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Abstract. We develop an analogue of Eisenbud-Flgystad—Schreyer’s Tate resolutions for toric
varieties. Our construction, which is given by a noncommutative analogue of a Fourier—Mukai
transform, works quite generally and provides a new perspective on the relationship between Tate
resolutions and Beilinson’s resolution of the diagonal. We also develop a Beilinson-type resolution
of the diagonal for toric varieties.
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1. Introduction

Eisenbud-Flgystad—Schreyer’s Tate resolutions are a powerful tool in the study of sheaves
on projective space [39], closely connected with both the Bernstein—Gel’ fand—Gel fand
correspondence [16] and Beilinson monads [12] and with many applications to commut-
ative algebra, algebraic geometry, and computation [1,5, 13,28,32,34,40-44,46,47,66].
The main goal of this paper is to develop an analogue of Tate resolutions over projective
toric varieties. It is reasonable to wonder whether such a theory should even exist, as other
related homological features of P” — such as the existence of full, strongly exceptional
collections of line bundles — do not extend to all projective toric varieties [55]. Indeed, key
aspects of Eisenbud-Flgystad—Schreyer’s approach to Tate resolutions over P” simply do
not generalize to other toric varieties.

We therefore give a totally new construction of Tate resolutions, based on a noncom-
mutative analogue of a Fourier—Mukai transform. Our toric Tate resolutions exhibit both
the known features of Tate resolutions on P” and subtle new behaviour, such as exact-
ness properties that are parametrized by the combinatorics of the toric variety. The Tate
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resolutions we obtain over P” recover the original notion of [39], though our construction
is novel even in this case, yielding new proofs of the main results in [39] and clarifying the
relationship between Tate resolutions and Beilinson’s resolution of the diagonal. We also
construct a toric analogue of Beilinson’s resolution of the diagonal, generalizing a result
of [27] and yielding an analogue of Beilinson monads in the toric setting.

Throughout the introduction, X denotes a smooth projective toric variety over
a field k, and S = k[xg, ..., x| denotes the Cox ring of X, graded by the divisor
class group C1(X)." Tate resolutions are a geometric manifestation of the Koszul duality
between a polynomial ring and an exterior algebra, which is often called the Bernstein—
Gel’fand-Gel’fand (BGG) correspondence. We briefly recall a multigraded version of the
BGG correspondence. Let E = Ag(eg, ..., e,), equipped with the CI(X) & Z-grading
where deg(e;) = (—deg(x;); —1). The Koszul duality between S and E takes the form
of an adjunction

L: DM(E) = Com(S) 'R,

where Com(S) is the category of complexes of Cl(X)-graded S-modules, and DM(E) is
the category of differential E-modules, i.e., E-modules equipped with a square 0 endo-
morphism of degree (0; —1) [11,52]. See Section 2 for details.

In [39], the Tate resolution functor

T: Coh(P") — Com(E)

is introduced as a geometric refinement of the (standard graded) BGG functor R. Tate
resolutions provide an explicit link between the BGG correspondence and Beilinson mon-
ads, and they lead to an efficient algorithm for computing sheaf cohomology [34], among
many other applications. Our main goal is to extend the theory of Tate resolutions to more
general toric varieties.

Our construction of toric Tate resolutions differs significantly from that of [39]. First,
as in the multigraded BGG correspondence, toric Tate resolutions are differential E-
modules, rather than complexes. Second, the previous constructions of Tate resolutions
simply do not extend to the general toric setting; see Remark 3.9 for just one problem that
arises. Instead, we build toric Tate resolutions via a Fourier—Mukai transform associated
to the diagram

X x “Spec(E)”

P

X “Spec(E)”.

IThe smoothness assumption on X can be removed throughout at the cost of working with
an associated toric stack, rather than a toric variety, and our main results are proven in this level
of generality. This is a fairly secondary point, so we stick to the smooth case in the rest of the
introduction, unless otherwise noted.



Tate resolutions on toric varieties 271

Of course, this diagram does not fully make sense: E is a noncommutative ring, and so
“Spec(E)” is not well defined. But, one may define the toric Tate resolution functor T via
the corresponding categorical diagram

Coh(Xg) —=2% __ DM(X})

y K (0

COh(X) KDM(E)

Here, Coh(Xg) (resp. DM(XE)) is the category of coherent (resp. differential) Ox - E bi-
modules, Kpy(E) is the homotopy category of differential £-modules, and the object K
is a Koszul complex; see Section 3.2 for a full explanation of the categories and functors
in (1.1).

Our main result shows that toric Tate resolutions have properties analogous to those
over P” (see Theorem 3.3 for a statement including the nonsmooth case).

Theorem 1.1. Let X be a smooth, projective toric variety with Cox ring S, and let E
be the C1(X) & Z-graded Koszul dual exterior algebra of S, as in the multigraded BGG
correspondence. Let ¥ be a coherent sheaf on X. The Tate resolution T(¥), defined as
in (1.1), has the following properties:

(1) T(¥) is a minimal, exact, free differential E-module.

(2) The Tate resolution encodes the sheaf cohomology groups of ¥ : more precisely, for
anya € CI(X) and j € Z, we have H’ (X, ¥ (a)) = Homp, (k, T(F))@:—)-

(3) Let B denote the irrelevant ideal of X, and let M be a C1(X)-graded S-module such
that M = ¥ . Assume HBQ (M) = 0. The injective map M — @aea(x) H%(X, ¥ (a))
induces an embedding R(M) — T(¥') of differential E-modules.

Theorem 1.1 shows that our toric Tate resolutions have the same key characteristics as
those of [39]. There is a categorical shift to differential modules, but when X = P”, the
“folding” and “unfolding” functors from Section 2.1 recover the original results. For toric
varieties other than P”, Tate resolutions also have rich, new structures; the reader may
want to look to Section 3.4, where several examples of toric Tate resolutions are worked
out in detail.

Moreover, our Fourier—Mukai construction provides an independent — and conceptu-
ally quite different — proof of the main results on Tate resolutions from [39]. For instance,
Eisenbud-Flgystad—Schreyer’s proof of Theorem 1.1 (2) over P” relies upon their theory
of the linear part of a free complex, as developed in [39, §3]; by contrast, Theorem 1.1 (2)
is an elementary consequence of our construction. Our work also reveals a deeper connec-
tion between Tate resolutions and Beilinson’s resolution of the diagonal: when X = P”,
the Fourier—Mukai kernel KX “lifts” Beilinson’s resolution of the diagonal from P” x P”
to “IP" x E”. See Section 3.3 for details, and see Section 5 for how this generalizes to
other toric varieties.

The toric variety X is determined by its Cox ring S and its irrelevant ideal. Since
the Tate resolution is a fundamentally geometric object, it is natural to ask: how is the
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irrelevant ideal of X reflected in the properties of toric Tate resolutions? Our next result
provides the answer, demonstrating a phenomenon that was not present on P”. To state the
result, we need the following definition: if / € {0,1,...,n},weset Py :=(x;:i € [) C S,
and we say that [ is irrelevant if Py contains the irrelevant ideal of X .

Theorem 1.2 (Exactness properties). Let I € {0,1,...,n}, andlet E; = E/{e; :i ¢ I).
If I is an irrelevant subset, then, for any coherent sheaf ¥ on X, T(¥) Q g Ey is exact.

Thus, not only are Tate resolutions exact, but this exactness is robust and nuanced.
For instance, if X is the blowup of P! x P! at a torus fixed point, then the irrelevant
ideal is

(XO,)Cz) n ()Cl,)C3) N (X2,X4) N ()C(),)C3> n (XI,X4).

The theorem says that any Tate resolution T(F") for a sheaf on X will remain exact even
if we restrict the differential to just the variables {eg, e, }, or to just {e1, e3}, and so on.
This result highlights the fact that Tate resolutions depend not just on the Cox ring of X,
but also on the combinatorics of the irrelevant ideal; the examples in Section 3.4 illustrate
this point in some detail. These exactness properties are invisible over P”, as there are
no nontrivial irrelevant subsets of {0, 1, ..., n} in that case. However, a precursor to this
result can be found in the “exact strands” result from [38, §3] for products of projective
spaces.

A main result of [39] is that a coherent sheaf on P” can be completely recovered from
its Tate resolution [39, Theorem 6.1]. We generalize this to toric varieties in Corollary 5.2.
En route to this result, we develop a toric analogue of Beilinson’s resolution of the diag-
onal in Theorem 4.1. Our resolution of the diagonal is based on a fairly simple idea. Let
S’ = k[xo,...,Xn, Yo, ..., yn] be the Cox ring of X x X. The image of the diagonal
embedding X — X x X is essentially the locus where “x; = y;” for all 7, though those
equations are not homogeneous and hence do not yield well-defined equations on X x X.
However, we can force these equations to be homogeneous by imposing them not on S’
itself, but on a certain S’-module. This recovers a result of [27] and has implications for
the study of derived categories of toric varieties and virtual resolutions in multigraded
commutative algebra; see also Conjecture 7.2 and the surrounding discussion.

Overview

In Section 2, we discuss the multigraded BGG correspondence in detail. While many of
the results in this section are known, some key results, like Proposition 2.11, are new.
In Section 3, we introduce our construction of the toric Tate resolution, and we prove
Theorems 1.1 and 1.2. In Section 4, we construct our toric resolution of the diagonal,
and we explain in Section 5 how one can recover a sheaf from its toric Tate resol-
ution. As an application of our results, we give in Section 6 an interpretation of the
bounded derived category of a weighted projective stack in terms of its Koszul dual exter-
ior algebra. Finally, we discuss some questions and conjectures in Section 7. We provide
in Appendix A some background on the notion of a “positively” multigraded ring, and
Appendix B is a collection of necessary technical results on differential modules.
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2. The multigraded Bernstein—Gel’fand-Gel’fand correspondence

We recall the multigraded BGG correspondence discussed in the introduction, and we
prove a number of related results. Throughout this section, S denotes a polynomial ring
k([xo, ..., Xxn] that is positively graded by some abelian group A (Definition A.1). In par-
ticular, S may be the Cox ring of a projective toric variety (Example A.2). As in the
introduction, we let E = Ag(eo, ..., €,), equipped with the A @ Z-grading given by
deg(e;) = (—deg(x;); —1). We call the Z-grading on E the auxiliary grading.

