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Abstract. We study the local dynamics of generic skew-products tangent to the identity, i.e. maps
of the form P.z; w/ D .p.z/; q.z; w// with dP0 D Id. More precisely, we focus on maps with
non-degenerate second differential at the origin; such maps have local normal form P.z; w/ D

.z � z2 CO.z3/; w C w2 C bz2 CO.k.z; w/k3//. We prove the existence of parabolic domains,
and prove that inside these parabolic domains the orbits converge non-tangentially if and only if
b 2 .1=4;C1/. Furthermore, we prove the existence of a type of parabolic implosion, in which
the renormalization limits are different from previously known cases. This has a number of conse-
quences: under a diophantine condition on coefficients of P , we prove the existence of wandering
domains with rank 1 limit maps. We also give explicit examples of quadratic skew-products with
countably many grand orbits of wandering domains, and we give an explicit example of a skew-
product map with a Fatou component exhibiting historic behaviour. Finally, we construct various
topological invariants, which allow us to answer a question of Abate.

Keywords: skew-products, germs tangent to identity, parabolic implosion, wandering domains.

1. Introduction

Skew-products are holomorphic self-maps of C2 of the form

P.z;w/ D .p.z/; q.z; w//:

An important feature of these maps is that they preserve the set of vertical lines in C2.
This means that we can view the restriction ofP n to a line ¹zº �C as the composition of n
entire functions on C, which allows techniques from one-dimensional complex dynamics
to be applied. The dynamics of skew-products is therefore in some ways reminiscent of the
dynamics of one-variable maps; however, in recent years, several important results have
shown that these maps have rich and interesting dynamics [22, 27, 28, 35]. For example,
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in [7], it was shown that there exist polynomial skew-products, i.e. P is a polynomial
map, with wandering Fatou components, a dynamical phenomenon that is known not to
occur for polynomial maps in one complex dimension. The proof of the main result in
that paper involves the adaptation of parabolic implosion to the skew-product setting (see
also [6, 8, 10] for further results on parabolic implosion in several complex variables).
Polynomial skew-products were also used in [15, 33] to construct robust bifurcations, i.e.
open sets contained in the bifurcation locus of the family of endomorphisms of P2 of
given algebraic degree d � 2.

Given a germ of a holomorphic self-map P of C2 that fixes the origin, we say that P
is tangent to the identity if it is of the form P D IdCPk.z;w/CO.k.z;w/kkC1/, where
k � 2 and Pk W C2! C2 is a non-trivial homogeneous polynomial map of degree k. The
study of local dynamics of germs tangent to the identity has received significant attention
over the last decades. For general germs of .C2; 0/ tangent to the identity, a complete
description of the dynamics on a full neighborhood of the origin is for now far out of
reach. Much effort has been instead devoted to investigating the existence of invariant
manifolds or invariant formal curves on which the dynamics converges to the origin (see
e.g. [1, 19], and more recently [23, 24]).

In this paper we investigate the local dynamics of skew-products P which are tangent
to the identity and have a non-degenerate second order differential at the origin. By this
we mean holomorphic maps1 P W C2 ! C2 of the form

P.z;w/ D
�
z C

X
i�2

aiz
i ; w C

X
iCj�2

bi;j z
iwj

�
with a2; b2;0; b0;2 ¤ 0.

Up to conjugacy by a linear automorphism of C2, such maps may be reduced to a map
of the form

P W .z; w/ 7!
�
z � z2 CO.z3/; w C w2 C bz2 CO.k.z; w/k3/

�
;

and after a second conjugacy by an automorphism of C2 of the form

.z; w/ 7! .z; eAzw C Bz2/;

we may finally assume that P is of the form P.z;w/ D .p.z/; q.z; w// with´
p.z/ WD z � z2 C az3 CO.z4/;

q.z; w/ WD w C w2 C bz2 C b0;3w
3 C b3;0z

3 CO.k.z; w/k4/;
(1.1)

where a; b; b0;3; b3;0 2 C.
A study of the local dynamics of skew-products in the case b D 0 in (1.1) has been

undertaken in [35], where a full description of the dynamics on a neighborhood of a

1We believe that with extra care, most of our results could be stated for germs; however, in an
effort to keep statements from being excessively technical, we have chosen to work in the setting of
globally defined maps.
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parabolic fixed point at the origin was achieved. However, most of the difficulty and rich-
ness of the dynamics (including the phenomenon of parabolic implosion and the existence
of wandering domains) comes precisely from the term bz2.

In fact, although maps of the form (1.1) are generic among polynomial skew-products
which are tangent to the identity (after analytic conjugacy), we will see that they have
considerably complicated local dynamics. We see the investigation of those maps (1.1)
and the results of this paper as a first step (generic case) towards the systematic analysis
of the local dynamics of all polynomial skew-products which are tangent to the identity.

Notation. Throughout this paper, we will be using the notation qz.w/ WD q.z; w/ (in
particular, q0 D q.0; �/).

1.1. Parabolic domains and parabolic implosion

Definition 1.1. Let P be a holomorphic self-map of C2 with a parabolic fixed point at the
origin. A parabolic domain of P is a maximal invariant connected domain U � C2 such
that the origin is contained in the boundary of U and the iterates P n

jU
converge locally

uniformly on U to the origin. Moreover, we say that a parabolic domain is tangent to
a direction v if each point from the domain is attracted to the origin along trajectories
tangent to v.

We begin by discussing the existence of parabolic domains for maps of the form (1.1),
which depends only on b:

Theorem 1.2. Let P be a map of the form (1.1).

(1) If b 2 .1=4;1/, the map P has an invariant parabolic domain which is not tangent
to any directions.

(2) If b 2 C n .1=4;1/, the map P has an invariant parabolic domain which is tangent
to one of its non-degenerate characteristic directions.

The main novelty here lies in the first statement of this theorem, while the second
statement can be deduced from results of Hakim and Vivas. Invariant parabolic domains
which are not tangent to any direction are also sometimes called spiral domains (see the
beginning of Section 3 for a precise definition). Such domains were first constructed by
Rivi in her thesis [30, Proposition 4.4.4]. Rong [31, Theorem 1.4] gave sufficient condi-
tions for the existence of spiral domains for some class of maps tangent to the identity.
However, his result does not apply to maps of the form (1.1).

From now on we will assume that b > 1=4, and we introduce the following notations:

c WD

p
4b � 1

2
; ˛0 WD e

�=c ; ˇ0 WD .b0;3 � a/.˛0 � 1/: (1.2)

Observe that since b > 1=4, we have c > 0 and ˛0 > 1.
In what follows we will see that in the case b > 1=4 and ˇ0 2 R, there is parabolic

implosion, which has many interesting dynamical consequences.
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Definition 1.3. Let P be of the form (1.1), and ˛; � 2 C. The generalized Lavaurs map
of phase � and parameter ˛ is defined as

L.˛; � I z; w/ WD  oq0

�
˛��q0.w/C .1 � ˛/�

�
p.z/C �

�
; (1.3)

where ��p is the incoming Fatou coordinate of p, ��q0 the incoming Fatou coordinate of q0
and  oq0 the outgoing Fatou parametrization of q0.

The definitions and basic properties of Fatou coordinates, horn maps and Lavaurs
maps are recalled in Section 2. The generalized Lavaurs map is defined for .z; w/ 2
Bp � Bq0 , where Bp and Bq0 are basins of a parabolic fixed point at the origin for p
and q0 respectively. If ˛ D 1, then the map w 7! L.˛; � I z;w/ does not depend on z and
coincides with the classical Lavaurs map of phase � of the one-variable polynomial q0.
Moreover, generalized Lavaurs maps satisfy the following functional relation:

L.˛; � Ip.z/; q0.w// D q0 ıL.˛; � I z; w/ D L.˛; � C 1I z; w/ (1.4)

for all .z; w/ 2 Bp �Bq0 .

Definition 1.4. Given real numbers ˛ > 1 and ˇ 2 R, we say that a strictly increasing
sequence .nk/k�0 of positive integers is .˛; ˇ/-admissible if its phase sequence .�k/k�0,
defined by �k WD nkC1 � ˛nk � ˇ ln nk , is bounded. If ˇ D 0, we will simply call such
a sequence ˛-admissible.

Observe that for any ˛ > 1 and ˇ 2 R, there always exists .˛; ˇ/-admissible
sequences: it suffices to define inductively nkC1 WD b˛nk C ˇ ln nkc and take n0 2 N
large enough, where b�c denotes the floor function. For this particular type of .˛; ˇ/-
admissible sequence, we have �k 2 .�1; 0� for all k 2 N. However, describing the phase
sequence is in general a difficult problem; for instance, even in the particular case of the
3
2

-admissible sequences of the form nkC1D b
3
2
nkc, the phase sequence is not fully under-

stood (see [14]). An interesting question is the existence of .˛; ˇ/-admissible sequences
with converging phase sequence, which will be discussed in detail below.

The following is the main technical result of this paper.

Main Theorem. Let P be a map of the form (1.1). Let ˛0; ˇ0 be as in (1.2), and assume
that b > 1=4 and ˇ0 2R. Let .nk/k�0 be an .˛0;ˇ0/-admissible sequence and let .�k/k�0
denote its phase sequence. Then

P nkC1�nk .pnk .z/; w/ D .0;L.˛0; � C �k I z; w//C o.1/ . as k !1/

with uniform convergence on compacts in Bp �Bq0 , and where � is a constant depending
only on a; b; b0;3; b3;0 .see (5.1) for its explicit expression/.

The case where b > 1=4 and ˇ0 … R is briefly discussed in Remark 5.14.
The usefulness of this Main Theorem (and of similar results, such as [7, Proposition A]

is that by applying it successively, one can estimate more and more precisely certain high
iterates of P in terms of iterates of the maps Lz W w 7! L.˛0; � C �k I z; w/. Therefore,
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one can transfer dynamical properties of Lz to obtain information on the dynamics of P .
These maps Lz are quite complicated (they are non-explicit, transcendental maps, with
infinitely many critical points and in general infinitely many critical values). However,
by thinking of them as a one-parameter family of maps .Lz/z2Bp , we can use ideas
from one-dimensional bifurcation theory to obtain information on the dynamics of Lz for
certain values of z. Moreover, under the additional assumption that ˛0 2 N�2, we prove
in Section 7 that these maps are semi-conjugate to finite type maps in the sense of Epstein,
which allows us to obtain a more precise understanding of their dynamics, and in turn, of
the dynamics of P .

We list below some consequences of the Main Theorem.

1.2. Existence of wandering domains and Pisot numbers

The Fatou set is the largest open set in C2 on which the family of iterates .P n/n2N is
normal. A Fatou component � is a connected component of the Fatou set, and it is called
wandering if for every .k; m/ 2 N � N�, we have P kCm.�/ \ P k.�/ D ;. A non-
wandering Fatou component is a pre-periodic Fatou component. The first examples of
polynomial maps with wandering Fatou components were introduced by Buff, Dujardin,
Peters, Raissy and the first author [7] in (see also [6]); other examples were constructed by
Berger and Biebler [9], by completely different methods, for Hénon maps and polynomial
endomorphisms of P2. In the opposite direction, Ji [20, 21] gave sufficient conditions for
the absence of wandering domains near an attracting invariant fiber for a skew-product
map.

The examples from [7] are polynomial skew-products of the form

.z; w/ 7!

�
p.z/; q.w/C

�2

4
z

�
with p.z/ D z � z2 CO.z3/ and q.w/ D w C w2 CO.w3/, and are not tangent to the
identity at the origin. One can simplify the investigation of these maps by passing to a
finite branched cover y2 D z. This brings these maps to a form that is tangent to the iden-
tity, but with degenerate second order differential at the origin. In particular, these maps
are not of the form (1.1) considered in the present paper, which explains the difference in
the dynamical features.

Definition 1.5. Let � be a Fatou component of the map P . A Fatou limit function on �
is any limit value of the sequence of maps .P n

j�
/n2N .

We define the rank of a Fatou component� as the maximal rank of dhx , where x 2�
and h ranges over all Fatou limit functions on �.

Note that for endomorphisms of C2, any wandering domain either has rank 0 (all
Fatou limits are constant) or rank 1. So far, the only known examples of wandering
domains in C2 have been of rank 0 (that is, the examples constructed in [6, 7, 9]). In
other words, Theorem 1.6 below gives the first examples of rank 1 wandering domains in
complex dimension 2.
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Theorem 1.6. Let P be a map of the form (1.1), and assume that there exists an .˛0; ˇ0/-
admissible sequence with converging phase sequence. Then P has a wandering domain
of rank 1.

We are therefore led to the question: for which values of ˛ and ˇ does such a sequence
exist? Before stating an answer, recall the definition of Pisot numbers:

Definition 1.7. A real algebraic integer ˛ > 1 is called a Pisot number if all of its Galois
conjugates are in the open unit disk in C (in particular, integers � 2 are Pisot numbers).

The next definition is not standard terminology, but it will be convenient for our pur-
poses:

Definition 1.8. We say that ˛ > 1 has the Pisot property if there exists a real number �
such that k�˛kk ! 0, where k � k denotes the distance to the nearest integer.

We recall here two classical results from number theory that justify the terminology
of “Pisot property”:

Theorem ([29]). Let ˛ > 1 be an algebraic number and � be a non-zero real number such
that k�˛kk ! 0. Then ˛ is a Pisot number and � lies in the field Q.˛/.

Theorem ([29]) There are only countably many pairs .�; ˛/ of real numbers such that
� ¤ 0, ˛ > 1, and the sequence .¹�˛kº/k�0 has only finitely many limit points. Moreover,
if .�; ˛/ is such a pair where ˛ is an algebraic number, then ˛ is a Pisot number and �
lies in the field Q.˛/. Here ¹�º denotes the fractional part of the number.

In particular, an algebraic number has the Pisot property if and only if it is a Pisot
number. Moreover, it is a long-standing conjecture known as the Pisot–Vijayaraghavan
problem that Pisot numbers are the only real numbers with the Pisot property.

Definition 1.9. We say that a sequence .�k/k�0 converges to a cycle of period ` if the
subsequence .�k`Cj /k�0 converges for every 0 � j < `.

We can now state an almost sharp condition on ˛ and ˇ for the existence of an .˛; ˇ/-
admissible sequence with converging phase:

Theorem 1.10. Let ˛ > 1 and ˇ 2 R.

(1) There exists an ˛-admissible sequence with phase sequence converging to a cycle
if and only if ˛ has the Pisot property. Moreover, in that case there exists an ˛-
admissible sequence with phase sequence converging to 0.

(2) (a) If there exists an .˛; ˇ/-admissible sequence with phase sequence converging to
a periodic cycle, then ˛ has the Pisot property.

(b) Conversely, if ˛ has the Pisot property and ˇ D ˛�1
ln˛

k1
k2

, where k1 and k2 are
coprime integers with k2 � 1, then there exists an .˛; ˇ/-admissible sequence
whose phase sequence converges to a cycle of period k2.
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(a) ˛0 D 2 (b) ˛0 D 1C
p
5

2
(non-integer Pisot number)

Fig. 1. Vertical slices z D constant of quadratic skew-products (1.5) for two different values of ˛0.
In red, wandering domains; in blue, the two parabolic basins; in shades of grey, the basin of infinity.
Observe that figure (a) is q0-invariant while figure (b) is not.

Note that if the Pisot–Vijayaraghavan conjecture is true, then there exists an ˛-admis-
sible sequence with converging phase sequence if and only if ˛ is a Pisot number.

It is natural to ask whether the condition of Theorem 1.6 is necessary or not. When
there are no .˛; ˇ/-admissible sequences whose phase sequence converges to a periodic
cycle, the condition means that any wandering Fatou component whose orbit remains in
Bp � Bq0 would have to remain bounded under a sequence of non-autonomous com-
positions of generalized Lavaurs maps with non-periodic sequences of phases. Proving
rigorously whether such a thing is possible or not is likely to be difficult, but it seems
reasonable to expect that for generic values of ˛ it is not the case.

If we now specialize to the case of degree 2, Theorems 1.6 and 1.10 imply that for any
Pisot number ˛0 > 1, the map

.z; w/ 7!

�
z � z2; w C w2 C

�
1

4
C

�2

.ln˛0/2

�
z2
�

(1.5)

has a wandering domain of rank 1 (see Figure 1). Those are the first completely explicit2

examples of polynomial maps with wandering domains, as well as the first examples in
degree 2 and the first examples of wandering domains with rank 1.

Recall that two Fatou components �1 and �2 are in the same grand orbit (of Fatou
components) for P if there exist n1; n2 2 N such that P n1.�1/ D P n2.�2/. One may

2In [7], there are explicit examples of polynomial maps for which numerical experiments
strongly indicate the existence of wandering domains. It is possible that a rigorous argument could
be made to prove the existence of wandering domains for these explicit maps as well.
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ask whether for polynomial endomorphisms of P2 there exists a bound on the number of
grand orbits of wandering domains that would depend only on the degree. The following
theorem gives a negative answer:

Theorem 1.11. Let P be of the form (1.5) and let ˛0 > 1 be an integer. Then P has
countably many distinct grand orbits of rank 1 wandering domains.

