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Abstract. We define theta blocks as products of Jacobi theta functions divided by powers of the
Dedekind eta function and show that they give a new powerful method to construct Jacobi forms and
Siegel modular forms, with applications also in lattice theory and algebraic geometry. One of the
central questions is when a theta block defines a Jacobi form. It turns out that this seemingly simple
question is connected to various deep problems in different fields ranging from Fourier analysis over
infinite-dimensional Lie algebras to the theory of moduli spaces in algebraic geometry. We give
several answers to this question.
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1. Introduction

The Jacobi theta function ¥ (z, z), defined for t € Hl, z € C either as the theta series

19(_[’ Z) — i (_74)qr2/8é-r/2 (C] — eZJrir’ é— — eZJriZ) (1.1

r=—00

or else by the triple product

H(r.2) = ¢ T =g =q" O —g" '), (12)

n=1

is a holomorphic Jacobi form (with non-trivial character) of weight 1/2 and index 1/2.
(The definitions of holomorphic Jacobi forms with character and of their weight and index
are reviewed in Section 3.) For ¢ € N, we denote by ¥, the Jacobi form

Ve(t,2) := 0(1,az)
of weight 1/2 and index a2 /2, while
o0 1 ) o0
) = —)r r2/24 _ _1/24 1—ag"
n(r) ;(2 q q }:[1( q")

denotes the Dedekind eta function. The starting point of this paper is the following obser-
vation.

Fact. Let a and b be positive integers. Then the quotient

Ba(z, 2)0p (1. 2)Oaqp (T, 2)
n(z)

is a holomorphic Jacobi form of weight 1 and index a* + ab + b2, and is a cusp form if
3g3 | ab(a + b), where g = gcd(a, b).

Qup(t.2) =
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We will give several proofs and generalizations of this result. To do this, we first give
(in Section 4) a general criterion for the divisibility of a holomorphic Jacobi form, and
in particular of a product of ¥,’s, by a given power of 7. This will involve defining the
notion of the order of a Jacobi form at infinity, a notion which apparently has not been
introduced previously but which seems quite fundamental to the theory. This criterion will
then be used to prove the holomorphy of Q, 5 and to give many other examples—both
infinite families proved theoretically and sporadic examples found by computer—of theta
products divisible by high powers of 1. A typical example is the family of holomorphic
Jacobi forms of weight 2

Yap e VaBarpPorcVeraPatvrePvtctraPatvretd
n° ’

Ra,b,c,d = (1.3)
where a, b, ¢ and d are natural numbers. In many cases, including both the families Q, 5
and R, p ¢ q4, we will also give explicit formulas for quotients of the form ™0, - -- ¥4,
as theta series of rank N — s. Some of these are obtained by using a general criterion
(described in Section 4) for the divisibility of one theta series by another, while others
arise by specializing the Macdonald identities (also known as Kac—Weyl denominator
formulas) for suitable root systems.

A weakly holomorphic Jacobi form of the type ¥4, -+ ¥4, / n? is called a theta block
of length N, and it is called a holomorphic theta block if it is a Jacobi form. Its weight is
equal to (N — d)/2, and one of the principal aims of this article is to construct explicit
examples of holomorphic theta blocks whose weight is relatively small with respect to
the length. For instance, the Jacobi form R, j . 4 has length 10 and weight 2, and more
generally, in Section 9, we will construct families of length n(n + 1)/2 and weight n/2.
In Section 10, we will develop a general theory for constructing such families and will
see many more concrete examples in the sections following it. We will be interested both
in theoretical bounds for the minimal weight k& for given length N (in Section 5, it is
shown that the minimal weight is bounded below and above by ¢; log N and ¢, (log N)?
for positive constants ¢;) and in constructing explicit holomorphic theta blocks of small
weight.

The special families that we construct turn out to give a very useful way of con-
structing Jacobi forms, especially Jacobi forms of low weight. For instance, both the first
Jacobi form and the first Jacobi cusp form of weight 2 and trivial character, which have
indices 25 and 37, respectively, and were constructed with some effort in [7], are now
obtained immediately as the two first cases (a,b,c,d) = (1,1,1,1) and (1, 1, 1, 2) of the
family R, p,c.4, and many other interesting examples of Jacobi forms of low weight and
given character can be obtained as special cases of products of the functions Q, p or of
the other families. Such forms have several applications, e.g., to questions concerning the
classification of moduli spaces of polarized abelian surfaces or of K3-surfaces. We will
describe these applications and give some general discussion of the situation for small
weight. In particular, we shall see that all holomorphic Jacobi forms of weight 1/2 and
weight 1 and arbitrary character can be obtained as theta quotients n™* zﬁ‘ail <. 9E! and

an’
we will give conjectures and partial results for higher weights. We expect that the spaces
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of Jacobi forms of small weight and arbitrary index and character on the full modular
group are in fact spanned by theta quotients. As we shall see in Section 4, this statement
is, however, false for large weights.

We finally mention a side result of our studies of theta blocks, namely a rather short
proof (in Section 11) of the Macdonald identities based on Jacobi forms of lattice index.

Part I
Basic theory

2. Review of Jacobi forms

We first recall the definition of Jacobi forms as given in [7]. Let k and m be non-negative
integers. Then a holomorphic Jacobi form of weight k and index m (on the full mod-
ular group I' = SL(2, Z), or more precisely on the full Jacobi group I'’ = I' x Z?) is
a holomorphic function ¢: H x C — C which satisfies the two transformation equations

WlCZ2

b
¢(—j‘f—|—|——d ) _C‘L'_i— d) =(ct + d)ke(ct n d)¢(r, z) 2.1
and
(.2 + AT + 1) = e(—m (X2t + 212))p(z, 2) 2.2)

forallt e H,z € C, (95) e I"and (%) € Z? (here e(x) = ¢*"* as usual), and which
has a Fourier expansion of the form

pr.2)=Y Y cnrq't. (2.3)
neZ reZ
n=0 ;2 <4mn
where ¢ and ¢ denote e(t) and e(z), respectively. The Fourier coefficients c(n, r) then
automatically satisfy the periodicity property

c(n,ry=cm+Ar+ A%m,r +2im) foralld eZ 2.4)

(this is equivalent to (2.2)), so that ¢(n, r) is actually only a function of the numbers
d = 4nm —r? and r mod 2m in Z>o and Z/2mZ. A Jacobi cusp form of weight k and
index m is a holomorphic Jacobi form in which the condition 4nm — r? > 0 in (2.3) is
strengthened to 4nm — r? > 0, while a weak Jacobi form is defined like a holomorphic
Jacobi form but with the condition 4nm — r? > 0 in (2.3) dropped entirely; the periodic-
ity property (2.4) then implies that ¢(n, r) = 0 unless mA% +rA +n > Oforall A € Z
and hence that |r| is still bounded (by ~/4nm + m?2) for each n, so that ¢ still belongs
to C[¢, ¢ ![q]. Finally, a weakly holomorphic Jacobi form of weight k and index m
is a holomorphic function ¢: H x C — C satisfying (2.1), (2.2) and (2.3) but without
the condition 4nm > r2 in (2.3) and with the condition n > 0 weakened to n > ng for
some ng € Z. An equivalent definition is that A(t)"¢(t, z) is a holomorphic Jacobi form
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(of weight k + 12/ and index m) for some h € Z, where A = n** € S15(I"). Such a form
has a Fourier expansion in C[¢, ¢ '][¢ ™!, ¢], the ring of Laurent series in ¢ with coeffi-
cients which are Laurent polynomials in .

The spaces of holomorphic Jacobi forms, Jacobi cusp forms, weak Jacobi forms
an’d weakly hol(?morphic Jacobﬁ forms are fienoted by Jem(1), J ,:";lp(l) Jl;j;f:k(l)'and
Jem (1), respectively, the latter in analogy with the more standard notation M|, = M, (I")
for the space of weakly holomorphic modular forms of weight k on I' (= holomorphic
functions in H which transform like modular forms of weight k but are allowed to grow
like a negative power of ¢ as JI(t) — 00). The “1” in parentheses, which was not used
in [7], means that the Jacobi forms under consideration have trivial character, and will be
dropped when forms with arbitrary character are permitted. For m = 0 the Jacobi forms
are independent of z, so that we have Ji o(1) = J,ngak(l) = M (I), J,:j';p(l) = Si(I),
and ch!,o(l) = Mk! (I'). We also have Jg (1) Jxr (1) € J 4k’ m+m’ (1), so that the vec-
tor space Jx,«(1) = @y 0 Jk.m(1) is a bigraded ring. Note that the weights of weak or
weakly holomorphic Jacobi forms can be negative, although in the case of weak Jacobi
forms they are bounded below by —2m.

In this paper, we will still consider Jacobi forms on the full modular group, but will
allow rational weights and indices. For such forms the transformation equations (2.1)
and (2.2) are true only up to certain roots of unity (of bounded order) depending on (‘g 2 )
and (;}), and the exponents n and r in (2.3) can be rational (though again with bounded
denominator). The quickest way to give a definition is simply to say that ¢(z, z)V is
a holomorphic (or cuspidal, or weak, or weakly holomorphic) Jacobi form of weight Nk
and index Nm for some positive integer N. The explicit formulas for the roots of unity
occurring in the transformation equations with respect to the action of " and Z? (multi-
plier system) are quite complicated, but we do not have to give them explicitly because
there is an easy implicit description which suffices for the cases we are interested in
(products of the functions ¥, (z, z) and of rational powers of 7(z)). We use the sym-
bol ¢ to denote the multiplier system of the function 1(z), and more generally &” for
any i € Q to denote the multiplier system of (any branch of) the function 5(z)". (Note
that the quotient of two branches of 7(7)” is a constant, so that " is in fact indepen-
dent of the choice of branch.) We also note that the index m of any Jacobi form ¢,
even a weakly holomorphic one or one with arbitrary character, is always a non-negative
half-integer, because 2m is the number of zeros of the function z — ¢(z, z) in a funda-
mental domain for the action of the group Zt + Z of translations of C. For m integer
and k, h € Q, we will say that a Jacobi form ¢ of weight k and index m has charac-
ter e" if n(v) " (z, z) is a (weakly holomorphic) Jacobi form in the usual sense, i.e., if
k—h/2eZandn "¢ eJ k!—h J2m (1). For half-integral index, we observe that the square
of the Jacobi theta function ¥ (z, z)? is a holomorphic Jacobi form of weight 1, index 1
and character £° in the above sense, so we simply define its character to be &3: then for
m e Zso+ % and k, h € Q, we define a Jacobi form of weight k, index m and character gt
by the requirement that 1(7)~*~39 (z, )¢ (z, z) belongs to Jk!—l—h/2,m+l/2(1)' The defi-
nitions in both cases depend only on 2 modulo 24, so we get spaces Jx ("), J ,:?;p(eh),
TRk (eh) and J, (e") forall m € 3750, k € Q and h € Q/247Z with 2k = h mod 2.
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Formulas (2.1), (2.2) and (2.3) imply that ¢ € ¢g"/24¢™C[¢, ¢ 1][g~". ¢] for ¢ belonging
to any of these spaces. We clearly have Jk,m(sh)Jk/,mr(sh/) - Jk+k/,m+m/(£h+h/) and
also ¢ € Ji 42, (ehyif ¢ € Ji.m (¢M), where ¢, (. z) denotes the Jacobi form ¢ (7, az).
In particular, we have ¥, € J}/; 42/,(¢?), and more generally

N
Wy = l_[ Va; € Iny2,a72(e*N)
j=1
fora= (aj,...,an) € ZN, A = Zj'v=1af2"

It is not hard to show that every function whose N -th power, for some positive inte-
ger N, is a (weak or weakly holomorphic) Jacobi form of integer weight and index with
trivial character is indeed in Ji (e") (or J ,::f;:k(eh) or J, k‘ m (¢")) for suitable rational k
and h. Moreover, it is easily verified that, for any index m in 2717 the transformation
formula (2.2) remains true if one multiplies the right-hand side by the factor e(m(A + p)).
Note also, that for any rational k and & and half-integer m every element ¢ in J k' m (")
has still a Fourier expansion of the form (2.3), where, however, r runs through Z or 2717,
accordingly as m is integer or not, and 7 runs through all rational numbers n > n, which
are in h/24 4 7. The (modified) transformation formula (2.2) implies that, for any inte-
ger A,

Co(A,r) = e(mA)Cy(A,r +2ml), (2.5)

where C(A,r) = ¢((r? — A)/(4m), r).
Finally, we mention another special Jacobi form

12
(2= 3 (= )g M, (2.6)
r
rez
which appears also in the famous Watson quintuple product identity
v (z,2z)
¥ (t,2)

= ¢ PP [T= g+ ")+ " D= 1) (1= g1 7).

n=1

9" (r.2) = 1(7)

The Jacobi form ©* has weight 1/2, index 3/2 and multiplier system . For an integer a,
we will use the notation ¢} for the Jacobi form 9 *(z, az).

3. The order of a weakly holomorphic Jacobi form at infinity

Let ¢ be a weakly holomorphic non-zero Jacobi form ¢ of index m with Fourier coeffi-
cients cg(n, r). We associate to ¢ a function ord(¢, x) of a real variable x by setting

ord(¢, x) = min{n + rx + mx? : n, r such that ce(n,r) # 0}. (3.1)
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This function has several remarkable properties and it will play a key role in the construc-
tion of theta blocks of small weights. In particular, as the following theorem shows, the
map ¢ > ord(¢, -) defines a valuation with values in the (additive) group of continuous
functions on R/Z. A similar valuation could be associated to other cusps if one had to
consider Jacobi forms on subgroups of SL(2, Z) which have more than one cusp, which
justifies calling ord(¢, -) the order of ¢ at infinity.

Theorem 3.1. The function ordg = ord(¢, -) defined by (3.1) has the following prop-
erties:
(1) It is continuous, piecewise quadratic, and periodic with period 1.

2) If ¢ is of index m = 0 (i.e., if ¢ is a weakly holomorphic elliptic modular form,
independent of z), then ordy is constant and equals the usual order of ¢ at the cusp
infinity.

(3) For any fixed real u, x and y, there is a constant C = C(u, x, y) such that one has

¢ (1. xT + y)e(mx>t) = (C + o(1))e 27 4@
as T = u + iv and v tends to infinity. The constant C depends only on u, x, y modulo

NZ for a suitable integer N > 1 and is different from zero for almost all u, x, y.

(4) For any two weakly holomorphic Jacobi forms ¢ and r, one has
ordgy = ordg 4+ ordy, .

(5) Let ¢ be in Jk!m(eh). Then ¢ is in Jk,m(eh) if and only if ordg > 0, and ¢ is in
J ]::]:np(eh) if and only if ordg > 0.

(6) For any integer | and any weakly holomorphic Jacobi form ¢, one has ordy,¢(x) =
ordg (Ix), where U denotes the operator (Uj¢)(t,z) = ¢(t,1z).

Proof. For proving (1), we note that ordy is locally equal to the minimum of finitely many
quadratic polynomials, hence is continuous and piecewise quadratic. If we write

(r +2mx)®> - A

ord(¢, x) = min { y

r2— A
: A, r, such that c¢(4—,r> =+ 0},
m

we see that the periodicity is an immediate consequence of identity (2.5).
Statements (2) and (6) are obvious, and (4) follows immediately from (3).
For (3), we observe that the left-hand side of the claimed identity equals

Zc¢(n, rye((n + rx +mx?)t + ry)

= Z cp(n,r)e(ord(¢, )T + ry) + o(e 27 @)V,
(n,r)es

where S is the (finite) set of pairs (1, r) of rational numbers such that n + rx 4+ mx? =
ord(¢, x) and cy(n,r) # 0.
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Finally, for (5) we note that ¢ is a holomorphic (cusp) form if and only if cy(n,7) =0
unless the discriminant 72 — 4mn of the quadratic polynomial f(x) = n + rx + mx?
is (strictly) negative, i.e., unless f(x) is (strictly) positive for all x. This proves the
theorem. ]

The order of Jacobi theta function ¥ (z, z) (introduced in (1.1)) will play an important
role in the following. We shall use the letter B for it, i.e., we set B(x) = ord(?, x). From
the Fourier development (1.1) of 9, i.e., from the property that cy(n, s) # 0 if and only if
n =r?/8 and s = r/2 for an odd integer r, we see that ord(«¥, x) equals the minimum of

1 1 1 1 2
—r2+—rx+—x2:—<x+£> ,

8 2 2 2 2
where r ranges through the odd integers. In other words
o1 1 2 1 1,2
B(x) := ord(¢, x) = inel% E(x ~5 + k) = E(x — x| - 5) . (3.2)

Note also that
04 1
ord (;,x) = EB(X)’

where B(x) is the periodic function with period 1 which, for 0 < x < 1, equals the second
Bernoulli polynomial x2—x + 1/6. Indeed, for 5, viewed as Jacobi form of index 0,
we have immediately from the definition of ord that ord(n, x) = 1/24, so that with
Theorem 3.1 (4) we obtain ord(/n, x) = ord(¥, x) — 1/24 = B(x) — 1/24 = B(x)/2,
by (3.2).