Conventions 2.1. Throughout the paper, all E-modules are right modules. However,
since E is graded commutative (with respect to the auxiliary grading), any right E-
module M can be considered as a left E-module. In detail, the left E-action on a right
E-module M is given by em = (—1)2*(© %m0 where aux(—) denotes the degree
in the auxiliary grading. Given a graded ring R, we let Hom p(—, —) denote the internal
Hom in the category of graded R-modules.

2.1. Differential E-modules

Definition 2.2. A differential E-module is an A @ Z-graded right E-module D equipped
with a degree (0; —1) endomorphism 9 such that 3> = 0. We restrict attention to differen-
tials with this particular degree because they are the only ones that will arise in our work.
See [20] for a more general treatment of differential modules.” We have d(de) = d(d)e
for all d € D and e € E; bearing in mind Conventions 2.1, we also have d(ed) =
(—1)2x@ed(d).

A morphism D — D’ of differential E-modules is a degree 0 map f: D — D’ satisfy-
ing f0 =09 f.Let DM(E) denote the category of differential E-modules. The homology
of an object D e DM(E) is the subquotient ker(d: D — D(0; —1))/im(3: D(0; 1) —» D),
denoted by H(D). A morphism in DM(FE) is a quasi-isomorphism if it induces an iso-
morphism on homology. A homotopy of morphisms f, f’: D — D’ in DM(E) is a morph-
ism h: D — D’(0; 1) of E-modules such that /' — f’ = hd + d’h. The mapping cone of
a morphism f: D — D’ in DM(E) is the module D’ & D(0, —1) equipped with the
differential (' 7).

Remark 2.3. The ring £ may be considered as an A-graded dg k-algebra with trivial
differential and homological grading induced by the auxiliary Z-grading. The category
DM(E) is equivalent (in fact, isomorphic) to the category of dg-modules over this dg-
algebra. This is the perspective taken in the proof of the multigraded BGG correspondence
in [52]. We use differential modules because they are more amenable to computing in
Macaulay2.

Yet another way of thinking of the category DM(E) is as follows. Let Compe(E)
denote the category of complexes of E-modules of the form --- — N(0; 1) LN

2Differential modules also appear in Rouquier’s analogue of the BGG correspondence for non-
graded polynomial and exterior algebras in [65, Section 4].
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N(0; —1) — ---, where the differentials are all identical. A morphism is a chain map
that is the same in each homological degree. There is an equivalence (in fact, isomorph-
ism) of categories Ex: DM(E) => Comy(E) that sends a differential module (D, 9) to
the complex

a a
Ex(D) =(--— D(0;1) > D - D(0;—1) — ---).
We call Ex(D) the expansion of D, following the terminology in [7].

Definition 2.4. The derived category of differential E-modules Dpy(E) is obtained by
inverting quasi-isomorphisms in DM(E). The category Dpy(E) is triangulated, with shift
functor given by D[1] = D(0; 1); to prove this, one may use the identification between dif-
ferential E-modules and dg-modules over a certain dg-algebra explained in Remark 2.3.
The bounded derived category of differential E-modules DYy (E) is the subcategory
of Dpm(E) given by objects with finitely generated homology. Denote by D]f)gM(E ) the
subcategory of D%, (E) given by objects whose underlying module is finitely generated.

Proposition 2.5. The inclusion DngM(E ) = DRy (E) is an equivalence.

Proof. Let D € DY, (E). Since S is positively A-graded, E is as well; choose a positive
A-grading on E, as in Appendix A. For the rest of this proof, we will consider E as a non-
negatively Z-graded k-algebra and D as a Z-graded E-module; notice that the differential
on D is degree 0 with respect to this grading. By [20, Theorem 1.3 (b)], D admits a free
resolution F' such that dimg F; < oo for all j, and F; = 0 for j < 0. Choose N > 0
such that the homology of F lives in degrees < N. Let F’ be the E-submodule of F
generated by the elements of degree < N. The submodule F’ is finitely generated, and it
is in fact a differential submodule of F, since the differential on F is degree 0. Finally,
observe that the inclusion F’ < F is a quasi-isomorphism. |

Definition 2.6 (Folding and unfolding differential modules). Suppose S is equipped with
the standard grading, i.e., deg(x;) = 1 for all i. Denote by Com(FE) the category of com-
plexes of Z-graded E-modules. The folding functor Fold: Com(E) — DM(E) is given by
(—=>C e, Cii— )~ (@jez C;(0;—j),dc). Here, we think of each Z-graded
module C; as Z x Z-graded by setting

(Cj)as a :bs

Ean = {0 a#b.

Going the other direction, if D € DM(E),set D; = {d € D :deg(d) = (a;i), where
i —a = j}. Notice that the D; are E-modules. Since dp is a map from D to D(0; —1),
dp induces a map from D; to D;_; for all j. Note that any Z x Z-graded E-module M
can be considered as a Z-graded E-module with components M, = @; ez M(4:i)- The
unfolding functor Unfold: DM(E) — Com(E) is given by

a a )
D> (= D; _D>Dj_1 2.

One easily verifies that the functors Fold and Unfold are inverse equivalences.
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2.2. The multigraded Bernstein—-Gel ’fand—Gel fand functors

Let Com(S) denote the category of complexes of A-graded S-modules. We begin by
defining the BGG functors L: DM(E) & Com(S) :R. Given D € DM(E), the complex
L(D) has terms and differential given by

n
L(D); = P S(—a) ® Da;jy and s®@d > (ins ® eid) —s®dp(d).

acA i=0
Here, while D is a right E-module, the e; act on d on the left via the formula in Con-

ventions 2.1. Let wg denote the E-module Homy (E, k) =~ E(— Y |, deg(x;); —n — 1).
Given C € Com(S), the object R(C') € DM(FE) has underlying E-module and differential

PP w1 osaimi) md & fr ) (Lucsars)rices s,

JE€Z acA i=0

where we have assumed that ¢ lies in C;. The following theorem follows from work of
Hawwa—Hoffman—Wang [52].

Theorem 2.7. The functors L and R satisfy the following:

(a) The functor L is left adjoint to R, and both L and R are exact.

(b) Let C € Com(S) and D € DM(E). The unit and counit of adjunction give quasi-
isomorphisms D — RL(D) and LR(C) = C.

(¢) The functors L and R induce an equivalence Dpy(E) >~ D(S).

Example 2.8. Given pairwise relatively prime positive integers wy, . . . , Wy, the weighted
projective stack P(wy, ..., w,) is the stack quotient of A1\ {0} by the G,,-action
t-(ag,...,an) = (t"ay,...,t"Y"ay) (cf. [2, Definition 2.1.1]). Say S = k[xo, x1, x2]
is equipped with the Z-grading given by deg(xo) = 1 = deg(x1) and deg(x,) = 2. Geo-
metrically, S is the Cox ring of the weighted projective stack P (1, 1, 2). The differential
module R(S) is infinitely generated, and the degrees of its generators correspond to the
degrees i € Z such that S; # 0. It has the form

wg —— 0p(—1;0)%? —— 0 (-2;0)%* —— ...

As bases, we choose the monomials {1}, {xo, x1} and {x32, xox1, xZ, x2}. The horizontal
arrows are multiplication by eg and e, and the curved arrows are multiplication by e5;
for instance, wg maps to wg (—1; 0)EBZ via (eg, e1)! and to wg (—2; O)€B4 via (0,0,0,e,)".

Remarks 2.9. We highlight the following observations.

(1) Given C € Com(S), it can be helpful to interpret R(C) as the totalization of a bi-
complex. Form a bicomplex with g-th row given by

(=17 Y7o xi ®e; (=17 3o x; ®e;
o R(C)(0; 1) I Em0XO gy S0 0 1) < -
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and vertical differentials induced by dc. Notice that the g-th row is the expansion of
R(Cy), up to a sign on the differential (see Remark 2.3). Totalizing this bicomplex gives
an object in Comyr(E); applying the inverse of the expansion functor gives the differen-
tial module R(C). Notice that the homological grading on C plays a crucial role here; for
this reason, the functor L is not given by the totalization of a bicomplex.

(2) When deg(x;) = 1 for all i, the multigraded BGG functors are essentially the
same as the original ones from [39]. More precisely, letting Ljassical and Rejassical denote
the original BGG functors over P”, and using the notation of Definition 2.6, we have
R = Fold oRjssical and L = Ljagsicar © Unfold.

(3) Given a graded S-module M, the object R(M) in DM(E) is an injective coflag,
which is like an injective resolution in the setting of differential modules; see Defini-
tion B.1.

(4) One could define similar functors between the categories Com(E) and DM(S) or
between DM(E) and DM(S). However, our primary interest is in complexes of S-mod-

ules, and so it is natural (for us) to preserve the homological grading on the S-module
side.

Example 2.10. Let X = 3 be the Hirzebruch surface of type 3. Let S = k[xg, x1, X2, X3]
be its Cox ring, where the C1(X) = Z®2-grading is given by

deg(xo) = (170)’ deg(xl) = (_3» 1)’ deg(XZ) = (1’0)’ and ng(_X3) = (07 ])

The degrees of the generators of R(S) correspond to the degrees of the effective cone
of X, as illustrated by the shaded region below:

/

Focusing on the free summands of R(S) corresponding to the degrees marked with black
dots, we get the diagram below. The twists in the auxiliary grading are all 0, so we have
omitted them. The arrows indicate the effect of the differential:

wgB,—1) — 02, -1)®2— w1, -1)®3— w0, -1)®° — wg (-1, -1)®7

0 0 0 wp — wg(—1,0)9?
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For instance, if we choose the monomials in .S as generators for the free module R(S),
then the differential sends wg to: wg (3, —1) via ey, to a summand of wg (0, —1)®? via es;
and to wg (—1, 0)®2 via the column vector (eg, e2)*.

The following calculation of the homology of the functors L and R extends [39, Pro-
position 2.3]. See Appendix B.2 for the definitions of tensor product, internal Hom, and
Ext for differential modules used in the statement of this result and its proof.

