger than 2m for large a.

Remark. It is known [26, Theorem 6] that, for fixed m and h, as k tends to infinity,
one has dim Jk;m."

h/ D c � k C O.1/, where c is a constant depending on m and h.
In particular, we see that generalized theta blocks of a given index m can never span the
whole space of Jacobi forms of weight k, index m and given character if k is sufficiently
large. Table 1 lists, for small indices m, all generalized theta blocks of index m, up to
powers of �, normalized by a fractional �-power so that the minimum of their order at
infinity becomes zero, i.e., so that they are holomorphic but not cuspidal.

As we have seen, it is easy to decide whether a theta quotient is weakly holomorphic.
It remains to analyze the behaviors of a general theta block at infinity. We shall discuss
this question from various points of view in the next sections. Here we confine ourselves
to the study of the map which associates to a theta quotient its order at infinity. For this
we note that ord.f; �/, for a theta quotient f , is an element of the additive group of real-
valued functions on the real line which is spanned by the functions B.ax/ (a 2 Z>0)
and 1=24. It is a somewhat surprising fact that the order at infinity already determines the
theta quotient. Namely, we shall prove the following assertion.
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m Sm

1=2 #

1 #2

3=2 #3, .#2=#/�
2 #4, #2
5=2 #5, ##2��3=5

3 #6, #2#2��1, .#22=#
2/�2

7=2 #7, #3#2��9=7, .#22=#/�
6=7

4 #8, #4#2��3=2, #22 , .#3=#/�3=2

9=2 #9, #5#2��5=3, ##22�
�2=3, .#32=#

3/�3, #3
5 #10, #6#2��9=5, #2#22�

�6=5, .#32=#
2/�9=5, ##3

11=2 #11, #7#2��21=11, #3#22�
�18=11, .#32=#/�

9=11, #2#3, .#2#3=#2/�27=11

6 #12, #8#2��2, #4#22�
�2, #32 , .#42=#

4/�4, #3#3, .#2#3=#/�, .#4=#2/�

Tab. 1. For small index m, the sets Sm of all non-cuspidal generalized theta blocks with fractional
�-power in

L
k;h2Q Jk;m."

h/.

Theorem 4.5. The map f 7! ord.f; �/ defines an isomorphism between the group of theta
quotients G.B/ and the additive group W of functions spanned by the B.ax/ (a 2 Z>0)
and the constant function 1=24.

Proof. We shall prove in a moment that the functions B.ax/ and 1=24 are linearly inde-
pendent over Z (and even over C). Hence from the order at infinity ord.f; �/ of a theta
quotient f as in (4.2), we can read off the numbers aj , bj and n, which proves the theo-
rem.

The claimed linear independence of the B.ax/ and 1=24 becomes obvious if one ex-
pands B.x/ into its Fourier series,

B.x/ D
1

4�2

X
n2Z
n6D0

e2�inx

n2
C

1

24
:

Hence, if b.x/ D
P
l�1 clB.lx/C c0=24 with integers cl , almost all equal to zero, then

b.x/ D
1

4�2

X
n2Z
n6D0

p.e2�inx/ � p.0/C p.1/=2

n2
; (4.4)

where p.t/ denotes the polynomial1 p.t/ D
P
l�0 cl t

l . (For the identity, we used also
that

P1
nD1 1=n

2 D �2=6.) By the uniqueness of the Fourier expansion of b.x/, the poly-
nomial p is uniquely determined by b, i.e., we have a map b 7! p, which defines an

1These formulas could be written more smoothly if we had defined #a as the quotient
#.�; az/=�.�/, whose order is B2.ax/=2, where B2.x/ D y2 � y C 1=6 (y D fractional part of x)
is the periodically continued second Bernoulli polynomial.
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isomorphism of W with the group of polynomials over Z. This implies the claimed linear
independence.

It is worthwhile to summarize the discussion of this section in terms of the compo-
sition of the isomorphism f 7! ord.f; �/ with the isomorphism of W and the group of
polynomials over Z used in the preceding proof.

Theorem 4.6. The map

p.t/ D
X
l�0

cl t
l
7! #p D �

2c0
Y
l�1

�#l
�

�cl
defines an isomorphism of the (additive) group 2�1ZC tZŒt � and the groupG.B/ of theta
quotients. The theta quotient #p defines a meromorphic Jacobi form of weight k D p.0/,
indexmD .p0.1/C p00.1//=2 and character "h with hD 2p.1/. It is weakly holomorphic
if and only if, for all positive integers N ,

1

N

X
�ND1

p.�/ � c0 (4.5)

(the sum is over all N -th roots of unity). Its order at infinity ord.#p; �/ is given by

ord.#p; x/ D
1

4�2

X
n2Z
n6D0

p.e2�ixn/

n2
: (4.6)

Proof. The statements concerning the weight, index and character are obvious. (See the
discussion at the beginning of this section.) The formula for the order at infinity is a re-
statement of formula (4.4). Finally, if we write #p D �c

Q
a S

na
a , then p.t/ D c0 CP

l

P
a na�.a=l/t

l (where �.a=l/ D 0 if a is not a multiple of l). Accordingly, we find

na C c0 D
1

a

X
�aD1

p.�/;

and we recognize the stated criterion for being weakly holomorphic as a restatement of
the first corollary of Theorem 4.2.

The construction of holomorphic generalized theta blocks, i.e., of theta quotients
which define Jacobi forms, therefore amounts to the construction of polynomials p.t/
whose coefficients apart from the constant term are integers, that satisfy (4.5), and such
that the right-hand side of (4.6) is non-negative for all x 2 R. We come back to this ques-
tion in the following section.

We end this section by a criterion for a Jacobi form to be a generalized theta block.

Theorem 4.7. A weakly holomorphic Jacobi form � on the full modular group is a gener-
alized theta block if and only if, for every � , the function z 7! �.�; z/ has at most division
points of C=.Z� C Z/ as zeros.
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Proof. As we saw at the beginning of this section, the divisor of a theta quotient consists,
for fixed � , of division points of C=.Z� C Z/.

Assume vice versa that � is a meromorphic Jacobi form of weight k in 2�1Z, indexm
and character "h, and assume that, for some �0, the function �.�0; �/ has a zero in r�0C s.
Then, by assumption, r�0 C s is a point of, say, order a in C=.Z� CZ/. Moreover, if the
zero is simple, there are small neighborhoods U and V of �0 and r�0 C s such that the
set of zeros of �.�; z/ in U � V is of the form .�; �.�// with a holomorphic function �.�/
on U . Since �.�/ must be a division point for every � in U , we conclude �.�/ D r� C s.
But then �.�; r� C s/ vanishes identically in U and hence is identically zero. The same
still holds true if r�0 C s is a zero of order n > 1 as one sees by applying the preceding
argument to �=Sn�1a instead of � (with Sa as in (4.3)), which shows then that �.�; �/ has
a zero of order n in r� C s for any � .

The transformation law of � under SL.2;Z/ shows that the identity �.�; r� C s/ D 0
implies �.�; r 0� C s0/D 0 for anyA in SL.2;Z/, where .r 0; s0/D .r; s/A (since �r;s.�/ WD
�.�; r� C s/e.mr2�/ satisfies �r;sjkA D �.r;s/A for any A in SL.2;Z/).

It follows that there are a finite set I of positive integers and a sequence na (a 2 I ) of
integers such that, for every � , the zero divisor of the theta function �.�; �/ on C=.Z� CZ/
is of the form

P
a2I na…a.�/with…a.�/ denoting the formal sum of primitive a-division

points of C=.Z� C Z/. But then �=
Q
a2S S

na
a has no zeros.

Applying the same argument as before to 1=� shows finally that there is a theta quo-
tient f such that �=f has no zeros and no poles in H � C. A standard argument shows
then that �=f has index 0 and is independent of z, and finally, that it is a power of �.

5. Long theta blocks of low weight

In this and the next sections, we shall be interested in constructing Jacobi forms of low
weight as theta blocks (with fractional �-power). There are at least two reasons for study-
ing holomorphic theta blocks, i.e., theta blocks that are holomorphic at infinity, of low
weight. Firstly, in applications one is usually interested in Jacobi forms of low weight and
there is a good chance that a Jacobi form of low weight can be represented by a theta
block, whereas this becomes more and more unlikely for higher weight. (Cf. the remark
after Theorem 4.4.) Secondly, it turns out to be quite hard to construct theta blocks of low
weight, which raises some interesting questions. In this section, we answer the question
for theoretical bounds for the lowest weight that one can obtain if one fixes the length of
a holomorphic theta block. In the next section, we shall present various infinite families
of holomorphic theta blocks of low weight.

We are interested in the growth of the function

wt.N / WD
N

2
� 12max.N /; (5.1)

where

max.N / D sup
²

min
x

� NX
jD1

B.ajx/

�
W a1; : : : ; aN 2 Z�1

³
:
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Recall that �n with nD 24minx
PN
jD1B.ajx/ is the largest (fractional) �-power by which

we can divide #a1 � � � #aN and still obtain a theta block that is holomorphic at infinity
(cf. (3.2) and Theorem 3.1). Accordingly, the quantity wt.N / measures the lowest weight
for which there exists a Jacobi form which is a theta block built from exactly N fac-
tors #a.

Clearly, max.N / < N=24 (since minx B.ax/ <
R 1
0
B.ax/ dx D 1=24) and therefore

wt.N / > 0. Alternatively, this inequality also follows from the fact that a non-constant
holomorphic Jacobi form has a positive weight.

As already remarked after Theorem 4.6, the construction of holomorphic theta blocks
of low weight amounts to the construction of polynomials p.t/ in RC tZŒt � whose coef-
ficients apart from the first one are non-negative, such that p.1/ is large but p.0/ is at the
same time small, and such that the right-hand side of (4.6) is non-negative. This will be
the starting point for obtaining bounds for wt.N /.

More precisely, as a consequence of Theorem 4.6, we can relate our problem to one
that is well studied in the literature in the context of trigonometric polynomials as we shall
see in a moment.

Lemma 5.1. Let TN denote the set of polynomials p.t/ in RC tZ�0Œt � such that

p.e2�ix/C p.e�2�ix/ � 0

for all real x, and whose sum of non-constant coefficients equals N . One has

wt.N / � inf¹p.0/ W p 2 TN º:

Proof. The inequality results from the fact that the image of TN under the map of Theo-
rem 4.6 is contained in the set zTN of theta blocks (with fractional �-power) whose order
function is non-negative.

We do not know whether the image of TN equals zTN . If this held true then the inequal-
ity of the lemma would in fact be an equality.

The asymptotic behavior of

ct.N / WD inf¹p.0/ W p 2 TN º

was studied in [1, 21, 24] etc. In the last two of these articles, it was shown that ct.N /
does not grow faster than n1=3 and log.n/n1=3, respectively. The so far strongest result (to
the best of our knowledge) is ct.N /� log3 N for N � 2 (see [1, Theorem 0.5]). More
precisely, one has the following.

Theorem ([1, Corollary 5.4]). For all N one has

ct# WD inf¹p.0/ W p 2 T #N º � 45000.1C .logN/3/;

where T #N is the subset of polynomials p.t/ D a0 C a1t C a2 C � � � in TN whose non-
constant coefficients a1; a2; : : : form a decreasing sequence.
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Note that the right-hand side is also an upper bound for ct.N / as T #N is a subset of TN .
The same paper [1, Theorem 0.5] also gives an estimate of ct#.N / from below, namely

log2N
log logN

� ct#.N /:

However, since we know neither the exact relation between wt.N / and ct.N / nor between
the latter and ct#.N /, the last estimate is not useful for us. It might give an indication for
a lower bound of wt.N / though.

We can indeed prove a similar estimate for wt.N / from below by relating wt.N / to
another well-studied problem, namely the determination of the quantity

A.N/ WD inf
²Z 1

0

jRep.e2�ix/j dx W p.t/ 2 tZ�0Œt �; p.1/ D N
³
:

We thank Danylo Radchenko who pointed out this connection to us and also found and
proved the following lemma.

Lemma 5.2. For all N � 1, one has

wt.N / �
� 6
�2
�
1

2

�
� A.N/:

Proof. Let p.t/ be in tZŒt �, and let c0 be a real number such that c0=12C ord.#p; x/ D
ord.#c0Cp;x/� 0 for all x. Then c0=12 is an upper bound for�

R 1
0

min.ord.#p; x/; 0/ dx.
But the latter integral equals 1

2

R 1
0
jord.#p; x/j dx (since

R 1
0

ord.#p; x/ dx equals 0). From
formula (4.6), we therefore obtain, setting In D

R 1
0
jRep.e2�inx/j dx,

c0 � 6

Z 1

0

jord.#p; x/j dx �
3

�2

�
I1 �

X
n�2

In

n2

�
D

� 6
�2
�
1

2

�
I1;

where for the last equality we used that the p.e2�inx/ all have the same L1-norm. The
lemma is now obvious.

Lower bounds for the left-hand side of the inequality of the last lemma have been
studied in a different context (norms of exponential sums) in [23]. In particular, the results
given there imply the following assertion.

Theorem ([23, Theorem 2]). For all N � 1, one has

A.N/ �
H2N

60
;

where H2N D
P2N
nD1 1=n denote the 2N -th harmonic number.

This theorem as stated here is not exactly identical to [23, Theorem 2]. In fact, McGe-
hee, Pigno and Smith prove, for any sequence of integers a1 < a2 < � � � < an and any
sequence of complex numbers �1, . . ., �N , the inequalityZ 1

0

ˇ̌̌̌ nX
jD1

�j e
2�iaj x

ˇ̌̌̌
dx �

1

60

nX
jD1

j�j j

j
:

The preceding theorem is an obvious consequence.
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Summarizing the preceding discussion, we obtain the following.

Theorem 5.3. The quantity wt.N/ in (5.1) satisfies

H2N

555:930 : : :
� wt.N / � 45000.1C log3N/

for all N � 1.

In particular, wt.N / grows at least like a constant times log N and at most like
a constant times log3 N as N goes to infinity. Note, however, that the bounds given in
the theorem are very poor for N of intermediate size. For instance, for N D 50 these
bounds are

0:00933 � wt.50/ � 2:74 � 106;

whereas Table 2 in the next section shows that in fact wt.50/ < 2:224.
As we see from Theorem 5.3, there exist theta blocks with an arbitrary high numberN

of #-factors which are Jacobi forms but have relatively small weight � log3 N . It is
challenging to construct such theta blocks explicitly. The rest of this article will somehow
pivot around this subject. In particular, we shall construct infinite families of theta blocks
with a high number of #a-factors, fairly small weight and yet holomorphic at infinity.
We shall even develop a theory that will permit to construct such families systematically.
In the next section, however, we confine ourselves to describing the results of our direct
search for interesting theta blocks.

Part II
Examples

6. Experimental search for long theta blocks

As we explained in the last section, we are interested in long theta blocks of low weight
which are holomorphic at infinity. For this we need, first of all, to describe an efficient
method to calculate the minimum of the order of a theta block. For a D .a1; : : : ; aN /

in ZN , set

#a WD

NY
jD1

#aj ; Ba.x/ WD

NX
jD1

B.ajx/; sa D 24min
x
Ba.x/:

Recall that the theta block #a hasBa as order at infinity. Hence sa is the maximal fractional
power of � by which we can divide #a and still have a Jacobi form. The weight of the
resulting form is ka D .N � sa/=2.

