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Abstract. This paper studies the class of spherical objects over any Kodaira n-cycle of project-
ive lines and provides a parametrization of their isomorphism classes in terms of closed curves
on the n-punctured torus without self-intersections. Employing recent results on gentle algebras,
we derive a topological model for the bounded derived category of any Kodaira cycle. The groups
of triangle auto-equivalences of these categories are computed and are shown to act transitively
on isomorphism classes of spherical objects. This answers a question by Polishchuk (2002) and
extends earlier results by Burban—KreuBler (2012) and Lekili—Polishchuk (2019). The description
of auto-equivalences is further used to establish faithfulness of a mapping class group action defined
by Sibilla (2014). The final part describes the closed curves which correspond to vector bundles and
simple vector bundles. This leads to an alternative proof of a result by Bodnarchuk—Drozd—Greuel
(2012) which states that simple vector bundles on cycles of projective lines are uniquely determined
by their multi-degree, rank and determinant. As a by-product, we obtain a closed formula for the
cyclic sequence of any simple vector bundle on C;, as introduced by Burban—Drozd—Greuel (2001).
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1. Introduction

Our main objective in this paper is to study the class of spherical objects in the derived cat-
egory of the singular algebraic curve C, for any n > 1 which is known as a “Kodaira cycle
of n projective lines”, or a “cycle of projective lines” for short. A cycle C, is a rational
curve with n irreducible components and may be thought of as a union of n projective
lines glued in a cycle as illustrated in Figure 1. Spherical objects are perfect complexes
over C, and form a class which is stable under auto-equivalences of the derived cat-
egory DP(C,). They were introduced by Seidel and Thomas [34] who showed that every
spherical object induces an auto-equivalence of the bounded derived category which is
referred to as a spherical twist.

/ \

Fig. 1. The curves C1, C2 and C3 (from left to right).

In the work of Polishchuk [32], spherical objects on cycles of projective lines (and
more general curves of arithmetic genus one) were used to construct solutions of the
classical and the associative Yang—Baxter equation. His construction leads to the question
by whether spherical objects can be classified in a meaningful way. Polishchuk asked
further whether the group of auto-equivalences of D°(C,) acts transitively on the set of
isomorphism classes of spherical objects. An affirmative answer to his question is given
in Theorem C.

The problems of classification and transitivity were studied by Burban—KreuBler [15]
and Lekili—Polishchuk [25]. Burban and KreuBler established transitivity and provided
a classification of spherical objects over C; showing that any spherical object is iso-
morphic to a shift of a skyscraper sheaf of a smooth point or a simple vector bundle.
The latter were classified by means of their rank, multi-degree and determinant as shown
by Bodnarchuk, Drozd and Greuel [7]. For n > 1 however, the class of spherical objects is
more complicated as found by Burban and Burban [10] who constructed spherical com-
plexes in DP(C,) which are not quasi-isomorphic to the shift of a sheaf.

Lekili and Polishchuk [25] proved for arbitrary n that the group of auto-equivalences
of DP(Cp) acts transitively on simple vector bundles. Their proof employed one of their
earlier work [23] which showed the equivalence of the derived category of a cycle C,
and the wrapped Fukaya category of an n-punctured torus after Haiden, Katzarkov and
Kontsevich [19].

We approach the problem of classification of spherical objects and transitivity from
a similar angle. As shown by Burban and Drozd [12], there is an embedding Perf(C,,) —
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DP(Coh X,,) of the category of perfect complexes over C, into the derived category of
a certain non-commutative curve X,. They further proved that the latter has a tilting object
and is equivalent to the derived category of a finite-dimensional algebra A, which belongs
to the well-understood class of gentle algebras. Although it is difficult to compute the
resulting embedding Perf(C,) < D°(A,) directly, they determined the images of the
Picard group and skyscraper sheaves of smooth points.

The results of this paper also rely on works [30, 31] by Plamondon, Schroll and the
author which study derived categories of gentle algebras in terms of the geometry of
a surface (see also [1, 19, 26] for related work). A result in [30] describes the group
of auto-equivalences of such categories as an extension of the mapping class group of
the associated surface. As a particular instance of the connection between the derived cat-
egory of a gentle algebra and its surface model, isomorphism classes of objects in D°(A )
can be fully understood in terms of curves on a torus with n boundary components and
marked points on its boundary. The surface model of DP(A ) allows us to rephrase many
problems about the categories Perf(C,) and £D°(C,) as considerably simpler problems
about curves on a torus.

Throughout this introduction, we assume that k is an algebraically closed field and
that n > 1 is any natural number.

The first result of this paper provides a geometric interpretation of spherical objects
over C, as closed curves on a punctured torus.

Theorem A (Theorem 7.1). There exists a bijection between isomorphism classes of
spherical objects on Cy, up to shift, and pairs ([y], L), where A € k\{0} and [y] is the
homotopy class of an unoriented, non-separating simple loop y on the n-punctured torus,
i.e., y is embedded into the n-punctured torus in such a way that its complement is con-
nected.

Theorem A is a special case of a more general correspondence between indecompos-
able objects of D(C,) and curves on the n-punctured torus. Using the Verdier localiza-
tion approach from [24], we extend the topological description of D°(C,) to morphisms
(Theorem 8.22), compositions of morphisms (Remark 8.24) and certain mapping cones
(Remark 8.26). In fact, the topological model of D°(C,) presented here can be gener-
alized to similar Verdier quotients of derived categories of other gentle algebras which
might be of independent interest, see Remark 8.28.

The second result describes the loops of simple vector bundles and provides a geo-
metric interpretation of their ranks. To simplify notation in the next theorem, we identify
the torus with the usual quotient R?/Z? = S x S! and refer to the first coordinate of the
product as the latitudinal coordinate.

Theorem B (Theorem 9.20). Under the bijection in Theorem A, a non-separating sim-
ple loop vy on a punctured torus corresponds to a simple vector bundle if and only if y
is homotopic to a smooth loop such that the latitudinal coordinate of its derivative is
nowhere vanishing. The rank of the vector bundle agrees with the number of full turns
of v in the latitudinal direction.
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In fact, by dropping the assumption on simplicity on vector bundles and curves,
we describe all homotopy classes of curves which represent the image of a vector bundle
over C, and provide an easy geometric interpretation of rank and multi-degree on the sur-
face, cf. Theorem 9.20. The representation of vector bundles as curves allows us to give
an alternative proof of the result by Bodnarchuk, Drozd and Greuel [7] which states that
the isomorphism class of any simple vector bundle over C,, is uniquely determined by its
rank, its multi-degree and its determinant (Proposition 9.29).

Our next result gives a positive answer to the question of Polishchuk.

Theorem C (Theorem 7.2). The group of auto-equivalences of D®(C,,) acts transitively
on the set of isomorphism classes of spherical objects in Perf(Cy).

The proof of Theorem C exploits the relationship between spherical twists in the
derived category of a gentle algebra and Dehn twists of its surface.
The following Theorem describes the group of auto-equivalences of any cycle.

Theorem D (Corollary 8.41). Ifn > 2, then the group of auto-equivalences of D°(C,) is
an extension of the mapping class group of the n-punctured torus and the group

(k™) x Z x Pic®(Cy),

where Pic@(Cn) denotes the group of line bundles with vanishing multi-degree. Moreover,
Aut(D(C))) is an extension of PSLy(Z) and (Z, x (k*)*) x Z x Pic®(Cy).

Theorem D extends earlier results by Burban and KreuBler [14] for the case n = 1,
see Remark 8.42. Its proof relies on the topological model for D (C,) and on the relation-
ship between automorphisms of the arc complex of a punctured surface and its extended
mapping class group as found by Irmak and McCarthy [22]. Similar techniques were used
in [30]. We expect Theorem D to generalize to certain Verdier quotients of arbitrary gentle
algebras. For further details, the reader is referred to Remark 8.43.

As an application of Theorem D, we establish faithfulness of an action of the pure
mapping class group of the punctured torus on D°(C,), see Theorem 8.44. The group
action was constructed by Sibilla [35] who also conjectured its faithfulness.

The final result refines the classification of simple vector bundles obtained by Burban,
Drozd and Greuel [13]. They showed that a simple vector bundle is equivalent to the
datum of a non-zero scalar and a cyclic integer sequence which satisfies certain strong
constraints. The vector bundle can be reconstructed explicitly from this data. However,
while the entries in the cyclic sequence can be easily determined from the constraints
in [13], it seems that the order in which they appear was unknown apart from the case
n = 1, see [9]. The final theorem provides a closed formula for this sequence. For simpli-
city, it is phrased for non-negative multi-degrees.

Theorem E (Corollary 9.9). Let £ be a simple vector bundle on Cy, of rank r and multi-
degree (dy, ...,dy) with d; > 0. Then the cyclic sequence of £ is given by the sequence
of cardinalities

rZ N (d,d",
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where d and d' are any two consecutive entries in the sequence

O,dl,dl'+'d2,...,j£:ch,:£:lh +—d1,...,r-j£:(ip
i=1

i=1 i=1

The results of this paper allow us to give an independent proof of the classification of
simple vector bundles on C, which can be found in Proposition 9.29.

Organization of the paper

Section 2 contains a discussion of cycles of projective lines C,, their tilted algebras A,
and the relevant results from [12] on the embedding Perf(C,) < D°(A,).

In the subsequent section, we recall a few basic facts about spherical objects and their
spherical twists.

Section 4 provides a detailed account of the surface model for the categorical resol-
ution DP(A,) of C,. In particular, we explain the relationship between curves and their
intersections on the surface model and their connection to indecomposable objects and
morphisms between them.

After this preparation, Section 5 contains a first discussion of spherical objects in
DP(A,) but not yet the proof of Theorem A as this requires further results on the map-
ping class group of the surface model of D®(A,) and its connection to auto-equivalences
of DP(A,). The necessary background material for these is presented in Section 6 after
which Theorem A (classification of spherical objects) and Theorem C (transitivity) are
proved in Section 7.

In Section 8, the surface model for DP(A,) is used to derive a similar model for
a Verdier quotient of DP(A,,) by the “boundary objects” which is equivalent to D°(Cy,).
The description of the auto-equivalence group of DP(C,) as an extension of a mapping
class group (Theorem D) essentially follows from there by exploiting the relationship
between the automorphism group of the arc complex and the mapping class group of
a surface.

In the final section, we determine the curves on the surface model of D®(C,) which
represent vector bundles. The pursued approach avoids further direct computations of the
embedding Perf(C,) < DP(A,) and rather exploits general properties of the class of vec-
tor bundles in combination with the surface model of D°(A ). The latter is rephrased in
a suitable combinatorial way akin to the cyclic sequences in [13] which describe (simple)
vector bundles.

Conventions and general notation

We fix an algebraically closed field k and denote by k> its group of units. For a ringed
space (X, Ox), we denote by Coh X its category of coherent Ox -modules, by Perf(X) its
category of perfect complexes, and by DP°(X) its bounded derived category of coherent
sheaves. For a finite-dimensional k-algebra A, we denote by £°(A) the bounded derived
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category of finite-dimensional left A-modules. For objects X, Y of a triangulated cat-
egory 7, we write Hom* (X, Y) = €D,z Hom(X, Y [7]). Given a natural transformation
n: ¥ — § between functors ¥, §: € — D and an object X € €, we denote by nx the
induced map ¥ (X) — 9(X).

For an integer valued variable x and p, g € Z, we often rewrite the condition p <x <g
as x € [p, q] and similar for all other types of intervals. For an arrow « in a quiver, we
write s(a) (resp. ¢(«)) for the source (resp. the target) of o. Compositions of arrows are
to be understood from right to left. We write Z,, for the cyclic group Z/mZ and &,
for the symmetric group of m elements. Finally, for every m € N \ {0}, Z%" denotes
the set of functions Z,, — Z, or, equivalently, the set of cyclic integer sequences of
length m.

2. Cycles of projective lines and their categorical resolutions

We recall the definition of a Kodaira cycle of projective lines and the relevant results about
their categorical resolutions from [12]. In what follows, let n > 1.

Definition 2.1. An n-cycle of projective lines is a reduced rational projective curve C,
of arithmetic genus 1, that is, a union of n copies of P! glued together transversally in
a configuration of type A,—_;.

By definition, C,, has n irreducible components, henceforth denoted by IP’il (i € Zy),
such that for all i € Z,, P! and P/, | intersect in a nodal singularity. If n > 1, P! = P!
foreachi € Z,. The curve C is isomorphic to the Weierstral3 nodal cubic and is depicted
in Figure 1 together with C; and Cs.

Burban and Drozd constructed a fully faithful and exact functor

Perf(C,) — D°(CohX,),

where X, is a certain non-commutative curve. They proved that D®(Coh X,,) contains
a tilting complex J¢. The opposite of its endomorphism algebra is isomorphic to the
algebra A, which is by definition the quotient of the path algebra of the quiver Q(n)
shown in Figure 2 by the ideal generated by the set of paths

R = {biai,a’,-c,- | i€ [0,71)}. 2.1

In other words, the composition of arrows in Figure 2 with different colour vanishes.

For example, A is the quotient of the path algebra of the quiver on the left in Figure 3
by the ideal (ba, dc) while the quiver of A3 is shown on the right-hand side.

For every n > 1, the algebra A, is gentle in the sense of [3] and has global dimen-
sion 2. In particular, there is an Auslander—Reiten translation

7: DY(Ap) — DP(An)

and T = v[—1], where v denotes the left derived Nakayama functor.



Spherical objects, transitivity and auto-equivalences of Kodaira cycles 177

bo

IRV
an_l( >Cn_1

Fig. 2. The underlying quiver Q(n) of the algebra A,,. Arrows of different colours compose to zero

in Ay, ie., bja; =0 =djc; foralli € Zj.
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Fig. 3. The quivers Q(1) (left) and Q(3) (right).

It follows from the preceding results that there exists an embedding of triangulated

categories
F: Perf(Cp) < D°(An).

Burban and Drozd provided a characterization of its essential image Im[F.

Theorem 2.2 ([12, Corollaries 3.5 and 6.3]). The category ImF is the full subcategory of
t-invariant objects, i.e., all objects X € D°(A,) such that X =~ tX.

They further computed the image of the Jacobian Pic®(C;) = k* [12, Proposition 7.4],
i.e., the line bundles of degree 0, as well as the images of the skyscraper sheaves k(x) of
smooth points x € Cy [12, Proposition 7.2]. By twisting their tilting object with a line
bundle of degree 1, the functor I identifies isomorphism classes of line bundles of de-
gree 0 with the isomorphism classes of the following family (@ (1)) exx of two-term

complexes:'
b+id

OAN)=-—->0->P ——> P, —>0—> -,
where P; denotes the indecomposable projective Aj-module associated to the vertex i
in Q(1). The set {k(x) | x € Cy is smooth} is identified with the set of complexes {k(1) |

A € k*}, where

A
k(k):---—>0—>P2£>P3—>O—>--~.

I'This observation was communicated to us by Igor Burban.
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e P
L] L] L] o
~_r ~_ 7
Ad Ac

Fig. 5. The images under F of Pic® (Cy) (left) and k(x) of a smooth point x € ]P’l.l (right).

Both O (1) and k(A) are concentrated in degrees —1 and 0 and are quasi-isomorphic
to A-modules. We notice that, up to shift, they are completely encoded in the quivers in
Figure 4.

Every vertex of the quivers represents an indecomposable projective A 1-module. Ar-
rows connect projective modules in consecutive cohomological degrees and their labels
describe the differentials of the complexes.

The complexes (1) and k(1) have natural generalizations to objects in D®(A,).
Their description in terms of quivers is found in Figure 5.

Every vertex in Figure 5 is the placeholder for an indecomposable projective A,-
module and all vertices on the same vertical line represent the direct summands in a fixed
cohomological degree which is either —1 or 0 and which increases along arrows. The
arrows describe the action of the differential on the complex in which an arrow e Se
contributes a direct summand P; () in degree —1 and Pj(q) in degree 0 and the induced
map a: Ps) —> Ps(e) as a component to the differential. In other words, the complexes
are given by “folding up” the quivers in Figure 5 in the vertical direction. Explicitly, the
complex of the quiver on the left-hand side of Figure 5 is given by

Adgy
by dy

n—1

e >0 — @ Pt(d,-)
i=0 i=0
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By abuse of notation, we denote the resulting complexes by @ (1) (left in Figure 5)
and k(Z, A) (right in Figure 5), respectively. Again, these complexes are quasi-isomorphic
to A,-modules. The complex of k(i, 1) is obtained from the complex of k(1) by repla-
cing a and Ac by a; and Ac;.

It was communicated to us by Igor Burban that the computations in [12] can be gen-
eralized to arbitrary n € N. We denote by Pic®(C,) the set of all line bundles on C,, of
multi-degree’ 0 = (0,...,0) € Z". Asinthe case n = 1, Pic®(C,) = k.

Theorem 2.3 (Burban, Burban—-Drozd [12]). (1) The essential image of Pic? (Cy) under
IF consists of the isomorphism classes of the complexes O (L), where A € k*.

(2) The essential image of the skyscraper sheaves of smooth points x € IP’il under F con-
sists of the isomorphism classes of the complexes k(i, L), where A € k*.

The proof of Theorem 2.3 was explained to us by Igor Burban and can be found in the
appendix.

3. Serre functors, spherical objects and spherical twists

In this section, we recall the definition of a spherical object in a triangulated category and
its associated spherical twist. Spherical objects and spherical twists were first introduced
in [34].

Throughout this section, we fix a k-linear triangulated category 7.

Definition 3.1. Let X € 7 be such that Hom- (X, Y) is finite-dimensional for all Y € 7.
Then a Serre dual of X is an object § (X) € T such that there exists a k-linear isomorph-
ism of functors

Homg (X, —) = Homg (—, $(X))*,

where (—)* denotes the duality over the ground field k.

By Yoneda’s lemma, the Serre dual of an object is unique up to unique isomorphism, if
it exists, and it follows that the mapping X — § (X) is functorial on the full subcategory €
spanned by the objects it is defined on. If the functor §: € — T restricts to an endo-functor
of € and is essentially surjective, then any such functor is called a Serre functor of €
relative to 7. For purely formal reasons, € is triangulated and § is a k-linear triangle
equivalence which commutes with every k-linear triangle equivalence of 7~ or € up to
natural isomorphism, see [33, §I.1].

