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Abstract. In this paper, we prove classification results for solutions to subcritical and critical semi-
linear elliptic equations with a nonnegative potential on noncompact manifolds with nonnegative
Ricci curvature. We show in the subcritical case that all nonnegative solutions vanish identically.
Moreover, under some natural assumptions, in the critical case we prove a strong rigidity result,
namely we classify all nontrivial solutions showing that they exist only if the potential is constant
and the manifold is isometric to the Euclidean space.

Keywords: semilinear elliptic equations, manifolds with nonnegative Ricci curvature, rigidity of
solutions to PDEs.

1. Introduction

Let (M", g), n > 2, be a smooth complete (with no boundary), noncompact, n-dimensio-
nal Riemannian manifold with nonnegative Ricci curvature. In this paper, we consider
nonnegative solutions to the semilinear elliptic equation

—Agu = Ku?, (1.1)
where A, is the Laplace-Beltrami operator and K is a smooth nonnegative function
on M. We restrict our attention to the superlinear and subcritical case

+oo ifn =2,
l<p<p.,, where p.=19 pn+2

n —
and to the critical case, p = p. = % when n > 3. In the case n = 2, we deal with

solutions to the critical equation with exponential nonlinearity

ifn >3,

—Agu = Ke". (1.2)
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If we denote by R = R, the scalar curvature of the metric g, it is known that these critical
equations arise in the problem of prescribing the scalar curvature of a conformal metric
when the original metric has zero scalar curvature. More precisely, if n > 3, then the scalar
curvature of the metric g = u =1 g, u > 0, is given by

while in dimension n = 2, the corresponding equation for the conformal change g = e¥* g
reads as

—Agu + Rg = Rge".

It is natural to expect stronger classification results when K > 0 which will be the case
we study in this paper. In particular, we will first state our results in the simpler but
geometrically relevant case K = 1. This choice of K corresponds to the so called Yamabe
problem, when (M", g) is scalar flat and hence Ricci flat. It is clear that solutions to (1.1)
or (1.2) are trivial when M is compact.

In the Euclidean setting, problem (1.1) with K = 1 is now well understood. Gidas and
Spruck [19] showed that the only nonnegative solution when 1 < p < p.isu = 0 on R”,
via test functions argument. Indeed, this is a consequence of the following general result
that they proved in the case n > 3.

Theorem 1.1 ([19]). Let (M", g) be a complete noncompact Riemannian manifold with
nonnegative Ricci curvature, and let u € C?(M) be a nonnegative solution of

—Au=u? inMwithl < p < p..

Then
u=0 onM.

It is known that the same result holds also when n = 2. In Theorem 1.7, we provide
a simpler proof of a more general result which includes Theorem 1.1 for every n > 2.
The explicit positive solutions to the critical equation

—Au=u3  onR”, (1.3)

with n > 3, are given by
1 n—2

2

witha,b > 0, 1=n(n —2)ab and x¢ € R". These functions were constructed by Aubin [1]
and Talenti [26] as minimizers of

Ju |Vul?dV,

1 5
0FUEDI2(M) ([, uinz dVy) "5

Sg(M) =
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where d Vg is the canonical volume element and
D'2(M) = {u € Li2(M) : |Vu| € LA(M)},

with M = R”". We note that if Sg(M) > 0, then it is the best constant in the Sobolev
embedding. Caffarelli, Gidas and Spruck [6] (see also [13,22]) proved that any solution
to (1.3) is radial and hence given by (1.4). Essential tools in their proof are the moving
planes method and the Kelvin transform that allow to reduce the problem to the study of
(singular) solutions that have nice decaying properties at infinity. Previous results were
proved by Gidas, Ni and Nirenberg [18] and Obata [24] under the additional assumption
that u decays as |x|~®~2) at infinity. In the case n = 2, solutions to

—Au =e* inR?,

e" < +o0
R2

were classified by Chen and Li [13], who showed that

1
(a + blx — xo[?)?

u(x) = log

for some a, b > 0 with 1 = 8ab and xo € R2. Their method relies on the moving plane
method and on a previous result by Brezis and Merle [5] on the upper boundedness of
solutions.

Extending such classification results for the critical equations to the case of more gen-
eral Riemannian manifolds requires the introduction of different techniques than those
used in the Euclidean setting, which strongly rely on the conformal invariance of the
problem and the rich structure of the conformal group of the ambient space. In this
paper, we study the problem in the natural setting of a complete noncompact Rieman-
nian manifold (M, g) with nonnegative Ricci curvature, also allowing for the presence of
a nonnegative potential function K.

Here and in the rest of the paper, we will denote by Ric = Ricy, R = Ry, dVy and r ()
the Ricci curvature, the scalar curvature, the canonical Riemannian volume form and the
geodesic distance from a fixed reference point of M, respectively.

The novelty of our approach consists in using a careful test functions argument which
starts from the classical Bochner formula

SAIV = [V /12 4 Rie(V £,V f) + (V£ VAS),

through which we are able to prove integral estimates involving the squared norm of the
traceless Hessian
Af

sz = sz - Tg

of a suitable power of the solution, the Ricci tensor in the direction of the gradient of
the solution and, in the subcritical case, some integral norms of the gradient of the solu-
tion. We show that all these quantities can be controlled by integrals on large annuli of
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first-order derivatives of the solution which, in turn, can be controlled using the main
equation. Under very general assumptions, we can then show that these quantities must
vanish identically on M and this leads, in the subcritical case, to the triviality of the solu-
tion while, in the critical case, it yields the classification of nontrivial solutions and the
rigidity of the ambient manifold, by using a characterization of conformal gradient vec-
tor fields. The starting point of our approach is partly reminiscent of the method used by
Gidas and Spruck [19] for subcritical equations (# > 3), Bidaut-Véron and Raoux [3] for
subcritical systems and the first author with Castorina and Mantegazza [8] for subcritical
parabolic equations.

In the first theorem, we deal with the case n > 3 and finite energy solutions, i.e.,
ue DLY2(M).

Theorem 1.2. Let (M", g), n > 3, be a complete noncompact Riemannian manifold with
nonnegative Ricci curvature, and let u € C?(M) be a nonnegative finite energy solution,
ie,u e DV2(M), of

n+2
—Au =un2 inM. (1.5)

Then either u = 0 on M or (M", g) is isometric to R" with the Euclidean metric and

ux)=—

a + blx — xo|?

for some a,b > 0 with 1 = n(n — 2)ab and xy € R".
An immediate consequence of this result is the following.

Corollary 1.3. A complete noncompact nonflat n-dimensional (n > 3) Riemannian ma-
nifold with nonnegative Ricci curvature does not admit any Sobolev minimizer of Sg(M).

In particular, if the manifold is also Ricci flat, it does not admit any Yamabe minimizer,
i.e., a smooth function attaining the Yamabe constant
2 n—2 2
- fM|Vu| dVg+meRgu dVg
0£ueCL (M) (foy u i d Ve) w2 '

Y(M.[g]) =

An alternative proof of Corollary 1.3 can be recovered using a recent result by Bren-
dle [4]. In fact, if So(M) = 0, then clearly it cannot be attained by any function in
DY2(M).If Sg(M) > 0, then (M", g) supports the Sobolev inequality and S (M) is the
best constant. Hence, by a result of Carron [7] (see also [30, Proposition 2.4]), (M", g)
has maximal volume growth, i.e., there exists C > 0 such that

Volg B,(x9) > Cp"

for every xo € M, p > 0, and then one concludes using [4].
A result similar to Corollary 1.3 in the setting of Cartan-Hadamard manifolds (simply
connected manifolds with nonpositive sectional curvature) has been recently obtained
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assuming the validity of an optimal isoperimetric inequality on M (see [23]). We also
point out a recent result obtained by Ciraolo, Figalli and Roncoroni [15] concerning the
classification of finite energy solutions to the critical (anisotropic) p-Laplace equation on
convex cones of R”, obtained via integral estimates and sharp a priori bounds.

