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Abstract. In this article we establish a vanishing theorem for a singular Liouville equation with
a quantized singular source. If a blowup sequence tends to infinity near the quantized singular
source and the blowup solutions violate the spherical Harnack inequality around the singular source
(non-simple blowups), the Laplacian of the coefficient function must tend to zero. This seems to
be the first second order estimates for a Liouville equation with a quantized source and non-simple
blowups. This result as well as the key ideas of the proof will be useful for various applications.

Keywords: Laplace, vanishing, non-simple blowup, Liouville equation, mean field equation,
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1. Introduction

This is the third article in our series studying blowup solutions of
Au + |x)*MH(x)e¥ =0 (1.1)

in a neighborhood of the origin in R2. Here H is a positive smooth function and N is
a positive integer. Since the analysis is local in nature we focus the discussion on a neigh-
borhood of the origin: Let uy be a sequence of solutions of

Aug(x) + |x|*MHe(x)e"™ =0 in B, (1.2)

for some 7 > 0 independent of k, where B; is the ball centered at the origin with radius t.
In addition we postulate the usual assumptions on 1 and Hg: For a positive constant C

Juncheng Wei: Department of Mathematics, Chinese University of Hong Kong,
10623 Hong Kong, SAR, P.R. China; jcwei @math.ubc.ca

Lei Zhang (corresponding author): Department of Mathematics, University of Florida, Gainesville,
FL 32611, USA; leizhang@ufl.edu

Mathematics Subject Classification 2020: 35J75 (primary); 35J61 (secondary).


https://creativecommons.org/licenses/by/4.0/
mailto:jcwei@math.ubc.ca
mailto:leizhang@ufl.edu

J. Wei, L. Zhang 238

independent of k, the following holds:
IHillcsz,y <C. 1/C <Hp(x) <C, x € By,

/ Hpe' < C, (1.3)

T

ug(x) —ug(y)| < C, Vx,y e 0B,

and since we study the asymptotic behavior of blowup solutions around the singular
source, we assume that there is no blowup point except at the origin:

ma. u; < C(K). 1.4
L (K) (1.4)

If a sequence {u* } 5 of solutions of (1.1) satisfies

lim uk(xk) = oo forsome x € B; and x; — X,
k—o00

we say {u*} is a sequence of bubbling solutions or blowup solutions, and ¥ is called a
blowup point. The question we consider in this work is: when 0 is the only blowup point
in a neighborhood of the origin, what vanishing theorems will the coefficient functions
Hy satisfy?

One indispensable assumption is that the blowup solutions violate the spherical Har-
nack inequality around the origin:

m%x[uk(x)—i—Z(l+N)log|x|]—>oo as k — oo. (1.5)
x€B;

It is also mentioned in the literature (see [20,26]) that O is then called a non-simple blowup
point. The main result of this article is the following.

Theorem 1.1. Let {uy} be a sequence of solutions of (1.2) such that (1.3)—(1.4) hold and
the spherical Harnack inequality is violated as in (1.5). Then along a subsequence,

lim A(logHg)(0) = 0.
k—00

Theorem 1.1 is a continuation of our previous result in [27]:

Theorem A. Let {uy} be a sequence of solutions of (1.2) such that (1.3)—(1.5) hold. Then
along a subsequence,
klim V(ogHi + ¢¢)(0) =0
—>00

where ¢y is defined as

A¢rp(x) =0 in By,

1 (1.6)
dr(x) = up(x) — — u,dS, xe€0B;.
2nt JaB,



Laplacian vanishing theorem for a quantized singular Liouville equation 239

Equation (1.1) comes from its equivalent form
Av 4+ He? = 42 N§

by using a logarithmic function to eliminate the Dirac mass on the right hand side. Since
the strength of the Dirac mass is a multiple of 4, this type of singularity is called
“quantized”. Equations with a quantized singular source are ubiquitous in the literature.
In particular, the following mean field equation defined on a Riemann surface (M, g):

h(x)et™® ) M
= ) =4n Y w6, — 1), (1.7)
Sag het ; nop

represents a conformal metric with prescribed conic singularities (see [15,24,25]), where
h is a positive smooth function, p > 0 is a constant and the volume of M is assumed
to be 1 for convenience, and the aj > —1 are constants as well. If the singular source is

Agu+p(

quantized, the equation is profoundly linked to algebraic geometry, integrable systems,
number theory and complex Monge—Ampere equations (see [12]). In physics the main
equation (1.1) reveals key features of mean field limits of point vortices in the Euler flow
[8,9] and models in Chern—Simons—Higgs theory [19] and electroweak theory [2], etc.

So far the non-simple bubbling situation has been observed in Liouville equations
[6,20], Liouville systems [17, 18,28] and fourth order equations [1]. The main theorem in
this article should impact the study of these equations as well as some well known open
questions in Monge—Ampere equations [26].

When compared with Theorem A, Theorem 1.1 is clearly more challenging. In fact,
the proof of Theorem A is a special case of one step of the proof of Theorem 1.1. How-
ever, their major difference is in applications. Theorem 1.1 is significantly more influential
for many reasons: First the main motivation to study equation (1.1) is for equations or
systems defined on manifolds. Usually blowup analysis near a singular point needs to
reflect the curvature at the blowup point. In this respect Theorem 1.1 is directly related
to the Gauss curvature at the blowup point. Second, the harmonic function in Theorem A
causes inconvenience in applications since it is generally hard to identify what the har-
monic function is. On the other hand, Theorem 1.1 is only involved with the Laplacian of
the coefficient function. This may lead to substantial advances in applications: In many
degree counting problems a major difficulty is bubble-coalition, which means bubbling
disks may collide into one point. The formation of bubbling disks tending to one point
is accurately represented by (1.1). Theorem 1.1 and its proof may be useful to simplify
blowup pictures. Third, the proof of Theorem 1.1 is also important for proving unique-
ness of bubbling solutions, and the results for Liouville equations with quantized singular
sources are inspirational for many equations and systems with similar singular poles.
Before our series of works most of the study of singular equations or systems focused on
non-quantized singular situations. However, it is the “quantized situations” that manifest
profound connections to different fields of mathematics and physics. Theorem 1.1 may be
a starting point of multiple directions of exciting adventures.
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As a first application of Theorem 1.1 we present an advancement for the mean field
equation (1.7). Let A be defined as

A= {Snk—i—ZSn(l ) ke NU{0) AC {1,...,M}}
jeA
where N = {1, 2, ...}. By the work of Bartolucci-Tarantello [4,5], Chen-Lin [12] etc.,

an a priori estimate holds if p & A. In other words, if u*¥ is a sequence of blowup solutions
with parameters p¥, the limit of p¥ is in A. Our second main theorem is the following.

Theorem 1.2. Let uy be a sequence of blowup solutions of (1.7) with parameters pF —
p € A, where h is a positive smooth function, and o1, . ..,apy > —1 are constants. If at
each quantized blowup point p we have

M
Alogh(p) —2K(p) — 47 Y "or + p # 0, (1.8)

t=1
where K(p) is the Gauss curvature at p, then all blowup points of uy are simple.