4. Theta blocks

Recall from Section 2 that 9, (z, z) = ¥ (r, az) defines an element of Jl/z’az/z(é‘?’). From
Theorem 3.1, we deduce that ord(¥,, x) = B(ax) with the function B(x) defined in (3.2).
From the product expansion (1.2) of #, we deduce that, for fixed t, the set of zeros
of ¥ (z,-) coincides with the lattice Zt + Z. Accordingly, we find that the zeros of ¥, (z, z)
are all simple and are given by the a-division points of the lattice Zt + Z., i.e., by the
points of the lattice a = (Zt + Z).

Definition. A theta block of length r is a function of the form
Va,0ay -+ Oa, ", 4.1)

where n is an integer and a; are integers different from zero. A generalized theta block is
a holomorphic function in H x C of the form

Vg, Va, -+ Va,

" 4.2)
ﬂblﬁbz "‘ﬁb U

s
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where 7 is an integer and a;, b; are non-zero integers. We call a theta block or generalized
theta block holomorphic if it is holomorphic also at infinity, i.e., if it is a Jacobi form.
Conversely, an arbitrary function of form (4.2), without the requirement of holomorphy
in H x C, is called a theta quotient.

We note that the length r of a theta block, i.e., the number of #-factors in (4.1) is
indeed uniquely determined by the theta block as follows, for example, from Theorem 4.6
below.

Occasionally, we will also allow rational values for 7, and will then call the corre-
sponding function a theta block, generalized theta block or theta quotient with fractional
n-power. Clearly, any such function is a meromorphic Jacobi form in J ,é“;f, /z(eh), where

r s
k = % M = Za]z—Zb?, h=3r—23s+n.
j=1 j=1
If f is a generalized theta block (with integral or fractional n-power), then f is a weakly

holomorphic Jacobi form in J IL M /z(sh).

Example 4.1. The function 9*(z, z) defined in (2.6) is a generalized theta block. More
generally, for every positive integer @ we have the generalized theta block

Sa =[] 05, (4.3)
dl|a

where pu denotes the Mobius function. Note that S, is holomorphic in H x C, its zeros,
as function of z for fixed t, are simple and are given by the primitive a-division points of
the lattice L, = Zt + Z, i.e., by those points of ' L, whose images ina~' L /L. have
exact order a. Hence S, defines an element of J(;’ v (@0 /2(1) for a > 2 (whereas, for
a = 1, we have S; = ), where ¢(a) is the Euler ¢-function and v (a) denotes the sum
of all positive divisors d of a such that d /a is squarefree. Its order at infinity is given by

ord(S,, x) = <£>B dx).
(Sa. ) ; n(5)Bdx)

Note that the theta blocks form a semigroup with respect to the usual multiplication of
functions. We shall denote this semigroup by B. Similarly, the generalized theta blocks
form a semigroup which we shall denote by B*. The theta quotients, finally, form a group
denoted by G(B). We shall determine the structure of this group.

For a fixed 7, the divisor of a theta block f(z, z), viewed as a theta function on
C/(Zt + Z), is of the form )", n,I1,, where a runs through Z -, the integers n, van-
ish for almost all a, and I1, is the (formal) sum of the primitive a-division points of
C/(Zt + Z). The formal sum

Div(f) := Y _na(a) € Z[Zo]

does not depend on t. Moreover, the map f + Div( f) defines a group homomorphism.
Using this map, the structure of G(®B) can be described as follows.
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Theorem 4.2. The map f +— Div(f) defines an exact sequence
15 7% 5 GB) 2 Z[Zo] — 1.
The sequence splits via the map D = Y _nq(a) = Sp =[], Sa*.

Proof. From the discussion in Example 4.1, it is clear that D +— Sp defines a section of
the map Div, which is then, in particular, surjective. If a theta block, for each fixed t, has
no zeros or poles in C/(Zt + Z), then it is of index 0, hence an elliptic modular form
without zeros in the upper half-plane (but with possibly a pole at the cusp infinity), hence
a power of 7. [ ]

There are two immediate consequences of the theorem.

Corollary 4.3. A theta quotient is a generalized theta block (i.e., weakly holomorphic) if
and only if it equals a product of the functions S, and a power of 1.

Theorem 4.4. For any positive integer or half-integer m, the number of generalized theta
blocks of index m, counted up to multiples of powers of n, is finite. It equals the coefficient
of ¢*™ in the power series expansion of 1/ [ o, (1 — g¢ @V @),

Proof. Indeed, according to the theorem, the number in question equals the number of
D =), ng(a) in Z[Z>o] such that all n, are non-negative and m = (1/2) )", na x
¢(a)y¥ (a). But this number is finite since

w(a)W(a):azl_[(l— ! >>azn<l—%) =6:—22,
P

2
pla P
which is bigger than 2m for large a. ]

Remark. It is known [26, Theorem 6] that, for fixed m and #, as k tends to infinity,
one has dim Jk,m(eh) = ¢ -k 4+ O(1), where ¢ is a constant depending on m and h.
In particular, we see that generalized theta blocks of a given index m can never span the
whole space of Jacobi forms of weight k, index m and given character if k is sufficiently
large. Table 1 lists, for small indices m, all generalized theta blocks of index m, up to
powers of 1, normalized by a fractional n-power so that the minimum of their order at
infinity becomes zero, i.e., so that they are holomorphic but not cuspidal.

As we have seen, it is easy to decide whether a theta quotient is weakly holomorphic.
It remains to analyze the behaviors of a general theta block at infinity. We shall discuss
this question from various points of view in the next sections. Here we confine ourselves
to the study of the map which associates to a theta quotient its order at infinity. For this
we note that ord( f; -), for a theta quotient f, is an element of the additive group of real-
valued functions on the real line which is spanned by the functions B(ax) (a € Z¢)
and 1/24. It is a somewhat surprising fact that the order at infinity already determines the
theta quotient. Namely, we shall prove the following assertion.
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m Sm

12 »

1 92

3/2 93, (92/9)n

2 94, 9,

5/2 95, 99,3/

3 96, 929,71, (92/92)n?

7/2 87, 930707, (92/0)n°7

4 98, 949on 732, 92, (93/0)n>/?

9/2 99, 950,733, 992023, 93/9%)n3, 95

5 1910’ 196192’7—9/5’ 192.19%77—6/57 (,&3/,&2)’79/5’ 93

11/2 19117 197192,]—21/11, 1931922,7—18/11’ (ﬂ%/ﬂ),ﬁ/ll, 192193’ (192193/192)]727/11
6 912, 980,072, 9493072, 03, 03/t 9303, 9203/, (Fa/P2)n

Tab. 1. For small index m, the sets Sy, of all non-cuspidal generalized theta blocks with fractional
n-power in Py peq Jk,m (M.

Theorem 4.5. The map f + ord( f,-) defines an isomorphism between the group of theta
quotients G(°B) and the additive group B of functions spanned by the B(ax) (a € Z=q)
and the constant function 1/24.

Proof. We shall prove in a moment that the functions B(ax) and 1/24 are linearly inde-
pendent over Z (and even over C). Hence from the order at infinity ord(f,-) of a theta
quotient f as in (4.2), we can read off the numbers a;, b; and n, which proves the theo-
rem.

The claimed linear independence of the B(ax) and 1/24 becomes obvious if one ex-
pands B(x) into its Fourier series,

1 eZninx 1
Bx)=—Y —— + —.
=3 —m T
nez
n#0

Hence, if b(x) = Y ;5 ¢; B(Ix) + co/24 with integers c;, almost all equal to zero, then

1 2winxy _ 0) + 1)/2
b = g ) pEm*) 52( ) +,(M/2 @.4)
nez
n#0

where p(¢) denotes the polynomial' p(r) = leo ¢;t!. (For the identity, we used also
that Y °2 , 1/n? = n2/6.) By the uniqueness of the Fourier expansion of b(x), the poly-
nomial p is uniquely determined by b, i.e., we have a map b — p, which defines an

IThese formulas could be written more smoothly if we had defined ¥, as the quotient
®(t,az)/n(z), whose order is B, (ax)/2, where By (x) = y2 — y + 1/6 (y = fractional part of x)
is the periodically continued second Bernoulli polynomial.
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isomorphism of T with the group of polynomials over Z. This implies the claimed linear
independence. ]

It is worthwhile to summarize the discussion of this section in terms of the compo-
sition of the isomorphism f > ord( f,-) with the isomorphism of T and the group of
polynomials over Z used in the preceding proof.

Theorem 4.6. The map

p(1) = chtl > 9, = n2co 1—[ (ﬁ)ﬁ

>0 I>1 1

defines an isomorphism of the (additive) group 2717 + tZ[t] and the group G(B) of theta
quotients. The theta quotient ¥, defines a meromorphic Jacobi form of weight k = p(0),
indexm = (p'(1) + p"(1))/2 and character " with h = 2p(1). It is weakly holomorphic
if and only if, for all positive integers N,

% Y. P =co (4.5)

¢N=1
(the sum is over all N -th roots of unity). Its order at infinity ord(¥, -) is given by

p(leuxn)

ord(Pp, x) = — Z (4.6)

nez

n#0
Proof. The statements concerning the weight, index and character are obvious. (See the
discussion at the beginning of this section.) The formula for the order at infinity is a re-
statement of formula (4.4). Finally, if we write ¥, = n° [], Sz“, then p(t) = co +
S napa) it (where w(a/l) = 0if a is not a multiple of /). Accordingly, we find

nateo== 3 p),

ga=1

and we recognize the stated criterion for being weakly holomorphic as a restatement of
the first corollary of Theorem 4.2. ]

The construction of holomorphic generalized theta blocks, i.e., of theta quotients
which define Jacobi forms, therefore amounts to the construction of polynomials p(f)
whose coefficients apart from the constant term are integers, that satisfy (4.5), and such
that the right-hand side of (4.6) is non-negative for all x € R. We come back to this ques-
tion in the following section.

We end this section by a criterion for a Jacobi form to be a generalized theta block.

Theorem 4.7. A weakly holomorphic Jacobi form ¢ on the full modular group is a gener-
alized theta block if and only if, for every 1, the function z — ¢(t, z) has at most division
points of C/(Zt + Z.) as zeros.
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Proof. As we saw at the beginning of this section, the divisor of a theta quotient consists,
for fixed 7, of division points of C/(Zt + Z).

Assume vice versa that ¢ is a meromorphic Jacobi form of weight k in 27! Z, index m
and character &”, and assume that, for some 79, the function ¢ (g, -) has a zero in rry + s.
Then, by assumption, rtg + s is a point of, say, order a in C/(Zt + Z). Moreover, if the
zero is simple, there are small neighborhoods U and V of 7y and rty + s such that the
set of zeros of ¢(z,z) in U x V is of the form (z, v(z)) with a holomorphic function v(7)
on U. Since v(t) must be a division point for every 7 in U, we conclude v(t) = r7 + s.
But then ¢ (7, rt + s) vanishes identically in U and hence is identically zero. The same
still holds true if 77y + s is a zero of order n > 1 as one sees by applying the preceding
argument to ¢/S” ! instead of ¢ (with S, as in (4.3)), which shows then that ¢ (z, -) has
a zero of order n in rt 4 s for any 7.

The transformation law of ¢ under SL(2, Z) shows that the identity ¢ (z,rt +5) =0
implies ¢ (z,r't +s’) = 0 for any A in SL(2,Z), where (r',s") = (r,s) A (since ¢, (1) :=
¢ (v, rT + s)e(mr?7) satisfies ¢r.s|x A = P(r.5)a for any A in SL(2, Z)).

It follows that there are a finite set / of positive integers and a sequence 1, (a € I) of
integers such that, for every t, the zero divisor of the theta function ¢(z,-) on C/(Zt + Z)
is of the form ), ; n4I14(7) with I1,(v) denoting the formal sum of primitive a-division
points of C/(Zt + Z). But then ¢/ [],cs Sa“ has no zeros.

Applying the same argument as before to 1/¢ shows finally that there is a theta quo-
tient f such that ¢/ f has no zeros and no poles in H x C. A standard argument shows
then that ¢/ f has index 0 and is independent of z, and finally, that it is a power of . =

5. Long theta blocks of low weight

In this and the next sections, we shall be interested in constructing Jacobi forms of low
weight as theta blocks (with fractional n-power). There are at least two reasons for study-
ing holomorphic theta blocks, i.e., theta blocks that are holomorphic at infinity, of low
weight. Firstly, in applications one is usually interested in Jacobi forms of low weight and
there is a good chance that a Jacobi form of low weight can be represented by a theta
block, whereas this becomes more and more unlikely for higher weight. (Cf. the remark
after Theorem 4.4.) Secondly, it turns out to be quite hard to construct theta blocks of low
weight, which raises some interesting questions. In this section, we answer the question
for theoretical bounds for the lowest weight that one can obtain if one fixes the length of
a holomorphic theta block. In the next section, we shall present various infinite families
of holomorphic theta blocks of low weight.
We are interested in the growth of the function

wt(N) = % — 12max(N), (5.1)

where

J=1

N
max(N) = sup{mxin(z B(ajx)) 1dy,...,ayN € 231}.
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Recall that n” with n = 24 min,, Z]N:l B(ajx) is the largest (fractional) n-power by which
we can divide ¥, - U4, and still obtain a theta block that is holomorphic at infinity
(cf. (3.2) and Theorem 3.1). Accordingly, the quantity wt(/N ) measures the lowest weight
for which there exists a Jacobi form which is a theta block built from exactly N fac-
tors U,.

Clearly, max(N) < N/24 (since miny B(ax) < fol B(ax) dx = 1/24) and therefore
wt(N) > 0. Alternatively, this inequality also follows from the fact that a non-constant
holomorphic Jacobi form has a positive weight.

As already remarked after Theorem 4.6, the construction of holomorphic theta blocks
of low weight amounts to the construction of polynomials p(z) in R + ¢Z[t] whose coef-
ficients apart from the first one are non-negative, such that p(1) is large but p(0) is at the
same time small, and such that the right-hand side of (4.6) is non-negative. This will be
the starting point for obtaining bounds for wt(N').

More precisely, as a consequence of Theorem 4.6, we can relate our problem to one
that is well studied in the literature in the context of trigonometric polynomials as we shall
see in a moment.

Lemma 5.1. Let Ty denote the set of polynomials p(t) in R + t Zx[t] such that
P(2™%) 4 p(e2Ti¥) > 0
for all real x, and whose sum of non-constant coefficients equals N. One has
wt(N) <inf{p(0) : p € Ty}.

Proof. The inequality results from the fact that the image of Ty under the map of Theo-
rem 4.6 is contained in the set T of theta blocks (with fractional n-power) whose order
function is non-negative. ]

We do not know whether the image of 7y equals T . If this held true then the inequal-
ity of the lemma would in fact be an equality.
The asymptotic behavior of

ct(N) :=inf{p(0): p € Ty}

was studied in [1,21,24] etc. In the last two of these articles, it was shown that ct(N)
does not grow faster than n'/3 and log(n)n'/3, respectively. The so far strongest result (to
the best of our knowledge) is ct(N) < log3 N for N > 2 (see [1, Theorem 0.5]). More
precisely, one has the following.

Theorem ([1, Corollary 5.4]). For all N one has
ctt := inf{p(0) : p € Ty} < 45000(1 + (log N)?),

where Tlt is the subset of polynomials p(t) = aog + a1t + az + --- in Ty whose non-
constant coefficients ay, a,, . .. form a decreasing sequence.
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Note that the right-hand side is also an upper bound for ct(N) as T1$ isasubset of Ty .
The same paper [1, Theorem 0.5] also gives an estimate of ct¥(N) from below, namely

log? N
loglog N
However, since we know neither the exact relation between wt(/V) and ct(/N) nor between
the latter and ct¥(N), the last estimate is not useful for us. It might give an indication for
a lower bound of wt(N') though.

We can indeed prove a similar estimate for wt(N) from below by relating wt(N) to
another well-studied problem, namely the determination of the quantity

&L ct(N).

A(N) := inf{/o1 IRe p(e?™ )| dx : p(t) € tZso[t]. p(1) = N}.

We thank Danylo Radchenko who pointed out this connection to us and also found and
proved the following lemma.

Lemma 5.2. Forall N > 1, one has
6
wi(N) > (- — -) A(N).