Note that B.x/ is one half of the square of the distance of x to the closest point in
1=2C Z. Accordingly, Ba.x/, for a given x, is one half of the square of the Euclidean
distance of xa to the closest point in 1=2C ZN , where 1=2 D .1=2; : : : ; 1=2/. In other
words, sa=24 is one half of the square distance of the line R � a to the set 1=2 C ZN .
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If n=2 is a point in 1=2C ZN , then its square distance to R � a equals the square length
of its orthogonal projection onto the orthogonal complement of R � a, i.e., it equals .n2 �
.n � a/2=a2/=4. If we set

Sa.n/ WD n2 � a2 � .n � a/2; (6.1)

then we can summarize

sa D 24min
x
Ba.x/ D 3 min

n21C2ZN

Sa.n/
a2

; (6.2)

where 1 D .1; : : : ; 1/. This formula has several consequences.
First of all, if n0 in 1C 2ZN minimizes Sa.n/, then the minimum ofBa.x/ is assumed

at x D n0 � a=.2a2/. Note that x is a rational number with denominator 2a2. Summing up,
we have proved the following assertion.

Proposition 6.1. The function Ba.x/ assumes its minimum at one of the points

x D
s

2M
C

k

M
.0 � k < M/;

where s D
PN
jD1 aj and M D

PN
jD1 a

2
j .

Remark. The proposition tells us in particular that we can determine the minimum of
Ba.x/ for a given a by trying all the M values x as in the theorem, which needs M DPN
jD1 a

2
j steps.

Secondly, (6.2) implies the following criterion for #a=�
d defining a Jacobi form.

Proposition 6.2. The quotient #a=�
d is holomorphic at infinity if and only if

Sa.n/ �
d

3
a2

for all vectors n in 1C 2ZN (with Sa.n/ as in (6.1)). It is a cusp form if and only if the
inequality is strict for all n in 1C 2ZN .

Remark. As we shall see below, it is sometimes useful to write Sa.n/ in a slightly differ-
ent form. Namely, as a simple computation shows, one has

Sa.n/ D
X

1�i<j�N

.ainj � ajni /
2;

where we used n D .n1; : : : ; nN /.

For minimizing Sa.n/ for a given a, the following formula is sometimes useful.

Proposition 6.3. Let uj (1 � j � r) be linearly independent vectors in ZN spanning the
orthogonal complement of a, and let G D .ui � uj /1�i;j�r be the Gram matrix of the uj .
Then

Sa.n/ D .xG�1xt /a2;

where x D .n � u1; : : : ;n � ur /.
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Remark. If the uj of the proposition do not span the orthogonal complement of a but are
still orthogonal to a, then we still have

Sa.n/ � .xG�1xt /a2

for all vectors n in 1C 2ZN , where xD .n � u1; : : : ;n � ur / (as one easily sees by comple-
menting the uj to a full basis of the orthogonal complement of a by integer vectors which
are orthogonal to the uj ).

Assume that u2j is odd for all j . Then n � uj � u2j � 1 mod 2 for n in 1 C 2ZN ,
i.e., x 2 1C 2Zr , and hence

Sa.n/ � . min
x21C2Zr

xG�1xt /a2:

If the ui are in addition pairwise orthogonal, so that G�1 is the diagonal matrix with
1=u2j (1 � j � r) as diagonal elements, we conclude (using .n � uj / � 1) that

Sa.n/ �
� rX
jD1

1

u2j

�
a2

for all vectors n in 1C 2ZN .

Proof of Proposition 6.3. Indeed, for x in RN let x? be the orthogonal projection of x
onto the space spanned by the uj . Then n2 D n2

?
C .n� n?/2 and n? � a D 0, and hence

Sa.n/ D n2? � a
2
C .n � n?/2 � a2 � ..n � n?/ � a/2 � n2? � a

2:

But n? D
Pr
jD1.n � uj /u�j , where u�j are the vectors of the dual basis of uj (j D 1; : : : ; r)

in the space spanned by the uj . Therefore, n2
?
D xHxt with x D .n � u1; : : : ; n � ur / and

H D .u�i � u
�
j /i;j . Since H D G�1, the proposition is now obvious.

We are interested in the behavior of sa (or ka) as a function of a, and, in particular,
to find a in ZN for big N but with sa as big as possible, or, equivalently, with ka as small
as possible. As clear from the definition of sa, its value does not change if we divide a
by the gcd of its entries. When looking for a with best sa, we can therefore assume that a
is primitive. Except for the first few N , we do not know any method to determine, for
a given N , the smallest possible weight ka, when a runs through all integer vectors (with
positive entries) of length N . For N D 1 the minimum sa of B.ax/, for any integer a,
is 0, which is assumed by #.�; z/.

Already for N D 2, it is not completely evident to determine sa for a given (prim-
itive) a D .a; b/. A simple calculation shows S.a;b/.r; s/ D .as � br/2. Writing r D
�1 � 2k and s D 1C 2l , we have S.a;b/.r; s/ D .aC b C 2.al C bk//2. The minimum
over all integers k and l equals obviously the rest s of aC b modulo 2, whence s.a;b/ D
3=.a2 C b2/ if a C b is odd, and s.a;b/ D 0 otherwise. The maximal s.a;b/ is therefore
assumed for a; b D 1; 2, for which we have s.a;b/ D 3=5.

For larger N , we did searches by trial and error to find a with small ka. Our best
results are listed in Table 2. We do not know how far off our ka are from the true minima.
Note that, for small N , Theorem 5.3 does not give any useful hint in this respect.
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N ka a2 a

1 1=2 D 0:500 1 1
2 7=10 D 0:700 5 2
3 6=7 D 0:857 14 3
4 9=10 D 0:900 15 3 � 1
5 25=22 D 1:136 55 5
6 27=28 D 0:964 56 5 � 1
7 11=9 D 1:222 108 5 � 2 � 7
8 49=40 D 1:225 240 7 � 10
9 37=28 D 1:321 168 6 � 2 � 3 � 8
10 13=11 D 1:182 286 9 � 1
11 289=193 D 1:497 386 10 � 1
12 465=338 D 1:376 507 11 � 1
13 589=398 D 1:480 796 11 � 1 � 17
14 304=205 D 1:483 820 13 � 1
15 1917=1210 D 1:584 605 10 � 1 � 3 � 4 � 5 � 13
16 281=172 D 1:634 1032 14 � 1 � 4
17 175=107 D 1:636 1284 14 � 2 � 3 � 16
18 5007=3002 D 1:668 1501 16 � 2
19 1463=895 D 1:635 1790 17 � 2
20 256=151 D 1:695 2114 18 � 2
21 2839=1650 D 1:721 2475 19 � 2
22 9607=5750 D 1:671 2875 20 � 2
23 2933=1658 D 1:769 3316 21 � 2
24 2391=1339 D 1:786 2678 19 � 3 � 5 � 13
25 13961=7618 D 1:833 3809 22 � 3
26 54=29 D 1:862 4350 23 � 1 � 3 � 4
27 18441=9926 D 1:858 4963 23 � 3 � 25
28 20515=11078 D 1:852 5539 25 � 3
29 4577=2486 D 1:841 6215 26 � 3
30 6459=3472 D 1:860 6944 27 � 3
31 9679=5190 D 1:865 7785 27 � 3 � 29
32 427=220 D 1:941 7040 26 � 5 � 28
33 8187=4285 D 1:911 8570 29 � 3 � 1
34 34583=17338 D 1:995 8669 28 � 5 � 30
35 13259=6970 D 1:902 10455 31 � 3 � 5
36 42723=21038 D 2:031 10519 31 � 3 � 5 � 8
37 12403=6272 D 1:978 12544 33 � 3 � 1
38 1002=479 D 2:092 11496 32 � 5 � 1
39 3371=1678 D 2:009 12585 33 � 5 � 1
40 63307=30026 D 2:108 15013 35 � 3 � 5 � 8
41 18392=8795 D 2:091 17590 37 � 3 � 1
42 17649=8131 D 2:171 16262 36 � 5 � 1
43 2763=1306 D 2:116 17631 37 � 5 � 1
44 29753=13714 D 2:170 20571 39 � 4 � 1
45 21777=10298 D 2:115 20596 39 � 5 � 1
46 25033=11105 D 2:254 22210 40 � 4 � 2 � 6
47 11381=5306 D 2:145 23877 41 � 5 � 1
48 40449=18310 D 2:209 27465 43 � 4 � 1
49 126745=58802 D 2:155 29401 44 � 4 � 1
50 34937=15713 D 2:223 31426 45 � 4 � 1

Tab. 2. Best experimental values of ka for N � 50. The first three rows give the true best values.
(Here a stands for the vector .1; 2; : : : ; a/, a for the vector .a/ and “�” for concatenation; hence
5 � 2 � 7 D .1; 2; 3; 4; 5; 2; 7/.)
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7. Theta quarks

It turns out that there are infinite families of theta blocks which are holomorphic Jacobi
forms. An explanation for this will be given by the theory which we shall develop in
Section 10. In this section, we discuss the first non-trivial example of such a family, the
family of theta quarks, which was already presented in the introduction. Recall that this
family is given by

Qa;b D
#a#b#aCb

�
.a; b 2 Z>0/:

We use the word “quark” for these functions because the product of any three of them
is a Jacobi form without character on the full modular group. We shall give six different
proofs of the fact that Qa;b , for any pair of positive integers a, b is indeed holomorphic
at infinity.

Theorem 7.1. For any pair of positive integers a and b, the functionQa;b defines a holo-
morphic Jacobi form of weight 1, index a2 C ab C b2 and character "3. It is a cusp form
if and only if 3 j a0b0.a0C b0/, where a0 D a=g and b0 D b=g with g denoting the greatest
common divisor of a and b.

Remark. Note that the condition 3 j a0b0.a0 C b0/ is equivalent to a0 6� b0 mod 3 as we
shall occasionally use in the following proofs.

First proof of Theorem 7.1. According to Theorem 3.1, we have to show that

min
x

ord.Qa;b; x/ � 0

with equality if and only if 3g divides a � b. For this recall

ord.Qa;b; x/ D B.ax/C B.bx/C B.�.aC b/x/ �
1

24

(where we used that B.x/ is an even function), so that

min
x

ord.Qa;b; x/ � min
.x;y;z/2H

.B.x/C B.y/C B.z// �
1

24
;

where H denotes the hyperplane x C y C z D 0. If x, y or z is an integer, the right-hand
side is greater or equal to B.0/ D 1=8 > 1=24. Otherwise, the right-hand side is differ-
entiable in small neighborhood of .x; y; z/, and we can apply the method of Lagrangian
multipliers: if .x; y; z/ is a local minimum, then .xx; xy; xz/ D �.1; 1; 1/ for some �, where
xx, xy, xz denote the fractional parts of x, y, z. The minimum of B.x/CB.y/CB.z/ onH
is therefore taken on at

xx D xy D xz D
1

3
or xx D xy D xz D

2

3
;

and it equals 1=24 in either case.
We leave it to the reader to work out when Qa;b is a cusp form.
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Second proof of Theorem 7.1. For this proof, we use the criterion of Proposition 6.2.
In the notations of the preceding section, we have

Qa;b D
#a

�
; where a D .a; b; aC b/:

The vector u D .1; 1;�1/ is perpendicular to a D .a; b; aC b/, and hence by the remark
after Proposition 6.3,

Sa.n/ �
1

u2
a2 D

1

3
a2

for all n in 1 C 2Z3. According to Proposition 6.2, the Jacobi form Qa;b is therefore
holomorphic at infinity, and it is a cusp form if and only if the last inequality is strict for
all n.

Third proof of Theorem 7.1. The holomorphy of Qa;b also follows from the following
explicit formula for its Fourier expansion.

Theorem 7.2. One has

Qa;b D �
X
r;s2Z

� s
3

�
qr
2CrsCs2=3�.a�b/rCas : (7.1)

Proof. We have an isomorphism of Z-lattices

¹.l; m; n/ 2 Z3 W l � m � n mod 2º Š ¹.r; s; t/ 2 Z3 W s � t mod 3º;

.l; m; n/ 7!
�n �m

2
;
l Cm

2
� n;�l �m � n

�
with respect to which .�4=.lmn// D .�4=t/. Hence

�#a#b#aCb D
X

l;m; n2Z

�
�4

lmn

�
q.l

2Cm2Cn2/=8�.alCbm�.aCb/n/=2

D

X
r; s; t 2Z
s�t mod 3

�
�4

t

�
qr
2CrsCs2=3Ct2=24�.a�b/rCas;

and (7.1) follows because X
t�s mod 3

�
�4

t

�
qt
2=24
D

� s
3

�
�.�/

for all s.

Remark. The above isomorphism of lattices is S3-equivariant if we introduce new coor-
dinates .u; v;w/ with uC v Cw D 0, u � v � w mod 3 which are related to r and s by
.u; v; w/ D .�3r � 2s; 3r C s; s/. Then (7.1) can be symmetrically written in terms of
the three integers a, b and c D �a � b with sum 0 by

Qa;b D
X

uCvCwD0
u�v�w mod 3

�u
3

�
q.u

2Cv2Cw2/=18��.auCbvCcw/=3: (7.2)
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The proof for this follows by using the equivariant isomorphisms of lattices ¹.t; u; v;w/ 2
Z4 W t � u � v � w mod 3; uC v C w D 0º and ¹.l; m; n/ 2 Z3 W l � m � n mod 2º
given by .l; m; n/ D �.t C 2u; t C 2v; t C 2w/=3.

Fourth proof of Theorem 7.1. Using formula (7.2), we have to show that

a2 � x2 � .a � x/2 � 0;

where aD .a;b; c/ and xD .u;v;w/=3; but this is the Cauchy–Schwarz inequality. Recall
that the Cauchy–Schwarz inequality is strict unless a is a multiple of x. In other words,
Qa;b is a cusp form if and only if a D .a; b;�.a C b// is never proportional to a vector
x D .u; v; w/ in Z3 with u � v � w mod 3.

Fifth proof of Theorem 7.1. As we shall see in Section 10, we can obtain the theta quarks
as pullbacks of the function #A2 defined by the Macdonald identity (also known as Kac–
Weyl denominator formula) for the affine Lie algebra with positive root system A2. The
theory of affine Kac–Moody algebras gives in particular a formula for the Fourier expan-
sion of this function, which shows that the pullbacks are indeed holomorphic at infinity
(see [19, 22]). More details will be given in Part III (see Example 11.2), where we shall
also give a new proof of the Macdonald identities which does not make any use of affine
Lie algebras.

Sixth proof of Theorem 7.1. In Section 14, we shall see that the function #A2 , which the
fifth proof is based on, is the first Fourier–Jacobi coefficient of a holomorphic Borcherds
product (see (14.4)), and hence its pullbacks to theta quarks are in particular holomorphic
at infinity. For details, we refer the reader to the proof of Theorem 14.5 and the subsequent
remark.