In the second theorem, we consider the case n > 3 and solutions which may not have
finite energy, but satisfy a suitable condition at infinity.

Theorem 1.4. Let (M", g), n > 3, be a complete noncompact Riemannian manifold with
nonnegative Ricci curvature, and let u € C%(M) be a nonnegative solution of

n+2 .
—Au=un=2 inM.

If n > 4, also assume that, outside a compact set of M,

(n —2)(n —6)

u(x) < Cr(x)* forsomea < — 20—

Then either u = 0 on M or (M", g) is isometric to R" with the Euclidean metric and
1 n—2

u(x) = (a +blx — x0|2)T

for some a,b > 0 with 1 = n(n — 2)ab and xy € R".

We explicitly note that no assumption on the behavior of u at co is needed in Theo-
rem 1.4 if n = 3. In particular, on R3 we recover the full result by Caffarelli, Gidas and
Spruck [6]. Moreover, we have the following.

Corollary 1.5. A complete noncompact nonflat three-dimensional Riemannian manifold
with nonnegative Ricci curvature does not admit any nonnegative, nontrivial solution of
the critical equation

—Au =u’.

In the case n = 4, Theorem 1.4 only needs that u is bounded above by r(x) to any
power, i.e., u has at most algebraic growth (with respect to the distance function), as r(x)
tends to oo. We also note that o > —% for every n > 4, thus obtaining on a Riemannian
manifold with nonnegative Ricci curvature an improvement of the classical results in R”
by Gidas—Ni—Nirenberg [18] (see also Obata [24] in the case of manifolds and Caffarelli—
Gidas—Spruck [6] in the case of R") in any dimension n > 3, where the authors assume
that the solution decays as |x|~®~2 at infinity.

In our third theorem, we deal with the case n = 2. We have the following result.

Theorem 1.6. Let (M?, g) be a complete noncompact Riemannian surface with nonneg-
ative scalar curvature. Let u € C2(M) be a solution of

—Au = e",

/ et < 4o0.
M
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Assume that, outside a compact set of M,
u(x) > —4logr(x) —2yloglogr(x), y €]0,1).

Then (M2, g) is isometric to R? with the Euclidean metric and

1
(@ + blx — xo[?)?

u(x) = log

for some a,b > 0 with 1 = 8ab and xo € R2.

In contrast to the Euclidean case, on a general Riemannian surface with nonnegative
curvature, to the best of our knowledge, there is no result concerning the behavior of
a solution u at infinity. For this reason, we have to assume an a priori lower bound. A better
lower bound implying our condition was proved on R? by Chen and Li [14], relying on [5]
and the explicit expression of the Green’s function. In particular, Theorem 1.6 generalizes
the result obtained in R? by Chen and Li [13].

Our previous results are particular instances of more general theorems where we can
allow for the presence of a nonnegative potential function K. The following theorem
contains Theorem 1.1 as a particular case.

Theorem 1.7. Let (M", g), n > 2, be a complete noncompact Riemannian manifold with
nonnegative Ricci curvature, and let u € C%(M) be a nonnegative solution of

—Au=Ku? inM

with 1 < p < p., where

+00 ifn =2,
Pc = 2
¢ nt ifn>3
n—2

and 0 # K € C%(M), K > 0. Moreover, if n > 3, we also assume AK > 0 on M, and
if n > 4, we also assume K(x) > % outside a compact set of M for some C > 0,
2
0 < ;=5 Then
u=0 onM.

Theorem 1.7 improves the results by Gidas and Spruck [19, Theorems 4.1 and 6.1],
removing an assumption on K and including the case n = 2. Moreover, as it is clear from
the proof, when n > 4, the lower bound on K can be relaxed to

K(x) > witho < o*(n, p)

r(x)?

for some explicit exponent 6 *(n, p) > %, see (3.7).
The next two theorems extend Theorems 1.2 and 1.4, respectively. In the first one,

we consider finite energy solutions, i.e., such that
ue DEA(M) = {u: Kun> € L'(M), |Vu| € L*(M)},

while in the second we deal with solutions with prescribed behavior at infinity.
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Theorem 1.8. Let (M",g), n > 3, be a complete noncompact Riemannian manifold with
nonnegative Ricci curvature, and let u € C?(M) be a nonnegative finite energy solution,
ie,ue D (M), of .

—Au=Kum2 inM
with0 # K € C>(M), K > 0 and AK > 0. Assume that, outside a compact set of M,
() K(x) <C+r(x)?),or
(i) [VK(x)| < ;&5 K(x).

Then either u = 0 on M or (M", g) is isometric to R" with the Euclidean metric and

1 n—2

—x0|2)T’ K =n(n—-2)ab

u(x) = (a + b|x

for some a,b > 0 and xy € R".

We note that, under suitable conditions on the potential K, assuming Ku = el! (M)
is sufficient to deduce u € Dllgz(M ), i.e., u has finite energy. This is the case, in particular,
if K = 1. See Lemma 2.9.

Similarly to Corollary 1.3, we see that a complete noncompact nonflat n-dimension-
al (n > 3) Riemannian manifold with nonnegative Ricci curvature does not admit any
minimizer in DII(’z(M ) of the corresponding weighted Sobolev quotient, with weight K
satisfying the assumptions of Theorem 1.8.

Theorem 1.9. Let (M", g), n > 3, be a complete noncompact Riemannian manifold with
nonnegative Ricci curvature, and let u € C%(M) be a nonnegative solution of

n+2
—Au =Kun—2 inM
with0 #£ K € C2%(M), K > 0 and AK > 0. Assume that

VK| < ——K(x)
ES)

outside a compact set of M. If n > 4, also assume that

u<Cr® and K(x)zr(x)"

outside a compact set of M, for some

n—2)(n—4) _(n —2)%0 +2(n —2)(n —6)}

*= max{_ 20—-3) 4(n —4)

Then either u = 0 on M or (M", g) is isometric to R" with the Euclidean metric and

1 n—2

u(x):( )T, K =n(n—-2)ab

a + blx — xo|?

for some a,b > 0 and xy € R".
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From this theorem, we have the following.

Corollary 1.10. A complete noncompact nonflat three-dimensional Riemannian manifold
with nonnegative Ricci curvature does not admit any nonnegative, nontrivial solution of
the critical equation

—Au = K’
with0 # K € C2(M), K >0, AK > 0and |[VK(x)| < r(c—x)K(x) outside a compact set
of M.

In the proofs of Theorems 1.7 and 1.9, we use the Bishop—Gromov volume estimate
which ensures that the volume of geodesic balls of radius p grows at most as Cp” as p
tends to infinity. As it is clear from the proofs, a slower rate of growth allows for weaker
assumptions on u and/or K. We leave the details to the interested reader.

Our last theorem deals with the case n = 2 and generalizes Theorem 1.6.

Theorem 1.11. Let (M2, g) be a complete noncompact Riemannian surface with non-
negative scalar curvature. Let u € C2(M) be a solution of

—Au = Ke",

Ke" < +o00
M

with0 #£ K € C2(M), K > 0and AK > 0. Assume that, outside a compact set of M,
u(x) > —4logr(x) —2yloglogr(x), y €]0,1),

and, for some C > 0,
() K(x) <CA +r(x)?) andu(x) < Clogr(x), or
(i) IVK()| = 755K ().

Then (M2, g) is isometric to R? with the Euclidean metric and

K = 8ab

=1
u(x) = log o B

for some a,b > 0 and xo € R2.

It is interesting to note that Chen and Li in [14] exhibited the explicit radial solutions

ug(r) = (2 + a)log

4+r2)04

in R? for K(r) = (2+a)( )

4+r2
for every o € R. Note that in these examples AK > 0 in R2 if and only if @ > 0, while
our lower bound on u, is satisfied if and only if & < 0. In the same paper, the authors
provide some sufficient conditions on K ensuring the validity of upper and lower bounds
for solutions on R2.