Example 3.2. The categories Perf(C,) and D(A,) have Serre functors. In the former
case, it is well known that the left derived tensor product — @ w[1] is a Serre functor of
Perf(C,) relative to DP(C,), where w denotes the canonical sheaf. In fact,  is trivial,

2Given a vector bundle & over C,, and a normalization map 7, the entry d; in the multi-degree
(d;)iez, of & is the degree of the restricted pullback bundle 7 * (&)1 @y
1
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showing that the Serre functor is isomorphic to the shift functor. Since A, has finite global
dimension, the left derived functor of the Nakayama functor

v = (Homa, (—, A, An))*: Ay mod — A, mod
is a Serre functor of D*(A,) =T = €.

Definition 3.3. Let d € N \ {0}. An object X € T is d-Calabi—Yau if X|[d] is a Serre
dual of X. A d-Calabi—Yau object X € T is d-spherical if there exists an isomorphism
of graded rings Hom* (X, X) = k[z]/(z2), where degz = d.

It follows from Example 3.2 that every object X € Perf(C,) is 1-Calabi—Yau. In par-
ticular, all of its spherical objects are 1-spherical.

Example 3.4. (1) Every simple vector bundle &£ € Perf(C,) is 1-spherical. As a sheaf it
has no negative self-extensions. Moreover, End(£, £) = k and by Serre duality,

k ifi =0,1,

Hom(&£, £[i]) = Hom(£, £[1 —i])* =~ {O PN
it = 2.

In particular, all line bundles on C,, are spherical.

(2) Let x € C, be smooth. By a similar argument as before, the associated skyscraper
sheaf is a 1-spherical object in Perf(Cy).

The following is well known.
Lemma 3.5. Let X € T be spherical. Then X is indecomposable.

Proof. By assumption, Hom(X, X) is local and hence X is indecomposable. ]

Spherical twists. Suppose that 7 admits a DG-enhancement. The assumption is satis-
fied for all triangulated categories which we consider in this paper as shown by Lunts
and Schniirer [27]. Under this condition, it was shown by Seidel and Thomas [34] (see
also [20]) that every spherical object X € T gives rise to an auto-equivalence Ty of T,
called a spherical twist. By definition, for every Y € T, the object Tx (Y) sits in a distin-
guished triangle of the form

Hom'(X,Y) ®; X ARG ‘GN Tx(Y) — (Hom'(X,Y) ®& X)[1]. (3.1)

where ev denotes the evaluation map, i.e., the counit of the adjunction between the Hom-
functor and the tensor product. Moreover, the morphisms ¥ — Tx (Y) define a natural
transformation Idg — Tx.

Remark 3.6. Let x € C, be closed and smooth. In this case, the twist functor of k(x)
admits a more familiar description. As shown in [34, p. 68, (3.11)], there exists an iso-
morphism of functors

T (—) = — @Y L(x),

where £(x) denotes the line bundle associated with the divisor x.



Spherical objects, transitivity and auto-equivalences of Kodaira cycles 181

Given a homogeneous basis fi, ..., fim of @;cz Hom(X[i], Y)[—i], the triangle
in (3.1) is isomorphic to a distinguished triangle

P xin] === v > 1x(¥) > P X[n; + 1.
i=1 i=1
This shows that twist functors are compatible with embeddings in the following sense.

Corollary 3.7. Let T’/ be a k-linear triangulated category which admits a DG-enhance-
ment and let F: T — T' be a k-linear, exact and fully faithful functor. Let X € T be
spherical and assume that ¥ (X) is spherical. Then, forall Y € T,

Fo Tx(Y) = TF(X) o IF(Y)
In particular, if F is an equivalence and F~ a quasi-inverse of F, then F o Ty o F =1 (Y) =
Trx)(Y).

The previous corollary allows us to analyze the twist functor of any spherical object
X € Perf(C,) by means of the twist along F(X) € D(A,).
The statement of the following lemma is well known.

Lemma 3.8. If X € T is d-spherical, then Tx (X) = X[l —d]. fHom"(X,Y) = 0, then
Tx(Y)x=Y.

Proof. If f: X — X|[d] is non-zero, then Ty (X) is isomorphic to the mapping cone of
Idy[—d] ® f: X[—d] & X — X. There exists a map of distinguished triangles

X[-d]@x Ly Tx (X) (X[~d] ® X)[1]
(.0 | | |
X[-d] e x ),y X[1—d] (X[=d] ® X)[1].

It follows from the five lemma that all vertical arrows are isomorphisms. This proves the
first assertion. If Hom"(X, Y') = 0, then Ty (Y) is a mapping cone of the zero map 0 — Y
and hence isomorphic to Y. ]

4. The surface model of the categorical resolution

We recall the relevant results from [31] about the surface model of a gentle algebra which
we state in a simplified manner for the algebras A,,.
The surface model of the algebra A, consists of a triple (T, M, ®), where

e T, is atorus with n boundary components and M C 0T}, is a set of 2n marked points,
two on each component, and

e o is a function which attaches to any oriented loop y C T, an integer w()) which we
call the winding number of y.
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The triple (T,, M, w) captures all essential information about the structure of the tri-
angulated category D®(A,). Haiden, Katzarkov and Kontsevich showed that the derived
category of any (graded) gentle algebra is equivalent to a partially Fukaya category of
a compact, oriented surface with marked points which is equipped with a winding num-
ber function as above. The topological description of DP(A,) is an incarnation of this
relationship. As we will recall over the course of this section, the geometric model serves
as a dictionary to translate algebraic terms such as objects and morphisms to topological
notions such as curves and their intersections.

The function w is derived from the datum of a line field n on T, . For a description of
this connection, the reader can consult [1,30]. However, we do not require any familiarity
with the concept of a line field throughout the paper and only use this fact in the proof of
Lemma 5.3 and Remark 6.6, where we provide the relevant information.

4.1. Tori, marked points and a lamination

For all integer valued points (i, j) € Z? C R?, let Bl:j C RR? denote the open disc with
radius % and center (i + % Jj+ %). Denote by T,, the torus with n removed open discs,
i.e., T, is the quotient of R? \ B, where

B= || B.

(i,))ez?

with respect to the equivalence relation generated by (r,s) ~ (r,s + 1) and (r, s) ~
(r 4+ n,s) for all r, s € R. In particular, [0, n) x [0, 1) is a fundamental domain of the
corresponding quotient map p. For convenience, we often refer to a point x € T, by
a representative in R2.

The set of marked points M is given by

13 11
M = {(l +§,Z>,(l +§,Z) ‘Ofl <n} c aT,.

Frequently, we also consider the torus 7" with n punctures and no boundary which
we naturally regard as the quotient of R? by the same relations (r,s + 1) ~ (r,5) ~
(r + n,s). The images of the centers of the discs Bij form a set of n distinct points in
the quotient which we regard as interior marked points (“punctures”) and we consider T,
being embedded into J" in a natural way.

By design, the set M C 0T, is in bijection with the set of maximal admissible paths
of the pair (Q(n), R) which we defined in Figure 2 and (2.1). More precisely, for each
i €[0,n), the bijection identifies the path d;a; with the point (i + % %) and the path b; ¢;
with the point (i — % % .

As a result of its construction, T, is further equipped with a collection of laminates
which are embedded and pairwise disjoint paths L, one for each vertex x of Q = Q(n).
The laminates are depicted in Figure 6. We denote by L C T}, the union of all laminates.
The complement T, \ L is a disjoint union of 2n open 6-gons as shown in Figure 7. The
boundary of each polygon contains a unique marked point.
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Fig. 7. The two types of 6-gons occurringin Ty, \ L. Recall that L;(g4,) = Lt(bi+1)’ Ls(a;) = Ls(c;)
and Lya;) = Li(e;) = L) = Lsp):-

If A denotes a 6-gon in the complement with marked point e € dA which corres-
ponds to a maximal admissible path Be, then L), Ls(), L¢(g) are the laminates on its
boundary in the clockwise orientation of A.

The laminates cut T, into segments. Each such boundary segment § sits in a polygon
which contains a marked point e and hence determines a unique admissible path: if p is
the maximal admissible path corresponding to e and § is bounded by the laminates Ly,
and L, (following the counter-clockwise orientation on the boundary), then we associate
with § the subpath ¢ of p which starts on x; and ends on x;. In particular, ¢ = p if and
only if § contains e. For the remaining cases, see Figure 7.

4.2. Curves and winding numbers

Certain homotopy classes of curves in T, give rise to indecomposable objects in D°(A ).
We consider two types of curves, namely loops and arcs. The former are closed whereas
the latter start and end at marked points. Before we explain how to construct a complex
from a curve, we introduce some necessary background material. As indicated above, not
all loops give rise to an object and the necessary condition can be expressed in terms of
its winding number which we define in Section 4.2.3.

4.2.1. Loops and arcs. Suppose X is a compact, oriented surface, with or without bound-
ary, with a finite subset M C X of marked points. The interior marked points are called
punctures and their set shall be denoted by &2. We will mainly consider two examples in
this paper: ¥ = T, or ¥ = .
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A curve in ¥ is an immersion y: Q@ — X, where Q = [0, 1] or @ = S! and 9Q =
Yy HM). If Q = [0, 1], the curve y is called an arc and if @ = S, it is called a loop.

A homotopy of curves is a homotopy H:[0, 1] x 2 — X of the underlying maps which
is constant on [0, 1] x 9 and such that H () C [0, 1] x dS2. By definition, we assume
that a loop is not homotopic to a constant map and that an arc cannot be homotoped into
a contractible neighbourhood U C ¥ which contains a single puncture. In particular, there
exists a canonical bijection between homotopy classes of loops on T}, and loops on 7.

Throughout the paper, we will stick to a few conventions:

e Unless stated otherwise, we assume loops to be primitive: a loop y: S' — X is said
to be primitive if y is not homotopic to a loop which factors through a non-trivial
covering map of S!.

e Up to homotopy, we may and will assume that the number of intersections of a curve
with all the laminates is minimal in its homotopy class and that all such intersections
are double points which lie in the interior.

e Depending on the circumstances, we regard curves as oriented or unoriented objects
by choosing (or not choosing) an orientation on its domain. The correct interpretation
of the words “arc” and “loop” should be apparent from the context.

4.2.2. Gradings on curves. Let y be a curve on T, and denote by y N L the set of inter-
sections of y with the laminates. Regarding y N L as a subset of the domain of y in
a natural way, we can speak of neighbouring intersections.

Definition 4.1. A grading of y is a function g: y N L — Z which satisfies the following
property for all pairs (p, g) of neighbouring intersections p,q € y N L:
If § denotes the segment of y between p and g, oriented such that § starts at p and
ends at ¢, and A € T, \ L denotes the open polygon which contains § \ {p, ¢},
then

g(p) + 1 if the marked point in A is on the left of §,

8@ = {g(p) — 1 otherwise.

The notion of grading carries over to homotopy classes of curves in an obvious way.
A graded curve is a pair (y, g), where y is a curve and g is a grading of y. If g is a grading
of y and n € Z, then so is its shift g[n], defined by g[n](p) = g(p) —nforall p ey N L.
While all arcs can be graded, there exist loops which do not admit a grading and hence
we say that a loop (or generally any curve) is gradable if it admits a grading.

If a curve y is gradable, then any grading g is determined completely by a single
value g(p) for any p € y N L and all gradings of y are shifts of g.

4.2.3. The quiver of a curve and the winding number of a loop. Lety C T, be an oriented
curve. Denote by qq, ..., g, the ordered sequence of elements in y N L, and for each
i € [0, m] denote by L,, the laminate which contains ¢;. Then, we write P; = A,x;
for the indecomposable projective A,-module associated with x; and denote by y; the
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segment of y between ¢; and ¢;+1. The orientation of y induces a canonical orientation
on y;.

This data gives rise to a quiver Q(y) which is of type A if y is a loop and which
is of type A if y is an arc. We will see that for every grading g of y, Q(y) encodes
complexes in the same way as the quivers in Figures 4 and 5 encode the complexes O (1)
and k(i, A).

The quiver Q(y) has vertices { Py, ..., Py} as defined above and arrows oy, . . . , O
whose start and end points are determined by the segments y; in the following way.
For each i € [0,m), o; connects P; with P; ;. More precisely, if e denotes the unique
marked point in the polygon A; 2 y;, we have

P; — P;+1 if e lies to the left of y; in A;,
0; =
' P; < P;y; if e lies to the right of ; in A;.

Definition 4.2. Assume that y is a loop. The winding number w(y) of y is defined as the
difference b — a, where a denotes the number of arrows o; from P; to P;4+; and b denotes
the number of arrows o; from P; 4 to P;.

A change of orientation of a loop changes the sign of its winding number. On the other
hand, one observes that Q(y) does not depend on the chosen orientation as an abstract
quiver. Gradable loops can be characterized as follows.

Lemma 4.3. A loop y is gradable if and only if w(y) = 0 if and only if Q(y) has the
same number of clockwise and counter-clockwise arrows.

Note that whether a loop is gradable or not does not depend on the choice of an
orientation.

Example 4.4. Every boundary component B € 9T, determines an embedding S! — T,
which we regard as a simple loop y after a small deformation. Then y inherits a canon-
ical orientation from B (the induced orientation on dT,). The quiver of y is depicted in
Figure 8 from which we determine its winding number as 2 — 4 = —2. We refer to this
winding number as the winding number of B.

Fig. 8. The quiver of the clockwise boundary loop with 4 clockwise and 2 counter-clockwise
arrows.



S. Opper 186

4.3. The complex of a graded curve
In order to define a complex of a curve, we recall the definition of a local system.

Definition 4.5. Let y be a curve with domain 2. A local system 'V on y consists of
a collection of vector spaces (V;);eq and isomorphisms V,,: V,, 0y = Vy,(1) for every path
u: [0, 1] — € which only depends on the homotopy class of u. Moreover, if v is a path with
v(0) = u(1), then Vys, = 'V, o 'V, where v * u denotes the concatenation of v with u.

The well-defined number dim 'V := dim 'V, is the dimension of V. After the choice of
a base point on €2, one sees that isomorphism classes of indecomposable local systems
(coproducts being defined pointwise) on a loop are in bijection with powers of irredu-
cible polynomials over k and hence with the polynomials (X — A)”, where A € k™ and
m = dim V. On the other hand, every indecomposable local system on an arc is iso-
morphic to the constant 1-dimensional local system, i.e., V; = k for all z € [0, 1] and
every isomorphism V) — V(1) above is the identity.

Let 'V be a local system on a graded curve (y, g). We attach a complex P('y’g)(V) to
the quiver Q(y) by, roughly speaking, “folding” Q(y) to a complex in the same way as
the quivers in Figure 5.

We use the notation of Section 4.2.3. Set V; = V.. Then, as a graded A,-module,

Pl (V) = @(Pi ® Vi)[-g(g:)]-

1

The differential is described as follows. For each i, let #; denote the map between P;
and P; induced by the unique admissible path ¢; determined by the boundary segment
in 9T, N dA; which is bounded by Ly; and Ly, ,, cf. the last paragraph of Section 4.1.
The segment y; of y which is bounded by Ly; and Ly, also determines an isomorph-
ism u; between V; and V;y,. The differential is the sum of all maps #; ® u;, shifted
appropriately. Lemma 4.3 ensures that the procedure above defines a differential. Note
that #;: Py(a;) = Ps(e;) and (x;, xi+1) = (£(e;), s(e;)) if and only if the marked point
in A; lies to the left of y;. Hence, the domain (resp. codomain) of #; agrees with the start
(resp. end) of 0; in Q(y).
The above construction respects direct sums in the sense that

P(.y,g)(u ®V) = P(.y,g)(u) ® P(.y,g)(u)'

In fact, P* = P('y,g)("V) is indecomposable if and only if V is indecomposable and its
isomorphism class is invariant under isomorphisms of local systems and change of ori-
entation on y. If y is a loop and V is indecomposable, then P°* is an instance of a band
complex in the sense of [5, 11]. In particular, TP° =~ P° as first proved by Bobinski [6].
Moreover, dim 'V is the level of P° in the corresponding homogeneous tube.

If y is an arc and 'V is indecomposable, then P° is a so-called string complex. As we
may assume that V is constant, we often suppress the additional datum of a local system
in this case.

Every homotopy H: [0, 1] x € between curves yo = H |joyxq and y1 = H [{1)xq,
which are in minimal position with L, induces a bijection yo N L = y; N L and hence
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a bijection between the sets gradings on yp and y;. Because the domains of Y, and y;
agree, we further have a canonical bijection between local systems on y¢ and y;. The
following statement is found in [31, Theorem 2.12]. The bijection between curves and
indecomposable objects was first proved in [19].

Proposition 4.6. Let X denote the set of triples (v, g,’V), where (y, g) is a graded curve
and 'V is an indecomposable local system on y. Let further ~ denote the equivalence rela-
tion on X suchthat (y,g,V) ~ (v', g, V') if and only if there exists a homotopy between y
and y' under which g corresponds to g’ and 'V corresponds to 'V'. The assignment

(% g, 'V) - P(.y,g)(v)’

induces a bijection from the set of ~-equivalence classes of X to the set of isomorphism
classes of indecomposable objects in D°(A,).

In summary, Proposition 4.6 states that every indecomposable object X € DP(A,)
is represented by a curve endowed with a grading and an indecomposable local system.
To simplify notation, we often refer to such a curve and the local system by yx and Vy,
respectively, so that X = P{yx,g)(VX) for some unique grading g on yx. In this case, we
say that X is represented by yx . Finally, if Y € Perf(C,) is indecomposable, we write yy
and Vy as short for ypy) and Vy(y) and say that Y is represented by yy. As a con-
sequence of Theorem 2.2, we prove in Section 4.3.1 that loops on T, (or equivalently,

on J™) represent precisely the indecomposable perfect complexes of Cj,.

Example 4.7. Let ypi: S' — T, be the loop defined by ypic (€™t := (n-t, %) for all
t € [0, 1]. Similarly, for j € [0,n), let yﬂi(x): S! — T, denote the loop defined by

V]]i(x)(eznit) = + L),

where ¢ € [0, 1]. The curves yp;. and )’u{(’(x) are displayed in Figure 9. Replacing the vertices
of O (ypic) by bullet points and assigning the underlying path of ¢#; as the label of the arrow
0i, O (ypic) becomes the quiver on the left-hand side of Figure 5, whereas Q(yﬁ; (x)) is the
quiver on the right-hand side. Thus, suppressing the grading we have Py, (V) = O(})
and P;ﬁ-( - (W) = k(i, A) for suitable 1-dimensional local systems 'V and ‘W.