8. Other families of low weight

The series of theta quarks of the preceding section is not the only infinite family of theta
blocks of low weight. In fact, as we shall see in Part III, there are infinitely many such
families. In this section, we discuss various of these families which have low weight.
More precisely, we shall discuss families of weight 1, 3=2 and 2. Recall that a theta
block of weight k consists of N functions #a divided by �N�k . If the character is "h,
then 2N C 2k � h mod 24, hence the length of the theta block occurs in the arithmetic
progression

N D �k C
h

2
C 12d .d D 0; 1; 2 : : : /:

In Table 3, we list various families of theta blocks of low weight. For systematic reasons,
which shall become clear in Part III, we included also the family Qa;b of the last section
and renamed the function Ra;b;c;d of (1.3) to A4;a;b;c;d .
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Weight Character Family

1 8 Qa;b D A2Ia;b DD2Ia;b D �
�1#a#aCb#b

10 B2Ia;b D C2Ia;b D �
�2#a#aCb#aC2b#b

14 G2;a;b D �
�4#a#3aCb#3aC2b#2aCb#aCb#b

3/2 15 A3Ia;b;c DD3Ia;b;c D �
�3#a#aCb#aCbCc#b#bCc#c

21 B3Ia;b;c D �
�6#a#aCb#aC2bC2c#aCbCc#aCbC2c#b#bCc#bC2c#c

21 C3Ia;b;c D �
�6#a#2aC2bCc#aCb#aC2bCc#aCbCc#b#2bCc#bCc#c

2 0 A4Ia;b;c;d D �
�6#a#aCb#aCbCc#aCbCcCd#b#bCc#bCcCd#c

� #cCd#d

12 B4Ia;b;c;d D �
�12#a#aCb#aC2bC2cC2d#aCbCc#aCbC2cC2d

� #aCbCcCd#aCbCcC2d#b#bCc#bC2cC2d#bCcCd

� #bCcC2d#c#cCd#cC2d#d

12 C4Ia;b;c;d D �
�12#a#2aC2bC2cCd#aCb#aC2bC2cCd#aCbCc

� #aCbC2cCd#aCbCcCd#b#2bC2cCd#bCc#bC2cCd

� #bCcCd#c#2cCd#cCd#d

4 D4Ia;b;c;d D �
�8#a#aCb#aC2bCcCd#aCbCc#aCbCcCd#aCbCd

� #b#bCc#bCcCd#bCd#c#d

4 F4Ia;b;c;d D �
�20#a#2aC3bC4cC2d#aCb#aC3bC4cC2d#aC2bC2c

� #aC2bC4cC2d#aC2bC3cCd#aC2bC3cC2d

� #aC2bC2cCd#aC2bC2cC2d#aCbCc#aCbC2c

� #aCbC2cCd#aCbC2cC2d#aCbCcCd#b#bCc#bC2c

� #bC2cCd#bC2cC2d#bCcCd#c#cCd#d

Tab. 3. Families of theta blocks of low weight.

Most remarkable is the series A4Ia;b;c;d , which, for given a, b, c, d , yields a Jacobi
form in J2;m with

2m D C a2 C .aC b/2 C .aC b C c/2 C .aC b C c C d/2

C b2 C .b C c/2 C .b C c C d/2 C c2 C .c C d/2 C d2:

In particular, we have A4I1;1;1;2 in J2;37. The latter space is one-dimensional and contains
only one cusp form, which is in fact the cusp form of smallest index in weight 2 with
trivial character. The first few coefficients of this cusp form were computed laboriously
in [7, p. 145]. Here A4I1;1;1;2 provides a closed formula.

A courageous reader might like to verify that the given families are indeed holomor-
phic at infinity. In principle, this can be done along the lines of the first two proofs for the
family of theta quarks as in the preceding section. Here we confine ourselves to the fam-
ilies B2Ia;b and G2;a;b . However, for weights 3=2 and 2, a straightforward verification
becomes rather tedious. A more conceptual proof that these families are holomorphic at
infinity will be given in Part III (cf. Theorem 11.1). The family A4Ia;b;d will be discussed
in the next section as one instance of a natural infinite collection of infinite families of
theta blocks.
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Proposition 8.1. The function

B2Ia;b D
#a#aCb#aC2b#b

�2

is a holomorphic Jacobi form of weight 1 and (integral or half-integral) index 3a2=2C
3ab C 3b2 with character �10. For coprime a and b, it is a cusp form if and only if a is
odd or 3 − b.aC b/.

Proof. We analyze the theta block #a=�
2 for a D .a; a C b; a C 2b; b/ (notation as in

Section 6). According to Proposition 6.2, we have to prove that

Sa.n/ �
2

3
a2

for all n in 1C 2Z4. For this we use the remark after Proposition 6.3: The vectors u1 D
.0;1;�1;1/, u2D .1;�1;0;1/ and a are pairwise orthogonal, and u21D u22D 3, and hence
the claimed inequality follows. We leave the proof of the cusp condition to the reader.

The case of the family G2Ia;b of “six theta over four eta” can be treated similarly.

Proposition 8.2. The function

G2Ia;b D
#a#3aCb#3aC2b#2aCb#aCb#b

�4

is a holomorphic Jacobi form of weight 1 and index 4.3a2 C 3ab C b2/ with charac-
ter �14.

Proof. We proceed as in the preceding proof. Setting

a D .a; 3aC b; 3aC 2b; 2aC b; aC b; b/;

we have to prove

Sa.n/ �
4

3
a2

for all n in 1C 2Z6. For this we apply Proposition 6.3 to the vectors uj given by0BB@
u1
u2
u3
u4

1CCA D
0BB@
1 �1 0 1 0 0

1 0 0 0 �1 1

0 1 �1 0 0 1

1 0 0 �1 1 0

1CCA :
It is quickly checked that they are orthogonal to a, and that the Gram matrixG D .ui � uj /
satisfies

4G�1 D

0BB@
2 �1 1 0

�1 2 �1 0

1 �1 2 0

0 0 0 4=3

1CCA :
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Using n � uj � 1 mod 2 for n 2 1C 2Z6, we deduce from Proposition 6.3

Sa.n/
a2
�
1

4
min

x21C2Z3
xtKxC

1

3
;

where

K D

0@ 2 �1 1

�1 2 �1

1 �1 2

1A :
The minimum in question must be an even integer (since K is even). It must be � 4
since for odd x, y, z, we have .1=2/.x; y; z/K.x; y; z/t D x2 � xy C xz C y2 � yz C
z2� 0 mod 2; in fact, it is 4 as one sees for x D y D z D 1. The desired estimate is now
obvious.

9. An infinite collection of families

In the previous section, we saw various infinite families of theta blocks. In Part III,
we shall propose a general theory which explains the existence of these families and
generates even more. More specifically, we shall associate an infinite family to every root
system. The infinite families which we shall propose in this section turn out to be those
attached to the root systems An. However, we include this section in the hope that the
reader might find it profitable to study the latter families here using elementary arguments
without having to go through the details of the theory developed in Part III.

For the rest of this section, we fix an integer n � 2, and for any integer vector a D
.a0; : : : ; an/ with pairwise different entries, we set

‚a WD �
�n.n�1/=2

Y
0�i<j�n

#ai�aj : (9.1)

Clearly,‚a depends only on the coset of a in ZnC1=Z � 1, where as before 1D .1;1; : : : ;1/.
Moreover, changing the signs of any entries or the order of the entries of a leaves ‚a

invariant up to sign. The assumption that the aj are pairwise different ensures that ‚a

does not vanish identically. Note that for n D 2, we have

‚aCb;b;0 D �
�1#a#aCb#b;

which is the family of theta quarks, and similarly

‚.0;a;aCb;aCbCc;aCbCcCd/ D Ra;b;c;d :

We also define a quadratic form Q by

Q.a/ WD
1

2

X
0�i<j�n

.ai � aj /
2
D
nC 1

2

� nX
iD0

a2i

�
�
1

2

� nX
iD0

ai

�2
:

Again, we recognize that Q.a/ depends only on a mod Z � 1.
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In this section, we shall prove that the functions ‚a, with a as above a vector in ZnC1

having pairwise distinct entries, are theta blocks. More precisely, we shall prove the fol-
lowing theorem.

Theorem 9.1. The function ‚a defined in (9.1) is a theta block of length n.nC 1/=2 and
weight n=2. More precisely, ‚a belongs to the space Jn=2;Q.a/."n.nC2//. In particular, if
nC 1 is relatively prime to 6, it belongs to Jn=2;Q.a/.

The first case where the character "n.nC2/ is trivial occurs for n D 4, when the‚a de-
fine Jacobi forms in J2;Q.a/. In fact, the family‚a equals the familyRa;b;c;d DA4Ia;b;c;d
mentioned in the introduction and in Table 3. There are at least three more infinite families
(all being products of ten theta functions divided by �6) which yield Jacobi forms of
weight 2 without character (see Table 5 in Section 11).

Finally, one may ask when ‚a is a cusp form. The answer, whose proof can be found
at the end of the proof of Theorem 9.1 below, is as follows.

Supplement 9.2. Let g denote the gcd of the differences ai � aj . Then‚a is a cusp form
if and only if there exist 0 � i < j � n such that .ai � aj /=g is divisible by nC 1.

Just as for the family Qa;b of theta quarks in Theorem 7.2, one can describe the
Fourier expansion of ‚a in closed form.

Theorem 9.3. For the theta block ‚a defined in (9.1), one has

‚a D
X

x2.n=2CZ/nC1

x�1D0

�.x/qx2=2.nC1/�a�x;

where �.x/ D sig.�/ if there is a permutation � of ¹0; : : : ; nº such that x is congruent
to .�n=2/1C .�.0/; �.1/; : : : ; �.n// modulo .nC 1/Z, and �.x/ D 0 otherwise.

A proof of this identity will be given in a more general context in Part III. It can easily
be deduced from Theorem 11.5 in Part III applied to the root system An. Alternatively,
it can also be obtained directly, without referring to root systems, by restriction to one
variable of a more general identity for many variables discussed in Theorem 10.1 below.
More precisely, our identity is obtained by applying Theorem 10.1 to (in the notations of
that theorem)

L D
�
L; .x; y/ 7!

x � y
nC 1

�
; s D ¹ei � ej W 0 � i < j � nº;

G D permutations of the entries of vectors in L;

w D
�
�
n

2
;�
n

2
C 1; : : : ;

n

2

�
;

where L denotes the lattice of all vectors x in ZnC1 which satisfy

nC1X
jD1

xj D 0 and xh � xj mod .nC 1/
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for all 0 � h; j � n, and where ej is the vector of length n C 1 with C1 at the
j -th place and 0 at all other places. To obtain literally our theorem, one has then, first
of all, to replace the variable z 2 C ˝ L used in Theorem 10.1 by az, where z runs
through the complex numbers. Secondly, one has to use that L is isometric to the lattice
ZnC1=Z equipped with the quadratic form Q from the beginning of this section via the
map (from right to left) a 7! .nC 1/a � .a � 1/1. We leave the details to the interested
reader.

It might be amusing to look for a combinatorial proof of the identity of Theorem 9.3
along the lines of the proof of the special case Theorem 7.2. We finally mention a nice
restatement of Theorem 9.3, which is as follows.

Theorem 9.4. One has

‚a.�; z/ D

Z 1

0

det

264#
�
0 .�; za0 C w/ � � � #�0 .�; zan C w/

:::
: : :

:::

#�n .�; za0 C w/ � � � #�n .�; zan C w/

375 dw; (9.2)

where

#�j D
X

s2j�n=2C.nC1/Z

qs
2=.2.nC1//�s :

This is indeed merely a restatement of the preceding theorem. To recognize this, write
the determinant after the integral in the formX

�

sig.�/
nY

jD0

#��.j /.�; aj z C w/

D

X
�2SN

sig.�/
nY

jD0

X
xj2�.j /�n=2C.nC1/Z

q
x2
j
=2.nC1/

e..aj z C w/xj /;

where � runs through the group of permutations of ¹0; : : : ; nº. Writing the product as an
.n C 1/-ary theta series, and integrating in w from 0 to 1 yields the Fourier expansion
of ‚a as given in Theorem 9.3.

Note that (9.2) suggests an elementary proof. Namely, it is obvious that, for any
fixed � , the right-hand side Ia vanishes at the .ai � aj /-division points of C=.Z� C Z/
(as it should in view of the claimed identity and the zeros of ‚a). Indeed, if we replace z
by .��C �/�=.ai � aj / with any integers �, �, then the determinant on the right-hand
side of (9.2) becomes zero since the i -th and j -th rows become equal up to multiplica-
tion by a constant (since ai=.ai � aj / D aj =.ai � aj /C 1). Unfortunately, this still does
not prove that the divisors of Ia.�; �/ and ‚a.�; �/, viewed as theta functions of the elliptic
curve C=.Z� CZ/, coincide; for this we would have to consider also multiplicities. How-
ever, if we could prove that the divisors coincide (or at least one is contained in the other)
and that Ia is also in Jn=2;Q.a/."n.nC2// (note that the transformation law with respect to
z 7! zC �� C � with integers �, � is obvious) then we could conclude that Ia and‚a are
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equal up to multiplication by a holomorphic modular function f of weight 0 on SL.2;Z/.
Comparing the non-zero terms with lowest q-power, i.e., verifying

q�n.n�1/=48
Y

0�i<j�n

q1=8�.ai�aj /=2.1 � ��.ai�aj /=2/

D qw
2=2.nC1/

X
�

sig.�/�w �.a�.0/;:::;a�.n//;

shows then that f is also holomorphic at infinity, whence f is constant (and equal to 1).

Proof of Theorem 9.1. We have to show that

f .x/ WD
X

0�i<j�n

B..ai � aj /x/ �
n.n � 1/

24

for all x in R. For this we replace aix by xi (i D 0; : : : ; n) and show that, more generally,X
0�i<j�n

B.xi � xj / �
n.n � 1/

24

for any x D .x0; : : : ; xn/ in RnC1.
Since the function in question is symmetric and periodic in each variable, we can

assume that 0 � x0 � � � � � xn � 1, in which case B.xi � xj / D .xi � xj C 1=2/2=2 for
0 � i < j � n, so we need only find the minimum of

S WD
X

0�i<j�n

�
xi � xj C

1

2

�2
over RnC1=R � 1. Restricting to x with

P
i xi D 0 (i.e., the orthogonal complement of

R � 1 in RnC1) and minimizing S using Lagrange multipliers shows that S assumes its
local minima where the partial derivatives @S=@xk (0 � k � n) are independent of k.
Since we have

1

2

@S

@xk
D .nC 1/xi C

1

2
.n � 2k/

(for
P
i xi D 0), the latter condition is

xk D
1

2.nC 1/
.2k � n/;

and then

S D
X

0�i<j�n

� i � j
nC 1

C
1

2

�2
D
n.n � 1/

24
;

which proves the theorem.
Note that the preceding proof also shows that f .x/ D n.n � 1/=24 if and only if the

differences .ai � aj /x are in .nC 1/�1Z but not integers (0 � i < j � n). From this the
supplement to the theorem is obvious.
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Part III
General theory

10. Infinite families and Jacobi forms of lattice index

In this section, we describe a general principle for constructing infinite families of theta
blocks which are proper Jacobi forms. This principle is summarized in Theorem 10.1.
As we shall see in the next section, all of the infinite series of theta blocks that we studied
in the previous sections can in fact be obtained using this principle. To explain our con-
struction, we need to consider a more general type of Jacobi form, namely Jacobi forms
whose index is a lattice. We explain these in the following paragraphs before we state
the aforementioned construction. A more thorough theory of lattice index Jacobi forms is
developed in [5, 6, 10] and various other articles. We recall here the basics of the theory
of Jacobi forms of lattice index as developed in [5].