Note that in contrast to e.g. arguments involving the classical Newhouse phenomenon,
we do not use perturbative arguments in the proof of Theorem 1.11, and the maps consid-
ered are completely explicit. In fact, more precisely, we construct an injective map from
the set of hyperbolic components in a specific family of modified horn maps into the set
of grand orbits of wandering Fatou components of P ; see Theorem 7.6 and the beginning
of Section 7.

1.3. Topological invariants and horn maps

We will now investigate a few consequences of the Main Theorem on the topological
classification of skew-products tangent to the identity.

In dimension 1, the topological classification of germs tangent to the identity is simply
given by the parabolic multiplicity, that is, the order of vanishing of f � Id at the origin
[12, 32]. However, the analytic classification of germs tangent to the identity is consider-
ably more complicated: by a result proved independently by Écalle and Voronin [16, 36]
the so-called horn maps (also called Écalle–Voronin invariants) are complete invariants.

To our knowledge, no complete topological classification is available for germs tan-
gent to the identity in C2. Our results imply that such a classification must also be
complicated even in the seemingly simple class of skew-products; in fact, it resembles
the analytic classification for one-dimensional parabolic germs.

A first remarkable consequence of the Main Theorem is that the coefficient b is a
topological invariant, among maps of the form (1.1):

Theorem 1.12. Let P1 and P2 be two maps of the form (1.1), and assume that there exists
a homeomorphism h defined near the origin, with h.0; 0/ D .0; 0/, such that

h ı P1 D P2 ı h:

Let bi ; ˛i ; ˇi .with 1� i � 2/ be as in (1.2), and assume that bi > 1=4 and ˇi 2R. If both
pairs .˛i ; ˇi / admit an .˛i ; ˇi /-admissible sequence with a converging phase sequence
then .˛1; ˇ1/ D .˛2; ˇ2/, and so in particular b1 D b2.

In [2] Abate asked whether maps of the form

.3u;v;1/ W f .z; w/ D .z C uz2 C .1 � u/zw;w C vw2 C .1 � v/zw/

with uC v ¤ 1 and u; v ¤ 0

are topologically conjugate to each other. Using Theorem 1.12 we can now answer this
question negatively. Indeed, observe that for u D 1 and v ¤ 0 this map is conjugate, via
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a linear automorphism, to the map

.z; w/ 7!

�
z � z2; w C w2 C

1 � v2

4
z2
�
; (1.6)

which is of the form (1.1). In particular, when v 2 iR� in (1.6), such maps satisfy b > 1=4
and ˇ D 0. Then Theorem 1.12, together with Theorem 1.10, asserts that all maps of the
form .3u;v;1/ with uD 1 and v D 2�i=ln�, where � is a Pisot number, belong to different
local topological conjugacy classes.

We now turn to a slightly stronger equivalence relation than local topological conju-
gacy:

Definition 1.13. We define an equivalence relation � on maps of the form (1.1) by
declaring that P1 � P2, there exists a homeomorphism h defined near the origin, with
h.0; 0/D .0; 0/, such that h ıP1 D P2 ı h and h is of the form h.z;w/D .f.z/;g.z;w//.

Theorem 1.16 below will provide further information on the equivalence classes of�.
First, let us recall the definition of a horn map of a one-variable holomorphic map, and
some of its basic properties; see Section 2 and e.g. [7, Appendix] for more details.

Definition 1.14. Let f .z/ D z C z2 C O.z3/ be an entire map. Let ��
f

and �o
f

denote
its incoming and outgoing Fatou coordinates respectively, and let  o

f
WD .�o

f
/�1 .which

extends to an entire map/.

(1) The lifted horn map of f is Ef WD �
�
f
ı  o

f
. It is defined on . o

f
/�1.Bf /, and com-

mutes with translation by 1: Ef .Z C 1/ D Ef .Z/C 1.

(2) The horn map of f is the unique map h such that h.e2i�Z/ D e2i�Ef .Z/. It extends
to a holomorphic map fixing both 0 and1.

By construction, the lifted horn map is semi-conjugate to the Lavaurs map, and the
horn map therefore describes the action of the Lavaurs map on the quotient space Bf =hf i.

We now introduce a two-dimensional analogue of horn maps and lifted horn maps:

Definition 1.15. Let P be a map of the form (1.1). Let us define the lifted horn map of P
of phase � by

QH� .Z;W / WD .Z; ˛0 � Eq0.W /C .1 � ˛0/Z C �/ DW .Z;
QHZ;� .W //: (1.7)

The map QH� satisfies the functional relation QH� .Z C 1;W C 1/ D QH� .Z;W /C .1; 1/,
so it descends to a map H� defined on C2=h.1; 1/i, which we call the horn map of P of
phase � .

In fact, we have the following two relations:

QH� .Z C 1;W / D QH� .Z;W /C .1; 1 � ˛0/;

QH� .Z;W C 1/ D QH� .Z;W /C .0; ˛0/:
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Therefore, the map QH� descends to a map on C2=Z2 if and only if ˛0 2 N. However,
even when ˛0 … N, QH� always descends to the horn map defined above on C2=h.1; 1/i.

Theorem 1.16. LetP1 andP2 be of the form (1.1), with bi >1=4 and ˇi 2R, and assume
that P1 � P2. LetH i

� denote their respective horn maps. Then there exist �1; �2 2C such
that H 1

�1
and H 2

�2
are topologically conjugate on C2=h.1; 1/i.

Finally, using Theorem 1.16, we obtain the following corollary.

Corollary 1.17. Under the assumptions of Theorem 1.16, the number of grand orbits of
critical points of qi in Bqi is the same for i D 1;2. In particular, for any k 2N, there exist
P1; P2 of the form (1.1) such that P1.z; w/ � P2.z; w/ D O.k.z; w/kk/, but P1 œ P2.

If q W C ! C is a holomorphic map and x 2 C, recall that the grand orbit of x is the
set of y 2 C such that there exist n;m 2 N with f n.x/ D f m.y/.

Note that the maps P1 and P2 are by assumption globally defined maps on C2,
assumed to be topologically conjugate only on a neighborhood of the origin. It is nat-
ural to ask whether Theorems 1.16 and 1.12 extend to case where P1 and P2 would only
be germs. As mentioned above, we believe it is the case; however, since the proofs are
already technical, we have chosen to restrict ourselves to globally defined maps for sim-
plicity. Observe however that for Corollary 1.17 to make sense it is necessary that the
maps Pi are globally defined.

1.4. Fatou components with historic behavior

In [9], Berger and Biebler construct wandering Fatou components � for some maps f
(which are Hénon maps or endomorphisms of P2) that have historic behavior, meaning
that for any x 2 �, the sequence of empirical measures

en.x/ WD
1

n

nX
kD1

ıf k.x/

does not converge.
To our knowledge, these are the only known examples so far of Fatou components for

endomorphisms of Pk or for Hénon maps with historic behavior. Note that in the case
of the wandering Fatou components constructed in [7] and [6], the sequences .en/n2N

converge to the Dirac mass centered at the parabolic fixed point at the origin. In dimen-
sion 1, it follows easily from the Fatou–Sullivan classification that no Fatou component
of a rational map on P1 can have historic behavior; and for moderately dissipative Hénon
maps, it follows from the classification of Lyubich and Peters [25] that periodic Fatou
components cannot have historic behavior.

Using the Main Theorem of this paper, we give here new, explicit examples of poly-
nomial skew-products (which may be chosen to extend to endomorphisms of P2) which
have a Fatou component with historic behavior:
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Corollary 1.18. Let P.z;w/ D .p.z/; q.z; w// be a polynomial skew-product satisfying
the following properties:

(1) p.z/ D z � z2 CO.z3/.

(2) P has two different fixed points tangent to the identity of the form .0;w1/ and .0;w2/,
which both satisfy the conditions that ˛i 2 N� and ˇi D 0, with the notations of the
Main Theorem and in appropriate local coordinates.

Then P has a Fatou component � with historic behavior. More precisely, for any
.z; w/ 2 �, the sequences .en.z; w//n2N accumulates on

�1 WD
˛1˛2 � ˛2

˛1˛2 � 1
ı.0;w1/ C

˛2 � 1

˛1˛2 � 1
ı.0;w2/

and on
�2 WD

˛1 � 1

˛1˛2 � 1
ı.0;w1/ C

˛1˛2 � ˛1

˛1˛2 � 1
ı.0;w2/:

More explicitly, these conditions are given by:

(1) p.z/ D z � z2 CO.z3/.

(2) P has two different fixed points tangent to the identity of the form .0;w1/ and .0;w2/,
with q000.wi / D 2.

(3) p000.0/ D q0000 .w1/ D q
000
0 .w2/.

(4) If bi WD 1
2
@2q

@z2
.0; wi /, then bi > 1=4 and ˛i WD e2�=

p
4bi�1 2 N�.

Example 1.19. With
p.z/ WD z � z2

and q.z; w/ WD q0.w/C a.z/ with

q0.w/ WD w C w
2
� 5w4 C 6w5 � 2w6

and

a.z/ WD

�
1

4
C

�2

.ln 2/2

�
z2.1 � z/2;

the map P satisfies the conditions above, with w1 D 0 and w2 D 1, ˛i D 2 and ˇi D 0.

Note that we could replace p by z 7! z � z2 C z6 in the previous example to obtain
an example which extends to an endomorphism of P2.

Although we believe that the Fatou component constructed in Corollary 1.18 is wan-
dering, we have not been able to prove so. Note however that if it is not the case, then
this would be the first example of an invariant (for some iterate of P ) non-recurrent Fatou
component whose limit sets depend on the limit map, which would give an affirmative
answer to [25, Question 30] for X D C2 and for X D P2.

Structure of the paper

We recall in Section 2 the definitions and properties of Fatou coordinates. In Section 3,
we recall the classical properties of parabolic curves and prove Theorem 1.2. In Section
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4, we introduce approximate Fatou coordinates and prove key estimates on how close the
dynamics is to a translation in these approximate Fatou coordinates. The Main Theorem is
proved in Section 5. Finally, Sections 6, 7, 8, 9 and 10, are devoted to the proofs of Corol-
lary 1.6, Theorem 1.11, Theorem 1.16, Corollary 1.18 and Theorem 1.10 respectively.

Notations

For x > 0, we will use the notation ln x to denote the natural logarithm of x, and for
z 2 C nR� we will use log z for the principal branch of the logarithm at z.

2. Fatou coordinates

We recall in this section the definition of Fatou coordinates of one-variable holomor-
phic maps, as well as some classical facts about their domains of definition, asymptotic
expansion near the parabolic fixed point, and covering properties. The material described
in Section 2.1 applies more generally to germs, while the material of Section 2.2 does
require a globally defined map. However, for our purposes, it is enough to restrict our-
selves to the setting where f is an entire map.

2.1. Local properties

Unless otherwise stated, we refer the reader to [7, Appendix] for the proofs of the state-
ments appearing in this subsection.

Consider an entire function f .z/ D z C a2z
2 C a3z

3 C O.z4/ where a2 ¤ 0. For
r > 0 small enough we define the incoming and outgoing petals by

P �
f D ¹ja2z C r j < rº and P o

f D ¹ja2z � r j < rº:

The incoming petal P �
f

is forward invariant, and all orbits in P �
f

converge to 0. The
outgoing petal P o

f
is backward invariant, with backward orbits converging to 0.

On P �
f

and P o
f

one can define the incoming and outgoing univalent Fatou coordinates
��
f
W P �

f
! C and �o

f
W P o

f
! C, solving the functional equations

��f ı f .z/ D �
�
f .z/C 1 and �of ı f .z/ D �

o
f .z/C 1:

Moreover, the set ��
f
.P �
f
/ contains a right half-plane and �o

f
.P o
f
/ contains a left half-

plane.
For the most part, the simple definition of petals given above will be sufficient for our

purposes. However, in Lemma 8.3 we will need to work with larger petals, whose union
covers a punctured neighborhood of the origin.

Accordingly, for any R > 0, let

OP�R WD ¹Z 2 C W R � ReZ < jImZjº; OP0R WD ¹Z 2 C W RC ReZ < jImZjº;

and let P�=oR be the respective images of OP�=oR under the map z 7! �1=z.
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By [11, Definition 3], up to taking R > 0 large enough, the Fatou coordinates ��=o
f

are defined and univalent on the “fat petals” P�=oR . Observe that P�R [ PoR is a punctured
neighborhood of 0.

Neither the incoming nor the outgoing Fatou coordinates may be extended to a mero-
morphic function in a neighborhood of the origin in general; however, they do satisfy the
following asymptotic expansion as z ! 0 inside P

�=o

f
respectively:

��f .z/ D �
1

a2z
� b log

�
�
1

a2z

�
C o.1/; (2.1)

�of .z/ D �
1

a2z
� b log

�
1

a2z

�
C o.1/; (2.2)

where b WD 1 � a3=a
2
2.

Fatou coordinates are only unique up to an additive constant; in the rest of the paper,
we will work with the unique normalized Fatou coordinates for which the asymptotic
expansions above hold, with no constant terms.

From the estimate (2.1), we first deduce that .��
f
/�1.Z/�� 1

a2Z
as ReZ!1. Then,

substituting .��
f
/�1.Z/ D � 1

a2Z
C o. 1

Z
/ in (2.1) again, we obtain

.��f /
�1.Z/ D �a�12

�
Z C b log

�
�

1

a2Z

�
C o.1/

��1
: (2.3)

Finally, note that for every z0 2 Bf we have

zk WD f
k.z0/ D .�

�
f /
�1.��f .z0/C k/

D �
1

a2

�
��f .z0/C k C b ln k C o.1/

��1
D �

1

a2

�
1

k
�

b ln k
k2
�
��
f
.z0/

k2

�
CO

�
ln2 k
k3

�
;

hence Re.a2zk/ D � 1k CO.
lnk
k2
/ and Im.a2zk/ D O. 1k2 /.

Recall that with our choice of normalization, p.z/ D z � z2 C O.z3/, so that the
previous estimates apply to p with a2 D �1; and q0.w/ D w C w2 C O.w3/, so that
they apply to q0 with a2 D 1.

2.2. Global properties

Any orbit which converges to 0 but never lands at 0 must eventually be contained in P �
f

.
Therefore, we have the following description of the parabolic basin:

Bf D
[
n�0

f �n.P �
f /:

Using the relation ��
f
ı f nD ��

f
C n, the incoming Fatou coordinates can be uniquely

extended to the attracting basin Bf . On the other hand, the inverse of �o
f

can be extended
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to an entire map denoted by  o
f

, which satisfies the functional equation

f ı  of .Z/ D  
o
f .Z C 1/:

This entire function is then called an outgoing Fatou parametrization.

2.2.1. Covering properties of Fatou coordinates. We first record the covering properties
of ��

f
and  o

f
in the next two propositions:

Proposition 2.1 ([11, Proposition 2]). The set of critical points of the map ��
f
W Bf ! C

is exactly
crit.��f / D

[
n2N

f �n.crit.f / \Bf /:

Moreover, ��
f
W Bf ! C is a branched cover.

Proposition 2.2 ([11, Proposition 3]). A point Z 2 C is a critical point of  o
f

if and
only if there exists n 2 N� such that  o

f
.Z � n/ 2 crit.f /. Moreover, the map  o

f
W

C n . o
f
/�1.Pf /! C n Pf is a covering, where Pf WD

S
n�1 f

n.crit.f // is the post-
critical set of f .

2.2.2. Lifted horn maps, horn maps and Lavaurs maps.

Definition 2.3. The Lavaurs map of phase � 2 C is the map Lf;� W Bf ! C defined by
Lf;� .w/ WD  

o
f
.��
f
.w/C �/.

In order to better study the dynamics of Lf;� , it is convenient to introduce the follow-
ing map which is semi-conjugate to it:

Definition 2.4. The lifted horn map of phase � 2 C is the map defined on Uf WD

. o
f
/�1.Bf / by Ef;� .W / WD �

�
f
ı  o

f
.W /C � . We will simply denote by Ef the lifted

horn map of phase 0.

The open set Uf has at least two connected components, one containing an upper half-
plane and the other containing a lower half-plane. We record here the following property
of the lifted horn maps:

Proposition 2.5 ([11, Proposition 4]). The set of critical values of Ef is

CV.Ef / D ¹��f .c/C n W c 2 crit.f / \Bf and n 2 Zº:

It is not difficult to check that Ef .W C 1/ D Ef .W /C 1, so that Ef (and Ef;� , for
any � 2 C) descends to a well-defined map on the cylinder C=Z. Then, identifying C=Z
with C�, we obtain a unique map h W U ! C� such that

h.e2i�W / D exp.2i�Ef .W //;

where U is the image of Uf D . o
f
/�1.Bf / under W 7! e2i�W . The map h is called

the horn map of f , and the horn map of phase � is h� WD e2i��h. It can be proved
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that it extends holomorphically at 0 and 1, and the extension fixes both points (see [7,
Appendix] and references therein).