Fig. 9. The loops ypjic (horizontal) and Vﬂi ) (vertical).
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4.3.1. Fractional Calabi-Yau objects: Loops and boundary arcs. One of the main dif-
ferences between band complexes and string complexes is that the latter are generally
not t-invariant. A criterion which allows us to characterize the t-invariant indecompos-
able objects in the derived category of any gentle algebra is provided in [30, Proposi-
tion 2.16]. It says that a string complex X satisfies t” X =~ X|[d] for some m > 0 and
some d € Z if and only if yx is homotopic to a boundary arc on a component with
exactly m’ marked points and winding number —d’ such that (m, d) is an integer mul-
tiple of (m’, d’).

Proposition 4.8. Letm > 1, d € Z and let X € DP(A,). Then the following are true:
(1) If 1 X = X|[d], then X is t-invariant or t>X = X[2].

(2) X is t-invariant if and only if each indecomposable direct summand of X is repres-
ented by a loop.

(3) We have 12X = X[2] if and only if each indecomposable direct summand of X is
represented by a boundary arc.

Proof. From Example 4.4 and the discussion preceding the proposition, we know that an
indecomposable object Y € DP(A,) satisfies 7Y = Y [g] for a pair (p,q) € Z? if and
only if there exists (m,d) € {(1,0), (2,2)} such that Y = Y[d]. If (m,d) = (1,0),
Y is represented by a loop, and if (m, d) = (2,2), then Y is represented by a boundary
arc. Suppose that X satisfies 7 X =~ X[d] and X =~ €P;_, X; with each X; indecompos-
able. Then, for each j € [1, r], there exists a non-empty subset J C {1,...,r} such that
j € J and a cyclic permutation 0: J — J such that ™ X; = X;(;[d] foralli € J. Since
ol =1dy, we conclude that r’"‘”Xj = X;[d|J|] and that (m|J|,d|J|) is an integer
multiple of (1,0) or (2,2). Since |J| # 0, one easily derives that either tX; =~ X; for all
i €[l,r]ort?X; = X;[2] foralli € [1,r]. |

Corollary 4.9. Let X € D(A,) be indecomposable. Then X lies in the essential image
of the functor IF: Perf(C,) — DP(A,) if and only if yx is a loop.

4.4. Morphisms and intersections

We recall the relationship between morphisms and intersections of curves. A finite set
{y1,-..,¥Ym} of curves is in minimal position if no three curves from the set intersect
in a single point in the interior (only “double-points”) and for all (not necessarily dis-
tinct) i, j € [1, m], the number of (self-)intersections of y; and y; is minimal within their
respective homotopy classes.

Convention. For the rest of this paper, we will always assume every instance of a finite
set of curves to be in minimal position.

Every finite set of curves can be deformed into minimal position by homotopy, and
hence this assumption does not impose any restrictions on the homotopy classes of the
curves.
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Let (y1, ¥2) be a pair of distinct curves and for i € {1, 2}, let Q; denote the domain
of y;. The set y; A y» of oriented intersections consists of all pairs (s1, s2) € Q1 X Q5
such that p := y1(s1) = y2(s2), and such that if p is a marked point, then locally around p,
y1 “comes before” y, in the counter-clockwise orientation as shown in Figure 10.
A self-intersection of a curve y with domain Q is a pair (s1, s5) € Q2 with 51 # 52

and y(s1) = y(s2).

Y1

<

V2

Fig. 10. An oriented boundary intersection p from y; to y;.

Every interior intersection of y; and ), contributes elements in both y; A y» and
Vo A y1, whereas every boundary intersection determines an element in only one of the
two sets. Frequently, we do not distinguish between an oriented intersection and its image
in the surface.

The following proposition is a special case of [31, Theorem 3.3].

Proposition 4.10. Let X,Y € D°(A,) be indecomposable. Whenever X orY is t-invari-
ant, we assume that its associated local system has dimension 1. If X is not isomorphic
to a shift of Y or yx is an arc, then a homogeneous basis of Hom® (X, Y') is in bijection
with yx A YY.

The remaining case is slightly different. When X is r-invariant with dim Vx = 1 and
X = Y[m] for some m € Z, then [31, Theorem 3.3] states that there exist a homogeneous
basis {¢, w} U d of Hom'(X, Y) and a bijection 4 = yyx n yy, where ¢ € Hom™(X,Y)
is an isomorphism and @ € Hom™*!(X,Y) occurs as the connecting morphism in an
Auslander—Reiten triangle

Y[m]—>V—>Xi>Y[m+l].

We note that the number of self-intersections of a loop y in minimal position coincides
. . . - . . . . . .
with the cardinality of y N y’, where y’ >~ y such that {y, y’} is in minimal position.
We summarize the situation for r-invariant objects as follows.

Corollary 4.11. Let X,Y € D(A,) be t-invariant indecomposable objects such that
dim Vx =1 = dim Vy and yx # yy. With the notation hom" (U, V') := dimHom"(U, V),
we have

(1) yx and yy have precisely hom®(X,Y) intersections;

(2) yx has precisely % -hom"(X, X) — 1 self-intersections.
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Notation 4.12. If X, Y € D"(A,) are indecomposable and p € yx A vy, let
Jfp € Hom*(X,Y)
denote the basis element associated with p.

A remark on degrees: 1If (y, g) and (v, g’) are graded and dimV = 1 = dim V', then every
pPEY A y’ defines an integer deg(p), namely the degree of f5: P('y’g)(V) — P('y,,g,)('V’).
Let A denote the 6-gon which contains p, where as usual we assume that y, " and all
laminates are in minimal position. Let ¢ € JA denote the unique marked point.

Starting in e and following dA counter-clockwise, let us denote by ¢ the first inter-
section of y with a laminate and, following dA further in the same direction, denote by ¢’
the first intersection of ¢’ with a laminate after g. The following is a consequence of the
constructions in [31, Section 3.3].

Lemma 4.13. With the notation above, deg(p) = g'(q") — g(q).

4.5. Mapping cones and resolutions of crossings

Let X be a marked surface. Suppose y, y’ C ¥ are curves in minimal position and suppose
pPEY A y’ is an oriented intersection which is not a puncture. We obtain a new curve by
resolving p as follows. If p € dX, denote by y, the concatenation of y followed by y’
at the end points which correspond to p. If p lies in the interior, we resolve p by cut-
ting y and y’ at p and gluing them back together as shown in Figure 11. In this case, the
resulting path y,, is not necessarily a curve but a multi-curve, i.e., a finite set of possibly
non-primitive curves. We refer to the individual curves of a multi-curve as its compon-
ents. To simplify the notation in the next theorem, we say that an object Z € D°(A,) is
represented by a non-primitive loop y?, where ¢ > 1 and y is primitive, if Z = P('y’g)(‘l,{)
for some local system U corresponding to a polynomial X’ — A, A € k*. Note that for
p = chark and k > 0 such that t = p¥ - m with gcd(m, p) = 1, U splits into m indecom-
posable local systems of dimension p¥. We further say that a multi-curve {y1, ..., ¥m}
represents an object X € D(A,) if there exists a decomposition X =~ P, X; such
that y; represents Xj.

The following theorem states that the resolved curves represent the mapping cone of
a morphism and is taken from [31] with a slight adjustment of the statement due to an
inaccuracy in [16] which we comment on below.

/

14

Fig. 11. Resolution of an interior intersection from y to y’.
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Theorem 4.14 (cf. [31, Theorem 4.1]). Let X, Y € ZDb(An) be indecomposable, let p €
yx N yy and let y, denote the resolved multi-curve. Then y, represents the mapping cone
of fp € Hom'(X,Y) in the sense above.

Phrased in our notation it was claimed in [16, Lemma 2.5] that an object P('y g)(‘l,()
with U corresponding to a polynomial X9mY — ) splits into dim U indecomposable
direct summands of the form P('y 2) (U;) with dim U; = 1. However, as explained above,

this is only true if the characteristic of k does not divide dim U.

4.6. Compositions of morphisms via triangles, bigons and tridents

In this section, we recall the geometric description of compositions of morphisms D°(A ).
Suppose that y1, y2, y3 € T, are curves which have oriented intersections p € y; A V2
and g € y» A y3. Let us denote by T,, a fixed universal cover of T,. By a lift of a loop
y:S! - T,, we mean a lift R — T,, along the universal cover R — § L

Definition 4.15. Let A € R? be a triangle equipped with the induced orientation and

denote by S1, S», S3 the three segments of dA in clockwise order. Moreover, we denote
—

by D? € R? the closed unit disc. Let r € y; N y3. Then the triple (p, g, r) is called

(1) an intersection triangle, if there exists an orientation-preserving embedding ¢: A —
T, such that ¢|s; is a homeomorphism onto a segment of a lift of y; and the corners
of A are mapped bijectively onto {p, g, 7};

(2) adouble-bigon, if all curves are arcs and there exists an orientation-preserving embed-
ding ¢: D* — T, which maps S* N (R x Rx), [-1,1] x {0} and S! N (R x R<o)
bijectively onto lifts of y1, y» and y3, respectively; in particular, ¢ maps p, g and r
to the same point in {£1} C D2.

(3) atridentif p, q, r correspond to the same point on the boundary and locally the curves
are arranged as in Figure 12.

Definition 4.16. In the notation above, define C(p, q) as the set of all r € y; n y3 such
that (p, ¢, r) is an intersection triangle, a double-bigon or a trident.

=

q 72 p

Fig. 12. From left to right: an intersection triangle, a trident and a double-bigon.
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Definition 4.17. Let y,y’ € T}, be curves and let f: X,, — X, be a morphism. The sup-
port of f is the subset supp f C y A y’ consisting of all p € y A ¥’ such that f, appears
with non-zero scalar in a decomposition of f with respect to the basis of Hom"(X, Y')
associated with y A y'.

Compositions of morphisms can now be described in the following way.

Proposition 4.18 ([30, Theorem 2.8]). For curves y1,y2,v3 S Ty, let p € y1 A Y2 and
q € y2 N y3 be intersections and let fp: Xy, — Xy, fq: Xy, = Xy, denote the corres-
ponding morphisms. If y1 % y2 or y1 is an arc, then

supp(fg © fp) = C(p,q).

For later reference, we want to emphasize the following observation.

Lemma 4.19. Let f, g be morphisms between indecomposable objects in D°(A,,) such
that g o f is defined. If f or g is supported only at interior intersections, then so is g o f.

Proof. The assumptions imply that no trident or double-bigon appears in the set C(p, ).
Note that the point 7 in Figure 12 cannot be a boundary intersection due to the definition
of oriented intersections at the boundary. ]

5. Spherical objects as simple loops on tori

In this section, we show that isomorphism classes of spherical objects in D®(A ) are, up
to shift, in bijection with a certain set of simple loops on T;,. We call a curve on a marked
surface simple if all its self-intersections lie on the boundary. In other words, a simple
loop has no self-intersections and a simple arc can only intersect itself at its end points.

Lemma 5.1. Let Y € D%(A,). Then Y is spherical if and only if Y = F(X) for some
spherical object X € Perf(C,). In particular, every spherical object in D°(A,) is 1-
spherical.

Proof. This follows from Theorem 2.2 and Proposition 4.8. ]

Lemma5.2. Let Y € DY(A,). Then'Y is spherical if and only if Y = P('y g)('V), where y
is simple and dim'VY = 1.

Proof. By [2, Proposition 5.16], we have dim Hom® (X, X) > 3 for every t-invariant in-
decomposable object X € DP(A,) such that dim Vx > 2. Thus, such objects are never
spherical and the assertion is a consequence of Corollary 4.11. ]

It still remains to be discussed which simple loops are gradable and hence correspond
to a family of spherical objects.

A simple loop y on a surface X is said to be non-separating if its complement X \ y
is connected. Otherwise, y is called separating.
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Lemma 5.3. Let y C T, be a separating simple loop. Then w(y) # 0. In particular,
y does not represent an object of D®(A ).

Proof. This is a consequence of the fact that w is the winding number function of a line
field, e.g., see [30, Lemma 2.4]. Since y is separating and by additivity of the Euler
characteristic, y bounds a unique subsurface ¥ of genus 0. We denote by By, ..., By
the boundary components of ¥ and assume that y inherits its orientation from X. Since
all boundary winding numbers are equal to —2 (see Example 4.4), it follows from the
Poincaré—Hopf index theorem [21] that

b
o(y) =20 —1) = ) Jo(Bi) = 2x(%) = 4-2b,

i=1
and hence w(y) = 2. |
Corollary 5.4. Let X € Perf(C,) be indecomposable. Then X is spherical if and only
if yx is a simple non-separating loop and dim Vx = 1.

We prove in the next section that every non-separating simple loop on T, is gradable
and hence represents an object of DP(A,).

6. The mapping class group of a torus with boundary

This section discusses the mapping class group of T,, and its connection to auto-equiva-
lences of DP(A,). We recommend [18] for additional information about mapping class
groups.

6.1. Mapping class groups and their connection to auto-equivalences

By an isotopy, we mean a smooth path of diffeomorphisms which is constant on marked
points. To spell this out, an isotopy is a smooth map 7: [0, 1] x T,, — T, such that for all
t €[0,1], the map I(¢z,—): T,, — T, is a diffeomorphism and such that /(¢, x) = x for
all ¢ € [0, 1] and all marked points x € T,.

Definition 6.1. The mapping class group M€§(T},) is the group consisting of all isotopy
classes of orientation-preserving diffeomorphisms H: T, — T, which preserve the set of
marked points. The pure mapping class group P MEEG(T,) is the subgroup of all those
diffeomorphisms which restrict to the identity on 0T,.

The mapping class group and the pure mapping class group fit into an exact sequence
1 = PMEE(T,) — MEE(Ty) 2 &, x 72 — 1, ©.1)

where | restricts a diffeomorphism to the set of marked points yielding an element
in ©, x Z%. A transposition in &, is realized by a so-called half-twist which permutes
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Fig. 13. The action of a half-twist on curves. It acts as the identity outside of a neighbourhood of A
and B.

Fig. 14. The action of a counter-clockwise fractional twist on arcs.

a pair of boundary components, see Figure 13. Another example of a mapping class is
the fractional twist around a boundary component B. It rotates the surface in a collar
neighbourhood of B and acts as the identity outside of this neighbourhood, see Figure 14.

Remark 6.2. Replacing diffeomorphisms by homeomorphisms and smooth maps by con-
tinuous maps in Definition 6.1 leads to isomorphic groups. Below, we will switch freely
between “homeomorphisms” and “diffeomorphisms” and will not distinguish between
continuous and smooth isotopies.

It turns out that there is a close relationship between auto-equivalences of D°(A;)
and mapping classes of its geometric model T,,. The following is a special case of [30,
Theorem C].

Proposition 6.3. There exists a short exact sequence

1= ()" x Z — Aut(DP(An)) —> MEG(Ty, ) — 1, 6.2)

where MEE(T,, w) C MEEG(T,) denotes the subgroup of all mapping classes which
preserve the winding numbers of all loops.

The definition of W is recalled in Section 8.3. The Z-component in the kernel of
sequence (6.2) acts as the shift functor on D°(A,), the (n + 1)-st power of k* by mul-
tiplying the arrows cy, . . ., cy—1 and dy in the quiver of A, with non-zero scalars. For any
auto-equivalence T € Aut(DP(A,)), the mapping class W(T') is uniquely determined by
the following property.
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Fig. 15. The loop u.

Proposition 6.4 ([30, Theorem Al). For all indecomposable objects X € D°(A,),

Y (T)(yx) =~ y1(x)-

In other words, the action of W(T') on curves on T, mirrors the action of 7' on inde-
composable objects of D°(A,,).

Lemma 6.5. Half-twists and fractional twists are elements of ME€E(T,, w).

Proof. Fractional twists act trivially on the homotopy class of any loop and hence pre-
serve all winding numbers. A half-twist, which permutes boundary components A and B,
stabilizes an embedded path § which connects A and B and inverts its orientation. For
example, in Figure 13, § is the horizontal line between A and B which crosses the blue
vertical line transversely. A curve y is affected by the half-twist if and only if y and &
intersect. Locally around an intersection, a segment of y (the blue vertical curve in Fig-
ure 13) is replaced by the blue thick curve on the right-hand side of Figure 13. As a result,
a half-twist preserves all winding numbers if and only if the winding number of the loop u
in Figure 15 vanishes. This can be verified by hand or, more conceptually, by the argument
explained in Remark 6.6. ]

Remark 6.6. Let y:[0, 1] — T, be an oriented (but not necessarily embedded) arc which
cannot be homotoped onto dT,. One can define a gradable loop yi.p as in Figure 15 by
concatenating y with the clockwise simple closed boundary arc based at y(1), followed
by the inverse y~! and the counter-clockwise simple closed boundary arc based at y(0).
Using the homological definition of @, one can give a simple argument for the vanish-
ing of w(Y100p): there exists a homomorphism w: H1(P(T'T,), Z) — Z, where P(TT,)
denotes the projectivized tangent bundle. More precisely, @ is the resulting homomorph-
ism of the intersection pairing with the submanifold of P (7" ¥) determined by a line field.
Further details on the definition of w (in the case of compact surfaces) can be found
in [26]. The derivative y of an immersed loop y in minimal position defines a simple loop
in P(T'T,) and hence defines a class [y] € H{(P(T'T,),Z). Then w(y) = @([y]) and the
claim follows from the observation that [yioep] = [30] - [81], where 8y and 8; denote the
clockwise simple loops around the boundary components which contain y(0) and y(1),
respectively.
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6.2. Dehn twists, Humphries generators and their spherical twists

An important example of a mapping class and the geometric counterpart of spherical
twists is the Dehn twist about a given simple loop y.

Let I be a tubular neighbourhood of y, i.e., a neighbourhood W with an orientation-
preserving diffeomorphism ¢: S x [—1, 1] — W such that ¢| g1 x{0} = V- Then the Dehn
twist about y is the mapping class of the diffeomorphism D,,: T,, — T, definedon T, \ W
by Dy|t,\w := ldT,\w and on W by

Dy ($(z.1)) = ¢(z - 2D 1),

While the diffeomorphism D,, depends on W, its mapping class is well defined. Since
the map ¢ above is assumed to be orientation-preserving, the mapping class of D, does
not depend on the orientation of y.

In analogy to spherical twists (see Corollary 3.7), the set of Dehn twists is closed
under conjugation.

Lemma 6.7. Let y be a simple loop on an oriented surface T, and let F: T, — T, be
a diffeomorphism. Then Doy and F o D), o F ~1 define the same mapping classes.