Let L D .L; ˇ/ be an integral lattice, i.e., L is a free Z-module of, say, rank n and
ˇWL�L!Z is a symmetric non-degenerate bilinear form. If U is a Z-submodule of full
rank in Q˝ L, we denote by U ] its dual subgroup, i.e., the subgroup of all elements y
in Q˝ L such that ˇ.y; x/ takes integral values for all x 2 U . We shall use in the fol-
lowing ˇ.x/ D ˇ.x; x/=2. Note that ˇ.x/ is not necessarily integer. If it is, we call L
even, otherwise odd. In any case, the map x 7! ˇ.x/ defines an element of order 1 or 2
in the dual group Hom.L;Q=Z/ of L. The kernel Lev of this homomorphism defines an
even sublattice of index 2 in L if L is an odd lattice, and otherwise Lev D L. Since ˇ
is non-degenerate, there exists an element r in Q˝ L such that ˇ.x/ � ˇ.r; x/ mod Z
for x in L. We set

L� WD ¹r 2 Q˝ L W ˇ.x/ � ˇ.r; x/ mod Z for all x in Lº;

and following the literature, we call L� on lattices the shadow of L, and we call the
elements of L� shadow vectors of L. Clearly, for an even L, we have L� D L], and, for
an odd L, we have Lev

]
D L] [ L� (i.e., L� is the non-trivial coset in Lev

]=L]).
Recall from Section 2 that "h denotes the SL.2;Z/-cocycle that is defined by "h.A/D

f .A�/=f .�/, where f .�/ denotes any (fixed) branch of the function �.�/h. By slight
abuse of language, we occasionally call the multiplier system "h a character.

Let k and h be rational numbers such that k � h=2 mod Z.

Definition. A Jacobi form of weight k, index L and character "h is a holomorphic func-
tion �.�; z/ of a variable � 2 H and a variable z 2 C ˝ L which satisfies the following
properties:

(i) For all A D
�
a b
c d

�
in SL.2;Z/, one has

�
�
A�;

z

c� C d

�
D e

� c ˇ.z/
c� C d

�
.c� C d/k�h=2"h.A/�.�; z/: (10.1)

(ii) For all x; y 2 L, one has

�.�; z C x� C y/ D e.ˇ.x C y//e.��ˇ.x/ � ˇ.x; z//�.�; z/:
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(iii) The Fourier development of � is of the form

�.�; z/ D
X

n2h=24CZ

X
r2L�

n�ˇ.r/

c.n; r/qne.ˇ.r; z//:

The space of Jacobi forms of weight k, index L and character "r is denoted by Jk;L."h/.

Note that the crucial point in (iii) is the condition n � ˇ.r/. The fact that � has
a Fourier expansion with n and r in the range described by the first conditions below the
sum signs holds true for any holomorphic �.�; z/ satisfying the transformation laws (i)
and (ii) (as one easily sees by applying these transformations laws to � 7! � C 1 and, for
all � in L, to z 7! z C �). Note also that the factor e.ˇ.x C y// in (ii) defines a linear
character of the group L �L. It is trivial if L is even. A priori, for the transformation for-
mula (ii), one could consider also other characters ofL�L. However, it can be shown [5]
that, for a character different from the given one, there are no non-trivial functions satis-
fying (i) and (ii).

Note also that Jk;L."h/ depends only on the coset hC 24Z, as follows from

"hC24k.A/ D .c� C d/12k"h.A/; where A D
�
a b

c d

�
:

If we fix a Z-basis ¹apº for L, we can identify L and C ˝ L with Zn and Cn, re-
spectively, and Jacobi forms of index L can be considered as holomorphic functions on
H � Cn. In fact, if L is an even lattice, so that the Gram matrix F D .1=2/.ˇ.ap; aq//
is half-integer, and if h D 0, the space Jk;L."h/ then becomes what in the literature [26]
is usually called the space of Jacobi forms of weight k and matrix index F and which is
denoted by Jk;F . Moreover, ifL is of rank 1 with determinantmD jL]=Lj, then Jk;L."h/
is nothing other than the space Jk;m=2."h/ that was introduces in Section 2.

There is a family of natural maps between all these spaces of Jacobi forms. Namely, if
˛WL!M is an isometric embedding then the map .˛��/.�; z/D �.�;˛z/ defines a map

˛�W Jk;M ."
h/! Jk;L."

h/: (10.2)

This follows immediately from the definition of our Jacobi forms.
There are two particular cases where such embeddings are of special interest for our

considerations. The first case occurs when a lattice L D .L; ˇ/ can be isometrically
embedded into the lattice ZN WD .ZN ; �/ (where the dot denotes the standard scalar prod-
uct of column vectors). Such an embedding permits to construct Jacobi forms of index L
in a simple way. Namely, let j̨ be the coordinate functions of this embedding, so that
ˇ.x; x/ D

P
j j̨ .x/

2. Then

NY
jD1

#.�; j̨ .z// 2 JN=2;L."
3N /:

Vice versa, if such a product defines a Jacobi form of index L, then necessarily ˇ.x; x/DP
j j̨ .x/

2, and the j̨ define an isometric embedding of L into ZN .
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The other interesting embedding is of the form

sx W .Z; .u; v/ 7! muv/! L D .L; ˇ/; sx.u/ 7! ux;

where x is a non-zero element in L and m D ˇ.x; x/. Here we obtain maps

s�x W Jk;L."
h/! Jk;m=2."

h/; �.�; z/ 7! �.�; xw/ .w 2 C/:

In fact, all the families of theta blocks that we found so far are of the form ¹s�x�ºx2L
for suitable lattices L and special Jacobi forms � in Jk;L."h/. Moreover, these special
Jacobi forms � are always obtained via the first construction, i.e., via an embedding of L
into ZN for a suitable N . In all these examples, the weight k of the special Jacobi form
equals n=2, where n is the rank of L. This is due to the fact that in those cases we can
divide by a power of �. In general, a division by a power of � will not yield a proper
Jacobi form since condition (iii) in the definition of Jacobi forms is not invariant under
such a division. However, a special situation which makes such a division possible, and
which applies to all our examples, is described by Theorem 10.1 below.

For the statement of the theorem, we need some preparations. By a eutactic star
(of rank N ) on a lattice L D .L; ˇ/ we understand a family s of non-zero vectors sj
in L] (1 � j � N ) such that

x D

NX
jD1

ˇ.sj ; x/sj

for all x in Q˝ L. For a eutactic star s, one has

ˇ.x; x/ D
X
j

ˇ.sj ; x/
2

for all x, i.e., the map x 7! .ˇ.s1; x/; : : : ; ˇ.sN ; x// defines an isometric embedding
˛s WL ! ZN . Vice versa, if ˛ is such an embedding, then, since ˇ is non-degenerate,
there exist vectors sj such that the j -th coordinate function of ˛ is given by ˇ.sj ; x/. It is
easy to show that the family sj (omitting the possible zero vectors) is a eutactic star.

For a eutactic star s on L, we set

#s.�; z/ D

NY
jD1

#.�; ˇ.sj ; z// .z 2 C ˝ L/:

From our previous discussion, we know that the function #s defines a non-zero (holo-
morphic) Jacobi form of weight N=2 and index L. We are interested to find the eutactic
stars s such that the #s can be divided by a high power of � and still remains holomor-
phic at infinity (i.e., satisfies the condition n � ˇ.r/ in the Fourier expansion (iii) in the
definition of Jacobi forms). It is not hard to see that the weight of a non-zero Jacobi form
of index L which has rank n is � n=2. Thus the highest power of � by which we are
allowed to divide #s is �N�n. We shall not discuss here the question of determining the
exact power but refer the reader to [5]. Instead, we describe here one situation where
�n�N#s.�; z/ is in fact a holomorphic Jacobi form.
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For this, let G be a subgroup of the orthogonal group O.L/ that leaves s invariant
up to signs, i.e., such that for each g in G there exists a permutation � of the indices
1 � j � N and signs �j 2 ¹˙1º such that gsj D �j s�.j / for all j . We set

sn.g/ D
Y
j

�j :

Note that sn.g/ does not depend on the choice of � . It follows that g 7! sn.g/ defines
a linear character snWG ! ¹˙1º.

The group G acts naturally on L�=Lev. We call the eutactic star s G-extremal on L if
there is exactly one G-orbit in L�=Lev whose elements have their stabilizers in the kernel
of sn.

Theorem 10.1. Let L D .L; ˇ/ be an integral lattice of rank n, let s be a G-extremal
eutactic star of rank N on L. Then there are a constant 
 and a vector w in L� such that

�n�N
NY
jD1

#.�; ˇ.sj ; z// D 

X

x2wCLev

qˇ.x/
X
g2G

sn.g/e.ˇ.gx; z//: (10.3)

In particular, the product on the left defines an element of the space Jn=2;L."nC2N /.

Remark. Let x be an element of R˝ L such that ˇ.sj ; x/ 6D 0 for all j . (Such x exists
since the sj span R ˝ L and therefore cannot be contained in any hyperplane.) Iden-
tity (10.3) then holds true with w replaced by

w0 D
1

2
.�1s1 C �2s2 C � � � C �N sN /;

where �j denotes the sign of ˇ.sj ; x/. Indeed, comparing the coefficients of the smallest
q-power on both sides of (10.3), one finds that

NY
jD1

�
e
�1
2
ˇ.sj ; z/

�
� e

�1
2
ˇ.�sj ; z/

��
D 


X
x;g

sn.g/e.ˇ.g.w C x/; z//;

where the sum on the right-hand side is over all g in G and all x in Lev such that
ˇ.w C x/ D .n C 2N/=24. The left-hand side equals the sum

P
v ˙e.ˇ.v; z//, where

v runs through all vectors v of the form v D v� D .1=2/
PN
jD1 �j sj with �j D˙1. From

this we see that we can replace w by any v�0 among these v which is different from 0

and different from all v� with � 6D �0. But w0 D v� is such a v�0 since ˇ.w0; x/ > 0 and
ˇ.w0 � v� ; x/ > 0 for all � 6D �.

Note also that it follows that qˇ.w0/ is the smallest q-power occurring on both sides
of (10.3). In other words,

ˇ.w0/ D
nC 2N

24
:

Proof of Theorem 10.1. As before, denote the product on the left-hand side of the claimed
identity (without the �-power) by #s . It is clear that #s is an element of JN=2;L."3N /.
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However, #s satisfies in addition g�#s D sn.g/#s for all g in G, as follows from the very
definition of sn and the identity #.�;�z/ D �#.�; z/.

For an integer h and for k in h=2CZ, let Vk."h/ be the subspace of all Jacobi forms �
in Jk;L."h/ that satisfy

g�� D sn.g/� for all g 2 G:

Denote the function on the right-hand side of the claimed identity (10.3) by �s .
We shall show in a moment that, for all integers h and all k in h=2C Z, we have

Vk."
h/ DMk�.rCn/=2 �

r�s; (10.4)

where 0 � r < 24, h � r C nC 2N mod 24. Here, for any l , we use Ml for the space
of elliptic modular forms of weight l on SL.2;Z/ (which is trivial unless l is an even
integer).

But then the claimed identity (10.3) is immediate. Namely, from (10.4), we deduce
#s D f �

r�s for some modular form f of level one. If f had a zero at a point �0 in the
upper half-plane, then #s.�0; z/ would vanish identically as function of z. However, this
is impossible as the product expansion for #.�; z/ shows. We conclude that f must itself
be a power of �. Comparing weights then proves the claimed formula.

Note that we used here only that the left-hand side of in (10.4) is contained in the
right-hand side. It follows from #s D �n�N�s that �s is an element of Vn=2."nC2N /,
whence that the right-hand side of (10.4) is contained in the left-hand side.

It remains to prove that the left-hand side of (10.4) is contained in the right-hand side.
Applying the transformation law (ii) for Jacobi forms to z 7! z C x� (x 2 L), we obtain,
for the Fourier coefficients c.n; r/ of a Jacobi form � in Jk;L."h/, the identities

c.nC ˇ.r C x/ � ˇ.r/; r C x/ D c.n; r/e.ˇ.x//:

Hence, if we set
C.D; r/ WD c.D C ˇ.r/; r/;

then C.D; r C x/ D C.D; r/e.ˇ.x// for all x in L. In particular, we recognize that r 7!
C.D; r/, for fixed D, factors through a map on L�=Lev.

Now assume that � is contained in the left-hand side of (10.4). Then g�� D sn.g/�
for all g, from which we deduce

C.D; g�1r/ D sn.g/C.D; r/:

Since s is extremal, this implies C.D; r/ D 0 unless the stabilizer of r C Lev in G is
contained in the kernel of sn. By assumption, there is exactly one G-orbit in L�=Lev

whose elements have stabilizer in the kernel of sn. Let w C Lev be an element of this
orbit. The Fourier expansion (iii) of � can then be written in the form

�.�; z/ D
X
r2L�

X
D2�ˇ.r/Ch=24CZ

D�0

C.D; r/qDCˇ.r/e.ˇ.r; z//

D �
X

g2G;x2L

X
D2�ˇ.w/Ch=24CZ

D�0

sn.g/C.D;w/qDCˇ.wCx/e.ˇ.g.w C x/; z//;
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where 1=� is the order of the stabilizer of w C Lev in the group G. We therefore find
� D f �s , where f D �

P
D C.D;w/q

D . From the usual theory of transformation laws
for theta functions, one can easily deduce that �s defines an element of Jn=2;L."nC2N /
(for details, we refer the reader to [5]). It follows that f is a modular form on SL.2;Z/
of weight k � n=2 with multiplier system "r . But this space of modular forms equals
Mk�.rCn/=2�

r , which proves that � lies in the right-hand side of (10.4). This proves The-
orem 10.1.

Example 10.2 (Jacobi triple product identity). The simplest non-trivial example for the
situation described in Theorem 10.1 is given by the eutactic star s on Z consisting of the
single vector s1D 1 in Z. Here s isG-extremal, whereG is generated by Œ�1� (multiplica-
tion by �1), and where sn.Œ�1�/D�1. The discriminant module of Zev

]=ZevD2
�1Z=2Z

decomposes into the three G-orbits ¹e1=2;e3=2º, ¹z1º and ¹z0º (where zx denotes the coset
of x modulo 2Z). Only the stabilizer of the first one is trivial. In this case, the resulting
identity (10.3) takes form (1.1), which is the Jacobi triple product identity.

11. Theta blocks constructed from root systems

The theorem of the preceding section described a general principle for constructing infi-
nite families of holomorphic theta blocks (i.e., theta blocks that are holomorphic at infin-
ity) as restrictions of Jacobi forms in many variables associated to special lattices. In this
section, we show that there are indeed infinitely many lattices to which the theorem can be
applied, namely, lattices constructed from root systems. Example 10.2 is the most basic
example for this theory. The corresponding infinite families of theta blocks that will arise
from our construction in fact include all the examples of families that were introduced in
the previous sections.