Proof. Let p(t) be in tZ[t], and let ¢y be a real number such that ¢o/12 + ord(d,, x) =
ord(P¢y+p.x) > 0 forall x. Then co/12 is an upper bound for — fo min(ord(J,, x), 0) dx.
But the latter integral equals 1 > fo lord(¥,, x)| dx (smce fo ord(d,, x) dx equals 0). From
formula (4.6), we therefore obtain, setting I, = fo [Rep(e2™7%)| dx,

3 1 6 1
“= 6/0 lord(9y. )l d 2 5 (1 _Z—) = ()

where for the last equality we used that the p(e?*"*) all have the same L'-norm. The
lemma is now obvious. ]

Lower bounds for the left-hand side of the inequality of the last lemma have been
studied in a different context (norms of exponential sums) in [23]. In particular, the results
given there imply the following assertion.

Theorem ([23, Theorem 2]). Forall N > 1, one has

H
ANN) > 22X
60

where Hyy = Ziﬁl 1/n denote the 2N -th harmonic number.

This theorem as stated here is not exactly identical to [23, Theorem 2]. In fact, McGe-
hee, Pigno and Smith prove, for any sequence of integers a; < ap < --- < a, and any
sequence of complex numbers A1, ..., Ay, the inequality

/ ZA(/,Zmade 2%2M|

Jj=1
The preceding theorem is an obvious consequence.
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Summarizing the preceding discussion, we obtain the following.
Theorem 5.3. The quantity wt(N) in (5.1) satisfies

H>y

555930 = <4 1+ log3
555030 = WHN) = 45000(1 + log™ N)

forall N > 1.

In particular, wt(N) grows at least like a constant times log N and at most like
a constant times log®> N as N goes to infinity. Note, however, that the bounds given in
the theorem are very poor for N of intermediate size. For instance, for N = 50 these
bounds are
0.00933 < wt(50) < 2.74 - 106,

whereas Table 2 in the next section shows that in fact wt(50) < 2.224.

As we see from Theorem 5.3, there exist theta blocks with an arbitrary high number N
of ¥-factors which are Jacobi forms but have relatively small weight < log> N. It is
challenging to construct such theta blocks explicitly. The rest of this article will somehow
pivot around this subject. In particular, we shall construct infinite families of theta blocks
with a high number of ,-factors, fairly small weight and yet holomorphic at infinity.
We shall even develop a theory that will permit to construct such families systematically.
In the next section, however, we confine ourselves to describing the results of our direct
search for interesting theta blocks.

Part I1
Examples
6. Experimental search for long theta blocks

As we explained in the last section, we are interested in long theta blocks of low weight
which are holomorphic at infinity. For this we need, first of all, to describe an efficient

method to calculate the minimum of the order of a theta block. For a = (ay,...,an)
in ZN | set
N N
9a:=[[ ;. Bax):=) Blajx). sa= 24 min By(x).
j=1 j=1

Recall that the theta block %, has B, as order at infinity. Hence s, is the maximal fractional
power of 1 by which we can divide ¥, and still have a Jacobi form. The weight of the
resulting form is k, = (N — 5,)/2.

Note that B(x) is one half of the square of the distance of x to the closest point in
1/2 + Z. Accordingly, B,(x), for a given x, is one half of the square of the Euclidean
distance of xa to the closest point in 1/2 4 Z¥, where 1/2 = (1/2,...,1/2). In other
words, 5,/24 is one half of the square distance of the line R - a to the set 1/2 + ZV.
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If n/2 is a point in 1/2 + Z¥, then its square distance to R - a equals the square length
of its orthogonal projection onto the orthogonal complement of R - a, i.e., it equals (n? —
(n-a)2/a?)/4. If we set

Sa(m) :=1n?-a% — (n-a)?, (6.1)

then we can summarize

Sa = 24 mlnB 2(x) =3  min Sa()

6.2
nel+2zN a2 ©2)

where 1 = (1, ..., 1). This formula has several consequences.

First of all, if ng in 1 4 2Z* minimizes S,(n), then the minimum of B, (x) is assumed
at x = ng - a/(2a?). Note that x is a rational number with denominator 2a?. Summing up,
we have proved the following assertion.

Proposition 6.1. The function B,(x) assumes its minimum at one of the points

s k
=4 = < M
X 7 + O<k<M),

where s = 3N

i=10a; and M = Z

i=1 J

Remark. The proposition tells us in particular that we can determine the minimum of
Ba(x) for a given a by trying all the M values x as in the theorem, which needs M =

Z]N=1 alz steps.
Secondly, (6.2) implies the following criterion for ¥, /1% defining a Jacobi form.

Proposition 6.2. The quotient 9,/n? is holomorphic at infinity if and only if
d
Sa(n) > — a’
3
for all vectors m in 1 + 2ZN (with Sy(n) as in (6.1)). It is a cusp form if and only if the
inequality is strict for allnin 1 4+ 27N .

Remark. As we shall see below, it is sometimes useful to write S, (n) in a slightly differ-
ent form. Namely, as a simple computation shows, one has

Sa@) = > (ainj —ajn;)?,
1<i<j<N
where we used n = (ny,...,nyN).

For minimizing S, (n) for a given a, the following formula is sometimes useful.

Proposition 6.3. Letu; (1 < j <r) be linearly independent vectors in ZN spanning the
orthogonal complement of a, and let G = (0; - 0})1<;,j<r be the Gram matrix of the u;.
Then

Sa(n) = (xG~'x")a?,

wherex = (m-uy,...,n-u;).
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Remark. If the u; of the proposition do not span the orthogonal complement of a but are
still orthogonal to a, then we still have

Sa(m) = (xG™'x")a?

for all vectors nin 1 + 2Z%~, where x = (n-uy,...,n-u,) (as one easily sees by comple-
menting the u; to a full basis of the orthogonal complement of a by integer vectors which
are orthogonal to the u;).

Assume that u? is odd for all j. Then n-u; = u? = 1 mod 2 for n in 1 4 22",
ie.,x €1+ 27", and hence

Sa(m) > ( min xG~'x")a%.
x€14+27Z7"

If the u; are in addition pairwise orthogonal, so that G™! is the diagonal matrix with
1 /u]2- (1 < j <r)asdiagonal elements, we conclude (using (n - u;) > 1) that

s = (X )

j=1"J
for all vectors nin 1 + 27~

Proof of Proposition 6.3. Indeed, for x in RY let x; be the orthogonal projection of x
onto the space spanned by the u;. Then n? = ni +(m—mng)?andn, -a = 0, and hence

Sa(n) =n? -a> + n—ny)*-a®> — (n—ny)-a)*> > n? -a’.

Butn; = Z]'.=1 (n- uj)u;.*, where u;'.‘ are the vectors of the dual basis of u; (j =1,...,7)
in the space spanned by the u;. Therefore, nﬁ_ =xHx' withx = (n-uy,...,n-u,) and
H = (uf - u;‘),-,j. Since H = G, the proposition is now obvious. L]

We are interested in the behavior of s, (or k,) as a function of a, and, in particular,
to find a in Z¥ for big N but with s, as big as possible, or, equivalently, with k, as small
as possible. As clear from the definition of s,, its value does not change if we divide a
by the gcd of its entries. When looking for a with best s,, we can therefore assume that a
is primitive. Except for the first few N, we do not know any method to determine, for
a given N, the smallest possible weight k,, when a runs through all integer vectors (with
positive entries) of length N. For N = 1 the minimum s, of B(ax), for any integer a,
is 0, which is assumed by 9 (z, z).

Already for N = 2, it is not completely evident to determine s, for a given (prim-
itive) a = (a, b). A simple calculation shows S(,.p)(r, s) = (as — br)?. Writing r =
—1—2k and s = 1 + 21, we have S, 5)(r,s) = (a + b + 2(al + bk))?. The minimum
over all integers k and / equals obviously the rest s of @ 4+ b modulo 2, whence s, 5) =
3/(a® + b?) if a + b is 0odd, and s¢; 5) = 0 otherwise. The maximal s(, 5) is therefore
assumed for a, b = 1,2, for which we have s, 5) = 3/5.

For larger N, we did searches by trial and error to find a with small k,. Our best
results are listed in Table 2. We do not know how far off our k, are from the true minima.
Note that, for small N, Theorem 5.3 does not give any useful hint in this respect.
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2

N ka a a

1 1/2 = 0.500 1 1

2 7/10 = 0.700 5 2

3 6/7 = 0.857 14 3

4 9/10 = 0.900 15 3-1

5 25/22 = 1.136 55 5

6 27/28 = 0.964 56 5-1

7 11/9=1.222 108 5-2-7

8 49/40 = 1.225 240 7-10

9 37/28 = 1.321 168 6-2-3-8
10 13/11 = 1.182 286 9-1

11 289/193 = 1.497 386 10-

12 465/338 = 1.376 507 11-

13 589/398 = 1.480 796  11-1-17
14 304/205 = 1.483 820 13-

15 1917/1210 = 1.584 605 10-1-3-4-5-13
16 281/172 = 1.634 1032 14-1-4
17 175/107 = 1.636 1284 14-2-3-16
18 5007/3002 = 1.668 1501 16-

19 1463/895 = 1.635 1790 17-
20 256/151 = 1.695 2114 18-
21 2839/1650 = 1.721 2475 19-
22 9607/5750 = 1.671 2875 20-
23 2933/1658 = 1.769 3316 21-
24 2391/1339 = 1.786 2678 19-3-5-13
25 13961/7618 = 1.833 3809 22-
26 54/29 = 1.862 4350 23-1-3-4
27 18441/9926 = 1.858 4963 23-3-25
28 20515/11078 = 1.852 5539 25-
29 4577/2486 = 1.841 6215 26-
30 6459/3472 = 1.860 6944 27
31 9679/5190 = 1.865 7785 27-3-29
32 427/220 = 1.941 7040 26-
33 8187/4285 = 1.911 8570 29-3-1

34 34583/17338 = 1.995 8669 28
35 13259/6970 = 1.902 10455 31-

36 42723/21038 =2.031 10519 31- 8
37 12403/6272 = 1.978 12544 33
38 1002/479 =2.092 1149% 32

39 3371/1678 =2.009 12585 33
40 63307/30026 = 2.108 15013 35-
41 18392/8795 =2.091 17590 37-
42 17649/8131 =2.171 16262 36-
43 2763/1306 = 2.116 17631  37-
44 29753/13714 = 2.170 20571  39-
45 21777/10298 = 2.115 20596 39-
46 25033/11105 = 2.254 22210 40-
47 11381/5306 = 2.145 23877 41
48 40449/18310 = 2.209 27465 43-
49 126745/58802 = 2.155 29401 44-
50 34937/15713 = 2.223 31426 45-

[e e}

[ B [ OB [ [ U 00 [0 [ (U 109 [0 [ [ [ U [0 [0 [0 [0 [ = (L2 [ [N IR R IR (R IR DD = — i =
)
%)
o)

e e e N b b b e e () = = = ) N

Tab. 2. Best experimental values of ky for N < 50. The first three rows give the true best values.
(Here a stands for the vector (1,2, ...,a), a for the vector (a) and “-” for concatenation; hence
5-2-7=(1,2,3,4,5,2,7).)
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7. Theta quarks

It turns out that there are infinite families of theta blocks which are holomorphic Jacobi
forms. An explanation for this will be given by the theory which we shall develop in
Section 10. In this section, we discuss the first non-trivial example of such a family, the
family of theta quarks, which was already presented in the introduction. Recall that this
family is given by

We use the word “quark” for these functions because the product of any three of them
is a Jacobi form without character on the full modular group. We shall give six different
proofs of the fact that Q, 5, for any pair of positive integers a, b is indeed holomorphic
at infinity.

Theorem 7.1. For any pair of positive integers a and b, the function Q, p defines a holo-
morphic Jacobi form of weight 1, index a® + ab + b* and character €3. It is a cusp form
ifand only if 3| a’b'(a’ + b’), wherea' = a/g and b’ = b/ g with g denoting the greatest
common divisor of a and b.

Remark. Note that the condition 3 | a’b’(a’ + b’) is equivalent to @’ % b’ mod 3 as we
shall occasionally use in the following proofs.

First proof of Theorem 7.1. According to Theorem 3.1, we have to show that

minord(Qg,p.x) >0
X

with equality if and only if 3g divides @ — b. For this recall
1
ord(Qa . x) = B(ax) + B(bx) + B(—(a + b)x) —

(where we used that B(x) is an even function), so that
1
minord(Qqp.x) = min (B(x) + B(y) + B(2)) — .
x ’ (x,y,2)eH 24

where H denotes the hyperplane x + y + z = 0. If x, y or z is an integer, the right-hand
side is greater or equal to B(0) = 1/8 > 1/24. Otherwise, the right-hand side is differ-
entiable in small neighborhood of (x, y, z), and we can apply the method of Lagrangian
multipliers: if (x, y, z) is a local minimum, then (X, y,Zz) = A(1, 1, 1) for some A, where
X, y, z denote the fractional parts of x, y, z. The minimum of B(x) + B(y) + B(z) on H
is therefore taken on at

_ o _ 1 - _ _ 2
X=y=zZ=—- o X=y=Z=—,
Y 3 Y 3
and it equals 1/24 in either case.

We leave it to the reader to work out when Q, p is a cusp form. ]
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Second proof of Theorem 7.1. For this proof, we use the criterion of Proposition 6.2.
In the notations of the preceding section, we have

Va
Qup=—, wherea= (a,b,a+Db).
n

The vector u = (1, 1, —1) is perpendicular to a = (a, b,a + b), and hence by the remark
after Proposition 6.3,

1 1
Sa(n) > —232 = gaz

for all m in 1 + 2Z3. According to Proposition 6.2, the Jacobi form Q,; is therefore
holomorphic at infinity, and it is a cusp form if and only if the last inequality is strict for
all n. ]

Third proof of Theorem 7.1. The holomorphy of Q, ; also follows from the following
explicit formula for its Fourier expansion.

Theorem 7.2. One has

Ky 2 2 _
Qa,b - _ Z (g)qr +rs+s /Sé-(a b)r+as. (7.1)

r,S€EZ

Proof. We have an isomorphism of Z-lattices

{I,m,n)eZ?:1l=m=nmod2} = {(r.s,1) € Z> : s = t mod 3},

n—m |l +m )

(l»m’n)H( D) 5 B _n,_l_m—}’l

with respect to which (—4/(Imn)) = (—4/t). Hence

—4 2420 2 _
9Oy Dars = Z ( )q(l +m?+n?)/8 p(al+bm—(a-+b)n)/2

Imn
I,m,ne’Z
_ Z <__4)qr2+rs+s2/3+t2/24é-(a—b)r+as
t b
r,s,t€Z
s=t mod 3

and (7.1) follows because
-4\ 2 s
2 (F)er = (5
t 3
t=s mod 3
for all s. ]
Remark. The above isomorphism of lattices is ©3-equivariant if we introduce new coor-

dinates (u, v, w) withu + v + w = 0, u = v = w mod 3 which are related to r and s by
(u,v,w) = (=3r —2s,3r + s,5). Then (7.1) can be symmetrically written in terms of

the three integers a, b and ¢ = —a — b with sum 0 by
u
Qa,b — Z (g) q(u2+v2+w2)/18;-—(au+bv+cw)/3_ (7.2)
u+v+w=0

u=v=w mod 3
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The proof for this follows by using the equivariant isomorphisms of lattices {(¢,u, v, w) €
Z* t=u=v=wmod3,u+v+w=0and {(I,m,n) € Z>:] =m = n mod 2}
givenby (I,m,n) = —(t + 2u,t + 2v,t + 2w)/3.

Fourth proof of Theorem 7.1. Using formula (7.2), we have to show that
a’? . x> —(a-x)? >0,

where a = (a, b, c) and x = (u, v, w)/3; but this is the Cauchy—Schwarz inequality. Recall
that the Cauchy—Schwarz inequality is strict unless a is a multiple of x. In other words,
Q..p is a cusp form if and only if a = (a, b, —(a + b)) is never proportional to a vector
x = (u,v,w)in Z3 withu = v = w mod 3. n

Fifth proof of Theorem 7.1. As we shall see in Section 10, we can obtain the theta quarks
as pullbacks of the function ¥4, defined by the Macdonald identity (also known as Kac—
Weyl denominator formula) for the affine Lie algebra with positive root system A,. The
theory of affine Kac—Moody algebras gives in particular a formula for the Fourier expan-
sion of this function, which shows that the pullbacks are indeed holomorphic at infinity
(see [19,22]). More details will be given in Part III (see Example 11.2), where we shall
also give a new proof of the Macdonald identities which does not make any use of affine
Lie algebras. ]

Sixth proof of Theorem 7.1. In Section 14, we shall see that the function ¥4,, which the
fifth proof is based on, is the first Fourier—Jacobi coefficient of a holomorphic Borcherds
product (see (14.4)), and hence its pullbacks to theta quarks are in particular holomorphic
at infinity. For details, we refer the reader to the proof of Theorem 14.5 and the subsequent
remark. ]

8. Other families of low weight

The series of theta quarks of the preceding section is not the only infinite family of theta
blocks of low weight. In fact, as we shall see in Part III, there are infinitely many such
families. In this section, we discuss various of these families which have low weight.
More precisely, we shall discuss families of weight 1, 3/2 and 2. Recall that a theta
block of weight k consists of N functions 9, divided by n™ ~*. If the character is &”,
then 2N + 2k = h mod 24, hence the length of the theta block occurs in the arithmetic

progression
h
N:—k+§+12d d=0,1,2...).