By classical results of Dehn and Humphries, the group P MEE(T,) is generated
by a finite set of Dehn twists. We refer to the Dehn twists about the loops ypi. and
yﬂg( Xy yﬁ(_xl) as the Humphries generators.

The following is a special case of a theorem due to Humpbhries.

Theorem 6.8 (Humphries). PMEEG(T,) is generated by the Humphries generators,
i.e., the mapping classes of the Dehn twists about the loops Vpic, Vﬂg(x)’ cee, yﬂz(_xl) (see
Example 4.7) as well as the Dehn twists about the simple boundary loops.

Proof. We include a proof in lack of a suitable reference. We regard the surface 7" as
being obtained from T, by gluing a once-punctured disc to every boundary component.
If we denote by By, ..., B,—1 the components of dT,, then [18, Proposition 3.19] asserts
the existence of a short exact sequence

157" - PMEE(T,) — PMEE(T™) — 1. (6.3)

Here, # M€G(7") denotes the pure mapping class group of 7", i.e., the group of self-
diffeomorphisms which fix every puncture modulo isotopies which are constant on all
punctures. The inclusion ¢ sends a tuple (m;) € Z" to the composition of Dehn twists
]—[;';5 DZ’Z_" , where Dp. denotes the Dehn twist around the boundary loop of B;. The
projection 7 sends a diffeomorphism to its radial extension: every self-diffeomorphism ¢
of the annulus S! extends to a self-diffeomorphism @ of D2 \ {(0,0)} defined by
X
@(x) = lx]- o )-
( [lx]l )
By [18, Corollary 4.15] and the discussion leading to it, P MEE (T ") is generated by the
Humpbhries generators. u
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We note that every Dehn twist about a boundary loop acts trivially on any homotopy
class of loops.? In particular, we find the following.

Proposition 6.9. Every Dehn twist about a boundary loop is an element of MC€E (T, w).

The relevance of the Humphries generators for us and the relationship between spher-
ical twists and Dehn twists becomes apparent in the following application of [30, The-
orem C] and Proposition 6.4.

Theorem 6.10. Let X € D°(A,) be spherical. Then W(Tx) = Dy, and for every inde-
composable object Y € DP(A,),

YTy (@) = Dyy (yy).

The following proposition is a direct consequence of Theorems 6.10 and 2.3 and
Corollary 3.7.

Proposition 6.11. Let x € IF’jl C C, be closed and smooth and let £ € Pic®(C), i.e.,
&£ is a line bundle of multi-degree (0, ...,0). Let Y € Perf(C,) be indecomposable. Then

Dyj (yy) is a representative of Ty (x)(Y') and D, (yy) is a representative of Tg (Y').
389)

Corollary 6.12. We have ME€E(T,) = MES(T,, w).

Proof. Let H € ME€5(T,). By (6.1), there exists F € MEE(T,), which is a composi-
tion of half-twists and fractional twists, such that H o F € P MEE(T,). Since Im¥ C
MEE(T,, w), it follows from Theorems 2.3 and 6.10 that the Dehn twists around the
Humphries generators are elements of M€ (T,, w). It therefore follows from The-
orem 6.8 and Proposition 6.9 that PMEE(T,) € MEE(T,, »). Finally, Lemma 6.5
implies F € ME€§(T,,w) and hence H € MEG(T,,, w). |

With Theorem 6.8 and Proposition 6.11 in mind, we show in Proposition 6.13 that
MEG(T,) acts transitively on non-separating simple loops. The proof is essentially the
same as in [18, p. 37]. However, we include it as we need a slightly stronger statement
than what is proved there.

Proposition 6.13. The pure mapping class group P MEEG(Ty) acts transitively on the
set of non-separating simple loops.

Proof. Suppose that y and )’ are non-separating simple loops on T,. Then the surfaces X
and X', obtained from T, by cutting at y and y’, respectively, are both connected surfaces
of genus 0 with exactly n + 2 boundary components. Note that the boundary components
By, ..., B, of T, are canonically identified with boundary components of ¥. We denote
by D1, D (resp. D}, DY) the remaining two components of 9% (resp. 0X').

3By deforming any given loop y, we may assume that the tubular neighbourhood in Section 6.2
of the boundary loop and y are disjoint.
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Since ¥ and ¥’ have the same genus and the same number of boundary compon-
ents, there exists a diffeomorphism ¢: ¥ — X’. After composing ¢ with any orientation-
reversing self-diffeomorphism of ¥ or ¥/, we may assume that ¢ is orientation-preser-
ving. By a series of half-twists, one can permute any two boundary components on X
by an orientation-preserving diffeomorphism which restricts to the identity on all other
boundary components. In this way, we obtain an orientation-preserving diffeomorphism
¢: X — X/, which restricts to orientation-preserving diffeomorphisms B; — B; for every
i € [1,n]. By Lemma 6.14 below, there exists an orientation-preserving diffeomorphism
Y¥: ¥ — ¥ such that ¢ o i restricts to the identity B; — B; for alli € [1,n]. Identifying D
with D, and D with D/, respectively, one sees that ¢ o ¥ gives rise to a homeomorph-
ism H: T, — T, such that H(y) = y’ and which restricts to the identity on B; for all
i €[l,n]. |

The following well-known lemma was used in the previous proof.

Lemma 6.14. Let ¥ be a compact oriented surface, B a boundary component of ¥, and
let f: B — B be an orientation-preserving diffeomorphism, where B is equipped with
the induced orientation. Then, for every closed neighbourhood W of B, f extends to
a diffeomorphism Fy : ¥ — X which restricts to the identity on the complement of W.

Proof. The mapping class group of the circle is trivial: given an orientation-preserving
self-diffeomorphism ¢: S' — S, consider a lift 5: R — R. In particular, dlx+1) =
5 (x) + 1 for all x € R. Then a is orientation-preserving, i.e., strictly increasing, and the
convex homotopy

H:[0,1]xR >R, (t.x)~ (1—0)¢(x)+tx,

is an isotopy which induces an isotopy from ¢ to the identity. Thus, there exists an iso-
topy ¥: [0, 1] x B — B from f to Idg. For U € W a collar neighbourhood of B with
diffeomorphism ¢: U — [0, 1] x B, define Fy as the extension of the identity of £ \ U
by themap iy op: U — U. ]

7. The proofs of Theorems A and C

We give proofs of Theorems A and C from the introduction. For the convenience of the
reader, we state them again.

Theorem 7.1. There exists a bijection between isomorphism classes of spherical objects
on Cy, up to shift, and pairs ([y], L), where A € k* and [y] is the homotopy class of an
unoriented, non-separating simple loop y on the n-punctured torus T".

We will see in Section 8 that .7" is a geometric model for D®(C,). We will derive
this model from T, which is the geometric model for D®(A,). From this point of view,
the appearance of the punctured torus in Theorem 7.1 is not surprising.
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Theorem 7.2. The group of auto-equivalences of D®(Cy,) acts transitively on the set of
isomorphism classes of spherical objects in Perf(C,).

Proofs of Theorems 7.1 and 7.2. We recall that homotopy classes of loops on T}, are nat-
urally in bijection with homotopy classes of loops on .7 and so it is sufficient to give
a bijection between isomorphism classes of spherical objects in Perf(C,) and non-sepa-
rating simple loops on T}, instead. According to Corollary 5.4, an indecomposable object
X € DP(C,) is spherical if and only if yy € T, is a simple non-separating loop and
the associated local system Vx has dimension 1. The parameter A € k* in Theorem 7.1
specifies the isomorphism class of Vy after choosing a base point for yx. To finish the
proof of Theorem 7.1, it is left to prove that every simple non-separating loop is gradable
and hence represents a spherical object. In order to prove Theorem 7.2, it is sufficient
to show that for every spherical object X € Perf(Cj,) there exists an auto-equivalence T'
of D°(C,) such that T(X) = k(z)[m], where m € Z and z € C,, is a smooth point. Since
Aut(C,) acts transitively on its set of smooth points, this will imply Theorem 7.2.

Let X € Perf(C,) be spherical. By Corollary 5.4, y = yx is a simple non-separating
loop on T,, and by Proposition 6.13, there exists a mapping class H € PMEEG(T,)
such that H(y) ~ )/Ilg(x)' Since Dehn twists about boundary loops act trivially on homo-
topy classes of loops and by Theorem 6.8, we may assume that H is a composition of
Humphries generators and their inverses. By Proposition 6.11 and Corollary 3.7, there
exists T € Aut(D(C,)), which is a composition of spherical twists (and their inverses) by
skyscraper sheaves of smooth points and Oc,,, with the property that F (7' (X)) is represen-
ted by H(y) >~ Vu(g)(x)' Thus, F(T(X)) = k(0, A)[m] for some m € Z and A € k*. Since F
is an embedding, 7'(X) is isomorphic to a shift of k(z) for a smooth point z € Py € C,.
This finishes the proof of Theorem 7.2.

The proof above and Proposition 6.13 also show that every non-separating simple
loop on T, represents a spherical object of Perf(C,). Namely, y above is represented
by T7!(k(z)). Together with Corollary 5.4, this completes the proof of Theorem 7.1. =

8. A surface model and auto-equivalences of the derived category of a cycle

We describe the group of auto-equivalences of D°(C,). The result is derived by regard-
ing D°(C,) as the Verdier quotient of D°(A,) at objects which are represented by
boundary arcs. The underlying idea to contract boundary arcs by passing to a localiza-
tion was used in [19] to classify indecomposable objects in the partially wrapped Fukaya
categories of a graded marked surface X in terms of curves. For our purposes, we use the
same approach to provide a topological description of morphisms and their compositions
in DP(C,) as in the case of the category DP(A,). We note that the approach by local-
ization was used by Lekili and Polishchuk [24] to prove equivalences between derived
categories of certain stacky nodal curves (which includes the case C,) and wrapped
Fukaya categories of punctured surfaces in the sense of [19]. The topological model
for DP(C,) reflects this relationship.
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8.1. The category of boundary arcs, the category of loops and perpendicular categories

Definition 8.1. Let Dyy0p < DP(A,) denote the additive closure of indecomposable ob-
jects which are represented by loops and denote by 9Dy the additive closure of all indecom-
posable objects which are represented by boundary arcs.

The following is a consequence of Proposition 4.8 and characterizes the categories D
and Dioop-

Proposition 8.2. The category Dy coincides with the full subcategory of objects X €
DO(A,) suchthat t> X = X [2] and Dioop is the full subcategory containing all T-invariant
objects. In particular, Dioop is the essential image of F.

We recall the notion of perpendicular categories.

Definition 8.3. Given a full subcategory U € D°(A,), its right perpendicular cate-
gory UL is the full subcategory consisting of all objects X € D°(A,) such that
Hom*(Y, X)= 0 for all Y € U. Similarly, the left perpendicular category +U is defined
by interchanging the roles of X and Y.

An application of the five lemma shows that both perpendicular categories are trian-
gulated. Moreover, X @ Y € U~ if and only if X, Y € UL, i.e., perpendicular categories
are thick subcategories.

Lemma 8.4. We have
1 1 1 1
j)loop =Dy = c1)100p and oT)loop = c1)100p =Dy~ .
In particular, the categories Dioop and Dy are triangulated.

Proof. If X € Dioop and ¥ € Dy, then any pair of direct summands of X and Y is rep-
resented by disjoint curves on T,. Thus, there are no non-zero morphisms between X
and Y in any direction. In particular, J-i)l(,op DDy < éDlOOPJ‘. Any indecomposable object
of D°(A,) is either contained in Dioop or is represented by an arc and hence has a non-
zero morphism to some object in Djy. This proves the equality of Dy and the perpendicular
categories. The same type of arguments imply the second equality. |

Lemma 8.5. Let T € Aut(DP(A,)). Then T restricts to auto-equivalences of Dioop and
Dy, respectively.

Proof. Since T lies in the center of Aut(DP(A,)), Proposition 8.2 implies that both sub-
categories are stable under triangle equivalences. ]

8.2. A geometric model of the derived category of C,, via Verdier quotients

8.2.1. Digression: Verdier quotients by thick subcategories. Let T be a triangulated cat-
egory and let U be a thick subcategory. The Verdier quotient of T by U is a triangulated
category /U and an exact functor 7 = mq: T — T /U such that U is in the kernel
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of m and = is universal with this property The objects of 7/ U are the same as the objects
of 7 and 7(X) := X for all X € 7. A morphism from an object X to an object Y is an
equivalence class of roofs («, f)

w

X Y,

where W € 7 and o and f are morphisms in 7 such that the mapping cone of « is an
object of U. P
Two roofs XE<WLyY and X <— W' LY are equivalent, if there exist a roof

X<U3yYand maps w: U — W and w’: U — W’ which make the following dia-

gram commutative:
o | S
w

X <X U--Ysy.

N A
M

fx < W 1) YandY ﬁ W, 5 Zare roofs, we can form the homotopy pullback
W' = Wy xy W, along f and B. If u: W/ — W, and v: W/ — W, denote the structure
maps of the pullback, the composition (8, g) o («, f) is the equivalence class of the roof

N
TN

Finally, a triangle in 7 /U is distinguished if and only if it is isomorphic to the image
of a distinguished triangle in 7 under 7.
We will frequently use the following standard facts:

e A morphism f: X — Y in T becomes invertible in 7 /U if and only if the mapping
cone of f lies in U. In particular, 7(U) = O forall U € U.

e Two morphisms f, g: X — Y are identified in 7 /U if and only if f — g factors
through U. In particular, the canonical map Hom(X, Y) — Hom(z(X), (X)) is an
isomorphism if X € U or ¥ € U*L.
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o If 7(X) =~ n(Y), then there exists a morphism o € Hom(X, Y) U Hom(Y, X)) whose
mapping cone is an object of U.

o IfX €7 and U € U, then the canonical maps X — X @& U and X & U — X induce
mutually inverse isomorphisms in 7/ U.

Proofs of the first two statements above can be found in Neeman’s book [29, Lem-
mas 2.1.35 and 2.1.26]. The last two follow easily from the composition law and the fact
that every roof X LIwiEyis equivalent to the composition (£, Idy) o (Idw, g).

8.2.2. The Verdier quotient by the boundary category. The following proposition serves
as the basis for the geometric model. It was first proved in [23].

Proposition 8.6. There exists a triangle equivalence
G: DP(A,) /Dy => DO(Cp).

Proof. Since Dj is triangulated, the quotient is well defined. As shown in [12, Theor-
ems 2 and 6], there exists an exact functor G: Coh X,, — Coh C,,, where X,, denotes
the non-commutative curve mentioned at the beginning of Section 2. The kernel of G
is a semi-simple abelian category 7. Moreover, it is proved in [12] that G induces an
equivalence between the Serre quotient Coh X, /T and Coh C,. By a result of Miyachi
[28, Theorem 3.2], the derived functor of G induces an equivalence

D°(Xn)/ D§ (Xn) => D°(Cn),

where 50'7{ (X},) denotes the full subcategory of all objects whose cohomologies lie in 7.
By induction and the use of truncation functors of the standard z-structure in D°(X,,), we
see that D.(X,,) coincides with the triangulated hull 7 of T inside D°(X,) ~ D°(A,).
Proposition 12 in [12] and its proof generalize to arbitrary cycles in the obvious way, and
we observe that T consists precisely of appropriate shifts of all the complexes
bi a; d; ci

Py —> Psoy) = Psay) and - Pray) —> Py — Pse)s (8.1)
where i € Z,. For eachi € Z,, these complexes represent the two segments on the bound-
ary component B; cut out by the marked points. By [31, Theorem 4.1], the concatenation
of two arcs at a marked point p represents the mapping cone of the morphism associated
with p. It follows that the complexes in (8.1) generate Djy;. In particular, T = Dy which
establishes the claimed equivalence. ]

Remark 8.7. The restriction of a Verdier quotient functor to the perpendicular category
of its kernel is fully faithful. By Lemma 8.4 and Proposition 8.6, we obtain an embedding
& Diop — DP(Cp). In fact, it follows from [12, Theorem 6] that & o F is isomorphic
to the identity functor of Perf(C,,).

In the subsequent sections, we denote by 7: D°(A,) — DP(A,)/D; the localization
functor.



Spherical objects, transitivity and auto-equivalences of Kodaira cycles 203

8.2.3. Indecomposable objects of D°(Cy,) as curves on the n-punctured torus. We give
an interpretation of isomorphism classes on indecomposable objects in D®(C,) as curves
on the n-punctured torus. Our classification follows already from the results in [19]. How-
ever, since some of the intermediate results will be useful in later parts of this paper,
we include a slightly more detailed proof of the classification result which avoids the lan-
guage of Ao-categories. In what follows, we denote a mapping cone of a morphism f in
a triangulated category by Cy.

For our description of indecomposable objects in D°(C,), we need a mild generaliz-
ation of [31, Theorem 4.1] which states that if p is an intersection of two arcs at a marked
pointand f = fp, then yc, is obtained by concatenation of the original arcs at p.

Lemma 8.8. Let Z1, Z> € D, let X € D°(A,) be indecomposable and let f:Z, &
Z, — X be a morphism whose components f;: Z; — X correspond to boundary inter-
sections p; € Yz, A yx at distinct end points of yx. Then Cyr is represented by the
concatenation of yx with yz, and yz, at py and p.

Proof. Following the explicit description in of [31, Section 3], we see that f; is of one of
the following shapes:

Z; --—- ¢ — @ — .- — 0 --—- o
5 e or {ﬂ (8.2)
¥

The rows represent the quivers of Z; and X respectively with arrows being replaced by
unoriented edges for the sake of generality, so that each horizontal line represents one of
the maps #; ® u; in Section 4.3 which constitute the differential. The vertex o represents
the projective module at the end of a string complex. Downward arrows indicate maps
induced by non-trivial admissible paths and double lines represent isomorphisms. Dashed
lines and dashed arrows may not be present.

Chain maps as in the left diagram are called graph maps, and maps as on the right-
hand side are called singleton single maps in [2]. For example, the identity map of a string
or band complex is an instance of a graph map. If it exists, let & denote the unique down-
ward arrow in the diagram associated with f;.

If f; is a singleton single map, then its mapping cone (as a chain complex) is a string
complex and its quiver is obtained by joining the quiver of Z; (the upper row of the
diagram) with the quiver of X by the arrow f.