Proposition 2.11. Let C € Com(S) and D € DM(E). Assume D is finitely generated as
an E-module. We have

(@ HR(C))a:j) = Torf (C.k)qa, and
(b) Hj(L(D))a = Ext%M(k, D) (a:j)-

Proof. We can view the Koszul complex K on the variables of S as the complex of A-
graded S-modules with j-th term @, 4 S(—d) ®k (wE)(a;;) and differential given by
multiplication on the left by Y 7_; x; ® ¢;. We have

R(C)a:jy = P EP(Cia ®k (@E)(—dtasj—iy = (@Ci ®s Kj—i)a

i€Z deA i€Z
= ((C ®s K)j)a-

Thus, R(C) = C ®s K as A @ Z-graded k-vector spaces. Moreover, this isomorphism
preserves the differentials; this proves (a). As for (b), setting w = Z?:o deg(x;), we have

(L(D)j)a = €D S-4 ®k Dwa+asj)
deA
% P S—a ®k (@e(d +win + 1) ®E D)@y = REW)[n + 1)) @M D) ayj).
deA

where the k-linear isomorphism o sends s ® d to (—1)"*I*/5 ® (xq--- x,) ® d. Here,
|s| denotes the degree of s in the standard grading on S, and x¢ --- x, is the element
of wg dualto eq---e, € E. This gives an isomorphism L(D) = R(S(w)[n + 1]) ®1?EM D
of A @ Z-graded k-vector spaces that preserves the differentials.

Given N € DM(E),let NV = Ho_m%M(N , E). Since D is finitely generated, we have
an isomorphism (R(S(w)[n + 1]) ®%M D)a;jy = Ho_m%M(R(S(—w)[n + 1))V, D)(a:j)
in DM(E). Note that R(S(—w)[n + 1])V is a free resolution (in the sense of Defini-
tion B.1) of the residue field k, considered as an object in DM(FE) with trivial differential.
This proves (b). ]

Remark 2.12. In the above proof, the finitely generated assumption is used when pulling
a direct sum out of the first component of Hom. This subtlety does not arise in [39], due
to the presence of the homological grading.

Corollary 2.13. Let C € Com(S). If C is bounded, and each term of C is finitely gener-
ated, then dim; H(R(C)) < oc.
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Corollary 2.14. The equivalence Dpy(E) >~ D(S) induced by L and R in Theorem 2.7 (c)
restricts to an equivalence D}’)M(E) ~ D(S).

Proof. Immediate from Proposition 2.5 and Corollary 2.13. ]

We next observe that a multigraded generalization of Eisenbud-Flgystad—Schreyer’s
reciprocity theorem [39, Theorem 3.7 (a)] follows immediately from Theorem 2.7.

Theorem 2.15. Let S be a positively graded polynomial ring over k, and let E denote
its Koszul dual exterior algebra. Let M be a finitely generated S-module and N a finitely
generated E-module. The complex L(N) is a free resolution of M if and only if the
differential module R(M) is an injective resolution of N (see Definition B.1 for the notion
of an injective resolution of a differential module).

Proof. If there is a quasi-isomorphism L(N) = M then, as R is exact (Theorem 2.7 (a)),
we have a quasi-isomorphism RL(N ) => R(M ). Composing with the quasi-isomorphism
N = RL(N) from Theorem 2.7 (b) gives a quasi-isomorphism N => R(M). Since
R(M) is an injective coflag (Remarks 2.9 (3)), N = RM ) is an injective resolution.
The converse is similar. ]

Remark 2.16. A main emphasis of [39] is the relationship between BGG and linear
complexes over polynomial and exterior algebras [39, Section 3]. While some of this
theory extends naturally to the multigraded setting, there are also significant distinctions;
we explore this in detail in our follow-up papers [21,22]. For instance, one of the funda-
mental facts used by Eisenbud—Flgystad—Schreyer in their construction of Tate resolutions
for P” is that, for any finitely generated module M and any d >> 0, the minimal free res-
olution of the truncated module M, is linear, in the sense that it is of the form L(N)
for some E-module N [39, §4]. A similar fact plays a key role in Eisenbud—Erman—
Schreyer’s construction for products of projective spaces [38, proof of Corollary 1.14].
However, this fundamentally fails to hold for more general toric varieties, motivating
the need for a new approach to constructing Tate resolutions. For instance, let S be the
Cox ring of a Hirzebruch surface of type 3, with notation as in Example 2.10. Consider
M =S5/(x;— xgxl, x3). For any d = (d1, d») with dy, d» > 0, the minimal free resol-
ution of M 4 is a twist of the Koszul complex on x3 — xgxl and x,, which is not of the
form L(N) for any E-module N.

3. Tate resolutions on toric stacks

In this section, we extend the notion of a Tate resolution from P” to more general toric
varieties, and we prove (a generalization of) Theorem 1.1. We recall some background on
toric stacks in Section 3.1, prove our main results in Section 3.2, examine a connection to
Beilinson’s resolution of the diagonal in Section 3.3, and discuss a number of examples
in Section 3.4.
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Let us start by briefly recalling Eisenbud—Flgystad—Schreyer’s approach to defining
the Tate resolution in [39] and how it differs from ours. Their definition of the Tate resol-
ution of a sheaf ¥ over P” is as follows: write # = M for some S-module M. By [39,
Corollary 2.4], when d is at least the Castelnuovo-Mumford regularity reg(M ), there is
a quasi-isomorphism Hy (Rclassical(MZd)) — llclassical(]\lzd)-3 Letting F be the minimal
free resolution of this d-th homology module, they define the Tate resolution T(F') to be
the mapping cone of the composition F =5 Retassical (M. >d)-

Attempting to adapt this recipe to the toric setting raises significant challenges. First,
applying R to “high” truncations of modules need not yield a differential module that is
quasi-isomorphic to its homology; see Remark 3.9. While one could use the theory of [20]
to resolve the entire differential module R(M) (in the sense of Definition B.1), rather than
the homology of R(M> ;) for some d, this raises further complications for adapting the
arguments of [39], which often make use of the fact that the resolution of Mx4 has the
form L(P) for some module P. There is also a second, more fundamental complica-
tion: over a projective toric variety X with CI(X) 2 Z, taking a minimal free resolution
of R(M) is a purely algebraic construction that cannot differentiate between toric variet-
ies with the same Cox ring. Thus, any construction of T'( M ) from R(M') must incorporate
features of the irrelevant ideal; this is not an issue on P”. And finally, even if one pro-
duced such a construction, verifying the properties in Theorems 1.1 and 1.2 would require
nontrivial arguments, as it did in [38, 39].

We therefore use an approach to Tate resolutions that is fundamentally different from
that of [39]. The central novelty is the introduction of a noncommutative analogue of
a Fourier—Mukai transform that we use to construct Tate resolutions in great generality
and that easily implies Theorems 1.1 and 1.2.

3.1. Setup

Let N be a finitely generated free abelian group and X a rational fan inside N ®z Q.
We will write X = Xy for the toric variety determined by X. Let (1) = {po, ..., pn}
denote the rays of X, and let S = k[x; : p; € X£(1)] denote the Cox ring of X. The Cox
ring S is equipped with a natural CI(X)-grading. The irrelevant ideal of X is the ideal

B=<n x,-:er)
pi Lo

of S. The variety Z := Spec(S) \ V(B) admits an action by a torus G. Taking the stack
quotient by this action gives the toric stack

X = Xy := [Z/G].

3Recall that Relassicar denotes the functor whose output is a complex of E-modules, as
opposed to a differential E-module. It thus makes sense to discuss the d-th homology module
of Rejassical (Mg )-
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If X is smooth, then X' = X and we need not worry about the stack. When X is singular,
we will generally apply adjectives to X that could be applied to X or X. For instance,
we say X is simplicial (resp. projective) if X is simplicial (resp. projective).

When X is singular, it turns out that the stack X is more closely connected to the
BGG correspondence, Tate resolutions, and other topics considered in this paper. This
aligns with a common philosophy: sheaves are often better behaved on a stack quotient
(like X) than on a GIT quotient (like X). There are many examples of this in the toric
setting, e.g., [6, 10, 18,26,27,48,67].

While we do not require our toric stacks to be simplicial in this paper, we note that
such stacks have particularly nice properties (see [17]): if k = C and X is simplicial,
then X is Deligne-Mumford, and the canonical map 7: X — X exhibits X as a good
moduli scheme, in the sense of [3, Section 1.2]. This implies, for instance, that , is exact
on quasi-coherent sheaves, allowing cohomology computations to pass from X to X.

Notation 3.1. If X is a toric stack, then X will denote the corresponding variety.

Remark 3.2. It would be interesting to develop the theory of toric Tate resolutions in
greater generality, by considering, for example, the more general toric Deligne-Mumford
stacks studied by Borisov—Chen—Smith and Fantechi-Mann—Nironi [17,45], the extended
stacky fans introduced by Jiang [56], or the toric Artin stacks of Geraschenko—Satri-
ano [48]. We do not pursue these routes in detail.

3.2. Main results

The goal of this section is to prove the following result, which combines and generalizes
Theorems 1.1 and 1.2. In part (4) of the theorem, the notion of an irrelevant subset
of {0, ...,n} and the notation E; are as introduced in and above Theorem 1.2.

Theorem 3.3. Let X be a projective toric stack, and let ¥ be a coherent sheaf on X.
There exists T(¥) € DM(E) with the following properties:
(1) T(¥) is a minimal, exact, free differential E-module.

(2) The Tate resolution encodes the sheaf cohomology groups of ¥ : more precisely, for
any a € CI(X) and j € 7Z, we have

H’ (X, ¥ (a)) = Homg (k. T(F)) a;—)-

(3) Let B denote the irrelevant ideal of X, and let M be a C1(X)-graded S-module such
that M = ¥ . Assume HBQ (M) = 0. The injective map M — @aeCI(X) H(X, % (a))
induces an embedding R(M) — T(&) of differential E-modules.

(4) Let I € {0,...,n}. If I is irrelevant, then T(¥) Qg Ej is exact.
We call T(¥) the Tate resolution of ¥, though as we will see, saying “the” Tate

resolution is an abuse of terminology, because our construction is only well defined up
to homotopy equivalence. We construct toric Tate resolutions via a “noncommutative
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Fourier—Mukai transform” involving X and the exterior algebra E. That is, we will define
a functor ® % : Coh(X) — DM(FE) via the following diagram:

@M
Coh(Xg) —2—%  DM(XE)

y & 3.1)

D5

Coh(X) DM(E).

