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Abstract. In this article we establish a vanishing theorem for a singular Liouville equation with
a quantized singular source. If a blowup sequence tends to infinity near the quantized singular
source and the blowup solutions violate the spherical Harnack inequality around the singular source
(non-simple blowups), the Laplacian of the coefficient function must tend to zero. This seems to
be the first second order estimates for a Liouville equation with a quantized source and non-simple
blowups. This result as well as the key ideas of the proof will be useful for various applications.
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1. Introduction

This is the third article in our series studying blowup solutions of

�uC jxj2NH.x/eu D 0 (1.1)

in a neighborhood of the origin in R2. Here H is a positive smooth function and N is
a positive integer. Since the analysis is local in nature we focus the discussion on a neigh-
borhood of the origin: Let uk be a sequence of solutions of

�uk.x/C jxj
2NHk.x/euk D 0 in B� (1.2)

for some � > 0 independent of k, where B� is the ball centered at the origin with radius � .
In addition we postulate the usual assumptions on uk and Hk : For a positive constant C
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independent of k, the following holds:8̂̂̂<̂
ˆ̂:
kHkkC3. NB� / � C; 1=C � Hk.x/ � C; x 2 NB� ;Z
B�

Hkeuk � C;

juk.x/ � uk.y/j � C; 8x; y 2 @B� ;

(1.3)

and since we study the asymptotic behavior of blowup solutions around the singular
source, we assume that there is no blowup point except at the origin:

max
K��B�n¹0º

uk � C.K/: (1.4)

If a sequence ¹ukº1
kD1

of solutions of (1.1) satisfies

lim
k!1

uk.xk/ D1 for some Nx 2 B� and xk ! Nx,

we say ¹ukº is a sequence of bubbling solutions or blowup solutions, and Nx is called a
blowup point. The question we consider in this work is: when 0 is the only blowup point
in a neighborhood of the origin, what vanishing theorems will the coefficient functions
Hk satisfy?

One indispensable assumption is that the blowup solutions violate the spherical Har-
nack inequality around the origin:

max
x2B�

Œuk.x/C 2.1CN/ log jxj�!1 as k !1: (1.5)

It is also mentioned in the literature (see [20,26]) that 0 is then called a non-simple blowup
point. The main result of this article is the following.

Theorem 1.1. Let ¹ukº be a sequence of solutions of (1.2) such that (1.3)–(1.4) hold and
the spherical Harnack inequality is violated as in (1.5). Then along a subsequence,

lim
k!1

�.log Hk/.0/ D 0:

Theorem 1.1 is a continuation of our previous result in [27]:

Theorem A. Let ¹ukº be a sequence of solutions of (1.2) such that (1.3)–(1.5) hold. Then
along a subsequence,

lim
k!1

r.log Hk C �k/.0/ D 0

where �k is defined as8̂<̂
:
��k.x/ D 0 in B� ;

�k.x/ D uk.x/ �
1

2��

Z
@B�

uk dS; x 2 @B� :
(1.6)
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Equation (1.1) comes from its equivalent form

�v C Hev D 4�Nı0

by using a logarithmic function to eliminate the Dirac mass on the right hand side. Since
the strength of the Dirac mass is a multiple of 4� , this type of singularity is called
“quantized”. Equations with a quantized singular source are ubiquitous in the literature.
In particular, the following mean field equation defined on a Riemann surface .M; g/:

�guC �

�
h.x/eu.x/R
M
heu

� 1

�
D 4�

MX
tD1

˛t .ıpt � 1/; (1.7)

represents a conformal metric with prescribed conic singularities (see [15,24,25]), where
h is a positive smooth function, � > 0 is a constant and the volume of M is assumed
to be 1 for convenience, and the j̨ > �1 are constants as well. If the singular source is
quantized, the equation is profoundly linked to algebraic geometry, integrable systems,
number theory and complex Monge–Ampère equations (see [12]). In physics the main
equation (1.1) reveals key features of mean field limits of point vortices in the Euler flow
[8, 9] and models in Chern–Simons–Higgs theory [19] and electroweak theory [2], etc.

So far the non-simple bubbling situation has been observed in Liouville equations
[6,20], Liouville systems [17,18,28] and fourth order equations [1]. The main theorem in
this article should impact the study of these equations as well as some well known open
questions in Monge–Ampère equations [26].

When compared with Theorem A, Theorem 1.1 is clearly more challenging. In fact,
the proof of Theorem A is a special case of one step of the proof of Theorem 1.1. How-
ever, their major difference is in applications. Theorem 1.1 is significantly more influential
for many reasons: First the main motivation to study equation (1.1) is for equations or
systems defined on manifolds. Usually blowup analysis near a singular point needs to
reflect the curvature at the blowup point. In this respect Theorem 1.1 is directly related
to the Gauss curvature at the blowup point. Second, the harmonic function in Theorem A
causes inconvenience in applications since it is generally hard to identify what the har-
monic function is. On the other hand, Theorem 1.1 is only involved with the Laplacian of
the coefficient function. This may lead to substantial advances in applications: In many
degree counting problems a major difficulty is bubble-coalition, which means bubbling
disks may collide into one point. The formation of bubbling disks tending to one point
is accurately represented by (1.1). Theorem 1.1 and its proof may be useful to simplify
blowup pictures. Third, the proof of Theorem 1.1 is also important for proving unique-
ness of bubbling solutions, and the results for Liouville equations with quantized singular
sources are inspirational for many equations and systems with similar singular poles.
Before our series of works most of the study of singular equations or systems focused on
non-quantized singular situations. However, it is the “quantized situations” that manifest
profound connections to different fields of mathematics and physics. Theorem 1.1 may be
a starting point of multiple directions of exciting adventures.
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As a first application of Theorem 1.1 we present an advancement for the mean field
equation (1.7). Let ƒ be defined as

ƒ D
°
8�k C

X
j2A

8�.1C j̨ /I k 2 N [ ¹0º; A � ¹1; : : : ;M º
±

where N D ¹1; 2; : : : º. By the work of Bartolucci–Tarantello [4, 5], Chen–Lin [12] etc.,
an a priori estimate holds if � 62ƒ. In other words, if uk is a sequence of blowup solutions
with parameters �k , the limit of �k is in ƒ. Our second main theorem is the following.

Theorem 1.2. Let uk be a sequence of blowup solutions of (1.7) with parameters �k !
� 2 ƒ, where h is a positive smooth function, and ˛1; : : : ; ˛M > �1 are constants. If at
each quantized blowup point p we have

� log h.p/ � 2K.p/ � 4�
MX
tD1

˛t C � ¤ 0; (1.8)

where K.p/ is the Gauss curvature at p, then all blowup points of uk are simple.

The organization of the article is as follows. In Section 2 we cite preliminary results
related to the proof of the main theorem. Then in Section 3 we approximate the blowup
solutions by a family of global solutions that agree with the blowup solutions at one local
maximum point. This is crucial for our argument. Then we derive some intermediate
estimates as preparation for a more precise analysis. In Section 4 we prove first order
estimates that cover the main result in [27]. This section proves a stronger result than
in [27] and provides more details. Finally, in Section 5 we take advantage of the first
order estimates and complete the proof of Theorem 1.1. The proof of Theorem 1.2 is
given in Section 6. The final section is an appendix that contains certain computations
needed in the proof of Theorem 1.1.

Notation. We will use B.x0; r/ to denote a ball centered at x0 with radius r . If x0 is the
origin we use Br . Also C represents a positive constant that may change from place to
place.

2. Preliminary discussions

In the first stage of the proof of Theorem 1.1 we set up some notations and cite some
preliminary results. Set

uk.x/ D uk.x/ � �k.x/; (2.1)

hk.x/ D Hk.x/e�k.x/: (2.2)

Then the equation for uk is

�uk.x/C jxj
2Nhk.x/e

uk D 0 in B� : (2.3)
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Without loss of generality we assume

lim
k!1

hk.0/ D 1: (2.4)

Obviously (1.5) is equivalent to

max
x2B�

Œuk.x/C 2.1CN/ log jxj�!1 as k !1; (2.5)

It is well known [6, 20] that uk exhibits a non-simple blowup profile. It is established
in [6,20] that there areN C 1 local maximum points of uk : pk0 ,. . .,pkN , and they are evenly
distributed on S1 after scaling according to their magnitude: if along a subsequence,

lim
k!1

pk0=jp
k
0 j D e

i�0 ;

then

lim
k!1

pk
l

jpk0 j
D ei.�0C

2�l
NC1

/; l D 1; : : : ; N:

For many reasons it is convenient to denote

ık D jp
k
0 j and �k D uk.p

k
0 /C 2.1CN/ log ık : (2.6)

Also we use
"k D e

� 12�k

as the scaling factor most of the time. Since pk
l

’s are evenly distributed around @Bık ,
standard results for Liouville equations around a regular blowup point can be applied to
get uk.pkl / D uk.p

k
0 / C o.1/. Also, (1.5) gives �k ! 1. The interested readers may

look into [6, 20] for more detailed information.
Finally, we shall useE to denote a frequently appearing error term of the sizeO.ı2

k
/C

O.�ke
��k /.