In Table 3, we list various families of theta blocks of low weight. For systematic reasons,
which shall become clear in Part III, we included also the family Q, ; of the last section
and renamed the function R, ¢ g of (1.3)to Wy 4 pc.qa-
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Weight Character Family

1 8 Qa,b = ?IZ;a,b = SDZ;a,b = n_lﬁaﬁaﬁ-bﬁb

10 Brab = Coiap = N 2aVaspat269p

14 G206 =1 V304530 +26%2a+5%a+bDb
312 15 As.ap,c = D350, = n_3§aﬁa+bﬁa+b+c§bﬂb+cﬁc

21 B3.ab.c =1 VaVatpVat2bt2ePatbtcVatbt2e960b+cVpt2cVe

21 Ciap.c =1 PaV2042b+cVatbPat2btcVatbtc¥pP2b+cVpte Ve
2 0 Upabed =1 VaVaypParbrcVatbietdbbteVbtetdde

X Vetaa
12 Baaped =1 2%aPatbVat2b+20+2d VatbtcPatbtac+2d

X Vgt ptetrdPatbrc+2d P60+ Pp+2c+2d Vbte+d
X Vptet2dVcVetrdPcrad¥a

12 Cuabed =1 PaPras2b420+dVatbPat2b+2c+dVatbtc
X Ogybt2c+dVatbte+dPo%20+2¢+dVp+c¥b420+d
X Vpteta¥ePacraVcrada

4 Dsaped =N VaVaipPat2btotdPatbtcVatbtetdYatbrd
X UpUptcVbtctdVp+dVcVa
_ .20
4 Saabed =1 " VaVrat3btact2dVatbVat3b+act2dVat2bt2c

X Vgt2b+ac+2dVat2b+3c+dVat2b+3c+2d

X Vgy2bt2c+dVat2b+2c+2d VatbtcVatbiac

X Vgtpr2c+dYatbtr2c+2dVatbtc+d Vp¥p+cVp+2c
X Opt2c+dVp+2c+2d Vp+c+d Ve VetrdVa

Tab. 3. Families of theta blocks of low weight.

Most remarkable is the series 4.4 p.c,4, Which, for given a, b, ¢, d, yields a Jacobi
form in J3 ,, with

2m= +a*+@+b)?+@+b+c)+@+b+c+d)?
+b2+ b+ +b+c+d?*+c*+(c+d)?*+d>

In particular, we have 24.1,1,1,2 in J5 37. The latter space is one-dimensional and contains
only one cusp form, which is in fact the cusp form of smallest index in weight 2 with
trivial character. The first few coefficients of this cusp form were computed laboriously
in [7, p. 145]. Here U4;1,1,1,2 provides a closed formula.

A courageous reader might like to verify that the given families are indeed holomor-
phic at infinity. In principle, this can be done along the lines of the first two proofs for the
family of theta quarks as in the preceding section. Here we confine ourselves to the fam-
ilies By, and & 4 5. However, for weights 3/2 and 2, a straightforward verification
becomes rather tedious. A more conceptual proof that these families are holomorphic at
infinity will be given in Part III (cf. Theorem 11.1). The family 4., 5 4 Will be discussed
in the next section as one instance of a natural infinite collection of infinite families of
theta blocks.
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Proposition 8.1. The function

% _ VaVatpVat26Up
2ah =T

is a holomorphic Jacobi form of weight 1 and (integral or half-integral) index 3a®/2 +
3ab + 3b? with character n'°. For coprime a and b, it is a cusp form if and only if a is
oddor3 ¥} b(a + b).

Proof. We analyze the theta block ©,/n? for a = (a,a + b, a + 2b, b) (notation as in
Section 6). According to Proposition 6.2, we have to prove that

2
Sa(n) > 532

for all n in 1 + 2Z*. For this we use the remark after Proposition 6.3: The vectors u; =
(0,1,—1,1),u; = (1,—1,0, 1) and a are pairwise orthogonal, and u% = u% = 3, and hence
the claimed inequality follows. We leave the proof of the cusp condition to the reader. =

The case of the family &5, 5, of “six theta over four eta” can be treated similarly.

Proposition 8.2. The function

& Va¥3a+6V3a+26V2a+5Va+b0p
2;a,b = 4
n
is a holomorphic Jacobi form of weight 1 and index 4(3a® + 3ab + b?) with charac-
ter 1714.

Proof. We proceed as in the preceding proof. Setting
a=(a,3a +b,3a +2b,2a + b,a + b, b),
we have to prove
4
Sa(n) > 532

for all nin 1 4 2Z°. For this we apply Proposition 6.3 to the vectors u; given by

u I -1 0 1 0 0
w| [t 0o o o 11
w| (o1 -1 0 o0 1
u, 1 0 0 -1 1 0

It is quickly checked that they are orthogonal to a, and that the Gram matrix G = (w; - u;)
satisfies

0
-1 2 -1 0
0

0 0 0 4/3
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Usingn-u; = 1 mod 2 forn € 1+ 2Z°, we deduce from Proposition 6.3

S. 1
a(n) > - min xXKx+ —,
a2 4 xe1+273 3
where
2 -1 1
K=|-1 2 -1
1 -1 2

The minimum in question must be an even integer (since K is even). It must be > 4
since for odd x, y, z, we have (1/2)(x,y,2)K(x,y,z)! = x2—xy + xz + y2 —yz +
z2= 0 mod 2; in fact, it is 4 as one sees for x = y = z = 1. The desired estimate is now
obvious. [

9. An infinite collection of families

In the previous section, we saw various infinite families of theta blocks. In Part III,
we shall propose a general theory which explains the existence of these families and
generates even more. More specifically, we shall associate an infinite family to every root
system. The infinite families which we shall propose in this section turn out to be those
attached to the root systems A,. However, we include this section in the hope that the
reader might find it profitable to study the latter families here using elementary arguments
without having to go through the details of the theory developed in Part III.

For the rest of this section, we fix an integer n > 2, and for any integer vector a =

(aop, .. .,a,) with pairwise different entries, we set
O, := n "= D/2 ]‘[ Pa;—a, - 9.1)
0<i<j<n

Clearly, ®, depends only on the coset of a in Z" 17 -1, where as before 1 = (1,1,...,1).
Moreover, changing the signs of any entries or the order of the entries of a leaves ®,
invariant up to sign. The assumption that the a; are pairwise different ensures that O,
does not vanish identically. Note that for n = 2, we have

Outb6.0 =1 " aVaysVs,
which is the family of theta quarks, and similarly
O0,a,a4+b,at+b+c,atbtctd) = Rapcd-
We also define a quadratic form Q by
n n 2
O(a) :=% Z (ai—aj)2=¥(2ai2)—%( ai) .
O<i<j<n i=0 i=0

Again, we recognize that Q(a) depends only on a mod Z - 1.
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In this section, we shall prove that the functions ®,, with a as above a vector in 7+l
having pairwise distinct entries, are theta blocks. More precisely, we shall prove the fol-
lowing theorem.

Theorem 9.1. The function ®, defined in (9.1) is a theta block of length n(n + 1)/2 and
weight n/2. More precisely, ©4 belongs to the space Jy /2 0(a) ("2 In particular, if
n + 1 is relatively prime to 6, it belongs to Jy /2,0 ()-

The first case where the character 12 is trivial occurs for n = 4, when the ®, de-
fine Jacobi forms in J g(,). In fact, the family ©, equals the family R, p.c.d = N4:0,6,c,4
mentioned in the introduction and in Table 3. There are at least three more infinite families
(all being products of ten theta functions divided by n°) which yield Jacobi forms of
weight 2 without character (see Table 5 in Section 11).

Finally, one may ask when ©®, is a cusp form. The answer, whose proof can be found
at the end of the proof of Theorem 9.1 below, is as follows.

Supplement 9.2. Let g denote the gcd of the differences a; — a;. Then Oy is a cusp form
if and only if there exist 0 < i < j < n such that (a; — a;)/g is divisible by n + 1.

Just as for the family Q, p of theta quarks in Theorem 7.2, one can describe the
Fourier expansion of ®, in closed form.

Theorem 9.3. For the theta block ®, defined in (9.1), one has

A R A
xe(n/2+2)"+1
x1=0
where a(x) = sig(m) if there is a permutation 7 of {0, ..., n} such that X is congruent

to (—n/2)1 + (7 (0), (1), ..., w(n)) modulo (n + 1)Z, and o (x) = 0 otherwise.

A proof of this identity will be given in a more general context in Part III. It can easily
be deduced from Theorem 11.5 in Part III applied to the root system A,. Alternatively,
it can also be obtained directly, without referring to root systems, by restriction to one
variable of a more general identity for many variables discussed in Theorem 10.1 below.
More precisely, our identity is obtained by applying Theorem 10.1 to (in the notations of
that theorem)

X-y . .
L:(L,(x,y)Hm), s=1{ej—ej:0=<i<j=<n}
G = permutations of the entries of vectors in L,

_(l’l I’l+l n)
- 27 2 7"'725

where L denotes the lattice of all vectors x in Z"+! which satisfy

n+1
ij =0 and x5 =x; mod(n+1)
j=1
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for all 0 < h, j < n, and where e; is the vector of length n 4+ 1 with 41 at the
j-th place and O at all other places. To obtain literally our theorem, one has then, first
of all, to replace the variable z € C ® L used in Theorem 10.1 by az, where z runs
through the complex numbers. Secondly, one has to use that L is isometric to the lattice
7Z"+1/7, equipped with the quadratic form Q from the beginning of this section via the
map (from right to left) a — (n + 1)a — (a - 1)1. We leave the details to the interested
reader.

It might be amusing to look for a combinatorial proof of the identity of Theorem 9.3
along the lines of the proof of the special case Theorem 7.2. We finally mention a nice
restatement of Theorem 9.3, which is as follows.

Theorem 9.4. One has

. Vo (t,zap +w) -+ U (r,zan + w)
Ba(t,z) = / det : . : dw, (9.2)
0 vy (v, zag +w) -+ O7(r,za, + w)
where
O = Z qs2/<2(n+1))§s.

sej—n/2+(n+1)Z

This is indeed merely a restatement of the preceding theorem. To recognize this, write
the determinant after the integral in the form

n
Z sig() 1_[ V(T ajz +w)
T j=0

= 3 sigm [] > TP ez +w)xy),

neSy J=0x;€n(j)—n/2+(n+1DZ

where 7 runs through the group of permutations of {0, ..., n}. Writing the product as an
(n + 1)-ary theta series, and integrating in w from O to 1 yields the Fourier expansion
of ®, as given in Theorem 9.3.

Note that (9.2) suggests an elementary proof. Namely, it is obvious that, for any
fixed t, the right-hand side /, vanishes at the (a; — a;)-division points of C/(Zt + Z)
(as it should in view of the claimed identity and the zeros of ®,). Indeed, if we replace z
by (tA + w)u/(a; — a;) with any integers , A, then the determinant on the right-hand
side of (9.2) becomes zero since the i-th and j-th rows become equal up to multiplica-
tion by a constant (since a; /(a; — a;) = a;j/(a; — a;) + 1). Unfortunately, this still does
not prove that the divisors of 7,(t,-) and ®,(z, -), viewed as theta functions of the elliptic
curve C/(Zt + Z), coincide; for this we would have to consider also multiplicities. How-
ever, if we could prove that the divisors coincide (or at least one is contained in the other)
and that I, is also in J, /2,0 () (6" *?)) (note that the transformation law with respect to
z > z + At + v with integers A, u is obvious) then we could conclude that 7, and ®, are
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equal up to multiplication by a holomorphic modular function f of weight 0 on SL(2,Z).
Comparing the non-zero terms with lowest g-power, i.e., verifying

q—n(n—l)/48 1_[ ql/Sé‘(a,-—aj)/Z(l _ ;—(a,-—a_,-)/Z)

0<i<j<n

shows then that f is also holomorphic at infinity, whence f is constant (and equal to 1).

Proof of Theorem 9.1. We have to show that

nn—1)
f= Y Blai—a)x) = = —
0<i<j=<n
for all x in R. For this we replace a; x by x; (i =0, ...,n) and show that, more generally,
nn—1)
B(x;i —x;)> — 2
Z (xi —xj) = 4
0<i<j=<n
for any X = (X, ...,x,)in R"*1,

Since the function in question is symmetric and periodic in each variable, we can
assume that 0 < xo <--- < x, < 1, in which case B(x; — x;) = (x; — x; + 1/2)/2 for
0 <i < j < n,sowe need only find the minimum of

S = Z (x,-—xj+%)2

0<i<j<n

over R?*1/R - 1. Restricting to x with }_; x; = 0 (i.e., the orthogonal complement of
R -1 in R”*!) and minimizing S using Lagrange multipliers shows that S assumes its
local minima where the partial derivatives 0.5/dx; (0 < k < n) are independent of k.
Since we have

108 1
—_ = = Dx; +—(n—2
> ok (n+ Dx; + 2(n k)

(for >, x; = 0), the latter condition is

= —— 2k —n),
S TP G
and then L 1)
i—j nn—
S = — =
Z (n +1 + 2) 24
0<i<j<n

which proves the theorem.

Note that the preceding proof also shows that f(x) = n(n — 1)/24 if and only if the
differences (a; —a;)x are in (n + 1)1 Z but not integers (0 < i < j < n). From this the
supplement to the theorem is obvious. ]
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Part I1I
General theory

10. Infinite families and Jacobi forms of lattice index

In this section, we describe a general principle for constructing infinite families of theta
blocks which are proper Jacobi forms. This principle is summarized in Theorem 10.1.
As we shall see in the next section, all of the infinite series of theta blocks that we studied
in the previous sections can in fact be obtained using this principle. To explain our con-
struction, we need to consider a more general type of Jacobi form, namely Jacobi forms
whose index is a lattice. We explain these in the following paragraphs before we state
the aforementioned construction. A more thorough theory of lattice index Jacobi forms is
developed in [5, 6, 10] and various other articles. We recall here the basics of the theory
of Jacobi forms of lattice index as developed in [5].

Let L = (L, B) be an integral lattice, i.e., L is a free Z-module of, say, rank n and
B: L x L — Z is a symmetric non-degenerate bilinear form. If U is a Z-submodule of full
rank in Q ® L, we denote by U* its dual subgroup, i.e., the subgroup of all elements y
in Q ® L such that B(y, x) takes integral values for all x € U. We shall use in the fol-
lowing B(x) = B(x, x)/2. Note that B(x) is not necessarily integer. If it is, we call L
even, otherwise odd. In any case, the map x — f(x) defines an element of order 1 or 2
in the dual group Hom(L,Q/Z) of L. The kernel L., of this homomorphism defines an
even sublattice of index 2 in L if L is an odd lattice, and otherwise L., = L. Since B
is non-degenerate, there exists an element 7 in Q ® L such that 8(x) = B(r, x) mod Z
for x in L. We set

L* ={reQ®L:B(x)=B(r,x) mod Z for all x in L},

and following the literature, we call L® on lattices the shadow of L, and we call the
elements of L® shadow vectors of L. Clearly, for an even L, we have L® = L¥, and, for
an odd L, we have Lo,* = L¥ U L*® (i.e., L® is the non-trivial coset in LCV#/L#).

Recall from Section 2 that ¢” denotes the SL(2, Z)-cocycle that is defined by " (4) =
f(Ar)/f(x), where f(t) denotes any (fixed) branch of the function 5(z)”. By slight
abuse of language, we occasionally call the multiplier system &” a character.

Let k and & be rational numbers such that k = 1/2 mod Z.

Definition. A Jacobi form of weight k, index L and character €" is a holomorphic func-
tion ¢(t, z) of a variable t € H and a variable z € C ® L which satisfies the following
properties:

(i) Forall A =(495)inSL(2,Z), one has

z B ¢ B(z) k—h/2 h
qb(Ar, CHd) —e<ct+d)(cr+d) 260 () (7, 2). (10.1)

(i) Forall x,y € L, one has

P(r.z +x1+y) =e(Bx + y)e(=tp(x) — B(x.2))p(7. 2).
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(iii)) The Fourier development of ¢ is of the form

pr.2)= Y D clnr)ge(B(r 2).
nEh/24+anZeﬂL('r)

The space of Jacobi forms of weight k, index L and character &” is denoted by Jx 1. (M.