Let us start by defining the categories in diagram (3.1). Loosely speaking, the cat-
egory Coh(X g) has objects given by O x-FE bimodules that are C1(X) & Z-graded as
E-modules and coherent as (9 x-modules, and the category DM (X g) has objects given
by Ox-E bimodules that are equipped with a CI(X) & Z-grading as E-modules and
a square 0 endomorphism of degree (0; —1) with respect to the grading on E. More pre-
cisely, these categories are defined as follows. We note first that, since X is the quotient
stack [Z/G], where Z and G are as in Section 3.1, @ x-modules may be identified with
G -equivariant 9 z-modules.

Definition 3.4. A G-equivariant @z-module & is an O x-E bimodule if, for each open
set U € Z, I'(U, &) has the structure of a CI(X) & CI(X) & Z-graded S-E bimodule
such that

(1) the first C1(X)-grading on I'(U, &) is associated to its S-module structure, and the
complementary C1(X) & Z-grading makes it a graded E-module;

(2) the restriction maps for & are morphisms of bimodules; and

(3) the E-actions on each I'(U, §) are G-equivariant, which in this case just means that
the actions of the exterior variables e; on each I'(U, &) are homogeneous of degree 0
with respect to the C1(X)-grading associated to the S-module structure.

We say an O x-E bimodule is coherent if it is so as an () z-module; Coh(Xg) is the cat-
egory of coherent O - E bimodules. A differential O x-E bimodule is an O x;- E-bimod-
ule equipped with a square zero @z-linear endomorphism that is G-equivariant, (i.e.,
homogeneous of degree 0 with respect to the CI(X)-grading associated to the S-module
structure) and that makes each I'(U, &) a degree (0; —1) differential £-module, i.e., an
object in DM(E). Denote by DM(X g) the category of differential @ 5-E bimodules.

As for the functors in diagram (3.1), 7} sends a sheaf ¥ € Coh(X) to ¥ @k E €
Coh(Xg). The object X € DM(XE) has underlying G-equivariant 0 z-module given
by B, ecix) 9(a) ®k wg(—a; 0) and differential given by multiplication on the left by
Z?:o X; ® e;. The functor R, is defined as follows. Let £ be an object in DM(X )
with differential 0. Here is the basic idea: first, we take the derived global sections of D,
thought of as a 1-periodic complex of G-equivariant () z-modules. We then observe that
the resulting object is a 1-periodic complex of E-modules and therefore determines an
object in DM(E). Let us now make this precise. Let €3, be the Cech resolution of the
G-equivariant @z-module D with respect to the G-invariant affine open cover of Z
described in [17, Proposition 4.3]. Recall that €%, is a complex of CI(X) & CI(X) @ Z-
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graded S-E-bimodules. Let E’g" denote the G-invariant subcomplex of E’:@, i.e., the
strand of €%, that lies in degrees of the form (0, a; i) € CI(X) & CI(X) & Z. We observe
that ‘Gg" computes the derived global sections of the G-equivariant @ z-module . Con-
sider the bicomplex

P G (T ) ey G LI R Gy (11 ) pm——

J/décch ldécch Jdécch

o810, —1) €8 e G1(0; 1) ¢— -

ldéech ldéech ldéech

Since the E-action on €5, is G-equivariant, this is a bicomplex of £-modules. We define
R, (D) to be the object in DM(E) obtained by totalizing this bicomplex and then
applying the equivalence Comype,(E) => DM(E) from Remark 2.3.

In summary, given ¥ € Coh(X), ®x (F) is given by totalizing the bicomplex

i x; ®e;
v @ eF @ wp(—ai—1)E— @ €0 @ wp(—a:0) -
aeCl(X) aeCl(X)
J/déech ®1 n ldéech ®1
- Y x;®e; .
G,1 . i=0 ' G,1 . (3 2)
— P 83’11 ®k wg(—a;—1)+—— P '637“ Rk wg(—a;0) —---
(@) (a)
aeCl(X) aeCl(X)
J/déech ®1 \I/d(éech ®1

and then applying the equivalence Comy,(E) => DM(E) from Remark 2.3.

Proof of Theorem 3.3. Let us write the terms of bicomplex (3.2) as Y; ;. The columns of

this bicomplex split E-linearly; choose an E-linear decomposition
Yij=Bij®H;;®L;;

foreachi, j suchthat B, ; ® H;,; = Z;<', where Z}" denotes the vertical cyclesin Y; ;.

ij’
Observe that there is an isomorphism

Hj= @@ H(X.F(@)®ws(-a:i).
a€eCl(X)

Let oy:Y.. — H.. and op:Y.. — B.. denote the projections, g: L.. => B.._; the
isomorphism induced by the vertical differential, and 7 = g_loB. By [39, Lemma 3.5],
the object ® 5 (F) € DM(FE) is homotopy equivalent to the differential £-module T(¥)
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with underlying module @?i;nox Dacaixy H (X, ¥ (a)) Qk wg(—a;i) and differential
given by
Orw) = Y 0t (dnor)’ dhor,
Jj=0
where d},; is the horizontal differential in bicomplex (3.2). We make the following obser-
vations about the differential dy(#):
(i) The j = 0 term of dy(%) applied to an element in Hi(X,F(a)) @k wg(—a;i) is

n

given by multiplication on the left by (—1)’ Y7, x; ® e;.

(i) The j > O terms of dy(#) decrease the sheaf cohomology degree. That is, given
z € H (X, F(a)) ® wg(—a;i), the j > 0 terms of O1(#) map z to

P H (X. F () ®k we(—a: L —1).

l<i

(iii) Combining (i) and (ii), we conclude that, given z € H%(X, ¥ (a)) ®k wg(—a;0),
we have

It (2) = (Xn:xz' ® ei) - z.
i=0

Since the rows of (3.2) are exact, and its columns are bounded, the differential module
D g (F) is exact, and so T(F) is as well. The underlying E-module of T(¥) is free, and
the minimality of dy, as a morphism of E-modules implies the minimality of dr(s).
This proves (1). Part (2) is immediate from our description of the underlying module
of T(¥). It is also clear that the embedding M — @aeCI(X) H%(X, ¥ (a)) induces an
embedding R(M) < T(F) on underlying E-modules, and (iii) above implies that this
is a morphism of differential £-modules; this proves (3). As for (4), let I < {0,...,n}
be irrelevant, and let K; := K ®g Er. The homology of K7 is just a direct sum of
twists of the homology of the Koszul complex on the variables in {x; : i € I}, so K;
is exact. It follows that, if we tensor bicomplex (3.2) with Ej, the result has exact rows.
Since the columns of this bicomplex are bounded, its totalization is therefore exact, i.e.,
D5 (&) ®E Ej is exact. Since ®x (F) ® g E is homotopy equivalent to T(¥) ® g Ej,
we conclude that T(¥) ® g Ey is exact. |

Remark 3.5. Let ¥ € Coh(X). We may identify the underlying module of T(¥') with
?fox T;, where T; = @aecl(X) H(X,¥ (a)) ®k wg (—a,i). By degree considerations,
each T<; = P, ; T; is a differential submodule of T(¥), yielding a filtration

To € T<1 €+ C T<gimx) = T(F).

Remark 3.6. Theorem 3.3 has a subtle implication. A theme in research on syzygies
is that the geometry of P” can influence the algebraic properties of graded free resol-
utions. In the toric situation, where varying the irrelevant ideal can yield different toric
varieties/stacks, one can ask which of these geometric objects affects the algebraic prop-
erties of modules over the Cox ring? Of course, the answer is: all of them. For example,
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if X and X’ have the same Cox ring S, and if M is an S-module, then Theorem 3.3 (3)
shows that the differential £-module R(M) can be completed to a Tate resolution in
distinct ways, each of which imposes constraints on the homology of R(M). Via Propos-
ition 2.11, this shows that the Betti numbers of M are influenced by both X and X’ and,
more generally, by the toric varieties/stacks arising in the Mori chamber decomposition
of the effective cone in X .

As one can see from the proof of Theorem 3.3, our construction of the Tate resolu-
tion is, a priori, only well defined up to homotopy equivalence: the differential we get
depends on the choices of splittings of the columns of bicomplex (3.2) that we use in
our application of [39, Lemma 3.5]. However, Theorems 3.7 and 3.10 below imply that
our construction of the Tate resolution is well defined up to isomorphism in some special
cases. In particular, we will see that our Tate resolutions agree with those of [38,39].

We say a toric stack is a generalized weighted projective stack if its associated toric
variety is a fake weighted projective space, i.e., a quotient of a weighted projective space
by the action of a finite abelian group. We remind the reader that we only consider
weighted projective spaces whose weights are pairwise relatively prime. The divisor class
group of a fake weighted projective space is isomorphic to Z & A for some finite abelian
group A.

Theorem 3.7. Suppose X is a generalized weighted projective stack, and let ¥ be a co-
herent sheaf on X.. Choose a B-saturated S-module M such that M=F. Any differential
module T with properties (1)—(4) in Theorem 3.3 is isomorphic to cone(F => R(M)),
where F is the minimal free resolution of R(M), in the sense of Definition B.1. In par-
ticular, properties (1)—(4) in Theorem 3.3 determine the Tate resolution of ¥ up to iso-
morphism.

Proof. Consider the embedding R(M) < T in Theorem 3.3 (3). Bearing part (2) of The-
orem 3.3 in mind, we conclude that, as a map of E-modules, this embedding may be inter-
preted as the inclusion R(M) < R(M) & N, where N = @fi;“lx P, eCl(X)Hi (X, % (a))
®r wg (—a;i). By degree considerations, we see that, with respect to this decomposition,
the differential on 7" has the form (a(;‘ g ), and so T is isomorphic to the mapping cone of
a morphism «: (N, —f) — R(M) of differential modules. Notice that (N, —f) is a min-
imal free differential £-module. To conclude that (N, —f) is the minimal free resolution
of R(M), in the sense of Definition B.1, it suffices to show that (N, —p) is a free flag.
Let 7 be a surjection C1(X) — Z; note that ker(7r) is a finite abelian group. For j € Z,

define
dim X

Ni=F P H(X.F@)erwr(-a:i).
i=1 n(a)=—j
It follows from an analogue of the Serre vanishing theorem that N; = 0 for j < 0. By the
minimality of 7', the differential maps each N; to @, ; N¢. Thus, N = P N; is a free
flag differential module. The last statement follows from uniqueness of minimal free res-
olutions of differential modules (see Theorem B.2). [
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Corollary 3.8. When X, = P", we have T = Fold oTggs, where Tggs denotes Eisenbud—
Flgystad—Schreyer’s Tate resolution functor, and the functor Fold is as in Definition 2.6.