3. Parabolic domains and parabolic curves

3.1. Parabolic curves

Let P be a holomorphic germ fixing the origin which is tangent to the identity of order
k � 2, i.e. a map with a homogeneous expansion

P D IdC Pk C PkC1 C � � � ;

where Pk 6� 0. We say that v 2 C2 n ¹.0; 0/º is a characteristic direction for P if there
exists a � 2 C such that Pk.v/ D �v. If � ¤ 0 then v is said to be non-degenerate;
otherwise it is degenerate. We shall denote by v 7! Œv� the canonical projection of C2 n

¹.0; 0/º onto P1. The director of a characteristic direction v is the eigenvalue of the linear
operator

d.Pk/Œv� � Id W TŒv�P1 ! TŒv�P
1:

A parabolic curve for P is an injective holomorphic map ' W �! C2, satisfying the
following properties:

(1) � is a simply connected domain in C with 0 2 @�,

(2) ' is continuous at the origin and '.0/ D .0; 0/,

(3) '.�/ is invariant under P and P nj'.�/ ! .0; 0/ uniformly on compact subsets.

We say that a parabolic curve is tangent to Œv� 2 P1 if Œ'.�/�! Œv� as � ! 0 in �. This
implies that for any given point z in the parabolic curve the orbit .P n.z// converges to the
origin tangentially to v, i.e. ŒP n.z/�! Œv� in P1. We now recall the following classical
result due to Écalle [16] and Hakim [18, 19]:

Theorem 3.1. Let P WC2!C2 be a holomorphic germ fixing the origin which is tangent
to the identity of order k � 2. Then for any non-degenerate characteristic direction v there
exist .at least/ k � 1 parabolic curves for P tangent to Œv�. Moreover, if the real part of
the director of a non-degenerate characteristic direction v is strictly positive, then there
exists an invariant parabolic domain in which every point is attracted to the origin along
a trajectory tangent to v.

Additionally, by [19, Section 3], when the director of a non-degenerate parabolic curve
is not a natural number, the corresponding parabolic curve is asymptotic to a unique (in
general divergent) invariant formal power series.

From now on, let P be a map of the form (1.1) and observe that its characteristic
directions are given by the equations´

�z2 D �z;

w2 C bz2 D �w:
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It follows that aside from the trivial non-degenerate characteristic direction .0; 1/,
there are two other non-degenerate characteristic directions .1; c˙/, where c˙ are the
roots of

u2 C uC b D 0: (3.1)

Note that c˙ D �1=2˙ ic where c is the solution of c2 D b � 1=4 with Re.c/ � 0.
Clearly, Im c D 0 if and only if b � 1=4. Moreover, for b D 1=4 we have cC D c� D

�1=2. The directors of the characteristic directions .1; c˙/ are �2ic; in particular, when
b 2 .1=4;1/, neither of them is a natural number.

It follows from Theorem 3.1 that aside from the trivial parabolic curve contained in
the invariant line z D 0, there are two parabolic curves which are tangent to the non-
degenerate characteristic directions .1; c˙/ respectively. By Hakim’s construction, these
parabolic curves may be written as holomorphic graphs z 7! .z; �˙.z// over a small petal
P �
p D D.r; r/. Since parabolic curves are invariant under P , the functions �˙ satisfy the

functional equations
qz.�

˙.z// D �˙.p.z//:

From this we can easily compute the first few terms of the formal power series to which
they are asymptotic:

�˙.z/ WD c˙z C

�
c˙‚C

aC .b � 1/b0;3

2

�
z2 CO.z3/; (3.2)

where

‚ WD b0;3 C
a � b0;3 C b3;0

2b
: (3.3)

3.2. Parabolic domains and proof of Theorem 1.2

We now turn to the proof of Theorem 1.2, which we break into the following two propo-
sitions.

Proposition 3.2. If b 2C n .1=4;1/, then the mapP has an invariant parabolic domain,
in which each point is attracted to the origin along trajectories tangent to one of its non-
degenerate characteristic directions.

Proof. We have two cases:

Case 1: Let b 2C n Œ1=4;1/. As mentioned above, a straightforward computation proves
that the directors of .0; 1/ and .1; c˙/ are �1 and �1 � 2c˙ D �2ic respectively. Note
that for our choice of b we have Im c ¤ 0, hence exactly one of the directions .1; c˙/ has
a director with a strictly positive real part. By Theorem 3.1, if the real part of the director
of a non-degenerate characteristic direction v is strictly positive, then there is an invariant
parabolic domain in which each point is attracted to the origin along trajectories tangent
to v.

Case 2: Let b D 1=4. First, observe that as b! 1=4, the characteristic directions .1; c˙/
are getting closer to each other, and in the limit they merge to a single characteristic
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direction v D .1;�1=2/. In the terminology of Abate–Tovena [3], v is an irregular char-
acteristic direction, hence by the result of Vivas [34, Theorem 1.1] there exists an invariant
parabolic domain in which each point is attracted to the origin along trajectories tangent
to v.

Proposition 3.3. If b > 1=4, then each of the two non-vertical parabolic curves is con-
tained in parabolic domains U˙ which are not tangent to any direction.

Note that we do not claim that UC ¤ U�, although we believe it is the case.

Proof of Proposition 3.3. Let D.x; �/ WD ¹z 2 C W jz � xj < �º denote the disk centered
at x with radius �. Let r > 0 be so small that p.D.r; r// � D.r; r/ and p is injective on
D.r; r/. Note that both P and FC.z; w/ D .z; w C �C.z// map the set D.r; r/ � C into
itself. Therefore by conjugating P with FC we obtain a well-defined holomorphic map
on D.r; r/ �C given by

OP .z;w/ WD
�
p.z/; qz.w C �

C.z// � �C.p.z//
�
; (3.4)

where

qz.w C �
C.z// � �C.p.z// D qz.w C �

C.z// � qz.�
C.z//

D w C w2 C 2cCzw CO.zw2; z2w;w3/:

Note that in these coordinates, the line w D 0 is invariant under OP and therefore .1; 0/
is now a non-degenerate characteristic direction of this map.

By making a blow-up w D uz of the map (3.4), we obtain the map

QP .z; u/ WD
�
z � z2 CO.z3/; u.1C i2cz/C zu2 CO.z2u/

�
(3.5)

that is holomorphic on D.r; r/ �C. Moreover, if r is sufficiently small then there exists a
holomorphic function h.z/ defined on D.r; r/ such that

QP .z; u/ D .p.z/; Qq.z; u// D
�
z � z2 CO.z3/; uei2czCz

2h.z/
C zu2 CO.z2u2/

�
:

Let us define Dr WD ¹.z; u/ W juj < r; z 2 D.r; r/º.

Lemma 3.4. There exists a sequence of real numbers 0 < rj < r such that for any
.z0; u0/ 2 D WD

S
j�1¹.z; u/ W juj < rj ; z 2 D.r; r j

jC1
/º we have QP n.z0; u0/ 2 Dr

for all n � 0. Moreover, the sequence QP n.z0; u0/ is bounded away from the origin.

Proof of Lemma 3.4. Let j 2 N� and z0 2 Kj WD xD.r; r
j
jC1

/. Note that

Repn.z0/ D
1

n
CO

�
lnn
n2

�
and Impn.z0/ D O

�
lnn
n2

�
;

with uniform bounds depending only on the compact Kj and hence on r and j , for all
n � 1 (see Section 2). Using this, we define

fn.u/ WD proj2 QP .p
n�1.z0/; u/ D ue

i2c
n C‚n.z0/ C

u2

n
CO

�
u2 lnn
n2

�
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where‚nDO. lnn
n2
/ depends only on z0 and is uniformly bounded onKj and the constant

in O.u
2 lnn
n2

/ is uniform on Kj � xD.0; r/.
We need to prove that there exists 0 < rj < r such that for every u0 2 D.0; rj / and

every z0 2 Kj we have .zn; un/ WD QP n.z0; u0/ 2 Dr for all n � 1. In particular, we need
to prove that junj < r for all n � 1.

Observe that un D .fn ı � � � ı f1/.u0/ for all n � 1 and let U WD �.u/ D �1=u. For
n � 1 we define

gn.U / WD .� ı fn ı �
�1/.U / D Ue�

i2c
n �‚n C

1

n
CO

�
lnn
n2
;

lnn
Un2

�
:

It suffices to prove that there exists 0 < rj < r such that for all .z0;U0/ where z0 2Kj
and jU0j > 1=rj we have jgn ı � � � ı g1.U0/j > 1=r for all n � 1.

Observe that since c is real, there exists QCj > 0 such that

QC�1j <
ˇ̌
e�

Pn�1
kD1.

i2c
k
C‚k/

ˇ̌
< QCj

on Kj for all n � 1. By making a non-autonomous change of coordinates

 n.U / D e
�
Pn�1
kD1.

i2c
k
C‚k/U;

we obtain

Gn.U / D  
�1
nC1 ı gn ı  n.U /

D U C
1

n
e
Pn
kD1.

i2c
k
C‚k/ CO

�
lnn
n2
;

lnn
Un2

�
D U C

1

n
ei2c lnnCi2c
Ch.z0/ CO

�
lnn
n2
;

lnn
Un2

�
;

where h WD
P1
kD1‚k is a holomorphic function of z0. Here, we have used the fact thatPn

kD1
1
k
D 
 C ln n C O. 1

n
/, where 
 is Euler’s constant, and that

Pn
kD1 ‚k.z1/ D

h.z0/CO.
lnn
n
/, where the bounds are uniform on Kj .

Since c ¤ 0 is real, it follows from Abel’s summation formula that there exists a
constant C > 0 such thatˇ̌̌̌ nX

kD1

1

k
ei2c lnk

ˇ̌̌̌
D

ˇ̌̌ nX
kD1

k�.1�i2c/
ˇ̌̌
< C

for all n � 1. This implies that Gn ı � � � ı G1.U / D U C O.1/ for all n � 1, where the
constant in O.1/ depends only on Kj .

Next observe that gn ı � � � ı g1.U / D  nC1 ı Gn ı � � � ı G1.U /, hence there exists
Aj > 0 such that for all jU0j > 1=r and all z0 2 Kj we have

QC�1j jU0j � Aj < jgn ı � � � ı g1.U0/j <
QCj jU0j C Aj

for all n � 1.
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From this it immediately follows that there exists 0 < rj < r such that for every jU0j>
1=rj we have jgn ı � � � ı g1.U0/j > 1=r for all n � 1. Moreover, for every jU0j > 1=rj
the sequence gn ı � � � ı g1.U0/ is bounded away from infinity.

Thus we have proven that for any .z0; u0/ 2Kj �D.0; rj /, we have .zn; un/ 2Dr for
all n � 0, where the sequence .un/n�0 is bounded away from the origin. This concludes
the proof of Lemma 3.4.

Let us resume the proof of Proposition 3.3. Let� WD ¹.z; zuC �C.z// W .z;u/ 2Dº; it
is a connected open set whose boundary contains the origin, and P.�/\� ¤ ;. Indeed,
QP maps D.r; r/ � ¹0º � D into itself, hence QP .D/ \D ¤ ;. From the lemma above, it

immediately follows that the iterates P n
j�

converge to the origin locally uniformly on �,
which is therefore contained in some invariant parabolic domain UC. It remains to prove
that this parabolic domain is not tangent to any direction. Let .z0;w0/ 2� and .zn;wn/D
P n.z0; w0/ and observe that since zn ¤ 0, for all n 2 N we have Œzn W wn� D Œ1 W wnzn � D
Œ1 W un C c

C C o.1/�.
Recall that in Lemma 3.4 we have shown that

un D proj2 QP
n.z0; u0/ D �

�1
ı  �1nC1 ıGn ı � � � ıG1 ı �.u0/;

where Gj and  j depend holomorphically on z0 and  j .U / is linear in U . Moreover,

Gn ı � � � ıG1 ı �.u/ D �
1

u
CO.1/

as u! 0 for all n � 1 where the bound in O.1/ depends only on the compact Kj . Hence
every limit map of the iterates . QP n/ on D is of the form .z; u/ 7! .0; �.z; u//, where � is
a non-constant holomorphic function and @�

@u
6� 0.

Therefore, there is no vector v 2C2 such that the sequence ŒP n.z;w/�would converge
to Œv� in P1 for all .z; w/ 2 �.

The proof of the existence of an invariant parabolic domain U� that contains the
parabolic curve associated to the characteristic direction .1; c�/ follows verbatim with an
appropriate change of sign.

4. The error functions

Here, we introduce and study properties for one of the main objects to appear in our argu-
ments: the functions QA.z; w/, A.z; w/ and A0.z/, which measure how far the dynamics
is from a translation in certain local coordinates.

Let P be a skew-product of the form (1.1), and recall that v D .1; c˙/ are two non-
degenerate characteristic directions of P , where c˙ WD �1

2
˙ ic.

Definition 4.1. Let

 z.w/ WD
1

2ic
log
�
�C.z/ � w

w � ��.z/

�
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where log is the principal branch of logarithm and let3

 �=oz .w/ WD  z.w/˙
�

2c
:

Note that with this choice of branch,  z is defined on C n Lz , where Lz is the real
line through �C.z/ and ��.z/minus the segment Œ��.z/; �C.z/�. In particular,  �z and  oz
are both defined in a disk centered at w D 1

2
.�C.z/C ��.z// whose radius is of order z.

Remark 4.2. Observe that if Im �C.z/�w
w���.z/

< 0 .or equivalently, if w is in the half-plane to
the left of Lz/, then

 �z.w/ D
1

2ic
log
�
w � �C.z/

w � ��.z/

�
;

and if Im �C.z/�w
w���.z/

> 0 (or equivalently, if w is in the half-plane to the right of Lz), then

 oz .w/ D
1

2ic
log
�
w � �C.z/

w � ��.z/

�
:

Definition 4.3. Let

A.z;w/ WD  
�=o

p.z/
ı qz.w/ �  

�=o
z .w/ � z; A0.w/ WD �

1

q0.w/
C
1

w
� 1:

Note that the formula forA.z;w/ does not depend on whether the ingoing or outgoing
coordinate  z is used, and is therefore well-defined. The map A is for now defined on the
open set ¹.z;w/ 2 P �

p �C W w … Lz and qz.w/ … Lp.z/º; however, we will see below that
it extends analytically to a bi-disk D.r; r/ �D.0; r/.

Proposition 4.4. (1) A0 is analytic near 0, and A0.w/ D .b0;3 � 1/w CO.w2/.

(2) There exists r > 0 such that for all z 2 D.r; r/, A.z; �/ extends analytically to the
disk D.0; r/.

Proof. Item (1) is an easy computation. For (2), observe that if r > 0 is small enough,
z 2 D.r; r/ and w … Lz , qz.w/ … Lp.z/, we have

A.z;w/ D
1

2ic
log
�
qz.w/ � �

C.p.z//

qz.w/ � ��.p.z//

�
�

1

2ic
log
�
w � �C.z/

w � ��.z/

�
� z

D
1

2ic
log
�
qz.w/ � �

C.p.z//

w � �C.z/
W
qz.w/ � �

�.p.z//

w � ��.z/

�
� z

D
1

2ic
log
�
qz.w/ � qz.�

C.z//

w � �C.z/
W
qz.w/ � qz.�

�.z//

w � ��.z/

�
� z:

3The map  oz should not be confused with  o
f

, the latter being the outgoing Fatou parametriza-
tion. In our notation the outgoing Fatou parametrization will always have a function in its subscript,
whereas the map defined above will always have a point in its subscript.
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Taking r > 0 even smaller if necessary, we may assume further that for all z 2 D.r; r/,
we have qz.w/¤ qz.�˙.z// if w 2 D.0; r/ n ¹�˙.z/º, and that qz has no critical point on
D.0; r/. For this choice of r , it is then clear that w 7! A.z;w/ has removable singularities
at w D �˙.z/.

Proposition 4.5. Let ‚ be as in (3.3). We have

A.z;w/ D zA0.w/C .‚C 1=2 � b0;3/z
2
CO.z3; z2w/;

where the O-constants are uniform for .z; w/ 2 C2 near .0; 0/ .with z 2 P �
p/.