The main result of this section can be summarized as follows.

Theorem 11.1. Let R be a root system2 of dimension n, let RC be a system of positive
roots of R and let F denote the subset of simple roots in RC. For r in RC and f in F ,
let 
r;f be the (non-negative) integers such that r D

P
f 2F 
r;f f . The function

#R.�; z/ WD �.�/
n�jRCj

Y
r2RC

#
�
�;
X
f 2F


r;f zf

�
(� 2 H, z D ¹zf ºf 2F 2 CF ) defines a Jacobi form in Jn=2;R."nC2N /. Here the lattice R
equals ZF equipped with the quadratic form Q.z/ WD .1=2/

P
r2RC.

P
f 
r;f zf /

2.

2All root systems considered here are to be understood in the strict sense (see [17, §9.2]),
i.e., any root system can be partitioned into the union of pairwise orthogonal sets each of which
is a root system in the Euclidean space generated by its elements and as such isomorphic to one of
the irreducible root systems An, Bn, Cn, Dn, E6, E7, E8, F4, G2.
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Remark. (1) We remark that the matrix C WD .
r;f / that defines #R does not depend
on the choice of the set of positive roots (up to permutations of its rows or columns).
Indeed, the Weyl group of R acts transitively on the collection of possible sets of positive
roots, at the same time permuting the respective subsets of simple roots. It is not difficult
to calculate the matrix C directly from the Dynkin diagram or Cartan matrix of R (see,
e.g., [8, §21.3]).

(2) Obviously, it suffices to prove the theorem for irreducible root systems since for
any two root systemsR andR0 with ambient Euclidean spacesE andE 0 one has #R˚R0 D
#R#R0 , where R˚R0 denotes the root system .R � ¹0º/ [ .¹0º �R0/ in E �E 0.

(3) As already explained in the previous section, every choice of integer vectors a D
¹af ºf 2F such that af 6D 0 for all f yields a theta block

�.�/n�N
Y
r2RC

#
�
�; w

X
f 2F


r;f af

�
2 Jn=2;Q.a/."

nC2N /

in the variables �;w in H�C. Note that we can even assume that af >0 for all f . For this
let .�; �/ denote the scalar product of the ambient Euclidean space E of the root system R.
For a given a, let x be the element of E such that .x; f / D af for all f . It follows
that

P
f 
r;f af D .x; r/ for all r in RC. The general theory of root systems shows that

there is a g in the Weyl group of R which maps x into the fundamental Weyl chamber,
i.e., such that a0

f
WD .gx; f / > 0 for all f . But there is a permutation r 7! r 0 of RC

such that gr D˙r 0, and we have
P
f 
r 0;f a

0
f
D ˙.gx; gr/ D ˙.x; r/ D ˙

P
f 
r;f af .

Therefore, ¹af ºf and ¹a0
f
º yield the same theta block up to a sign.

Example 11.2. The only root system of rank 1 is A1, and we have #A1 D # (see Exam-
ple 10.2). If we choose for R the root system An, then any chosen simple roots fj
(1 � j � n) can be ordered such that the positive roots are the sums of consecutive roots
fi C fiC1 C � � � C fj (1 � i � j � n). Accordingly,

#An.�; z/ D �.�/
�n.n�1/=2

Y
1�i�j�n

#.�; zi C � � � C zj / 2 Jn=2;An."
n.nC2//

(we write zi for zfi ). For n D 2, we obtain the function

#A2.�; z/ D
#.�; z1/#.�; z2/#.�; z1 C z2/

�.�/
;

which under specialization yields the infinite family of theta quarks.

Example 11.3. The spaces of Jacobi forms J2;m are, for integer m, deeply connected
to the arithmetic of the modular forms of weight 2 in �0.m/ (see, e.g., [27]). There are
four infinite families of theta blocks of weight 2 with trivial character that we can deduce
from the #R, as is easily inferred from Table 4. These are families of theta blocks associ-
ated to #A4 , #G2#B2 D #G2#C2 , ##B3 , ##C3 . (Recall that B2 is isomorphic to C2.) The
members of these families consist in each case of 10 #’s over �6 (see Table 5).
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R jRCj � k l

An n.nC 1/=2 n.n � 1/=2 n=2 n.nC 2/

Bn n2 n.n � 1/ n=2 n.2nC 1/

Cn n2 n.n � 1/ n=2 n.2nC 1/

Dn n.n � 1/ n.n � 2/ n=2 n.2n � 1/

E6 36 30 3 6

E7 63 56 7=2 13

E8 120 114 4 8

F4 24 20 2 4

G2 6 4 1 14

Tab. 4. The Jacobi form #R associated to the irreducible root system R consists of jRCj many #’s
multiplied by ��� and has weight k and character "l .

R #R.�; .a; b; c; d/z/

A4 ��6 #a #aCb #aCbCc #aCbCcCd #b #bCc #bCcCd #c #cCd #d

G2 ˚ B2 ��6 #a #3aCb #3aC2b #2aCb #aCb #b #c #cCd #cC2d #d

A1 ˚ B3 ��6 #a #b #bCc #bC2cC2d #bCcCd #bCcC2d #c #cCd #cC2d #d

A1 ˚ C3 ��6 #a #b #2bC2cCd #bCc #bC2cCd #bCcCd #c #2cCd #cCd #d

Tab. 5. The four infinite families #R.�; .a;b; c;d/z/ of theta blocks of weight 2 and trivial character
associated to root systems. (We write #n for the function #.�; nz/.)

We now explain how Theorem 11.1 follows from the general principle explained in
Theorem 10.1 of the preceding section. In the course of its proof, we shall redefine #R
and R, but shall eventually see that the new and old definitions in fact define the same
objects. As already pointed out in the remark after the theorem, we can assume without
loss of generality that the root system R is irreducible.

So let R be an irreducible root system of dimension n, let RC be a system of positive
roots of R, let N be the number of positive roots, and let3

h D
1

n

X
r2RC

.r; r/;

where .�; �/ denotes the Euclidean inner product of the ambient Euclidean vector space E
of the root system R. We let W be the lattice

W D
°
x 2 E W

.x; r/

h
2 Z for all r 2 R

±
;

3If all roots have square length 2, then h coincides with the Coxeter number of the given root
system, otherwise it is different.
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and we set

R D
�
W;

.�; �/

h

�
: (11.1)

The dual lattice W ] (with respect to the scalar product .�; �/=h) equals the lattice ƒ
spanned by the roots r in R.

Lemma 11.4. One has
h.z; z/ D

X
r2RC

.r; z/2; (11.2)

for all z in E.

Proof. The bilinear form ˇ.x;y/ WD
P
r2RC.r;x/.r;y/ is symmetric and positive definite

(since the roots r span E). There hence exists an automorphism � of the real vector
space E such that ˇ.x; y/ D .�.x/; y/. The Weyl group of R permutes the roots, and
therefore ˇ.x; y/ is invariant under the Weyl group. This in turn implies that � commutes
with the elements of the Weyl group. However, the latter is known to act irreducibly
on E (see, e.g., [17, §10.4, Lemma B]). By Schur’s lemma, we then conclude that �
is multiplication by a scalar c, whence ˇ.x; y/ D c.x; y/. It remains to show c D h.
For this choose an orthonormal basis ej of E. Then, using Parseval’s identity, we find
cn D

P
j c.ej ; ej / D

P
r;j .r; ej /

2 D
P
r .r; r/, which proves the lemma.

The lemma implies that R is an integral lattice and, in particular, that W is contained
in its dual, which is ƒ.

From (11.2), we immediately have available the embedding R! ZN defined by z 7!
..z; r1/; : : : ; .z; rN //, where rj runs through RC. In other words, RC is a eutactic star
on R. The Weyl group G of R leaves R invariant, and the character sn considered in
the preceding section associates to an element g in the Weyl group the number .�1/`.g/,
where `.g/ is the length of g, i.e., the number of roots in RC such that gr is negative.

We shall prove in the next section that the eutactic star RC on R is extremal with
respect to the Weyl group G of R (see Theorem 12.1, whose proof relies on general
properties of root systems and is completely unrelated to the theory of Jacobi forms).

We can therefore apply Theorem 10.1 and the remark following it to the eutactic
star RC on W and conclude (leaving the computation of the constant 
 in Theorem 10.1
to the reader).

Theorem 11.5. Let R be an irreducible root system with a choice of positive roots RC,
and letw be half the sum of the positive roots ofR. Then, in the notations of the preceding
paragraphs, we have

#R.�; z/ WD �.�/
n�N

Y
r2RC

#
�
�;
.r; z/

h

�
D

X
x2wCWev

q.x;x/=2h
X
g2G

sn.g/e
� .gx; z/

h

�
for all � is the upper half-plane and all z in C˝W . In particular, the function #R defines
a holomorphic Jacobi form in Jn=2;R."nC2N /.
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Now let F be the set of simple roots in RC. For any f in F and z in C ˝W , we set
zf WD .f; z/=h. The map z 7! ¹zf ºf 2F defines an isomorphism of C-vector spaces C ˝
W ! CF , which maps W onto ZF . We have .r; z/=h D

P
f 2F 
r;f zf and accordingly

(using (11.2)) .x; x/=2h D Q.¹xf º/ with 
r;f and Q as in Theorem 11.1. Thus, under
the map z 7! ¹zf ºf 2F , the lattice R and the function #R.�; z/ take on the form described
in Theorem 11.1, which is therefore merely a weaker form of the preceding theorem.

Remark. The identities of the preceding theorem can be read as identities between for-
mal power series by replacing e..gx; z/=h/ by a formal variable egx , and then can be
identified with what is known as Macdonald identities [22, (0.4)].4 The latter were dis-
covered in the context of infinite-dimensional Lie algebras, more precisely, affine Lie
algebras, and stated and proved without any reference to Jacobi forms, whose theory was
only developed one decade later. Thus our proof of Theorem 11.5 provides a new proof
of and new approach to the Macdonald identities.

12. A certain property of root systems

We continue the notations of Theorem 11.5. In other words,

� R is an irreducible root system,

� RC is a fixed choice of positive roots,

� ƒ is the lattice spanned by its roots,

� G is the Weyl group of R,

� h D .1=n/
P
r2RC.r; r/, w D .1=2/

P
r2RC r , and

� W D hƒ], R D .W; .�; �/=h/ (so that ƒ becomes the dual of R, i.e., the dual of W
with respect to .�; �/=h).

Note that w is an element of W �. Indeed, .x; x/=h � .2w; x/=h mod 2 for all x in W ,
as follows from (11.2). Moreover, let

� ˛ be the highest root in RC,

� C be the fundamental Weyl chamber associated to RC, and

� r_, for any root r , be the coroot of r (i.e., r_ D 2r=.r; r/).

Recall from (11.2) that RC is a eutactic star on R. The goal of this section is to prove
the following property of irreducible root systems.

Theorem 12.1. The eutactic star RC on R is extremal with respect to the Weyl group G
of R.

4To identify the identity of Theorem 11.5 for a given root system R with Macdonald’s iden-
tity [22, (0.4)] for the coroot system R_ (i.e., the system r_ D 2r=.r; r/, r 2 R), one needs the
formula h D .˛ C �; ˛ C �/ � .�; �/, where � and ˛ are the Weyl vector and highest root of R
(see Lemma 12.3 for a proof). Moreover, one needs to note that Macdonald’s �.�/ is zero unless �
is in Mev.
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The theorem is an immediate consequence of the properties of irreducible root systems
summarized in the following lemma. To the best of our knowledge, these properties have
not previously been mentioned in the literature.

Lemma 12.2. Let v be any element in W � which has minimal length among all elements
in v CWev.5 Then

(1) .˛; v/ � h.

(2) If .˛; v/ D h, then v � g˛.v/ mod Wev, where g˛ is the reflection through the hyper-
plane perpendicular to ˛.

(3) If .˛; v/ < h and v 2 C , then v D w.

Proof. To prove the lemma, let fi (1� i � n) be the simple roots ofRC, and let �i be the
dual basis of the basis f _i of E. One has w D �1 C � � � C �n (see [17, §13.3, Lemma A]
for a short proof).

To prove (i), note that by the very definition of root system .˛_; r/ is integer for
every root r , i.e., h˛_ defines an element of W . Moreover, .˛_; w/ is integer too (since
w D

P
i �i , and since the f _i are simple roots for the coroot system r_ (r 2 R), so

that in particular ˛_ is an integral linear combination of the f _i ), so h˛_ defines an
element of Wev. Since v has minimal length in its class v C Wev, we have in particular
.v � h˛_; v � h˛_/ � .v; v/, i.e., h � .˛; v/.

For (ii), note that g.v/ D v � .˛; v/˛_, whence v � g.v/ D h˛_.
For (iii), we now suppose that v is in C and h > .˛; v/. By Lemma 12.3 below, we

have h D ..˛; ˛/C .˛;w//=2. It follows that

.˛_; w/ � .˛_; v/;

where we used that both sides of this inequality are integers (that .˛_; w/ is an inte-
ger was proved above; but then the right-hand side is also integer since v 2 w C ƒ and
.˛_; ƒ/ � Z).

Since ˛_ D
P
i .˛
_; �i /f

_
i , w D

P
i �i , and v D

P
i .v; f

_
i /�i , the last inequality

can be written as X
i

.˛_; �i / �
X
i

.˛_; �i /.v; f
_
i /:

But the .v; f _i / are strictly positive (since v 2 C ) and integers (since v 2 w C ƒ,
.w; f _i / D 1 and .ƒ; f _/ � Z). Moreover, the .˛_; �i / are strictly positive (since ˛ DP
i ˛ifi with non-negative integers ˛i , which are all strictly positive since ˛ is the highest

root, so that in particular ˛ � fi is still a linear combination in the fi with non-negative
integers). The last inequality therefore implies .v; f _i / D 1 for all i , i.e., v D w. This
proves the lemma.

5In general, there might be several elements of minimal length in a given coset inW �=Wev. For
instance,w has minimal length inwCWev for any irreducible root system, but .w � hf;w � hf /D
.w;w/ and hf 2 Wev for two of the six simple roots of E6.
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Lemma 12.3. Let ˛ be the highest root in RC. Then

h D
1

2
..˛ C w; ˛ C w/ � .w;w//:

Proof. From (11.2), we obtain

2h D
X
r2RC

.r; ˛_/.r; ˛/:

For any positive root r 6D ˛ not perpendicular to ˛, one has .r; ˛_/ D 1. (Since the
highest root is a long root, one has .˛; ˛/ � .r; r/, which implies .r; ˛_/ � .r_; ˛/.
On the other hand, by the Cauchy–Schwarz inequality .r; ˛_/.r_; ˛/ < 4, and since
both scalar products are integers, we find .r; ˛_/ D ˙1. But .r; ˛_/ D �1 would imply
s˛.r/ D r C ˛, contradicting the fact that s˛.r/ is a root and ˛ is the highest root.) It fol-
lows that 2h D .˛; ˛/C .y; ˛/, where y is the sum over all positive roots which are not
perpendicular to ˛ (here we use also .˛; ˛_/ D 2). Obviously, .y; ˛/ D .2w; ˛/ so that
2h D .˛; ˛/C 2.w; ˛/. The claimed formula now becomes obvious.