Finally, to the best of our knowledge, Theorems 1.8, 1.9 and 1.11 are new even in the
Euclidean setting. In the more general Riemannian setting, we point out some existence



Semilinear elliptic equations on manifolds with nonnegative Ricci curvature 367

results of variational solutions for the Yamabe equation under conditions on the Yamabe
constant and the Yamabe constant at infinity, see [21, 31]. We explicitly note that the
Yamabe equation reduces to (1.5) when n > 3 and the manifold is scalar flat. Of course,
the conditions in the cited references cannot hold on manifolds with nonnegative Ricci
curvature.

The paper is organized as follows: in Section 2, we collect all the technical lemmas
that we will need in the proofs of our main theorems; in Section 3, we prove Theorem 1.7
concerning the nonexistence of nontrivial solutions in the subcritical case; in Sections 4
and 5, we prove Theorems 1.8 and 1.9 which deal with the critical case, when n > 3;
finally, in Section 6, we prove Theorem 1.11 on the critical equation on surfaces.

Added note: After this paper was submitted for publication (on March 2022), several
very interesting results on this topic appeared in the literature. We explicitly mention
Fogagnolo—Malchiodi—-Mazzieri [17], where the authors studied the same problem with
a different technique and Catino—Monticelli-Roncoroni [11], Ou [25] and Vétois [28],
improving this method in order to deal with the p-Laplacian. We also cite Catino—Li—
Monticelli-Roncoroni [9] and Flynn—Vétois [16], where similar techniques are used to
study the uniqueness of positive solutions of the critical semilinear equation for the sub-
laplacian on the Heisenberg group.

2. Preliminary lemmas

2.1. Partl

We collect here all technical lemmas that we will need in the study of equation (1.1).
We start showing the following key technical identity. We note that in the Euclidean case,
Bidaut-Véron and Raoux in [3, Lemma 3.1] showed an estimate without including two
extra terms that are crucial in proving our result in the critical case.

Lemma 2.1. Let (M", g), n > 2, be a Riemannian manifold. For any positive function
w € C2(M), any nonnegative n € C2(M) and any real numbers d,m € R such that
d # m + 2, the following identity holds:

2(n —m)d — (n — 1 2442 -1
(I’l m) (I’l )(m + )/ nwm72|vw|4_ n / nwm(Aw)Z
4n M n M
2(n—1 2)d
. (” )m + (I’l + ) / 77wm—1|vw|2Aw
2n M
4 412 mE2=d ,
_r \V; 3
+(m+2—al>2/M’7w Ve
4 d m+2—d m+2—d
_—_— R v 2 ) v 2
+(m+2—d)2 /an ic(Vw w )
_m+d

1
— | w™ Y Vw|*(Vw, Vi) +/ w” Aw(Vw, V) + —/ w™ |Vw|?An.
2 M M 2)m
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Proof. Let f := w' for some ¢t # 0. Then
Vf=tw"'Vw, Af=rtw"1Aw+1(—DHw' 2|Vw|?.
Now we use the Bochner formula
—A|Vf|2 IV2/I? +Rie(VLV )+ (VLVAS)
= (V2112 4 (Af)? + Rie(V £V f) + (V£ VAS)
t2(t — 1)?
n

o [2
= |V2w'|* + Ric(Vuw', Vw') + —w? 2 (Aw)? + w4 V|t
n

212(r — 1
+ — ( ) w? B IVw P Aw + 12t — Dw? 3| Vw2 Aw
n

+ 2w 2 (Vw, VAw) + t2(t — Hw? 3 (Vw, V|Vw|?)
+ 12t — D)t — 2w 4| Vuw|*.

Let d € R. Multiplying the above equation by  ~2yw? and integrating over M, we obtain
the following:

((l —nl)z n (t _ 1)([ _ 2)) /M 77H)d+22‘—4|vu)|4

t—1 2
n ( )(n +2) / nwd+2t—3|vw|2Aw +/ y]wd+2t_2(Vw, VAw)
n M M

1
o [ 2@+ @) [ gt (e, Vvl
nJu M
1 o
_EAlnwdA(th—2|Vw|2)+t—2L4nwd|V2wt|2
+t‘2/ nw? Ric(Vw', Vw') = 0.
M
Integrating by parts, we obtain
/ nwd+2’_2(Vw,VAw) — _/ wd+2’_2Aw(Vw,V77)
M M
—(d+2l_2)/ T]wd+2t_3|VU)|2Aw
M
_/ nwd T2 (Aw)?,
M
/ nwd =3V, VIVw|?) = —f w2173 VX (Vw, Vi)
o M
_ (d +21 — 3) /M nwd+2’_4|Vw|4

_/ nwd+2’_3|Vw|2Aw,
M
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f nw! Aw? 2| Vwl?) = / wd T2V P Ay + Zd/ w73 |V P (Vw, Vi)
M M M
+d(d — 1)/ w24 vt
M
+ d/ nw? 23|V 2 Aw.
M
Substituting in the above identity, rearranging terms and setting m := d + 2t — 2, we

conclude. [

In the next lemma, we apply the previous identity to positive solutions of equa-
tion (1.1).

Lemma 2.2. Let (M", g), n > 2, be a Riemannian manifold. For any positive solution
ueC*M)of

—Au = Ku?
with p € R, K € C2(M), any nonnegative ¥ € C2(M) and any real numbers q > 2,
d,m € R suchthatd # m +2, m + p + 1 # 0, the following identity holds:

qAKMm+p+1
nm+p+1) /M 4

n—1

(x/ wqum_2|Vu|4+/3/ Y Ku™ P vu)? +
M

2
(m+2 d)2/ vl [V

/ Yiud Rlc(Vu

m+2 d |2

m+2 d

(m+2 d)2 )

d
mEp Gy, V) + % 5 W Va2 (Vi V)

/ quum-HH-l

2(n—m)d—(2;l)(m2+d2) and B = (n+2)d2nz(n Dp.

1
+ - W\ VulPAyd 4+ ———

where o =

Proof. Applying Lemma 2.1 to w = u and n = {4, for any real numbers d, m with
d # m + 2, we get

2(n —m)d — (n — 1)(m? + d?)
4n
2(n —)m + (n + 2)d
B 2n

2
Ty ac d)Z/ vl [V
m—+2—d

2—d
L 44 Ric(Vu " 2" vy
+(m+2_d)2/Mxﬁu ic(Vu ,Vu )

d 1
_mtd u™ | Vul?(Vu, Vyr?) —i—/ u™ Au(Vu, Vy?) +—/ u™|Vul?> Aya.
2 M 2Jm

M

-1
/ I L / PO (Auy?
M n M

/ Y™ Vu|* Au

m+2 d
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Hence, using the equation Au = —Ku?, we obtain

2(n —m)d — (n — 1)(m? + d?
(I’l m) (Zn )(m + )Alwqum—2|vu|4

2(n —1 2)d
/ 1Wunm+pAM + (” )m2+ (n +2) / lﬁunm+p_1|Vu|2
M hn M

4 o, m+2—d
q de > 2
+(m+2—d)2/M‘””| w2

m+2—d m+2—d
2

4
— 9y? Ric(Vu~ 2,V
+(m+2_d)2/M¢u ic(Vu , Vu

- M/ um—1|w|2(w,wq)—/ Ku"™*P (Vu, Vd)
2 Ju M

n—1

+

n

)

1
+§/M u™ | Vu|> Aya. .1

Integrating by parts in the first integral in the second line above, we get

—1 -1
”n /quKumﬂ’Au - _”n /MKumﬂ’(vu,w‘I)
_W/ Kydum =1 vy 2
n M
n—1 m+
- YU TP (VK V),
n Ju
and
—1
! [ YaumtP(VK, Vu)

n M
It / YI(VK, V" +ply

nm+p+1)Jy ’

n—1 n—1
- - - \V4 q,VK um+p+1 + —/ qAKum+p+1
n(m+p+1)/M< v ) nm+p+1) MW
—1 —1

=—— """ [ ayrgumtrt! —”—[ Ku"*P(Vy?, Vi)

nm+p+1)Ju n Ju

n—1

+ — IAKu" TP
nm+p+1) /M v

Thus, substituting and setting
I =/ Ku™tP(Vu, Vy1),
M
I :/ u" V> (Vu, Vy?),
M

13:/ W™ | Vul> Ay,
M
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equality (2.1) becomes
2(n —m)d — (n — 1)(m? + d?)