The organization of the article is as follows. In Section 2 we cite preliminary results
related to the proof of the main theorem. Then in Section 3 we approximate the blowup
solutions by a family of global solutions that agree with the blowup solutions at one local
maximum point. This is crucial for our argument. Then we derive some intermediate
estimates as preparation for a more precise analysis. In Section 4 we prove first order
estimates that cover the main result in [27]. This section proves a stronger result than
in [27] and provides more details. Finally, in Section 5 we take advantage of the first
order estimates and complete the proof of Theorem 1.1. The proof of Theorem 1.2 is
given in Section 6. The final section is an appendix that contains certain computations
needed in the proof of Theorem 1.1.

Notation. We will use B(xg, r) to denote a ball centered at x( with radius r. If x¢ is the
origin we use B,. Also C represents a positive constant that may change from place to
place.

2. Preliminary discussions

In the first stage of the proof of Theorem 1.1 we set up some notations and cite some
preliminary results. Set

up(x) = ug(x) — ¢p(x), 2.1)
i (x) = Hy (x)e® ™). (2.2)

Then the equation for uy is

Aug(x) + |x|?Vhi(x)e** =0 in B;. (2.3)
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Without loss of generality we assume
lim A (0) = 1. (2.4)
k—o00
Obviously (1.5) is equivalent to

max [ur(x) +2(1 + N)log|x|]] > o0 ask — oo, (2.5)
x€Br

It is well known [6,20] that u; exhibits a non-simple blowup profile. It is established
in [6,20] that there are N + 1 local maximum points of u: plg yee e pjkv, and they are evenly
distributed on S! after scaling according to their magnitude: if along a subsequence,

. k k i 6
lim P0/|Po| =e'",
k—o0
then

k
Pro_ i+ =1 N

k—o00 |p(]§|
For many reasons it is convenient to denote
Sk =Ipl and k= uk(pf) +2(1 + N)log §. (2:6)

Also we use
1
s = e 2Hk

as the scaling factor most of the time. Since p;’s are evenly distributed around dBs,,
standard results for Liouville equations around a regular blowup point can be applied to
get uk(p;‘) = uk(p’(f) + o(1). Also, (1.5) gives up — oo. The interested readers may
look into [6,20] for more detailed information.

Finally, we shall use E to denote a frequently appearing error term of the size O(87) +

O(ure™"*).

3. Approximating bubbling solutions by global solutions

We write p§ = ;e and define
vk (y) = u G ye’®) +2(N + Dlogée, |yl <78 3.1)
If we write out each component, (3.1) is

vk (1, ¥2) = ug (8x (y1 cos B — y2 sin Ok), 8x (y1 sin O + y» cos b))
+2(1 + N)log 6.

It is standard to verify that v solves

Avi(y) + VPV b8k y)es @ =0, |y| < /8, (3.2)

where
hi(x) = he(xe'%), |x| <t (3.3)
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Thus the image of pg after scaling is Q’f =e; = (1,0). Let 0%, ..., Q’fv be the images
of plk (@i =1,...,N) after scaling:

Pl
OF = “Lem, I =1,...,N.
Sk
It was established by Kuo-Lin [20] and independently by Bartolucci—Tarantello [6] that

lim Q% = lim pk/8 =eN¥T1, 1=0.....N. (3.4)
k—o00 k—o00

Then it was proved in our previous work [26, (3.13)] that

k 27li

QF —eN+T = O(uke ™) + O(|V log hr (0)[8k).

Using the rate of Vi (0) in [26] we have

2mli

QK —eN4T = O(ure ™) + 0(82). (3.5)

Choosing 3¢ > 0 small and independent of k, we can make disks centered at Q;‘ with
radius 3¢ (denoted as B( Q;‘ , 3¢)) mutually disjoint. Let

MUk = max vg. (3.6)
B(Qf.¢)

Since Q;‘ are evenly distributed around 0By, it is easy to use standard estimates for single
Liouville equations [11, 16,30] to obtain

max v = ur +o(l), [ =1,...,N.

B(QF .e)
Let
Vi(x) =1 el 3.7)
k(x) = log KT G 5 .
1+ v — )
Clearly V is a solution of
AVi + br@Ske) |y PN e =0 inR%, Vi(er) = px. (3.8)

This expression is based on the classification theorem of Prajapat—Tarantello [23].
The estimate of vg (x) — Vi (x) is important for the main theorem of this article. For
convenience we use

2l ; )
ﬁl:N]:—I’ SO €1=e’ﬂ0=Q’(§, e’ﬂl=Q§‘+E forl = 1.....N.

4. Vanishing of the first derivatives

Our first goal is to prove the following vanishing rate for Vi (0):

Theorem 4.1.
V(log hx)(0) = O (S jax)- 4.1
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Proof. Note that we have proved in [26] that
V(log bx)(0) = O(8; ' e ™) + O(8).
If §; > Ceg, there is nothing to prove. So we assume that
Or = o(er). 4.2)
By way of contradiction we assume that

[V 0]/ (8k i) — oo (4.3)

Another observation is that based on (3.5) we have
e |OF —ePi| < Cef, 1=0,...,N,
for some small ¢ > 0. Thus & tends to U after scaling. We need this fact in our argument.
Under the assumption (4.2) we cite Proposition 3.1 of [27]:
Let] =0,...,N and§ be so small that B(e'1,8) N B(e'Ps,8) = @ for 1 # s. In each
B(e' . 5),

C,Mke_u“k/z, lx — eiﬂ1| < Ce—/‘»k/z,
ok (x) = Ve (x)] =< e Mk
|x — ebr|

. 4.4)
+ O(M,%e_“k), Ce HK/2 < |x —e’ﬂ’| <3.

Remark 4.1. We only need a rescaled version of the proposition above:
k(e + ery) = Vi@ +exy) < Cef (1L + 1y, 0<yl<te',  (45)
for some small constants &, T > 0 both independent of k.

One major step in the proof of Theorem 4.1 is the following estimate:

Proposition 4.1. Let wi = vy — Vi. Then
lwk ()| < Coe. v € Q := BO. 181,
where 8¢ = |Vhi (0)|8x + Siuk.

Proof. Obviously we can assume that |V (0)|6; > 28,% Uk because otherwise there is
nothing to prove. Now we recall that the equation for vy is (3.2), and v is a constant on
dB(0, rS;l). Moreover, vi(e1) = k. Recall that V}, defined in (3.7) satisfies

AVi + b Geen)|yPV eV =0 inR?, /Rz WPV eV < oo,

Vi has its local maximums at e’# for/ = 0,..., N, and Vi (e1) = pg. For |y| ~ 8;1,

Vi(v) = —tx —4(N + D log8' +C + 0N t).
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Let Qr = B(0, 18;1). We shall derive a precise, pointwise estimate of wy on

B3\ U;VZI B(Q;‘, 7) where t > 0 is a small number independent of k. Here we note
that among N + 1 local maximum points, we already have e; as a common local max-
imum point for both vy and Vj, and we shall prove that wy is very small in B3 if we
exclude all bubbling disks except the one around e;. Before we carry out more specific
computations, we emphasize the importance of

wi(e1) = [Vwg(er)| = 0. (4.6)
Now we write the equation for wy as

Awge + b G|y PN e we = (b (Sxer) — by )ly PN e @.7)
in Q, where & is obtained from the mean value theorem:
ek (@) _ Vi)
5 Z ) 0 ) = () if v (x) # Vi (x),
eVk ) if vp(x) = Vi(x).