If f; is a graph map and « exists, then in the leftmost square in (8.2), the upper and
the lower horizontal lines are oriented the same way in the original quivers of yz, and yx.
Let v denote one of the diagonal arrows in (), that is,

(8.3)

o or a

°
I
I
I
¥

°
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If v is a map which renders the corresponding diagram in (8.3) commutative, then v cor-
responds to an endomorphism v: Cy, — Cy, of graded A,-modules (not chain complexes)
of degree 0 such that v2 = 0. Hence, 1 — ¥ is an invertible graded map and one can verify
that after conjugation with 1 — v, Cy, becomes the direct sum of chain complexes whose
representation by quivers is

-- e * — — o
=
—— e ® — +++ — O

The second direct summand is contractible and the first is a string complex which is
represented by the concatenation of yx and yz; at p;.

The proof is analogous, if « is not present in which case the horizontal arrows in the
upper and lower rows in (8.3) will have mutually opposite orientations.

After this preparation, the actual proof of the assertion is quite short: If p; and p,
correspond to distinct ends of yx (even though these might correspond to the same marked
point in T,,, e.g., if yx is closed), then the above transformations of the complex can be
performed independently without interference as graph maps at different ends of a string
complex cannot overlap other than at the arrow «. In particular, Cy is represented by the
concatenation of yy with yz, and yz, at p; and p,. ]

Remark 8.9. In terms of diagrams as in (8.2), the connecting morphism
Cr —> (Z1® Z7)[1]

is given by the projection onto the upper row, and the map X — Cy is the inclusion
of the lower row. If Cy 2 0, both correspond to graph maps or singleton single maps
under the transformations in the proof of Lemma 8.8 and are represented by the “obvious”
intersections as illustrated in Figure 16.

In order to understand when two indecomposable objects are isomorphic, we need to
understand distinguished triangles whose mapping cone is an object of Dy, or equival-
ently, mapping cones of maps Z — X, where Z € 9, and X € D°(A,) is indecompos-
able. The following lemma serves as a preparation.

Crief

Fig. 16. The curves of the objects X, Z1, Z» and the mapping cone Cy, g f,- The intersections e
represent the maps f1, f2 as well as X — Criop and Crgr, — (Z1® Zy)[1].
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Lemma 8.10. Let T be a triangulated category and for i = 1,2, let B;: Z; — X be
a morphism in T . If there exists p: Z1 — Z such that B1 = B3 o p, then

Cpiop, = Zi1] @ Cg, -

Proof. Consider the commutative diagram

Z1® Z, (b1 P2) X Cg,08, (Z1 @ Zy)[1]
~(31)] | | Joo
T
Zi@z, 0P x Q) e, (Z, ® Z)[1].

1d 0
(5a)
The vertical maps in the diagram are invertible and its rows are distinguished triangles.

The lower row is the direct sum of a distinguished triangle involving B, ¢ and d and
a split triangle. ]

Lemma 8.11. Let 0 # f: Z — X be a morphism in D*(A,), where Z € Dy and X
is indecomposable. Then Cy = Z' @ W, where Z' € Dy and yw is obtained from yx
by clockwise rotations at its end points. Moreover, the connecting morphism Cy — Z[1]
is a sum of a morphism Z' — Z[1] and a morphism W — Z[1] which is supported at
a single intersection.

Proof. Choose a splitting Z = P, Z¢ into indecomposable summands. By splitting of
summands using Lemma 8.10, we may assume that each component Z¢ — X of f is non-
zero. Let f¢ =) f denote the corresponding decomposition of f'|z« such that for all
and all i # j, f;* and f/ _are non-zero multiples of morphisms associated to distinct
intersections pf', pi € yza N yx ._For each pair (a, i), _t)here exist an object Z¢ € 9 and
boundary intersections g¢ € yza N yze and S yza N yx such that pi € C(gé,tf), see
Definition 4.16. In particular, if of: Z¢ — Z¢ and B{: Z{ — X denote the corresponding
morphisms, then f; is a non-zero multiple of B¢ o . The above conditions determine
the homotopy class of Yza as well as g¢ and #{ uniquely. In particular, we observe that
for all pairs (a,i) and (a, j), yze and Vze differ by full rotations around the boundary
and therefore have identical end points.

Our goal is to apply Lemma 8.10 to compute Cy. The set Z = {Z{} is ordered by the
condition that Z§ < Z; b if and only if there exists a morphism p: Z¢ — Z; b associated
with a boundary 1ntersect10n such that B{ is a non-zero multiple of ﬁb op. We note that
the relation < is transitive and reflexive but in general not anti-symmetric as distinct Z{
and Z; 5 may be isomorphic. Moreover, Z} and Z; b are not necessarily <-comparable but
they are if £ and tb correspond to the same end point of yx. Hence, Z naturally splits
into two (p0531b1y empty) subsets Z = ZT LU Z~, one for each end point of yx, such
that any two elements from the same subset are <—comparable. We denote by Z* any
(fixed) <—maximal element in Z* and by z*: Z* — X the corresponding map from the

set {B7}.
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Seta i= P,y @f and f* = @Z;zezi B¢. Then «, B and B~ are supported only
at boundary intersections. We also write 8 = B+ + 8~ so that B o = f after rescal-
ing each af such that 8 o af = f;*. Then B factors through z* and hence B factors
through z* @ z~. Finally, the octahedral axiom shows the existence of a distinguished
triangle

Cy — C5 — Cg —> Cyl].

Note that the map w can be chosen to be a composition of maps u: Cg — ( Z¢)[1] and
v[1]: (B Z{)[1] — Cy[1] which appear in distinguished triangles

P z¢ Lox o Cp — (D ze)l.
Z-5@Pze— o — 20

It follows from Remark 8.9 that w = 0. Finally, Lemma 8.10 and the fact that Cy € Dy
imply that Cy = Cg & Cy = C,+ g, ® Cy. Now, the assertion follows from Lemma 8.8
and Remark 8.9. [

Remark 8.12. Dual versions of Lemma 8.10 for morphisms X — Z; and Lemma 8.11
for morphisms X — Z are proved in the same way.

The inclusion T, € 7" induces a surjective map from the set of homotopy classes
of curves on T, to the set of homotopy classes of curves on .7". More precisely, we
view " as being glued from T,, and a 1-punctured disc (the puncture being the center)
for each boundary component of T,,. Given a curve y on T,,, we apply the radial contrac-
tion of each disc to its puncture in the center. This yields a curve ¥ on 7" with the same
domain as y. If y is an arc with end points on boundary components By and B,, then y is
an arc whose end points are the punctures associated with By and Bs. If y is a loop, then
so is y. We further observe that if y;, y» € T}, are arcs, then y; =~ 5 if and only if y;
and y, are obtained from each other through an application of fractional twists.

Proposition 8.13. There exists a bijection between isomorphism classes of indecompos-
able objects of D®(Cy), up to shift, and homotopy classes of curves on T" equipped with
indecomposable local systems. More precisely, if X € D°(A,) is indecomposable and
(y,V) is its associated curve y with local system 'V, then (y,V) is the pair assigned to
G on(X) e DY(Cp).

Proof. Let X € DP(A,) be such that no direct summand of X lies in Dj;. If n(X) is
indecomposable and X =~ X; & X, then by additivity of 7, 7(X) = n(X;) & 7(X>3).
Consequently, if 7w(X1) 2 0, then X, € Dy which shows that X is indecomposable
whenever 7 (X) is. Next, suppose that X is indecomposable and 7w (X) = 7(Y), where
Y € D°(A,). Then Y is isomorphic to the mapping cone of a map g: Z — X, where
Z € Dy. By Lemma 8.11, Cg = Z' @ W, where Z' € Dy and W is indecomposable
such that yy is obtained from yx by rotation at end points. By restricting to the case
Y =Y, ® Y, and using the Krull-Remak—Schmidt property of D°(A,), we see that
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7(X) = (W) is indecomposable. On the other hand, if Y € DP(A,) is indecomposable
such that yy and yy differ by rotations at end points, then 7 (X) = 7 (Y) up to shift by
Lemma 8.8. ]

Notation 8.14. By abuse of notation, we will occasionally use yy for both the curve
y = yx € T, of an indecomposable object X € D(A,) and the curve ygor(x) C T
which represents 4 o w(X) € D°(C,). As explained above, the latter is given by y.

8.2.4. Morphisms in D°(C,) as intersections of curves. We extend the graphical descrip-
tion of morphisms and compositions to the category D°(Cj,). The computations of morph-
isms in the Verdier quotient of £D°(A,) “at the boundary”, which we obtain in this
subsection, are by no means specific to the algebra A, and can be generalized to arbitrary
gentle algebras and similar Verdier quotients, see Remark 8.28.

To begin with, we recall the definition of exceptional cycles in a triangulated category
due to Broomhead, Pauksztello and Ploog.

Definition 8.15 ([8]). Let r > 2. A collection {U; };cz, of objects in a triangulated cat-
egory 7 with Serre functor § is an exceptional r-cycle if

(1) every object U; is exceptional, i.e., dim Hom*(U;, U;) = 1;
(2) foreachi € Z,, there exists m; € Z such that SU; = U;11[m;];
(3) Hom"(U;,U;) =0, unless j =iorj =i+ 1.

As in the case of spherical objects, every exceptional cycle U = {U;} induces an
auto-equivalence 79 [8] described by the evaluation triangle (3.1), where X = ®;ez, U;.

For every component B C 9T}, the segments on B between the two marked points
correspond to an exceptional 2-cycle U}, U t% which follows from [30, Section 2.5]. We
set Up .= U I} e U ; and denote by Tp the associated twist functor. From Corollary 3.7
(which is also true for Tg), we conclude that 7 and Tp, commute for any pair of com-
ponents B, B’.

Corollary 8.16. The functor ¥ := [] BcaT, 1B, the composition of the twist functors T,
is well defined up to isomorphism of functors.

It follows from [31, Corollary 5.2.] and Lemma 8.11 that ¢ coincides with 771 on
the level of objects so that W(}) = W(r™') € MEE(T,). In the case of discrete derived
categories, such a statement was already proved in [8]. In fact, even the following is true.

Proposition 8.17. There exists an isomorphism of functors & ~ 171,

Proof. The mapping class W(#7) is trivial. By Proposition 6.3, it is therefore a com-
position of a shift and an equivalence which is induced by an automorphism of A,
which multiplies each arrow o € {do} U {c; }iez, in the quiver of Figure 2 with a scalar
Aq € k*. We have 01(Y) = Y for all ¥ € Dioop = LD, In particular, this applies
to @ (L) and all objects k(7, ) which shows that the shift is trivial and A, = 1 for all
a € {do} U{citiez,- L]
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For each boundary component B € 9T}, the definition of Tp gives rise to a natural
transformation nZ:1d obv(A,) —> TB givenon X by the map X — Tp(X) in the evaluation
triangle. Again, the composition of all % is independent from the order of composition
and defines a natural transformation #: Idgv(a,) = . That is, if By, ..., B, are the
components of 9T, and 7(i) := n5i, then ny is equal to the composition

n(Mx "7, 0
X —— TB] (X) _— T32 o TBI(X) —> s —> Z9(X)

Remark 8.18. The natural transformation 7 gives a different explanation for the natural
transformation Id gv(conx,,) — ™! from [12, Corollary 1] in the derived category of the
non-commutative curve X,.

Forall X,Y € DY(A,), n induces an infinite tower of graded k-linear maps
Hom'(X,Y) — Hom"(X, 9 (Y)) — Hom" (X, 93(Y)) — ---

which allows us to define its colimit. Moreover, for each number m > 0, n give rise to
a map
Hom' (X, 9™ (Y)) > Hom'((X),n(Y)), [ — (a,97"(f)), (8.4)

where o: 97" (X) — X is the map induced by the m-fold power 5™ of 1. More precisely,
n™:1d — ¥ is given on X by the composition

X 25 90x0) 229 92(x) - - 9M(X).

Lemma 8.19. Let X, Y € D°(A,,). Then the diagram

Hom'(X,Y) —7Y°" | Hom'(X,9™(Y))

canl /

Hom' (7(X), 7(Y))
commutes.

Proof. Let f: X — Y. Denote by ay: Y — ¢™(Y) and ay: 9 ™(X) — X the maps
induced by 7™ and set g := ay o f. Consider the diagram

97(X)

X — 9mx) X Iy,

where each unlabelled arrow represents the map ay. As ™ is a natural transformation,
it follows that f o axy = 7™ (g). Thus, the above diagram commutes and the roofs
(Idy, f) = n(f) and (ax, 67" ((n™)y o f)) are equivalent. |
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Lemma 8.20. Let X, Y € D°(A,) such that no direct summand of Y lies in Djy. Then
there exists | > 0 such that for allm > [, the map Hom" (X, 9™ (Y)) — Hom" (7 (X),7(Y))
is injective. In particular, for allm > [, the map Hom" (X, 9™ (Y)) — Hom" (X, 9™ 1(Y))
is injective.

Proof. Since no direct summand of Y lies in &y, the graphical description of composition
shows that a morphism f: X — Y factors through D if only if all p € supp f are interior
intersections and p bounds an immersed intersection triangle whose other two corners
are end points of yx and yy, and whose third side is a boundary arc. As ¢ is given by
clockwise rotation of the boundary, we see that yx and ygm ) cannot bound any such
triangle for m large enough. For all such m, the first map is injective. Injectivity of the
second map follows from Lemma 8.19. ]

The following proposition describes the morphisms in D°(C,).

Proposition 8.21. Let X, Y € D(A,) such that Y has no direct summands in Dy. Then
the maps Hom® (X, 9 (Y)) — Hom"((X), 7(Y)) induce an isomorphism

coi)nHom'(X, ' (Y)) = Hom'((X), 7 (Y)).
ieN
Proof. By Lemmas 8.19 and 8.20, the map exists and is injective. We may assume that X
is indecomposable. Let g: 7(X) — 7 (Y) be a morphism and let («, ) be a representing
roof of g, where «: W — X and f: W — Y. We may further assume that W is indecom-
posable because 7 (X) is indecomposable. Indeed, it follows from Lemma 8.10 and the
proof of Lemma 8.11 that W =~ X’ & Z’, where X’ is indecomposable and Z’ € Dj.
We then can replace (¢, f) by the roof (@ o ¢, f o), where t: X’ — W denotes the nat-
ural inclusion.
By definition, the morphism o: W — X sits in a distinguished triangle

zZ-5 w5 x -z,

where Z € Djy. Since X is indecomposable, Lemma 8.10 and the proof of Lemma 8.11
show that Z must be indecomposable and yx is obtained from yy by a number of positive
rotations at its end points. Let us denote by r and s the necessary numbers of such rotations
at each end point. We denote their maximum by m and claim that there exists a map
w: 9™ (X) — W such that @ o w: 9 ™™ (X) — X is induced by ™. In this case, the roof
(¢ ow, f ow) is equivalent to (&, f) as can be seen from the commutative diagram

w

/“’T*

pm(x) Ly,

T~

97" (X)

X
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where all unlabelled arrows are induced by n™. Then 3™ ( f o w) € Hom(X, 9™ (Y)) is
a preimage of g. Once again, the existence of w can be read off from the surface: « corres-
ponds to a single intersection (Remark 8.9) which forms an intersection triangle with the
intersection corresponding to ng-m(x) and a boundary intersection p € yy—m(x) al YW .
We define w as a suitable multiple of f,. |

Proposition 8.21 can be rephrased in the following way.

Theorem 8.22. Let X, Y € D°(C,) \ Perf(C,) be indecomposable. Then there exists
a bijection between a homogeneous basis of Hom" (X, Y') and the set consisting of

(1) all interior intersections of yx and yy, and

@

foreach p € yx A yy which is a puncture.

(2) paths in the loop quiver

Proof. Let X', Y’ € DP(A,) such that 7(X’) = X and 7(Y’) = Y. We may assume
that the cardinality of X’ A Y’ coincides with the number of intersections of X and Y.
In particular, the boundary intersections of yx- and yy- are in bijection with intersections
of yx and yy at punctures. Moreover, every interior intersection p € yx N yy corresponds
to a unique interior intersection p’ € yxs N yy’, and 7 (fy/) is by definition an Element
in the claimed basis element in the claimed basis of Hom"(X,Y). Let p € yx N yy be
a puncture and let ¢ denote the corresponding boundary intersection of yx- and yy-. Then,
for every m € 27, q € yy-m(x7) A yy- and the paths in the loop quiver of p correspond
to roofs

X < O™M(X) —fq—> Y'[deg q],
i.e., the image of 9™ ( f;) under the map Hom'(X’, 9™ (Y’)) — Hom"(X,Y). |

Remark 8.23. The morphisms in Theorem 8.22 (2) can be visualized as intersections
as follows. Let .7 denote the universal cover of 7", where all punctures are thought as
being removed from the surface. Then, locally around a puncture p, 7" is homeomorphic
to C*. Using polar coordinates and the identifications (-, 7) = R = (0, 1), 7 can be
identified locally with the open unit disc Dy with a slit [—1, 0] x {0} removed. Arcs with
end point at p are lifted to non-compact arcs with limit O € D). The various morphisms
arising from an intersection of yy and yy at p then correspond to the intersections at 0
between a fixed lift of yy and the different lifts of yy.

Remark 8.24. The isomorphism in Proposition 8.21 is compatible with compositions in
the following sense. For X, Y, Z € O‘Db(An), consider the tower consisting of the objects

Hom" (X, 9" (Y)) x Hom(8 (Y), 9*(Z)).

and the product of the maps Hom" (X, 9 (Y)) — Hom"(X, #**1(Y)) with the canonical
maps Hom(?* (Y), 9 (Z)) — Hom(#* 1 (Y), 9 *1(Z)) induced by &. Each object in the
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tower has a composition map to Hom"(X, #™(Z)). As 9 is an equivalence, the colimit
of this tower is naturally isomorphic to

coi)n Hom' (X, #'(Y)) x Hom"(Y, Z)
ieN
and has an induced composition map to Hom* (X, Z). Under the isomorphism in Propos-
ition 8.21, this coincides with the usual composition map. This observation allows us to
interpret compositions in H°(C,) in a similar way as in the category D°(A ) via tridents,
triangles and double-bigons in the universal cover T of 7" whose corners are allowed
to converge to a puncture, see Remark 8.23.

Example 8.25. Suppose 8¢, 81,62 S 7" are arcs which meet at a puncture as in Fig-
ure 17. The intersection generates a subalgebra of End'(G}?z1 Xs;) which is isomorphic
to the path algebra of the quiver shown on the right-hand side of Figure 17. The degree of
a full cycle equals 2, i.e., the inverse winding number around the puncture. The paths in
the loop quiver in Theorem 8.22 of the pair Xs,, X5, correspond to the paths () (yBa),
i>0.