Proof. Let K be a compact in C�, and let w 2 K. By a straightforward computation we
obtain

1

2ic
log
�
w � �C.z/

w � ��.z/

�
D

1

2ic

�
��.z/ � �C.z/

w
�
.�C.z//2 � .��.z//2

2w2

�
CO.z3/

D �
z

w
�
‚z2

w
C

z2

2w2
CO.z3/: (4.1)

Using this we can now show that

 
�=o

p.z/
ı qz.w/ D �

p.z/

qz.w/
�
‚.p.z//2

qz.w/
C

.p.z//2

2.qz.w//2
CO.z3/

D �
z � z2

q0.w/
�

‚z2

q0.w/
C

z2

2.q0.w//2
CO.z3/:

This implies that

A.z;w/ D zA0.w/C‚z
2

�
1

w
�

1

q0.w/

�
C
z2

2

�
1

.q0.w//2
�

1

w2
C

2

q0.w/

�
CO.z3/

D zA0.w/C‚z
2
C
z2

2
.1 � 2b0;3/CO.z

3; z2w/

D zA0.w/C .‚C 1=2 � b0;3/z
2
CO.z3; z2w/:

Here, we have used the fact that A.z; �/ is analytic, hence all terms in w with negative
powers are canceled.

Note that the constant in O.z3; z2w/ a priori depends on K � C�. Let �z.w/ WD
A.z;w/�zA0.w/

z2
; by Proposition 4.4 it is holomorphic on D.0; r/. We have proved that for

compact K � C�, for all w 2 K, and for all z 2 P �
p , we have j�z.w/j � CK . By taking

K D ¹jwj D r=2º we therefore obtain the same estimate j�z.w/j � CK for all jwj � r=2
because of the maximum modulus principle. This gives the desired uniformity.

Definition 4.6. As in [7], let � 2 .1=2; 2=3/ and let

Rz WD ¹W 2 C W jzj1��=10 < ReW < �=c � jzj1��=10

and �1=2 < ImW < 1=2º:
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Definition 4.7. Let �z.W / D W C .b0;3 � 1/R.z;W /, where

R.z;W / WD czeW Fc.W / (4.2)

and Fc is the primitive on R0 of W 7! e�W cot.cW / vanishing at �
2c

.

A straightforward computation shows that R.z;W / is a solution of the linear PDE

�z
@R

@z
C
@R

@W
D cz cot.cW /: (4.3)

Lemma 4.8. We have

. �=oz /�1.W / D �cz cot.cW / � z=2CO.z2 cot.cW /; z2/:

Proof. We have

. �=oz /�1.W / D
�C.z/ � ��.z/e2icW

1 � e2icW
(4.4)

and using the fact that �˙.z/ WD .�1=2 ˙ ic/z C .
aC.b�1/b0;3�‚

2
˙ ic‚/z2 C O.z3/,

we get the conclusion.

Lemma 4.9. Assume that  �z.w/ 2 Rz , and let W WD  �z.w/, W1 WD  
�
p.z/
ı qz.w/ and

z1 WD p.z/. Then

jR.z1; W1/ �R.z;W / � cz
2 cot.cW /j D O.jzj2Cı/ (4.5)

with ı WD 2� � 1 > 0.

Proof. In the computations that follow, we will frequently use the bound cot.cW / D
O.sin.cW /�1/, valid for W 2 R0. Let x WD .z; W / and h WD .z1; W1/ � .z; W /. Then
by Taylor–Lagrange’s formula, we have

R.x C h/ �R.x/ � dRx.h/ D
Z 1

0

.1 � t /2

2
d2RxCth.h; h/ dt (4.6)

and

d2Ry.h; h/ D Rzz.y/h21 C 2RzW .y/h1h2 CRWW .y/h
2
2

where Rzz WD @2R
@z2

, etc. Moreover, Rzz D 0, and

RzW .z;W / D ce
W Fc.W /C c cot.cW /;

RWW .z;W / D cz

�
eW Fc.W /C cot.cW / �

c

sin2.cW /

�
:

Since eW D O.1/ and Fc.W / D O.logW; log.W � �=c// D O.sin.cW /�1/ in R0, we
have

RzW .z;W / D O.sin.cW /�1/:

Similarly, RWW .z;W / D O.z sin.cW /�2/:
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Using h1 D O.z2/ and h2 D O.z/, we deduce

d2Ry.h; h/ D O.z3 sin.cW /�1/CO.z3 sin.cW /�2/ (4.7)

Since W 2 Rz by assumption, we have z3 sin.cW /�2 D O.jzj1C2�/ D O.jzj2Cı/

with ı WD 2� � 1 > 0. Therefore

jR.z1; W1/ �R.z;W / � dRx.h/j D O.jzj2Cı/:

It now remains to compare dRx.h/ and cz2 cot.cW /. First, note that

h D .�z2 CO.z3/; z CO.zw; z2// D
�
�z2 CO.z3/; z CO.z2 sin.cW /�1/

�
:

Indeed, by Lemma 4.8 and the assumption that W 2Rz , we have w D O.z sin.cW /�1/.
Therefore

dRx.h/ D Rz.x/h1 CRW .x/h2
D �z2Rz.x/C zRW .x/CO.z

3Rz ; z
2 sin.cW /�1RW /

D cz2 cot.cW /CO.z3 sin.cW /�1; z3 sin.cW /�2/;

hence we have
jdRx.h/ � cz2 cot.cW /j D O.jzj2Cı/:

Definition 4.10. We define QA.z;w/ WD �p.z/ ı  �p.z/ ı qz.w/ � �z ı  
�
z.w/ � z.

Proposition 4.11 (Almost translation property). Let ı WD 2� � 1 > 0. Then

j QA.z;w/ �ƒz2j D O.jzj2Cı/

for all .z; w/ such that  �z.w/ 2 Rz , where ƒ WD ‚C 1 � 3b0;3=2.

Proof. Let z1 WD p.z/, W WD  �z.w/ and W1 WD  �z1 ı qz.w/. We have

QA.z;w/ D �z1 ı  
�
z1
ı qz.w/ � �z ı  

�
z.w/ � z

D  �z1 ı qz.w/ �  
�
z.w/ � z C .b0;3 � 1/.R.z1; W1/ �R.z;W //:

By Lemma 4.9,

j QA.z;w/ � A.z;w/ � cz2.b0;3 � 1/ cot.cW /j D O.jzj2Cı/:

On the other hand, by Proposition 4.5 we have

A.z;w/ D zA0.w/C .‚C 1=2 � b0;3/z
2
CO.z2w; z3/

D .b0;3 � 1/zw C .‚C 1=2 � b0;3/z
2
CO.zw2; z2w; z3/;

so Lemma 4.8 yields

A.z;w/D .1�b0;3/cz
2 cot.cW /Cz2.‚C1�3b0;3=2/CO.zw2; z2w;z3; z3 cot.cW //:
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Putting all of these estimates together, we get

j QA.z;w/ �ƒz2j D O.jzw2j; jz2wj; jzj3; jzj2Cı/: (4.8)

Finally, since by assumption z.w/ 2Rz , we have jwj DO.jzj�/. Indeed, by Lemma 4.8
and the definition of Rz , w D O.z sin.cW /�1/ D O.jzj=jzj1��/ D O.jzj�/.

Finally, using � 2 .1=2; 2=3/ we have

� jzw2j D O.jzj1C2�/ D O.jzj2Cı/, since ı D 2� � 1 by definition;

� jz2wj D O.jzj2C�/ D O.jzj1C2�/ since 2C � > 1C 2�;

� jz3j D O.jzj1C2�/ (again, since 1C 2� < 3).

Therefore (4.8) gives the required estimate

j QA.z;w/ �ƒz2j D O.jzj2Cı/:

Lemma 4.12. As W ! 0 in R0, we have

Fc.W / D
1

c
log.cW / �

1

c

Z �=.2c/

0

e�u log sin.cu/ duC o.1/: (4.9)

Similarly, as W ! �=c in R0, we have

Fc.W / D e
��=c 1

c
log.� � cW /C

1

c

Z �=c

�=.2c/

e�u log sin.cu/ duC o.1/: (4.10)

Proof. Recall that

Fc.W / D

Z W

�=.2c/

e�u cot.cu/ du:

An integration by parts gives

Fc.W / D
1

c
e�W log sin.cW /C

1

c

Z W

�=.2c/

e�u log sin.cu/ du;

which implies both (4.9) and (4.10).

5. Proof of the main theorem

We begin this section by explaining how the map  z , defined in the previous section,
transforms the complex plane.

LetDz be the disk of radius 1
2
j�C.z/� ��.z/j D cjzj CO.z2/ centered at 1

2
.�C.z/C

��.z//. Let �.z;R/ be the union of the two disks of radius R that both contain the points
�C.z/; ��.z/ on their boundary. The radius R will be sufficiently small, to be fixed later.
The definition of �.z; R/ of course only makes sense when the distance between �C.z/
and ��.z/ is less than 2R, which onceR is fixed will be satisfied for jzj sufficiently small.
Our choice of R will depend on the map q0, but not on z.
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Fig. 2

The line Lz through �C.z/ and ��.z/ cuts the complex plane into the left half-plane
H �
z and the right half-plane H o

z . We define � �=o.z; R/ WD �.z; R/ \H
�=o
z . The map  z

maps the disk Dz to the shaded strip Œ� �
4c
; �
4c
� � iR. The image of �.z; R/ is bounded

by two vertical lines, intersecting the real line in points of the form � �
2c
C O.z/; see

Figure 2. Next we define P
�=o
R WDD.�R;R/ and observe that � �=o.pn.z/;R/

n!1
����!P

�=o
R

for all z 2 Bp .

Fixing constants: We choose constants � 2 .1=2; 2=3/ and R > 0 such that

(i) the inverse q�10 is well defined on D.0; 2R/;

(ii) q0.P �
R/ � P �

R and q�10 .P o
R/ � P o

R.

Fixing a compact: For the rest of this section we fix a compact subsetK 0�K�Bp�Bq0 .

Fixing an integer: We fix n0 2 N large enough that for every n > n0 we have pn.K 0/
� P �

p and qkn0 .K/ � P �
R, where kn WD bn�c.

Notations: Given a point .z0; w0/ 2 K 0 �K, we will write �j WD pnCj .z0/ and wj WD
q�j�1 ı q�j�2 ı � � � ı q�0.w0/.

Remark 5.1. Unless otherwise stated, all the constants appearing in estimates depend
only on the compact K 0 �K, but not on the point .z0; w0/ or the integer n.

In computations throughout this section, we will frequently use the following Euler–
Maclaurin formula for the estimate of a finite sum:

m�1X
jDn

f .j / D

Z m

n

f .x/ dx C 1
2
.f .n/ � f .m//C 1

12
.f 0.m/C f 0.n//C �.f;m; n/;

where f is a smooth function and j�.f;m; n/j � 1
120

R m
n
jf 000.x/j dx:
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5.1. Entering the eggbeater

We start with the following lemma which tells us that the first kn elements of the non-
autonomous orbit wj will be suitably close to the autonomous orbit ¹qj0 .w0/º, assuming
that we have chosen sufficiently large n.

Lemma 5.2. There exists n0 > 0 such that for every 0 � ` � kn .where n > n0/ we have
��q0.w`/ D �

�
q0
.w0/C `C o.1/ .as n!1/ and wkn D �

1
kn
CO. lnn

k2n
/ 2 P �

R:

Proof. We use induction on `. For ` D 0 the claim clearly holds. Now we assume that
��q0.wj / D ��q0.w0/ C j C o.1/ for all 0 � j � ` < kn and we proceed to prove that
the same holds for j D `C 1 � kn. Note that ��q0.wj / D �

�
q0
.w0/C j C o.1/ implies

wj D q
j
0 .w0/C o.1/ D O.1=j /

Observe that for all 0 � j � `C 1 we have

��q0.wjC1/ D �
�
q0

�
q0.wj /C b�

2
j CO.�

3
j ; �jw

3
j ; �

2
j w

2
j /
�

D ��q0.wj /C 1CO
�
.��q0/

0.wj /�
2
j ; .�

�
q0
/0.wj /�jw

3
j ; .�

�
q0
/0.wj /�

2
j w

2
j

�
D ��q0.wj /C 1CO

�
�2j

w2j
; �jwj ; �

2
j

�
D ��q0.wj /C 1CO

�
j 2

n2
;
1

nj
;
1

n2

�
D ��q0.wj /C 1CO

�
k2n
n2
;
1

nj

�
:

In the last two equalities we have used the fact that �j D O. 1
nCj

/ � O. 1
n
/ and wj D

O. 1
j
/ � O. 1

kn
/. It follows that

��q0.w`C1/ D �
�
q0
.w0/C `C 1C

X̀
jD0

O

�
k2n
n2
;
1

nj

�
D ��q0.w0/C `C 1CO

�
k2n`

n2
;

log `
n

�
D ��q0.w0/C `C 1CO

�
k3n
n2

�
D ��q0.w0/C `C 1C o.1/;

where the last equality holds since knD bn�c for � 2 .1=2;2=3/. Note these computations
are only valid if wj 2 Bq0 for all 0 � j � ` C 1, but clearly this is the case for all
sufficiently large n. The fact that the choice of good n’s does not depend on ` is derived
from the above o.1/ estimate. Therefore by induction we obtain ��q0.wkn/ D �

�
q0
.w0/C

kn C o.1/. Furthermore, since ��q0.w/ D �1=w C .1 � b0;3/ log.�w/ C o.1/, we also
obtain wkn D �

1
kn
CO. lnn

k2n
/ and hence wkn 2 P �

R for all sufficiently large n.
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Lemma 5.3. For all sufficiently large n we have

 ��kn
.wkn/ D �

�kn
wkn
C

�2
kn

2w2
kn

C o.�kn/:

Proof. First observe that  �kn .wkn/ is well defined for all sufficiently large n. Indeed, for
all large n we have �kn 2 P �

p and wkn 2 � �.�kn ; R/. From the computation in the proof
of Proposition 4.5 we can conclude that

 ��kn
.wkn/ D �

�kn
wkn
C

�2
kn

2w2
kn

CO

�
�3
kn

w3
kn

�
D �

�kn
wkn
C

�2
kn

2w2
kn

CO

�
�kn �

k3n
n2

�
D �

�kn
wkn
C

�2
kn

2w2
kn

C o.�kn/;

where the last two equalities follow from the same argument as in the proof of the previous
lemma.

Remark 5.4. By Lemma 5.2 we have wkn 2 P �
R and since � �.�kn ; R/! P �

R as n!1
we can conclude that wkn 2 � �.�kn ; R/ for all .z0; w0/ 2 K 0 � K and all sufficiently
large n. Moreover, by combining Lemmas 5.2 and 5.3 we also get

wkn D �j�kn j
�
C o.��kn/

and hence  ��kn .wkn/ 2R�kn
for all .z0;w0/ 2K 0 �K and all sufficiently large n (recall

that Rz was introduced in Definition 4.6).

Definition 5.5 (Approximate Fatou coordinate). Let ˆz WD �z ı  �z .

Lemma 5.6 (Comparison with incoming Fatou coordinates). We have

1

�kn
ˆ�kn .wkn/ D �

�
q0
.wkn/C

k2n
2n
C .1 � b0;3/ lnnCE� C o.1/;

where

E� WD .b0;3 � 1/

�
ln c �

Z �=.2c/

0

e�u ln sin.cu/ du
�
:

Proof. Recall that by Lemmas 5.2 and 5.3 we have

wkn D �
1

kn
CO

�
lnn
k2n

�
and

 ��kn
.wkn/ D �

�kn
wkn
C

�2
kn

2w2
kn

C o.�kn/:
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Next, we have

1

�kn
ˆ�kn .wkn/ D

1

�kn
��kn ı  

�
�kn
.wkn/

D
W

�kn
� c.1 � b0;3/e

W Fc.W / with W WD  ��kn .wkn/

D �
1

wkn
C
k2n
2n
� c.1 � b0;3/e

W Fc.W /C o.1/:

Note that eW D 1CO.W / D 1CO.�kn=wkn/ and therefore by Lemma 4.12,

ceW Fc.W / D log
�
�
�kn
wkn

�
C ln c �

Z �=.2c/

0

e�u ln sin.cu/duC o.1/

D � log.�wkn/ � lnnC ln c �
Z �=.2c/

0

e�u ln sin.cu/duC o.1/:

Putting all together we get

1

�kn
ˆ�kn .wkn/ D �

1

wkn
C.1�b0;3/ log.�wkn/C

k2n
2n
C.1�b0;3/ lnnCE�Co.1/

D ��q0.wkn/C
k2n
2n
C.1�b0;3/ lnnCE�Co.1/:

5.2. Passing through the eggbeater

Definition 5.7. Let ˛0; ˇ0 be as in (1.2) and define Mn WD b.˛0 � 1/nC ˇ0 lnnc, where
b�c is the floor function. Let `n WD be�=cknc and �n WD ¹.˛0 � 1/nC ˇ0 ln nº, where ¹�º
denotes the fractional part. Finally, we define Wj WD ˆ�j .wj /.

Lemma 5.8. For kn � i �Mn � `n, we have Wi 2 R�i and

Wi D Wkn C

i�1X
jDkn

�j C QA.�j ; wj /:

Proof. We prove this by induction on i .

� Initialization: It comes from the fact thatWkn D kn=nCO.k
2
n=n

2/ (see Lemmas 5.2,
5.3 and 5.6).