3. Approximating bubbling solutions by global solutions

We write pk0 D ıke
i�k and define

vk.y/ D uk.ıkye
i�k /C 2.N C 1/ log ık ; jyj < �ı�1k : (3.1)

If we write out each component, (3.1) is

vk.y1; y2/ D uk
�
ık.y1 cos �k � y2 sin �k/; ık.y1 sin �k C y2 cos �k/

�
C 2.1CN/ log ık :

It is standard to verify that vk solves

�vk.y/C jyj
2Nhk.ıky/e

vk.y/ D 0; jyj < �=ık ; (3.2)

where
hk.x/ D hk.xe

i�k /; jxj < �: (3.3)
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Thus the image of pk0 after scaling is Qk
1 D e1 D .1; 0/. Let Qk

1 ; : : : ;Q
k
N be the images

of pki .i D 1; : : : ; N / after scaling:

Qk
l D

pk
l

ık
e�i�k ; l D 1; : : : ; N:

It was established by Kuo–Lin [20] and independently by Bartolucci–Tarantello [6] that

lim
k!1

Qk
l D lim

k!1
pkl =ık D e

2l�i
NC1 ; l D 0; : : : ; N: (3.4)

Then it was proved in our previous work [26, (3.13)] that

Qk
l � e

2�li
NC1 D O.�ke

��k /CO.jr log hk.0/jık/:

Using the rate of rhk.0/ in [26] we have

Qk
l � e

2�li
NC1 D O.�ke

��k /CO.ı2k/: (3.5)

Choosing 3" > 0 small and independent of k, we can make disks centered at Qk
l

with
radius 3" (denoted as B.Qk

l
; 3"/) mutually disjoint. Let

�k D max
B.Qk

0
;"/

vk : (3.6)

SinceQk
l

are evenly distributed around @B1, it is easy to use standard estimates for single
Liouville equations [11, 16, 30] to obtain

max
B.Qk

l
;"/

vk D �k C o.1/; l D 1; : : : ; N:

Let

Vk.x/ D log
e�k�

1C e�khk.ıke1/

8.1CN/2
jyNC1 � e1j2

�2 : (3.7)

Clearly Vk is a solution of

�Vk C hk.ıke1/jyj
2N eVk D 0 in R2; Vk.e1/ D �k : (3.8)

This expression is based on the classification theorem of Prajapat–Tarantello [23].
The estimate of vk.x/ � Vk.x/ is important for the main theorem of this article. For

convenience we use

ˇl D
2�l

N C 1
; so e1 D e

iˇ0 D Qk
0 ; eiˇl D Qk

l CE for l D 1; : : : ; N:

4. Vanishing of the first derivatives

Our first goal is to prove the following vanishing rate for rhk.0/:

Theorem 4.1.
r.log hk/.0/ D O.ık�k/: (4.1)
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Proof. Note that we have proved in [26] that

r.log hk/.0/ D O.ı
�1
k �ke

��k /CO.ık/:

If ık � C"k , there is nothing to prove. So we assume that

ık D o."k/: (4.2)

By way of contradiction we assume that

jrhk.0/j=.ık�k/!1: (4.3)

Another observation is that based on (3.5) we have

"�1k jQ
k
l � e

iˇl j � C""k ; l D 0; : : : ; N;

for some small " > 0. Thus �k tends to U after scaling. We need this fact in our argument.
Under the assumption (4.2) we cite Proposition 3.1 of [27]:

Let l D 0; : : : ;N and ı be so small that B.eiˇl ; ı/\B.eiˇs ; ı/D ; for l ¤ s. In each
B.eiˇl ; ı/,

jvk.x/ � Vk.x/j �

8̂<̂
:
C�ke

��k=2; jx � eiˇl j � Ce��k=2;

C
�ke

��k

jx � eiˇl j
CO.�2ke

��k /; Ce��k=2 � jx � eiˇl j � ı:
(4.4)

Remark 4.1. We only need a rescaled version of the proposition above:

jvk.e
iˇl C "ky/ � Vk.e

iˇl C "ky/j � C"
"
k.1C jyj/

�1; 0 < jyj < �"�1k ; (4.5)

for some small constants "; � > 0 both independent of k.

One major step in the proof of Theorem 4.1 is the following estimate:

Proposition 4.1. Let wk D vk � Vk . Then

jwk.y/j � C Qık ; y 2 �k WD B.0; �ı
�1
k /;

where Qık D jrhk.0/jık C ı
2
k
�k .

Proof. Obviously we can assume that jrhk.0/jık > 2ı2
k
�k because otherwise there is

nothing to prove. Now we recall that the equation for vk is (3.2), and vk is a constant on
@B.0; �ı�1

k
/. Moreover, vk.e1/ D �k . Recall that Vk defined in (3.7) satisfies

�Vk C hk.ıke1/jyj
2N eVk D 0 in R2;

Z
R2
jyj2N eVk <1;

Vk has its local maximums at eiˇl for l D 0; : : : ; N , and Vk.e1/ D �k . For jyj � ı�1
k

,

Vk.y/ D ��k � 4.N C 1/ log ı�1k C C CO.ı
NC1
k

/:
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Let �k D B.0; �ı�1
k
/. We shall derive a precise, pointwise estimate of wk on

B3 n
SN
lD1 B.Q

k
l
; �/ where � > 0 is a small number independent of k. Here we note

that among N C 1 local maximum points, we already have e1 as a common local max-
imum point for both vk and Vk , and we shall prove that wk is very small in B3 if we
exclude all bubbling disks except the one around e1. Before we carry out more specific
computations, we emphasize the importance of

wk.e1/ D jrwk.e1/j D 0: (4.6)

Now we write the equation for wk as

�wk C hk.ıky/jyj
2N e�kwk D .hk.ıke1/ � hk.ıky//jyj

2N eVk (4.7)

in �k , where �k is obtained from the mean value theorem:

e�k.x/ D

8̂<̂
:
evk.x/ � eVk.x/

vk.x/ � Vk.x/
if vk.x/ ¤ Vk.x/;

eVk.x/ if vk.x/ D Vk.x/:

An equivalent form is

e�k.x/ D

Z 1

0

d

dt
etvk.x/C.1�t/Vk.x/ dt D eVk.x/

�
1C

1

2
wk.x/CO.wk.x/

2/

�
: (4.8)

For convenience we write the equation for wk as

�wk C hk.ıky/jyj
2N e�kwk D ıkrhk.ıke1/ � .e1 � y/jyj

2N eVk CE1; (4.9)

where
E1 D O.ı

2
k/jy � e1j

2
jyj2N eVk ; y 2 �k :

Note that the oscillation of wk on @�k is O.ıNC1
k

/, which all comes from the oscillation
of Vk .