Proof. The proof follows from Theorem 3.7 and the relation R = Fold oRjygsica1 from
Remarks 2.9 (2). [

Remark 3.9. Suppose X' = P”. As discussed in the beginning of this section, if M is a
finitely generated S-module, then R(M> 4) is quasi-isomorphic to its homology when d >
reg(M). Thus, the Tate resolution of M can be defined by resolving H(R(Mx4)), rather
than all of R(Mx4); this is the approach taken in [39] and also in [38] over multiprojective
spaces. Unfortunately, this does not work more generally; for instance, one can check that
this fails in the example discussed in Remark 2.16, over a Hirzebruch surface of type 3.

It is not always the case that cone(F —> R(M)), where F is the minimal free resolu-
tion of R(M ), yields the Tate resolution. For instance, if X = P! x P!, then that mapping
cone is the corner complex as defined in [38, §3]. However, we do have the following.

Theorem 3.10. When X is a product of projective spaces, any differential module T
with properties (1)—(4) in Theorem 3.3 satisfies T = Fold oTggs, where the functor Fold
is as introduced in Definition 2.6, and Tggs denotes Eisenbud—Erman—Schreyer’s Tate
resolution functor. In particular, properties (1)—(4) in Theorem 3.3 determine the Tate
resolution up to isomorphism in this case.

Proof. The differential module 7 can be realized as the folding of a complex of E-mo-
dules, as in Definition 2.6. We may then assume that 7" is a complex. The exactness prop-
erties — that is, Theorem 3.3 (4) — imply that 7" has exact strands. By [38, Theorem 3.3],
this implies that every corner complex of 7 is also exact. Let Tyy_ij — Tg—peag b€ the
degree d corner complex of T, as defined in [38, Section 3]. Theorem 3.3 (2) and (3)
imply that, for d > 0, Tg_peaq is precisely R(Ms4). Exactness of the corner complex
and minimality of 7" imply that T;7_,; is the minimal free resolution of R(M>,4) and is
thus uniquely determined. It follows that T;_,; is isomorphic to the analogous degree d
tail of T(¥) for any d > 0; we conclude that 7" and T(¥') are isomorphic complexes. =

While the toric stacks considered in Theorems 3.7 and 3.10 are relatively simple,
we believe that similar results should hold much more broadly; see Conjecture 7.1 below.
But carrying out such a generalization will require new homological methods. The proofs
of Theorems 3.7 and 3.10 rely on the fact that we can construct T(¥") from R(M) by
taking minimal free resolutions of complexes or differential modules in these cases. How-
ever, this approach makes no explicit reference to the irrelevant ideal of X . By considering
situations where one has two toric varieties X and X’ with the same Cox ring but with
different irrelevant ideals, one can see that characterizing the Tate resolution up to iso-
morphism in general will require an approach that makes greater use of the exactness
properties of Theorem 3.3 (3). To underscore the algebraic challenge: a free resolution
yields an object that is exact, but how does one produce an object with all of the exactness
properties from Theorem 3.3 (3)?
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3.3. Tate resolutions over P" and Beilinson’s resolution of the diagonal

A major emphasis of [39] is the relationship between Tate resolutions and Beilinson
monads on P”. Our “noncommutative Fourier—Mukai” construction of Tate resolutions
over P” takes this relationship a step further. The goal of this subsection is to explain this,
and in doing so provide some intuition for our construction of toric Tate resolutions.

Let 8B denote Beilinson’s resolution of @5 in Coh(IP” x P™), which has the form

0—ORO <« O(=1)RQ() « - < O(—n) B Q"(n) < 0;

it is a Koszul complex on the section Y ;_, x; X aiyi of Opn(1) X Tpn(—1). Let g
denote the Fourier-Mukai transform given by ¥ +— R (77 () ® 8B). Since B is ares-
olution of the diagonal, ® g(F) is isomorphic to ¥ in DP(P"). From [12], there is a nat-
ural “Beilinson spectral sequence” whose E! terms have the form H'(P", ¥ (—j)) ®
Qj{m (j)- But one can go further and produce an actual complex of sheaves whose terms
are sums of these sheaves and whose 0-th homology is ¥ . Such a complex is called
a Beilinson monad for ¥ ; see [4,39,57] for details.

To explicitly construct the Beilinson monad, Eisenbud-Flgystad—Schreyer define
a functor € which sends a free complex of E-modules* to a complex of @pn-mod-
ules [39, §6]. The functor is defined by the formula  (wg (j)) = Q]{,,,, (j), with the key
point being that there is a canonical map

Hom g (0 (i), g (j)) — Hompn (b (i), 25,(j)).

They prove that applying € to the Tate resolution of ¥ yields a Beilinson monad for ¥ .
Our construction demonstrates that this connection can be “lifted” one level further.
Indeed, the object K € DM(IP) is equivalent, via the Fold functor (Definition 2.6), to

<= Opn Qp wg < Opn (1) @, wg(—1) <+ < Opn(—n) Qr wg (—n) < ---. (3.3)

Since R(wg(i)) =0if i > n ori < 0, replacing each wg (i) by R (wg (i)) transforms
the doubly infinite complex (3.3) into a bounded one whose terms are identical to those of
Beilinson’s resolution. The intuition is that applying “id x 2" to (3.3) recovers Beilinson’s
resolution.” The situation may be summarized by the following diagram:

“idx 2"

K K Beilinson’s resolution of QA

lp J{RTFZ* J/R”Z* (34)

inclusion 2

R(S) ————— T(Opn) —————  Beilinson monad of Opn.

Here, K denotes the Koszul complex on the variables in S, considered as an S- E-bimod-
ule; the map p denotes restriction of scalars along the inclusion £ «— S ®; E; and the

“4In [39], the exterior algebra has the Z-grading where deg(e;) = —1 for all i.
3 As an aside, we note that one may also think of bicomplex (3.2) above as a “lift from P” to E”
of the bicomplex that gives the Beilinson spectral sequence.
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map K — K is given by sheafification and inclusion. The bottom row follows from [39,
Theorem 6.1], and our construction of the Tate resolution provides the rest of the diagram.
So, while the authors of [39] use a Tate resolution to recover the Beilinson monad, our
construction directly connects to Beilinson’s resolution itself. Theorem 5.1 and Proposi-
tion 5.4 below make the ideas conveyed by this diagram precise and extend them to any
projective toric stack.

3.4. Examples of toric Tate resolutions

The exactness properties in Theorem 3.3 (4) underscore a key point: if ¥ is a sheaf on X,
then T(F") depends not just on the Cox ring of X but on its irrelevant ideal. The following
examples are intended to illustrate this point.

Example 3.11. Let X = P(1, 1, 2). In Example 2.8, we computed R(S); let us now
compute T(Ox). By Theorem 3.7, we need only compute the minimal free resolution F'
of R(S) and take the mapping cone of the augmentation F* — R(S). The result looks like

/_\

S wp(Gi)®? S wp(42) — 0 —0—0— wg — wp(-1;009% —7.. .

epelen

In detail, consider the S-module M = @ ., H 2(X,Ox(a)) as a complex concentrated
in homological degree —2. The minimal free resolution F' of R(S) is given by R(M). The
augmentation is given by a single map from F to R(S) that sends wg (4;2) to wg (0; 0)
via multiplication by ege;e,. Note, for instance, that the wg (5; 2)®2 term encodes the fact
that H2(X, Ox(=5)) = k2.

Example 3.12. Continuing with X = P(1, 1,2), let C € X be the genus 1 curve C =
V(xg + x1 + x2). The Tate resolution T(O¢) has the form

T

= w2 D5 wp(1:;1D®?2 5 wE(0:1) ® wg (0;0)— w(—1;0)92 5 w(—2;0)94 — ... .

The terms from R( m) are those with no twist in the auxiliary degree, i.e., those
of the form wg (i; 0) for some i. Note also that the middle term wg (0; 1) & wg (0; 0)
corresponds to the fact that, because C is a genus one curve, we have H 1 (X,0c)=k =
HY(X,0¢).

Example 3.13. For another example with X = IP(1, 1, 2), let P denote the stacky point
V(x0, x1)- Of course, O p has no higher cohomology groups, and we have

H?(X,0p(d) = k

when d is even and 0 when d is odd. The Tate resolution T(Op) thus looks as follows:

e2 e2 ez

o —wE(2;0) — 00— wg — 0 — wg(—2;0) — 0 —> wg (—4;0) — --- .
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Example 3.14. Let X' = X be the Hirzebruch surface of type 3, with Cox ring S as
described in Example 2.10. The irrelevant ideal is

B = (x0,x2) N (x1, x3).

The Tate resolution T(Ox) has summands corresponding to H°, H'! and H? groups.
We illustrate these in the pictures below, with the left picture depicting the degrees where
the sheaf has H?; the middle picture the H !’s; and the right picture the H?’s:

/1

Putting these together, we get a picture that looks like

To illustrate the exactness properties, let us consider the irrelevant subset / = {0, 2}. The-
orem 1.2 implies that the Tate resolution remains exact after modding out by ey, e3. Since
the variables x¢ and x; have degree (1, 0), the differential on this restricted Tate resolution
will be “purely horizontal”; that is to say, the differential will send each generator only to
elements to the right and in the same row.

The differential module T(Ox) ® g E{o,») therefore decomposes as a direct sum of exact
differential modules corresponding to the rows of the above picture.

Now consider the irrelevant subset / = {1, 3}. Since the variables x; and x3 have de-
grees (—3, 1) and (0, 1), the differential on this restricted Tate resolution will be “vertical”
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and also “vertical and to the left”. That is, the differential on T(Ox) ® g E{1,3) looks
like this:

|
[ T[T
<

~ ~T

Example 3.15. Let S be as in the previous example, but alter the irrelevant ideal so that
it is now
B’ := (x1) N (xo, X2, X3).