An equivalent form is

1
o) = / dietvk<x>+<1—t>vk<x>dt=er<x>(1+%wk(x)+0(wk(x)2>). (48)
o dt

For convenience we write the equation for wy as
Awg + D G|y [PV e wy = 8 Vi (Sker) - (e1 — y)|y PN e¥* + Ey, (4.9)
where
Er= 0@y —eiPlyPVe¥*,  y e Q.

Note that the oscillation of wy on 092y is 0(811(v *1) which all comes from the oscillation
of V.

Let My = max, e,
This assumption implies

|wg (¥)]. We shall get a contradiction by assuming My / 8k — oo.

My /(8% k) — o0. (4.10)

Set
W (y) = we(y)/ Mg, y € Q.

Clearly maxyeq, |Wk(y)| = 1. The equation for wy is
Adi(y) + |y PV be(Bre)e™ Bi (v) = ax - (er = Wy PN + Er - (@&11)
in Qp, where ar = 6y VHx(0)/M; — 0 and

Er=o()|y —eiPlyPNe*, ye Q. 4.12)
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Also on the boundary, since My / Sk — 00, we have
W =C +o(1/pg) ondQ2. (4.13)
By [27, Proposition 3.1],
Exer + exz) = Vicler + &xz) + O(ef) (1 + |z) 7. (4.14)

Since Vi is not exactly symmetric around e;, we shall replace the rescaled version
of Vi around e; by a radial function. Let Uy be solutions of

AU, + bk(Skel)eUk =0 inR% Ug(0) = max Ur =0. (4.15)
R

By the classification theorem of Caffarelli-Gidas—Spruck [7] we have

1

Uk(z) = log
(1 + [)k(881<31)|z|2)2

and standard refined estimates yield (see [11, 16,30])
Vi(er + exz) + 2loger = Ui (z) + O(er)|z| + O(/L,zcsi). (4.16)

Also we observe that
logler + erz| = O(eg)|z|- 4.17)

Thus, the combination of (4.14), (4.16) and (4.17) gives
2N logler + exz| + &k(er + exz) + 2loger — Uk (2)
=051+ [z]), 0=z <Soe;', (4.18)

for a small ¢ > 0 independent of k. Since we shall use the rescaled version, based on
(4.18) we write

2]y 4 exz|N efk@rten) — U@ L 0(e8)(1 + |2]) 3. (4.19)

Here we note that the estimate in (4.18) is not optimal.
In the following we reduce the proof of Proposition 4.1 to a few estimates. First we
prove the following.

Lemma 4.1. For § > 0 small and independent of k,
Wi (y) =0(1), Vwg =o0(l) in B(e1,d)\ B(ey,6/8), (4.20)
where B(eq, 38) does not include other blowup points.

Proof. 1f (4.20) is not true, without loss of generality wy — ¢ > 0. This is based on the
fact that Wy tends to a global harmonic function with removable singularity, that is, to a
constant. Here we assume ¢ > 0 but the argument for ¢ < 0 is the same. Let

Wi(z) = Wler + exz), e = e 2Pk, 4.21)
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and let W denote the limit of W;.. Then
AW +eYW =0 inR2, |W|<1,

where U is a solution of AU + ¢V = 0 in R? with fR2 eV < oco. Since 0 is the local
maximum of U,

U(z) =log———.
(1+ 11z12)?

Here we further claim that W = 0 in R? because W(0) = |[VW(0)| = 0, a fact well known
based on the classification of the kernel of the linearized operator. Going back to Wy, we

have
Wi (z) = o(1), |z| < Ry for some R — oo.

Based on the expression of Wy, (4.16) and (4.19), we write the equation for W, as
AWi(2) + b (Sken)e" O Wi (2) = ES (4.22)
for |z] < 8081:1, where a crude estimate of the error term E é‘ is
EX(z) = oDl (1 + 1273

Let
27

1
gk = — Wi (r, 0) db. (4.23)
27T 0

Then clearly glg (r)y > c>0forr ~ 8]:1. The equation for glg is

d? 1d 3
—drzg’o‘(r) +oo g6 (r) + b (Sren)e" Dl (r) = EF(r).
d
k k
O = — 0 = 0’
80(0) drgO( )

where E(’)‘ (r) has the same upper bound as E§ (r):
|EX(r)| < o(Def (1 + 7).

For the homogeneous equation, the two fundamental solutions are known: go1, go2,
where 5
l—cyr bi (Bxer)
T 5 a=———-
1+cyr? 8

By the standard reduction of order process, go2(r) = O(logr) for r > 1. Then it is easy
to find, assuming |Wy (z)| < 1, that

go1 =

120(r)] < Clgor(r)] [0 SIEX (5)802(5)| ds + Clgoa(r)| /0 slgor () EX (s)| ds

<Ceilog2+r), 0<r< 808;1.
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Clearly this is a contradiction to (4.23). We have proved ¢ = 0, which means w; = o(1)
in B(ey,80) \ B(e1,80/8). Then the equation for Wy and the standard Harnack inequality
yield Vg = o(1) in the same region. Lemma 4.1 is established. |

The second estimate is a more precise description of Wy around e;:

Lemma 4.2. For any given o € (0, 1) there exists C > 0 such that
[g(er +exz)| < Cel(1+12])7, 0<|z| < te’, (4.24)
for some T > 0.

Remark 4.2. Lemma 4.2 is an intermediate estimate for wy. Eventually we shall improve
(4.24) to an error with leading term o(gy).

Proof of Lemma 4.2. Let W be defined as in (4.21). In order to obtain a better estimate
we need to write the equation of Wy more precisely than (4.22):

AW + b (8rer)e® Wy = EX(2), z € Qw,, (4.25)
where Oy is defined by

Ok = |y + gz PN ofierec)t2lonsi
Qw, = B(0, re,:l) and Eé‘(z) satisfies

EX) = 0(en) (1 + 1273, z € Qw,.
Here we observe that by Lemma 4.1, Wy = o(1) on 0Qy, . Let

Wi (2)]

Ag = max ——
KT e, e2(1+ [2])°

If (4.24) does not hold, then A — oo and we use z; to denote where Ay is attained. Note
that because of the smallness of Wy on dQw, , zx is an interior point. Letting

Wi (2)

7)== ——-"
)= N0+ zoes

S QWk’

we see immediately that

W@ (42D _ (1 +z)°
AR+ 2D (U [z)® = (T4 |z

gk (2)| = (4.26)

Note that o can be as close to 1 as needed. The equation for gi is

o (+zD? .
Agi(2) + br(Ske1)e® gr = o(e) a)ﬁ in Qw, .
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Then we can obtain a contradiction to |gx (zx)| = 1 as follows: If limy_, o zx = P € R2,
this is not possible because the fact that gz (0) = |Vgx(0)| = 0 and the sublinear growth
of gy in (4.26) implies that gx — 0 over any compact subset of R? (see [11,30]). So
we have |zx| — oco. But this would lead to a contradiction again by using the Green’s
representation of gy :