/ wqum72|vu|4
M

4n
n—1
+ IAKymtPTL
RN
-1 -1
_271 11_ (m+p)(n )/ Iﬂunm+p_l|Vu|2
n n M
+ z(n_l)m+(n+2)d/ Y Kum Pl vy 2
2n M
n—1 2=
0 A unm+p+l+—/ q dv2 2
n(m—i—p—l—l)[ v ( +2—4d)? vyl |
m+2-d m+d 1
P S am——— 94 Ric(Vu ™5 ,V = -1+ =1
(m+2 d)sz” ie(Vu™ u ) s L—ht 5l
Hence, rearranging and simplifying, we conclude
oz/ wqum_2|Vu|4+ﬂ/ Y4 Ky™tPvy)?
M
n—1 m+2=d
S qAKum+p+l+—/ qu vz 2
n(m+p+1)/w ( +2—-4d)? vt
/ 9y Ric(Vu™ 7 V")
(m+2 )2 v u? Ric u ,Vu
n—2 m+d 1
= I Jo o — st — q gy m+pt1
a1t 2+23+n(m+p+1)/ AYTKu

where ¢ =

2(n—m)d—(2;l)(m2+d2) andﬂ _ (n+2)d;;(n—l)p' -

In the subcritical case 1 < p < p. = %, we neglect some nonnegative terms in
Lemma 2.2, thus obtaining the following integral gradient estimate.

Corollary 2.3. Let (M", g), n > 2, be a Riemannian manifold with Ric > 0. For any
positive solution u € C2(M) of
—Au = Ku?

with p € R, K € C*>(M), AK > 0, any nonnegative ¥ € C2(M) and any real numbers
q>2,d,meR such that m + p + 1 > 0 the following estimate holds:
a/ V™2 V|t + ﬂ/ v K™ TP vy)?
M M

d
mEp Gy, Vl) + % W Va2 (Vu, Vi)

1 n—1
+ - u™|Vul?A q—i——/ Ay Kym TPl
Z/M IVul" Ay nim+p+1) Iy v

2(n—m)d—(n—1)(m2+d?) and f = (+2)d—2(n—1)p

where o = o o
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n+2

For n > 3, in the critical case p = p. = nts,

by choosing

2 2(n —1
g2
n—2 n—2

in Lemma 2.2, we get « = 8 = 0, thus obtaining the following identity.

Corollary 2.4. Let (M", g), n > 3, be a Riemannian manifold. For any positive solution

ueC2M)of )
—Au = Kun=2

with K € C2(M), any nonnegative Y € C2(M) and any real number q > 2, the following
identity holds:

—2)2 n— o
(ﬂ 42) / wquﬂn_zl) |V2u—%|2
M

% .
T Ul - ) / Yu i Rie(Vam 22, Vun22) 4 -
M

—2 f Y AKU =
2n M
n—2

n

1 -2 ne
+ —/ u_%WuFAwq + n_/ Aquuzﬁ,
2 M 2n M

/Kun"fzwu,wqwr/ w722 |V ?(Vu, Vid)
M M

In the next lemma, we estimate some of the terms in the right-hand side of the above
identity in terms of controlled quantities. This inequality will be useful in the critical case.

Lemma 2.5. Let (M", g), n > 3, be a Riemannian manifold. For any positive solution
ueC*M)of

n+2

—Au = Kun-2

with K € C°(M), any nonnegative ¥ € C2(M) and any real numbers q > 2, & > 0 the
following estimate holds:

1 n n l
——/ Kum(Vu,qu)—}—/ u—m|vu|2(vu,wq)+-[ w22 |Vu 2 Ayt
nJu M Y

2
< =2 8/ unziln:zl)l%zu_"%ﬁ + i/ Y2z |V 2 V.
8 M 2¢ M
Proof. Let
M
122[ U | Vul?(Vu, V).
M

I5 =/ w2 [Vl Ayl
M
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Integrating by parts, we obtain

(n—2)°>
S(n -1

-2 3 n—
= _(l’l—) 2( l)<V|Vu n— 2| qu)

2

/ V22 2(Va 52 V)

8mn—1) Ju
-2)3 n—
(I’l ) uzsz 2 |Vu n—2| Awq
8(n - Ju
—97)3 - _
__ =2 W VR (V2 V) — 2 2 I
4n—1) Iy 2(n —1)
— 3 n— o
Lm0 Gy (vum e, V)
4(]1 — 1) M
—_ 93 - _
(=2 2 I)Aun2(Vun2V1pq) n—2 !
dn(n—1) Jy 2(n—1)
Since 5 5
p) 2 n _2(m=D
Ay~ n—2 = Kun—=z + —— n—2 |Vul?
u p— u + n _2)2u [Vul®,
using Young’s inequality on the first integral in the last equality, we obtain
_an—2)’ / 2n=1) o5 2
1 9y " n—2 V u- n— 2
2= Su=1) vu | |
61(11—2)3/ 202D gp 292
_— Vu~ 722 2|V
S Ly VT R vy
B (n —2)3 uz(nn_—zl)< 2 Kuﬂ% n 2n ufz(nn—_zl) |Vu|2)
4n(n —1) n—2 (n —2)2
2 n—2
x (Vu~m=2, Vi) — ———— |
(Vu v?) 21— 1) 3
3
_ q(n—2)°¢ " 21 |0 2
8(m—1)
q(n—2)3/ ST
— Vu~ iz 2|V
+ o= Ly vt Py
n n—2 I+ 1 ] n—2 ]
nn—1""n=17 2—-1"
Rearranging terms, we conclude. ]

2.2. Part1l

We collect here all technical lemmas that we will need in the study of equation (1.2).
We start showing the following key technical identity, which is the counterpart of Lem-
ma 2.1.
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Lemma 2.6. Let (M", g), n > 2, be a Riemannian manifold. For any function w €

C?2(M), any nonnegative n € C2(M) and any real numbers d,m € R \ {0}, the following
identity holds:

_((n—l)m2
n
n—1

d?
+md + —)/ neCmTadw |y 4
27 Im

/ pe@m+dw (A2
n M

2(n —1 3
_( (n—Dm N —d)/ ne@m W 72 Ay,
n 2 M

1 o 1
+ W /M 77edw|v26mw|2 + W /;u nedw RiC(Vemw, Vemw)
= (m +d)/ @M dv gy, 12(Vw, Vi) +/ @MW Ay, (Y, Vi)
M M
+ l/ e(2m+d)w|Vw|2An.
2 Jm
Proof. For f = ™", we have
Vf=me™Vw, Af=me™ Aw+ m?e™’|Vw|>.
We use the Bochner formula
1
EAIVfI2 = |V2fP +Ric(V£, V) + (VL VAS)

= [P/ 4 - (Af)? + Rie(V £V ) + (V£ TAS)

° 2 4
— |V26mw|2+Ric(Vemw7Vemw)+%e2mw(Aw)2+m762mw|Vw|4

2m3
+ T2 Vw2 Aw + m3e?™P Aw|Vw|? + m2e?™¥ (Vw, VAw)
n

+ m*e2™Y |\ Vw|* + m3e?™Y (Vw, V|Vw|?).
Now we multiply by m~2ne?* and integrate over M to obtain

m—Z/ 776,dw|%2€mw|2_i_m—Z/A nedw RiC(Vemw,Vemw)
M M

1 Dm?2
+ _/ ne(2m+d)w (Aw)z + (n+ Dm / ne(2m+d)w|vw|4
nJm n M

n 2+ n)m

/ne(2m+d)w|Vw|2Aw+/ ne(2m+d)w(Vw,VAw)
n M M

1
—i—m/ ne(2m+d)w(Vw,V|Vw|2)—§/ ne? A(e*™ |[Vw|?) = 0.  (2.2)
M M
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Integrating by parts,
/ ne(2m+d)w(Vw,VAw) — _/ €(2m+d)wAw<V7’], VLU)—/ 7’]6(2m+d)w(ALU)2
M M M
—(2m+d)/ ne G Ay Vw|?,
M
/M ne@m Y (V. VIVul?) = - /M GO |V (V. Vi)
_/ n€(2m+d)w|VLU|2Aw
M
—(2m+d)/ T]€(2m+d)w|VLU|4,
M
/;W nede(eme|Vw|2) — /M e(2m+d)wAn|Vw|2
+2d/ G |7y 12(Vw, Vi)
M
+d2/ T]€(2m+d)w|V'LU|4
M
+d/ ne@mTDV |7y 2 Aw.
M

Substituting these identities in (2.2) and rearranging terms, we obtain the result. [
We apply the previous identity to solutions of equation (1.2).