While this does not fit into the setup of Theorem 3.3 — the irrelevant ideal of a toric
variety cannot have a principal minimal prime — our main construction easily extends
to this case. Let X’ be the corresponding stack quotient; the corresponding toric vari-
ety X’ is the weighted projective space (1, 1, 3) obtained by contracting the exceptional
divisor V(x1) on the Hirzebruch surface X. Since S has remained unchanged from the
previous example, R(S) is the same as before. However, the Tate resolution T(OQ ) looks
quite different, with no H! degrees, and H° and H? degrees illustrated in dark and light

gray as below:

~

~]

This Tate resolution and the one in Example 3.14 satisfy different exactness properties.
For instance, consider I = {1}, which is irrelevant for X’ but not for the Hirzebruch
surface. Since deg(x1) = (=3, 1), the differential on T(O) ® g E{;y looks like this:

~.

~.

~

The diagonals with slope —% yield exact “strands” of the Tate resolution T(Ox). Far
enough out along any such diagonal in the H? region, this Tate resolution will agree
with R(S); in particular, any diagonal of R(S) is “eventually exact”. By contrast, the
“rows” of T(Ox) are not exact, which is to be expected, since {0, 2} is not an irrelevant
subset for X’.
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Remark 3.16. Examples 3.14 and 3.15 point toward a new feature in the multigraded
case: when S is the Cox ring of a toric variety X, the properties of multigraded S-modules
are related not just to the geometry of X, but also to the other toric varieties that can
arise in the Mori chamber decomposition of the effective cone of X. In particular, we
used a Tate resolution on the Hirzebruch surface to understand the asymptotic exactness
properties of R(S) along rows and columns, and we used a Tate resolution for P(1, 1, 3)
to understand the exactness properties of R(.S) along the diagonals of slope —%. This is
an example of the sort of behaviour to which we alluded in Remark 3.6.

4. A linear resolution of the diagonal for toric stacks

In this section, we construct a Beilinson-type resolution of the diagonal for projective
toric stacks. As discussed in Section 3.3, Beilinson’s resolution of the diagonal over P”
arises as a Koszul complex, and our toric version does as well.

Let X be a projective toric stack with Cox ring S = k[xo, ..., x,] and associated
toric variety X. Denote the Cox ring of X x X by S = k[xo,...,Xn, Yo,..., ¥n]. Let
A: X — X x X be the diagonal morphism, and set Oa := A,(Ox). The naive equa-
tions “x; = y;” are not homogeneous and hence do not yield well-defined equations
in S’. However, we can force these naive equations to be homogeneous using a simple
trick. Let V' € CI(X) be the semigroup generated by deg(xy), ..., deg(x,), and con-
sider the semigroup ring R = S’[V] as a quotient of the polynomial ring S’[ug, ..., u,],
where each u; maps to deg(x;) € V. Equip R with the C1(X) & Cl(X)-grading such that
deg(u;) = (deg(x;), —deg(x;)). Each relation x; — y;u; is now homogeneous in R, of
degree (deg(x;),0).

Theorem 4.1. Let F be the Koszul complex on xo — yoUug, ..., Xn — YUy € R. We have
(1) F isacyclic; that is, H;(F) = 0 fori > 0.
(2) Viewing Ho(F) as an S'-module, we have Hy(F) = Ox.

In particular, viewing Fasa complex of quasi-coherent O x;x x.-modules, we have that F
is a resolution of O .

We can write the terms of the complex in Theorem 4.1 as

F=@ @ @)@k S'(—a—b,a). (4.1)
acV beCl(X)
Here, as above, wg is the k-dual of the C1(X) & Z-graded exterior algebra E = Ay (eo,
..., ey). From this view, the differential on F is multiplication on the left by Z?:o (e; ®
Xi — e ® yi).
Another way of thinking of the complex F is as follows. Let K be the Koszul complex
on Xg,...,x, € S. For any d € CI(X), write K; for the subcomplex of K given by
summands of the form S(—e) with d — e € V. We have

F =P S(-d) B Kq(d):

devV
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with differential Z:’:O(x,- ® e; — ¥i ® e;), where each e; shifts terms in the Koszul com-
plex factor, each y; € S’ maps a summand to itself, and each x; € S’ maps between
summands.

This latter point of view clarifies the relationship between our resolution and Beilin-
son’s resolution of the diagonal over P” (see Section 3.3). When X = P”, each complex
IEX[ ) of sheaves is a free resolution of (i ). In particular, IEI; ) is exact for i > n, and
so the summands S(—i) X K; (i) of F with i > n are superfluous; this is an idea to which
we will return in Section 4.2.

Remark 4.2. We can give yet another way of constructing the complex F from The-
orem 4.1, by applying the BGG functor L to a module over the C1(X) & CI(X) & Z-
graded exterior algebra E' = Ag(eo, ..., en, fo...., fu). Let N denote the free E’-
module P,y we/(—d, d;0), where wgr = Homg,(E’, k). It will be helpful to rein-
terpret N as wg/[V], just like the ring R, except that we declare here that deg(u;) =
(deg(x;), —deg(x;); 0) € CI(X) & CI(X) & Z. Let Na be the kernel of the map N —
D;_, N(0, —deg(x;); —1) whose i-th component is f; + e;u;. In other words, N is the
E’[V]-submodule of N generated by vq - - - ¥, where y; = x; — y;u;. One can check that
L(Np)=F

Example 4.3. Say X’ = P(1,2). Our complex F has the following form:

S(—33) ’(53)@5(43) 5'(=6,3)

S(22) S(42)69S(32) 5/(=5.,2)

S'(— IN)@SMD\( 41

S §'(=2.0) @ S'(—1,0) +—— S’(=3,0).

The x;’s map each summand horizontally; yo maps horizontally and up one position,
while y; maps horizontally and up two positions. The complexes S(—d) X K;(d) arise
among the northwest diagonals; e.g., the bold summands (and corresponding arrows) form
that complex for d = 3. When d > 3, truncating has no effect, and the strand is simply
S(—d) X K(d).

Unlike Beilinson’s resolution of the diagonal over P” [12], or the resolution of the
diagonal for a weighted projective stack in [27], the resolution in Theorem 4.1 has infinite
rank terms. However, we show in Section 4.2 that, in these cases, our resolution can be
pruned down to a finite rank complex that is nearly equivalent to those resolutions.
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4.1. Proof of Theorem 4.1

Denote by Sa the S’-module

b HY(X x X,0a(d,d").
(d,d’)eCl(X)®CI(X)

Notice that (SA)(d,d’) = HO(X x X,0a(d,d") = HO(X, A Oxxx(d,d)) = Si14r.
Equip S with the C1(X) & CI(X)-grading such that f € S has degree (0, degg(f)). The
module S is a Cl1(X) @ CI(X)-graded S-module via the map S < S’ sending y; to y;.
In fact, for a fixed d € CI(X), (Sa)4,« is a free C1(X) @ CI(X)-graded S-module with
generator in degree (d, —d); it follows that, as an S-module, we have

Sa = @ S &4,

deCl(X)

where ¢4 is a generator with deg(ey) = (d, —d). Denote by SZ the submodule of Sa
generated by the g4 such that d € V. In other words,

St = oy H(X x X,04(d,d")).
(d,d")eCl(X),deV

Since S and SI agree in high degrees (for instance, they agree in all degrees (d, d’),
where d,d’ € V), they determine the same sheaf on X x X, which is to say that S I =0a.
We can identify multiplication by y; and x; on Sa via the relations

Xi€d = Yi€d+degs(v;)-
We claim that this gives a presentation of S Z.

Proposition 4.4. The S’-module SZ has generators g4 for all d > 0 and relations x;je45 =
Vi€d +deg(x;) Jor all d>0andalli =0, ...,n. In particular, the S'-module SZ has
a free presentation Fi % Fo — SY — 0, where Fo = @yey S'(—d.d), and Fy =
By Fol(—degs(x).0).

Proof. We have a surjection coker(¢) —> S, and the source and target are identical as
free C1(X) @ Cl(X)-graded S-modules. Choosing a positive C1(X)-grading 6: Cl(X) — Z
for S gives a positive CI(X) @ C1(X)-grading 6": C1(X) @ ClI(X) — Z of S given by
0’(a,b) = a + b. Since SZ is a positively CI(X) & CI(X)-graded S-module with respect
to @', it follows from Nakayama’s lemma that the surjection coker(¢) —» SI is an iso-
morphism. ]

Proof of Theorem 4.1. Observe that F ® S’/(yo, ..., yn) is a direct sum of Koszul com-
plexes, one for each d > 0. In particular, F ® S’/ (yo,. . ., y») has homology concentrated
in degree 0. It follows from Lemma A .4 and induction that F' is exact in positive degrees,
i.e., the sequence xo — youg, ..., Xn — Yni, of elements in R is regular. Now observe
that the differential F; — Fy is exactly the presentation map in Proposition 4.4. ]
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4.2. Finite rank resolutions of the diagonal

We now show that, when X is a generalized weighted projective stack (as defined in
Section 3.2), F has a finite rank subcomplex of length n that is also a resolution of Q.
Recall that the divisor class group of the fake weighted projective space X associated
to X is Z @ A for some finite abelian group A. As in Section 3.2, let & be a surjective
map CI(X) — Z, and write w = Y ;_, 7(deg(x;)). Using the expression of F in (4.1),
let F’ be the subcomplex of F with terms F/ = @B, 40 Drp)<w—n(a) (PE) 1.i) ®k
S’(—a — b, a). Notice that F’ is finite rank.

Example 4.5. When X = P(1,2), F’ is the subcomplex spanned by the northwest di-
agonal strands S(—d) X K;(d) from Example 4.3 for d < 3. The key idea is that, when
d > 3, the strand S(—d) X K4 (d) makes an irrelevant contribution to the homology of F',
and so the cokernel of F/ — F is entirely supported on the irrelevant ideal.

The following theorem yields a finite rank resolution of the diagonal for a generalized
weighted projective stack, giving a slight generalization of a result of Canonaco—Karp for
weighted projective stacks [27].

Theorem 4.6. The complex F’ of sheaves on X x X is a resolution of the diagonal.