LetMk Dmaxy2 N�k jwk.y/j. We shall get a contradiction by assumingMk= Qık !1.
This assumption implies

Mk=.ı
2
k�k/!1: (4.10)

Set
Qwk.y/ D wk.y/=Mk ; y 2 �k :

Clearly maxy2�k j Qwk.y/j D 1. The equation for Qwk is

� Qwk.y/C jyj
2Nhk.ıke1/e

�k Qwk.y/ D ak � .e1 � y/jyj
2N eVk C QE1 (4.11)

in �k , where ak D ıkrhk.0/=Mk ! 0 and

QE1 D o.1/jy � e1j
2
jyj2N eVk ; y 2 �k : (4.12)
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Also on the boundary, since Mk= Qık !1, we have

Qwk D C C o.1=�k/ on @�k : (4.13)

By [27, Proposition 3.1],

�k.e1 C "kz/ D Vk.e1 C "kz/CO."
"
k/.1C jzj/

�1: (4.14)

Since Vk is not exactly symmetric around e1, we shall replace the rescaled version
of Vk around e1 by a radial function. Let Uk be solutions of

�Uk C hk.ıke1/e
Uk D 0 in R2; Uk.0/ D max

R2
Uk D 0: (4.15)

By the classification theorem of Caffarelli–Gidas–Spruck [7] we have

Uk.z/ D log
1�

1C hk.ıke1/
8
jzj2

�2
and standard refined estimates yield (see [11, 16, 30])

Vk.e1 C "kz/C 2 log "k D Uk.z/CO."k/jzj CO.�2k"
2
k/: (4.16)

Also we observe that
log je1 C "kzj D O."k/jzj: (4.17)

Thus, the combination of (4.14), (4.16) and (4.17) gives

2N log je1 C "kzj C �k.e1 C "kz/C 2 log "k � Uk.z/

D O.""k/.1C jzj/; 0 � jzj < ı0"
�1
k ; (4.18)

for a small " > 0 independent of k. Since we shall use the rescaled version, based on
(4.18) we write

"2kje1 C "kzj
2N e�k.e1C"kz/ D eUk.z/ CO.""k/.1C jzj/

�3: (4.19)

Here we note that the estimate in (4.18) is not optimal.
In the following we reduce the proof of Proposition 4.1 to a few estimates. First we

prove the following.

Lemma 4.1. For ı > 0 small and independent of k,

Qwk.y/ D o.1/; r Qwk D o.1/ in B.e1; ı/ n B.e1; ı=8/; (4.20)

where B.e1; 3ı/ does not include other blowup points.

Proof. If (4.20) is not true, without loss of generality Qwk ! c > 0. This is based on the
fact that Qwk tends to a global harmonic function with removable singularity, that is, to a
constant. Here we assume c > 0 but the argument for c < 0 is the same. Let

Wk.z/ D Qwk.e1 C "kz/; "k D e
� 12�k ; (4.21)



J. Wei, L. Zhang 246

and let W denote the limit of Wk . Then

�W C eUW D 0 in R2; jW j � 1;

where U is a solution of �U C eU D 0 in R2 with
R

R2 e
U < 1. Since 0 is the local

maximum of U ,

U.z/ D log
1�

1C 1
8
jzj2

�2 :
Here we further claim thatW � 0 in R2 becauseW.0/D jrW.0/j D 0, a fact well known
based on the classification of the kernel of the linearized operator. Going back to Wk , we
have

Wk.z/ D o.1/; jzj � Rk for some Rk !1:

Based on the expression of Qwk , (4.16) and (4.19), we write the equation for Wk as

�Wk.z/C hk.ıke1/e
Uk.z/Wk.z/ D E

k
2 (4.22)

for jzj < ı0"�1k , where a crude estimate of the error term Ek2 is

Ek2 .z/ D o.1/"
"
k.1C jzj/

�3:

Let

gk0 .r/ D
1

2�

Z 2�

0

Wk.r; �/ d�: (4.23)

Then clearly gk0 .r/! c > 0 for r � "�1
k

. The equation for gk0 is

d2

dr2
gk0 .r/C

1

r

d

dr
gk0 .r/C hk.ıke1/e

Uk.r/gk0 .r/ D
QEk0 .r/;

gk0 .0/ D
d

dr
gk0 .0/ D 0;

where QEk0 .r/ has the same upper bound as Ek2 .r/:

j QEk0 .r/j � o.1/"
"
k.1C r/

�3:

For the homogeneous equation, the two fundamental solutions are known: g01, g02,
where

g01 D
1 � c1r

2

1C c1r2
; c1 D

hk.ıke1/

8
:

By the standard reduction of order process, g02.r/ D O.log r/ for r > 1. Then it is easy
to find, assuming jWk.z/j � 1, that

jg0.r/j � C jg01.r/j

Z r

0

sj QEk0 .s/g02.s/j ds C C jg02.r/j

Z r

0

sjg01.s/ QE
k
0 .s/j ds

� C""k log.2C r/; 0 < r < ı0"
�1
k :
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Clearly this is a contradiction to (4.23). We have proved c D 0, which means Qwk D o.1/
in B.e1; ı0/ nB.e1; ı0=8/. Then the equation for Qwk and the standard Harnack inequality
yield r Qwk D o.1/ in the same region. Lemma 4.1 is established.

The second estimate is a more precise description of Qwk around e1:

Lemma 4.2. For any given � 2 .0; 1/ there exists C > 0 such that

j Qwk.e1 C "kz/j � C"
�
k .1C jzj/

� ; 0 < jzj < �"�1k ; (4.24)

for some � > 0.

Remark 4.2. Lemma 4.2 is an intermediate estimate for Qwk . Eventually we shall improve
(4.24) to an error with leading term o."k/.

Proof of Lemma 4.2. Let Wk be defined as in (4.21). In order to obtain a better estimate
we need to write the equation of Wk more precisely than (4.22):

�Wk C hk.ıke1/e
‚kWk D E

k
3 .z/; z 2 �Wk ; (4.25)

where ‚k is defined by

e‚k.z/ D je1 C "kzj
2N e�k.e1C"kz/C2 log "k ;

�Wk D B.0; �"
�1
k
/ and Ek3 .z/ satisfies

Ek3 .z/ D O."k/.1C jzj/
�3; z 2 �Wk :

Here we observe that by Lemma 4.1, Wk D o.1/ on @�Wk . Let

ƒk D max
z2�Wk

jWk.z/j

"�
k
.1C jzj/�

:

If (4.24) does not hold, thenƒk!1 and we use zk to denote whereƒk is attained. Note
that because of the smallness of Wk on @�Wk , zk is an interior point. Letting

gk.z/ D
Wk.z/

ƒk.1C jzkj/�"
�
k

; z 2 �Wk ;

we see immediately that

jgk.z/j D
jWk.z/j

"�
k
ƒk.1C jzj/�

�
.1C jzj/�

.1C jzkj/�
�
.1C jzj/�

.1C jzkj/�
: (4.26)

Note that � can be as close to 1 as needed. The equation for gk is

�gk.z/C hk.ıke1/e
‚kgk D o."

1��
k /

.1C jzj/�3

.1C jzkj/�
in �Wk :
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Then we can obtain a contradiction to jgk.zk/j D 1 as follows: If limk!1 zk D P 2 R2,
this is not possible because the fact that gk.0/ D jrgk.0/j D 0 and the sublinear growth
of gk in (4.26) implies that gk ! 0 over any compact subset of R2 (see [11, 30]). So
we have jzkj ! 1. But this would lead to a contradiction again by using the Green’s
representation of gk :

˙ 1 D gk.zk/ D gk.zk/ � gk.0/

D

Z
�k;1

.Gk.zk ; �/�Gk.0; �//

�
hk.ıke1/e

‚kgk.�/C o."
1��
k /

.1C j�j/�3

.1C jzkj/�

�
d�C o.1/:

(4.27)

where Gk.y; �/ is the Green’s function on �Wk , and o.1/ in the equation above comes
from the smallness of Wk on @�Wk . Let Lk D �"�1k . Then the expression of Gk is

Gk.y; �/ D �
1

2�
log jy � �j C

1

2�
log
�
j�j

Lk

ˇ̌̌̌
L2
k
�

j�j2
� y

ˇ̌̌̌�
;

and

Gk.zk ; �/ �Gk.0; �/ D �
1

2�
log jzk � �j C

1

2�
log
ˇ̌̌̌
zk

jzkj
�
�zk

L2
k

ˇ̌̌̌
C

1

2�
log j�j:

Using this expression in (4.27) and an elementary computation shows that the right hand
side of (4.27) is o.1/, a contradiction to jgk.zk/j D 1. Lemma 4.2 is established.