Note that the crucial point in (iii) is the condition n > B(r). The fact that ¢ has
a Fourier expansion with n and r in the range described by the first conditions below the
sum signs holds true for any holomorphic ¢ (z, z) satisfying the transformation laws (i)
and (ii) (as one easily sees by applying these transformations laws to 7 — t + 1 and, for
all win L, to z + z 4+ w). Note also that the factor e(8(x + y)) in (ii) defines a linear
character of the group L x L. It is trivial if L is even. A priori, for the transformation for-
mula (ii), one could consider also other characters of L. x L. However, it can be shown [5]
that, for a character different from the given one, there are no non-trivial functions satis-
fying (i) and (ii).

Note also that Ji (¢") depends only on the coset i + 247, as follows from

24 (4) = (et + d)'%*eh(A),  where A = (Ccl Z) .

If we fix a Z-basis {a,} for L, we can identify L and C @ L with Z" and C", re-

spectively, and Jacobi forms of index L can be considered as holomorphic functions on

H x C". In fact, if L is an even lattice, so that the Gram matrix F = (1/2)(B(ap, aq))

is half-integer, and if 4 = 0, the space Ji 1 (sh) then becomes what in the literature [26]

is usually called the space of Jacobi forms of weight k£ and matrix index F and which is

denoted by Ji . Moreover, if L is of rank 1 with determinant m = |L#/L|, then Jk’L(sh)
is nothing other than the space Ji ,, /2(8h) that was introduces in Section 2.

There is a family of natural maps between all these spaces of Jacobi forms. Namely, if

a: L — M is an isometric embedding then the map (a*¢)(z,z) = ¢(z, ¢z) defines a map

a*: T (") = Jr (). (10.2)

This follows immediately from the definition of our Jacobi forms.

There are two particular cases where such embeddings are of special interest for our
considerations. The first case occurs when a lattice L = (L, B) can be isometrically
embedded into the lattice ZN := (Z" ,-) (where the dot denotes the standard scalar prod-
uct of column vectors). Such an embedding permits to construct Jacobi forms of index L
in a simple way. Namely, let «; be the coordinate functions of this embedding, so that

B(x,x) = Zj ;(x)?. Then

N
[[?G. i) € Inpr@Y).

j=1

Vice versa, if such a product defines a Jacobi form of index L, then necessarily B(x, x) =
3 ;O (x)?, and the o; define an isometric embedding of L into V.
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The other interesting embedding is of the form
Sx: (Z, (u,v) > muv) > L = (L, B), sx(u)+— ux,
where x is a non-zero element in L and m = f(x, x). Here we obtain maps

Sy Jk,L(sh) — Jk’m/z(sh), ¢(t,2) = ¢(r,xw) (w e C).

In fact, all the families of theta blocks that we found so far are of the form {sy¢}xer
for suitable lattices L and special Jacobi forms ¢ in Ji 1 (¢"). Moreover, these special
Jacobi forms ¢ are always obtained via the first construction, i.e., via an embedding of L
into Z" for a suitable N. In all these examples, the weight k of the special Jacobi form
equals n/2, where n is the rank of L. This is due to the fact that in those cases we can
divide by a power of 1. In general, a division by a power of n will not yield a proper
Jacobi form since condition (iii) in the definition of Jacobi forms is not invariant under
such a division. However, a special situation which makes such a division possible, and
which applies to all our examples, is described by Theorem 10.1 below.

For the statement of the theorem, we need some preparations. By a eutactic star
(of rank N ) on a lattice L = (L, ) we understand a family s of non-zero vectors s;
in L*¥ (1 < j < N) such that

N
X = Z,B(sj,x)sj

j=1

for all x in Q ® L. For a eutactic star s, one has

Blx.x) =Y Blsj.x)?

J

for all x, i.e., the map x — (B(s1, x),..., B(sn,x)) defines an isometric embedding
os: L — ZN . Vice versa, if « is such an embedding, then, since § is non-degenerate,
there exist vectors s; such that the j-th coordinate function of « is given by B(s;, x). Itis
easy to show that the family s; (omitting the possible zero vectors) is a eutactic star.

For a eutactic star s on L, we set

N
95(r.2) = [ [ #(x. B(sj;.2)) (z€C®L).

j=1

From our previous discussion, we know that the function 5 defines a non-zero (holo-
morphic) Jacobi form of weight N/2 and index L. We are interested to find the eutactic
stars s such that the ¥ can be divided by a high power of 7 and still remains holomor-
phic at infinity (i.e., satisfies the condition n > B(r) in the Fourier expansion (iii) in the
definition of Jacobi forms). It is not hard to see that the weight of a non-zero Jacobi form
of index L which has rank n is > n/2. Thus the highest power of n by which we are
allowed to divide 9 is n’¥~". We shall not discuss here the question of determining the
exact power but refer the reader to [5]. Instead, we describe here one situation where
"N 9,(z, z) is in fact a holomorphic Jacobi form.
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For this, let G be a subgroup of the orthogonal group O(L) that leaves s invariant
up to signs, i.e., such that for each g in G there exists a permutation o of the indices
1 < j < N andsigns €; € {£1} such that gs; = €;54(;) for all j. We set

sn(g) =[] ¢
j

Note that sn(g) does not depend on the choice of o. It follows that g — sn(g) defines
a linear character sn: G — {£1}.

The group G acts naturally on L®/L.,. We call the eutactic star s G-extremal on L if
there is exactly one G-orbit in L*®/ L., whose elements have their stabilizers in the kernel
of sn.

Theorem 10.1. Let L = (L, B) be an integral lattice of rank n, let s be a G-extremal
eutactic star of rank N on L. Then there are a constant y and a vector w in L® such that

N
NI o@ BN =y Y PP sn(@)e(Blgx.2)). (10.3)

Jj=1 X€w+Ley geG

In particular, the product on the left defines an element of the space J, /> 1, (ent2),

Remark. Let x be an element of R ® L such that 8(s;, x) # 0 for all j. (Such x exists
since the s; span R ® L and therefore cannot be contained in any hyperplane.) Iden-
tity (10.3) then holds true with w replaced by

1
wo = §(€1S1 + €25y + -+ €NSN),

where €; denotes the sign of S(s;, x). Indeed, comparing the coefficients of the smallest
g-power on both sides of (10.3), one finds that

ﬁ(e(éﬂ(s,-,m) —e(38(=51.2))= 7 L sn()e(Blg(w + ). ).
x,g

j=1

where the sum on the right-hand side is over all g in G and all x in L., such that
B(w + x) = (n + 2N)/24. The left-hand side equals the sum ), +e(B(v, z)), where
v runs through all vectors v of the form v = vy = (1/2) Z]N=1 ojs; witho; = £1. From
this we see that we can replace w by any vy, among these v which is different from 0
and different from all v, with 0 # 0¢. But wg = v, is such a v, since B(wo, x) > 0 and
B(wo — vg,x) > 0forall o # e.

Note also that it follows that ¢#0) is the smallest g-power occurring on both sides

of (10.3). In other words,
n+2N

24

Proof of Theorem 10.1. As before, denote the product on the left-hand side of the claimed
identity (without the n-power) by . It is clear that ¢ is an element of Jy/> 1 (e3N).

B(wo) =
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However, ¥ satisfies in addition g*9¥; = sn(g) U5 for all g in G, as follows from the very
definition of sn and the identity ¥ (7, —z) = —9(x, z).
For an integer 4 and for k in 11/2 + Z, let Vi (¢"*) be the subspace of all Jacobi forms ¢
inJg,p (¢") that satisfy
g*¢ =sn(g)¢p forallg € G.

Denote the function on the right-hand side of the claimed identity (10.3) by ¢;.
We shall show in a moment that, for all integers / and all k in 2/2 + Z, we have

Vi(e") = Mi—r4nyja 1" s, (10.4)

where 0 < r <24, h =r 4+ n 4+ 2N mod 24. Here, for any /, we use M; for the space
of elliptic modular forms of weight / on SL(2, Z) (which is trivial unless / is an even
integer).

But then the claimed identity (10.3) is immediate. Namely, from (10.4), we deduce
¥y = fn" ¢s for some modular form f of level one. If f had a zero at a point 7y in the
upper half-plane, then ¥;(z¢, z) would vanish identically as function of z. However, this
is impossible as the product expansion for ¥ (z, z) shows. We conclude that f must itself
be a power of 1. Comparing weights then proves the claimed formula.

Note that we used here only that the left-hand side of in (10.4) is contained in the
right-hand side. It follows from & = 1"~V ¢, that ¢; is an element of V,,/5(e"2V),
whence that the right-hand side of (10.4) is contained in the left-hand side.

It remains to prove that the left-hand side of (10.4) is contained in the right-hand side.
Applying the transformation law (ii) for Jacobi forms to z — z + xt (x € L), we obtain,
for the Fourier coefficients c(n, r) of a Jacobi form ¢ in Ji (¢"), the identities

c(n+B(r+x)—B@r),r +x)=cn. rie(f(x)).
Hence, if we set
C(D,r):=c(D + B(r),r),
then C(D,r + x) = C(D,r)e(B(x)) for all x in L. In particular, we recognize that r
C(D,r), for fixed D, factors through a map on L®/L.,.

Now assume that ¢ is contained in the left-hand side of (10.4). Then g*¢ = sn(g)¢
for all g, from which we deduce

C(D,g_lr) =sn(g)C(D,r).

Since s is extremal, this implies C(D, r) = 0 unless the stabilizer of r 4+ L., in G is
contained in the kernel of sn. By assumption, there is exactly one G-orbit in L®/Ley,
whose elements have stabilizer in the kernel of sn. Let w 4+ L., be an element of this
orbit. The Fourier expansion (iii) of ¢ can then be written in the form

p(r.2)= Y > C(D.r)gPPDe(B(r.2))

reL® De—B(r)+h/24+Z
D>0

vy > sn(g)C(D, w)gP P ¥e(B(g(w + x). 2)).

g€G,xeL De—B(w)+h/24+Z
D>0
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where 1/v is the order of the stabilizer of w + L., in the group G. We therefore find
¢ = f¢s, where f = v, C(D,w)qP. From the usual theory of transformation laws
for theta functions, one can easily deduce that ¢ defines an element of J,, /> 1 (e"+2N)
(for details, we refer the reader to [5]). It follows that f is a modular form on SL(2, Z)
of weight k — n/2 with multiplier system &". But this space of modular forms equals
Mp_(r4+n)/27n" , which proves that ¢ lies in the right-hand side of (10.4). This proves The-
orem 10.1. ]

Example 10.2 (Jacobi triple product identity). The simplest non-trivial example for the
situation described in Theorem 10.1 is given by the eutactic star s on Z consisting of the
single vector s; = 1 in Z. Here s is G-extremal, where G is generated by [—1] (multiplica-
tion by —1), and where sn([—1]) =—1. The discriminant module of Zet /Ty =2"'7./2
decomposes into the three G-orbits {l /2,3 / 2}, {1} and {0} (where X denotes the coset
of x modulo 27Z). Only the stabilizer of the first one is trivial. In this case, the resulting
identity (10.3) takes form (1.1), which is the Jacobi triple product identity.

11. Theta blocks constructed from root systems

The theorem of the preceding section described a general principle for constructing infi-
nite families of holomorphic theta blocks (i.e., theta blocks that are holomorphic at infin-
ity) as restrictions of Jacobi forms in many variables associated to special lattices. In this
section, we show that there are indeed infinitely many lattices to which the theorem can be
applied, namely, lattices constructed from root systems. Example 10.2 is the most basic
example for this theory. The corresponding infinite families of theta blocks that will arise
from our construction in fact include all the examples of families that were introduced in
the previous sections.
The main result of this section can be summarized as follows.

Theorem 11.1. Let R be a root system® of dimension n, let R™ be a system of positive
roots of R and let F denote the subset of simple roots in RY. Forr in R and f in F,
let yy. 5 be the (non-negative) integers such thatr =y feF Vr.f f. The function

dr(r.2) =" KT 9(0. 3 vnszy)
rerRt+ feF

(teH, z={zr}rer € CF) defines a Jacobi form in J,,/z,g(s""’ZN). Here the lattice R
equals 7 equipped with the quadratic form Q(z) := (1/2) ., cr+ Qo Ve fZr)>

2All root systems considered here are to be understood in the strict sense (see [17, §9.2]),
i.e., any root system can be partitioned into the union of pairwise orthogonal sets each of which
is a root system in the Euclidean space generated by its elements and as such isomorphic to one of
the irreducible root systems A, By, Cn, Dy, E6, E7, Eg, F4, G2.
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Remark. (1) We remark that the matrix C := (y,, s) that defines g does not depend
on the choice of the set of positive roots (up to permutations of its rows or columns).
Indeed, the Weyl group of R acts transitively on the collection of possible sets of positive
roots, at the same time permuting the respective subsets of simple roots. It is not difficult
to calculate the matrix C directly from the Dynkin diagram or Cartan matrix of R (see,
e.g., [8, §21.3]).

(2) Obviously, it suffices to prove the theorem for irreducible root systems since for
any two root systems R and R’ with ambient Euclidean spaces E and E’ one has Vg r =
YRV R, where R @ R’ denotes the root system (R x {0}) U ({0} x R") in E x E’.

(3) As already explained in the previous section, every choice of integer vectors a =
{ar}rer suchthatay # O for all f yields a theta block

n@" N T] ﬁ(f, w >y J/r,faf) € Juj2.0@(E"?N)
rerRt JeF

in the variables 7, w in H x C. Note that we can even assume that ay > 0 for all /. For this
let (-, -) denote the scalar product of the ambient Euclidean space E of the root system R.
For a given a, let x be the element of E such that (x, f) = ay for all f. It follows
that ) f Vr.pay = (x,r) forall r in R™. The general theory of root systems shows that
there is a g in the Weyl group of R which maps x into the fundamental Weyl chamber,
i.e., such that a} := (gx, f) > 0 for all f. But there is a permutation r > r’ of RT
such that gr = £7/, and we have ) y,/,fa’f = E(gx,gr) = £(x,r) = £} ryrrayr.
Therefore, {ar} and {a’f} yield the same theta block up to a sign.

Example 11.2. The only root system of rank 1 is A, and we have ¥4, = ¥ (see Exam-
ple 10.2). If we choose for R the root system A,, then any chosen simple roots f;
(1 < j < n) can be ordered such that the positive roots are the sums of consecutive roots
fi+ fix1 4+ + f; 1 i < j < n). Accordingly,

ﬁAn (t,2) = r’(r)—n(n—l)/Z l_[ (e, zi +-r+ Z_]') c Jn/2,A7n(8n(n+2))
1<i<j<n
(we write z; for zy,). For n = 2, we obtain the function
U (t,21)0 (7, 22)0 (7, 21 + 22)
n(t) ’

which under specialization yields the infinite family of theta quarks.

Va,(t,2) =

Example 11.3. The spaces of Jacobi forms J, ,, are, for integer m, deeply connected
to the arithmetic of the modular forms of weight 2 in I'g(m) (see, e.g., [27]). There are
four infinite families of theta blocks of weight 2 with trivial character that we can deduce
from the ¥, as is easily inferred from Table 4. These are families of theta blocks associ-
ated to ¥4,, V6,08, = Vg, Vc,, #9B;, ¥ Uc;,. (Recall that B, is isomorphic to C,.) The
members of these families consist in each case of 10 ¥¥’s over n° (see Table 5).



V. Gritsenko, N.-P. Skoruppa, D. Zagier 148

R |RT| v k 1

Ap nn+1)/2 nn-1)/2 n/2 nn+2)
B, n? nn—1) n/2 nn+1)
C, n? nn—1) n/2 n2n+1)
D, nn-1) n(n —2) n/2 nQ2n-—1)
E¢ 36 30 3 6

E7 63 56 7/2 13

Es 120 114 4

Fy 24 20 2 4

Gy, 6 4 1 14

Tab. 4. The Jacobi form # g associated to the irreducible root system R consists of |[RT | many 9’s

multiplied by 7" and has weight k and character el

R 0R(Ta(a9b9c9d)z)
Ag 694 Vatb Vatbrc Vatbietd Vb Vbt Vbtetd Ve Vetd Va
G2 ® B2 1 °Pa V3046 V30426 V2046 Patd b Ve Vera Vegna Pa

n
n

AL @Bz 17804 9 Vbt Vptac+2d Obtotd Vbtetad Ve Veta Vetad Va
N804 Oy Dapy2ctd Obte Ob42c+d Ob+e+d Ve V2e+d Vetd Pd

Tab. 5. The four infinite families ¥ g (z, (a, b, ¢, d)z) of theta blocks of weight 2 and trivial character
associated to root systems. (We write ¥, for the function ¥(z,nz).)

We now explain how Theorem 11.1 follows from the general principle explained in
Theorem 10.1 of the preceding section. In the course of its proof, we shall redefine Jg
and R, but shall eventually see that the new and old definitions in fact define the same
objects. As already pointed out in the remark after the theorem, we can assume without
loss of generality that the root system R is irreducible.