Proof of Theorem 12.1. To finally prove Theorem 12.1, let vCWev be a class inW �=Wev.
We can assume that v is a vector of minimal length in its class and that v is contained in
the closure xC (sinceE D

S
g2G g

xC ). By the lemma, .˛; v/� h, and either v Dw, or else
v CWev is stabilized by g˛ or v is contained in a wall of the Weyl chamber. In the latter
case, v is stabilized by the reflection through the hyperplane containing the wall, which is
perpendicular to some fundamental root. Any reflection through a hyperplane has determi-
nant �1. But determinant and the character g 7! .�1/`.g/ coincide for reflections through
hyperplanes perpendicular to roots, as follows from the fact that a reflection through the
hyperplane perpendicular to a fundamental root has length 1 [17, §10.2, Lemma B], and
that the Weyl group is generated by such reflections.

It remains to prove that the Weyl group stabilizer ofwCWev is contained in the kernel
of sn. For this note that #R satisfies g�#R D sn.g/#R (g in G). Since #R is obviously
different from zero, its Fourier development contains a Fourier coefficient C.D; x/ 6D 0.
Since C.D;g.x//D sn.g/C.D;x/ for all g in G and C.D;x/ depends only on x CWev,
we see that the orbit of x CWev is not stabilized by any g of odd length. By what we have
seen, x CWev must then be in the orbit of w CWev. This proves Theorem 12.1.

13. Theta blocks of weight 1=2 and weight 1

It is possible to give a complete description of the Jacobi forms of weight 1=2 and weight 1
(and scalar index). A first description of this kind can be found in [25], where it was
proved that there are essentially only two Jacobi forms of weight 1=2, and that there is
no non-zero Jacobi form of weight 1 and trivial character (see Theorem 13.1 below).
In [4, 26], these results were extended to include Jacobi forms of weight 1 with arbitrary
character.
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The key to obtaining explicit formulas for Jacobi forms of weight 1=2 and weight 1 is
the theta expansion of a Jacobi form, and the theory of Weil representations of SL.2;Z/.
To explain this, letLD .L;ˇ/ be an integer positive definite lattice of rank n. Recall from
Section 10 that L� denotes the shadow of L. For any linear character � of L� [ L] that
continues the character x 7! e.ˇ.x// of L, define a holomorphic function #L;�.�; z/ of
variables � 2 H and z 2 C ˝ L by

#L;�.�; z/ D
X
r2L�

�.r/e.�ˇ.r/C ˇ.r; z//;

and let‚.L/ denote the complex space spanned by all the #L;�, where � runs through all
these characters. Note that ‚.L/ has dimension jL]=Lj. It can be shown that the space
‚.L/ becomes a right Mp.2;Z/-module via the map .˛; �/ 7! �jL;n=2˛. Here Mp.2;Z/
is the usual twofold central extension of SL.2;Z/ used in the theory of elliptic modular
forms of weight 1=2 consisting of pairs ˛ D .A; w/, where A D

�
a b
c d

�
is in SL.2;Z/

and w is one of the two holomorphic roots of the function c� C d (� 2 H). Moreover,
�jL;n=2˛ is defined as the right-hand side of (10.1) with the factor .c� C d/k�h=2"h.A/
replaced by w.�/�n. That ‚.L/ with respect to the given action is an Mp.2;Z/-module
is a well-known fact for even L [20]; for odd L, see [5]. The representations associated to
the Mp.2;Z/-modules ‚.L/ can be characterized purely algebraically as a natural class
of representations, which for even L are known as Weil representations of SL.2;Z/.

Every Jacobi form � in Jk;L."h/ has a theta expansion, i.e., it can be written in the
form

�.�; z/ D
X
�

h�.�/ #L;�.�; z/

with holomorphic functions h� and with � running through the characters of L� [ L]

whose restriction to L is x 7! e.ˇ.x//. This follows immediately from the considerations
at the end of the proof of Theorem 10.1. For integer h and integer or half-integer k, the h�
are modular forms of weight k � n=2 on some congruence subgroup of SL.2;Z/. More
precisely, there exists a natural numberN such that h� is inMk�n=2.4N /, where the latter
denotes the space of all holomorphic functions h on H such that h.A�/ D w.�/2k�nh.�/
for all .A;w/ in �.4N/� and, for each .A; w/ in Mp.2;Z/ the function h.A�/w.�/n�2k

is bounded in =.�/ � 1. Here �.4N/� is the section of �.4N/ in Mp.2;Z/ consisting of
all .A;w/, where w.�/ D �.A�/=�.�/ with �.�/ D

P
r2Z e.� r

2/.
Using the invariance of the‚.L/ under Mp.2;Z/, we can reformulate the theta expan-

sions of Jacobi forms of index L as a natural isomorphism

Jk;L."
h/ Š .Mk�n=2 ˝‚.L//."

h/: (13.1)

HereMk�n=2 denotes the (infinite-dimensional) Mp.2;Z/-module generated by all spaces
Mk�n=2.4N /with the Mp.2;Z/-action ..A;w/;h/ 7! h.A�/w.�/n�2k . (It can be verified
that the groups ��.4N / are normal in Mp.2;Z/, so thatMk�n=2 is indeed invariant under
the given action.) Moreover, for an Mp.2;Z/-module V , we let V."h/ denote the subspace
of all v such that ˛:v D ".˛/hv (where " denotes the linear character of Mp.2;Z/, which
for ˛ D .A;w/ is defined by ".˛/ D �.A�/=w.�/�.�/).
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For the singular weight of the index L, i.e., for the weight k D n=2, we obtain in
particular

Jn=2;L."
h/ Š ‚.L/."h/:

For lattices of rank one, i.e., for the lattices

Z.m/ D .Z; x; y 7! mxy/;

the Mp.2;Z/-modules ‚.Z.m// were decomposed into irreducible parts in [25, p. 22,
Satz 1.8].6 As corollary of the results there, the following was proved (see [25, pp. 26–27,
Beispiele]).

Theorem 13.1 ([25]). For any integer m � 1 and 0 � h < 24, one has J1=2;m=2."h/ D 0
unless, for some integer d , one has .m; h/ D .d2; 3/ or .m; h/ D .3d2; 1/. In the latter
cases, one has7

J1=2;d2=2."
3/ D C � #d ; J1=2;3d2=2."/ D C � #�d :

For the critical weight of the index L, i.e., for k D .n C 1/=2, isomorphism (13.1)
involves M1=2. Based on a theorem of Serre and Stark, a complete decomposition of
the Mp.2;Z/-module M1=2 into irreducible parts was given in [25, p. 101, Satz 5.2].
In particular, one has, for any natural number N ,

M1=2.4N / D
M
d jN

N=d squarefree

‚null.Z.2d//;

where the spaces on the right are the images of ‚.Z.m// under the map # 7! #.�; 0/. As
a result of these considerations, we obtain the isomorphism [5]

J.nC1/=2;L."
a/ Š

M
d jN

N=d squarefree

p�‚.Z.2d/˚ L/."a/; (13.2)

where, for any m, the map p is the isometric embedding of L into

Z.2m/˚ L D .Z˚ L; .x ˚ y; x0 ˚ y0/ 7! mxx0 C ˇ.y; y0//

given by y 7! 0˚ y, and where p� is the pullback defined in (10.2). Moreover, for N
one can take any multiple of the level of L and 24. Note that the spaces on the right-hand
side of (13.2) are spaces of Jacobi forms of singular weight. Thus, Jacobi forms of critical

6Actually, in loc.cit. only the Mp.2;Z/-modules ‚.Z.2m// were decomposed. However, it is
quickly checked that ‚.Z.m// is an Mp.2;Z/-submodule of ‚.Z.4m//, which allows to infer the
decomposition of the former from the latter.

7Recall that we use #�
d

for the function #�.�; dz/, where #� is the quintuple product defined
in (2.6).
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h R �R

2 A1 ˚ A1 �2#�a#
�
b

4 A1 ˚ A1 �#a#
�
b

6 A1 ˚ A1 #a#b

8 A2 ��1#a#aCb#b

10 B2 ��2#a#aCb#aC2b#b

14 G2 ��4#a#3aCb#3aC2b#2aCb#aCb#b

Tab. 6. The six �R.�; z1; z2/ which yield infinite families of theta blocks of weight 1 and charac-
ter "h. (We use a and b for the projections onto the first and second coordinate, respectively, and
we write #� and #�

�
for the functions #.�; �.z1; z2// and #�.�; �.z1; z2//.)

weight and index of rank n are always pullbacks of Jacobi forms of singular weight and
of index of rank nC 1.

To make formula (13.2) explicit, we would need a description of the one-dimensional
Mp.2;Z/-submodules of ‚.L/ for arbitrary L. For lattices of rank 1, such a description
led to Theorem 13.1. In general, we do not know how to describe the one-dimensional
Mp.2;Z/-submodules of ‚.L/. However, for lattices of rank 2 such a description has
been found in [4]. As a result, it was possible to prove the following theorem.

Theorem 13.2 ([4]). Let m be a positive integer, and for h D 2; 4; 6; 8; 10; 14, let R
and �R be the root system and Jacobi form as described in the row of h in Table 6. With
R denoting the lattice defined in Theorem 11.1, one has the following:

(1) For h D 4; 6; 8; 10; 14, the space J1;m."h/ is spanned by the theta blocks �R.�; `z/,
where ` runs through all elements of R with square length 2m.

(2) For hD 2, the space J1;m."2/ contains the theta blocks �R.�; `z/ (` 2 R with square
length 2m), but is in general not spanned by them.

(3) For all other values of h modulo 24, one has J1;m."h/ D 0.

Remark. It was already proved in [25, p. 113, Satz 6.1] that J1;m D 0 for all m, and that
J1;m."

16/D 0 and the description of the spaces J1;m."8/ was shown in [26, Theorems 11
and 12].

Part IV
Applications and open questions

14. Borcherds products and theta blocks

In [16], the authors proposed a construction of certain Borcherds products using Jacobi
forms. The general theory of Borcherds products was developed in [2, 3]. We recall the
construction from [16].
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For any positive integer m, there is a level-raising Hecke type operator VmW J Šk;t !
J Š
k;mt

(see [7, p. 41]). For any � in J Š
k;t

, the Fourier coefficients c�.n; r/ of � and
c�jVm.n; r/ of �jVm are related by the formula

c�jVm.n; r/ D
X

d jn;r;m

dk�1c�

�nm
d2
;
r

d

�
;

the sum being over all common positive divisors of n, r , andm. We consider the following
series:

Lift.�/.�; z; !/ WD c�.0; 0/Gk.�/C
X
m�1

�jVm.�; z/e.mt!/; (14.1)

where Gk for even k � 2 denotes the Eisenstein series

Gk.�/ D
1

2
�.1 � k/C

X
n�1

�k�1.n/e.n�/;

and where Gk D 0 for all other k (note that c�.0; 0/ D 0 for k D 2). If � is holomorphic
at infinity, this series is convergent for all

�
� z
z !

�
with positive definite imaginary part and

defines an element of the spaceMk.�t / of Siegel modular forms of weight k and genus 2
on the paramodular group �t (see [9]). The map Lift for t D 1 is the lifting that was
used by Maass to prove the original Saito–Kurokawa conjecture and that was discussed
in detail in [7, §6].

If � has weight 0, i.e., if � is in J Š0;t , and if c�.n; r/ is an integer for all n, r with
4tn � r2 � 0, then we define (see [16, (2.7)])

B.�/.�; z; !/ D Th.�/e.C!/ exp.�Lift.�//; (14.2)

where C D .1=2/
P
l>0 c�.0; l/l and where

Th.�/ D �.�/c�.0;0/
Y
l�1

�#l .�; z/
�.�/

�c�.0;l/
:

A straightforward computation shows that

B.�/ D Th.�/pC
Y

n;l;m2Z
m�1

.1 � qn�lptm/c�.nm;l/;

where p D e.!/. This product converges in a connected subdomain of the Siegel upper
half-plane, it can be meromorphically continued to the whole upper half-plane, and then it
becomes meromorphic modular form of weight c�.0; 0/=2 for the paramodular group �t
with known character and divisor (see [16, Theorem 2.1]). In fact, the formula (14.2) gives
the representation of the Borcherds product in the neighborhood of a one-dimensional
cusp of the paramodular group.

As an immediate corollary, we obtain the following proposition.
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Theorem 14.1. Let � be an element of J Š0;t with Fourier coefficients c�.n; l/, and assume
that c�.n; r/ is an integer for any pair n, r such that 4tn � r2 � 0, and that the sumsP
d�1 c�.d

2n;d l/ are non-negative for all n, l with 4nt � l2 < 0. Then the theta quotient
Th.�/ is a Jacobi form (i.e., holomorphic in H �C and at infinity).

Remark. In particular, if c�.n;r/� 0 for all n, r with 4tn� r2<0 then the theta quotient
of the proposition (which is then in fact a theta block) is holomorphic at infinity.

Proof. As suggested by the product expansion the multiplicities of all irreducible ratio-
nal quadratic divisors (Humbert surfaces) of B.�/ is given by the sums in the proposi-
tion (for a proof see [16, Theorem 2.1]), whence B.�/ is holomorphic. The theta quo-
tient Th.�/ is the first non-zero Fourier–Jacobi coefficient of B.�/, and is hence holo-
morphic (including infinity).

Example 14.2 (The first Jacobi and paramodular cusp form of weight 3). Consider the
weak Jacobi form of weight 0 and index 13

'0;13 D
#2#3#4

#3
D �˙3 C 3�˙2 C 5�˙1 C 6CO.q/;

where �˙m D �m C ��m. Note that the q0-part contains in fact all non-zero coefficients
c�.n; r/ with 52n � r2 < 0. Indeed, the product

�5'0;13 D
��#2
#

�2 �2#3
#

�#4

#2

defines a generalized theta block of weight 5=2 (see Corollary 4.3), and it is even holomor-
phic at infinity (in fact, each of the three factors in the last formula is already holomorphic
at infinity as can be easily checked). It follows that 52n� r2 � �.52 � 5/=24 for any non-
zero Fourier coefficient c�.n; r/ of '0;13. But c�.n; r/ depends only on 52n � r2 and
˙r mod 26. Analyzing the residues r2 modulo 52 we see that all non-zero Fourier co-
efficients with 52n � r2 < 0 are given by c�.0; 3/ D 1, c�.0; 2/ D 3 and c�.0; 1/ D 5.
In particular, the Borcherds productB.'0;13/ is holomorphic. Its first Fourier–Jacobi coef-
ficient

'3;13 D
#3#

3
2#

5

�3
D Q2

1;1Q1;2

turns out to be a product of three theta quarks. It is among all Jacobi cusp forms of
weight 3 the one with smallest index. The divisor of B.'0;13/ is a sum of Humbert mod-
ular surfaces,

divB.'0;13/ D �13
D
z D

1

3

E
C 3 � �13

D
z D

1

2

E
C 9 � �13hz D 0i:

This is a part of the divisor of Lift.'3;13/ 2 S3.�13/ since the lifting procedure preserves
the divisor of the lifted Jacobi form � (more precisely, of the function �.�; z/e.tw/).
The quotient Lift.'3;13/=B..#2#3#4/=#3/ is holomorphic on the Siegel upper half-plane
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and �13-invariant, whence constant by the Köcher principle. Comparing the first Fourier–
Jacobi coefficients, we have two formulas for the first paramodular cusp form F

.13/
3 of

(canonical) weight 3,

F
.13/
3 D Lift

�#3#32#5
�3

�
D B

�#2#3#4
#3

�
2 S3.�13/:

Moreover, we note that F .13/3 dZ 2 H 3;0. xA1;13/ defines a canonical differential form on
any smooth compact model of the moduli space of .1; 13/-polarized abelian surfaces.
The formula above determines the main part of its canonical divisor.