Corollary 2.7. Let (M?, g) be a Riemannian surface, with scalar curvature R. For any
solution w € C2(M) of
—Au = Ke*

with K € C2(M), any nonnegative ¥ € C2(M) and any real number q > 2 the following
identity holds:

8/ Yie%|V2e % |2 +4/ Yies R|Ve % |2 +2/ Yile5 AK
M M M
=2/ Ke? Ay? +/ e 5 |[VuPAyd.
M M

Proof. We start from Lemma 2.6 with w = u, n = 9. Integrating by parts, using the
equation on u, we obtain

/ 1/jqe(2m+d)u(Au)2 =_/ que(2m+d+1)uAu
M M
:/ Ke(2m+d+1)u<qu,vu)+/ 1//qe(2m+d+l)u(VK,Vu)
M M

+Q2m+d+ 1)/ YaKe@mtrd+u gy 2,
M
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Assuming 2m + d + 1 # 0, we have

/ 1//qe(Zm-i-tl'-i-l)u (VK, VM)
M

/ wq VK, Ve(2m+d+1)u)

= 2m + d +1
1
= ST e ek e Jyeem g o)
- q,2m+d+Du A K / Ke@mtd+Dupaq
2m+d+1/ Ve +2m+d+l ¢ 4

+ / Ke@m+d+u (Vu, V).
M

Hence,

n— 1)m? d?
—<—( n) +md+7)/que<2’"+d)“|Vul“

+<n+2d_n—1)/ l//qu(Zm+d+1)u|vu|2
M

2n n
1 q,du| g2 mu|2 1 q,dupn: mu mu
—i—m Ml//e |[V=e™ | +WM1//e Ric(Ve™, V™)

n—1

+ n2m4+d+1) Jy
=(m+ d)/ @M+ |y 127y, Vi) 4 -
M

1)Z[qe(2m+d+l)u AK

(Vu, Vy1)

1 n—1

2m+d)u 2 q 2m+d+1)u q

+ = VulAy? 4+ —MMMM K Aye,
2/Me IVul"Ay n(2m+d+1)/ ¢ 4

We have n = 2, hence Ric = %Rg, and we choose m = — d = 2 so that
/ Yie3 |V %|2+2/ wqe%R|Ve—%|2+/ yle% AK
M M
1 u
=/ KeTAlﬂq—i——/ e 2 |Vul? Ay, [
M 2 Jm

2.3. Part Ill

We collect here some general lemmas that we will need in the proofs of our main theo-
rems. The first is a lower bound for positive superharmonic functions on the Riemannian
manifold with nonnegative Ricci curvature. We include a proof for completeness.

Lemma 2.8. Let (M", g), n > 2, be a complete Riemannian manifold with nonnega-
tive Ricci curvature, and let u € C%(M) be a positive superharmonic function outside
a compact set of M, i.e., Au <0 on M \ Q with Q compact. Then there exist positive
constants p, A > 0 such that

A
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Proof. Let p > 0 be such that Au < 0 on B. On B let

v(x) = u(x) —

r(x)*

withae =n—2ifn >3, > 0if n = 2 and where 4 := p"‘minagﬂu > (0. Thenv >0
on 0B, and Av < 0, since Ric > 0 implies Ar < ”r;l weakly on Bf, by classical Lapla-
cian comparison. Since liminf, (x)—00 v(x) > 0, if infBlc) v < 0, then v attains its negative
absolute minimum at a point in B;. By the strong maximum principle, v must be constant
and negative on its domain, a contradiction. Thus, v > 0 in B;. The proof is complete if
n > 3.If n =2, for every x € B, we have

o
p% mingp,, u

u(x) =
()=
for every @ > 0, and we conclude passing to the limit as « tends to O. ]

The next lemma shows that, under suitable assumptions on the potential K, subsolu-
tions of equation (1.1) with u?*1|K| € L!(M) automatically have finite energy.

Lemma 2.9. Let (M", g), n > 2, be a Riemannian manifold, and let u € C*>(M) be
a nonnegative solution of
—Au < Ku?

with1 < p < p. and K € CO(M). If K > 0 almost everywhere outside a compact set
of M, |K|uP*! € LY(M), and

2
[ K™ 7»=1 < Cp”»=T  forevery p large enough,
BZp\BD

then |Vu| € L2 (M), i.e, u € D/ (M).

Proof. Forany p> 1,letyy € C2(M)be such thaty = 1in B,, ¥ =0in B

on M and v satisfies

IVY> <Cp™2 in By \ By.

Then, for every 0 < ¢ < 1, we obtain

2,0+l 5 _ 2 2 2 _
/1\le u [Mw uAuZ[llw |Vul 2/M Yu|Vul|Vy|
_ 2 2_1 2 2
- [ y21vup = [ vy,

For every large enough p, we have

C 2 2\
/ 2| Vy|? < —2(/ |KJur*) (/ K7
M 1Y By B>y \Bp

0

v

v

2

< c([ |K|u”+1)m.
B>,
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By the previous estimate, we obtain

/Bpwmzsc(/B

Passing to the limit as p — oo, since u?*!|K| € L' (M), we obtain the result. n

_2
|1<|u1’+1)”+‘ —i—C/ |KuP*!
B

20 20

Note that if
C

K>—— onM
T (4 r(x)*

for some A < WFZ);M’ then by the Bishop—Gromov volume comparison theorem,
we have

2 o ptl

/ K~ 7=1 Scpn+/\p71 Scp =1
Bzﬂ\BD

for every p > 0. In particular, for the critical equation with p = p. = %, the condition

e
on K reads as
K>C>0 onM.

Note that these conditions are satisfied if K is constant and positive on M.

We finally recall the following characterization of conformal gradient vector fields
which can be deduced from general results in [10,27] and which will be used when dealing
with critical equations.

Lemma 2.10. Let (M", g), n > 2, be a complete noncompact Riemannian manifold with
nonnegative Ricci curvature, and assume there exists a nonconstant function f on M
such that

V2f =0, Ric(VAVS)=0 onM.

Then (M", g) is isometric to either

(i) adirect product (R x N~ dr? + gn), where (N"~1, gn) is an (n — 1)-dimension-
al complete Riemannian manifold with nonnegative Ricci curvature and f = f(r) =
ar + b for some a,b € R witha # 0;

(ii) R” with the Euclidean metric and f = f(x) = a|x — xo|> + b for some xo € R"
and a,b € R witha # 0.