+1 = gr(zx) = gk (zx) — gk (0)

_ ®k 1—0 (1 + |77|)_3
—/ (G (2. m) — Gi(0.m)| bic(Sxer)e™  gu(n) + o(ey ")~ | dn+o(l).
Q1 (I + [zx])
4.27)

where G (y, n) is the Green’s function on Q, , and o(1) in the equation above comes
from the smallness of Wy on 0Qyy, . Let Ly = rs,:l. Then the expression of Gy is

1 1 Il | Lgn
Gr(y,n) = ——1 — — log| “2| X2 —yl),
k(y.m) 7 logly —nl+ —— og(Lk e Y
and
1 1 Zk  MZk 1
Gk(zkﬂ?)_Gk(O”I):—_z 10g|2k—n|+—2 log———L2 +o log [n].
b4 T |k | % Eg

Using this expression in (4.27) and an elementary computation shows that the right hand
side of (4.27) is 0(1), a contradiction to |gx(zx)| = 1. Lemma 4.2 is established. |

The smallness of Wy, around e can be used to obtain the following third key estimate:

Lemma 4.3.
e =o(l) inB® . 1), l=1,...,N. (4.28)

Proof. We abuse the notation Wy by defining
Wi (z) = Lbk(eiﬁl +erz), z € Q= B(0, t£;1 .

Here we point out that based on (3.5) and (4.2) we have &, '|QF — e!f/| — 0. So the
scaling around e or Q;‘ does not affect the limit function. We have

812c|eiﬂl _|_8kZ|2ka(8kel)eEk(eml+akz) U@
where U(z) is a solution of
AU +¢¥ =0 in R, / eV < 0.
R2

Here we recall that limg_, o hx(Sxe1) = 1. Since Wy converges to a solution of the lin-
earized equation
AW +eYW =0 inR?,
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W can be written as a linear combination of three functions:

W(x) = coppo + c1¢1 + 202,
where

—%|x|2 b1 = X1 b = X2
1= T—1 5 P2=T71 5
1+ glxf? 1+ glx|?

Po =

T
It remains to prove ¢y = ¢; = ¢, = 0. First we prove ¢y = 0.
Step 1: co = 0. First we write the equation for Wy in a convenient form. Since
et + ez PN bi (Bker) = bic(Sker) + O(ex2),
8]%6,5/((6"614-8/(2) = Uk 0(5)(1 + |Z|)—3!
based on (4.11) we write the equation for Wy as
AWy (2) + bi (Sgen)e% Wy = Ef (2), (4.29)

where
EF(z) = 0()(1 + 273 in Q.

In order to prove ¢y = 0, the key is to control the derivative of

1 .
Wok(r) =5 . Wk(rele) ds, 0<r< rs;l.

To do so, we use the radial solution ¢§ (r) of
AGE + bi(Srer)eV gk =0 inR2.

When k — oo, ¢(’)‘ — coo. Thus using the equations for qﬁl(f and Wy, we have

fa i (0 Wil — 0ups W) = 0(e5). (4.30)

Thus from (4.30) we have

1
%Wok(r) =5 /{)B W Wi =o(ep)/r + o(/r®, l<r< ts,?l. (4.31)

Since we know that
Wi (zerh) = o(1),

by the fundamental theorem of calculus we have

r

We(r) = W (eg) + /

te;

(—O(Si) + O(s_3)) ds = 0(1/r?) + 0(82 log i)
i\ s ek

for r > 1. Thus ¢y = 0 because Wok (r) = co¢o, which means that when r is large,
WE(r) = —co + 0(1/r?).
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Step 2: ¢c1 = ¢ = 0. We first observe that Lemma 4.3 follows from this. Indeed, once we
have proved ¢; = ¢ = ¢ = 0 around each e?? , it is easy to use the maximum principle to
prove Wi = o(1) in B3 using Wi = 0(1) on dB3 and the Green’s representation of wy. The
smallness of Wy immediately implies Wy = o(1) in Bg for any fixed R > 1. Outside Bg,
a crude estimate of vy is

ve(y) < —pk —4(N + Dlogly| + C. 3 <|y| <8

Using this and the Green’s representation of w; we can first observe that the oscillation of
wg on each 0B, iso(l) (R <r < 18;1/2) and then by the Green’s representation of Wy
and fast decay rate of e"* we obtain W = o(1) in B(0, 18;1), contradicting max |y | = 1.

There are N + 1 local maximum points, one of them being e;. Correspondingly, there
are N + 1 global solutions V; ;. that approximate vy accurately near Q;‘ for/ =0,...,N.
Note that Q’g = ey. For V} i the expression is

uk
Vi = log ¢’ [=0,....,N
Lk — k B — Y, s LV,
©n 2
(L+ SElVH = (e + pP)
where p;‘ = FE and
DF = 8(N + 1)2/9x (8, OF). (4.32)

The equation that V; i satisfies is
AVig + 191V b8 0F)e" % =0 inR2.

Since v and V; x have the same common local maximum at Q;‘ , it is easy to see that

keibi 21
k _ i 4 P1€ Ok 2 = T 433
Of = M 4 T+ 0UpfP). Bi= 5 (433)

Let M; i be the maximum of |vg — Vj i |. We claim that all these M; ; are comparable:
Ml,k ~ Ms,k» Vs 75 l. (4.34)

The proof of (4.34) is as follows: We use L ; to denote the limit of (vx — Vi x)/ Mk
around QF:
(v = Vi) (QF + ex2)
M

=Ls;+o0(1), |z]= rs,:l,
where

Z1 Zp
Lyg=cisim—5 tesi— 5 Lu=0 s01=0...N
1+ 1] 1+ 1z]

If all ¢ 5 and c, 4 are zero for a fixed /, we can obtain a contradiction just as at the
beginning of Step 2. So at least one of them is not zero. For each s # [, by Lemma 4.2
we have

v (OF + ex2) = Vo (OF + exz) = O (1 + |2)° Mg, |z < Teg’.  (4.35)
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Let My = max; M;x (k =0,...,N) and we suppose My = M. Then to determine
L we see that

vk (OF + exz) — Vi 1 (O + ex2)
M

Vii(OF + ex2) — Vi (QF + & 2)

=o(e)d +|z)° + My

This expression says that Lg; is mainly determined by the difference of two global
solutions Vs and Vj . In order to obtain a contradiction to our assumption we will
decompose the difference into several terms. The main idea in this part of the reason-
ing is that “first order terms” tell us what the kernel functions should be; then the “second
order terms” tell us where the pathology is.