51 51

52 82

Fig. 17. Example of the quiver associated to the intersections of three arcs at a puncture.

Remark 8.26. Distinguished triangles in D®(A,)/ Dy are isomorphic to images of dis-
tinguished triangles in D®(A,). This allows us to determine the curve of the mapping
cone of any morphism which corresponds to an intersection. The only new and interest-
ing case appears for an intersection at a puncture. Consider arcs 81, §, as in Example 8.25.
Fori > 0,let £ denote the morphism which corresponds to the path (ay)? 8 in Figure 17.
Then Cyi extends §; and 8 outside a small neighbourhood of p and winds around the
puncture counter-clockwise i times. Figure 18 shows the curves of C Fi fori =0,1,2.
The general case is analogous.

Fig. 18. The mapping cones of 0, f1 and f2 (from left to right).
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Fig. 19. The vertical arc § represents the structure sheaf of a singular point. White circles indicate
punctures.

As an easy application of Theorem 8.22, we can now describe the curves which rep-
resent the structure sheaves of singular points.

Corollary 8.27. Let z € C,, be singular. Then k(z) is represented by a vertical simple arc
8 € T which lies between two loops ylf(\(x) and yﬁJ;) as shown in Figure 19.

Proof. Let us denote by y a representative of k(z) in minimal position. Then y is an
arc as k(z) is not perfect. Since dim Hom'(k(z), O¢c,) = 1 = dimHom'(Oc¢,,, k(z)) and
Hom"(k(z),k(x)) = 0 = Hom"(k(x), k(z)) for all x # z, y must intersect yp;. exactly
once and must be disjoint from any loop Vﬂi( X" The only homotopy classes of arcs which
satisfy these constraints are of the claimed shape. ]

Remark 8.28. Theorem 8.22 and the arguments outlined in Remark 8.24 generalize to
the following situation. Suppose A is a gentle algebra and let ¥ = 34 denote its marked
surface (X = T, in case A = A,). We assume that ¥ is not a cylinder or a disc. A con-
struction of X4 and its relation to DP(A) are found in [31]. As in the case A = A,, and for
every subset C of boundary components of X, one can define the thick subcategory D¢
which is generated by all objects which are represented by a boundary arc on a compon-
ent of C. In special situations, D¢ can contain t-invariant objects which correspond to
boundary loops, namely if the winding number of the boundary components vanishes.
As in the case of the present paper, one can express objects, morphisms, compositions
and certain mapping cones in the Verdier quotient D(A4)/Dc through the surface T¢
which is obtained from X by gluing punctured discs to every component in C. The proofs
we presented here generalize with minor adaptations in order to account for the special
situations described above.

8.3. Auto-equivalences and diffeomorphisms of punctured tori

We study the relationship between auto-equivalences of D°(C,) and diffeomorphisms
of 7", Inspired by the homomorphism W: Aut(D°(A,)) — MEE(T,), we construct
a surjective homomorphism of groups

T: Aut(D°(Cp)) — MEEG(T™).

The group MEE(F") will be defined below. The underlying idea of the construction
exploits the relationship between the groups of automorphisms of the arc complex of
a surface.
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8.3.1. Arc complexes and their automorphisms.

Definition 8.29. Let X be a compact, oriented surface with or without boundary and
a finite set of marked points. The arc complex A(X) of X is the abstract simplicial com-
plex whose m-simplices are collections of m + 1 homotopy classes of simple arcs which
are pairwise disjoint away from their end points.

We refer to O-simplices as vertices and to 1-simplices as edges.

Remark 8.30. A(X) is a flug complex which means that m + 1 vertices of A(X) form
an m-simplex if and only if they are pairwise connected by an edge.

Remark 8.31. The inclusion T,, < .7 (as defined in Section 4.1) induces a surjective
simplicial map c: A(T,) — A(Z") which maps the homotopy class of a simple arc
y € T, to the homotopy class of an arc ¥ C 7" by connecting each end point of y on
a component B with the respective puncture which is enclosed by B.

It is clear that every self-diffeomorphism F of X induces a simplicial automorph-
ism ®*(F) of A(X). We write Aut(4(X)) for the group of simplicial automorphisms
of A(X), so that ®¥(—) becomes a group homomorphism

DT MEEE(T) > Aut(A(X))

defined on the extended mapping class group of X, i.e., the group of isotopy classes
of all self-diffeomorphisms of ¥ which preserve the set of marked points. An isotopy
is supposed to leave the boundary and all marked points fixed. The mapping class group
MEE(X) is the subgroup of M egt(x) consisting of all orientation-preserving mapping
classes. If ¥ = T, the previous definition reduces to Definition 6.1. We write ® instead
of ®% if ¥ is apparent from the context.

In [30], the map ® = ®T» was used to construct the homomorphism

U: Aut(D°(A,)) — MEE(T,)

in Proposition 6.3. Namely, for every T € Aut(D°(A,)) one can prove that there exists
a unique simplicial automorphism T € Aut(A(T,)) such that VI(X) = T (yx) for every
indecomposable object X € DP(A,) which is represented by a simple arc, cf. The-
orem 6.10. One then shows that T € ®(MEE(T,)). A result by Disarlo [17] (for surfaces
without punctures) shows that @ is bijective and W(T') is defined as the unique preimage
of T under ®.

Disarlo’s theorem has an analogue for punctured surfaces. The following is a special
case of a result by Irmak and McCarthy.

Theorem 8.32 ([22]). Forn # 1 and ¥ = 7", ® = ®% is an isomorphism. For ¥ = T,
® is surjective and induces an isomorphism PGL3(Z) = Aut(A(71)).

We like to associate an automorphism of 4(.7 ™) to every auto-equivalence of D°(C,).
This requires us to understand how simple loops and interior intersections are character-
ized within D°(C,). This will be achieved by means of the singularity category.
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8.3.2. The singularity category of C,, and the ideal of interior morphisms. We recall that
the singularity category Dss(Cy) of Cy is by definition the Verdier quotient of D°(C,)
with respect to Perf(C,). In this sense and due to Proposition 8.6, D, (C,) is obtained
as the localization of the Verdier quotient DO(A,) /Dy at the essential image of Dieep
under the localization functor. One may also consider another category by first localizing
DP(A,) at the subcategory Dioop and then localizing the resulting quotient at the essential
image of the subcategory ;.

Lemma 8.33. The two localizations above are canonically equivalent.

Proof. By Proposition 8.2, Lemma 8.4 and Proposition 8.6, both localizations are Verdier
quotients of D°(A,) at the triangulated subcategory Dioop B Dy. |

Given X, Y € D®(C,), we denote by Homyj, (X, Y) the kernel of the canonical map
Hom:@b(cn)(X, Y)— Hom:@Sg(Cn)(X, Y).

The set Homyp, (X, Y) € Hom(X, Y) is defined analogously and we refer to elements in
Homy, (X, Y) as interior morphisms.
Interior morphisms are stable under triangle equivalences in the following sense.

Lemma 8.34. Let T € Aut(D®(C,)). Then T induces an isomorphism
Homy,, (X,Y) — Homy, (T'(X). T(Y)).

Proof. The functor T preserves Perf(C,) and induces an equivalence on the singularity
category. In particular, it preserves the kernel of

Hom:fob(c,,)(X’ Y)— Hom:@@sg(cn)(X, Y). |

The assertion of the next lemma is analogous to the results of [30, Section 2.9] and
provides a topological characterization of interior morphisms.

Lemma 8.35. Let X, Y € D°(C,) be indecomposable. Then Hom;, (X, Y) is the set of
morphisms which are supported only at interior intersections of yx and yy.

Proof. Let U,V € D°(A,) and let us denote by Toop»> Ty and g the localization functors
at Dioop, Dy and Dygop B Dp, respectively. Since Dioop and Dj are orthogonal, it is not dif-
ficult to see that the kernel of the canonical map Hom"(U, V') — Hom" (g (U), ng(V))
splits into the sum of the kernels of the corresponding maps induced by 100 and 7y. Let
f:X — Y be interior and choose a preimage g: X — ¥/ (Y) in D®(A,) of f under
map (8.4). Then g lies in the kernel of the map induced by 7m0, and hence factors
through Djo0p. By Lemma 4.19, g must be supported at interior intersections. Moreover,
by definition of n and by the fact that i)loopl = Dy, it follows that g factors through

(™) g—miqyy: 9T (Y) - 91 (Y)

for all m € N. This implies that all intersections in supp g correspond to interior intersec-
tions of yx and yy (as arcs in T").
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Vice versa, given an interior intersection p € yx A yy, we denote by f: X — Y the
corresponding morphism and choose g as before. Then g is supported at a single interior
intersection and factors through an object which is represented by the loop (Yx )iocop S T
(see Remark 6.6) and 1-dimensional local system. As Homp,, (X, Y) is a subvector space,
this finishes the proof. ]

We are prepared to construct the map Y.

Proposition 8.36. Forn > 1, there exists a surjective group homomorphism
T: Aut(D®(C,)) — MEE(T").
Moreover; there exists a surjective homomorphism Aut(D°(C1)) — PSL, (7).

Proof. Let F € Aut(D®(C,)). Subsequently, we shall call indecomposable, non-perfect
objects X, Y € DP(Coh C,) disjoint if their representing homotopy classes of arcs con-
tain a pair of representatives with disjoint interior. If X = Y, being disjoint is equivalent
to yx being simple. Given two indecomposable, non-perfect objects X, Y € D°(C,), it
follows from Lemma 8.35 that the canonical map Hom*(X,Y) — Hom:@sg(cn)(X ,Y)is
injective if and only if X and Y are disjoint. By Lemma 8.34, F maps pairs of disjoint
simple objects to disjoint simple objects and hence induces an element F € Aut(A(.7"))
by Remark 8.30. Note that F is uniquely determined by the property that F maps a ver-
tex yx corresponding to an object X € D°(C,) to the vertex YF(x)- In particular, F F
defines a group homomorphism Aut(D®(C,)) — Aut(A(F")).If n > 2, weset Y(F) :=
O~ I(F) e M‘fﬁi(ﬁ”), where ® = ®7"  If n = 1, Y(F) € PGL,(Z) is the element
which corresponds to F under the isomorphism PGL,(Z) = Aut(4(.7!)) from The-
orem 8.32.

We claim that F lies in the image of M€ (.Z") under ®. This is a consequence
of the covariance of F. Namely, let A denote the triangulation of 7" as shown in Fig-
ure 20. Then at any puncture p there exist 6 segments of arcs of A ending p. Three of
these segments correspond to a chain of non-zero morphisms f:U — V, g:V - W
and h: W — U|2] (see Example 8.25) such that h o g o f # 0 and where U, V and W
are objects which are represented by pairwise distinct arcs of A. As pointed out above,
we have F(yx) = yF(x) Whenever yx is simple. Thus, if F was the image of an orien-
tation-reversing homeomorphism, the intersection of the arcs yr ), Yr(v), YFw) and
the puncture F(p) would give rise to a non-zero composition F(U)[2] - F(W) —
F(V) — F(U). However, there exists no chain of this kind as we can read off from
the intersection pattern of the arcs in Figure 20. We conclude that F is the image of
an orientation-preserving homeomorphism. Note that ®(MEG(7!)) is the subgroup

It remains to prove surjectivity. We recall from sequence (6.3) that there is a surject-
ive group homomorphism ME€E (T,) — MEEG(T") which maps a homeomorphism to
its radial extension. In fact, radial extension defines a group homomorphism 7 between
the corresponding extended mapping class groups. Since MEE(F") has index 2 inside
MEEE(T™), it follows that 7 and hence the composition & = ®7" o 7 o (PTn)~!



S. Opper 216

Fig. 20. A special triangulation of the n-punctured torus.

are surjective. The map o can be described as follows. Let F € Aut(+4(T,)) and let
c: A(T,) = A(T™) denote the surjective simplicial map from Remark 8.31. Then

a(F)(y) = c(F(y))

for every simple arc ¥ € 7" and every preimage y € T, under c. If n > 1, it follows
that the diagram

Aut(DP(A,)) —— Aut(D*(Cy))

o) Joor

Aut(A(T,)) —E Aut(A(T"))

commutes. Thus, Y is surjective due to ® being invertible. Finally, if n» = 1, one replaces
® o Y by Y in the previous diagram. ]

Corollary 8.37. Let X € D°(Cy) be indecomposable such that yx is a simple arc and
let T € Aut(DP(C,)). Then

yrx) = Y(T)(yx).
In order to describe the kernel of Y, we will use the following result due to Sibilla.

Proposition 8.38 ([35, Lemma 3.3, Remark 3.4]). Let {x;}icz, be a collection of smooth
points such that x; € IP’il foreachi € Z,. Suppose that T € Aut(D°(Cy,)) satisfies

° T((9Cn) = (9(]”, and
o foralli € Zn, T(k(x:)) = k(x;).

Then there exists an automorphism f:C, — C,, such that T and the induced equivalence
f*DC,) — DP(Cy) are naturally isomorphic.

Remark 8.39. Suppose that f:C,, — C, is automorphism such that f* € Aut(D®(C,))
satisfies the assumptions in Proposition 8.38. Then, as pointed out in [35], f = Id when-
evern > 3.If n < 2,then f2 =1Id and f is induced from a permutation of the preimages
of the singular points in a normalization of C,,. Assuming that x¢ and x; correspond to
1 € P! and the singular points to 0 and oo, f acts on all irreducible components either
as the identity or as the involution x > x~!, where 07! := oo. In particular, the group of
all such f is isomorphic to Z,.If n = 1,then f € ker Y.If n = 2 and f # Id, then f*
permutes the skyscrapers of singular points and hence f ¢ ker Y.
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Proposition 8.40. There exists an isomorphism
ker Y = (N x (k¥)") x Z x Pic?(C,,),

where

1 otherwise.

N;{Zz ifn =1,

If n = 1, the structure map of the semi-direct product maps 1 to the automorphism
A AL

Proof. First of all, [1] € ker Y. By changing coordinates, we may assume that 0, oo € P!
are preimages of singular points in Pil. Rescaling every irreducible component IP’il of C,
by A; € k* defines a faithful action of (k*)* on D®(C,). Let A denote the triangulation
from Figure 20. The shifts of the objects k(x;) are characterized up to isomorphism as
those objects Z € Perf(C,,) with the following three properties:

e Z is spherical.

e There exists a vertical arc y; and a diagonal arc y, in A such that
dimHom'(Z, X,,) = | = dimHom'(Z, X,,).

o Ify € A\ {y1, 2}, then Hom"(Z, X,) = 0.

Line bundles in Pic®(C,) such as the structure sheaf are characterized via all vertical
arcs in a similar way. Let /* € Aut(D®(C,)) be an equivalence which is induced by
scaling or the tensor product with a line bundle £ € Pic®(C,). Then f* leaves all sin-
gular skyscraper sheaves invariant and maps all smooth skyscrapers to such with sup-
port in the same component. By Corollaries 8.37 and 8.27, it follows that Y'(f*) acts
trivially on the homotopy classes of the arcs of A and hence Y(f*) is trivial. Next,
suppose Y (T') is trivial for some equivalence 7' € Aut(D°(C,)). Then again, from Corol-
lary 8.37 and the characterization of k(x;) and the Picard group above, we conclude that
T (k(x;)) = k(y;)[m;] for some y; € P! and m; € Z for each i € Z, and T(Oc,)[d] €
Pic®(C,) for some d € Z. As Hom"(Oc,, k(x;)) is concentrated in degree 0, we have
m; = d fori € Z,. Hence, after composition with [—d], rescaling and composition with
- QL T(Oc¢,)", we obtain an auto-equivalence 7’ which satisfies the conditions of Lem-
ma 8.38. Thus, T’ >~ f™* for some automorphism of C, and the assertion follows from
Remark 8.39. ]

Propositions 8.36 and 8.40 imply the following (Theorem D in the introduction).
Corollary 8.41. Let n > 1. There exists a short exact sequence
T
1 — (N x (k)" x Z x Pic®(C,) = Aut(D°(Cp)) — G — 1,

where G = ME€EG(T") and N is trivial, if n > 1, and N = Z, and G = PSL,(Z),
ifn=1.
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Remark 8.42. Our results for the case n = 1 are in line with [14, Corollary 5.8] which
states that there exists a short exact sequence

1— X — Aut(D°(C1)) - SLy(Z) — 1,

where KX is generated by [2], Aut(Cy) and tensor products with line bundles of degree 0.
The map ¢ associates to an auto-equivalence 7 its induced map on the Grothendieck
group Ko (DP(Cy)) = Z2. The isomorphism is given by the map X > (deg X,rk X). Note
that Aut(C;) = Z, x k*, where the first factor corresponds to the involution (x — x~1)
and the second factor to the scaling automorphisms. Let p: SL,(Z) — PSL,(Z) denote
the projection. Using the explicit isomorphism Aut(4(.7 1)) = PGL,(Z) described in the
proof of [22, Theorem 2.1], one sees that po ¢ = Y.

Remark 8.43. We expect Corollary 8.41 to generalize to Verdier quotients & of other
gentle algebras A as explained in Remark 8.28. In general, M€EG (.7™) should be replaced
by the stabilizer of a line field in the mapping class group of ¥¢ (in the notation of
Remark 8.28) and the existence of a map Y from Aut({D) into the stabilizer seems to
follow in a similar way except when X¢ is one of finitely many surfaces, where the
automorphism group of the arc complex and the mapping class group of X ¢ do not agree.
We expect the kernel of T to be isomorphic to ker W.

8.4. Faithfulness of group actions

For each collection of smooth points (x;);ez,, in C, such that x; € ]P’i1 , Sibilla [35] defined
a group action of a central extension P MEG 4 (T") of PMEG(T™) on D°(Cy). The
group P MEE,(T") fits into a short exact sequence

1575 PMEGH(T") — PMEG(T™) — 1,

and is generated by the Dehn twists {D,,, } U {Dyﬁ'{ w© | i € Z,} and a central element
t :=1(1). The projection in the short exact sequence above maps the Dehn twists to
themselves and ¢ to the identity. The structure homomorphism X: P MEEG,(T") —
Aut(DP(C,)) of the group action maps Dy, to To,, Dy]f& o to T (x;) and ¢ to the shift
functor.

Sibilla conjectured that the action is faithful. We confirm this in the following theorem.

Theorem 8.44. The homomorphism X is injective. Thus, the group action is faithful.