So let R be an irreducible root system of dimension 7, let R™ be a system of positive
roots of R, let N be the number of positive roots, and let?

1
h=2
LS e
reRt

where (-, -) denotes the Euclidean inner product of the ambient Euclidean vector space E
of the root system R. We let W be the lattice

(x.7)
h

W:{er: eroraureR},

31f all roots have square length 2, then & coincides with the Coxeter number of the given root
system, otherwise it is different.
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and we set

('v )
R=(Ww.=2). 1.1
R P (11.1)
The dual lattice W# (with respect to the scalar product (-,-)/h) equals the lattice A
spanned by the roots r in R.

Lemma 11.4. One has
h(z.z)= ) (r2) (11.2)

reRt
forall z in E.

Proof. The bilinear form B(x,y) := Y, c g+ (r, x)(r, y) is symmetric and positive definite
(since the roots r span E). There hence exists an automorphism A of the real vector
space E such that B(x, y) = (A(x), y). The Weyl group of R permutes the roots, and
therefore B(x, y) is invariant under the Weyl group. This in turn implies that A commutes
with the elements of the Weyl group. However, the latter is known to act irreducibly
on E (see, e.g., [17, §10.4, Lemma B]). By Schur’s lemma, we then conclude that A
is multiplication by a scalar ¢, whence B(x, y) = c¢(x, y). It remains to show ¢ = h.
For this choose an orthonormal basis e; of E. Then, using Parseval’s identity, we find
cn=73 ;cle,e) =2, (r ej)*> = Y_,(r,r), which proves the lemma. [

The lemma implies that R is an integral lattice and, in particular, that W is contained
in its dual, which is A.

From (11.2), we immediately have available the embedding R — Z” defined by z
((z,r1),...,(z,rn)), where r; runs through R*. In other words, R™ is a eutactic star
on R. The Weyl group G of R leaves R invariant, and the character sn considered in
the preceding section associates to an element g in the Weyl group the number (—1)¢(®),
where £(g) is the length of g, i.e., the number of roots in R such that gr is negative.

We shall prove in the next section that the eutactic star R on R is extremal with
respect to the Weyl group G of R (see Theorem 12.1, whose proof relies on general
properties of root systems and is completely unrelated to the theory of Jacobi forms).

We can therefore apply Theorem 10.1 and the remark following it to the eutactic
star Rt on W and conclude (leaving the computation of the constant y in Theorem 10.1
to the reader).

Theorem 11.5. Let R be an irreducible root system with a choice of positive roots R,
and let w be half the sum of the positive roots of R. Then, in the notations of the preceding
paragraphs, we have

Or(t,2) := ()" N l_[ 19(1, (r}lz)) = Z g2k Z Sn(g)e((gx’z))

h
reR+ XEW+Wey g€G

for all T is the upper half-plane and all z in C ® W. In particular, the function O g defines

a holomorphic Jacobi form in Jn/z,B(g”JFZN),
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Now let F be the set of simple roots in R™. For any f in F and z in C ® W, we set
zf 1= (f,z)/h. The map z — {zr }reF defines an isomorphism of C-vector spaces C ®
W — CF, which maps W onto Z¥. We have (r,z)/h = > rer Vr.rZr and accordingly
(using (11.2)) (x,x)/2h = Q({xs}) with y, r and Q as in Theorem 11.1. Thus, under
the map z — {zr}reF, the lattice R and the function ¢ r(t, z) take on the form described
in Theorem 11.1, which is therefore merely a weaker form of the preceding theorem.

Remark. The identities of the preceding theorem can be read as identities between for-
mal power series by replacing e((gx, z)/h) by a formal variable ¢$*, and then can be
identified with what is known as Macdonald identities [22, (0.4)].* The latter were dis-
covered in the context of infinite-dimensional Lie algebras, more precisely, affine Lie
algebras, and stated and proved without any reference to Jacobi forms, whose theory was
only developed one decade later. Thus our proof of Theorem 11.5 provides a new proof
of and new approach to the Macdonald identities.

12. A certain property of root systems

‘We continue the notations of Theorem 11.5. In other words,

e Ris an irreducible root system,

e R isa fixed choice of positive roots,

e A is the lattice spanned by its roots,

e G is the Weyl group of R,

o h=(1/n)) ,cg+(rr),w=(1/2)) ,cp+7,and

o W =hA* R= (W,(,-)/h) (so that A becomes the dual of R, i.e., the dual of W
with respect to (-, )/ h).

Note that w is an element of W*. Indeed, (x,x)/h = (2w, x)/h mod 2 for all x in W,

as follows from (11.2). Moreover, let

e« be the highest root in R,

e C be the fundamental Weyl chamber associated to R, and

e 1Y, for any root r, be the coroot of r (i.e., r¥ = 2r/(r,1)).
Recall from (11.2) that R is a eutactic star on R. The goal of this section is to prove

the following property of irreducible root systems.

Theorem 12.1. The eutactic star R on R is extremal with respect to the Weyl group G
of R.

4To identify the identity of Theorem 11.5 for a given root system R with Macdonald’s iden-
tity [22, (0.4)] for the coroot system RV (i.e., the system rV = 2r/(r,r), r € R), one needs the
formula i = (¢ + p, @ + p) — (p, p), where p and « are the Weyl vector and highest root of R
(see Lemma 12.3 for a proof). Moreover, one needs to note that Macdonald’s y(u) is zero unless p
is in Mey.
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The theorem is an immediate consequence of the properties of irreducible root systems
summarized in the following lemma. To the best of our knowledge, these properties have
not previously been mentioned in the literature.

Lemma 12.2. Let v be any element in W* which has minimal length among all elements
inv+ We,.> Then

(D) (@,v) <h.

(2) If (a,v) = h, then v = g4 (v) mod Wey, where g4 is the reflection through the hyper-
plane perpendicular to o.

3) If (a,v) <handv € C, thenv = w.

Proof. To prove the lemma, let f; (1 <i < n) be the simple roots of R*, and let A; be the
dual basis of the basis f; of E. Onehas w = A1 + -+ A, (see [17, §13.3, Lemma A]
for a short proof).

To prove (i), note that by the very definition of root system («V, r) is integer for
every root r, i.e., ha” defines an element of W. Moreover, («", w) is integer too (since
w = Y ; A;, and since the fiv are simple roots for the coroot system r¥ (r € R), so
that in particular «¥ is an integral linear combination of the f;*), so ha" defines an
element of W,,. Since v has minimal length in its class v + W,,, we have in particular
(v —haY,v—haY) > (v,v),ie., h > (a,v).

For (ii), note that g(v) = v — (o, v)a", whence v — g(v) = haV.

For (iii), we now suppose that v is in C and /& > (c, v). By Lemma 12.3 below, we
have h = ((«, @) + (a0, w))/2. It follows that

(@, w) = (@, v),

where we used that both sides of this inequality are integers (that (@, w) is an inte-
ger was proved above; but then the right-hand side is also integer since v € w + A and
@V, A) C2).

Since ¥ =) (¥, A;) f;¥,w=3"; A, and v = Y, (v, f;¥)A;, the last inequality
can be written as

D@ ) =Y @A), fY).

But the (v, f;") are strictly positive (since v € C) and integers (since v € w + A,

(w, f;¥) = land (A, V) € Z). Moreover, the («", A;) are strictly positive (since o =
>, a; f; with non-negative integers «;, which are all strictly positive since « is the highest
root, so that in particular @ — f; is still a linear combination in the f; with non-negative
VY =1 forall i, i.e., v = w. This

integers). The last inequality therefore implies (v, f;
proves the lemma. ]

5In general, there might be several elements of minimal length in a given coset in W *®/ Wy . For
instance, w has minimal length in w + W, for any irreducible root system, but (w —hf,w —hf) =
(w,w) and hf € Wey for two of the six simple roots of E¢.
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Lemma 12.3. Let a be the highest root in R™. Then

1
h = 5((05 +w,a + w) — (w, w)).
Proof. From (11.2), we obtain

2h =Y (r.a¥)(r.a).

reR+

For any positive root r # « not perpendicular to ¢, one has (r,«¥) = 1. (Since the
highest root is a long root, one has (&, ) > (r, r), which implies (r,a¥) < (¥, @).
On the other hand, by the Cauchy-Schwarz inequality (r, «¥)(rY, «) < 4, and since
both scalar products are integers, we find (r,«¥) = 1. But (r,") = —1 would imply
s¢(r) = r + «, contradicting the fact that s, (r) is a root and « is the highest root.) It fol-
lows that 2 = («, @) + (v, @), where y is the sum over all positive roots which are not
perpendicular to « (here we use also («, @) = 2). Obviously, (y, @) = (2w, @) so that
2h = (o, @) + 2(w, ). The claimed formula now becomes obvious. |

Proof of Theorem 12.1. To finally prove Theorem 12.1, let v 4+ W,, be aclassin W*/W,,.
We can assume that v is a vector of minimal length in its class and that v is contained in
the closure C (since E = UgeG gé). By the lemma, (&, v) < h, and either v = w, or else
v + W,, is stabilized by g, or v is contained in a wall of the Weyl chamber. In the latter
case, v is stabilized by the reflection through the hyperplane containing the wall, which is
perpendicular to some fundamental root. Any reflection through a hyperplane has determi-
nant —1. But determinant and the character g — (—1)%®) coincide for reflections through
hyperplanes perpendicular to roots, as follows from the fact that a reflection through the
hyperplane perpendicular to a fundamental root has length 1 [17, §10.2, Lemma B], and
that the Weyl group is generated by such reflections.

It remains to prove that the Weyl group stabilizer of w + W, is contained in the kernel
of sn. For this note that ¥ satisfies g*¥g = sn(g)vr (g in G). Since P is obviously
different from zero, its Fourier development contains a Fourier coefficient C(D, x) # 0.
Since C(D, g(x)) = sn(g)C(D, x) forall g in G and C(D, x) depends only on x + W,
we see that the orbit of x 4 W, is not stabilized by any g of odd length. By what we have
seen, x + W., must then be in the orbit of w + W,,. This proves Theorem 12.1. [

13. Theta blocks of weight 1/2 and weight 1

It is possible to give a complete description of the Jacobi forms of weight 1/2 and weight 1
(and scalar index). A first description of this kind can be found in [25], where it was
proved that there are essentially only two Jacobi forms of weight 1/2, and that there is
no non-zero Jacobi form of weight 1 and trivial character (see Theorem 13.1 below).
In [4,26], these results were extended to include Jacobi forms of weight 1 with arbitrary
character.
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The key to obtaining explicit formulas for Jacobi forms of weight 1/2 and weight 1 is
the theta expansion of a Jacobi form, and the theory of Weil representations of SL(2, Z).
To explain this, let L = (L, ) be an integer positive definite lattice of rank n. Recall from
Section 10 that L® denotes the shadow of L. For any linear character A of L* U L¥ that
continues the character x — e(8(x)) of L, define a holomorphic function ¥, 4 (7, z) of
variables 7 € Hand z € C ® L by

Ipa(r.2) = Y Ar)e(B(r) + B(r.2)),
relL®

and let ®(L) denote the complex space spanned by all the ¥} ;, where A runs through all
these characters. Note that ©(L) has dimension |L¥/L|. It can be shown that the space
©(L) becomes a right Mp(2, Z)-module via the map («, ¢) — ¢|L »/20. Here Mp(2, Z)
is the usual twofold central extension of SL(2, Z) used in the theory of elliptic modular
forms of weight 1/2 consisting of pairs ¢ = (A, w), where A = (‘; s) is in SL(2, Z)
and w is one of the two holomorphic roots of the function ct + d (v € H). Moreover,
@|L n/20 is defined as the right-hand side of (10.1) with the factor (ct + d)k—hl2gh( Q)
replaced by w(z)™". That ®(L) with respect to the given action is an Mp(2, Z)-module
is a well-known fact for even L [20]; for odd L, see [5]. The representations associated to
the Mp(2, Z)-modules ®(L) can be characterized purely algebraically as a natural class
of representations, which for even L are known as Weil representations of SL(2, 7).

Every Jacobi form ¢ in J (¢") has a theta expansion, i.e., it can be written in the
form

¢(r.2) =Y hi(1) OLa(r,2)
A

with holomorphic functions /; and with A running through the characters of L® U L#
whose restriction to L is x + e(f(x)). This follows immediately from the considerations
at the end of the proof of Theorem 10.1. For integer /& and integer or half-integer k, the 7,
are modular forms of weight k — n/2 on some congruence subgroup of SL(2, Z). More
precisely, there exists a natural number N such that & isin My_,/»(4N ), where the latter
denotes the space of all holomorphic functions 4 on H such that #(A7) = w(z)2*~"h(z)
for all (4, w) in ['(4N)* and, for each (A, w) in Mp(2, Z) the function h(A7)w(z)" 2k
is bounded in J(t) > 1. Here T'(4N)* is the section of I'(4N) in Mp(2, Z) consisting of
all (4, w), where w(t) = 0(A1)/0(7) with 0(z) = Y, 7 e(rr?).

Using the invariance of the ® (L) under Mp(2, Z), we can reformulate the theta expan-
sions of Jacobi forms of index L as a natural isomorphism

T (e") = (Mi_p 2 ® O(L))(e"). (13.1)

Here My _, /> denotes the (infinite-dimensional) Mp(2, Z)-module generated by all spaces
Mj_y/2(4N) with the Mp(2, Z)-action ((4, w), h) — h(AT)w (7)"~2k_ (It can be verified
that the groups I'* (4 N) are normal in Mp(2, Z), so that My _, /> is indeed invariant under
the given action.) Moreover, for an Mp(2, Z)-module V', we let V(¢") denote the subspace
of all v such that .v = &(ar)"v (where & denotes the linear character of Mp(2, Z), which
for @ = (A, w) is defined by e(o) = n(A1)/w(r)n(7)).
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For the singular weight of the index L, i.e., for the weight k = n/2, we obtain in
particular

Tnj2.L(e") = OL)(eM).
For lattices of rank one, i.e., for the lattices
Z(m) = (Z,x,y — mxy),

the Mp(2, Z)-modules ®(Z(m)) were decomposed into irreducible parts in [25, p. 22,
Satz 1.8].° As corollary of the results there, the following was proved (see [25, pp. 26-27,
Beispiele]).

Theorem 13.1 ([25]). For any integer m > 1 and 0 < h < 24, one has Jl/z,m/z(sh) =0
unless, for some integer d, one has (m,h) = (d?,3) or (m, h) = (3d?,1). In the latter
cases, one has’

J1/2,d2/2(83) =C-dq, J1/2,3d2/2(8) =C ‘19;

For the critical weight of the index L, i.e., for k = (n + 1)/2, isomorphism (13.1)
involves M,,. Based on a theorem of Serre and Stark, a complete decomposition of
the Mp(2, Z)-module My, into irreducible parts was given in [25, p. 101, Satz 5.2].
In particular, one has, for any natural number N,

Mip(N) = @ o™z d)),

d|N
N/d squarefree

where the spaces on the right are the images of ®(Z(m)) under the map & +— ¥(z,0). As
a result of these considerations, we obtain the isomorphism [5]

JusnpLE = @ p*OZQd) & L)), (13.2)

d|N
N/d squarefree

where, for any m, the map p is the isometric embedding of L into
Zem)®L=(Z®L.(x @y x" @) > mxx'+B(y.y)

given by y > 0 @ y, and where p* is the pullback defined in (10.2). Moreover, for N
one can take any multiple of the level of L and 24. Note that the spaces on the right-hand
side of (13.2) are spaces of Jacobi forms of singular weight. Thus, Jacobi forms of critical

6Actually, in loc.cit. only the Mp(2, Z)-modules ®(Z(2m)) were decomposed. However, it is
quickly checked that ®(Z(m)) is an Mp(2, Z)-submodule of ®(Z(4m)), which allows to infer the
decomposition of the former from the latter.

"Recall that we use 19; for the function #*(z, dz), where #* is the quintuple product defined
in (2.6).
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h R (034

2 A1 @® A 7]219;19;

4 A @ A r]l?aﬁg

6 A1 D A1 V0

8 Ay 77_119(119“+b19b
10 By n*%a¥a1bVa+26Y%
14 Gy N *9a34+5%3a+26%2a+50a-+50

Tab. 6. The six ¢g(t, z1, z2) which yield infinite families of theta blocks of weight 1 and charac-
ter eh. (We use a and b for the projections onto the first and second coordinate, respectively, and
we write ) and 191‘ for the functions ¥ (t, A(z1, z2)) and ¥* (7, A(z1, 22)).)

weight and index of rank n are always pullbacks of Jacobi forms of singular weight and
of index of rank n + 1.