We write
v, -V =pk— k24— 4%+ 04
sk(V) = Vie(y) = pug —pj + + 0(]4]°)
where .
H k
%D’NH —er— Pﬂ2 - %D’NH —er—pi?
A(y) = :

k
ets | N+1 k|2
1+ Df|y + _el_ps|

. . . _uk

Here for convenience we abuse the notation &; by assuming & = e /2. Note that
k . . .

g = e M /2 for some t, but it does not matter which ¢ it is. From the formula for 4 we

claim that

Ve (OF + 12) = Vig(QF + ex2) = 1 + 2 + 3 + ¢a + R, (4.36)
where
$1 = (1§ — ué‘)(l - (ND%”ZV + O(sk)|z|2|2)/3,

A
¢ = Z(ND—i”zskvr)k(stfof = 05)IzI*/B,
;

0= 0 Re((z + O(ek|z|2))(ﬁ%ﬁe—"ﬂf)),
b = | pk ;ipf‘lz (DzB ~ 2(Nl;:2;)22|zl2 ~ 2(12)/3;21)2 12[2 cos(26 — 265, — Zﬂs)),
p=14 M0 o

N

and Ny is the collection of other insignificant terms. Here we briefly explain the roles of
each term. ¢; corresponds to the radial solution in the kernel of the linearized operator
of the global equation. In other words, ¢’f / M}, should tend to zero because in Step 1 we
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have proved c¢o = 0. Next ¢§ / M} is the combination of the other two functions in the
kernel. Further ¢4 is the second order term which will play a leading role later. Finally,
¢’3‘ comes from the difference of b at Q;‘ and Qé‘ The derivation of (4.36) is as follows:
First by the expression of Qf in (4.33) we have

YV =14 pF + (N + Degze s + 0(ed) 22,
where y = Qic + &kz. Then

YN —er — pE12 = (N + 1)2e|z + O(ex)z2 > + O(e}) 2],

N+1 k2 2.2 (ps — p)e’s o 3.3
ly —e1—pilIm =N+ 1) W+O(8k)|2| + O(exlz]).
Next by the definition of D¥ in (4.32),
Df — Df kK Ak 2
—pF = 8k V(log hx)(0) - (QF — OF) + 0(5)),
!
k_ K k k
el ™hs 1 Dy — Dy ko k ko k
5 = BF (1 + =t ot ) + 06D

1
= o (1+8cVIoghe(0) - (QF = OF) + pf — 1§
+0((uf — b + 06). @37

Then the expression of A is (for simplicity we omit k in some notations)

et hs Ps— Dl i lps—pi?
A= N +1)2 24-21{(— iBs )y ISPV | g 3
( D; ( ) (|Z| ¢ (N+1)e (N +1)%¢; (6xl=l")

(N +1)?
Dy

(=12 + O(sk>|z|3))/B.

After using (4.37) we have

4= (i(skvaog 50)(0)(01 — 05) + 1t — s + O — 1)) (N + D2z ]2

|ps — pil?

+2Re( Ps=hi —’ﬂr)(zv+1)—+
&k Esz

L 0@l + 0(8£>|z|2)/3.
SO

D2

s

N +1)? 2
A2 = g4(Re( Ps= Dt _’55)) /B? + other terms.
&k

The numerator of A2 has the following leading term:

2
(ND%IV (2|Z|Z(M) (1 + 2cos(20 — 20&1))),
k

N
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where z = |z]e? and ps — p; = |ps — pile’®s. Using these expressions we can obtain
(4.36) by direct computation. Here ¢, ¢3 correspond to solutions to the linearized oper-
ator. Note that if we set g7 = e /2, then there is no essential difference between
g1k and g = e~ 31k because g1k =&k + O(ex E). If | — 1 x|/ My = C there
is no way to obtain a limit in the form of L,; mentioned before. Thus we must have
|its ke — ik |/ My — 0. After simplification (see ¢3 of (4.36)) we have

C15 = lim Mcos(ﬂ + 651)
ST ko0 2(N + 1) Myey SoLoste
P (4.38)
lps — il

€25, = lim sin(Bs + Os1)

k—oo 2(N + 1)Mpex

We omit k for convenience. It is also important to observe that even if My = o(ey) we
still have M} ~ max; |p£C - pf‘|/£k. Since each |p;‘| equals E, an upper bound for My is

My < Cpugey + C8Zert. (4.39)

Equations (4.38) give us akey observation: |c; 51| + [c2,5.1] ~ |p£c — p;‘|/(skMk). So
whenever |cy 7| + |c2,5,1] # 0 we have | pk — p;‘|/8k ~ M. In other words, for each /,
M; i ~ max;; |pk — p;‘|/8k. Hence for any ¢, if | p¥ — p;‘|/8k ~ My, let M, i be the
maximum of |vg — V, k|; we have M, ~ My. If |p§C — p;‘|/8k ~ My for all k, (4.34)
is proved. So we prove that even if some pf is very close to plk, M,  is still comparable
to M. The reason is that there exists ¢ such that Ipf‘e;kpf;l ~ My, soif # =o(1)My
then

|pf = pgl = 1P = pgl = 1pf = pI1 = 311 = Pyl
Thus |pf — p’q‘|/£k ~ My and M, ~ My, so (4.34) is established. From now on for
convenience we shall just use M. Since My ~ max;, | pf - pfl / €k, an upper bound
of My is
My < Cugeg. (4.40)

Set w; x = vk — Vi k. Then wljk(Q;‘) = |le,k(Q;‘)| = 0. Correspondingly, we set
Wik = wik/Mk.

The equation for wy x can be written as

Awl,k + |y|2Nf)k(8k Ql)eél Wy k

= 5k Vhe( Q) (y — Oy PNerix — 53

|o|=2
+ 0@y — QiPlyPNe"x, (4.41)

“hr (6
f)k(i!k 01) (v — O y[2N "

where we omitted k in Q; and &;. Now, & comes from the mean value theorem and
satisfies
et = eVik (14 Jwy g + 0w} ). (4.42)
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The function 1,  satisfies

C1,5021 + C2 5122

4.43
1+ ¢z 4

lim ;4 (QF + exz) =
k—o0

and around each Qf (4.35) holds with M ; replaced by M.
Now for |y| ~ 1, we use wl,k(Q;‘) = 0 to write wy x(y) as

wik(y) = /Q (Gk(y,n)—Gk<Q1,n))(bk(stz)mFNeffwl,k(n)

+ 8k Vb (8, Q1) (n — Q)N eV x
5D 8%%S,kgl)(n - Qz)“|y|2Ner) + 06"

lee|=2

Note that the last term is 0(8,]€v *2) because it comes from the oscillation of wy k on
0Q%. The harmonic function defined by the boundary value of w; x has an oscillation
of 0(8,1(V *1) on 9Qk. The oscillation of this harmonic function in B (for any fixed
R>1)is 0(8,12’ *2). The regular part of the Green’s function brings little error in the
computation, so we have

- 1 — -
Tix () =5 [ 1og M(wl,k(n)bk(stf‘)|n|2NeEf
T JQy |Q1 .l

+ okvm(Sin‘)(n — OF) PN eVik

Z 9 Bk(Ssz)( _Q;‘)"‘|n|2NeV’-k)dr/+0(8k) (4.44)

|a| 2

for |y| ~ 1.