� Inductive step: Let kn � i � Mn � `n and assume that Wj 2 R�j for all kn � j < i .
We need to prove that also Wi 2 R�i . First recall that by Proposition 4.11 we haveˇ̌̌

Wi �Wkn �

i�1X
jDkn

�j

ˇ̌̌
D

ˇ̌̌ i�1X
jDkn

QA.�j ; wj /
ˇ̌̌

�

i�1X
jDkn

C

.nC j /2
D

C.i � kn/

.nC kn/.nC i/
CO

�
1

n

�
;
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where we have used the Euler–Maclaurin formula to compute the sum
Pi�1
jDkn

1
.nCj /2

and the fact that �j D 1
nCj
C O. ln.nCj /

.nCj /2
/, and that QA.�j ; wj / D O.�2j / whenever

ˆ�j .wj / 2 R�j . Moreover, since i �Mn � `n we have

C.i � kn/

.nC kn/.nC i/
D O

�
1

n

�
and therefore

Wi D Wkn C

i�1X
jDkn

�j CO

�
1

n

�

D
kn

n
C

i�1X
jDkn

1

nC j
CO

�
k2n
n2

�
D ln

�
nC i

nC kn

�
C
kn

n
CO

�
k2n
n2

�
D ln

�
1C

i

n

�
CO

�
k2n
n2

�
:

Now observe that

ln
�
1C

i

n

�
�
�

c
� e��=c

`n

n
D
�

c
�
kn

n
CO

�
1

n

�
;

and therefore

j�i j
1��
C o.�1��i / D ReWkn < ReWi �

�

c
�
kn

n
CO

�
k2n
n2

�
D
�

c
� j�i j

1��
C o.�1��i /

and ImWi DO.k2n=n
2/. Finally, note that all the bounds in theO.�/ terms above can be

chosen to be independent of i . Therefore, there exists N > 0 (independent of i ), such
that for every n > N we have Wi 2 R�i as long as Wj 2 R�j for all kn � j < i .

In the above proof we have seen that WMn�`n D �=c � j�Mn�`n j
1�� C o.�1��

Mn�`n
/,

but for our purposes we will need the following sharper estimate.

Lemma 5.9. We have

WMn�`n D
�

c
C
Gn

n
C o

�
1

n

�
;

where

Gn WD �e
��=c`n C

k2n
2n
C .1 � b0;3/e

��=c lnn � e��=c�n C ��q0.w0/C
QC

and

QC WD .1 � a/e��=c
�

c
C .1 � e��=c/

�
‚C 3

2
.1 � b0;3/C .a � 1/ � �

�
p.z0/

�
CE�:
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Proof. First recall that by Proposition 4.11 and Lemma 5.8 we have

WMn�` D Wkn C

Mn�`n�1X
jDkn

�j C QA.�j ; wj /

D Wkn C

Mn�`n�1X
jDkn

�
�j Cƒ�

2
j CO.�

2Cı
j /

�
:

Also recall that by Lemmas 5.2 and 5.6 we have

Wkn D
1

n

�
��q0.w0/C kn C

k2n
2n
C .1 � b0;3/ lnnCE�

�
C o

�
1

n

�
and

�j D
1

nC j
�
.1 � a/ ln.nC j /C ��p.z0/

.nC j /2
CO

�
ln2 n
n3

�
:

First observe that since Mn D O.n/ and �j D O. 1
jCn

/ � O. 1
n
/ we have

Mn�`n�1X
jDkn

QA.�j ; wj / D

Mn�`n�1X
jDkn

ƒ�2j CO

�
1

n1Cı

�
D

Mn�`n�1X
jDkn

ƒ�2j C o

�
1

n

�
:

Next we define the functions

ı1.j / WD
1

nC j
; ı2.j / WD �

.1 � a/ ln.nC j /C ��p.z0/

.nC j /2
;

ı3.j / WD �j � ı1.j / � ı2.j / D O

�
ln2 n
n3

�
:

Then
Mn�`n�1X
jDkn

ı3.j / D O

�
ln2 n
n2

�
D o

�
1

n

�
;

and therefore
Mn�`n�1X
jDkn

�j D

Mn�`n�1X
jDkn

.ı1.j /C ı2.j //CO

�
ln2 n
n2

�
:

Furthermore, by the Euler–Maclaurin formula applied to ı1 C ı2, we get

Mn�`n�1X
jDkn

.ı1.j /C ı2.j //

D

Z Mn�`n

kn

.ı1.j /C ı2.j // dj C
1

2
.ı1.kn/ � ı1.Mn � `n//

C �.ı1 C ı2; kn;Mn � `n � 1/

D

Z Mn�`n

kn

ı1.j / dj C

Z Mn�`n

kn

ı2.j / dj C
1

2n
.1 � e��=c/C o

�
1

n

�
:
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Next we compute the two integrals in the above expression:Z Mn�`n

kn

ı1.j / dj D ln
�
nCMn � `n

nC kn

�
D
�

c
C .b0;3 � a/.1 � e

��=c/
lnn
n
� e��=c

1

n
�n �

kn

n
� e��=c

`n

n

C
1

2n2
.k2n � e

�2�=c`2n/CO

�
1

n3.1��/

�
D
�

c
C .b0;3 � a/.1 � e

��=c/
lnn
n
� e��=c

1

n
�n �

kn

n
� e��=c

`n

n
C o

�
1

n

�
;

where we have used the fact that 1=2 < � < 2=3 and k2n � e
�2�=c`2n D O.n

�/. For the
other integral we haveZ Mn�`n

kn

ı2.j / dj D ..1 � a/C �
�
p.z0//

�
1

nCMn � `n
�

1

nC kn

�
C .1 � a/

�
ln.nCMn � `n/

nCMn � `n
�

ln.nC kn/
nC kn

�
D
1

n
.1 � a/.e��=c � 1/C

1

n
.e��=c � 1/��p.z0/C

1

n
.1 � a/e��=c

�

c

C .1 � a/.e��=c � 1/
lnn
n
C o

�
1

n

�
D
1

n

�
.1 � aC ��p.z0//.e

��=c
� 1/C .1 � a/e��=c

�

c

�
C .1 � a/.e��=c � 1/

lnn
n
C o

�
1

n

�
:

Therefore,
Mn�`n�1X
jDkn

�j D
�

c
C .b0;3 � a/.1 � e

��=c/
lnn
n
� e��=c

1

n
�n �

kn

n
� e��=c

`n

n

C .1 � a/.e��=c � 1/
lnn
n
C o

�
1

n

�
:

Next, observe that �2j D ı
2
1.j /CO.

lnn
n3
/ , so that

Mn�`n�1X
jDkn

�2j D

Mn�`n�1X
jDkn

ı1.j /
2
CO

�
lnn
n2

�
:

By the Euler–Maclaurin formula, we have

Mn�`n�1X
jDkn

ı1.j /
2
D

Z Mn�`n

kn

1

.nC j /2
dj CO

�
1

n2

�
D

1

nC kn
�

1

nCMn � `n
C o

�
1

n

�
D
1

n
.1 � e��=c/C o

�
1

n

�
:



M. Astorg, L. Boc Thaler 590

Therefore
Mn�`n�1X
jDkn

�2j D
1

n
.1 � e��=c/C o

�
1

n

�
:

Putting all together we obtain

WMn�`n D Wkn C

Mn�`n�1X
jDkn

.�j Cƒ�
2
j /C o

�
1

n

�
D
�

c
� e��=c

`n

n
C .1 � b0;3/e

��=c lnn
n
C

k2n
2n2

C
1

n
.��q0.w0/C

QC � e��=c�n/C o

�
1

n

�
:

Remark 5.10. Since Gn D e��=c`n C o.`n/, we have ReGn < 0 for all large n.

5.3. Exiting the eggbeater

Lemma 5.11 (Comparison with outgoing Fatou coordinates). We have wMn�`n 2 P o
R,

and

1

�Mn�`n

�
ˆ�Mn�`n .wMn�`n/ �

�

c

�
D �oq0.wMn�`n/C e

��=c `
2
n

2n
C .1 � b0;3/ lnnCEo C o.1/;

where

Eo WD .1 � b0;3/

�
�

c
� ln c � e�=c

Z �=c

�=.2c/

e�u ln sin.cu/ du
�
:

Proof. By Lemmas 5.8 and 5.9 we know thatWMn�`n 2R�Mn�`n
andWMn�`n D �=c �

e��=c`n=n C o.`n=n/. Since wMn�`n D �c�Mn�` cot.cWMn�`n/ C O.1=n/, we have
wMn�`n � 1=`n and hence wMn�`n 2 P o

R for all sufficiently large n. By the same com-
putation as in the incoming case, we have

 o�Mn�`n
.wMn�`n/ D �

�Mn�`n
wMn�`n

C
�2
Mn�`n

2w2
Mn�`n

C o.�Mn�`n/

D �Mn�`n

�
�

1

wMn�`n
C e��=c

`2n
2n
C o.1/

�
:

Recall that �oq0.w/ D �1=w C .1 � b0;3/ logw C o.1/.
Next, we have

ˆ�Mn�`n .wMn�`n/ D ��Mn�`n ı  
�
�Mn�`n

.wMn�`n/

D ��Mn�`n . 
o
�Mn�`n

.wMn�`n/C �=c/

D �=c CW � c�Mn�`n.1 � b0;3/e
WC�=cFc.W C �=c/;
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where W WD  o�Mn�`n .wMn�`n/, and by Lemma 4.12,

ceWC�=cFc.W C �=c/D log
�
�Mn�`n
wMn�`n

�
C ln cC e�=c

Z �=c

�=.2c/

e�u ln sin.cu/duC o.1/

D � logwMn�`n � ln.e�=cn/C ln c C e�=c
Z �=c

�=.2c/

e�u ln sin.cu/duC o.1/:

Putting all together we obtain

1

�Mn�`n
.ˆ�Mn�`n .wMn�`n/ � �=c/

D �
1

wMn�`n
C .1 � b0;3/ logwMn�`n C e

��=c `
2
n

2n
C .1 � b0;3/ lnnCEo C o.1/

D �oq0.wMn�`n/C e
��=c `

2
n

2n
C .1 � b0;3/ lnnCEo C o.1/:

Lemma 5.12. For Mn � `n � j �Mn, we have wj 2 P o
R and

�oq0.wj / D �
o
q0
.wMn�`n/C j � .Mn � `n/C o.1/:

Proof. Recall that wMn�`n D O.1=`n/:
For Mn � `n � j �Mn � 1 we have

�oq0.wjC1/ D �
o
q0
.q0.wj /C b�

2
j CO.�

3
j // D �

o
q0
.wj /C 1CO..�

o
q0
/0.wj /�

2
j /

D �oq0.wj /C 1CO.�
2
j =w

2
j /:

Now, similarly to Lemma 5.2, induction on j proves that wj D O. 1
Mn�j

/ � O. 1
`n
/. This

implies that
�oq0.wjC1/ D �

o
q0
.wj /C 1CO.`

2
n=n

2/

and therefore, again by induction, �oq0.wMn/ D �oq0.wMn�`n/ C `n C o.1/, where we
have used the fact that O.`3n=n

2/ D o.1/ since `n � n� for � 2 .1=2; 2=3/.

5.4. Conclusion

Our Main Theorem is a corollary of the following more general theorem which we prove
first.

Theorem 5.13. We have

PMn.pn.z/; w/ D
�
pMnCn.z/;L.e�=c ; � � �nI z; w/C o.1/

�
;

where

� WD .e�=c � 1/

�
a � b0;3 C b3;0

2b
C aC

1

2
.1 � b0;3/C .b0;3 � 1/ ln c

�
C .b0;3 � a/

�

c

C e�=c.1 � b0;3/

Z �=c

0

e�u ln sin.cu/ du: (5.1)
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Proof. We have

�oq0.wMn/ D �
o
q0
.wMn�`n/C `n C o.1/

D
1

�Mn�`n
.ˆ�Mn�`n .wMn�`n/ � �=c/ � e

��=c `
2
n

2n
� .1 � b0;3/ lnn �Eo C `n C o.1/

D e�=c��q0.w0/ � �n C e
�=c QC �Eo C o.1/;

where the first equality follows from Lemma 5.12, the second from Lemma 5.11, and the
last one from Lemmas 5.9 and 5.8. Note that in this computation we have used the fact
that 1

2n
.e�=ck2n � e

��=c`2n/ D o.1/.
Finally, recall that

‚ D b0;3 C
a � b0;3 C b3;0

2b
;

E� D .b0;3 � 1/

�
ln c �

Z �=.2c/

0

e�u ln sin.cu/du
�
;

QC D .1 � a/e��=c
�

c
C .1 � e��=c/

�
‚C 3

2
.1 � b0;3/C .a � 1/ � �

�
p.z0/

�
CE�;

Eo D .1 � b0;3/

�
�

c
� ln c � e�=c

Z �=c

�=.2c/

e�u ln sin.cu/du
�
:

A quick computation now gives

e�=c QC �Eo D �.e�=c � 1/��p.z0/C �;

hence
�oq0.wMn/ D e

�=c��q0.w0/ � .e
�=c
� 1/��p.z0/ � �n C � C o.1/:

Remark 5.14. Theorem 5.13 has been proved under the assumption that ˇ0 2R. Follow-
ing essentially the same proof with ˇ0 2 C (only replacing the definition ofMn and �n in
Definition 5.7 byMn WD b.˛0 � 1/nCRe.ˇ0/ lnnc and �n WD ¹.˛0 � 1/nCRe.ˇ0/ lnnº),
one could prove that

wMn D .�
o
q0
/�1

�
e�=c��q0.w0/ � .e

�=c
� 1/��p.z0/ � �n C � C i Im.b0;3 � a/ lnn

�
C o.1/:

It then seems likely that .znCMn ;wMn/ belongs to one of the parabolic domains U˙ from
Theorem 1.2, which in turn would imply that .zn; w/ belongs to the parabolic basin of
.0; 0/ for all n large enough. This also seems to be supported by numerical experiments.

Proof of the Main Theorem from Theorem 5.13. It only remains to rephrase Theorem
5.13 in terms of admissible sequences. Let .nk/k�0 be an .˛0; ˇ0/-admissible sequence.
By definition of Mn and �n, we have

Mnk D b.˛0 � 1/nk C ˇ0 lnnkc;
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and �nk D ¹.˛0 � 1/nk C ˇ0 ln nkº. Therefore, by definition of an .˛0; ˇ0/-admissible
sequence, there exists a bounded sequence .mk/k�0 of integers such that

nkC1 � nk DMnk Cmk ;

and the phase sequence of .nk/k�0 is given by

�k D nkC1 � ˛0nk � ˇ0 lnnk D nkC1 � .Mnk C nk C �nk /

D mk � �nk :

By Theorem 5.13, we have

PMnk .pnk .z/; w/ D
�
pnkCMnk .z/;L.˛0; � � �nk I z; w/C o.1/

�
and therefore, by the functional equation satisfied by L,

P nkC1�nk .pnk .z/; w/ D PMnkCmk .pnk .z/; w/

D
�
pnkCMnkCmk .z/;L.˛0; � Cmk � �nk I z; w/C o.1/

�
D
�
pnkC1.z/;L.˛0; � C �k I z; w/C o.1/

�
:

Finally, since z 2 Bp we have pnkC1.z/ D o.1/ and hence we obtain the desired result

P nkC1�nk .pnk .z/; w// D .0;L.˛0; � C �k I z; w//C o.1/:

Remark 5.15. The proof of the Main Theorem does not require that the phase sequence
.�k/ is bounded, but as we will see later this property is crucial for its application.

6. Wandering domains of rank 1

The aim of this section is to prove Theorem 1.6.

Proof of Theorem 1.6. By our assumption, if .�k/k2N denotes the phase sequence asso-
ciated to the .˛0; ˇ0/-admissible sequence .nk/k2N , then

�k WD nkC1 � ˛0nk � ˇ0 lnnk
k!1
����! �;

and hence by the Main Theorem we haveP nkC1�nk .pnk .z/;w/
k!1
����! .0;Lz.w//, where

Lz.w/ WD L.˛0; � C � I z; w/.
Let E.W / WD ��q0 ı 

o
q0
.W / be the lifted horn map of q0 (see Section 2). Let us define

� WD � C � , where � is the constant from the Main Theorem, and

QHZ;� .W / WD ˛0E.W /C .1 � ˛0/Z C �

as in Definition 1.15.

Lemma 6.1. There exists a point .z0; w0/ 2 Bp �Bq0 such that w0 is a superattracting
fixed point of the map Lz0.w/.
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Proof. First observe that Lz is semi-conjugate to QHZ;� , where Z WD ��p.z/. Indeed, we
have Lz ı  

o
q0
D  oq0 ı

QHZ;� , where  oq0 is the outgoing Fatou parametrization, hence
it suffices to prove that the map QHZ;� has a superattracting fixed point for appropriate
choice of Z 2 C.