3. Proof of Theorem 1.7

We start considering the case of a Riemannian surface (M2, g) with nonnegative scalar
curvature R. As we already observed, by the Bishop—-Gromov volume estimate (M2, g)
must be parabolic (see, for instance, [20]) and therefore every positive superharmonic
function is constant. Thus, any solution ¥ > 0 of (1.1) is zero. We provide here a self-
contained proof. Suppose by contradiction that u is not identically 0, then by the strong
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maximum principle ¥ > 0 on M. Let ¥ € Lip.(M) be a nonnegative cutoff function,
8 € (—p,—1) and € = |§|, then we have

/ Ky2uP* = —/ v2ul Au = 2/ vV, Vu)u® —i—S/ w2l v ?
M M M M

IA

1

_/ |v1/f|2148+1 +(8+8)/ 1’[f2u8—1|vu|2

& Jm M

= 1/ IV [Pub 3.1)
eJm

LetdeC! (R) be a nonnegative function such that 0 < ® <1, d’' <0, d =1 on (—o0, 1],
® =0o0n][2,—00),and |®’'| < C for some positive constant C. For any p > 1, define ¢y =

@(zl;(;gpr), then we have = 1 on B s5, ¥ =0 on By, and |[Vy/| < @ on B, \ B 5.

With this choice of i, (3.1) and Lemma 2.8 yield

/ Kl//up+8 < ¢ / i
M (log p)? Bo\B r2

Let V(r) = Vol(B,) and S(r) = meas(dB;) be the area of B, and the length of dB,
respectively. Then by the coarea formula V' = S, and using the coarea formula, an inte-
gration by parts and the Bishop—Gromov volume comparison theorem, we obtain

f i—/piS()d = [5vo] +2/in()d
s 5 = ﬁrz r r = 2 r ﬁ ﬁr3 r r

o\B /5 "
|
5C(1+/ —)SC(I—i-log,o).
\/57'

Hence, we have

/vau"”s ©
M log p

and passing to the limit as p tends to oo, we deduce that u = 0 on the set {x € M :
K(x) > 0}. This is a contradiction, since we assumed v > 0 on M.

Now we consider the case when (M", g), n > 3, is a Riemannian manifold with
nonnegative Ricci curvature. Let u € C2(M) be a nonnegative solution of (1.1) with
l<p<p.= :’:; . By the strong maximum principle, u = 0 or u > 0 on M. We assume
by contradiction that u > 0 on M, and we apply Corollary 2.3 withyy € C2(M),0 <y <1

on M, q > 4 and with m, d satisfying

2 .
m= -2 and d=2+§p ifn =3,

or . |
n_ —

p<d<2n ,
n+2 n—2

2

(3.2)

and

—d — \/dn(2(n — 1) —d(n —2)) e —d + \/dn(2(n — 1) —d(n —2))
n—1 n—1
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when n > 4. Note that the condition on d is meaningful, since p < p. = %, and that with

these choices m > —2 when n > 4. Note also that, with this choices, the constants «, 8 in
Corollary 2.3 are positive for every n > 3. Then we have

a/ wqum—2|w|“+ﬂ/ Y Kum TPl vy)?
M M

n—2 m+d 1 (n—1) /
< 1 L+ -+ ——>" | AylKu™tPHL, 33
=——h+— 2+23+n(m+p—|—1)M Vv Ku (3.3)

where
11 :/ Kum‘”’(Vu,Vlﬁq),
M
I =/ 2" VUl (Vae, V).
M
I =[ u™ | Vu|> Aya.
M

We now bound the integrals I, I, and /3. By using Young’s inequality, for any ¢ > 0,
there exists C(g) > 0 such that

I 58/ quum+P*1|Vu|2+C(s)/ YI 2Kyt PHL vy 2,
M M
L<e / P2 Vult £ Cle) / P2 vy,
M M
— q—2, m 2 2 qg—1,m 2
13_q(q_1>/ VI VP VY| +q/ Y Va2 Ay
M M
< / Y2Vl 4 Cle) / P2 vy
M v (3.4)
L Cle) / YT Ay P
M
<e / P2 Vult £ Cle) / YT 2|y|
M U
L) / AN
U
—¢ / Y2 |Vul £ Ce) [ P2 (Ty 1 4 AYP),
M M

since 0 < ¢ < 1 everywhere. Substituting the above inequalities for ¢ small enough
into (3.3), we obtain

/wqum—2|w|4+/ VI Kum P vy 2
M M
<cC / YKL (VY 4 | AY))
M

e / P R (VY Ay ) 3.5)
M
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for some positive constant C. Multiplying equation (1.1) by Ku™" P9 and integrating
by parts, we get

/ qu2u2p+m
M
=11+ (m+ p)/ v Ku™ TP vy |? +/ wqup+m(v1<, Vu)
M M
=1+ (m+ p)/ Y K"t V| + / W4 (VK, VuPTm+ly
M

/ quKMIH_m_'—l

p+m+1
=1 +(m+ p)/ v Ku™ P vy|? —
M

1
_ —/ (qu’ VK)up+m+1
p+m+1 [y
=21 + (m + p)/ v Ku™ P vu)? —
M
+ ! / Aquup"'m'H.
By (3.4) and (3.5) and since AK > 0, we have for some C > 0

p+m+l

;/ quKuP+m+1
p+m+1 M

/ PIKR2PM < C / YI2KUm P (VY 2 £ | AY))
M M
c [ PRy AP,
M

We explicitly note that by our choice of m, we have 2p +m > p +m + 1 > 0. By Young’s

inequality, if ¢ > %, we have

/M PIKRZ2PM < C f I K (V2 4 Ay P

Since (M", g) has nonnegative Ricci curvature, it is possible to construct cutoff functions
suchthat ¥ =1in By, ¥ =0in B ,0 < <1on M and satisfying (see [29, Lemma 1.5]
and [12], for instance)

2p°

|AY| +|Vy|* = Cp™ in By, \ By,

Therefore, we deduce

K2uptm < cp / K5 (3.6)
B, B>y \Bp
If n = 3, by our choice of m = —2 and by the Bishop—Gromov volume comparison the-
orem, we obtain
C
K2u2P7D < Cp~* Vol(By,) < —
B, p

and thus, passing to the limit as p tends to co, we see that ¥ = 0 on the set {x € M :
K(x) > 0}, a contradiction since we assumed ¥ > 0 on M.
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If n > 4, from (3.6), our assumption on K and the Bishop—Gromov volume compari-
son theorem, we have

2(2p+m) m+2
K2u2p+m < Cp +o
By

T =Cp,

and if y < 0, passing to the limit as p tends to co, we reach a contradiction with our
assumption ¥ > 0 on M, as in the previous case. Now note that we have y < 0 if and
only if
- (—mn—=4p+2m+n)
m+2
since m > —2. Since this expression is increasing in m, the optimal choice is

- (—(mn—4)p+2m+n) withm — —d 4+ /dn(2(n —1)—d(n —2))
m+42 n—1

that is,

—n?(p—1)—4p+5np —2d +n + 2\/dn(2(n —1)—d(n—2))
2n—2—d+\/dn(Z(n—l)—d(n—2)) '

(n 1)
n—2) °

oc<oc*(n,p.d):=

Since d satisfies (3.2), choosing d < we see that it is

sufficient to have

arb1trar11y close to

2

2(n—1) nn—2+6p—np)—4—28p
< o*(n, ::*(,, )z 3.7
o<o’(np)i=0"(np ) 201 =3) (3.7)
A simple computation shows that
2 2
otmp)z—— & p= 2,
n—73 n—2
and hence the result follows. We explicitly note that 0*(n, p) = 25 if n = 4 orif p =

- i‘g The proof of Theorem 1.7 is complete.