The smallness of Qwk around e1 can be used to obtain the following third key estimate:

Lemma 4.3.
Qwk D o.1/ in B.eiˇl ; �/; l D 1; : : : ; N: (4.28)

Proof. We abuse the notation Wk by defining

Wk.z/ D Qwk.e
iˇl C "kz/; z 2 �k;l WD B.0; �"

�1
k /:

Here we point out that based on (3.5) and (4.2) we have "�1
k
jQk

l
� eiˇl j ! 0. So the

scaling around eiˇl or Qk
l

does not affect the limit function. We have

"2kje
iˇl C "kzj

2Nhk.ıke1/e
�k.e

iˇlC"kz/ ! eU.z/

where U.z/ is a solution of

�U C eU D 0 in R2;

Z
R2
eU <1:

Here we recall that limk!1 hk.ıke1/ D 1. Since Wk converges to a solution of the lin-
earized equation

�W C eUW D 0 in R2;
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W can be written as a linear combination of three functions:

W.x/ D c0�0 C c1�1 C c2�2;

where

�0 D
1 � 1

8
jxj2

1C 1
8
jxj2

; �1 D
x1

1C 1
8
jxj2

; �2 D
x2

1C 1
8
jxj2

:

It remains to prove c0 D c1 D c2 D 0. First we prove c0 D 0.

Step 1: c0 D 0. First we write the equation for Wk in a convenient form. Since

jeiˇl C "kzj
2Nhk.ıke1/ D hk.ıke1/CO."kz/;

"2ke
�k.e

iˇlC"kz/ D eUk.z/ CO.""k/.1C jzj/
�3;

based on (4.11) we write the equation for Wk as

�Wk.z/C hk.ıke1/e
UkWk D E

k
l .z/; (4.29)

where
Ekl .z/ D O."

"
k/.1C jzj/

�3 in �k;l :

In order to prove c0 D 0, the key is to control the derivative of

W k
0 .r/ D

1

2�r

Z
@Br

Wk.re
i� / dS; 0 < r < �"�1k :

To do so, we use the radial solution �k0 .r/ of

��k0 C hk.ıke1/e
Uk�k0 D 0 in R2:

When k !1, �k0 ! c0�0. Thus using the equations for �k0 and Wk , we haveZ
@Br

.@�Wk�
k
0 � @��

k
0Wk/ D o."

"
k/: (4.30)

Thus from (4.30) we have

d

dr
W k
0 .r/ D

1

2�r

Z
@Br

@�Wk D o."
"
k/=r CO.1=r

3/; 1 < r < �"�1k : (4.31)

Since we know that
W k
0 .�"

�1
k / D o.1/;

by the fundamental theorem of calculus we have

W k
0 .r/ D W

k
0 .�"

�1
k /C

Z r

�"�1
k

�
o.""

k
/

s
CO.s�3/

�
ds D O.1=r2/CO

�
""k log

1

"k

�
for r � 1. Thus c0 D 0 because W k

0 .r/ ! c0�0, which means that when r is large,
W k
0 .r/ D �c0 CO.1=r

2/.
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Step 2: c1 D c2 D 0. We first observe that Lemma 4.3 follows from this. Indeed, once we
have proved c1D c2D c0D 0 around each eiˇl , it is easy to use the maximum principle to
prove Qwk D o.1/ inB3 using Qwk D o.1/ on @B3 and the Green’s representation of Qwk . The
smallness of Qwk immediately implies Qwk D o.1/ in BR for any fixedR� 1. Outside BR,
a crude estimate of vk is

vk.y/ � ��k � 4.N C 1/ log jyj C C; 3 < jyj < �ı�1k :

Using this and the Green’s representation ofwk we can first observe that the oscillation of
wk on each @Br is o.1/ (R < r < �ı�1

k
=2) and then by the Green’s representation of Qwk

and fast decay rate of eVk we obtain Qwk D o.1/ inB.0; �ı�1
k
/, contradicting max j Qwkj D 1.

There areN C 1 local maximum points, one of them being e1. Correspondingly, there
areN C 1 global solutions Vl;k that approximate vk accurately nearQk

l
for l D 0; : : : ;N .

Note that Qk
0 D e1. For Vl;k the expression is

Vl;k D log
e�

k
l�

1C e
�k
l

Dk
l

jyNC1 � .e1 C p
k
l
/j2
�2 ; l D 0; : : : ; N;

where pk
l
D E and

Dk
l D 8.N C 1/

2=hk.ıkQ
k
l /: (4.32)

The equation that Vl;k satisfies is

�Vl;k C jyj
2Nhk.ıkQ

k
l /e

Vl;k D 0 in R2:

Since vk and Vl;k have the same common local maximum at Qk
l

, it is easy to see that

Qk
l D e

iˇl C
pk
l
eiˇl

N C 1
CO.jpkl j

2/; ˇl D
2l�

N C 2
: (4.33)

Let Ml;k be the maximum of jvk � Vl;kj. We claim that all these Ml;k are comparable:

Ml;k �Ms;k ; 8s ¤ l: (4.34)

The proof of (4.34) is as follows: We use Ls;l to denote the limit of .vk � Vl;k/=Ml;k

around Qk
s :

.vk � Vl;k/.Q
k
s C "kz/

Ml;k

D Ls;l C o.1/; jzj � �"
�1
k ;

where

Ls;l D c1;s;l
z1

1C 1
8
jzj2
C c2;s;l

z2

1C 1
8
jzj2

; Ll;l D 0; s; l D 0; : : : ; N:

If all c1;s;l and c2;s;l are zero for a fixed l , we can obtain a contradiction just as at the
beginning of Step 2. So at least one of them is not zero. For each s ¤ l , by Lemma 4.2
we have

vk.Q
k
s C "kz/ � Vs;k.Q

k
s C "kz/ D O."

�
k /.1C jzj/

�Ms;k ; jzj < �"
�1
k : (4.35)
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Let Mk D maxi Mi;k (k D 0; : : : ; N ) and we suppose Mk D Ml;k . Then to determine
Ls;l we see that

vk.Q
k
s C "kz/ � Vl;k.Q

k
s C "kz/

Mk

D o."�k /.1C jzj/
�
C
Vs;k.Q

k
s C "kz/ � Vl;k.Q

k
s C "kz/

Mk

:

This expression says that Ls;l is mainly determined by the difference of two global
solutions Vs;k and Vl;k . In order to obtain a contradiction to our assumption we will
decompose the difference into several terms. The main idea in this part of the reason-
ing is that “first order terms” tell us what the kernel functions should be; then the “second
order terms” tell us where the pathology is.

We write

Vs;k.y/ � Vl;k.y/ D �
k
s � �

k
l C 2A � A

2
CO.jAj3/

where

A.y/ D

e
�k
l

Dk
l

jyNC1 � e1 � p
k
l
j2 �

e�
k
s

Dks
jyNC1 � e1 � p

k
s j
2

1C e�
k
s

Dks
jyNC1 � e1 � pks j

2

:

Here for convenience we abuse the notation "k by assuming "k D e��
k
s =2. Note that

"k D e
��kt =2 for some t , but it does not matter which t it is. From the formula for A we

claim that

Vs;k.Q
k
s C "kz/ � Vl;k.Q

k
s C "kz/ D �1 C �2 C �3 C �4 CR; (4.36)

where

�1 D .�
k
s � �

k
l /

�
1 �

.N C 1/2

Dk
s

ˇ̌
z CO."k/jzj

2
ˇ̌2�

=B;

�2 D
2.N C 1/2

Dk
s

ıkrhk.ıkQ
k
s /.Q

k
l �Q

k
s /jzj

2=B;

�3 D
4.N C 1/

Dk
s B

Re
�
.z CO."kjzj

2//

�
Npks � Np

k
l

"k
e�iˇs

��
;

�4 D
jpks � p

k
l
j2

"2
k

�
2

Dk
s B
�
2.N C 1/2jzj2

D2
sB

2
�
2.N C 1/2

D2
sB

2
jzj2 cos.2� � 2�st � 2ˇs/

�
;

B D 1C
.N C 1/2

Dk
s

jz CO."kjzj
2/j2;

and Rk is the collection of other insignificant terms. Here we briefly explain the roles of
each term. �1 corresponds to the radial solution in the kernel of the linearized operator
of the global equation. In other words, �k1 =Mk should tend to zero because in Step 1 we
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have proved c0 D 0. Next �k2 =Mk is the combination of the other two functions in the
kernel. Further �4 is the second order term which will play a leading role later. Finally,
�k3 comes from the difference of hk atQk

l
andQk

s . The derivation of (4.36) is as follows:
First by the expression of Qk

s in (4.33) we have

yNC1 D 1C pks C .N C 1/"kze
�iˇs CO."2k/jzj

2;

where y D Qk
s C "kz. Then

jyNC1 � e1 � p
k
s j
2
D .N C 1/2"2kjz CO."k/z

2
j
2
CO."3k/jzj

3;

jyNC1 � e1 � p
k
l j
2
D .N C 1/2"2k

ˇ̌̌̌
z C

.pks � p
k
l
/eiˇs

.N C 1/"k
CO."k/jzj

2

ˇ̌̌̌2
CO."3kjzj

3/:

Next by the definition of Dk
s in (4.32),

Dk
s �D

k
l

Dk
l

D ıkr.log hk/.0/ � .Q
k
l �Q

k
s /CO.ı

2
k/;

e�
k
l
��ks

Dk
l

D
1

Dk
s

�
1C

Dk
s �D

k
l

Dk
l

C �kl � �
k
s CO..�

k
l � �

k
s /
2/CO.ı2k/

�
:

D
1

Dk
s

�
1C ıkr log hk.0/ � .Q

k
l �Q

k
s /C �

k
l � �

k
s

CO..�kl � �
k
s /
2/CO.ı2k/

�
: (4.37)

Then the expression of A is (for simplicity we omit k in some notations)

A D

�
e�l��s

Dl
.N C 1/2

�
jzj2C 2Re

�
z
ps �pl

"k.N C 1/
e�iˇs

�
C
jps �pl j

2

.N C 1/2"2
k

CO."kjzj
3/

�
�
.N C 1/2

Ds
.jzj2 CO."k/jzj

3/

�
=B:

After using (4.37) we have

A D

�
1

Ds

�
ıkr.log hk/.0/.Ql �Qs/C �l � �s CO.�l � �s/

2
�
.N C 1/2jzj2

C 2Re
�
z
Nps � Npl

"k
e�iˇs

�
.N C 1/

1

Ds
C
jps � pl j

2

"2
k
Ds

CO."k/jzj
3
CO.ı2k/jzj

2

�
=B:

so

A2 D
.N C 1/2

D2
s

4

�
Re
�
z
Nps � Npl

"k
e�iˇs

��2
=B2 C other terms:

The numerator of A2 has the following leading term:

.N C 1/2

D2
s

�
2jzj2

�
jps � pl j

"k

�2
.1C 2 cos.2� � 2�sl //

�
;
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where z D jzjei� and ps � pl D jps � pl jei�sl . Using these expressions we can obtain
(4.36) by direct computation. Here �1, �3 correspond to solutions to the linearized oper-
ator. Note that if we set "l;k D e��

k
l
=2, then there is no essential difference between

"l;k and "k D e�
1
2�1;k because "l;k D "k C O."kE/. If j�s;k � �l;kj=Mk � C there

is no way to obtain a limit in the form of Ls;l mentioned before. Thus we must have
j�s;k � �l;kj=Mk ! 0. After simplification (see �3 of (4.36)) we have

c1;s;l D lim
k!1

jpks � p
k
l
j

2.N C 1/Mk"k
cos.ˇs C �sl /;

c2;s;l D lim
k!1

jpks � p
k
l
j

2.N C 1/Mk"k
sin.ˇs C �sl /

(4.38)

We omit k for convenience. It is also important to observe that even if Mk D o."k/ we
still haveMk � maxs jpks � p

k
l
j="k . Since each jpk

l
j equals E, an upper bound forMk is

Mk � C�k"k C Cı
2
k"
�1
k : (4.39)

Equations (4.38) give us a key observation: jc1;s;l j C jc2;s;l j � jpks �p
k
l
j=."kMk/. So

whenever jc1;s;l j C jc2;s;l j ¤ 0 we have jpks � p
k
l
j="k �Mk . In other words, for each l ,

Ml;k � maxt¤l jpkt � p
k
l
j="k . Hence for any t , if jpkt � p

k
l
j="k � Mk , let Mt;k be the

maximum of jvk � Vt;kj; we have Mt;k � Mk . If jpkt � p
k
l
j="k � Mk for all k, (4.34)

is proved. So we prove that even if some pkt is very close to pk
l

, Mt;k is still comparable

toMk . The reason is that there exists q such that jp
k
l
�pkq j

"k
�Mk , so if jp

k
t �p

k
l
j

"k
D o.1/Mk

then
jpkt � p

k
q j � jp

k
l � p

k
q j � jp

k
t � p

k
l j �

1
2
jpkl � p

k
q j:

Thus jpkt � p
k
q j="k � Mk and Mt;k � Mk , so (4.34) is established. From now on for

convenience we shall just use Mk . Since Mk � maxs;t jpks � p
k
t j="k , an upper bound

of Mk is
Mk � C�k"k : (4.40)

Set wl;k D vk � Vl;k . Then wl;k.Qk
l
/ D jrwl;k.Q

k
l
/j D 0. Correspondingly, we set

Qwl;k D wl;k=Mk :

The equation for wl;k can be written as

�wl;k C jyj
2Nhk.ıkQl /e

�lwl;k

D �ıkrhk.ıkQl /.y �Ql /jyj
2N eVl;k � ı2k

X
j˛jD2

@˛hk.ıkQl /

˛Š
.y �Ql /

˛
jyj2N eVk

CO.ı3k/jy �Ql j
3
jyj2N eVk ; (4.41)

where we omitted k in Ql and �l . Now, �l comes from the mean value theorem and
satisfies

e�l D eVl;k
�
1C 1

2
wl;k CO.w

2
l;k/

�
: (4.42)
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The function Qwl;k satisfies

lim
k!1

Qwl;k.Q
k
s C "kz/ D

c1;s;lz1 C c2;s;lz2

1C 1
8
jzj2

(4.43)

and around each Qk
s , (4.35) holds with Ms;k replaced by Mk .

Now for jyj � 1, we use wl;k.Qk
l
/ D 0 to write wl;k.y/ as

wl;k.y/ D

Z
�k

.Gk.y; �/ �Gk.Ql ; �//

�
hk.ıkQl /j�j

2N e�lwl;k.�/

C ıkrhk.ıkQl /.� �Ql /j�j
2N eVl;k

C ı2k

X
j˛jD2

@˛hk.ıkQl /

˛Š
.� �Ql /

˛
jyj2N eVk

�
CO.ıNC2

k
/:

Note that the last term is O.ıNC2
k

/ because it comes from the oscillation of wl;k on
@�k . The harmonic function defined by the boundary value of wl;k has an oscillation
of O.ıNC1

k
/ on @�k . The oscillation of this harmonic function in BR (for any fixed

R > 1) is O.ıNC2
k

/. The regular part of the Green’s function brings little error in the
computation, so we have

Qwl;k.y/ D �
1

2�

Z
�k

log
jy � �j

jQk
l
� �j

�
Qwl;k.�/hk.ıkQ

k
l /j�j

2N e�l

C �krhk.ıkQ
k
l /.� �Q

k
l /j�j

2N eVl;k

C
ı2
k

Mk

X
j˛jD2

@˛hk.ıkQ
k
l
/

˛Š
.� �Qk

l /
˛
j�j2N eVl;k

�
d�C o."k/ (4.44)

for jyj � 1.
Around each Qk

s the e�l can be replaced by eVs;k with controllable error (based on
Lemma 4.2 and (4.40)). In order to evaluate the expression of Qwl;k we need the following
identity based on (4.36):Z
B.Qks ;�/

�
Qwl;k.�/hk.ıkQ

k
l /j�j

2N eVs;kC�krhk.ıkQ
k
l /.��Ql /j�j

2N eVl;k
�
d�DO."�k /:

(4.45)

Note that eVl;k in the first term was replaced by eVs;k but in the second term above this
replacement is not necessary. (4.36) is mainly used in the evaluation of the first term. The
proof of (4.45) can be found in the appendix.