Let W0 be a critical point of E and observe that since E commutes with translation
by 1, for every N 2 N the point W0 CN is also a critical point of E .

Next, observe that

˛0E.W0 CN/ � .W0 CN/C �

˛0 � 1
D
˛0E.W0/ �W0 C �

˛0 � 1
CN;

hence for sufficiently large N0 2 N there exists z0 2 Bp such that

Z0 WD �
�
p.z0/ D

˛0E.W0 CN0/ � .W0 CN0/C �

˛0 � 1
:

It is then straightforward to check that W0 C N0 is a superattracting fixed point of
QHZ0;� .W /.

Let .z0; w0/ 2 Bp �Bq0 be such that w0 is a superattracting fixed point of Lz0.w/.
Let A WD ¹.z; w/ 2 Bp �Bq0 W Lz.w/ D wº. The analytic set A has pure dimension 1,
and since w0 is a superattracting fixed point of Lz0.w/, the Implicit Function Theorem
implies that the point .z0; w0/ is contained in a regular part of A. Therefore, there exists
a small disk �z0 centered at z0 and a holomorphic function � W �z0 ! Bq0 that satisfies
�.z0/ D w0 and h.�z0/ � A where h.z/ WD .z; �.z//. Moreover, by restricting that disk
if necessary, we can assume that jL0z.�.z//j < 1=2 on �z0 .

Lemma 6.2. The map � W �z0 ! C is non-constant.

Proof. Recall that we constructed Z0; W0 2 C such that QHZ0;� .W0/ D W0, and Z0 D
��p.z0/, �.z0/ D  

o
q0
.W0/. Again by the Implicit Function Theorem, there exists a holo-

morphic map Q� W �Z0 ! C such that Q�.Z/ is a fixed point of QHZ;� for all Z 2 �Z0 ,
where �Z0 is a small disk centered at Z0. Moreover, � D  oq0 ı Q� ı �

�
p . From the expres-

sion of QHZ;� , it is not difficult to find that Q�0.Z0/ D 1 � ˛0 ¤ 0, therefore Q� and also �
are non-constant.

By the Main Theorem, for each z 2 �z0 there exist a diskDz � Bq0 centered at �.z/
and k0 > 0 such that

proj2.P
nkC1�nk .pnk .z/ �Dz// b Dz (6.1)

for all k � k0, where proj2 W C
2 ! C denotes the projection on the second coordinate.

Moreover, we can find a continuously varying family of disks ¹zº �Dz � Bp �Bq0 and
a uniform constant k0 with respect to the parameter z 2 �z0 for which (6.1) holds. Let us
define an open set

V WD
[
z2�z0

¹pnk0 .z/º �Dz ; (6.2)

and let U be a connected component of the open set P�nk0 .V / containing a point .z0;w0/
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for which P nk0 .z0; w0/ D .pnk0 .z0/; w0/. Observe that for all .z; w/ 2 U we have

P nk .z; w/ D P nk�nk�1 ı P nk�1�nk�2 ı � � � ı P nk0C1�nk0 ı P k0.z; w/

D
�
znk ;L

k�k0
znk0

.wnk0 /C o.1/
�
;

where zj D pj .z/ and wj D proj2 P
j .z;w/ and where the last equality follows from the

Main Theorem. Hence it follows from our construction of the set U that the sequence
.P nk /k�0 converges uniformly on compacts in U to a holomorphic map '.z; w/ WD
.0; �.z// where � is as above. Moreover, it follows from the proof of the Main Theo-
rem (see Lemmas 5.2, 5.8, 5.12) and (6.1) that for every compact K � U the sequence
P j .P nk .K// is bounded for all 0� j � nkC1 � nk DMk and all k� 0. Hence by Cauchy
estimates, .P njU /n�0 is normal and therefore U is contained in some Fatou component
� � C2.

Lemma 6.3. The map � extends holomorphically to a map � W proj1.�/ ! Bq0 , and
there exists a subsequence .Pmk /k�0 that converges locally uniformly on � to the map
ˆ W �! ¹0º �Bq0 defined by ˆ.z;w/ D .0; �.z//.

Proof. Since .P nk / is normal on �, it has a convergent subsequence, say .Pmk /. More-
over,��Bp �C and therefore any limit function of a convergent subsequence of .P nk /
must be of the form ˆ.z; w/ D .0; �.z; w//, and �.z; w/ D �.z/ for all .z; w/ 2 U .
By the identity principle, we therefore have @�

@w
D 0 on �, and so � gives a holomor-

phic continuation of � on proj1.�/, which we still denote by �. Finally, let us argue that
� W proj1.�/! Bq0 .

First, observe that if .z; w/ 2 �, then any !-limit point of the orbit .P n.z; w//n�0
has bounded orbit under P . This implies that � takes values in the non-escaping locus
C n I.q0/ (which is the filled-in Julia set K.q0/ if q0 is a polynomial) where I.q0/ D
¹w 2 C W qn0 .w/ ! 1, as n ! 1º denotes the escaping set of q0. Moreover, by
Lemma 6.2, � is non-constant and therefore open; and by definition, �.�z0/ �Bq0 . Note
that Bq0 is a regular open set, i.e. int.Bq0/ D Bq0 . Indeed, by Montel’s Theorem, for
a non-linear entire function the union of the forward images of an open set having non-
empty intersection with the Julia set can omit at most one value of the complex plane.
Finally, since @Bq0 D J.q0/ D @I.q0/, the map � must therefore take values in Bq0 .

Since E.W / D W � �i.1 � b0;3/C o.1/ as jImW j ! 1 (see [7, Appendix]), we
have

QHZ;� .W / D ˛0W C .1 � ˛0/Z C C C o.1/ as jImW j ! 1 (6.3)

for some constant C 2 C. Let QH� .Z; W / WD .Z; QHZ;� .W // be the lifted horn map
of P , with the notations of the introduction, and recall that it commutes with the map
T .Z; W / D .Z C 1; W C 1/. This map is well defined on C �Uq0 . The set of fixed
points of QH� can be explicitly written as

Fix QH� WD
²�
˛0E.W / �W

˛0 � 1
C

�

˛0 � 1
;W

�
W W 2 Uq0

³
: (6.4)
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Let us define �.Z;W /D .Z �W;e2�iW / and QU WD �.C �Uq0/�C �C�. Observe
that there is a small punctured disk�� such that C ��� � QU and there exists a holomor-
phic map ‰ W QU ! C � C� such that ‰ ı � D � ı QH� . This map ‰ is holomorphically
conjugate to the horn mapH� of P (see Definition 1.15). It can be expressed more explic-
itly as

‰.X; Y / D

�
˛0X � ˛0

�
E

�
logY
2�i

�
�

logY
2�i

�
� �; Y 1�˛0.h.Y //˛0e2�i..1�˛0/XC�/

�
;

where h is the horn map of q0. Moreover, E.
logY
2�i

/ �
logY
2�i

is a single-valued function
since E.W C 1/ D E.W /C 1. It extends holomorphically over C � ¹0º with ‰.X; 0/ D
.˛0X C ˛0�i.1 � b0;3/ � �; 0/: We still denote this extended map by ‰.

Lemma 6.4. � is a wandering domain.

Proof. Let ˆ.z; w/ D .0; �.z// be the limit function as in the lemma above and define
ƒ WD proj1.�/ � Bp . Observe that �.ƒ/ D proj2.ˆ.�// and † WD ¹.z; �.z// W z 2 ƒº
is connected.

Let Fix‰ be the analytic variety of fixed points of ‰ and observe that Fix‰ is closed
in the domain of definition of ‰. Moreover,

�

�
˛0E.W / �W

˛0 � 1
C

�

˛0 � 1
;W

�
D

�
˛0.E.W / �W /

˛0 � 1
C

�

˛0 � 1
; e2�iW

�
; (6.5)

and hence

�

�
˛0E.W / �W

˛0 � 1
C

�

˛0 � 1
;W

�
ImW!1
������!

�
�˛0�i.1 � b/C �

˛0 � 1
; 0

�
: (6.6)

Since Fix‰ is closed, it follows that .�˛0�i.1�b/C�
˛0�1

; 0/ 2 Fix‰ .
Let Bz.w/ WD ˛0�

�
q0
.w/ C .1 � ˛0/�

�
p.z/ C � . Observe that Lz D  oq0 ı Bz , and

if Z WD ��p.z/, then QHZ;� D Bz ı  
o
q0

. In other words, Bz also semi-conjugates Lz

and QHZ;� . We let „.z;w/ WD .��p.z/; Bz.w//, and let

†0 WD „.†/ � Fix QH�

be the “lift” of †. Since „ is continuous and † is connected, so is †0.
Let us assume that� is not wandering. Up to replacing�withP `.�/we may assume

that it is periodic, i.e. Pm.�/ D �. Observe that this implies that †0 is forward invariant
under the translation Tm. Let 
 W I ! †0 be a smooth curve such that 
.0/ D .Z0; W0/
and 
.1/ D .Z0 C m;W0 C m/ (this is possible since †0 is connected), and such that
�.
.I // is a Jordan curve.

Now observe that by (6.4), Fix QH� is a holomorphic graph above Uq0 and therefore
is conformally equivalent to the upper half-plane; and by (6.5) and (6.6), its image under
� is conformally equivalent to a punctured disk. After the addition of the fixed point
.�˛0�i.1�b/C�

˛0�1
; 0/, we therefore see that Fix‰ is conformally equivalent to a disk. The
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curve �.
/ is a Jordan curve around .�˛0�i.1�b/C�
˛0�1

; 0/ in that disk. Next by the chain rule
we have

d‰. .Z;W // ı d�.Z;W / D d�. QH� .Z;W // ı d QH� .Z;W /; (6.7)

hence at fixed points of QH� the linear endomorphisms d‰.Z;W / and d QH� .Z;W / have
the same eigenvalues. Since QH� .Z;W /D .Z; QHZ;� / it follows by construction of†0 that
the two eigenvalues of d QH� at fixed points from †0 are 1 and � 2 D.0; 1/.

Now let us consider the holomorphic map det d‰ W Fix‰!C. Since 
 �†0, it clearly
follows from (6.7) that jdet d‰j < 1 on �.
/. Moreover, by (6.6) and (6.7) we have

det d‰
�
�˛0�i.1 � b/C �

˛0 � 1
; 0

�
D lim

ImW!1
W 2Uq0

det d QH�

�
˛0E.W / �W

˛0 � 1
C

�

˛0 � 1
;W

�

D lim
ImW!1
W 2Uq0

@ QHZ;�

@W

�
˛0E.W / �W

˛0 � 1
C

�

˛0 � 1
;W

�
D lim

ImW!1
W 2Uq0

˛0 C o.1/ D ˛0 > 1;

where the last line is computed using (6.3). But this contradicts the maximum principle,
hence � must be a wandering domain.

This completes the proof of Theorem 1.6.

7. Wandering domains for higher periods

7.1. Simply connected hyperbolic components

In this section we assume that ˛0 2N� and q0.w/DwCw2. We let Oh denote the classical
horn map of q0 (see Section 2), and recall that

e2i�.1�˛0/ZC2i�� Oh.e2i�W /˛0 D e2i�
QHZ;� .W /: (7.1)

We let h WD Oh˛0 , and consider the family .h�/�2C� defined by h� WD �h. By the choice
of q0, the maps h� have exactly three singular values:

(1) 0 and1, which are asymptotic values that are also superattracting fixed points;

(2) one free critical value v� WD �v, where v WD e2i��
�
q0
.�1=2/.

Indeed, these last two properties follow from the classical fact that the map Oh has exactly
three singular values: 0 and1which are fixed asymptotic values, and v which is a critical
value. We refer the reader to [7, Appendix] for a proof of these facts. In particular, if h�
has an attracting cycle different from 0 and1, then it must capture v�.

Note that h is a finite type map in the sense of Epstein and it is clear from its definition
that it is semi-conjugate to Lz .
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Definition 7.1. A hyperbolic component of period m in the family .h�/�2C� is a con-
nected component of the set of � 2 C� such that h� has an attracting cycle of period m
different from 0 and1.

In order to prove that the Fatou components that we construct are indeed wandering,
we will use the following result, which also has intrinsic interest:

Theorem 7.2. Hyperbolic components in the family .h�/�2C� are simply connected.

Fig. 3. Parameter space of .h�/�2C� . Hyperbolic components are in black. Red and blue corre-
spond to parameters � for which v� is captured by 0 or 1 respectively, and white to � such that
v� eventually exits the domain of h�. Observe that for all j�j large enough, v� is captured by1
(blue). Right: a zoom on a copy of the Mandelbrot set (bottom center of the left figure).

Before proving Theorem 7.2, we introduce some further notations:

Definition 7.3. We let Pm WD ¹.�; z/ 2 C� �C� W z D hm
�
.z/º, and Q� W Pm ! C be the

map defined by Q�.�; z/ D .hm
�
/0.z/.

Let U be a hyperbolic component of period m and D � C the unit disk. Then U D
proj1.…/, where … is a connected component of Q��1.D/. Since for every � 2 C�, h�
has only one free singular value, it may have at most one attracting cycle different from 0

and1; therefore if .�; z1/ and .�; z2/ are in the same fiber of the map proj1 W …! U ,
then z1 and z2 must be periodic points of the same attracting cycle. This means that
the function Q� W … ! D descends to a well-defined holomorphic function � W U ! D
satisfying Q� D � ı proj1.

Lemma 7.4. Let U0 WD U n ��1.¹0º/. The map � W U0 ! D� is locally invertible.

Proof. We will prove this using a classical surgery argument, originally due to Douady–
Hubbard [13] for the quadratic family. Let �0 2 U0, and let V be a simply connected open
subset of D� containing �.�0/. Using a standard surgery procedure, we construct for any
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t 2 V a quasiconformal homeomorphism gt such that gt ı h�0 ı g
�1
t is holomorphic, and

gt .z0/ is a periodic point of periodm and multiplier t . We refer to [6, Proposition 6.7] for
the details (see also e.g. [17, Theorem 6.4]).

We let � W V ! Teich.h�0/ be the holomorphic map induced by t 7! �t , where �t
is the Beltrami form associated to gt and Teich.h�0/ is the dynamical Teichmüller space
of h�0 . For the definition of the dynamical Teichmüller space, see [4, 26]. Let OV � U0
be a simply connected domain containing �0. Since for all � 2 OV the free critical value
v� remains captured by the attracting cycle, the family .h�/�2 OV is J -stable by [5, Theo-
rem E]. In fact, since there are no non-persistent singular relations for the family .h�/�2 OV ,
by [26, Theorem 7.4] (stated for rational maps, but whose proof carries over verba-
tim in this setting) the map h�0 is in fact structurally stable on P1: there is a second
holomorphic family Og� of quasiconformal homeomorphisms Og� W P1 ! P1 such that
h� WD Og� ı h�0 ı Og

�1
�

for all � 2 OV , and Og�0 D Id.
We let O� W OV ! Teich.h�0/ denote the map induced by � 7! O��, where O�� is the

Beltrami form associated to Og�. Let � WD d
d�
j�D�0 Og�, and observe that since Og�.v�0/ D

v� D �v, we have �.v�0/ ¤ 0. By [4, Proposition 5], the derivative O�0.�0/ is therefore
non-zero. Therefore, up to restricting V , we may assume that �.V / � O�. OV / and there
exists a well-defined inverse branch O��1 W �.V /! OV . Let c W V ! OV be the map defined
by c WD O��1 ı �. Then c is a holomorphic local inverse of �, which maps �.�0/ to �0; the
lemma is proved.

Lemma 7.5. The map � W U0 ! D� is a covering map of finite degree.

Proof. We start by claiming that… is relatively compact in Pm. Indeed, U D proj1.…/ is
relatively compact in C� because if j�j is small (respectively large) enough, v� is captured
by the superattracting fixed point 0 (respectively1). Moreover, by [5, Theorem A], the
map proj1 W Pm ! C� is proper, because the only two asymptotic values in the family
.h�/�2C� are persistently fixed. Therefore … is relatively compact in Pm. Since Q� is
analytic (hence continuous) on Pm, and since the set …0 WD … n Q�

�1.¹0º/ is a connected
component of Q��1.D�/, this proves that Q� W …0 ! D� is proper. Consequently, so is
� W U0 ! D�.

By Lemma 7.4, the map � W U0 ! D� is also locally invertible; therefore it is a finite
degree covering map.

Proof of Theorem 7.2. By the lemma above, � W U0!D� is a finite degree covering map.
This implies that there exists �0 2 U such that U0 D U n ¹�0º, and U0 is isomorphic to a
punctured disk and U to a disk.