To make formula (13.2) explicit, we would need a description of the one-dimensional
Mp(2, Z)-submodules of ® (L) for arbitrary L. For lattices of rank 1, such a description
led to Theorem 13.1. In general, we do not know how to describe the one-dimensional
Mp(2, Z)-submodules of ®(L). However, for lattices of rank 2 such a description has
been found in [4]. As a result, it was possible to prove the following theorem.

Theorem 13.2 ([4]). Let m be a positive integer, and for h = 2,4,6,8, 10, 14, let R

and ¢R be the root system and Jacobi form as described in the row of h in Table 6. With

R denoting the lattice defined in Theorem 11.1, one has the following:

(1) For h = 4,6,8,10, 14, the space J1,m (¢") is spanned by the theta blocks ¢pr(z, £2),
where £ runs through all elements of R with square length 2m.

(2) For h =2, the space J1 m (&%) contains the theta blocks ¢pg(z,£z) (£ € R with square
length 2m), but is in general not spanned by them.

(3) For all other values of h modulo 24, one has J1,m (e =o.

Remark. It was already proved in [25, p. 113, Satz 6.1] that J; ,; = O for all m, and that
J1.m('®) = 0 and the description of the spaces J;_» (¢%) was shown in [26, Theorems 11
and 12].

Part IV

Applications and open questions

14. Borcherds products and theta blocks

In [16], the authors proposed a construction of certain Borcherds products using Jacobi

forms. The general theory of Borcherds products was developed in [2, 3]. We recall the
construction from [16].
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For any positive integer m, there is a level-raising Hecke type operator Vi,: J; et
Jk me (see [7, p. 41]). For any ¢ in Jk ;» the Fourier coefficients c4(n, r) of ¢ and
co|v,, (n, 1) of ¢|V,y, are related by the formula

Co|v,, (n,1) = Z dk_1c¢(’;—n;,§),

d|n,r,m

the sum being over all common positive divisors of n, r, and m. We consider the following
series:

Lift(¢) (. 2. @) := ¢4(0.0) Gk (r) + Y _ ¢|Vin(z. 2)e(miw), (14.1)

m>1

where Gy for even k > 2 denotes the Eisenstein series

1
Gr(r) = S¢(1—k) + 2 01 (n)e(n7),

and where Gy = 0 for all other k (note that c4(0,0) = 0 for k = 2). If ¢ is holomorphic
at infinity, this series is convergent for all (; (f)) with positive definite imaginary part and
defines an element of the space My (I';) of Siegel modular forms of weight £ and genus 2
on the paramodular group I'; (see [9]). The map Lift for # = 1 is the lifting that was
used by Maass to prove the original Saito—-Kurokawa conjecture and that was discussed
in detail in [7, §6].

If ¢ has weight 0, i.e., if ¢ is in Jé’t, and if cg(n, r) is an integer for all n, r with
4tn — r? < 0, then we define (see [16, (2.7)])

B(¢)(z,z,w) = Th(¢)e(Cw) exp(— Lift(¢)), (14.2)
where C = (1/2) ) ;. c(0.1)! and where

v (z, Z)>C¢(01)

Th(¢) = U(T)cd)(o 0 l_[ ( )

I>1

A straightforward computation shows that

B(¢) =Th(p)p¢ ] (1—q"¢' pmcetrmD,
n,l,mez
m>1
where p = e(w). This product converges in a connected subdomain of the Siegel upper
half-plane, it can be meromorphically continued to the whole upper half-plane, and then it
becomes meromorphic modular form of weight ¢4 (0, 0)/2 for the paramodular group I';
with known character and divisor (see [16, Theorem 2.1]). In fact, the formula (14.2) gives
the representation of the Borcherds product in the neighborhood of a one-dimensional
cusp of the paramodular group.
As an immediate corollary, we obtain the following proposition.
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Theorem 14.1. Let ¢ be an element of Jé’t with Fourier coefficients cy(n, ), and assume
that cy(n, r) is an integer for any pair n, r such that 4tn — r? <0, and that the sums
> 4=1Co(d?n,dl) are non-negative for all n, | with 4nt — 1% < 0. Then the theta quotient
Th((Z) is a Jacobi form (i.e., holomorphic in H x C and at infinity).

Remark. In particular, if ¢y (n,r) > 0 for all n, r with 4¢tn — r2 < 0 then the theta quotient
of the proposition (which is then in fact a theta block) is holomorphic at infinity.

Proof. As suggested by the product expansion the multiplicities of all irreducible ratio-
nal quadratic divisors (Humbert surfaces) of B(¢) is given by the sums in the proposi-
tion (for a proof see [16, Theorem 2.1]), whence B(¢) is holomorphic. The theta quo-
tient Th(¢) is the first non-zero Fourier—Jacobi coefficient of B(¢), and is hence holo-
morphic (including infinity). ]

Example 14.2 (The first Jacobi and paramodular cusp form of weight 3). Consider the

weak Jacobi form of weight 0 and index 13

92030
Poas = 5 =15 430 50 16+ 0(g).

where {7 = ¢ + ;=™ Note that the ¢°-part contains in fact all non-zero coefficients
ce¢(n,r) with 52n — r2 < 0. Indeed, the product

5 o = (102)2 1703 n0a
Tl§00,13—<l9) 5

defines a generalized theta block of weight 5/2 (see Corollary 4.3), and it is even holomor-
phic at infinity (in fact, each of the three factors in the last formula is already holomorphic
at infinity as can be easily checked). It follows that 52n — r? > —(52 - 5) /24 for any non-
zero Fourier coefficient cg(n, r) of ¢o,13. But cg(n, r) depends only on 52n — r? and
+7r mod 26. Analyzing the residues 72 modulo 52 we see that all non-zero Fourier co-
efficients with 52n — r? < 0 are given by ¢4(0,3) = 1, ¢4(0,2) = 3 and ¢4(0, 1) = 5.
In particular, the Borcherds product B(go,13) is holomorphic. Its first Fourier-Jacobi coef-
ficient

03093097
¢3,13 = nﬁ = 01,01,

turns out to be a product of three theta quarks. It is among all Jacobi cusp forms of
weight 3 the one with smallest index. The divisor of B(go,13) is a sum of Humbert mod-
ular surfaces,
. 1 1
div B(¢o,13) = F13(2 = §> +3- F13<Z = §> +9-T1i3(z = 0).
This is a part of the divisor of Lift(¢3,13) € S3(I'13) since the lifting procedure preserves

the divisor of the lifted Jacobi form ¢ (more precisely, of the function ¢(z, z)e(tw)).
The quotient Lift(¢3,13)/B((329394)/93) is holomorphic on the Siegel upper half-plane
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and I'y3-invariant, whence constant by the Kocher principle. Comparing the first Fourier—
Jacobi coefficients, we have two formulas for the first paramodular cusp form F3(13) of
(canonical) weight 3,

1931923195) _ B(ﬂ2ﬁ3ﬁ4

a3 _
F{™ = Lif( 5 5

) € S3(I'3).

Moreover, we note that F3(13)d ZeH 3’0(</¥ 1,13) defines a canonical differential form on
any smooth compact model of the moduli space of (1, 13)-polarized abelian surfaces.
The formula above determines the main part of its canonical divisor.

An effective construction of weak Jacobi forms satisfying the assumptions of Propo-
sition 14.1 was proposed in [13].

Theorem 14.3 ([13]). Let © be a theta block of weight k > 0 and integral index t and
trivial character which has integer vanishing order v > 0 in q. If v is odd, assume that ®
is holomorphic at infinity. Then ¥ = (=1)"(O|V3)/ 0O is a weakly holomorphic Jacobi
form of weight 0 and index t which satisfies the assumptions of Theorem 14.1.

Remark. The proof of the theorem can be found loc. cit., but the educated reader can
also read it off from the formula

O|Va(z, ) = 40(27, 22) + %@(%,2) + %@(’ er 1,2).

This formula shows in particular that the g-order of ®|V, equals [v/2] and the g-order
of ¢ equals —|v/2]. For v = 1, the function v defines in particular a weak Jacobi form.

The above example of the paramodular form F3(13) of weight 3 is the blueprint for the
following conjecture.

Conjecture 14.4 ([13]). Let © € Ji; be a theta block with trivial character and with
order of vanishing 1 in q. Then Lift(®) = B(—(®|V3)/0).

The next theorem shows that a similar conjecture might be true for theta blocks with
order in g smaller than 1.

Theorem 14.5. (1) Let ® = ]—[?:1 Qa;.b; € J3,a be a product of three theta quarks,
and set

A

¢ =— rEk

(Note that Theorem 14.3 implies that ¢ is in J(i, 4 satisfying the assumptions of Theo-
rem 14.1.) Then

Lift(®) = B(¢) € M5(Ty).

This is a cusp form if at least one of the three theta quarks is a cusp form.

8The article [13] is partly based on the results of the current paper.
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(2) Let Qup € J3,,(88) be an arbitrary theta quark, and set

_ QaplesVa
Qa,b

¢:=
Then ¢ is in Jé,3t, and one has

Lifts (Qa,p) = B(9).

This function defines a modular form of weight one with respect to the paramodular
group U's; with a character y3 of order 3.

The lift Lift,s (¢) for a Jacobi form ¢ with character &8, which was introduced in [16,
Theorem 1.12], is defined as in (14.1) but with ¢ |V, replaced by ¢|.s V;,, and the summa-
tion restricted to all m = 1 mod 3. The operator |8V, is a Hecke type operator defined
similar to |V}, whose precise definition is given in [16, Theorem 1.12]. The identity
Lift(®) = B(¢) of (1) was already stated in [13, Theorem 8.3], and is in fact a corol-
lary of [11, Theorem 5.6].

Proof of Theorem 14.5. We consider the function ¢4, of Theorem 11.5 associated to the
root system A5, which defines a Jacobi form of weight 1 with character £® and with lattice
index A (defined in (11.1)). Recall that this is the function occurring in the Macdonald
identity (also known as denominator function) of the affine Kac—Moody algebra A,. The
lattice A4, is a root lattice of type A (i.e., its vectors of square length 2 span it and
form a root system ® of type A,). If fi, f> are primitive roots of 4,, then A; = f; and
A, = — f are fundamental weights of ® (i.e., A1, A, form a dual basis of a set of primitive
roots of ®). For zin C ® Az, we set z; = (z,Aj), where (-, -) denotes the bilinear form
of Aj. Then ¥4, becomes (see Example 11.2)

¥ (t,21)0(7, 22 — 21)0 (1, 22)
n(r) '
We note that 31; is a reflective’ vector of square length 6 in A5, and the divisor z; = 0 is

the hyperplane of the reflection o, .
We need also the Jacobi form

V4, (1, 2) =

V34,(t, Z) = Da,(t, Z1)04, (7, Z2)04,(7, Z3) € J3.34,.

Here 34, stands for the threefold orthogonal sum of A, ; moreover, we identify C ® (342)
with the threefold direct sum of C ® A5 and write accordingly any Z in the former space
as Z = (Zy,Z,,Z3) with Z; in C ® A,. We remark that 134, coincides also with the
Jacobi form associated by Theorem 11.5 to the threefold orthogonal sum of the root sys-
tem A,.

A vector x of a lattice L = (L, ) is called reflective if the reflection ox (y) = y — 2x8(x, y)/
B(x, x) defines an isometry of L.
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To the Jacobi forms ¥4, and 34, we can apply a lifting construction similar to (14.1)
above (see [0, 9] for the case of Jacobi forms with characters). We obtain orthogonal
modular forms

Lift,s (94,) € Mi(©" QU @ A2(-3)). 13).
Lift(934,) € M3(0" QU @ 345(~1)).

where U is the even unimodular lattice of signature (1, 1), A2(n) is the lattice obtained
from A, by renormalizing its bilinear form by the factor n, and O (...) are the stable
orthogonal groups of the given lattices (which are of signature (2, 4) and (2, 8), respec-
tively). In both cases, the (reflective) divisor of the lifted Jacobi form induces a subdivisor
of the lifting.

We construct a Jacobi form of weight 0 with index 34, using again the operator V>2;
we set

D V-
po3as(0.2) = — 222 S o et 2)
34> cn>0
te34o"
=6+ Y G+ + GG + 0. (14.3)
j=13,5

where {; = exp(2mizj), {Jil =+ §j_1. The action of V on ¢g 34, is given by

1 T 1 T4+ 1
D3y V2 = 4y 21.22) + 53, (5. Z) + 5030 (—5— Z).

Using this formula and the explicitly known divisor of ¥34,, one verifies that @9 34, €
Jo"fgﬂ‘z, where the superscript weak means that ¢(n,£) = O unless n > 0. Forany £ € 3&*‘,
we therefore have ¢(n, £) = 0 unless
2n—({,£) > — min (v,v)> 2.
vel+3A4s
This justifies the first terms of the Fourier expansion in formula (14.3). Consequently, the
Borcherds product B(¢o,34,) is a holomorphic form of weight ¢ (0,0)/2 = 3 with divisors
of order 1 along all 0 (2U 343 (—1))-orbits of the vectors (of square length —6) £4,,
+Ai+1and £(A; — A 41) (@ € {1,2,3}). Using the Kocher principle as in Example 14.2,
we finally obtain
Lift(934,) = B(¢o,34,)-

This identity remains true if we replace ¥34, and ¢g 34, by its pullbacks via C 5 w
(ay,b1,az,b,,a3,b3)w, which yields the identity claimed in (1).
Via the isometric embedding o: A» 3) - 342, x = (x, x, x), we obtain pullbacks

a* B(gosa,) € M3(0' QU & 45(=3))).

1 _
G045 1= 3070034, =2+ T+ G+ (LG 4 0(),
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where the latter defines a Jacobi form of index A>(3). The Borcherds lift B(go,4,) €
M, (O QU & A2(—3)), x3) is a third root of o* B(o,34,). Its divisor is determined by
the reflections corresponding to the fundamental weights. Again, Lift,s (¢o,4,) defines
a function with the same divisor, and we obtain

B(go,4,) = Lifts (04,). (14.4)
The specialization to (z1, z2) = (—a, b)z is the second identity of the theorem. |

Remark. We remark that the proof of (14.4) and the fact that both sides of this identity
are holomorphic did not make use of the fact that 4, is holomorphic at infinity. However,
this is implied by (14.4), which yields the sixth proof of the fact that the theta quarks are
holomorphic at infinity.

15. Miscellaneous observations and open questions

15.1. Jacobi-Eisenstein series and Jacobi cusp forms of small weight

The simplest theta block with trivial character is the product of eight theta series

8
1% € Ju@irotap
j=1

where a; + --- + ag is even (and as usual ¥,(t, z) = ¥ (r, az)). This is a cusp form
if and only if (a; ---ag)/d? is even, where d = ged(ay, ..., ag). A similar product of
24 quintuple products ]_[24_1 1719* €J, 3@ ++al,))2 (where V) = U2q/V,) is a Jacobi
cusp form if (ay - a24)/d24 is divisible by 20r3 (see [12, Lemma 1.2]).

In particular, 38 equals the Jacobi—Eisenstein series E4 4,1 of weight 4 and index 4
(see [7, p. 25]). The first Jacobi cusp form of weight 4 is 993 € Jy 7.

The Fourier coefficients of the 24-fold product 98, that is, the eighth power of the
Jacobi triple product, can be calculated explicitly in terms of Cohen’s numbers (see [15]).
It would be interesting to calculate the Fourier coefficients of the 120-fold product
(®*)** € J12,36

The first two examples of Jacobi forms of weights 2 and 3 are the Jacobi—Eisenstein
series E;XZ)S and E3 9,1, where y = (-/5) is the primitive even character modulo 5 (we use
the notations of [7, pp. 25-26]). Both series are theta blocks

EéXZ)S = 0% 0359, and Ezo, = Q1 L =090,

It would be interesting to find explicitly their Fourier coefficients similar to [7, 15], which
would give new identities for these 24-fold products.

The next two Jacobi forms of weight 2 and 3 are the cusp forms ¢5 37 and ¢3 13 of
weight 2 and 3 and index 37 and 13, respectively. A table of Fourier coefficients of ¢; 37
was given in [7] (see pp. 118-120 and Table 4 on p. 145).
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Now we can give explicit formulas for these two Jacobi cusp forms,
@237 = 0 002030920495 and @313 = 2079305,

We note that ¢3 ;3 provides the existence of a canonical differential form on the mod-
uli space of (1, 13)-polarized abelian surfaces and non-triviality of the third cohomology
group H3 (T3, C) of the paramodular group I'y3 (see [9]).

15.2. Jacobi cusp forms of weight 2 and 3 with large q-order

The product of three theta quarks is a holomorphic Jacobi form of type 9-/3-7. It has
g-order one. We can construct 21-9/15-n theta blocks, which have then weight 3 and ¢-
order 2. The following three examples are related to the antisymmetric Siegel paramodular
forms of weight 3 (see [14]):

@3120 = B[—15; 1°,2%,3% 4% 5267,
03167 = O[—15; 14,2°,33 43,52 6%,7,8],
@3.173 = 0[—15; 14,2433 4% 52 6%7,8].