Equation (4.45) also leads to a more accurate estimate of Qwl;k in regions between bub-
bling disks. By the Green’s representation formula of Qwl;k it is easy to have, for jyj � 1,

j Qwl;k.y/j D o.1=�k/; y 2 B3 n

N[
sD0

B.Qk
s ; �/: (4.46)
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Indeed, writing the logarithmic term in (4.44) as

log
jy � �j

jQk
l
� �j

D log
jy �Qk

s j

jQk
l
�Qk

s j
C

�
log
jy � �j

jQk
l
� �j

� log
jy �Qk

s j

jQk
l
�Qk

s j

�
;

we see that the integral in (4.44) related to the second term isO."k/. The integral in (4.44)
involving the first term isO."�

k
/C o.ı2

k
=Mk/ for some � 2 .0; 1/ by (4.45) and the defin-

ition of Mk . Therefore (4.46) holds. This extra control of Qwl;k away from bubbling disks
gives a better estimate than (4.35) around Qk

l
. Using the same argument for Lemma 4.2

we have

j Qwl;k.Q
k
l C "kz/j � o."k/

1C jzj

log.2C jzj/
; jzj < �"�1k : (4.47)

From the decomposition in (4.36) and with the help of (4.47) we can now estimate the
integral of Qwl;k more precisely:Z
B.Qks ;�/

�
Qwl;k.�/hk.ıkQ

k
l /j�j

2N e�l C �krhk.ıkQ
k
l /.� �Q

k
l /j�j

2N eVl;k

C
ı2
k

Mk

X
j˛jD2

@˛hk.ıkQ
k
l
/

˛Š
.� �Qk

l /
˛
j�j2N eVl;k / d�

D

Z
B.Qks ;�/

Qwl;k.�/hk.ıkQ
k
l /j�j

2N eVs;k d�C 8��kr log hk.ıkQ
k
s /.Q

k
s �Q

k
l /

C 2�
ı2
k

Mk

�hk.ıkQ
k
s /

hk.ıkQk
s /
jQk

s �Q
k
l j
2
C o."k/

D Dk
s;l C o."k/; (4.48)

where

Dk
s;l D

�

.N C 1/2

jpks � p
k
l
j2

"2
k
M 2
k

Mk C 2�
ı2
k

Mk

�hk.ıkQ
k
s /

hk.ıkQk
s /
jQk

s �Q
k
l j
2:

Let

Hy;l .�/ D
1

2�
log
jy � �j

jQk
l
� �j

:

Then

Qwl;k.y/ D �
X
s¤l

Hy;l .Qs/D
k
s;l

�

X
s¤l

Z
B.Qs ;�/

.@1Hy;l .Qs/�1 C @2Hy;l .Qs/�2/
�
hk.ıkQl /j�j

2N e�l Qwl;k.�/

C �krhk.ıkQl /.� �Ql /j�j
2N eVl;k CO.ı2kM

�1
k /j� �Ql j

2
j�j2N eVl;k

�
d�

C o."k/:
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After evaluation we have

Qwl;k.y/ D �
1

2�

X
s¤l

log
jy �Qk

s j

jQk
l
�Qk

s j
Dk
s;l

�

X
s¤l

8

�
y1 �Q

1
s

jy �Qsj2
�

Q1
l
�Q1

s

jQl �Qsj2

�
c1;s;l"k

� 8

�
y2 �Q

2
s

jy �Qsj2
�

Q2
l
�Q2

s

jQs �Ql j2

�
c2;s;l"k C o."k/;

where we have usedZ
R2

z21�
1C 1

8
jzj2

�3 dz D Z
R2

z22�
1C 1

8
jzj2

�3 dz D 16�:
Recall that

c1;s;l D
jps � pl j

2.N C 1/Mk"k
cos.ˇs C �sl /;

c2;s;l D
jps � pl j

2.N C 1/Mk"k
sin.ˇs C �sl /:

For jyj � 1 but away from the N C 1 bubbling disks, we have, for l ¤ s,

vk.y/ D Vl;k.y/CMk Qwl;k.y/

and
vk.y/ D Vs;k.y/CMk Qws;k.y/:

Thus for s ¤ l we have

Vs;k.y/ � Vl;k.y/

Mk

D Qwl;k.y/ � Qws;k.y/: (4.49)

For jyj � 1 away from bubbling disks, we have

Vs;k.y/ � Vl;k.y/ D 4 log jyNC1 � e1 � pl j � 4 log jyNC1 � e1 � psj C o."kMk/;

jyNC1 � e1 � pl j
2

D jyNC1 � e1 � psj
2
C 2Re

�
.yNC1 � e1 � ps/. Nps � Npl /

�
C jpl � psj

2:

Thus
Vs;k.y/ � Vl;k.y/

Mk

D 4Re
�
yNC1 � 1

jyNC1 � 1j2
Npl � Nps

Mk"k

�
"k C o."k/:
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We are going to derive a contradiction based on (4.49). For this purpose we choose s D 0
in (4.49), which means Qws;k D o."k/; then we have

Re
�
yNC1 � 1

jyNC1 � 1j2
Npl

"kMk

�
"k C o."k/

D �
1

2�

X
s¤l

log
jy �Qk

s j

jQk
l
�Qk

s j
Dk
s;l

C

X
s¤l

8

��
y1 �Q

1
l

jy �Ql j2
�

Q1
l
�Q1

s

jQl �Qsj2

��
jps � pl j

2.N C 1/Mk"k

�
cos.ˇs C �sl /

C

�
y2 �Q

2
l

jy �Ql j2
�

Q2
l
�Q2

s

jQl �Qsj2

�
jps � pl j

2.N C 1/"kMk

sin.ˇs C �sl /
�
"k ; 8l: (4.50)

If Mk � C"k , the first term on the right hand side will dominate all other terms when
jyj � 1, violating the equality in (4.50). But whenMk D o."k/, the equality cannot hold
either if we choose jyj � 1 because the last two terms of (4.50) will majorize the left
hand side. Lemma 4.3 is established.

Proposition 4.1 is an immediate consequence of Lemma 4.3.

Now we finish the proof of Theorem 4.1.
Let Owk D wk= Qık . (Recall that Qık D ıkjrhk.0/j C ı

2
k
�k .) If jrhk.0/j=.ık�k/!1,

we see that in this case Qık � ık�kjrhk.0/j. The equation for Owk is

� Owk C jyj
2N e�k Owk D ak � .e1 � y/jyj

2N eVk C bke
Vk jy � e1j

2
jyj2N (4.51)

in �k , where ak D ıkrhk.0/= Qık , bk D o.1=�k/. By Proposition 4.1, j Owk.y/j � C .
Before we carry out the remaining part of the proof we observe that Owk converges to
a harmonic function in R2 minus finitely many singular points. Since Owk is bounded, all
these singularities are removable. Thus Owk converges to a constant. Based on the inform-
ation around e1, we shall prove that this constant is 0. However, looking at the right hand
side of the equation,

.e1 � y/jyj
2N eVk *

NX
lD1

8�.e1 � e
iˇl /ıeiˇl ;

we will get a contradiction by comparing the Pohozaev identities for vk and Vk , respect-
ively.

Now we use the notation Wk again and use Proposition 4.1 to rewrite the equation
for Wk . Let

Wk.z/ D Owk.e1 C "kz/; jzj < ı0"
�1
k ;
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for ı0 > 0 small. Then from Proposition 4.1 we have

hk.ıky/ D hk.ıke1/C ıkrhk.ıke1/.y � e1/CO.ı
2
k/jy � e1j

2; (4.52)

jyj2N D je1 C "kzj
2N
D 1CO."k/jzj; (4.53)

Vk.e1 C "kz/C 2 log "k D Uk.z/CO."k/jzj CO."2k/.log.1C jzj//2; (4.54)

�k.e1 C "kz/C 2 log "k D Uk.z/CO."k/.1C jzj/: (4.55)

Using (4.52)–(4.55) in (4.51) we write the equation for Wk as

�Wk C hk.ıke1/e
Uk.z/Wk D �"kak � ze

Uk.z/ CEw ; 0 < jzj < ı0"
�1
k ; (4.56)

where
Ew.z/ D O."k/.1C jzj/

�3; jzj < ı0"
�1
k : (4.57)

Since Owk obviously converges to a global harmonic function with removable singularity,
we have Owk ! Nc for some Nc 2 R. We claim the following.

Lemma 4.4. Nc D 0.

Proof. If Nc ¤ 0, we use Wk.z/ D Nc C o.1/ on B.0; ı0"�1k / n B.0;
1
2
ı0"
�1
k
/ and consider

the projection of Wk on 1:

g0.r/ D
1

2�

Z 2�

0

Wk.re
i� / d�:

If we use F0 to denote the projection to 1 of the right hand side, using the rough estimate
of Ew in (4.57) we have

g000.r/C
1

r
g00.r/C hk.ıke1/e

Uk.r/g0.r/ D F0; 0 < r < ı0"
�1
k ;

where
F0.r/ D O."k/.1C jzj/

�3:

In addition,
lim
k!1

g0.ı0"
�1
k / D Nc C o.1/:

For simplicity we omit k in some notations. By the same argument as in Lemma 4.1, we
have

g0.r/ D O."k/ log.2C r/; 0 < r < ı0"
�1
k :

Thus Nc D 0. Lemma 4.4 is established.