7.2. Proof of Theorem 1.11

We give here is a slightly more precise statement of Theorem 1.11:

Theorem 7.6. To each hyperbolic componentU of the family .h�/�2C� , we can associate
a wandering Fatou component �U of P . Moreover, if U1 ¤ U2, then �U1 and �U2 are
in different grand orbits of P .
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Since ˛0 is an integer, we may choose an ˛0-admissible sequence .nk/ to be simply
nk D ˛

k
0 , which has zero phase sequence, and where n0 2 N�. By the Main Theorem,

P nkC1�nk .pnk .z/; w/! .0;L.˛0; � I z;w// uniformly on compacts in Bp �Bq0 . Here
� is simply the constant � from the Main Theorem, since the phase sequence of .nk/k2N

is zero. Let .�0; x0/ 2 C� � C� be such that x0 is a superattracting periodic point of
exact period ` for h�0 . Let .z0;w0/ 2Bp �Bq0 be such that e2i�.1�˛0/�

�
p.z0/C2i�� D �0

and e2i��
o
q0
.w0/ D x0: then w0 is a superattracting periodic point of L.˛0; � I z0; �/. The

existence of z0 and w0 follows from the fact that ��p.P
�
p/ contains a right half-plane and

�oq0.P
o
q0
/ contains a left half-plane; see Section 2.

Sincew0 is a superattracting periodic point of Lz0 WDL.˛0; � Iz0; �/ of period `, there
exists � > 0 such that jL`

z.w/�w0j � jw � w0j=4 for all .z;w/ 2 D.z0; 2�/�D.w0; �/.
By the Main Theorem, there exists k0 2 N such that for all k � k0 and all .z; w/ 2
D.z0; �/ �D.w0; �/, we have

P nkC`�nk .pnk .z/; w/ 2 pnkC`.D.z0; �// �D.w0; �=2/:

It will be convenient to choose n0 � ˛
k0
0 and replace the ˛0-admissible sequence

.˛k0 /k by .n0˛k0 /k , which we still denote by .nk/k ; then the above inclusion holds for all
k � 0. Let U WD pn0.D.z0; �// �D.w0; �/; an immediate induction proves that

P nk`�n0.U/ � pnk`�n0.D.z0; �// �D.w0; �/

for all k � 0 ; in particular, U is in the Fatou set of P . For any j � 0, let zj WD pj .z0/.
Let � D �.z0; w0; n0/ denote the Fatou component containing .zn0 ; w0/ 2 U0. By

the identity principle and the Main Theorem, P nk`�n0
j�

.z; w/! .0; �.z//, where �.z/ is
an attracting periodic point of period ` of Lz D L.˛0; � I z; �/, with �.zn0/ D w0.

Let us now sum up the construction above: given .z0; w0/ such that w0 is a super-
attracting periodic point of period ` for Lz0 , and given any n0 2 N large enough, we
have constructed a Fatou component �.z0; w0; n0/ of P which contains .zn0 ; w0/ D
.pn0.z0/; w0/, and such that P nk`�n0

j�.z0;w0;n0/
! .0; �.z//, where nk D n0˛k0 .

Lemma 7.7. The Fatou component � WD �.z0; w0; n0/ is wandering.

Proof. The proof is similar to the one in Section 6, and we use some of the same notations.
We assume for a contradiction that � is not wandering: then P pCm.�/ D P p.�/ for
some m 2 N and p 2 N�. Up to replacing � by P p.�/, we may assume p D 0.

There exists some continuous curve joining .zn0 ; w0/ and P `.zn0 ; w0/ inside �.
Using the convergence of P nk`�n0 to .0; �/, we obtain a curve joining �.zn0/ and
�.zn0Cp/ inside † WD �.ƒ/, where ƒ WD proj1.�/. We let †0 be as in Section 6; it is
an open subset of Perm. QH� / WD ¹.Z; W / 2 C2 W QHm

� .Z; W / D .Z; W /º. Then there
is a curve in †0 joining .Z0; W0/ and .Z0 C p; W0 C p/, where Z0 WD ��p.zn0/ and
W0 WD ˛0�

�
q0
.w0/C .1 � ˛0/Z0 C � .

Finally, we consider the image of this curve under the map

e W .Z;W / 7! .e2i�.1�˛0/ZC2i�� ; e2i�W /: (7.2)
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It now becomes a closed loop in … WD e.†0/, which we denote by 
 WD .
1; 
2/. By con-
struction, the loop 
2 is non-contractible in C�; however, it is contained in the hyperbolic
component U D proj1.…/, so this contradicts Theorem 7.2.

Lemma 7.8. If .zi ; wi / .i D 1; 2/ are such that �i D e2i�.1�˛0/�
�
p.zi /C2i�� are centers

of two different hyperbolic components Ui , and if n0 2 N is large enough, then the wan-
dering Fatou components �i WD �.zi ; wi ; n0/ are not in the same grand orbit.

Proof. The idea of the proof is similar. Recall that wi is a superattracting periodic point
of Lzi WD L.˛0; � I zi ; �/. Let us denote by `i the period of wi under Lzi .

Assume towards a contradiction that �1 and �2 are in the same grand orbit of Fatou
components for P ; then there existmi 2N such that Pm1.�1/D Pm2.�2/DW�. More-
over, by construction, P

nk`i�n0

j�i
converges to the map .z; w/ 7! .0; �i .z//, where for

all z 2 ƒi WD proj1.�i /, �i .zi / is a periodic point of period `i of the maps Lzi WD

L.˛0; � I zi ; �/. In particular, if we let n0
k
WD nk` with ` WD lcm.`1; `2/, then we have

P
n0
k
�n0

j�i
! .0; �i /.

By normality, it is easy to see that the multipliers of those fixed points cannot be
repelling: �i .z/ WD .L

`i
z /
0.�i .z// 2 xD for all z 2 ƒi . Moreover, �i .zi / D 0. If �i is con-

stant, then in particular �i takes its values in D; and if it is non-constant, then its image is
an open set contained in xD, therefore it is also contained in D.

Next, we claim that there exists � W ƒ WD proj1.�/! C such that �i D q
Ni
0 ı � ı p

mi

for someNi 2N. Indeed, since P
n0
k
�n0

j�i
! .0;�i / on�i , there exist functions �i Wƒ!C

such that up to replacing .n0
k
/ by a subsequence, P n

0
k
�n0�mi ! .0; �i / on �, and

�i D �i ı p
mi :

Assume without loss of generality that N0 WD m1 �m2 � 0. Then

.0; �2/ D lim
k
P nk�n0�m2 D lim

k
P nk�n0�m1CN0 D PN0 ı .0; �1/

so that qN00 ı �1 D �2. So we can take � WD �1, N1 WD N0 and N2 WD 0.
Recall now that

„.z;w/ WD
�
��p.z/; ˛0�

�
q0
.w/C .1 � ˛0/�

�
p.z/C �

�
;

†i WD ¹.z; �.z// W z 2 ƒiº; †0i WD „.†i /:

Let 
 D .
1; 
2/ W Œ0; 1� ! � be a continuous curve joining Pm1.pn0.z1/; w1/ and
Pm2.pn0.z2/; w2/ in �. Let .Zi ; Wi / WD „.pn0.zi /; wi /. Then for all k; p 2 N and
.z; w/ 2 Bp � Bq0 , we have „.pk.z/; qp0 .w// � „.z; w/ 2 Z2. In particular, Q
.t/ WD
„.
1.t/; �.
1.t/// gives a continuous curve with the following properties:

(1) Q
.0/ �„.z1; �1.z1// 2 Z2;

(2) Q
.1/ �„.z2; �2.z2// 2 Z2;

(3) for all t 2 Œ0; 1�, Q
.t/ 2 Per`. QH� /, where ` WD lcm.`1; `2/, QH� .Z; W / is the lifted
horn map defined in (1.7), and . @

@W
QH `
Z;� /. Q
.t// 2 D.

(Property (3) comes from the previous observation that �i .z/ 2 D for all z 2 ƒi .)
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Finally, we consider a curve . O
1; O
2/ WD e ı Q
 , were e is given by (7.2). Then O
1 is a
continuous curve joining �1 and �2 inside a hyperbolic component of period (dividing) `
for the family .h�/�2C� , which is a contradiction. Thus Lemma 7.8 and Theorem 7.6 are
proved.

Finally, to deduce Theorem 1.11 from Theorem 7.6, we just need to know that there
are countably many hyperbolic components in the family .h�/�2C� . Since we have proved
that the multiplier map is a conformal uniformization of any hyperbolic component on
the unit disk, it is enough to prove that there are countably many � 2 C� such that h�
has a superattracting periodic point (different from 0 or 1). But this follows from e.g.
[5, Proposition 5.1].

8. Proofs of Theorems 1.12 and 1.16

8.1. Proof of Theorem 1.12

Lemma 8.1. Let P be a map of the form (1.1). Let U be a neighborhood of .0; 0/ in C2,
and � 2 C. Then there exists .z0; w0/ 2 .Bp �Bq0/ \ U such that w0 is an attracting
fixed point of Lz0 WD L.˛0; � I z0; �/.

Proof. By Lemma 6.1, there exists .z0; w0/ 2 Bp �Bq0 such that w0 is a superattracting
fixed point of Lz0 . By the Implicit Function Theorem, for all z in the neighborhood of z0,
there exists �.z/ such that w D �.z/ is an attracting fixed point of Lz . Moreover, we
have proved in Lemma 6.2 that � is a non-constant holomorphic map, hence it is open. In
particular, we may choose Oz close to z0 such that the forward orbit of Ow WD �. Oz/ under q0
does not meet crit.q0/. LetN 2N be large enough that .z0;w0/ WD .pN . Oz/;qN0 . Ow// 2U ;
we will prove that w0 is an attracting fixed point of Lz0 .

Indeed, by (1.4), we have

L.˛0; � I z0; w0/ D q
N
0 ıL.˛0; � I Oz; Ow/ D q

N
0 . Ow/ D w0;

so w0 is indeed a fixed point of Lz0 .
Secondly,

@

@w

ˇ̌̌̌
.z;w/D. Oz; Ow/

L.˛0; � Ip
N .z/; qN0 .w// D

@

@w

ˇ̌̌̌
.z;w/D. Oz; Ow/

qN0 ıL.˛0; � I z; w/;

@L

@w
.˛0; � I z0; w0/ � .q

N
0 /
0. Ow/ D .qN0 /

0
ıL.˛0; � I Oz; Ow/ �

@L

@w
.˛0; � I Oz; Ow/

D .qN0 /
0. Ow/

@L

@w
.˛0; � I Oz; Ow/:

Therefore, since .qN0 /
0. Ow/ ¤ 0, we have

.Lz0/
0.w0/ D

@L

@w
.˛0; � I z0; w0/ D

@L

@w
.˛0; � I Oz; Ow/ 2 D

and w0 is indeed an attracting fixed point of Lz0 .
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Lemma 8.2. Let P be a map of the form (1.1), which admits an .˛0; ˇ0/-admissible
sequence .nk/k�0 with a converging phase sequence, whose limit we denote by � . Let U
be a neighborhood of .0; 0/ in C2, and let .z0; w0/ be as in the lemma above. Then for
k0 2 N large enough, P j .pnk0 .z0/; w0/ 2 U for all j 2 N.

Proof. Assume without loss of generality that U DD.0; r/�D.0; r/ for some r > 0. Let
.z0;w0/ be given by Lemma 8.1, so that max.jz0j; jw0j/ < r . For k0 large enough, we have
jpjCnk0 .z0/j < r for all j � 0, since limk!1 p

nk .z0/D 0. In particular, we may choose
k0 large enough that .pnk0 .z0/;w0/ 2 U , and jpjCnk0 .z0/j< r for all j � 0. It then only
remains to prove that for a choice of k0 large enough, jproj2 ı P

j .pnk0 .z0/;w0/j < r for
all j � 0.

Let � WD � C � . Since w0 is attracting, there exists 0 < � < r � jw0j such that
Lz0.D.w0; �// b D.w0; �/: By the Main Theorem, we may choose k0 large enough that
for all k � k0,

proj2 ı P
nkC1�nk .¹pnk .z0/º;D.w0; �// b D.w0; �/:

Then, by induction on k, we have proj2 ı P
nkC1�nk0 .pnk0 .z0/; w0/ 2 D.w0; �/ �

D.0; r/:
Finally, we claim that for all k � k0 and all 0 � j � nkC1 � nk ,

proj2 ı P
j .pnk0 .z0/; w0/ 2 D.0; r/:

For 0 � j � tk WD b.nk/�c, this follows from Lemma 5.2.
For tk � j � nkC1 � nk � b˛0tkc, it follows from Lemma 5.8. Indeed, by Lemma

5.8, we have Wj 2 R�i for all tk � j � nkC1 � nk � b˛0tkc. Then, by Lemma 4.8,

wj D  
�1
zj
.Wj / D �czj cot.cWj /CO.zj / D O.jzj j�/ D o.1/:

Finally, for nkC1 � nk � b˛0tkc � j � nkC1 � nk , the claim follows from
Lemma 5.11.

Lemma 8.3. Let p.z/ D z � z2 CO.z3/ be an entire map. There exists r > 0 such that
if pn.z/ 2 D.0; r/ for all n 2 N, then z 2 Bp [ ¹0º. In particular, limn!1 p

n.z/ D 0.

Proof. We consider the “fat petals” P�=op , introduced in Section 2. Take r > 0 small enough
that D.0; r/ n ¹0º is contained in P�p [ Pop . Since P�p � Bp , we may assume that for all
n 2 N, pn.z/ 2 Pop (for otherwise we are done).

We then have �op.p
n.z// D �op.z/C n!1, therefore pn.z/! 0 and z 2 Bp .

Proof of Theorem 1.12. Let h W U ! V be a homeomorphism such that h ı P1 D P2 ı h

and h.0;0/D .0;0/, whereU;V are open neighborhoods of .0;0/. Let us begin by proving
that ˛1 D ˛2. If not, assume without loss of generality that ˛1 < ˛2. Let .n1

k
/k2N be an

.˛1; ˇ1/-admissible sequence with converging phase sequence of limit � , and let .z0;w0/
be given by Lemma 8.1 applied to P1 and with � WD � C �1.



M. Astorg, L. Boc Thaler 604

By Lemma 8.2, there exists k0 2 N such that for all j � 0,

P
j
1

�
p
n1
k0

1 .z0/; w0
�
2 U:

Therefore, for all j � 0,

h ı P
j
1

�
p
n1
k0

1 .z0/; w0
�
D P

j
2 ı h

�
p
n1
k0

1 .z0/; w0
�
: (8.1)

Let r > 0 be small enough that Lz0.D.w0; r// b D.z0; r/.
Up to taking k0 large enough, the Main Theorem implies that for all k � k0,

proj2 ı P
n1
kC1
�n1
k

1 .¹p
n1
k

1 .z0/º �D.w0; r// b D.w0; r/:

An easy induction then gives

lim
k!1

P
n1
k
�n1
k0

1

�
p
n1
k0

1 .z0/; w0
�
D .0; w0/:

Let .z2; w2/ WD h
�
p
n1
k0

1 .z0/; w0
�
. Then, by (8.1),

lim
k!1

P
n1
k
�n1
k0

2 .z2; w2/ D h.0; w0/: (8.2)

We now claim that h.0; w0/ D .0; w3/ for some w3 2 Bq2 . Indeed, by Lemma 8.3
and (8.2), we have (up to taking U and V small enough)

proj1 ı h.0; w0/ D lim
j!C1

p
j
2 .z2/ D 0:

Therefore, h.0; w0/ D .0; w3/ for some w3 2 C, and since for all j 2 N we have

h ı P
j
1 .0; w0/ D P

j
2 ı h.0; w0/ D .0; q

j
2 .w3//;

it follows that limj!1 q
j
2 .w3/ D 0, hence either w3 D 0 or w3 2 Bq2 . But since w0 ¤ 0

and h is injective, we cannot have h.0; w2/ D .0; 0/, therefore w3 2 Bq2 .
Let � > 0 be small enough that xD.w3; �/ b Bq2 , and let k1 2 N be large enough that

proj2 ı P
n1
k
�n1
k0

2 .z2; w2/ 2 D.w3; �/ for all k � k1.
Let k � k1 and let n WD n1

k
� n1

k0
. Since we have assumed for a contradiction that

˛2 > ˛1, we have

kn WD bn
�
c < n1kC1 � n

1
k < Mn � `n WD b.˛2 � 1/nC ˇ2 lnnc � be�=c2knc:

By Lemma 5.8 (applied with P WD P2, z WD z2 and w WD proj2 ı P
n1
k
�n1
k0 .z2; w2/ 2

D.w3; �/ b Bq2 ),

ˆ�k
�
proj2 ı P

n1
kC1
�n1
k0

2 .z2; w2/
�
D ˆ�k

�
proj2 ı P

n1
kC1
�n1
k

2

�
P
n1
k
�n1
k0 .z2; w2/

��
D ˆ�k

�
proj2 ı P

n1
kC1
�n1
k

2 .pn2 .z2/; w/
�
2 R�k ;
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where �k WD p
nCn1

kC1
�n1
k

2 .z2/. Therefore, by Lemma 4.8,

proj2 ı P
n1
kC1
�n1
k0

2 .z2; w2/ D O.jp
n
2 .z2/j

�/ D o.1/:

But this contradicts (8.2).
Therefore, ˛2 � ˛1 and by symmetry, ˛2 D ˛1.
It remains to prove that ˇ1 D ˇ2. Similarly, we assume, for the sake of contradiction,

that ˇ2 > ˇ1. With the same notations as above, we now have, for k (and hence n) large
enough,

n1kC1 � n
1
k D .˛1 � 1/nC ˇ1 lnnCO.1/

and

Mn D .˛1 � 1/nC ˇ2 lnnCO.1/ D n1kC1 � n
1
k C .ˇ2 � ˇ1/ lnnCO.1/:

Therefore,
Mn � `n < n

1
kC1 � n

1
k < Mn;

and by Lemma 5.12 and Theorem 5.13,

�oq2 ı proj2 ı P
n1
kC1
�n1
k

2 .z2; w2/ D .ˇ1 � ˇ2/ lnnCO.1/:

In particular,

proj2 ı P
n1
kC1
�n1
k

2 .z2; w2/ �
1

.ˇ2 � ˇ1/ lnn
;

which again contradicts (8.2). Therefore, ˇ1 D ˇ2, and we are done.