Proof. Observe that the terms of the complex F are positively graded. Let F” = F/F’.
The quotient F”/(xo, ..., x,)F" is a direct sum of twists of Koszul complexes on the
x;’s; it thus follows from Lemma A.4 and induction that H;(F"”) = 0 for i > 0. Thus,
H;(F") = 0fori > 0 as well. As for i = 0, let G/ be the subcomplex of F” with t-th
term,

w—mn(a)+j

th = @ @ (a)E)(b;,) Rk S/(—a — b,a).

n(a)>0 n(b)=w—mn(a)
This is the sum of the first j + 1 full Koszul strands in the x;’s. A direct calculation yields
Ho(G/) = 0 for each j. Since F” is the colimit of the G/’s, we get
Ho(F') = Ho(F) = Oa. "

Remark 4.7. We believe that finite rank resolutions of the diagonal constructed as in
Theorem 4.6 exist more generally: see Conjecture 7.2 below. For instance, this has been
verified in the case where X is a smooth projective toric variety of Picard rank 2 [23].

5. Recovering a sheaf from its toric Tate resolution
As discussed above, Eisenbud-Flgystad—Schreyer explain in [39] how to recover a sheaf

on projective space from its Tate resolution [39, Theorem 6.1]. Our next goal is to gener-
alize this result to toric varieties. In fact, we will prove the following stronger result.
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Theorem 5.1. Let X be a projective toric stack with Cox ring S, and let E denote the
Koszul dual exterior algebra of S. Let R denote the resolution of the diagonal for X from
Theorem 4.1 and K the kernel of the Fourier—Mukai transform in the definition of the
toric Tate resolution functor (Section 3.2). There exists a functor U: DM(E) — Com(X)
making

DM(Xr) —22*, DM(E)

Coh(X) v

i ()8R R
Com(X x X)) SN Com(X)

commute up to isomorphism in D°(X).

Recall that the top row of the diagram in Theorem 5.1 gives the Tate resolution, up
to homotopy equivalence. The following generalization of [39, Theorem 6.1] is therefore
immediate from Theorems 4.1 and 5.1.

Corollary 5.2. Let ¥ € Coh(X). There is an isomorphism UT(F) = F in D°(X).

Proof of Theorem 5.1. We begin by defining the functor U. For D € DM(E), we let D’
denote the submodule P _,cy;cz D) of D, where V is as defined in Section 4.
We define U: DM(E) — Com(X) by sending D to L(D’) € Com(S) and then sheafi-
fying to obtain a complex of @ x-modules.

Recall that T(¥) is homotopy equivalent to the differential module Y that one gets
by totalizing bicomplex (3.2) and then applying the equivalence Comy(E) => DM(E)
from Remark 2.3. It follows that there is a homotopy equivalence UT(F) => U(Y). The
underlying E-module of Y is @?;IIOX @aeCI(X) ‘C’g’(ﬁ) ®r wg (—a; ), and so U(Y); is

dim X

DD D @rabiri® Cy @k Ob).

beV £=0 aeCl(X)
Reindexing, we may write this sum as

dim X

@ @ @ (WE)(b,0+)) Ok 82,(@_”_17) ®k O(a).

acV (=0 beCl(X)
The differential on U(Y') sends a section f ® ¢ @ s of (wWEg)@p,e+/) Rk ‘C’g’(é_a_b) Rk
O(a) to

Y(ef@c@xis+ (DT f®@yic®s)— f @) ®s,
i=0
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where d¢ denotes the Cech differential. We can view U(Y) as the totalization of the
bicomplex with (p, q) entry D ey Dpecicx)(@E) b:p) Ok f’g’(:‘fl_b) ®x O(a), hori-
zontal differential given by sending f ® c ® sto > i_o(ei f ® ¢ @ x;s + (=1)4 e, f @
yic ® §), and vertical differential induced by —d¢ . For instance, notice that the ¢ = 0 row
is given by applying €%° to the first tensor factor of every term in 77 (F) ® R, where
R denotes the resolution of the diagonal from Theorem 4.1. By the projection formula
and flat base change, the complex U(Y) is a model for the Fourier—-Mukai transform
PR(F) 1= Rmau(n{ (F) @ R) in DP(X). Finally, observe that ® & (F) is isomorphic
to ¥ in DP(X). |

Question 5.3. In [38, §7] and [66], an analogue of the functor U for products of pro-
jective spaces is used to give generalized Horrocks-type criteria for when a vector bundle
splits as a sum of line bundles. Do similar criteria hold for more general toric varieties?
In a different direction: can U be used to study vector bundles on X in the manner of [41]?

A Horrocks splitting criterion in this vein for smooth projective toric varieties of
Picard rank 2 is obtained in [23].

Applying the functor U from the proof of Theorem 5.1 to the E-module wg(d;i)
gives the truncated and shifted Koszul complex Ky (d)[i]. When X = P", U(wg(d;0))
is therefore quasi-isomorphic to Q%,, (d), and thus this functor is closely related® to the
functor 2 defined in [39] and discussed in Section 3.3. We now use this observation
to make precise the rough intuition from Section 3.3 that, over P”, applying“id x”
to (3.3) gives Beilinson’s resolution of the diagonal. In fact, the following result gives an
analogous statement over any projective toric stack; its proof is a straightforward calcula-
tion.

Proposition 5.4. Let U be the functor defined in the proof of Theorem 5.1. The chain
complex with i-th term @aGCI(X) O(a) ®r U(wg(—a;0)); and differential given by
3o xi ® U(e;) —id ®y is precisely the resolution of the diagonal from Theorem 4.1.

The idea is that the complex in Proposition 5.4 is obtained by applying “id xU” to the
noncommutative Fourier—Mukai kernel KX from Section 3.2.

6. The bounded derived category of a weighted projective stack
We recall that Tate resolutions over P” can be used to interpret D°(P”) in terms of

the exterior algebra, giving a geometric refinement of the classical BGG equivalence
DP(S) ~ D°(E). In detail, let K*(E) denote the homotopy category of (unbounded)

5The functor U can behave differently over general projective toric stacks than over P7”.
For instance, taking X to be the weighted projective stack P (1, 1, 2), we have U(wg (1;0)) =
(O(-1)%2 Loxp, 0), which has homology that is nonzero in both positions and is not given by
a vector bundle in degree 0.
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exact complexes of finitely generated free Z-graded E-modules. It follows from results
of [25,39] that the Tate resolution functor implements an equivalence D*(P") ~ K*(E).
The goal of this section is to use our results on toric Tate resolutions to generalize this
equivalence to weighted projective stacks.

Let us first fix some notation. Let X be a weighted projective stack with Cox ring S
and Koszul dual exterior algebra E. We will say an object D € DM(E) is locally finite if
Y iez dimg D4,y < oo foralla € CI(X). We let K\, (E) denote the homotopy category
of exact, free, locally finite differential £-modules. We will prove the following result.

Theorem 6.1. For a weighted projective stack X, there is an equivalence D°(X) =>
KB (E) that sends a coherent sheaf concentrated in homological degree 0 to its Tate
resolution.

Remark 6.2. The results in this section all generalize in an evident way to generalized
weighted projective stacks; we omit the details.

Suppose X is a weighted projective stack. Let Perfpy(E) € DRy (E) be the smallest
triangulated subcategory of DRy;(E) containing all summands of finitely generated free
flag differential £-modules, and define the singularity category of differential E-modules
to be the Verdier quotient Dpy§(E) := DYy,(E)/ Perfpm(E). We will prove Theorem 6.1
by constructing a chain of equivalences

DP(X) => DR (E) => Kiu(E). (6.1)

The second equivalence is an analogue of a theorem of Buchweitz [25, Theorem 4.4.1].

We start with the first link in the chain. We say a graded S-module is forsion if it is
annihilated by a power of the maximal ideal (xo, ..., X, ). Denote by D° () the subcat-
egory of D(S) given by complexes with torsion homology.

Proposition 6.3. The equivalence DYy (E) ~ D°(S) of Corollary 2.14 induces equival-
ences

DY .(S) ~ Perfom(E) and DP(X) => DIE(E).

Proof. We recall that a triangulated subcategory 7 of a triangulated category T is called
thick if 7' is closed under taking summands. Since a finitely generated free flag is pre-
cisely the same thing as a finite iterated extension of rank 1 free modules, one concludes
that the subcategory Perfpy(E) € DB, (E) is the thick subcategory generated by E(a; 0)
for all a € Z. The first equivalence follows immediately, since DY (S) is the thick sub-
category of D°(S) generated by k(a) for all a € Z, and R(k(a)) = E(a;0).

As for the second equivalence, it suffices to observe that DP(X) is equivalent to
the Verdier quotient D°(S)/ D?, .(S). To see this, apply [63, Proposition 2.17] to see
that Coh(X) is equivalent to the abelian quotient of the category of finitely generated
graded S-modules by the Serre subcategory given by torsion modules. Then recall that,
for any abelian category + and Serre subcategory § of #, there is an equivalence D®(A)/

D5 () ~ D*(A/S), where D} (4) = {X € D*(A) : H,(X) € § foralln € Z}. n
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Any object in DM(E) with finitely generated homology admits a locally finite free
resolution by Theorem B.2. Let D be a finitely generated object in DM(E), F a locally
finite free resolution of D, and G a locally finite free resolution of DV := Hom (D, E).
Since dualizing over E is exact, and every finitely generated module over E is maximal
Cohen—Macaulay, we have an induced quasi-isomorphism F => D = (DV)¥ = GV.
Denote the mapping cone of this quasi-isomorphism by C(D). The object C(D) is con-
tained in K3),(E), and it is well defined up to the choices of F and G. If f: D — D’
is a quasi-isomorphism in DM(E), there is an induced homotopy equivalence C(D) =
C(D’), and so there is an induced functor C: DYy, (E) — K&, (E) (recall from Propos-
ition 2.5 that every object in DY, (E) is isomorphic to a finitely generated differential
module). Moreover, if D € Perfpy(E), then D and DV are free resolutions of them-
selves, so C(D) = cone(D =5 (DY)Y), which is contractible. It follows that we have an
induced functor C: Dpyj(E) — K& (E). The definition of the map C closely resembles
Buchweitz’s construction of complete resolutions in [25]; hence the notation “C” for this
functor.