Based on Lemma 4.4 and the standard Harnack inequality for elliptic equations, we
have

Qwk.x/D o.1/; r Qwk.x/D o.1/; x 2 B3 n

N[
lD1

.B.eiˇl ; ı0/ nB.e
iˇl ; ı0=8//: (4.58)

This is equivalent to wk D o. Qık/ and rwk D o. Qık/ in the same region.
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In the next step we consider the difference between two Pohozaev identities. For s D
1; : : : ; N we consider the Pohozaev identity around Qk

s . Let �s;k D B.Qk
s ; r/ for small

r > 0. For vk we haveZ
�s;k

@�.jyj
2Nhk.ıky//e

vk �

Z
@�s;k

evk jyj2Nhk.ıky/.� � �/

D

Z
@�s;k

�
@�vk@�vk �

1
2
jrvkj

2.� � �/
�
dS; (4.59)

where � is an arbitrary unit vector. Correspondingly, the Pohozaev identity for Vk isZ
�s;k

@�.jyj
2Nhk.ıke1//e

Vk �

Z
@�s;k

eVk jyj2Nhk.ıke1/.� � �/

D

Z
@�s;k

�
@�Vk@�Vk �

1
2
jrVkj

2.� � �/
�
dS: (4.60)

Using wk D vk � Vk and jwk.y/j � C Qık we haveZ
@�s;k

�
@�vk@�vk �

1
2
jrvkj

2.� � �/
�
dS

D

Z
@�s;k

�
@�Vk@�Vk �

1
2
jrVkj

2.� � �/
�
dS

C

Z
@�s;k

�
@�Vk@�wk C @�wk@�Vk � .rVk � rwk/.� � �/

�
dS C o. Qık/:

If we just use the crude estimate rwk D o. Qık/, we haveZ
@�s;k

�
@�vk@�vk �

1
2
jrvkj

2.� � �/
�
dS

�

Z
@�s;k

�
@�Vk@�Vk �

1
2
jrVkj

2.� � �/
�
dS D o. Qık/:

The difference of the second terms is minor: If we use the expansion of vk D Vk C wk
and that of hk.ıky/ around e1, it is easy to obtainZ

@�s;k

evk jyj2Nhk.ıky/.� � �/ �

Z
@�s;k

eVk jyj2Nhk.ıke1/.� � �/ D o. Qık/:

To evaluate the first term, we use

@�.jyj
2Nhk.ıky//e

vk

D @�
�
jyj2Nhk.ıke1/C jyj

2N ıkrhk.ıke1/.y � e1/CO.ı
2
k/
�
eVk .1Cwk CO.ı

2
k�k//

D @�.jyj
2N /hk.ıke1/e

Vk C ık@�
�
jyj2Nrhk.ıke1/.y � e1/

�
eVk

C @�.jyj
2Nhk.ıke1//e

Vkwk CO.ı
2
k�k/e

Vk : (4.61)
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For the third term on the right hand side of (4.61) we use the equation for wk :

�wk C hk.ıke1/e
Vk jyj2Nwk D �ıkrhk.ıke1/ � .y � e1/jyj

2N eVk CO.ı2k/e
Vk jyj2N :

From integration by parts we haveZ
�s;k

@�.jyj
2N /hk.ıke1/e

Vkwk D 2N

Z
�s;k

jyj2N�2y�hk.ıke1/e
Vkwk

D 2N

Z
�s;k

y�

jyj2

�
��wk � ıkrhk.ıke1/.y � e1/jyj

2N eVk CO.ı2k/e
Vk jyj2N

�
D �2Nık

Z
�s;k

y�

jyj2
rhk.ıke1/.y � e1/jyj

2N eVk

C 2N

Z
@�s;k

�
@�

�
y�

jyj2

�
wk � @�wk

y�

jyj2

�
C o. Qık/

D rhk.ıke1/
�
�16Nık�.e

iˇs � �/.eiˇs � e1/CO.�k"
2
k/
�
C o. Qık/; (4.62)

where we have used rwk ; wk D o. Qık/ on @�s;k . For the second term on the right hand
side of (4.61), we haveZ
�s;k

ık@�.jyj
2N
rhk.ıke1/.y � e1//e

Vk

D 2Nık

Z
�s;k

y� jyj
2N�2

rhk.ıke1/.y � e1/e
Vk C ık

Z
�s;k

jyj2N @�hk.ıke1/e
Vk

D rhk.ıke1/
�
16N�ık.e

iˇs � �/.eiˇs � e1/CO.�k"
2
k/
�

C ık@�hk.ıke1/.8� CO.�k"
2
k//C o.

Qık/: (4.63)

Using (4.62) and (4.63) in the difference between (4.59) and (4.60), we have

ık@�hk.ıke1/.1CO.�k"
2
k// D o.

Qık/:

Thus rhk.ıke1/ D O.ık�k/. Theorem 4.1 is established.

5. Proof of Theorem 1.1

First we handle the case N � 2. In [26] we have already proved that

�.log hk/.0/ D O.ı
�2
k �ke

��k /CO.ık/:

Therefore if ık=.�
1=2

k
"k/!1 there is nothing to prove. So we only consider the case

when ık � C�
1=2

k
"k . In this case "�1

k
ı2
k
� C""

k
for some " 2 .0; 1/. The whole argument

of Proposition 4.1 can be employed to prove

jwk.y/j � Cı
2
k�

7=4

k
: (5.1)
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In order to employ the same strategy of the proof, one needs to have three things: First,
"�1
k
ı2
k
DO.""

k
/. This is clear from the definition of ık . Second, in the proof of Lemma 4.3

we need
O.ıNC2

k
=Mk/ D o."k/;

where Mk > ı2
k
�
7=4

k
. Since ık � C�

1=2

k
"k and N � 1, the required inequality holds.

Thirdly, we need to have
ı3k=Mk D o."k/:

This is used in (7.1). From the requirement on ık and the definition of Mk this clearly
also holds. The proof of Proposition 4.1 follows. Thus for N � 2 we also have (5.1).

The precise upper bound of wk in (5.1) leads to the vanishing rate of the Laplacian
estimate for N � 2 and some cases of N D 1: If we use

Wk.z/ D wk.el C "kz/=.ı
2
k�

7=4

k
/; jzj < �"�1k ;

where el ¤ e1. We shall show that the projection of Wk over 1 is not bounded when
jzj � "�1

k
, which gives the desired contradiction.

We write the equation for wk as

�wk C jyj
2N e�kwk D

�
hk.ıke1/ � hk.ıky/

�
jyj2N eVk :

Then for l ¤ 1,

�Wk.z/C e
UkWk.z/ D a0e

Uk C a1ze
Uk C

1

2�
7=4

k

�hk.0/jzj
2eUk

C
1

�
7=4

k

R2.�/jzj
2eUk CO.""k.1C jzj/

�3/;

where

a0 D
�
hk.ıke1/ � hk.ıkel /

�
=.ı2k�

7=4

k
/;

a1 D �rhk.ıkel /=.ık�
7=4

k
/;

and R2 is the sum of spherical harmonic functions of degree 2. Note that the assumption
l ¤ 1 means there is no appearance of "k or "2

k
in the equation for Wk .

Let gk.r/ be the projection of Wk on 1. By the same ODE analysis as before, we see
that gk satisfies

g00k C
1

r
g0k.r/C e

Ukgk D Ek ;

where
Ek.r/ D O."

"
k/.1C r/

�3
C

1

2�
7=4

k

�.log hk/.0/r
2eUk :

Using the same argument as in Lemma 4.1, we have

gk.r/ � �.log hk/.0/.log r/2��7=4
k

; r > 10:
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Clearly if �.log hk.0/ ¤ 0 we obtain a violation of the bound of wk for r � "�1
k

.
Theorem 1.1 for N � 2 is proved under the assumption

"�1k jQ
k
s � e

iˇs j � ""k ; s D 1; : : : ; N: (5.2)

We need this assumption because the �k function that comes from the equation of wk
has to tend to U after scaling. From [26, (3.13)], jQk

s � e
iˇs j D O.ı2

k
/C O.�ke

��k /.
If ı2

k
"�1
k
� C , the argument in Theorem 4.1 cannot be used because either �k does not

tend to U or c0 D 0 cannot be proved. For N � 2, this is not a problem because we only
consider ık � C�

1=2

k
"k .