An effective construction of weak Jacobi forms satisfying the assumptions of Propo-
sition 14.1 was proposed in [13].8

Theorem 14.3 ([13]). Let ‚ be a theta block of weight k > 0 and integral index t and
trivial character which has integer vanishing order v > 0 in q. If v is odd, assume that ‚
is holomorphic at infinity. Then  D .�1/v.‚jV2/=‚ is a weakly holomorphic Jacobi
form of weight 0 and index t which satisfies the assumptions of Theorem 14.1.

Remark. The proof of the theorem can be found loc. cit., but the educated reader can
also read it off from the formula

‚jV2.�; z/ D 4‚.2�; 2z/C
1

2
‚
��
2
; z
�
C
1

2
‚
�� C 1

2
; z
�
:

This formula shows in particular that the q-order of ‚jV2 equals dv=2e and the q-order
of  equals �bv=2c. For v D 1, the function  defines in particular a weak Jacobi form.

The above example of the paramodular form F
.13/
3 of weight 3 is the blueprint for the

following conjecture.

Conjecture 14.4 ([13]). Let ‚ 2 Jk;t be a theta block with trivial character and with
order of vanishing 1 in q. Then Lift.‚/ D B.�.‚jV2/=‚/.

The next theorem shows that a similar conjecture might be true for theta blocks with
order in q smaller than 1.

Theorem 14.5. (1) Let ‚ D
Q3
jD1Qaj ;bj 2 J3;d be a product of three theta quarks,

and set

� WD �
‚jV2

‚
:

(Note that Theorem 14.3 implies that � is in J Š
0;d

satisfying the assumptions of Theo-
rem 14.1.) Then

Lift.‚/ D B.�/ 2M3.�d /:

This is a cusp form if at least one of the three theta quarks is a cusp form.

8The article [13] is partly based on the results of the current paper.
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(2) Let Qa;b 2 J3;t ."8/ be an arbitrary theta quark, and set

� WD �
Qa;bj"8V4

Qa;b
:

Then � is in J Š0;3t , and one has

Lift"8.Qa;b/ D B.�/:

This function defines a modular form of weight one with respect to the paramodular
group �3t with a character �3 of order 3.

The lift Lift"8.�/ for a Jacobi form � with character "8, which was introduced in [16,
Theorem 1.12], is defined as in (14.1) but with �jVm replaced by �j"8Vm and the summa-
tion restricted to all m � 1 mod 3. The operator j"8Vm is a Hecke type operator defined
similar to jVm, whose precise definition is given in [16, Theorem 1.12]. The identity
Lift.‚/ D B.�/ of (1) was already stated in [13, Theorem 8.3], and is in fact a corol-
lary of [11, Theorem 5.6].

Proof of Theorem 14.5. We consider the function #A2 of Theorem 11.5 associated to the
root systemA2, which defines a Jacobi form of weight 1with character "8 and with lattice
index A2 (defined in (11.1)). Recall that this is the function occurring in the Macdonald
identity (also known as denominator function) of the affine Kac–Moody algebra yA2. The
lattice A2 is a root lattice of type A2 (i.e., its vectors of square length 2 span it and
form a root system ˆ of type A2). If f1, f2 are primitive roots of A2, then �1 D f1 and
�2D�f2 are fundamental weights ofˆ (i.e., �1, �2 form a dual basis of a set of primitive
roots of ˆ). For z in C ˝ A2, we set zj D .z; �j /, where .�; �/ denotes the bilinear form
of A2. Then #A2 becomes (see Example 11.2)

#A2.�; z/ D
#.�; z1/#.�; z2 � z1/#.�; z2/

�.�/
:

We note that 3�i is a reflective9 vector of square length 6 in A2, and the divisor zj D 0 is
the hyperplane of the reflection ��i .

We need also the Jacobi form

#3A2.�; Z/ D #A2.�; Z1/#A2.�; Z2/#A2.�; Z3/ 2 J3;3A2 :

Here 3A2 stands for the threefold orthogonal sum ofA2; moreover, we identify C˝.3A2/
with the threefold direct sum of C ˝A2 and write accordingly any Z in the former space
as Z D .Z1; Z2; Z3/ with Zi in C ˝ A2. We remark that #3A2 coincides also with the
Jacobi form associated by Theorem 11.5 to the threefold orthogonal sum of the root sys-
tem A2.

9A vector x of a lattice LD .L;ˇ/ is called reflective if the reflection �x.y/D y � 2xˇ.x; y/=
ˇ.x; x/ defines an isometry of L.
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To the Jacobi forms #A2 and #3A2 we can apply a lifting construction similar to (14.1)
above (see [6, 9] for the case of Jacobi forms with characters). We obtain orthogonal
modular forms

Lift"8.#A2/ 2M1.zO
C
.2U ˚ A2.�3//; �3/;

Lift.#3A2/ 2M3.zO
C
.2U ˚ 3A2.�1///;

where U is the even unimodular lattice of signature .1; 1/, A2.n/ is the lattice obtained
from A2 by renormalizing its bilinear form by the factor n, and zO

C
.: : : / are the stable

orthogonal groups of the given lattices (which are of signature .2; 4/ and .2; 8/, respec-
tively). In both cases, the (reflective) divisor of the lifted Jacobi form induces a subdivisor
of the lifting.

We construct a Jacobi form of weight 0 with index 3A2 using again the operator V2;
we set

'0;3A2.�; Z/ WD �
#3A2 jV2

#3A2
D

X
cn�0

`23A2
]

c.n; `/qne..`;Z//

D 6C
X

jD1;3;5

.�˙1j C �˙1jC1 C .�j �
�1
jC1/

˙1/CO.q/; (14.3)

where �j D exp.2�izj /, �˙1j D �j C �
�1
j . The action of V2 on '0;3A2 is given by

#3A2 jV2 D 4#3A2.2�; 2Z/C
1

2
#3A2

��
2
;Z
�
C
1

2
#3A2

�� C 1
2

;Z
�
:

Using this formula and the explicitly known divisor of #3A2 , one verifies that '0;3A2 2
J weak
0;3A2

, where the superscript weak means that c.n;`/D 0 unless n� 0. For any ` 2 3A2],
we therefore have c.n; `/ D 0 unless

2n � .`; `/ � � min
v2`C3A2

.v; v/ � �2:

This justifies the first terms of the Fourier expansion in formula (14.3). Consequently, the
Borcherds productB.'0;3A2/ is a holomorphic form of weight c.0;0/=2D 3with divisors
of order 1 along all zO

C
.2U˚3A2.�1//-orbits of the vectors (of square length �6) ˙�i ,

˙�iC1 and˙.�i � �iC1/ (i 2 ¹1; 2; 3º). Using the Köcher principle as in Example 14.2,
we finally obtain

Lift.#3A2/ D B.'0; 3A2/:

This identity remains true if we replace #3A2 and '0;3A2 by its pullbacks via C 3 w 7!
.a1; b1; a2; b2; a3; b3/w, which yields the identity claimed in (1).

Via the isometric embedding ˛WA2.3/! 3A2, x 7! .x; x; x/, we obtain pullbacks

˛�B.'0;3A2/ 2M3.zO
C
.2U ˚ A2.�3///;

'0;A2 WD
1

3
˛�'0;3A2 D 2C �

˙1
1 C �

˙1
2 C .�1�

�1
2 /˙1 CO.q/;
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where the latter defines a Jacobi form of index A2.3/. The Borcherds lift B.'0;A2/ 2
M1.zO

C
.2U ˚ A2.�3//; �3/ is a third root of ˛�B.'0;3A2/. Its divisor is determined by

the reflections corresponding to the fundamental weights. Again, Lift"8.'0;A2/ defines
a function with the same divisor, and we obtain

B.'0;A2/ D Lift"8.#A2/: (14.4)

The specialization to .z1; z2/ D .�a; b/z is the second identity of the theorem.

Remark. We remark that the proof of (14.4) and the fact that both sides of this identity
are holomorphic did not make use of the fact that #A2 is holomorphic at infinity. However,
this is implied by (14.4), which yields the sixth proof of the fact that the theta quarks are
holomorphic at infinity.

15. Miscellaneous observations and open questions

15.1. Jacobi–Eisenstein series and Jacobi cusp forms of small weight

The simplest theta block with trivial character is the product of eight theta series

8Y
jD1

#aj 2 J4;.a2
1
C���Ca2

8
/=2;

where a1 C � � � C a8 is even (and as usual #a.�; z/ D #.�; az/). This is a cusp form
if and only if .a1 � � � a8/=d8 is even, where d D gcd.a1; : : : ; a8/. A similar product of
24 quintuple products

Q24
jD1 �#

�
aj
2 J12;3.a2

1
C���Ca2

24
/=2 (where #�a D #2a=#a) is a Jacobi

cusp form if .a1 � � � a24/=d24 is divisible by 2 or 3 (see [12, Lemma 1.2]).
In particular, #8 equals the Jacobi–Eisenstein series E4;4;1 of weight 4 and index 4

(see [7, p. 25]). The first Jacobi cusp form of weight 4 is #6#22 2 J4;7.
The Fourier coefficients of the 24-fold product #8, that is, the eighth power of the

Jacobi triple product, can be calculated explicitly in terms of Cohen’s numbers (see [15]).
It would be interesting to calculate the Fourier coefficients of the 120-fold product
.#�/24 2 J12;36.

The first two examples of Jacobi forms of weights 2 and 3 are the Jacobi–Eisenstein
seriesE.�/2;25 andE3;9;1, where �D .�=5/ is the primitive even character modulo 5 (we use
the notations of [7, pp. 25–26]). Both series are theta blocks

E
.�/
2;25 D �

�6#4#32#
2
3#4 and E3;9;1 D Q

3
1;1 D �

�3#6#32 :

It would be interesting to find explicitly their Fourier coefficients similar to [7,15], which
would give new identities for these 24-fold products.

The next two Jacobi forms of weight 2 and 3 are the cusp forms '2;37 and '3;13 of
weight 2 and 3 and index 37 and 13, respectively. A table of Fourier coefficients of '2;37
was given in [7] (see pp. 118–120 and Table 4 on p. 145).
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Now we can give explicit formulas for these two Jacobi cusp forms,

'2;37 D �
�6#3#32#

2
3#4#5 and '3;13 D �

�3#5#32#3:

We note that '3;13 provides the existence of a canonical differential form on the mod-
uli space of .1; 13/-polarized abelian surfaces and non-triviality of the third cohomology
group H 3.�13;C/ of the paramodular group �13 (see [9]).

15.2. Jacobi cusp forms of weight 2 and 3 with large q-order

The product of three theta quarks is a holomorphic Jacobi form of type 9-#=3-�. It has
q-order one. We can construct 21-#=15-� theta blocks, which have then weight 3 and q-
order 2. The following three examples are related to the antisymmetric Siegel paramodular
forms of weight 3 (see [14]):

'3;122 D #Œ�15I 1
5; 25; 34; 43; 52; 6; 7�;

'3;167 D #Œ�15I 1
4; 25; 33; 43; 52; 62; 7; 8�;

'3;173 D #Œ�15I 1
4; 24; 33; 44; 52; 62; 7; 8�:

Here we use the notation

#Œ�N I an; : : : ; bm� D ��N#na � � �#
m
b :

For weight 2, there are holomorphic theta blocks of type 22-#=18-�, which have then
q-order 2:

'2;587 D #Œ�18I .1; 2; 3; 4; 5; 6; 8/
2; 2; 7; 9; 10; 11; 12; 13; 14�;

'2;713 D #Œ�18I .1; 2; 4; 5; 6; 8/
2; 2; 3; 7; 8; 9; 10; 11; 12; 13; 15�;

'2;893 D #Œ�18I 1; .2; 3; 4; 5; 6; 8/
2; 7; 9; 10; 11; 12; 13; 14; 16; 19�:

The problem of constructing new Hecke paramodular forms of genus 2 is related to the
question of existence of theta blocks of q-order 2. The form '2;587 is the leading Fourier–
Jacobi coefficient of the unique antisymmetric Siegel form F .587/ of weight 2 for the
paramodular group �587 (see [14]). The existence of F .587/ supports the first part of the
Brumer conjecture. According to its second part the Spin-L-function of F .587/ is equal
to the Hasse–Weil L-function of an abelian surface with conductor N D 587.

The form '3;122 is the leading Fourier–Jacobi coefficient of the antisymmetric Siegel
form of weight 3 for the paramodular group �112. It is expected that the L-function of
this paramodular form is related to a motivic L-function of Calabi–Yau treefolds.

We can give also an example of a weight 2 Jacobi form of q-order 3, namely a theta
block of type 34-#=30-�,

'2;2p D #Œ�30I .1; 2; 3; 4; 5/
2; 6; 7; 8; 9; 10; : : : ; 27; 28; 30�:

Its index equals 2 times the prime p D 8669.
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Theorem 14.3 together with Theorem 14.1 provides a method to construct a theta
block which is holomorphic at infinity from a given theta block satisfying certain mild
conditions. We apply this method to the 34-#=30-�-block '2;2p . Its q-order is 3 and it is
holomorphic at infinity. Hence we can apply the two cited theorems: setting

 0;2p D
'2;2pjV2

'2;2p
D c.0; 0/C

X
0<l<m

c.0; l/.�l C ��l /CO.q/;

we obtain the theta block

Th.'2;2p/ D �c.0;0/
Y
l>0

�#l
�

�c.0;l/
that defines a Jacobi form. Note that the block Th.'2;2p/ has weight 444, index 41888608,
and q-order 2488; it is of the form 29412-#=28524-�.

From Theorem 5.3, we know that the number N of # in a theta block of weight 2
which is holomorphic at infinity is bounded; namely, one has that H2N =555:960 � 2,
which implies N � e2�555:960=2. The q-order of a theta block of type N -# /n-� equals
N=8 � n=24. Hence the q-order v of a theta block of weight 2 and holomorphic at infin-
ity is bounded; one has v � e2�555:960=16. This leads to the natural question: to find
the maximal possible q-order of theta blocks of weight 2 or to find a reasonable upper
bound.

A theta block of weight 2 and trivial character needs to be of the form .10C 12d/-
#=.6C 12d/-� (d D 0;1;2; : : :). In Part III, we found four infinite families of theta blocks
holomorphic at infinity of weight 2 with trivial character of type 10-#=6-� (see Table 5).
In this section, we saw examples of theta blocks holomorphic at infinity of weight 2
with trivial character of type 22-#=18-� and 34-#=30-�. This raises the question: to find
an arithmetic or representation theoretic explanation for the existence of theta blocks of
types .10C 12d/-#=.6C 12d/-� for d � 1.