Proof. Consider the diagram of short exact sequences

1 —— 7 —— PMCEGu(T") — PMEG(T") — 1
x

1 ker Y Aut(D¥(Cp)) ——> MEG(T") — 1,
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where the left vertical map is the isomorphism onto the Z-component of ker Y. The dia-
gram commutes by Proposition 6.11. As the outer vertical maps are injective, sois X. =

Remark 8.45. With a little bit more effort and use of gradings on arcs, it is not difficult
to see that Y lifts to a group homomorphism T: Aut(D(C,)) — MEEG o (T"), where
MEEGy(T") is a central extension of MEF(.7") and one finds that Y o X is the inclu-
sion PMEG(T") — MECG,(T").

9. Curves of vector bundles and simple vector bundles

In this section, we identify those simple loops on the n-punctured torus which correspond
to simple vector bundles on C,, under the bijection in Theorem A. We further characterize
the loops which represent vector bundles and provide an easy way to determine the multi-
degree and rank of a vector bundle from its representing loop.

9.1. Simple vector bundles on cycles of projective lines

Simple vector bundles on cycles of projective lines were studied by Burban—Drozd—
Greuel [13] and Bodnarchuk—Drozd-Greuel [7]. The latter showed that the rank, the
multi-degree and the determinant form a complete set of invariants for the isomorph-
ism class of a simple vector bundle. We recall that the multi-degree of a vector bundle &
over C, is the function d € Z%» whose value d (i) is the degree of the restricted pullback
bundle (7*&)| (p!)> Where 7 denotes a normalization map. For any d € Z%n | we refer
to the sum d = Zx;Z,, d(x) as the total degree of d.

Theorem 9.1 ([7]). Let r > 1 be a natural number, d € ZZ" and £ € Pic“(Cn)g k*.
Then there exists a simple vector bundle & on Cy, of rank r, multi-degree d and determ-
inant £ if and only if r and d are coprime. Moreover, in this case, the isomorphism class
of € is uniquely determined by the triple (r, d, £).

We provide an alternative proof of Theorem 9.1 in Section 9.4 which is based on the
topological model of DP(C,). It is natural to ask how a simple vector bundle with a given
set of invariants (r, d, £) can be constructed, and a short report on the matter is given in
the next section.

9.1.1. Vector bundles as glued line bundles and cyclic sequences. Throughout this sec-
tion, we fix a normalization map : C, — C, and denote by U; the preimage of IF’il
under 7.

Let & be a vector bundle over C,, of rank r and multi-degree d. Then 7*(&) decom-
poses into a direct sum of # - r line bundles over the components U; = P, In other words,
there exists a unique multi-set of integers Dg = {ml] |i € Zy,j €10, r)} such that

r—1
@) = P& &=Pogm).
j=0

i€z,
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The vector bundle & then can be thought of as being glued from the vector bundles &;
by identifying their stalks along the preimages of singular points. The map which identi-
fies the stalks of &; and &; 1 over the corresponding singular point in Pil n IP’il 1 encodes
a matrix M; over k. The resulting sequence (M;);cz, describes the vector bundle &.

Theorem 9.2 ([13]). Let & be an indecomposable vector bundle. There exist m > 1 such
that m|r and splittings of 8o, ..., En—1 for which the matrices M; are of the following
shape:

(1) All M; are block matrices with blocks of size m x m and in each row and column of
the block division of Mj; there exists a single non-zero block.

(2) All non-zero blocks contain the identity matrix except for a single block in My which
contains a Jordan block J,, (1) for some A € k*.

The scalar A describes the determinant of & whereas m specifies the position of & in
the corresponding homogeneous tube in the Auslander—Reiten quiver. In particular, m = 1
if & is simple. Specializing to m = 1, we see that the non-zero entries in the matrices M;
determine a cyclic order on Dg by declaring mlj/+1 as the successor of mlj it (M;);;» # 0.
Thus, every vector bundle of rank » which sits at the mouth of a homogeneous tube defines
a cyclic sequence m € ZZnr *

Burban, Drozd and Greuel found necessary and sufficient conditions for the simplicity
of & in terms of the sequence m. They read as follows.

Theorem 9.3 ([13, Theorem 5.3]). Let & be an indecomposable vector bundle over Cy
of rank r which sits at the mouth of a homogeneous tube. Let m denote the correspond-
ing cyclic sequence. Then & is simple if and only if all of the following conditions are
satisfied:

(1) The rank and the total degree of & are coprime.
(2) The difference between any two entries in m is at most 1.
(3) Regarding m as an infinite sequence (m;);cz with period n - r, for all t € 7 the
sequence
(mi —miys)iez,

contains no subsequence of the form 1,0,...,0,10r —1,0,...,0,—1.

The conditions in Theorem 9.3 can be used to derive the multi-set Dg and hence the
entries of m, see Remark 9.4. However, apart from the case n = 1 [9] the cyclic order
on Dg and therefore the sequence m seem to be unknown in general. We provide a closed
formula for m in Section 9.1.2.

Remark 9.4. Condition (2) in Theorem 9.3 can be used to derive the multi-set Dg.
Suppose m satisfies the conditions of Theorem 9.3. Let i € [0, n) and let ¢ denote the
minimum in the sequence m;, m; ,, M; 424, ..., M;4—1).n. If a denotes the number

“In the same way, every vector bundle defines a cyclic sequence.
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of times the number g occurs in the preceding sequence, then the condition (2) implies
that

r—1
a-q+(r—a)-(g+1)=) miyjn=d(),
j=0
from which we deduce that (r —a) € [0, r) is the residue of d (i) modulo r and ¢ is the
unique integer such that r - g + (r —a) = d(i).

9.1.2. The cyclic sequence of a simple vector bundle. From now on, we write m, instead
of m(x) for all m € Z%»" and all x € Z,,. We say that two sequences m, m’ € ZZ»" are
equivalent and write m ~ m’ if they agree up to rotation, i.e., if there exists ¢ € nZ such
that m, = m/, forall x € Zj,.

Definition 9.5. Let d € ZZ» and let r > 1 be a natural number such that d and r are
coprime. For i € Z, denote by S; = S, (r, d) the sequence of integers defined by So = 0
and the recursive formula S; 1 = S; 4+ d(i). Fori € N with residue class x =i € Z,,,
let

IrZ 0 (S, Sia]l if Siv1 = S,
—|rZ N (Si+1,Si]] otherwise.

m(r,d), = {

Define m(r, d) € Z%" as the cyclic sequence with entries m(r, d) as defined above.

We note that since d and r are coprime, m(7, d) is well defined. Also note that for

eachi € Z,
r—1

Yo d)igjm = d(D).
j=0
Occasionally, we omit r and d from the notation and just write m instead if the two are
apparent from the context.
It is convenient to think of the cyclic sequence m(r, d) as a matrix with n columns
and r cyclically ordered rows such that we recover the cyclic order by reading the entries
from left to right and top to bottom.

Example 9.6. Letn =2 =r, d(0) =2 and d(1) = —1. Then d = 1, (Sy, ..., S4) =
(0,2,1,3,2) and m = m(2, d) is given by (my, ..., m3) = (1,—1,1,0). The 2 x 2 matrix

of m is
1 -1
1 0/

The following is an immediate consequence of Definition 9.5.

Lemma 9.7. Letr > 1 and d € ZZn such that d and r are coprime. Let | € Z,i € Zy
and define e € 7% by

{d(x) ifx # 1,
e(x) =
dx)+1-r ifx=1i.



S. Opper 222

Then the matrix of m(r, ) is obtained from the matrix of m(r, d) by adding the vector
(I-r,...,1-1)toitsi-th column.

Proof. Omitted. u

By the previous lemma, we may always assume that d(x) € [0, r) for all x € Z,, and
hence m(r,d), € {0,1} forall y € Zj,.

In the following lemma, we prove that the cyclic sequence m(r, d) satisfies the con-
ditions of Theorem 9.3.

Proposition 9.8. Let d € Z%" and r > 1 such that d and r are coprime. Then m =
m(r, d) satisfies the conditions of Theorem 9.3.

Proof. By Lemma 9.7, we may assume that d(x) € [0,r) forall x € Z,.Ifi, j € [0,nr]
are such that j —i € nZ, then in the notation of Definition 9.5,

Sit1 =8 =d@) =d(j) = Sj+1—S;.

Thus, (S;, S;+1] and (S}, S; 1] have the same length and the cardinality of r Z N (S;, S; 1]
and rZ N (S;, Sj+1] differ by at most one. This proves condition (2).

Leti,/ € Z and let p > 1. The cardinality of #Z N (S;, Si+p] is Zjl-’;é m; ;. As be-
fore, we regard m as an infinite sequence (m;);ecz. Now, suppose the infinite sequence
(m; —mj41)iez contains a subsequence of the form +1,0,...,0, £1. It means that for
some i € Z and some p > 1, rZ N (S;, S;+p] contains two more (resp. two less) ele-
ments than rZ N (Si41x, Si+in+p]. But the intervals (S;, Si4p] and (Siy1n, Sitin+pl
have the same cardinality which yields a contradiction. This completes the proof of con-
dition (3). ]

Corollary 9.9 (Theorem E). Let & be a simple vector bundle on C, of multi-degree d
and rank r. If m € 2% satisfies the conditions in Theorem 9.3, then m ~ m(r, d).

Proof. This follows from Theorems 9.1 and 9.3 and Proposition 9.8. ]

9.2. Loops and their intersections via ribbon graphs

Our goal is to translate certain homotopy classes of loops into a cyclic integer sequence so
that for every loop which represents a simple vector bundle of rank r and multi-degree d
this sequence is precisely the sequence m(r, d) from Corollary 9.9. This is achieved by
interpreting loops on 7" as walks in a ribbon graph which we define in terms of an
embedded quiver ' C 7",

Consider the collection of oriented arcs on .7 in Figure 21. We label the horizontal
arcs by k; (i € Z,) and denote the vertical arc which intersects ; and «; 1 by &;. The col-
lection of these arcs cut .7 into discs. We denote by T the dual quiver of this dissection
as shown in Figure 22: the set of vertices in I is in bijection with the discs, I'1 = {&;, k; |
i € Zy} and an arrow « € I'7, which corresponds to an arc y, starts (resp. ends) at the ver-
tex which corresponds to the disc which lies on the left-hand (resp. right-hand) side of y.
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Fig. 21. The collection of oriented arcs on 7.

NN

%.% f—> @ ——— O

U U &n—2 En—1

Fig. 22. The quiver I". The two copies of the vertex o are identified.

By construction, I' can be embedded into .7 by mapping a vertex to a point inside
of its corresponding disc and the arrow associated with an arc y to a simple path p,
which crosses y exactly once and no other arc of {¢;, k; }. The orientation of 7" defines
cyclic orders on the set of half-edges emanating from any vertex of I and hence turns T’
into a ribbon graph. By a half-edge we mean any of the two segments of p, between its
crossing with y and one of its end points.

Let ;1= {y~! |y € 1} denote the set of formal inverses of I';. As usual, s(y ') :=
t(y) and t(y~1) := s(y). One defines a bijection between the half-edges and elements in
I'; U Tyt by identifying a segment § of p,, i.e., a half-edge, with y € T, if § crosses y
from the left, and with y~! otherwise. Regarding the underlying graph of I" as a topolo-
gical space in the usual way, the embedding I" < 7" is a deformation retract and induces
an isomorphism 71 (I') 2 71 (Z") of fundamental groups.

This has a few useful and well-known consequences. First of all, the isomorphism of
fundamental groups allows us to regard loops on 7" as certain words in the alphabet
ryury ! which we call admissible walks. Second, every intersection between loops can
be expressed as a common subword of their admissible walks.

Definition 9.10. An admissible walk of length [ in T is a function W:Z; — Ty U I'y!
such that for all i € Z;,

W(i)# W@ + 17" and (W) = s(W(i + 1)),

and W is primitive, i.e., it is not of the form Z; LN Tim W, r'u 1"1_1, where [ is a proper
multiple of m and ¢ is the canonical surjection.
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By definition, we consider two walks W, W’ of length / as equivalent if W and W’
agree up to rotation and inversion, that is, there exist ¢ € {+1} and j € Z such that
W(i)=W'(o-i + j)foralli € Z;. Usually, we describe a walk W through a sequence
W@aW@G +1)---W(@i — 1), where i € Z;.

The relationship between loops and walks can now be phrased as follows.

Proposition 9.11. There exists a bijection between homotopy classes of unoriented
loops on T and equivalence classes of admissible walks in T.

Given an admissible walk W, we obtain its associated loop simply by regarding W
as a closed path in the quiver I': if W = «a; ... with oy € T'j U Fl_l, we start at the
vertex s(«p) and then walk along the arrows «q, ..., a; of I' by which we mean that
if ; € I'y 1 then we walk a; I e T'; backwards from its target to its source. Via the
embedding I' < 7", we obtain a loop in 7.

If y is a loop, we denote by W, the equivalence class of walks associated with y or,
by abuse of notation, a representative thereof.

Intersections between loops can be described by maximal common subsequences of
their walks. To be precise, suppose y, Yy’ C 7" are loops in minimal position and regard
W =W,and W = W, as inﬁgite cyclic sequences with period given by their lengths.
Then every intersection p € y N y’ corresponds uniquely to one of the following two
situations:

(a) After interchanging the roles of W and W’ if necessary, there exist decompositions
W =wjucy...coowp and W =wiu'cy...cpv'w)y, wherel > land ¢y, ....cp,uu’,
v, v/ € Iy UT !, such that # () = (u’) butu # u’ and s(v) = s(v') but v # v/, and
in the cyclic order of half-edges around 7(u) = t(u’), ¢y lies in between u’ and u,
and in the counter-clockwise cyclic order of half-edges around s(v) = s(v’), ¢; lies

between v’ and v.
x Y
c1 C]

[ ] [
g \

(b) After interchanging the roles of W and W’ if necessary, there exist decompositions
W = wiuvw, and W’ = wiu'v'w), where u,u’,v,v' € I'1 U Fl’l are pairwise
distinct, such that x := t(u) = t(u’) = s(v) = s(v’) and in the counter-clockwise
cyclic order of half-edges around x the order is u, u’, v, v'.
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Example 9.12. The loop )/u"&( x) corresponds to the walk k;, and ypj. corresponds to the
walk g¢¢€1 . ..&,—1. The unique intersection of yﬁ;( x) and ypic is an example for the case (b)
and corresponds to the decompositions . . .kjk; ... and ...&&i4+1 ..., 1.e., (u,u’,v,v') =

(ki ei it et

i %i-1/"

9.3. The class of loops which represent vector bundles

In this section, we describe the set of loops in .7 which represent vector bundles over C,,.
The following definitions will play a central role in this section.

Definition 9.13. Let QY_, denote the set of all homotopy classes of primitive loops
on .7 which are represented by a walk in I without any letters of the form si_l (i € Zy).

If y is aloop, we write y € Q¥ to indicate that the homotopy class of y lies in Q7.

Definition 9.14. Let Vect” denote the additive closure of all indecomposable objects X €
Perf(Cp,) such that yx € Q¥

Elements of QY. are in bijection with equivalence classes of primitive sequences
m € ZZ» where r > 1. Indeed, for any sequence m € Z%»" the corresponding homotopy
class y(m) belongs to the walk

mQ mj My r—1
...SOKO 81/(1 ...gnr_lKnr_l 2

Note that y(mn) is primitive if and only if m is primitive. For a possibly non-primitive
loop y which is a power of a loop in %,, we shall denote by m,, its associated integer

sequence.

Remark 9.15. The set QY. admits a simple topological characterization: an immersed
loop y is contained in 2%, if and only if y can be oriented in such a way that its derivative
has everywhere positive latitudinal coordinate, cf. Theorem B. In other words, the curve y

always travels towards the right in Figure 21.

Definition 9.16. Let 7 > 1 and d € ZZ»" such that d and r are coprime. Define y (r, d) €
Q7. as the homotopy class of m(r, d).

As the reader probably guesses at this point, y(r, d) contains simple loops and rep-
resents the simple vector bundles of rank r and multi-degree d. A proof is given in this
section.

Remark 9.17. With e and d as in Lemma 9.7, the /-th power of the Dehn twist about
y]f‘( ) transforms the homotopy class y(r, d) into the homotopy class of y(r, €). An ana-
logous statement is true for arbitrary loops y(m).

For y a power of a loop in QY. we denote by m, € ZZ" the sequence associated

with y and define the rank rk y := rkm, and the multi-degree d(y) := d(m,). As usual,
the total degree d (y) of y is the sum of all entries of d(y).

The three invariants rk y, d(y) and d(y) have a straightforward interpretation on the
surface.
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Lemma 9.18. Let y € 7" be a loop. Then d(y)(i) equals the number of intersections
(counted with signs) of y with the arc k; in Figure 21.

Proof. Omitted. u

In a similar way, rank and total degree of a loop y have a topological interpretation
too. One embeds y into the closed torus R?/Z? = S! x S!. Then composing y with the
projection onto the first component of the product determines a self-map of S! and hence
an integer r, € Z = m1(S"). The number r,, measures how many times y wraps around
the latitudinal axis of the torus. The projection onto the second component determines an
integer d,, which counts the number of full positive turns of y around the longitudinal
axis.

Comparing the previous construction with the definitions of rank and total degree,
we observe the following.

Lemma 9.19. Let y C 7" be a loop. Then r,, agrees with1k y and d,, equals d(y).

Proof. Omitted. u

n

The importance of 2Y,,

section.

Vect” and y(r, d) becomes clear in the main result of this

Theorem 9.20. The following is true:

(1) A curve y C T" represents a vector bundle over Cy, if and only if y € QX% Thus,
Vect” coincides with the additive closure of all vector bundles and their shifts.

(2) Let & be a vector bundle of multi-degree d over C,, which sits at the k-th level of its
homogeneous tube in the Auslander—-Reiten quiver. Then F (&) = P*(m)('V), where

k& )

)

(3) Any loop in y(r,d) represents the simple vector bundles of rank r and multi-degree d.

dmV =k and (d(m),rkm) = ((dl,

The proof of Theorem 9.20 can be found at the end of this section and can be sum-
marized as follows.