Around each Qf the €% can be replaced by e"s- with controllable error (based on
Lemma 4.2 and (4.40)). In order to evaluate the expression of w; x we need the following
identity based on (4.36):

/B o )(uvz,kw)bk(&Qé‘)lnF”eVLuakwk(skQé‘)(n—Qz)|n|2NeVz’k)dn:o(gg)_
. (4.45)

Note that e"7% in the first term was replaced by e"s-¢ but in the second term above this
replacement is not necessary. (4.36) is mainly used in the evaluation of the first term. The
proof of (4.45) can be found in the appendix.

Equation (4.45) also leads to a more accurate estimate of w; x in regions between bub-
bling disks. By the Green’s representation formula of Wy it is easy to have, for |y| ~ 1,

N
x| =o(1/me). vy € B3\ | B(QF. 7). (4.46)
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Indeed, writing the logarithmic term in (4.44) as

_ _ 0Ok _ _ Nk
y—nl _ .Y = 9l +(log ly=mnl .y QSI),

g = log log
|Q% — |0k — Q| |0k — ] |0% — 0¥

we see that the integral in (4.44) related to the second term is O (g ). The integral in (4.44)
involving the first term is O(¢7) + 0(8,%/Mk) for some o € (0, 1) by (4.45) and the defin-
ition of M. Therefore (4.46) holds. This extra control of w; ; away from bubbling disks
gives a better estimate than (4.35) around Q;‘. Using the same argument for Lemma 4.2
we have

14 |z|
log(2 +|z)’

From the decomposition in (4.36) and with the help of (4.47) we can now estimate the
integral of w; x more precisely:

W14 (OF + exz)| < o(ex) |z| < teg . (4.47)

/B(Qk )(lf)z,k(n)f)k(Ska‘)|n|2Neéz +oka)k(8ka‘)(n_ 0} [n2N "1k

0*Hr (8
Z i ( le)( . Q;c)a|n|2NeVl,k)dn

\otl 2
= [y TGO dn + 8700V og b6 05)(0% — 0F)
5.7
8¢ Abr (8 Q%)
My Hr(8x Q%) 195 — 01 k
where
n |pkF—pF? 87 Abr(8x0%)
Dk — s l M + 2 k S k 2.
R R T v
Let | | |
y—n
Hy () = —log —/—.
g 2t C |QF — ]
Then
Brk(y) ==Y Hy1(Q5) DY,
s#l
= / o (00 + 02 (0,112 (o5 QDI e i)
s#£1 55T

+ 0k Vb 5 1) (n — Q)N e¥rx + O M) n — Q[N e¥1x) di
+ o(eg).



J. Wei, L. Zhang 256

After evaluation we have

8 ly — OF]
= D¥
Wik (y) S%él 0g 7 [0F — k] s
yi— 05 0] — 05 )
— E 8 — s
oy (ly Z0,2 T 0 — 0,2 )

_8(yz—Qs2 _07-08

C2,5,16k + 0(ek),
ly — 05> Qs — Ql|2) *

where we have used

72 z3
/ —13dz:/ — 2 4= 16r,
R2 (1 + §|z]?) R? (1 + §|z|? )

Recall that
|ps — pil
= Pe= Pl Ou1).
Cl,s,1 2N + )Myex COS(,BS + 6s1)
Ps — DI .
Ca.5,1 = # Sm(lBs + 651).

2(N + 1)Myey
For |y| ~ 1 but away from the N + 1 bubbling disks, we have, for / # s,

vk (¥) = Vik(y) + Mgw; i (y)
and

vk (¥) = Vs (¥) + Mg (3)-
Thus for s # I we have

Vsx () = Vig(y)

", = Wk (y) — Wy k(). (4.49)

For |y| ~ 1 away from bubbling disks, we have

N+1 _ N+t _

Ve (y) = Vik(y) = 4logl|y ey — pi| —4logly — ps| + o(ex My),
|yN+1 — €1 —Pl|2
= [y — ey — ps* + 2Re((WN ! —e1 — ps) (s — p1)) + |lpr — psl*

Thus

Vi) = Vik(y) _ 4Re( yNtU -1 p— py

M |yN+1— 112 Mgy )Sk +olew)-
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We are going to derive a contradiction based on (4.49). For this purpose we choose s = 0
in (4.49), which means W, x = o(ex); then we have

N+1 =
y -1 p
Re(|yN+1 12 My )sk + o(sg)

:__Z g|y Qs|Dl

s#l |Ql
n-0; 0/ -0 )( |ps — pil )
+ 8(( — cos(Bs + Os1)
gj‘ vy = 0> 101 = Qsl?J\2(N + 1) My S

+(J’2—Q12 07 -0F ) |ps — il
ly=0il* 101 — Qs> ) 2(N + Dex My
If My > Cey, the first term on the right hand side will dominate all other terms when
|¥| > 1, violating the equality in (4.50). But when My = o(gy), the equality cannot hold

either if we choose |y| > 1 because the last two terms of (4.50) will majorize the left
hand side. Lemma 4.3 is established. ]

sin(Bs + (951))8k, vi. (4.50)

Proposition 4.1 is an immediate consequence of Lemma 4.3. ]

Now we finish Ehe proof of Theorem 4.1.
Let g = wi/8k. (Recall that §; = 8| Vhy(0)| + 52 i) IE [ Vhi (0)]/ Bk px) — 00,
we see that in this case §g ~ g pix | Vhr (0)|. The equation for wy, is

Aty + |y [PV et b = ax - (e1 — y) |y VeV, + bek |y —er Py PV (@451

in Q, where a; = Ska)k(O)/gk, br = o(1/ ). By Proposition 4.1, |wi(y)| < C.
Before we carry out the remaining part of the proof we observe that Wy converges to
a harmonic function in R? minus finitely many singular points. Since Wy is bounded, all
these singularities are removable. Thus Wy converges to a constant. Based on the inform-
ation around e, we shall prove that this constant is 0. However, looking at the right hand
side of the equation,

N
(er = IyPNeVe = "8m(er — P18,
=1

we will get a contradiction by comparing the Pohozaev identities for v and Vj, respect-
ively.
Now we use the notation Wy again and use Proposition 4.1 to rewrite the equation
for Wy. Let
Wi(z) = i(er + ex2).  |z| < Sogi
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for 8o > 0 small. Then from Proposition 4.1 we have

i (8ky) = br(Sker) + 8k Vb (Sker)(y —e1) + 08Py — er . (4.52)
PV =ler + exzPV = 1+ O(en) 2, (4.53)
Vi(er + exz) + 2logex = Ur(2) + O(ex)|z| + O(ej) (log(1 + |z]))*, (4.54)
Ex(er + exz) + 2loger = Ur(z) + O(ex)(1 + |z)). (4.55)

Using (4.52)—(4.55) in (4.51) we write the equation for Wy as
AW + b (Sren)eU OW, = —grap - ze% @D + By, 0 < |z| < Sosrl,  (4.56)
where
Eyw(z) = O(er)(1 +12])73,  |z] < Soer . (4.57)

Since Wy, obviously converges to a global harmonic function with removable singularity,
we have Wy — ¢ for some ¢ € R. We claim the following.