Next we prove Theorem 1.1 forN D 1 and ık ��k"k . The reader can see immediately
that the proof for N � 2 still works.

So we now handle the only remaining case.

Proof of Theorem 1.1 for N D 1 and ık � �k"k . In this case we write the equation for
wk as

�wk C jyj
2hk.ıky/e

vk � jyj2hk.ıke1/e
Vk D 0:

From 0 D rwk.e1/ we have

0 D

Z
�k

r1Gk.e1; �/j�j
2
�
hk.ık�/e

vk � hk.ıke1/e
Vk
�
d�CO.ı3k/: (5.3)

Note that vk is close to another global solution NVk which matches with a local maximum
of vk at Qk

2 . Evaluating the right hand side of (5.3) we have

r1Gk.e1;Q
k
2 / � r1Gk.e1; e

i�/ D O."2k�k/CO.ı
3
k/:

This expression gives
Qk
2 � e

i�
D O.ı3k/CO.�k"

2
k/:

This estimate will lead to a better estimate of wk outside the two bubbling disks. From
the Green’s representation for wk we now obtain

wk.y/ D

Z
�k

.Gk.y; �/ �Gk.e1; �//j�j
2
�
hk.ık�/e

vk.y/ � hk.ıke1/e
Vk
�
d�

CO.ı2k/;

where O.ı2
k
/ comes from the oscillation of wk on @�k . Then we have

wk.y/ D �
1

2�

Z
�k

log
jy � �j

je1 � �j
j�j2

�
hk.ık�/ � hk.ıke1/e

Vk
�
CO.ı2k/

D �4 log
jy �Qk

2 j

je1 �Q
k
2 j
C 4 log

jy � ei� j

2
CO.ı2k�k/:

Since jQk
2 � e

i� j D O.ı2
k
/ we see that wk.y/ D O.ı2k/ on jy � ei� j D � .
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The standard pointwise estimate for singular equations (see [16, 30]) gives

vk.Q
k
2 C "kz/C 2 log "k

D log
e�k�

1C e�k

8hk.ıkQk/
jzj2

�2 C �k1 C Cı2k�.log hk/.0/.log.1C jzj//2; jzj � "�1k :

and

Vk.e
i�
C "kz/C 2 log "k

D log
e�k�

1C e�k

8hk.ıke1/
jzj2

�2 C �k2 CO."2k.log "k/2/; jzj � "�1k :

Thus

wk.Q
k
2 C "kz/ D O."

2
k.log "k/2/C �k1 � �

k
2 C C�.log hk/.0/ı

2
k.log.1C jzj//2

for jzj � "�1
k
: Taking the average around the origin, the spherical averages of the two

harmonic functions are zero and O.ı2
k
/ respectively, since they take zero at the origin

and at a point at most O.ı2
k
/ away from the origin. So the spherical average of wk is

comparable to
�.log hk/.0/ı

2
k.log "k/2

for jzj � "�1
k

. Thus we know�.log hk/.0/D o.1/ because wk DO.ı2k�k/ in this region.
Theorem 1.1 is thus established in all cases.

6. Singular mean field equation

In this section we prove Theorem 1.2. First it is well known that if p is a blowup point
that has a non-quantized singular source ( p̨ D 0 or p̨ 62 N), the profile of the bubbling
solutions around p is a simple blowup (see [30,31]). So we only need to focus on the case
p̨ 2 N. Let G.�; �/ be the Green’s function corresponding to ��g :

��yG.p; y/ D ıp � 1;

Z
G.p; y/ dVg D 0:

By setting

G1.y/ D 4�

MX
tD1

˛tG.pt ; y/;

we have
��G1 D 4�

X
t

˛t .ıpt � 1/:

Then the function vk D uk CG1 satisfies

�gvk C �
k

�
hevke�G1R

heuk
� 1

�
D 0:
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Let p1 be a quantized singular source, which means p̨1 2 4�N. In the neighborhood
of p1 we have

�gvk C jy � p1j
2˛p1Hke

vk D �k ;

where

Hk D
��khe

4�˛1
.p1;y/�4�
P
t¤1 ˛tG.pt ;y/R

M
heuk

;

where 
 is the regular part of the Green’s function. In local coordinates around p1, the
equation can be written as

�vk C jxj
2˛p1He�evk D �e� ;

where �.0/ D jr�.0/j D 0 and ��.0/ D �2K.p1/. Finally, we use f to remove the
right hand side:

�f D �ke� ; f .0/ D 0; f D constant on @B� ;

for � > 0 small. When we consider vk � f as the blowup solutions, we have

�.vk � f /C jyj
2˛p1Hke

f evk�f D 0:

It is a standard result that Hk is uniformly bounded above and below. From the definition
of Hk we have

�Hk.0/ D �h.p1/ �

MX
tD1

4�˛t :

Using Theorem 1.1 we would have

� logHk.0/C�� C�f D o.1/

if non-simple blowup happens at p1, which is

� log h.p1/ � 2K.p1/ � 4�
MX
tD1

˛t C �
k
D o.1/: (6.1)

Since �k ! � 2 ƒ, we see from (1.8) that (6.1) cannot hold. Theorem 1.2 is established.

7. Appendix

In this section we prove (4.45). Here we recall that vk is close to Vs;k nearQk
s (see 4.35)).

That is why (4.36) is used here. The terms of �1 and �3 lead to o."k/, the integration
involving �2 cancels with the second term of (4.45). The computation of �2 is based on
this equation:Z

R2

hk.ıkQ
k
l
/

4
�krhk.ıkQ

k
l
/.Qk

l
�Qk

s /jzj
2�

1C
hk.ıkQ

k
l
/

8
jzj2

�3 dz D 8��kr.log hk/.ıkQ
k
l /.Q

k
l �Q

k
s /;
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and by (4.2),

r log hk.ıkQ
k
l / � r log hk.ıkQ

k
s / D O.ık/ D o."k/: (7.1)

The integration involving �4 provides the leading term. More detailed information is
the following: First, for a global solution

V�;p D log
e��

1C e�

�
jzNC1 � pj2

�2
of

�V�;p C
8.N C 1/2

�
jzj2N eV�;p D 0 in R2;

by differentiation with respect to � we have

�.@�V�;p/C
8.N C 1/2

�
jzj2N eV�;p@�V�;p D 0 in R2:

By the expression of V�;p we see that

@r .@�V�;p/.x/ D O.jxj
�2N�3/:

Thus Z
R2
@�V�;pjzj

2N eV�;p D

Z
R2

�
1 � e�

�
jzNC1 � P j2

�
jzj2N�

1C e�

�
jzNC1 � P j2

�3 dz D 0: (7.2)

We also haveZ
R2
@PV�;pjyj

2N eV�;p D

Z
R2
@ NPV�;pjyj

2N eV�;p D 0;

which givesZ
R2

e�

�
. NzNC1 � NP /jzj2N�

1C e�

�
jzNC1 � P j2

�3 D Z
R2

e�

�
.zNC1 � P /jzj2N�

1C e�

�
jzNC1 � P j2

�3 D 0: (7.3)

Now we need more precise expressions of �1, �3 and B:

�1 D .�
k
s � �

k
l /

�
1 �

.N C 1/2

Dk
s

ˇ̌̌̌
z C

N

2
"kz

2e�iˇs
ˇ̌̌̌2�

=B;

�3 D
4.N C 1/

Dk
s B

Re
��
z C

N

2
"ke
�iˇsz2

��
Npks � Np

k
l

"k
e�iˇs

��
;

B D 1C
.N C 1/2

Dk
s

ˇ̌̌̌
z C

N

2
z2e�iˇs"k

ˇ̌̌̌2
;

We now use scaling and cancellation to obtainZ
B.0;�"�1

k
/

�1

Mk

B�2 D o."k/;

Z
B.0;�"�1

k
/

�3

Mk

B�2 D o."k/:

Thus (4.45) holds.
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