Outline of the proof: We show that any object in [F(Vect”) C D" (A,) is a shift of an
iterated extension (of degree 1) of objects which correspond to line bundles over C,.
As the category of vector bundles is closed under extensions, this shows the “if”’-part in
Theorem 9.20 (1). Theorem 9.20 (2) follows along the way due to the additivity of rank
and multi-degree. The “only-if”-direction in Theorem 9.20 (1) is implied by a result of
Ballard which characterizes shifts of vector bundles inside the derived category by means
of their morphism spaces to skyscraper sheaves. At the heart of all our arguments lies
the description of certain morphisms in [F(Vect”) via intersections which we rephrase
in terms of the associated integer sequences. This also enables us to derive simplicity
of y(r,d).
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The first lemma describes intersections of loops in £2%,, in a convenient combinator-
ial way which resembles conditions (2) and (3) in Theorem 9.3. As before, we regard
a sequence m € Z%»r as an infinite sequence with period n - r. For such an infinite
sequence m = (m;);ez and [ € Z, we write m][/] for the infinite sequence (m;y;);iez-

Lemma 9.21. Suppose that y,y’ € QY. are in minimal position with ranks r = rky and

r’ =r1ky’. Let lem(r, r') denote the least common multiple of r and r'. Then the set of
intersections of y and y' is in bijection with the union of the following two sets:

(1) The set of subsequences of m, — my[l] up to shift by a multiple of lcm(r, '), of the
form
a,0,...,0,b,

wherea,b > 0ora,b <0andl € Z.

(2) The set of triples (x, y,q), where X € Zipy, y € Lny and
0<g= |(]my)x - (my’)y| -2

Proof. This is just a paraphrase of the bijection between intersections and maximal com-
mon subsequences as described after Proposition 9.11.

Suppose m, — 1, [[] contains a subsequence a,0,...,0,b witha,b > 0ora,b <O0.
Then W = W, and W' = W,/ contain sequences kxck, and excey, where

— U v
C =Ky&x+1 "'8y_1l(y

and u, v > 0. One verifies easily that the common subsequence ¢ corresponds to an inter-
section.

Next, suppose |(my)x — (mm,/)y| > 2. Set m = (m,), and m’ = (m,’),. Without
loss of generality m > m’. The corresponding subsequence exky™¢ex4+1 of W contains
m’ —m — 1 subsequences of the form kcky, where ¢ = K;"/ if m" # 0 and ¢ is empty
otherwise. Since W’ contains a subsequence excéex+1, these subsequences give rise to
m’ —m — 1 different intersections.

Finally, we observe that the previous cases cover all possible decompositions of W
and W’ which correspond to an intersection of y and y’. ]

Corollary 9.22. Let r > 1 and d € Z%7 such that r and d are coprime. Then y(r, d)
contains a simple loop.

Proof. This follows from Proposition 9.8 and Lemma 9.21. ]

Example 9.23. As in Example 9.6, let n = 2 = r, d(0) = 2 and d(1) = —1. Then
m = m(2, d) is given by (my, ...,m3) = (1,—1, 1,0), and a representative y of y(2, d)
is depicted in Figure 23. The intersections of y with the vertical lines in Figure 23 divide y
into n - r = 4 segments. The entries of the sequence m encode the signed intersection
number of each segment with the arcs «;.
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Fig. 23. The loop y = y(2, d). The points e divide y into 4 segments.

Remark 9.24 (Construction of simple representatives). For a general homotopy class of
a loops on a surface, it is not obvious how to construct a representative in minimal posi-
tion right away. A simple representative of y(r, d) can be constructed from the sequence
S; = Si(r,d) (see Definition 9.5) in the following way.

(1) Draw r distinct points in the interior of every arc &; which we label by z), ..., z/ !
while following the orientation of ¢;. If s € Z, set z5 == z;, where ¢t € [0, r) such that
s =tmodr.

(2) For each pair (i, j) € Z, x [0, nr], connect Zl-Sj and zf_ﬁl by the projection of
a straight line in R2.

The resulting loop is a simple representative of y(r, d). The loop in Figure 23 was con-
structed by means of this procedure.

Lemma 9.25. Let mu € Z%n" and let 'V be an indecomposable local system on y(mn).

Then P:

y(m)(V) is concentrated in two or three cohomological degrees.

Proof. Each subsequence &xky *&x+1 corresponds to a subquiver of Q(y(m)) of the

form
b; a; c; a; c d;

. . . o . o O.1)
if m, > 0 and

o D g g GG, e, 9:2)
ifm, <O. .

Remark 9.26. The number of arrows with labels a; (resp. ¢;) in (9.1) and (9.2) is |my|.

In what follows, for any (not necessarily) primitive sequence m, we write P*(m) as
short for any representative P): (m) (V) of y(m), where dim 'V = 1, which is concentrated
in degrees —1 and 0, or has entries in degrees —1, 0 and 1. It follows from the discussion
preceding Theorem 4.14 that if m = e’ for some ¢ > 1 and a primitive sequence e, then

P*(m) = P P ) (Vi)

i=1

for indecomposable local systems Vy, ..., V,, with Zl'-"zl dimV; =t.
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The next lemma is the key to showing that P°(m) is an iterated extension of images
of line bundles.

Lemma 9.27. Letr > 1, m € ZZ7 and £ € Z%n. Then the following is true:

(1) Amorphism f € Hom'(P*({), P*(m)) which corresponds to a subsequence a,0, ...,
0,b,a,b,> 0, of L — m|[p] for some p € Z is of degree 0.

(2) If the above sequence has length n + 1, then Cy is isomorphic to a complex P*(m')
Sor a sequence 1" of rank r — 1 and multi-degree d(m) — d(£). In other words,
P*(m) is an extension of P*(£) and P*(m’).

Proof. We may assume that p = 0 and that all values of £, m are non-negative. Let
a,0,...,0,b be a subsequence of £ — m with a, b > 0. Then, following the proof of
Lemma 9.25 (see also Remark 9.26) and the definition of f from [31], f is a graph map
as described in the proof of Lemma 8.8. Its diagram has the following shape:

Ci aj Ci aj Ci aj
(] . . (] o . (]

bi a; ¢ a; ¢ dj
[ ] [ ] [ ] [ ] s [ ] [ ]

The top line corresponds to the subquiver of Q(y(£)) associated with the subsequence

m; +1 m;4,+1
K; ! Ei+1 - EiK;

of Q(y(£)); the lower line corresponds to the subquiver of Q(y(m)) which is associated
with
@i +n

i Ei+1-

m;
SiI(i Ei+1 " EiK

By Theorem 4.14, we obtain a loop which represents the mapping cone of f by resolving
the corresponding intersection. The reduced walk of the resolved curve is the reduction of

oo =4 —1, =iy _—1 —lig1 -1 \_. m; 41 L Mity
ik (ke G e Ky S8y gk

Since {; +s = m; 44 for all s € (1, n), the reduction is

mi_li‘i'mi-ﬁ—ng'
i

mi+n+1 cee
i .

ceegi ki e K
i—1r;_q i +1K;

Thus, the resolved curve is a power of a loop in Q% has rank r — 1 and multi-degree

d(m) — d(¥). |

Proposition 9.28. Every object in Vect” is a direct sum of shifted vector bundles. More-
over, the rank (resp. multi-degree) of a vector bundle coincides with the rank (resp. multi-
degree) of its corresponding homotopy class in QY.

Proof. Let m € Z%"" be a primitive cyclic sequence of rank r > 2. Let i € Z. Define
0 e Z% by ¢; = max{m;, m;4,} + 1 and Liy; = m;y; for all j € (0,n). Then by
Lemma 9.27, P*(in) is an extension of P*(£) and P*(m’) for some m’ of rank r — 1
and multi-degree d(m) — d(£). By induction on r, it follows that P*(m) is an iterated
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extension of objects of the form P*(d) with d primitive and rk d = 1. Here we used the
fact that every object in the homogeneous tube of a vector bundle is again a vector bundle
which in turn is a consequence of the fact that the class of vector bundles is closed under
extensions. From Theorem 2.3 and Remark 3.6, we conclude that P°(d) is the image of
a line bundle of multi-degree d. The class of vector bundles is closed under extensions.
Thus, the assertion follows from the additivity of rank and multi-degree as well as the fact
that IF is a triangulated embedding. ]

We are finally prepared to prove Theorem 9.20 and hence Theorem B from the intro-
duction.

Proof of Theorem 9.20. By Proposition 9.28, a loop y € QY represents vector bundles
of rank rk y and multi-degree d(y). By Theorem A, simple loops in %, correspond to
simple vector bundles. For every smooth point x € C,,, we consider the family of functors

Fy=—&" (L(x) ® £(»)Y).

By Proposition 6.11, we see that for all indecomposable Z € Perf(C,), F(¥,(Z)) and
F(Z) are represented by the same loop.

It remains to prove that every vector bundle is represented by a homotopy class
of QF,.. Following [4, Lemma 6.11], a perfect object X € Perf(C,) is isomorphic to
the shift of a locally-free sheaf of rank » if and only if there exists m € Z such that
Hom" (X, k(z)) = k"[m] as graded vector spaces for all closed points z € C,. The proof
of [4, Lemma 6.11] relies on the assumption that C,, is projective and connected but does
not require irreducibility. Without loss of generality, we may assume that X sits at the
mouth of its homogeneous tube. Suppose now, that the walk W, of a loop y = yg for
a vector bundle & contains a subsequence of the form 8,-161-1 8;_&1 or its inverse. This condi-
tion is equivalent to y & QY .. Using Lemma 4.13, it is not difficult to see that under these
conditions the arc of the skyscraper sheaf of a singular point z € P! N IP’{H has two inter-
sections with y which correspond to morphisms in Hom"(X, k(z)) in different degrees.
Hence, such a loop cannot represent a vector bundle of C,,. This finishes the proof. ]

9.4. An alternative proof for the classification of simple vector bundles

We give an alternative proof of Theorem 9.1. By Theorem 9.20, it is sufficient to prove
the following.

Proposition 9.29. Let n € Z%n7 . If y(n) contains a simple loop, then r and 1 are coprime
andn ~ m(r, d(n)).

Proof. Given a sequence m € Z% and g € Z,, we can define the contraction C?(m) €
ZZn=vr of m. Regarding m as element of Mat,x, (Z) with cyclic rows and C9(—) as an
operator C9:Maty,x, (Z) — Mat,_1)x,(Z), C? stores the sum of the g-th and the (g + 1)-
th row of m in the g-th row of C9(m) and leaves all the other rows untouched while
preserving the cyclic order of the rows. On .7 the matrix C?(m) corresponds to the
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loop y(m) regarded as a loop in .7"~!. The operation C? induces a map Q% — Q%!
which preserves simplicity and hence preserves properties (1) and (2) in Lemma 9.8.

Conversely, given a simple loop y = y(m) € .7"~!, we may assume that y and
8= V]]Z( S 7"~ are in minimal position. In particular, y A § contains exactly r = rkm
intersections and is cyclically ordered by the orientation of §. Choose an intersection
uEeEy A § and denote byut ey A § its successor. Let p €8\ {u,u™} be a point on
the segment between u to u™. Let ¢: . 7"~ — 7" be a homeomorphism which maps all
punctures of .71 and p to punctures in .7". Moreover, we require that it maps the set
{8} U {ei}iez,_, bijectively onto the set of curves {¢;};ez, in 7" and maps «; to k; for
all j # q as well as k4 to the concatenation of «; and k4. The isotopy class of such
amap ¢ is not unique but appears as part of a Z-family of isotopy classes of homeomorph-
isms. Namely, every two possible choices for ¢ as above are related by composition with
a homeomorphism

D", oD, € PMEE(T")
Yk(x) Yk (x)
for some unique m € Z. For every ¢ as above, let us denote by y,f C .7 the image of y
under . It follows from Remark 9.17 that we obtain all homotopy classes of simple loops
y' € 7" in Q¥ such that C?(m(y’)) >~ m. Moreover, we observe that the multi-degrees
of y, and y:f,/ agree if and only if ¢ and ¢’ are isotopic and u = u’. In particular, this is
the case if the two loops are homotopic.

By induction, our arguments reduce the uniqueness of sequences m as in Lemma 9.8
to the uniqueness of such sequences in the case n = 1. Here the result follows from the
well-known fact that homotopy classes of non-separating simple loops on .7 ! are in bijec-
tion with pairs of coprime integers. The bijection projects a loop onto its associated class
in H(71,7Z) = Z?. Choosing the classes of yp;. and Vug(x) as the basis of H(J!,7Z),
y = y(m) is mapped to the pair (rk m, d(m)). |

Appendix A. Images of smooth skyscraper sheaves and the Picard group

This section contains the proof of Theorem 2.3 which was explained to us by Igor Burban.
Our main reference is [12]. As before, let Pic®(C,,) denote the set of line bundles of
multi-degree (0, ..., 0) over C,, and let F: Perf(C,) < DP®(A,) denote the embedding.
Theorem 2.3 asserts the following.

Theorem A.1. (1) The essential image of Pic®(Cn) under ¥ consists of the isomorphism
classes of the complexes O (1), where A € k*.

(2) The essential image of the skyscraper sheaves of smooth points x € ]P’i1 under ¥ con-
sists of the isomorphism classes of the complexes k(i, L), where A € k*.

The definitions of the complexes (1) and k(i, A) are found in Figure 5 and in the
paragraph succeeding it. The definition of I is recalled in Section A.1 below.

For the remainder of this section, fix n > 1 and write A = A,, C = C,, as well as ]Pil,
i € Zp, for the irreducible components of C,. Let r: C — C be a normalization map.
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Then C = |[/Z, U;, where U; = n~'(P}) = P'. By changing coordinates, we may
assume that 0, co € P! are the preimages of the singular points in U;. Set O = m, (0&).
Then O := Oc¢ is a subsheaf of @ and @ decomposes as

5= a.

i€Zny

where O; = 7, F |(7[). We denote by d the ideal sheaf of the singular locus of C.

A.l. Non-commutative resolutions of cycles

In [12], Burban and Drozd introduced the so-called Auslander-sheaf <7 . 1t is the sheaf
of @-orders on C given by
O 0
o = ~|.

The diagonal embedding of (9 defines an action of @ on &/ and endows .o/ with the
structure of an (-algebra.

Burban and Drozd proved that the bounded derived category £°(Coh X) of coherent
sheaves over the non-commutative ringed space X = (C, /) admits a tilting object 7
defined as follows.

Let S denote the torsion sheaf of .<7-modules defined by the cokernel of the canonical

00
=) (3

the «7-modules corresponding to the columns of .27 The tensor product with ¥ defines
a fully faithful functor J: Coh C — CohX.

By definition, we have = (P, 7, Pi, where P; :=J (@;). Moreover, § = Dicz, Si>
where §; is a skyscraper sheaf supported at the singular point corresponding to the image
of 0 € U; under the normalization map 7. For any integer m € Z and any line bundle &£
of multi-degree (m, ..., m), define

Pm) = P P @0 £.

i€Zn

inclusion

Furthermore, denote by

It was shown in [12, Lemma 4] that the isomorphism class of & (m) is independent of
the choice of £. In particular, up to isomorphism, the object

Ho=S[-1]® PP
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is well defined. The object .77 is a tilting and A is isomorphic to the opposite endomorph-
ism algebra of .. The derived functor of J restricts to an embedding Perf(C) < D°(X)
and gives rise to an embedding B: Perf(C) < D°(A). For i € [0,n), let x; € U; be
smooth. The desired embedding F: Perf(C) — DP(A), as cited in the main text of this
paper, is given by

F=Bo 1_[ T]k(xi) ~Bo ®]L:£(X0 44 Xp—1).

i€Zn

A.2. Images of skyscraper sheaves of smooth points

For any i € Zj, let x € U; be smooth corresponding to a point (A : u) € P'. By our
assumption on the chosen coordinates, A, 4 # 0. Let X € U; denote the unique preimage
of x under 7. Then 7, (k(X)) = k(x) and if zé, zi :Op1 — Op1(1) correspond to the
chosen coordinates on X; vanishing at 0 and oo, respectively, then the k (x) is the cokernel
of o (5,~(—1) — (5,-, where

o = e (uzb(—1) — AzL (—1)).

Keeping in mind that J o 7, (09 7, (m)) = &P; (m), the isomorphism A = End(.)°P identi-
fies the arrows a; and ¢; in A with the maps J (74 0 z})), J (74 0 z ) € Hom(P; (—1), 5%).
We deduce that there is a short exact sequence

J (e
0= Pi(—1) 2 s I(k(x)) — .

The tilting functor associated with 7 sends $;(—1) to the indecomposable projective
module of s(a;) and &; to the indecomposable projective module of #(a;) proving that
B(k(x)) is isomorphic to k(i, A~ ). Since Hom" (k(x),k(y)) = 0 for all x # y and k(x)
is 1-spherical, it follows from Corollary 3.7 and Lemma 3.8 that F (k(x)) = k(i, A" ).

A.3. Image of the Picard group

The image of Pic®(C) under F coincides with the image of the line bundles of degree
(1,...,1) under B.

Let £ be a line bundle on C of multi-degree (1,...,1) andset 9 := J(£) = F Qo L.
We want to compute the dimension of the vector spaces Ext' (S, §), Ext' (P, §) and
Ext' ((—1), ) for i > 0. Note that by [12, Theorem 2], the global dimension of Coh X
is 2.

Since § is a torsion sheaf and § is torsion-free, it follows that Homg (S, 9) = 0.
Thus, Hom,(S,%) = 0. By (A.1), § has a locally projective resolution of length one.
Thus, 8xti2¢ (5,9) =0 for all i > 2 and one deduces from the local computations of
SXt}Q{(S i §) and the local-to-global spectral sequence that Ext!,(S;,9) =k forall j € Z,
and Ext' ,(§,§) = Oforalli > 2.

By [12, Corollary 4], there exists an isomorphism of ()-modules,

J® £ = Homy (P, 9),



S. Opper 234

and by [12, Corollary 3], Extfd (P,9) =0foralli > 0. We have a sequence of isomorph-
isms

Jom (P (—1),8) = Hom, (P(~1) ®e £V, F) = Hom, (P(=2), F),

where £V denotes the dual of £. Using that $(—2) = (%) and that both ¥ and #(—2)
are torsion-free, it follows from [12, Proposition 6], that Hom g (P (—1),8) =~ O as
O-modules. Since k = T'(U;, (9@) ~ I'(X, 0;), we deduce Hom/ (P;(—1),9) = k.

Moreover, it follows from [12, Corollary 3], that Ext (£ (—1),§) = 0 forall i > 1.

We have shown that Hom" (7, §), and hence the cohomology of B(¥), is concen-
trated in degree 0. In particular, B(§) is quasi-isomorphic to a A-module. Since B(£) is
indecomposable, we conclude from the isomorphisms

Homg/ (P (—1),9) = k = Homy(S;[—1], %)

foralli € Z, and from the classification of T-invariant indecomposable objects in D°(A)
from Section 4.2 that F(£) == @ (1) for some A € k*.
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