Lemmad4.4. ¢ = 0.

Proof. 1f ¢ # 0, we use Wy (z) = ¢ + o(1) on B(0, 508;1) \ B(0, l808,:1) and consider
the projection of W on 1:

1 2w .
go(r) = — Wi (re'®) de.
27 0

If we use Fj to denote the projection to 1 of the right hand side, using the rough estimate
of E, in (4.57) we have

1
g0(r) + ~g6(r) + b (Been)e™ Vgo(r) = Fo, 0 <r < Sosy,
where
Fo(r) = O(er)(1 +|2]) .
In addition,
lim go(éoagl) =c+o(1).
k—o00

For simplicity we omit k in some notations. By the same argument as in Lemma 4.1, we
have
go(r) = O(ex)log2+r), O0<r< 808]:1.

Thus ¢ = 0. Lemma 4.4 is established. [

Based on Lemma 4.4 and the standard Harnack inequality for elliptic equations, we
have

N
Bpe(x) =o(1), Vie(x) =o(1). xeBs\ | J(B?.80)\ B(e'?.80/8)). (4.58)
=1

This is equivalent to wy = o(gk) and Vwy = o(gk) in the same region.
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In the next step we consider the difference between two Pohozaev identities. For s =
1,..., N we consider the Pohozaev identity around Q¥. Let Q;; = B(Q¥, r) for small
r > 0. For v; we have

/ 06 (1y[2V b (B y))e™ — / e |y PV by (50) - v)
Qg x Qg x

= /BQ (v devx — 5| Vue*(E-v)) dS,  (4.59)
5.k

where £ is an arbitrary unit vector. Correspondingly, the Pohozaev identity for V% is

/Q 361y PV b (Sen))e¥s — / Ve [y PV b (Sen) (€ - v)

Qx.k

= / (90 ViedgVie — 2IVVE > (1)) dS.  (4.60)
BQs.k
Using wx = vg — Vg and |wg ()] < C 8 we have
f (avvkagvk - %|Vvk|2($ . v)) ds
895./{
= [ (3kaang—%|VVk|2(S-v)) ds
39 &
+ / (3v Vkagwk + avwkang —(VVi - Vuwg) (€ - v)) ds + O(Sk).
aﬂs,k
If we just use the crude estimate Vwy = o(gk), we have
/ (dyvrdgvk — 2|V P (€ - v)) dS
0%
- /m (3, ViedeVie — SIVVE? (€ - v)) dS = 0(5g).
5.k

The difference of the second terms is minor: If we use the expansion of vy = Vi + wy
and that of by (8¢ y) around ey, it is easy to obtain

/ ¢ [y PN by (B y) (& - v) — / eV [y PV b (Sren) (€ - v) = 0(Bp).
02 & 0825k

To evaluate the first term, we use

ey N bre(8cy))e
= g (1y PV b Ser) + [y1*V 8 Vb Seen) (v — en) + OP))e ™ (1 + wi + O(87 1))
= 0:(|ly"M)bic (Sker)e”* + 8cdg (1y PN Vi (Srer) (v — e1)) e

+ 95 (Y PV b (Sker))eFwi + O(SF i )ex. (4.61)
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For the third term on the right hand side of (4.61) we use the equation for wy:
Awg + b (Bren)e”* [y PN wp = =8 Vi (Sker) - (v — ey [PV e + 07 | y*N.

From integration by parts we have
Jo e etorene s =2 [ 1PV rebetopense s
= 2N[ 0y |2 (—Awg — 8 Vb (ke (y — en) |y N e’ + 0 Pe"* [y|*N)
Q5 k

— _2N§, / erakwkel)(y —ep)|yPN eV
.sk

Y&
“N/ ( (|y|2) BT )”(5")

= vr)k(akel)(—lézvskn(e‘ﬂs £)(eP —e1) + O(uiel)) +0(6k),  (4.62)

where we have used Vwy, wr = o(gk) on 02 . For the second term on the right hand
side of (4.61), we have

/g 506 (172N Vi (Sen) (v — en))e
s.k

— 2N [Q Vely P2V (Ben) (v — en)e* + & [ 192N B b (Brer)e s
s.k

Qs‘k
= Vhi(Sker) (16N w8 (e™Ps - £) (e —e1) + O(uked))
+ 8,.0: bk (Ske1) (87 + O(ured)) + o(5x). (4.63)

Using (4.62) and (4.63) in the difference between (4.59) and (4.60), we have
8k 0 be (Bken) (1 + O(uxey)) = o(3g).

Thus Vhi (§xe1) = O(8x pux). Theorem 4.1 is established. [ ]

5. Proof of Theorem 1.1

First we handle the case N > 2. In [26] we have already proved that
A(log ) (0) = O8> pre™*) + O(S).

Therefore if 6/ (/L,lc/ 28k) — 00 there is nothing to prove. So we only consider the case

when §; < C;L,lc/zek. In this case 5;18]% < Ce¢j, for some ¢ € (0, 1). The whole argument
of Proposition 4.1 can be employed to prove

lwp ()| < C8Z /. (5.1)
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In order to employ the same strategy of the proof, one needs to have three things: First,
152 O(ey). This is clear from the definition of 8¢ . Second, in the proof of Lemma 4.3
we need
06/ Mi) = o(er).

where M > 8k /Lk . Since §; < C /L,lc/ 28k and N > 1, the required inequality holds.
Thirdly, we need to have
8]3/Mk = O(Sk).

This is used in (7.1). From the requirement on §; and the definition of M} this clearly
also holds. The proof of Proposition 4.1 follows. Thus for N > 2 we also have (5.1).

The precise upper bound of wy in (5.1) leads to the vanishing rate of the Laplacian
estimate for N > 2 and some cases of N = 1: If we use

Wi (z) = wi(e; + SkZ)/(SilL]ZM), |z]| < rsgl,

where e; # e1. We shall show that the projection of Wy over 1 is not bounded when
|z| ~ 8]:1, which gives the desired contradiction.
We write the equation for wy as

Awg + |y[PN e wi = (be (Sker) — b Bk )1y [PV e"™.

Then for [ # 1,

AW (2) + eY Wi (2) = apeY* + ayzeY + Abr(0)|z|%e Uk

2/1,?4
+ o — 2R (O)|zPe% + O(el (1 + |27,
k

where

ao = (hx(Sker) — f)k(5k€1))/(51%/1«;z/4),
ar = =V (Sker)/ e,

and R; is the sum of spherical harmonic functions of degree 2. Note that the assumption
[ # 1 means there is no appearance of & or ei in the equation for Wy.

Let gx (7) be the projection of W on 1. By the same ODE analysis as before, we see
that gy satisfies

1
gr + ;gl/c(r) + eV g = Ey,

where

Er(r) =01 +r)72 + A(log br) (0)r2ex.