15.3. Jacobi forms of weight 2 without character

As we saw in Section 13, all spaces of Jacobi forms of weight 1=2 and weight 1 are
spanned by theta blocks (with the exception of weight 1 and character "2). We also
know from Section 4 (see the remark after Theorem 4.4) that, for growing weight k,
fixed index m and character "h, the proportion of the subspace of Jk;m."h/ spanned by
theta blocks becomes smaller and smaller. In view of the lifting of Jacobi forms in J2;m
to modular forms of weight 2 and levelm (see [27, Theorem 5]), it is of interest to know if
all of the spaces J2;m are still spanned by theta blocks, or how big the subspace spanned
by theta blocks is.

The first question can be quickly answered. A computer search form<200 shows that
J2;m is spanned by theta blocks for all m with the exception of m D 164 (see Table 7).
In fact, J2;164, which is one-dimensional and contains exactly one cusp form, does not
contain a theta block, not even a single generalized theta block.
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m e c te tc m e c te tc m e c te tc m e c te tc

25 1 0 1 0 100 2 0 3 0 138 0 1 0 1 170 0 3 0 7
37 0 1 0 1 101 0 1 0 1 139 0 3 0 6 171 0 2 0 3
43 0 1 0 1 102 0 1 0 1 141 0 2 0 2 172 0 3 0 6
49 2 0 3 0 103 0 2 0 3 142 0 2 0 3 173 0 4 0 11
50 1 0 1 0 106 0 2 0 2 143 0 1 0 1 174 0 1 0 0
53 0 1 0 1 107 0 2 0 3 144 1 0 1 0 175 1 2 3 2
57 0 1 0 1 109 0 3 0 6 145 0 3 0 7 176 0 2 0 3
58 0 1 0 1 111 0 1 0 1 146 0 2 0 2 177 0 4 0 9
61 0 1 0 1 112 0 1 0 1 147 2 2 8 3 178 0 3 0 5
64 1 0 1 0 113 0 3 0 7 148 0 3 0 7 179 0 3 0 5
65 0 1 0 1 114 0 1 0 1 149 0 3 0 5 181 0 5 0 14
67 0 2 0 3 115 0 2 0 3 150 1 0 1 0 182 0 2 0 3
73 0 2 0 3 116 0 1 0 1 151 0 3 0 5 183 0 3 0 5
74 0 1 0 1 117 0 1 0 1 152 0 1 0 1 184 0 3 0 6
75 1 0 1 0 118 0 1 0 1 153 0 2 0 3 185 0 4 0 11
77 0 1 0 1 121 4 1 16 1 154 0 2 0 3 186 0 2 0 2
79 0 1 0 1 122 0 2 0 3 155 0 2 0 3 187 0 5 0 20
81 2 0 3 0 123 0 2 0 3 156 0 1 0 1 188 0 2 0 2
82 0 1 0 1 124 0 1 0 1 157 0 5 0 18 189 0 2 0 3
83 0 1 0 1 125 1 2 3 3 158 0 3 0 6 190 0 2 0 3
85 0 2 0 3 127 0 3 0 7 159 0 1 0 1 191 0 2 0 1
86 0 1 0 1 128 1 1 2 1 160 0 1 0 1 192 1 1 2 1
88 0 1 0 1 129 0 2 0 2 161 0 2 0 2 193 0 7 0 33
89 0 1 0 1 130 0 2 0 3 162 2 1 5 1 194 0 3 0 4
91 0 2 0 3 131 0 1 0 1 163 0 6 0 26 195 0 1 0 1
92 0 1 0 1 133 0 4 0 12 164 0 1 0 0 196 4 1 13 1
93 0 2 0 3 134 0 2 0 3 165 0 2 0 3 197 0 6 0 27
97 0 3 0 7 135 0 1 0 1 166 0 2 0 2 198 0 2 0 3
98 2 0 3 0 136 0 1 0 1 167 0 2 0 3 199 0 4 0 8
99 0 1 0 1 137 0 4 0 11 169 5 3 45 5

Tab. 7. The table lists, for each index 1 � m < 200 such that J2;m 6D 0, the dimensions e and c of
the subspace of Eisenstein series and cusp forms and the numbers te and tc of theta blocks in J2;m
which are non-cusp forms and cusp forms, respectively.

However, for computational purposes this is often not a serious problem. For instance,
the one-dimensional space J2;164 can be easily obtained by applying the index raising op-
erator V2 (see [7, §4]) to the single theta block in J2;82 (which is #1#32#3#

2
4#5#6#7=�

6).
Alternatively, one can try to find sufficiently many theta blocks which are not necessarily
holomorphic at infinity but span a space containing a given Jk;m.

In the context of the mentioned computations, it is worthwhile to mention that, for
1 � m < 200, the spaces J2;m contain no theta quotients.
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Concerning the second question, we do not know of any method to determine the size
of the subspace in J2;m spanned by theta blocks. Heuristically, however, one might expect
it to be large in general. Indeed, the well-known dimension formula shows dim J2;m �

.mC 1/=24. On the other hand, already the four families of theta blocks from Table 5
each provide as many theta blocks of indexm as there are positive integers a, b, c, d such
that the sum of the squares of the indices of the theta block defining this family equals 2m,
a number whose order of magnitude is m.

15.4. Theta blocks and elliptic curves

As mentioned in the introduction, the first Jacobi cusp form of weight 2, which has
index 37, is a theta block. This is of particular interest since this form corresponds to
the first elliptic curve of odd rank (which has in fact rank 1 and level 37) via the Hecke
equivariant lifting of J2;37 onto the space of modular forms of weight 2 and level 37.

In general, we do not know any reason why a given theta block in J2;m is a Hecke
eigenform except for the banal reason that J2;m or the subspace of cusp forms in J2;m is
one-dimensional, so that any Jacobi form in one of these spaces is trivially an eigenform.
In particular, we do not expect that the Jacobi form associated to an elliptic curve is
a theta block. Note that there are exactly 52 indices where J2;m contains only one cusp
form. For 10 of these indices, the corresponding Jacobi form is an odd form. For each
indexm in the set S of the remaining 42 (see Table 8), the associated cusp Jacobi form �m
corresponds via the mentioned lifting to an elliptic curve over the rationals of conductorm
whose L-series L.E; s/ has a minus sign in its functional equation. This correspondence
is given by the identitiesX

n�1

�D
n

�
n�s

X
n�1

C�m.Dn
2; rn/n�s D C�m.D; r/L.E; s/;

valid for any negative fundamental discriminantD and integer r such thatD�r2mod4m.
As it turns out, each of these �m with the exception of �300 is a theta block. More

precisely, we found that for each index m 6D 300 in S , there is exactly one theta block
of length 10 in J2;m which is a cusp form. (For m � 200 and m D 216, we verified in
addition that there is no theta block of length strictly greater than 10 in the subspace of
cusp forms of J2;m.)

In Table 8, we give for each m in S a minimal equation for an elliptic curve over Q
with conductor m and root number �1 (in general the isogeny classes of the given curves
decompose into more than one rational isomorphism classes) and, for m 6D 300, the cor-
responding theta block. All these elliptic curves have rank 1. Except for m 2 ¹89; 121º,
the theta blocks in this table belong to one or more of the four families associated to the
root systems A4, G2 ˚ B2, A1 ˚ B3 and A1 ˚ C3 (see Table 5).

The space J2;300 has dimension 3 and contains 5 theta blocks of length 10, which span
the whole space. Here �300 does not equal any of these 5 theta blocks. We do not know
whether it equals a theta block of length greater than 10 (i.e., of lengthN D 22;34;46; : : :)
or a generalized theta block.
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m CL Curve Theta block

37 37a1 y2 C y D x3 � x #31#
3
2#

2
3#4#5

43 43a1 y2 C y D x3 C x2 #31#
2
2#

2
3#

2
4#5

53 53a1 y2 C xy C y D x3 � x2 #31#
2
2#

2
3#4#5#6

57 57a1 y2 C y D x3 � x2 � 2x C 2 #21#
2
2#

3
3#4#5#6

58 58a1 y2 C xy D x3 � x2 � x C 1 #21#
3
2#3#

2
4#5#6

61 61a1 y2 C xy D x3 � 2x C 1 #21#
3
2#

2
3#4#5#7

65 65a1 y2 C xy D x3 � x #21#
2
2#

2
3#4#

2
5#6

77 77a1 y2 C y D x3 C 2x #21#
2
2#

2
3#4#5#6#7

79 79a1 y2 C xy C y D x3 C x2 � 2x #21#
2
2#

2
3#4#

2
5#8

82 82a1 y2 C xy C y D x3 � 2x #1#
3
2#3#

2
4#5#6#7

83 83a1 y2 C xy C y D x3 C x2 C x #21#2#
2
3#

2
4#5#6#7

88 88a1 y2 D x3 � 4x C 4 #21#
2
2#3#

2
4#5#6#8

89 89a1 y2 C xy C y D x3 C x2 � x #31#2#3#4#5#
2
6#7

92 92b1 y2 D x3 � x C 1 #1#
2
2#

2
3#

2
4#5#6#8

99 99a1 y2 C xy C y D x3 � x2 � 2x #21#2#
2
3#

2
4#5#6#9

101 101a1 y2 C y D x3 C x2 � x � 1 #21#2#3#4#
2
5#

2
6#7

102 102a1 y2 C xy D x3 C x2 � 2x #1#
2
2#

2
3#4#5#

2
6#8

112 112a1 y2 D x3 C x2 C 4 #1#
2
2#3#

2
4#5#6#7#8

117 117a1 y2 C xy C y D x3 � x2 C 4x C 6 #1#
2
2#

2
3#4#5#6#7#9

118 118a1 y2 C xy D x3 C x2 C x C 1 #21#
2
2#4#5#

2
6#7#8

121 121b1 y2 C y D x3 � x2 � 7x C 10 #1#
2
2#

2
3#4#

2
5#7#10

124 124a1 y2 D x3 C x2 � 2x C 1 #21#2#
2
4#5#

2
6#7#8

128 128a1 y2 D x3 C x2 C x C 1 #1#
2
2#3#

2
4#5#6#8#9

131 131a1 y2 C y D x3 � x2 C x #21#
2
2#

2
3#4#5#7#12

135 135a1 y2 C y D x3 � 3x C 4 #1#2#
2
3#4#

2
5#6#8#9

136 136a1 y2 D x3 C x2 � 4x #1#
2
2#3#4#5#6#7#

2
8

138 138a1 y2 C xy D x3 C x2 � x C 1 #1#2#
2
3#

2
4#

2
6#7#10

143 143a1 y2 C y D x3 � x2 � x � 2 #21#2#3#4#5#6#7#8#9
152 152a1 y2 D x3 C x2 � x C 3 #1#2#

2
3#

2
4#6#7#8#10

156 156a1 y2 D x3 � x2 � 5x C 6 #1#
2
2#

2
3#4#5#6#8#12

160 160a1 y2 D x3 C x2 � 6x C 4 #1#2#3#
2
4#5#6#7#8#10

162 162a1 y2 C xy D x3 � x2 � 6x C 8 #1#2#3#
2
4#5#

2
6#9#10

192 192a1 y2 D x3 � x2 � 4x � 2 #1#2#3#4#5#
2
6#7#8#12

196 196a1 y2 D x3 � x2 � 2x C 1 #1#2#3#
2
4#5#7#

2
8#12

200 200b1 y2 D x3 C x2 � 3x � 2 #1#2#3#4#5#6#
2
8#9#10

210 210d1 y2 C xy D x3 C x2 � 3x � 3 #1#2#3#4#5#
2
6#7#10#12

216 216a1 y2 D x3 � 12x C 20 #22#3#4#5#6#7#8#9#12
220 220a1 y2 D x3 C x2 � 45x C 100 #22#3#4#

2
5#7#8#10#12

240 240c1 y2 D x3 � x2 C 4x #1#2#3#4#5#6#8#9#10#12
252 252b1 y2 D x3 � 12x C 65 #1#2#3#4#6#7#8#9#10#12
300 300d1 y2 D x3 � x2 � 13x C 22 ‹

360 360e1 y2 D x3 � 18x � 27 #2#3#4#5#6#7#9#10#12#16

Tab. 8. For each m such that the subspace of cusp forms in J2;m is generated by a new form �m,
the associated elliptic curve and a theta block representation of �6�m. (CL is the Cremona label of
the respective elliptic curve.)
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Concerning the question of an explicit example of a rational elliptic curve whose
associated Jacobi form is not a theta block, we found m D 91 as the first m such that
the subspace of cusp forms in J2;m has dimension greater than 1 and contains a Hecke
eigenform with rational eigenvalues. In fact, J2;91 contains no non-cusp forms and has
dimension 2, so that both Hecke eigenforms in this space have rational eigenvalues and
hence correspond to elliptic curves. The Cremona labels of these elliptic curves are 91a1
and 91b1, 91b2, 91b3, and they all have rank 1. The space J2;91 contains exactly three
cuspidal generalized theta blocks (which are in fact theta blocks):

A D
#2#2#3#

2
4#

2
5#6#7

�6
; B D

#2#22#
2
3#4#5#7#8

�6
; C D

##22#
2
3#

2
4#5#

2
7

�6
:

One has ACB D C (as follows, for instance, from the theta relations below). The Hecke
eigenforms are

AC B D C; A � B:

Hence one of them is a theta block, the other one is not.

15.5. Linear relations among theta blocks

When studying linear dependencies between sets of theta blocks one can restrict to sets
whose elements have the same weight, same index and same character (since the ring of
all Jacobi forms is graded by weight, index, character). Table 7 suggests many concrete
examples of linear dependencies. For instance, J2;169 has dimension 8 but contains 50
theta blocks.

Using the following identity, which seems to be due to Weierstrass (see [28, Sec-
tion 1]),

#.�; z0 C z1/#.�; z0 � z1/#.�; z2 C z3/#.�; z2 � z3/

C #.�; z0 C z2/#.�; z0 � z2/#.�; z3 C z1/#.�; z3 � z1/

C #.�; z0 C z3/#.�; z0 � z3/#.�; z1 C z2/#.�; z1 � z2/ D 0;

one obtains immediately an infinite family of linear relations between theta blocks. Name-
ly, substituting .z0 C z1; z0 � z1; z2 C z3; z2 � z3/ D .a; b; c; d/z, and using again
#a.�; z/ D #.�; az/ yields the relations

#a#b#c#d C #.aCbCc�d/=2#.aCb�cCd/=2#.a�bCcCd/=2#.a�b�c�d/=2

D #.aCbCcCd/=2#.aCb�c�d/=2#.a�bCc�d/=2#.a�b�cCd/=2:

Here a, b, c, d denote any quadruple of integers whose sum is even. For instance, for
a; b; c; d D 1; 4; 5; 6 we obtain ##4#5#6 C #2#3#4#�7 D #8#�3#�2#�1, which after
multiplication by ##2#3#4#5#7=�6 yields the identity A C B D C of the preceding
section.

There is also a five-term relation similar to Weierstrass’ three-term relation, whose
terms are also products of four # , and which is due to Jacobi (see [18, p. 507, (A)]).
It is an interesting question if one can develop a theory based on such relations for theta
functions in several variables which explains all linear relations among theta blocks.
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