Pec =

4. Proof of Theorem 1.8

Let (M", g), n > 3, be a Riemannian manifold with nonnegative Ricci curvature, and
let u € C%(M) be a nonnegative solution of (1.1) with p = p. = ”+2 . We assume u
is nontrivial, and hence by the strong maximum principle u is posmve on M. We now
use Corollary 2.4 and Lemma 2.5 with ¢ = 2 and ¢ = %, and we obtain that for any
nonnegative ¥ € C2(M),

—2)2 n— —2)2 n—
- / oS e+ O [ Rievu )
M

2(11 1)

2n

2(n—1)

-1 n 2
52/ u—m|w|2|w|2+"—f Ku=2 (Vu, Vy2) + / Ay Ku n—2 .
M n M 2n
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For any p > 1,let ¢ € C2(M) be such that y = 1in B,, ¥ =0inB3,,0<y <lonM
and ¢ satisfies

VY[ +]Ay| = Cp™? in Bap \ By

Then, using Lemma 2.8, for some constant C > 0 we have
[ wrwaver <c [
M B,

If0 < K < C(1 + r?) outside a compact set of M, using Lemma 2.8 we have

2(n— l) C 2n __2 2n
/ |AY2|Ku n—2 < <= Kun—2y~n-2 <C Kun=2
P= JBy,\B, BS

and

1 1
/KM"nTZIWIIVWISC(/ Kzuff”zww)z(/ |Vu|)2
M BZp\BD

< C(/sz\Bp wa”z)i(f% |Vu|2)j

On the other hand, if |VK(x)| < r(x) K (x) outside a compact set of M, we have

n— 1 2(n 1)

L Vyr?)

—2 2(—1)
= — / Aw u n—2
2n M

W12 [ R vk,
M

f Kum2 (Vu, Vi2)

2n

and using Lemma 2.8, for p > 1 large enough, we obtain

_1 n _2 n
‘n / Kun=2(Vu, Vyr?) + z / AY?K Ku“n="
n M 2n

< c/ \VK||Vy uizu~ 72 < C | Kuiz.
Bzo\Bﬂ BE)

In either case, since AK > 0 on M, for every p > 1 large enough we have

2(n—1) o _ 2(n—1) __2 __2
/ u n—12 |V2u n— 2 |2 / u n—12 RIC(VM n=2 Vu n—2)
Bﬂ

By
§C(/ |Vu|* + KunzTHZ)
BS BS

for some constant C > 0. Passing to the limit as p tends to oo, since Ric > 0, we conclude
that

o

VZ —%2_0 Ri —% —% —
u 2 =0, ic(Vu"n—2, Vu 7n-2) =0 on M.
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From Lemma 2.10, we deduce that (M", g) is either

(i) adirect product (R x N"~1, dr? + gn), where (N1, gy)isan (n —1)- dlmensmnal
complete Riemannian manifold with nonnegative Ricci curvature and u ™ 7n— 727 = = f =
f(r)y =ar + b forsome a,b € R witha # 0, or

(i) R” with the Euclidean metric and Ui = f = f(x) = alx — xo|* + b for some
a,b € Rwitha # 0.

Since
2 n 2 n 2n —2t=D
Vf=- u m—2Vu, Af =-— U n2Au+ —u Vul?
/ n—2 / n—2 (n—2)2 > Ivuls
a simple computation shows that in the first case,
2 2 2n 201=1)
0=Af=——Kunrz 4+ ———u n=2 |Vu|>>0 onM,
/ n—2 (n—2)2 IVl

which is in contradiction with our assumption ¥ > 0 on M. Then (M", g) is R” with the
. . 2

Euclidean metric and u~7—2 = f = f(x) = a|x — xo|> + b for some xo € R*,a,b € R

with a # 0. Since u, f are positive functions, we must have a, b > 0 and thus

-2

u(x) = (a|lx —xo|> + b

Inserting this expression into the equation, we find that we must have K = n(n — 2)ab €
(0, 00), and thus we conclude.

5. Proof of Theorem 1.9

Let (M", g), n > 3, be a Riemannian manifold with nonnegative Ricci curvature, and
let u € C2(M) be a nonnegative solution of (1.1) with p = p. = 22, K € C*(M),
0# K > 0and AK > 0. We assume u is nontrivial, and hence by the strong maximum
principle, u is positive on M. We now use Corollary 2.4 and Lemma 2.5 with ¢ = é and

obtain that for any nonnegative ¥ € C2(M),

—7)2 "
(l’l 2) / wq 2(*21)|V2 —T2|2

—22 n—
(n ) / Yiu = Rlc(Vu 22 Yy~ 2)+—/ YvIAKu (=3

< —/ Y22 VPV P + )
2 Ju

n
+

-2 2(n—1)
/ Aquu n=2) .
M

2n
We have

-2 2(n—1)
— l’l_/ K(qu, Vu =2 )
2n M
20=1) n—2

:_n—2/ KAy Ty o= —
2n Iy 2n

Ve . VK)u 2((nn—721)) .
( ’lp‘ ’ )
M
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Hence, by our assumptions on K and since 0 < ¢ <1,

_1 n _2 n—
(” / Kuiz (Vu, Vi) + 2 / AV Ku*n=
n M 2n M
< c/ VKl vy < S ) =
B>y \Bp P= JBy,\B,

and thus

- 2 n— o - 2 n—
-2 82) / W]uﬂn—;) |V2u_%|2 + (=27 42) / wqu% Ric(Vu_%, Vu_%)
M M

= 8/ wq_zu_%lvu|2u#|vw|2 + %/ wq_2Ku 251,,__21)
. p B2p\By

for any y > 0. Multiplying the equation for u by wq_zuL;Sy and integrating by parts,
we obtain

n—4-—y
n—2

- / Nl = (5.1)
M

/ V2T VP 4 (g - 2) f YT (Y, V)
M M

Hence, if n = 3, we choose y = 0, ¢ = 4 thus obtaining

2, 2 2 _ -1 _ 214
/Ml//u [Vu| —Z/MWM (Vu, Vi) /Ml// Ku

1
< -/ w2u—2|vu|2+2/ |w|2—/ v2Ku*.
2 Jm M M

Forany p > 1,let ¢ € C2(M) be such that y = 1in B, ¥ =0inB;,,0<y <lonM
and ¢ satisfies
V2 < Co> in Byp\ By,

By the Bishop—Gromov volume estimate, we conclude
Y2u 2| Vul? < Cp — 2/ v2Ku* < C (Cp - 2/ 1//21(”4)
By, M M

for every C; > 1, and thus
/ 1/f4u4|%2u_2|2 +/ v*u* Ric(Vu™2, Vu™2)
M M

¢
sc [ v+ S [ prke
M Y B2p\Bp

cc C c
5—21(C,0—2/ szu4)+—2/ Y2Kut < =
P M P= JB2p\Bp P
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if C; > 1 is chosen large enough. Letting p — co, we deduce that

V22 =0, Ric(Vu %, Vu?)=0 onM,

and we conclude as in the proof of Theorem 1.8. If n > 4, foreveryn —4 <y <2n—6
and every ¢ > 0 by (5.1), we have

/ Py v

< (-2C [ T Vi vy - [ wq—zKuz"J—zz‘ '
M

<Ce [y P« C [ g vy

M
e f v K
M
and thus for some C > 0 depending on y, we have
v
<C / YO |V - / A U (5.2)
M

Now for every € > 0, since y < 2n — 6, we have

[ vy

- ‘/ Yo KT
=3/

Choosing & > 0 suitably small and substituting in (5.2), we find
/ wq—zu—%ww
M
- (c / yarions gt / YK )
M M

for large enough C > 0 and every C; > 1. For any p > 1, we choose again ¥ € C2(M)
such that ¥ = 1in By, ¥ = 0in B5 ,0 < ¥ < 1 on M and such that v satisfies

1 2n—6— 2n—2—
*z_ngw"‘l‘”*%K‘ vy

2p°
|Vy|*> < Cp™2 in By, \ B,.