Going the other direction, let D € Kf\,(E), and write D = @ ,.;yezxz E(a:i)®i.
Foralla € Z, write Dy = @,z E(a;i)®ai. Let D' = @,y Dgand D" = P ,. o Dq.
Decomposing D as D’ @& D", we can write the differential  on D as a matrix of the
form (%/ B )- Notice that & exhibits (D”(0; 1), —pB) as a free resolution of (D’, 3'), and
D = cone(e). Observe also that, since dimyg @, ¢, D(a;iy < 0o forall a € Z, the differen-
tial module D’ has finitely generated homology. We thus have a functor 7<¢: K}, (E) —
DE(E) givenby D — D'

Proposition 6.4. The functors C: Dgrﬁ(E ) 2 KEM(E) : t<o are inverse equivalences.
Proof. Let D € Dgﬁ(E ) be a finitely generated differential module. Let F be a locally
finite free resolution of D and G a locally finite free resolution of DV, so that C(D) =
F(0;—1) ® G". Write

CD)= P E@i)®e and C(D)g =@ E(a:i)® e,

(a;i)EZXZ i€Z

and choose a < 0 such that C(D), C F forallb <a.Let N = P, , C(D)p. The natural
maps

N — (t<9poC)(D) and N — F

are both isomorphisms in Dgﬁ(E); it follows that (t<¢o o C)(D) = D in Dg‘ﬁf(E).

On the other hand, let D € K3\ (E), and let D’ and D” be as in the above con-
struction of the functor 7. The differential module D’ has finitely generated homology:
let Y be the E-submodule of D’ generated by elements of CI(X)-degree a such that
H(D')(a;iy # 0 for some i € Z. The object Y is finitely generated, and it is a differential
submodule of D’, because the differential is degree 0 with respect to the C1(X)-degree.
Moreover, the inclusion Y <> D’ is a quasi-isomorphism; in fact, the dual (D)Y — YV
of this inclusion is a free resolution of Y. Choose locally finite free resolutions F of Y
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and G of YV, so that (C o <o) (D) is isomorphic to cone(F => G). Since G" is homo-
topy equivalent to D’ and F is homotopy equivalent to (D" (0; 1), —f8), D is homotopy
equivalent to (C o t<o)(D). |

Proof of Theorem 6.1. Our equivalence is given by the composition
b R ysing C pex
D*(X) — Dpy(E) = Kpm(E)

of the equivalences in Propositions 6.3 and 6.4. By Theorem 3.7, applying this equivalence
to a sheaf ¥, concentrated in degree 0, gives the Tate resolution of ¥ . n

7. Future directions

A running theme in this work, and elsewhere [14, 15,24,29,37,38,50,51,53,54,61,62,
68], is that the multigradings on the Cox rings of toric varieties make many homological
constructions more subtle than their well-known counterparts over P”. We propose a few
questions in this vein.

Conjecture 7.1. The properties in Theorem 3.3 characterize T(F) up to isomorphism of
differential modules.

In general, we have only shown that T(¥) is well defined up to homotopy, but The-
orems 3.7 and 3.10 imply that Conjecture 7.1 holds over generalized weighted projective
stacks and products of projective spaces. See the paragraph beneath the proof of The-
orem 3.10 for a discussion of the difficulty of extending these results to general projective
toric stacks.

Conjecture 7.2. The resolution F in Theorem 4.1 always admits a finite rank subcom-
plex, whose shedfification is a resolution of the diagonal. In fact, we can always find such
a subcomplex whose length is at most dim(X).

Conjecture 7.2 would resolve a question of Berkesch—-Erman—Smith on the minimal
length of a virtual resolution of a module (see [14, Question 6.5]), and it would imply
a large swath of new cases of a conjecture of Orlov concerning the Rouquier dimension
of the bounded derived category of a quasi-projective variety [64, Conjecture 10]. Con-
jecture 7.2 has been proven by the first author and Sayrafi in the case of smooth projective
toric varieties of Picard rank 2 [23].

One application of the Tate resolutions from [39] was to the development of an effi-
cient algorithm for computing sheaf cohomology on P”; see also [34].

Question 7.3. Can one use toric Tate resolutions to develop an exterior algebra algorithm
for computing sheaf cohomology on any projective toric stack?

In followup work, we will show that this question has a positive answer for weighted
projective stacks, using the theory of minimal free resolutions of differential modules
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from [20]. Just as with the problem of characterizing the toric Tate resolution up to iso-
morphism (Conjecture 7.1), we expect that extending such an algorithm to a more general
toric variety will rely heavily upon the exactness properties in Theorem 3.3 (4).

Question 7.4. Can one generalize Theorem 6.1 above by relating the bounded derived
category of a projective toric stack X to an appropriate homotopy category of exact dif-
ferential £-modules?

A positive answer to Question 7.4 could provide new connections to the study of
derived categories of toric varieties and stacks, e.g., [8—10, 19, 30, 33, 35, 36, 58—60, 63].
For instance, an exceptional object/collection on the E-module side would immediately
yield the same for D ().

A fundamental challenge underlying Question 7.4 is determining the correct analogue
of KZ\(E) in the case of an arbitrary projective toric stack X. To explain the diffi-
culty: notice that passing from D°(S) to D®(X) requires one to take a quotient not just
by complexes supported in the maximal ideal (xo, ..., x,), but complexes supported in
the irrelevant ideal. The counterpart of D°(X) will therefore typically be strictly smaller
than KT}, (E). One can see this from another point of view: by Theorem 3.3 (3), the Tate
resolution satisfies more subtle exactness properties than a typical object in K3j,(E), and
so we should not expect every object in K&, (E) to correspond to an object in D?(X) via
the Tate resolution functor.

Appendix A. Positive multigradings

Let A be an abelian group and R an A-graded ring with Ry a field.

Definition A.1. A group homomorphism 6: A — Z is called a positive A-grading on R
if, for all x € R\ {0},

(1) 6(deg(x)) = 0, and
(2) B(deg(x)) = 0if and only if x is a unit.
The ring R is called positively A-graded if a positive A-grading exists. The above prop-

erties ensure that R is, via 6, a nonnegatively Z-graded ring such that the ideal in R
generated by elements of positive degree is maximal.

Example A.2. Let X be a projective toric variety with CI(X)-graded Cox ring S. We
claim that S is positively CI(X)-graded. Indeed, letting H be an ample divisor on X, the
map 0: CI(X) — Z given by intersecting with H%™X~1 i5 a positive CI(X )-grading. The
projectivity assumption cannot be removed; see, e.g., [31, Example 5.2.3].

Definition A.3. Let M be an A-graded R-module. A homomorphism 8: A — Z determ-
ines a Z-grading on M by setting M; = @9(:1):1‘ M,. We say M is positively A-graded
if there is a positive A-grading on R such that this associated Z-grading of M is bounded
below.
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We record the following homological variant of Nakayama’s lemma.

Lemma A.4. Let R be positively A-graded, and let C be a complex of free R-modules
such that H; (C) is positively A-graded. Let x € R be homogeneous of nonzero degree.
If Hi(C/xC) =0, then H;(C) = 0.

Appendix B. Further background on differential £ -modules

As in Section 2, let S = k[xo, ..., X,] be positively graded by an abelian group A4,
and let £ = Ag(eo, ..., e,) be equipped with the A @ Z-grading given by deg(e;) =
(—deg(x;): —1).

B.1. Resolutions of differential E-modules
We recall from [20] the notion of a free resolution of a differential module.

Definition B.1 ([20, Section 1]). A differential E-module F is a free flag if F is a free
module that may be equipped with a decomposition P, ..o F; such that d (F )SP; i<i
Given D € DM(E), a free flag resolution of D is a quasi- 1somorphlsm F => D, where F
is a free flag. A free resolution of D is a quasi-isomorphism F => D that factors as F —
F — D, where F — D is a free flag resolution, and F' — Fisa split injection. We say
a free resolution F => D is minimal if 3p (F) € mF, where m = (eg, ...,e,) C E.

Reversing arrows, one can define injective resolutions. A differential £-module [ is
an injective coflag if I is an injective module that may be equipped with a decomposi-
tion €P; < £; such that 9, (I;) < P, i Ij (note that graded injective, projective, and free
modules coincide over E). One defines an injective coflag resolution in the evident way,
and an injective resolution of a differential module D is a quasi-isomorphism D => [
that factors as D — [ — I, where D — [ is an injective coflag resolution, and I—>1
is a split surjection.

The following fact plays a key role in the proof of Theorem 3.7 above.

Theorem B.2. Any differential E-module D whose homology is finitely generated admits
a minimal free resolution F => D, and this minimal free resolution is unique up to
isomorphism of differential modules. Moreover, we have Y ;.5 dimg F(, ;) < 0o for all
a € CI(X), and F is positively A-graded, in the sense of Definition A.3.

Proof. By [20, Theorem 1.2], minimal free resolutions exist and are unique for any differ-
ential module with finitely generated homology and degree 0 differential over a (possibly
noncommutative) Z-graded local ring R such that Ry is a field. Our result does not imme-
diately follow from this theorem, because E is A @ Z-graded, not Z-graded, and the
differential on D has degree (0, —1), not 0. However, a slight modification of the argu-
ments in [20] gives the result we want. In detail, the positive A-grading on S induces
a positive A-grading on E in the evident way. We can use this induced Z-grading to
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construct a minimal free resolution of D exactly as in [20, Remark 5.7]; this proves exist-
ence. Uniqueness follows from an argument identical to the proof of the uniqueness part
of [20, Theorem 4.2 (b)]. [ ]

B.2. Tensor product and internal Hom for differential E-modules

We can use the auxiliary Z-grading on E to define a tensor product, internal Hom, Tor,
and Ext for differential E-modules; these coincide with the usual notions for dg-modules
via the first equivalence discussed in Remark 2.3. Letting D, D’ € DM(E), we define the
tensor product D ®°M D’ to be the differential module with underlying module D ® g D’
and differential

d®d — dpd)®d + (-1)Dd @ dp/(d'),

where, as stated in Conventions 2.1, aux(—) denotes the auxiliary degree. Recall also
from Conventions 2.1 that any right E-module may be considered as a left E-module
in a canonical way, so the tensor product D ® g D’ makes sense. The internal Hom
object Hom?M(D, D’) is defined to be the differential module with underlying E-module
Hom (D, D’) and differential f +> dps o f — (—1)™*) f 0 dp. Let F be a free resol-
ution of D (Definition B.1). We define

TorE (D, D) = H(F @M D) and Ex®M(D, D’) = H(Hom>M(F, D")).

One can also define Tor (resp Ext) using a free (resp. injective) resolution of D’.
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