7/4
ﬂk/

Using the same argument as in Lemma 4.1, we have

gk (r) ~ Allog br)(0)(log r)2u "%, r > 10.
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Clearly if A(loghx(0) # 0 we obtain a violation of the bound of wy for r ~ 8]:1.
Theorem 1.1 for N > 2 is proved under the assumption

e QK —ePs| <8, s=1,...,N. (5.2)

We need this assumption because the & function that comes from the equation of wy
has to tend to U after scaling. From [26, (3.13)], |Q§c —eths| = 0(8,%) + O(upe H*).
If 8,%8;1 > (C, the argument in Theorem 4.1 cannot be used because either & does not
tend to U or ¢y = 0 cannot be proved. For N > 2, this is not a problem because we only
consider §; < Cu}c/zsk.

Next we prove Theorem 1.1 for N = 1 and §; < ureér. The reader can see immediately
that the proof for N > 2 still works.

So we now handle the only remaining case.

Proof of Theorem 1.1 for N = 1 and 8 > juixek. In this case we write the equation for
wy as
Awg + [y[Pbr Sk y)e’ — [y[*br(Sker)e’ = 0.

From 0 = Vwy (e1) we have
0= /Q ViGr(er, M (0 Seme’™ — b (Sxen)e’) dn+ 0(&).  (5.3)
k

Note that v is close to another global solution I7k which matches with a local maximum
of vy at Q’2c . Evaluating the right hand side of (5.3) we have

ViGi(er, %) = ViGr(er, e'™) = O(s2 i) + O(8}).

This expression gives
0% —e'™ = 0(83) + O(uxed).

This estimate will lead to a better estimate of wy outside the two bubbling disks. From
the Green’s representation for wy we now obtain

we(y) = /Q (Ge(y. 1) — Grler. ) 1P (e Gem)e™ @ — by (Seer)e™™) di
k
+ 0(8,3),

where 0(8,%) comes from the oscillation of wg on Q2. Then we have

1 —
w0 =~ [ tog I b Be) — e Brense™) + 0(82)
T Jo, le

Ul
_ Nk _im
= —410g% + 410gM + 0(8,%;1,;{).
ler — Q3

Since |Q’2C —el™| = 0(8,3) we see that wg (y) = 0(8]3) only —el™| = 1.
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The standard pointwise estimate for singular equations (see [16,30]) gives

vk(lec + exz) + 2log ey
e/‘bk

Ik
(1 + Sf)ke(5k Ok) |Z|2)

= log 5+ &F + C8; Allog br)(0)(log(1 + |2]))%,  |z] ~ & "

and

Vi (e'™ + erz) + 2log e
ek

M
(1 + s5cmen 1717)

= log 5+ ¢5 + O(ep(loger)?), |z| ~ e’

Thus
wi (0% + exz) = O(ef (loge)?) + ¢F — ¢% + CA(log b ) (0)87 (log(1 + |z]))?

for |z| ~ 8]:1. Taking the average around the origin, the spherical averages of the two
harmonic functions are zero and 0(8,%) respectively, since they take zero at the origin
and at a point at most 0(8,%) away from the origin. So the spherical average of wy is
comparable to

A(log ) (0)87 (log ex )

for |z| ~ s;l. Thus we know A(log hx)(0) = o(1) because wy = O(S,%uk) in this region.
Theorem 1.1 is thus established in all cases.

6. Singular mean field equation

In this section we prove Theorem 1.2. First it is well known that if p is a blowup point
that has a non-quantized singular source («, = 0 or «, & N), the profile of the bubbling
solutions around p is a simple blowup (see [30,31]). So we only need to focus on the case
ap € N. Let G(-, -) be the Green’s function corresponding to —Ag:

—AyG(p.y) =8 — 1, /G(p,y)dVg =0.
By setting

M
Gi(y) =47 Y a:G(ps,y),

=1
we have
—AGy =47 ) (8, — 1).
t

Then the function vy = uj; + Gy satisfies

heVke=C1
Agvp + Pk(W - 1) = 0.
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Let p; be a quantized singular source, which means ¢, € 47 N. In the neighborhood
of p; we have
Agug + |y = p1 1 Hye* = p,
where
—prhetm 1y (p1.y)=4m X 1 @ G(pr.y)
Hy = ,
Ja het
where y is the regular part of the Green’s function. In local coordinates around pi, the
equation can be written as

Avg + |x|?%P1 He®e% = pe?,

where ¢(0) = |[V¢(0)] = 0 and A¢p(0) = —2K(p1). Finally, we use f to remove the
right hand side:

Af = pke¢, f(0) =0, f = constanton dB,
for r > 0 small. When we consider v — f as the blowup solutions, we have
A(vg = f) + |yt Hyel e~/ = 0.

It is a standard result that Hy is uniformly bounded above and below. From the definition
of Hj; we have

M
AH(0) = Ah(py) — Y _ 4ma,.
t=1
Using Theorem 1.1 we would have

Alog Hy(0) + Ap + Af = 0(1)

if non-simple blowup happens at p;, which is

M
Alogh(pr) —2K(p1) — 47 Y _a; + p* = o(1). 6.1)

t=1
Since p¥ — p € A, we see from (1.8) that (6.1) cannot hold. Theorem 1.2 is established.
L]

7. Appendix

In this section we prove (4.45). Here we recall that vy is close to V x near Qé‘ (see 4.35)).
That is why (4.36) is used here. The terms of ¢; and ¢3 lead to o(eg), the integration
involving ¢, cancels with the second term of (4.45). The computation of ¢, is based on
this equation:

[ 5@ QD) 5 by (8 0F) (0K — 08|z
]R2

dz = 8ro V(1 8050k — Ok
(1 T f)k(ng;{)|Z|2)3 ‘ w0ox V (log be) ( k1)@ = Qs).
8
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and by (4.2),

V log by (8¢ OF) — V1og bi (8, O%) = O(8x) = o(ex).

(7.1)

The integration involving ¢4 provides the leading term. More detailed information is

the following: First, for a global solution

et
Viu,p = log (1 4+ < zN o — p|2)2
of 5
AVy,p + —S(N;_ D |z|*NeVur =0 inR?,
by differentiation with respect to ; we have
A@ Vi p) + M|z|2NeVuspaMVM,p =0 inR2

By the expression of V,, , we see that
3r (B Viup)(x) = O(x| 2V 7).

Thus

1_£ZN+1_P2 Z2N
/ 8uVu,p|Z|2NeV‘”’ =/ ( 7 | )| | dz =0.
R2 R

2 (14 2N+ - P|2)3

‘We also have

/ Ip Vi ply PN e wr :/ 313VM,1)|Y|2N€V“"’ =0,
R2 R2
which gives

/ %(EN-H _ P)|Z|2N _/ %(ZN_H —P)|Z|2N B
R2 (1+%|ZN+1—P|2)3 R2 (1+%|ZN+1—P|2)3

Now we need more precise expressions of ¢;, ¢3 and B:

N+ N,y
b= ek = (1= B e+ Jete )

4(N + 1) N g o\ (PS—PF _ip,
¢3 = WRG((Z + ?Ske 4 Te ; R

(N +1)?
D¥

2

N .
B=1+ z+ ?zze_’ﬂssk

)

We now use scaling and cancellation to obtain
[ Bprooen [ g,
B(O,rs;l) Mk B(O,rs;l) Mk
Thus (4.45) holds.

(7.2)

(7.3)
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