Thus, by our assumptions on u, K and using the Bishop—Gromov volume comparison
theorem, choosing

q21+n—§ and C; >1
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large enough, we obtain

2(n—1) 2(n=1 _ | __2_ —_2_
/ wqu n—2 |V2u n—2 |2 / wqu n—2 RIC(VM n=2 Vu n—2)
M M

C i
M p BZp\Bp
1 _ L
= —( sup u)r=2 2( / I#‘I_ZM‘?T%WWJFC/ wq—zKuzn_z/)
p? B>, \B)y Bap\B,
= —( sup u)n—2 2(CC1/ 1/fq—l—n+% VK_Zn—46—y
p? B2y\Bp
_CI/ l/fq_zKuzan—ZEV _|_6/ I 2Ku =2 1’)
B2p\Bp
C —6—
5—2( sup u)n-2 2/ _2n 461/
1Y sz\Bo

pr(%+§ P+1730-1

IA

Now if

o 1 o n—3
A:A(y):zy(nj+§—z)+ o —1<0

for some y € (n — 4,2n — 6), passing to the limit as p tends to oo yields
°oh _ 2 . _ 2 _ 2
Viu~n—2 =0, Ric(Vu n2,Vu 7n=2)=0 on M,

and again we can conclude as in the proof of Theorem 1.8. Since A(y) is monotone in y,
we have that A(y) < O for some y € (n — 4,2n — 6) if and only if A(n —4) < 0 or
A(2n — 6) < 0. These conditions are equivalent to, respectively,

(n—2)%0 +2(n —2)(n —6) - (n—2)(n—4)

== 4(n —4) R Y

Then by our assumptions on «, ¢ there exists y € (n — 4,2n — 6) such that A(y) < 0, and
the proof is complete.

6. Proof of Theorem 1.11

By Corollary 2.7 for every nonnegative ¥ € C2(M) and every ¢ > 2, since AK > 0, we
have

8/ wqe%|%ze_%|2 +4/ Yie? R|Ve 5 2
M M
52[ Ke? Ay? +/ e” 5 | VuP Ayl (6.1)
M M
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Integrating by parts and using Young’s inequality, for every ¢ > 0, we have

1 u u u
—/ e 2 |Vul|> Ay? :/ e2|Ve 2|2 Ay
4 Jm M

1 u u u u
=——/ ef|Ve_7|2(Vu,V1//‘1)—/ e2(V|Ve 2|2, Vy)
2 M M
1 u u u u
= ——/ e 2 |Vul*(Vu, Vi) —2/ e2V2e™2 (Ve 2,Vy?)
8 M M
1 u u o u u
= ——/ e~ 2|Vul*(Vu, Vy4) —2/ e2V2e™2(Ve 2, Vyd)
8 M M
—/ e2Ae 3 (Ve 3, Vi)
M
1 u u o u
< ——/ e 2 |Vu|*(Vu, V1) +8/ Ylez|V2e 2|?
8 M M
C u
+ 5 [ et mavy
€ Jm
1 _u 5 1 u
+ = e 2|Vul*(Vu,Vy?) + — | Kez2(Vu, Vy?).
8 M 4 M
Then, from (6.1) choosing ¢ = 1, ¢ = 4, we obtain
4/ w4e%|%zef%|2 +4/ 1ﬂ4e%R|Ve*%|2
M M
52/ Ke%m/f4+c/ ¢2e—%|w|2|vw|2+f Ke? (Vu,Vy*). (6.2)
M M M

Case 1: Suppose that
0 < K(x) <Cr(x)?

outside a compact set of M. Since M has nonnegative Ricci curvature, by using [2], one
can see that there exist C > 0 and 6 < (0, %) such that, for any p large enough, there exists
a cut-off function ¥ € C2(M) such that ¥y = 1 on B,y =0on B and

VY| <

. Ay <

on By \ Bo.

rlogp r2logp

Note also that, up to increasing the constant C > 0, we have

VY| < ———
Vvl = (r+1)logp

With this choice of ¥, by our assumption on u, for p > 1 large enough

, onBy\ By.

f N / V¥ vup 63)
M (log p)? Jar (r + 1)?
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and

Ve [ (vt
A,,(r—i—l)ze |Vul|® = Z/M (r+1)2(Ve , Vu)

2
e~ 3 (Vy2, Vu) +2/ v

_%A
w102

1
:2/M CESIE
1//2
_4/M T 1)3e (Vr,Vu)

1 ¥ ko / %y
=7 /M( +1)2 2|Vu|*+C T 2|Vy|
o Pkl [ P g
2 M(r+1)2Ke +4 ' (r+1)2e [Vul

v
+C[M (r+1)4e

Thus, by our assumptions on u, the choice of i and the Bishop—Gromov volume compar-
ison, arguing as in the proof of Theorem 1.7 when n = 2, we have

(AR 1 2
/M(r+1>2e vyl SC/M(r+1)2 Vv /(+1)4

- / (logr)” +C/ r?(logr)?
~ (logp)* Jp\B,, T B, (r+1*

< C(logp)'*”.

M\:

[V

N\:

From (6.3) for every p > 1 large enough, we obtain

u C
Yre 2 |VuPIVy P < ————. (6.4)
[M (logp)!=7
Moreover,
u -5

[ Ke¥ Ay* gcf Ke'— 5c/ Ke".

M By\Bg r#logp (B,0)¢
Finally,

u 1 1
/ Ke? (Vu,Vy*) < -/ Ke* + -/ K|Vu|?|Vy 292
M 2JB ) 2 JB,\B 4

1/ C
= Ke" + f|Vu|21ﬂ2.
2 )0 (logp)? /B,

We multiply the equation satisfied by u, i.e., (1.2), by ¥2u and integrate by parts. Since
K>0,0<¢y <1lonM,Ke* € LI(M),and

A

IA

—4logr —yloglogr <u < Clogr
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for r large enough, for every large enough p > 1, we have

/BD [VulPy? = /M Y2 Kuet _2/M Yu(Vu, Vi)

1
[ V2Kue* + —/ [Vu|>y? + 2/ w? |V |?
B, 2 Jg, Bo\B o

IA

IA

1 2.2
- |[Vu|“y“ + Clogp + C,
2 /s,

where we also used the Bishop—Gromov volume comparison theorem. Then
/ |Vul*>v? < Clogp + C,
By

and therefore
C

y 1
/ Ke2 (Vu,Vy*) < -/ Ke" + i
M 2 (B,o) log p

Inserting these estimates into (6.2), we obtain for every p > 1 large enough

4/ w4e%|%ze_%|2 +4/ Iﬂ“e%R|Ve_%|2
M M

y c c
<C Ke* + + -
(Bo) (logp) = (logp)'™

Passing to the limit as p tends to co, we obtain

V2t = 0, R|Ve_%|2 =0 onM,
and again we can conclude as in the proof of Theorem 1.8.

Case 2: If outside a compact set |V K(x)| <

r(cx) K(x), integrating by parts we have
/ Ke%(vu,w“):z/ K(Ve? Vy*
M M
= —2/ €3 (VK,Vy*) —2/ Ke? Ay*
M M
K u u 4
<C —e2|Vy| =2 | Ke2Ay~.
M7 M
Substituting in (6.2), we obtain
4/ 1#46%|%267%|2 +4/ 1p4e,7%R|Vef%|2
M M
u K u
50/ v e—7|vu|2|w|2+c/ —ez|Vy. (6.5)
M M T

Let® e C'(R)bea nonnegative function such that0 < ® <1, ®' <0, ® = 1 on (—o0, 1],
® =0o0n[2,—00),and |®’'| < C for some positive constant C. For any p > 1, define ¢ =



Semilinear elliptic equations on manifolds with nonnegative Ricci curvature 391

@(zll(;gpr), then we have = L on B s, ¥ = 0 on By, and |[Vy/| < %gp on B, \ B 5.

With this choice of i, by our assumption on u, we get

K u C 2
[ ZeB vy < / Ke“(e—Z) <c | ke
M logp JB,\B /; r B 5

On the other hand, arguing as in case 1, we obtain inequality (6.4). Finally, using (6.5),
we have

u o u u u C
4/ Yte2|V2e 2|2 +4/ Y2 RIVe 2P < ———+C Ke".
M M (logp)'=v B,

Passing to the limit as p tends to co, we obtain
V2e 5 = 0, R|Ve'*%|2 =0 onM,
and again we can conclude as in the proof of Theorem 1.8.
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