Here we use the notation
B[-N;a",....b" = Nor...om

For weight 2, there are holomorphic theta blocks of type 22-1/18-15, which have then
q-order 2:

¢2.587 = 0[—18; (1,2,3,4,5,6,8)%,2,7,9,10, 11, 12, 13, 14],
2713 = 0[—18; (1,2,4,5,6,8)%,2,3,7,8,9,10,11,12,13,15],
¢2.803 = 0[—18; 1,(2,3.4,5,6,8)2,7,9,10, 11, 12,13, 14, 16, 19].

The problem of constructing new Hecke paramodular forms of genus 2 is related to the
question of existence of theta blocks of g-order 2. The form ¢, sg7 is the leading Fourier—
Jacobi coefficient of the unique antisymmetric Siegel form F®37) of weight 2 for the
paramodular group I'sg7 (see [14]). The existence of F 37 supports the first part of the
Brumer conjecture. According to its second part the Spin-L-function of F %7 is equal
to the Hasse—Weil L-function of an abelian surface with conductor N = 587.

The form ¢3 125 is the leading Fourier—Jacobi coefficient of the antisymmetric Siegel
form of weight 3 for the paramodular group I'j;». It is expected that the L-function of
this paramodular form is related to a motivic L-function of Calabi—Yau treefolds.

We can give also an example of a weight 2 Jacobi form of g-order 3, namely a theta
block of type 34-9%/30-n,

022, = 0[-30; (1,2,3,4,5)2,6,7.8,9,10,...,27,28,30].

Its index equals 2 times the prime p = 8669.
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Theorem 14.3 together with Theorem 14.1 provides a method to construct a theta
block which is holomorphic at infinity from a given theta block satisfying certain mild
conditions. We apply this method to the 34-%/30-n-block ¢, »,. Its g-order is 3 and it is
holomorphic at infinity. Hence we can apply the two cited theorems: setting

tnap = 222 0.0+ Y c0.0@ +E)+ 00,
»2p

0<l<m

we obtain the theta block

B\ c(0.0)
Th(gz,2p) = n°*? H (—l>
>0 n

that defines a Jacobi form. Note that the block Th(g,,2,) has weight 444, index 41888608,
and g-order 2488; it is of the form 29412-19/28524-n.

From Theorem 5.3, we know that the number N of ¢ in a theta block of weight 2
which is holomorphic at infinity is bounded; namely, one has that H,x /555.960 < 2,
which implies N < 2355960 /2 The g-order of a theta block of type N-8/n-n equals
N/8 — n/24. Hence the g-order v of a theta block of weight 2 and holomorphic at infin-
ity is bounded; one has v < ¢23°5-960/16. This leads to the natural question: to find
the maximal possible q-order of theta blocks of weight 2 or to find a reasonable upper
bound.

A theta block of weight 2 and trivial character needs to be of the form (10 + 12d)-
?/(6+12d)-n(d =0,1,2,...). In Part III, we found four infinite families of theta blocks
holomorphic at infinity of weight 2 with trivial character of type 10-¢}/6-n (see Table 5).
In this section, we saw examples of theta blocks holomorphic at infinity of weight 2
with trivial character of type 22-1/18-n and 34-1//30-5. This raises the question: o find
an arithmetic or representation theoretic explanation for the existence of theta blocks of
types (10 + 12d)-9/(6 + 12d)-n ford > 1.

15.3. Jacobi forms of weight 2 without character

As we saw in Section 13, all spaces of Jacobi forms of weight 1/2 and weight 1 are
spanned by theta blocks (with the exception of weight 1 and character £2). We also
know from Section 4 (see the remark after Theorem 4.4) that, for growing weight k,
fixed index m and character ", the proportion of the subspace of Jkm (¢") spanned by
theta blocks becomes smaller and smaller. In view of the lifting of Jacobi forms in J
to modular forms of weight 2 and level m (see [27, Theorem 5]), it is of interest fo know if
all of the spaces J5 ;, are still spanned by theta blocks, or how big the subspace spanned
by theta blocks is.

The first question can be quickly answered. A computer search for m < 200 shows that
J2,m 1s spanned by theta blocks for all m with the exception of m = 164 (see Table 7).
In fact, J3 164, which is one-dimensional and contains exactly one cusp form, does not
contain a theta block, not even a single generalized theta block.
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m e c¢ te (¢ m e c¢ te (¢ m e c¢ te (¢ m e c¢ te Ic
251 0 1 0100 2 0 3 01383 0 1 O 1{170 0 3 O 7
37 0 1 0 1})101 01 O 1|139 0 3 0 6171 0 2 0 3
43 01 0 1102 0 1 O 1(141 0 2 O 2|172 0 3 0 6
49 2 0 3 0103 0 2 O 3(142 0 2 O 3|173 0 4 0 11
50 1 0o 1 0106 0 2 0 2(143 01 O 1{174 0 1 O O
5301 0 1107 0 2 O 3(14 1 0 1 Of175 1 2 3 2
57 061 0 1109 0 3 O 6(145 0 3 O 7|176 0 2 0 3
58 061 0 1111 0 1 O 1(146 0 2 O 2|177 0 4 0 9
61 01 0 1112 01 O 1(147 2 2 8 3178 0 3 0 5
64 1 0 1 0113 0 3 O 7(148 0 3 O 7(179 0 3 0 5
65 01 0 1114 01 O 1(149 0 3 O 5|181 0O 5 O 14
67 0 2 O 3115 0 2 O 3(150 1 0 1 0|18 O 2 O 3
73 0 2 0 3116 0 1 O 1(151 0 3 O 5|18 O 3 O 5
74 0 1 0 1117 01 O 1(152 0 1 O 1|18 O 3 O 6
75 1 0 1 0118 01 O 1(153 0 2 O 3|18 0 4 O 11
77 01 0 1121 4 1 16 1(15%4 0 2 O 3|18 0 2 0 2
7% 01 0 1122 0 2 O 3(155 0 2 O 3|18 O 5 O 20
81 2 0 3 0123 0 2 0O 3|15 0 1 O 1]18 0 2 0 2
82 0 1 0 1]124 0 1 0O 1|157 0 5 O 18189 0 2 O 3
8 0 1 0 1]125 1 2 3 3|15 0 3 0O 6(19 0 2 0 3
8 0 2 0 3|127 0 3 0O 7|15 O 1 O 1{191 0 2 O 1
8 0 1 0 1]128 1 1 2 1|160 0 1 O 1(192 1 1 2 1
8 0 1 0 1]129 0 2 0 2|161 0 2 O 2(193 0 7 O 33
8% 0 1 0 1130 0 2 0 3|162 2 1 5 11194 0 3 0 4
91 0 2 0 3|131 O 1 0O 1]163 0 6 0 26195 0 1 0 1
92 0 1 O 1133 0 4 0 12(164 0 1 O O0|196 4 1 13 1
93 0 2 0O 3(|134 0 2 O 3(165 0 2 O 3|197 0 6 0 27
97 0 3 0O 7135 01 O 1166 0 2 O 2{198 0 2 O 3
98 2 0 3 0136 0 1 0O 1167 0 2 0 3|19 0 4 0 8
9 0 1 0 1137 0 4 0 11169 5 3 45 5

Tab. 7. The table lists, for each index 1 < m < 200 such that J> ;; # 0, the dimensions e and ¢ of
the subspace of Eisenstein series and cusp forms and the numbers te and ¢ ¢ of theta blocks in J2

which are non-cusp forms and cusp forms, respectively.

However, for computational purposes this is often not a serious problem. For instance,
the one-dimensional space J3 164 can be easily obtained by applying the index raising op-
erator V (see [7, §4]) to the single theta block in J5 g5 (which is ¥ 93 9307959607 /n°).
Alternatively, one can try to find sufficiently many theta blocks which are not necessarily

holomorphic at infinity but span a space containing a given Ji ,.

In the context of the mentioned computations, it is worthwhile to mention that, for
1 < m < 200, the spaces J, ;; contain no theta quotients.
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Concerning the second question, we do not know of any method to determine the size
of the subspace in J> ;; spanned by theta blocks. Heuristically, however, one might expect
it to be large in general. Indeed, the well-known dimension formula shows dim J5 ,;, ~
(m + 1)/24. On the other hand, already the four families of theta blocks from Table 5
each provide as many theta blocks of index m as there are positive integers a, b, ¢, d such
that the sum of the squares of the indices of the theta block defining this family equals 2m,
a number whose order of magnitude is m.

15.4. Theta blocks and elliptic curves

As mentioned in the introduction, the first Jacobi cusp form of weight 2, which has
index 37, is a theta block. This is of particular interest since this form corresponds to
the first elliptic curve of odd rank (which has in fact rank 1 and level 37) via the Hecke
equivariant lifting of J5 37 onto the space of modular forms of weight 2 and level 37.

In general, we do not know any reason why a given theta block in J5 ,, is a Hecke
eigenform except for the banal reason that J; ;, or the subspace of cusp forms in J5 ,, is
one-dimensional, so that any Jacobi form in one of these spaces is trivially an eigenform.
In particular, we do not expect that the Jacobi form associated to an elliptic curve is
a theta block. Note that there are exactly 52 indices where J5 ,, contains only one cusp
form. For 10 of these indices, the corresponding Jacobi form is an odd form. For each
index m in the set S of the remaining 42 (see Table 8), the associated cusp Jacobi form ¢,
corresponds via the mentioned lifting to an elliptic curve over the rationals of conductor m
whose L-series L(E, s) has a minus sign in its functional equation. This correspondence
is given by the identities

D ns Y Cy, (Dn*,rn)n™ = Cy,,(D,r)L(E,s),
n

n>1 n>1

valid for any negative fundamental discriminant D and integer r such that D =r2 mod 4m.

As it turns out, each of these ¢,, with the exception of ¢3¢ is a theta block. More
precisely, we found that for each index m # 300 in S, there is exactly one theta block
of length 10 in J, ,, which is a cusp form. (For m < 200 and m = 216, we verified in
addition that there is no theta block of length strictly greater than 10 in the subspace of
cusp forms of J3 1,,.)

In Table 8, we give for each m in S a minimal equation for an elliptic curve over Q
with conductor m and root number —1 (in general the isogeny classes of the given curves
decompose into more than one rational isomorphism classes) and, for m # 300, the cor-
responding theta block. All these elliptic curves have rank 1. Except for m € {89, 121},
the theta blocks in this table belong to one or more of the four families associated to the
root systems A4, Go @ Bz, A1 @ B3 and A; @ Cs (see Table 5).

The space J> 300 has dimension 3 and contains 5 theta blocks of length 10, which span
the whole space. Here ¢399 does not equal any of these 5 theta blocks. We do not know
whether it equals a theta block of length greater than 10 (i.e., of length N = 22,34,46,...)
or a generalized theta block.
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m CL Curve Theta block

37 37al 2 +y=x3-x B393920405

43 43al1 y2 4y =x3+x2 191319221932193195

53 53al  yE4ay+y=x3-x2 930292040506

57 57al  y2+y=x3—x?—2x+2 B29293 040506

58 S8al 2 +xy=x3—-xZ-x+1 929303920506

61 6lal  y*+xy=x3-2x+1 929302940507

65 65a1 yZ4+xy=x3—x 1912192219321942952196

77 77al  y*+y=x>+2x 2970304950607

79 79al Y2 +4xy+y=x3+x?-2x B29292040298

82  8al yZ+xy+y=x3-2x 1930302950607

83 83al 24+ xy+y=x3+x2+x ﬁ%ﬁzﬂgﬂfﬁsﬁs%

88 88al yZ=x3-4x+4 B2929392950605

89  89al y24xy+y=x3+x%?—x 9302030495920

92 92bl y2 =x3-x+1 19119221932194%195196198

99 99al yZ4xy+y=x3—x?-2x 329, 0292 050609
101 10lal  y?+y=x>+x>—x—1 0292939492020
102 102al  y2 +xy =x3 4+ x2 —2x 9193059495020
112 112al  y? =x3 +x?+4 91929397 05060708
117  117al y2+xy+y =x3—-x2+4x+6 19119221932194195196197199
118 118al y2+xy = W xZ4+x+1 19%1?%19419519%1?7198
121 121bl  y? +y=x3—x2-Tx+10 B10203949297910

124 124al 2 =x3+x2-2x+1 97292970502 0708
128 128al y? =x3 +x?+x+1 D1929397 05060809
131 13lal  y?+y=x3—-x2+x 929303949597912
135 135al y?>+y=x3-3x+4 919295049206 0809
136 136al  y? = x3 4+ x? —4x B103930405969792
138 138al y24xy=x3+xZ—x+1 919292920297910
143 143al y?24+y=x3-x2-x-2 329203040506 0798 09
152 152al y2 =x34+x2-x+3 19119219321931961971981910
156 156al y2=x3—-x2-5x+6 91920394950608012
160 160al y2 =x3+x2-6x+4 H 192193194%1951967971981910
162 162al y24+xy =x3—x2—6x+38 19293939592 D910
192 192al y2 =x3 —xZ2—4x-2 ﬁ1ﬁ2ﬂ3l94l951962ﬁ71931912
196  196al  y? =x3—x2—2x+1 B1029397 959792912
200 200bl y2 =x34+x2-3x-2 % 1921931941951961951991910
210 21041 y2 +xy = x34+x2-3x-3 h 192193194195196219719101912
216 216al  y2 =x3 —12x+20 B293040506 979899012
220 220al  y? = x3 4+ x% —45x + 100 8293949207080 10012
240  240cl y2 =x3—x2 +4x H1 3040506080910 2
252 252bl y2 =x3—-12x 4+ 65 D1 020304060708 090 10012
300 300d1  y?=x3-x2-13x+4+22 ?
360 360el y2 = x3 —18x =27 292193294195196197199291019]21916

Tab. 8. For each m such that the subspace of cusp forms in J5 ;, is generated by a new form ¢y,
the associated elliptic curve and a theta block representation of 7°¢y,. (CL is the Cremona label of
the respective elliptic curve.)
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Concerning the question of an explicit example of a rational elliptic curve whose
associated Jacobi form is not a theta block, we found m = 91 as the first m such that
the subspace of cusp forms in J5 ,, has dimension greater than 1 and contains a Hecke
eigenform with rational eigenvalues. In fact, J, 91 contains no non-cusp forms and has
dimension 2, so that both Hecke eigenforms in this space have rational eigenvalues and
hence correspond to elliptic curves. The Cremona labels of these elliptic curves are 91al
and 91bl, 91b2, 91b3, and they all have rank 1. The space J, 91 contains exactly three
cuspidal generalized theta blocks (which are in fact theta blocks):

1921921931921952196197 B 1927922193?194195197798 19192219321931951972

n® ’ n® n® '
One has A + B = C (as follows, for instance, from the theta relations below). The Hecke
eigenforms are

A= =

’

A+B=C, A-B

Hence one of them is a theta block, the other one is not.

15.5. Linear relations among theta blocks

When studying linear dependencies between sets of theta blocks one can restrict to sets
whose elements have the same weight, same index and same character (since the ring of
all Jacobi forms is graded by weight, index, character). Table 7 suggests many concrete
examples of linear dependencies. For instance, J3,169 has dimension 8 but contains 50
theta blocks.

Using the following identity, which seems to be due to Weierstrass (see [28, Sec-
tion 1)),

U (z,z0 + 21)0(z, z0 — 21) 0 (1, 22 + 23)V (1, 22 — 23)
+ 3z, 20 + 22)0 (7, 20 — 22) (7, 23 + 21)D (7, 23 — 21)
+ (7, zo + 23)0 (7, 20 — 23)V (7, 21 + 22)V (1,21 — 22) = 0,

one obtains immediately an infinite family of linear relations between theta blocks. Name-
ly, substituting (zo + z1, zo — 21, 22 + 23, 22 — z3) = (a, b, ¢, d)z, and using again
U4(7,z) = 9(t, az) yields the relations

VaVp¥c¥a + Vatvre—ay 2P @sb—c+ad) 2P @a—b+ct+d)/20a—b—c—d))2
= Natbtetd)/2P@+b—c—d)/2%@a—b+e—d) /20 (@—b—c+d)/2-

Here a, b, ¢, d denote any quadruple of integers whose sum is even. For instance, for
a,b,c,d =1,4,5,6 we obtain 994050¢ + V2030497 = 9g0_30_0_;, which after
multiplication by $1,938949507 /7% yields the identity A + B = C of the preceding
section.

There is also a five-term relation similar to Weierstrass’ three-term relation, whose
terms are also products of four ¢, and which is due to Jacobi (see [18, p. 507, (A)]).
It is an interesting question if one can develop a theory based on such relations for theta
functions in several variables which explains all linear relations among theta blocks.
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