8.2. Proof of Theorem 1.16

In order to prove Theorem 1.16 we first need to introduce two intermediate results which
are in the same spirit as Lemma 8.2 and Theorem 1.12. We will see it is possible to drop
the assumption on the convergence of the phase sequences if we know that the skew-
products P1 and P2 are topologically conjugated in a neighborhood of the origin by a
homeomorphism h W U ! V of the form h.z;w/ D .f.z/;g.z;w//, where U;V are open
neighborhoods of .0;0/ in C2. That is, assume that h ıP1DP2 ı h onU . We may assume
that U; V are bounded in C2 and that U D D.0; r/ �D.0; r/ for some r > 0.

As before, we will also denote by Li , ˛i , ˇi for i 2 ¹1; 2º the quantities appear-
ing in the Main Theorem, and by .ni

k
/k2N two .˛i ; ˇi /-admissible sequences defined by

ni
kC1
WD b˛in

i
k
C ˇi ln ni

k
c, where ni0 D n0 is chosen large enough that both sequences

are strictly increasing, and let � i
k

denote their phase sequences.
In what follows we write qi .w/ WD proj2 ı Pi .0; w/ for i 2 ¹1; 2º.

Lemma 8.4. Let z 2 Bp1 , w 2 Bq1 \D.0; r/, and for any n 2 N, let zn WD pn1 .z/. Then
there exists m 2 N such that P j1 .zn1

k
; w/ 2 U for all k large enough and all 0 � j �

n1
kC1
� n1

k
�m.

Proof. First, since limn!1 zn D 0, zjCnk belongs to an arbitrary neighborhood of 0
for j � 0 and k large enough. Therefore, if we let wj denote the second component of
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P
j
1 .zn1

k
; w/, it is enough to prove that for k and m large enough, wj remains in D.0; r/

for all 0� j � n1
kC1
� n1

k
�m. For 0� j � tk WD b.n1k/

�c, this follows from Lemma 5.2.
For tk � j � n1kC1 � n

1
k
� b˛1tkc, it follows from Lemma 5.8. Indeed, by Lemma

5.8, we have Wj 2 R�i for all tk � j � n1kC1 � n
1
k
� b˛1tkc. Then, by Lemma 4.8,

wj D  
�1
zj
.Wj / D �czj cot.cWj /CO.zj / D O.jzj j�/ D o.1/:

Finally, the existence of m > 0 (independent of n1
k

) such that for all n1
kC1
� n1

k
�

b˛1tkc � j � n
1
kC1
� n1

k
�m we have wj 2 D.0; r/ follows from Lemma 5.11.

Proposition 8.5. Let P1 and P2 be of the form (1.1) with bi > 1=4 and ˇi 2 R, and
assume that P1 � P2. Then .˛1; ˇ1/ D .˛2; ˇ2/ and so in particular b1 D b2.

Proof. Let z 2 Bp \ D.0; r/ and w 2 Bq1 \ D.0; r/; in particular, .z; w/ 2 U . By
Lemma 8.4,

h ı P
j
1 .p

n1
k

1 .z/; w/ D P
j
2 ı h.p

n1
k

1 .z/; w/ (8.3)

for all 0 � j � n1
kC1
� n1

k
�m. In particular, both sides of the equation belong to V .

LetMk WD b.˛2 � 1/n
1
k
Cˇ2 lnn1

k
c and �k WD ¹.˛2 � 1/n1k Cˇ2 lnn1

k
º. ChooseR>0

large enough that V � D.0; R/2, and choose .z; w/ 2 U so that

jL2.˛2; �2 � �k I f.z/;g0.w//j > R

for arbitrarily large values of k. We will show that this is always possible. Indeed, let
� 2 Œ0; 1/ be an accumulation point of the sequence �k . Since 0 is in the Julia set of the
entire map q2, there exists Qw 2 V0 WD V \ .¹0º � C/ such that qmj2 . Qw/!1 for some
increasing sequence .mj /j2N . It is easy to see that there exists .z0; w0/ 2 V such that
L2.˛2; �2 � �I z

0; w0/ D Qw. Then, using the functional equation

L2.˛2; �2 � �Ip2.z/; q2.w// D q2 ıL2.˛2; �2 � �I z; w/;

we have jL2.˛2; �2 � �Ip
mj
2 .z0/; q

mj
2 .w0//j > 2R for some fixed j large enough. More-

over, by taking j even larger if necessary, we may assume that z D f�1 ı p
mj
2 .z0/ and

w WD g�10 ı q
mj
2 .w0/ are well-defined and in U . Since � is an accumulation point of the

sequence �k , there are arbitrarily large values of k for which

jL2.˛2; �2 � �k I f.z/;g0.w//j > R

as required.
Next, it follows from Theorem 5.13 that

P
Mk
2 ı h.p

n1
k

1 .z/; w/ D P
Mk
2

�
p
n1
k

2 .f.z//;g0.w/C o.1/
�

D
�
0;L2.˛2; �2 � �k I f.z/;g0.w/

�
C o.1/:

Therefore, by (8.3) and our choice ofR;z andw, we must haveMk > n
1
kC1
� n1

k
�m for

arbitrarily large values of k. Therefore ˛2 � ˛1; but then by symmetry, ˛2 D ˛1. Then,
using again the fact thatMk > n

1
kC1
� n1

k
�m, we find ˇ2 � ˇ1, and therefore we finally

have, again by symmetry, ˇ1 D ˇ2.
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Proof of Theorem 1.16. By Proposition 8.5, we have n1
k
D n2

k
DW nk , �1

k
D �2

k
DW �k and

˛1 D ˛2 DW ˛, so we can apply (8.3) with j D nkC1 � nk �m, k large enough, z 2 Bp ,
and w 2 U0 \Bq0 :

h ı P
nkC1�nk�m

1 .p
nk
1 .z/; w/ D P

nkC1�nk�m

2 ı h.p
nk
1 .z/; w/

D P
nkC1�nk�m

2

�
p
nk
2 ı f.z/;g.p

nk
2 ı f.z/; w/

�
:

By continuity of g, we have g.p
nk
2 ı f.z/; w/ D g0.w/C o.1/. By the Main Theorem,

P
nkC1�nk
1 .p

nk
1 .z/; w/ D

�
o.1/;L1.˛; �1 C �k I z; w/C o.1/

�
and

P
nkC1�nk
2

�
p
nk
2 ı f.z/;g.p

nk
2 ı f.z/; w/

�
D P

nkC1�nk
2

�
p
nk
2 ı f.z/;g0.w/C o.1/

�
D
�
o.1/;L2.˛; �2 C �k I f.z/;g0.w/C o.1/

�
:

Finally, let .zj ; wj / WD P
j
1 .p

nk
1 .z/; w/. By Lemma 5.12, �oq1.wnkC1�nk�m/ D

�oq1.wnkC1�nk / �mC o.1/, so that

wnkC1�nk�m D L1.˛; �1 C �k �mI z; w/C o.1/:

Similarly,

P
nkC1�nk�m

2 .p
nk
2 ı f.z/;g.p

nk
2 ı f.z/; w//

D
�
o.1/;L2.˛; �2 C �k �mI f.z/;g0.w/C o.1/

�
:

Putting all this together, we obtain

g0.L1.˛; �1 C �k �mI z; w// D L2.˛; �2 C �k �mI f.z/;g0.w//C o.1/: (8.4)

Therefore, for any accumulation point � of the sequence .�k/k�0, we have

g0.L1.˛; �1 C � �mI z; w// D L2.˛; �2 C � �mI f.z/;g0.w//: (8.5)

Let us write for simplicity Li .z;w/ WDLi .˛;�i C � �mIz;w/. Observe that since f and
g0 conjugate p1 to p2 and q1 to q2 respectively, there exist homeomorphisms Qf W C! C
and Qg0 W C ! C commuting with translation by 1 such that

Qg0 ı �
o
1 D �

o
2 ı g0; (8.6)

Qf ı ��p1 D �
�
p2
ı f; (8.7)

where �oi denotes the outgoing Fatou coordinate of qi . Indeed, the map Qf is first defined
on a left half-plane, since ��p1 is univalent on P �

p1
and its image contains a right half-plane

(see Section 2). Then, using the functional relation Qf.Z C 1/ D Qf.Z/C 1, we extend Qf
to all of C. The case of Qg0 is analoguous, using the fact that �o1.P

o
q1
/ contains a left

half-plane.
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For z; w as above, let Z WD ��p1.z/ and W WD ��1.w/. Let us compute

Qg0 ı QH
1
Z;�1

.W / D �o2 ı g0 ı .�
o
1/
�1
ı QH 1

Z;�1
.W /

D �o2 ı g0 ıL1.z; .�
o
1/
�1.W //

(by (8.5)) D �o2 ıL2.f.z/;g0 ı .�
o
1/
�1.W //

D ˛��2 ı g0 ı .�
o
1/
�1.W /C .1 � ˛/��p2.f.z//C �2

D ˛��2 ı .�
o
2/
�1
ı Qg0.W /C .1 � ˛/Qf.Z/C �2

D QH 2
Qf.Z/;�2

. Qg0.W //;

where �i D � C �i �m.
Therefore, if we let G.Z;W / D .Qf.Z/; Qg0.W // we have proved that

G ı QH 1
�1
.Z;W / D QH 2

�2
ıG.Z;W /:

This relation holds for all z 2Bp1 and all w 2Bq1 \U0; therefore it holds for all Z 2 C
and all W 2 C with ReZ and ReW large enough.

But since the lifted horn maps QH i
�i

commute with translation by the vector .1; 1/, this
conjugacy descends to a conjugacy of the horn maps on C2=h.1; 1/i.

Proof of Corollary 1.17 . Let Ei WD ��qi ı  
o
qi

be the lifted horn map of qi . Then
.Z;W / 2 C2 is a critical point of QH i

�i
if and only ifW is a critical point of Ei . Therefore,

the set of critical values of QH i
�i

is

CV. QH i
�i
/ D ¹.Z; ˛W C .1 � ˛/Z C �i / W .Z;W / 2 C � CV.Ei /º;

which is a union of affine lines in C2. Now recall that

CV.Ei / D ¹��qi .c/C n W c 2 crit.qi / \Bqi and n 2 Zº:

Therefore, if we let

Ii WD ¹�
�
qi
.c/C n W c 2 crit.qi / \Bqi and n 2 Z such that 0 � Re��qi .c/C n < 1º;

and
LiW;n WD ¹.Z; ˛.W C n/C .1 � ˛/Z C �i / W Z 2 Cº:

then the set
CV. QH i

�i
/ D

[
.W;n/2Ii�Z

LiW;n

is a countable union of affine lines. Next, for any .W; n/ 2 Ii � Z we have LiW;nC1 D
LiW;n C .1; 1/. Let � W C2 ! C2=h.1; 1/i denote the quotient map. Since � ı QH i

�i
D

H�i ı � and � is a covering, the set of critical values ofH i
�i

is CV.H i
�i
/D �.CV. QH i

�i
//.

It is straightforward to check that �.LiW;n/ is an irreducible curve in C2=h.1; 1/i. More-
over, given .W1; n1/; .W2; n2/ 2 Ii � Z, we have �.LiW1;n1/ D �.LiW2;n2/ if and only
if W1 �W2 2 Z, which by the definition of Ii is equivalent to W1 D W2. Furthermore,
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if �.LiW1;n1/ ¤ �.L
i
W2;n2

/ then �.LiW1;n1/ \ �.L
i
W2;n2

/ D ;: Therefore, CV.H i
�i
/ has

exactly card Ii connected components.
By Theorem 1.16, the mapsH 1

�1
andH 2

�2
are topologically conjugate. The topological

conjugacy must map CV.H 1
�1
/ to CV.H 2

�2
/; therefore they must have the same number

of connected components.
Finally, we conclude the proof of the first assertion of Corollary 1.17 by observing

that card Ii is exactly the number of grand orbits of critical points in Bqi .
For the second assertion, it suffices to observe that this number cannot depend on any

k-jet of qi at w D 0.

We end this section with the following natural question.

Question 8.6. Let P1 and P2 be of the form (1.1), with bi > 1=4 and ˇi 2 R. If P1
and P2 are topologically conjugate in some neighborhood of the origin, does that imply
P1 � P2?

Note that the positive answer to the above question, together with Proposition 8.5,
would imply that the constants ˛0, ˇ0 and b are in fact topological invariants.

9. Proof of Corollary 1.18

Let L.i/ denote the extended Lavaurs maps associated to both parabolic fixed points
.0; wi /, and let L

.i/
z .w/ WD L.i/.˛i ; �i I z; w/. Let Mz WD L

.2/
z ıL

.1/
z . We denote by Bi

the parabolic basins ofwi for q0, so that .z;w/ 7!Mz.w/ is defined on Bp �B1. We start
by recalling the notion of islands, named after Ahlfors’s famous Five Islands Theorem.

Definition 9.1. Let f W U ! P1 be a holomorphic map, where U � P1 is a domain. Let
D � P1 be a Jordan domain. We say that QD � U is an island for f overD if f W QD!D

is a conformal isomorphism.

Lemma 9.2. Let f .z/ D z C z2 C O.z3/ be a polynomial map with a parabolic fixed
point, and let ��

f
W Bf ! C and  o

f
W C ! C denote its incoming Fatou coordinate and

outgoing Fatou parametrization respectively.

(1) For every Jordan domain D � C such that .��
f
/�1.D/ does not intersect critical

orbits of f , and for every open set � intersecting @Bf , ��
f

has an island QD b �

over D.

(2) For every Jordan domain D � C that does not intersect the postcritical set of f ,
 o
f

has an island QD over D.

Proof. Let D � C be a Jordan domain such that .��
f
/�1.D/ does not intersect critical

orbits of f , and let � be an open set intersecting @Bf .
LetDk WDDC k. By Proposition 2.1, ��

f
WBf !C is a branched cover whose critical

points are the precritical orbits of f in Bf ; therefore, by the assumptions on D D D0,
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Dk is simply connected and does not contain any critical value of ��
f

, so ��
f

has an island
U0 above Dk .

By assumption, U0 does not meet any critical orbits of f , and it is simply connected,
so we may define univalent inverse branches of f �k for all k, and for k large enough, at
least one such branch gk will map U0 compactly into � (by normality and the equidistri-
bution of preimages). Let Uk WD gk.U0/. We then have

D0 C k D �
�
f .U0/ D �

�
f ı f

k.Uk/ D �
�
f .Uk/C k

so that ��
f
.Uk/ D D0. The domain Uk is the desired island above D0.

The second item follows immediately from Proposition 2.2, which implies that

 of W C n . 
o
f /
�1.Pf /! C n Pf

is a covering map, where Pf denotes the postcritical set of f .

Lemma 9.3. There exists z0 2 Bp such that Mz0 has a superattracting fixed point w0.

Proof. The difficulty is that we cannot apply Montel’s theorem, as the domain of Mn
z

shrinks as n ! 1. Instead, we will follow closely the proof of the Shooting Lemma
from [5]. Let ��i (with i D 1;2) denote the incoming Fatou coordinates ofwi for q0, and let
 oi denote the outgoing Fatou parametrizations associated to wi for q0. Let Z WD ��p.z/,
Ai;Z.W / WD ˛iW C .1 � ˛i /Z C �i , so that

Mz D  
o
2 ı A2;Z ı �

�
2 ı  

o
1 ı A1;Z ı �

�
1: (9.1)

Let c 2B1 be a critical point for ��1. Let x 2 . o2 /
�1.¹cº/. Let 
.Z/ WD A1;Z ı ��1.c/,

and let gZ WD A2;Z ı ��2 ı  
o
1 . If we can find Z 2 C such that gZ ı 
.Z/ D x, then this

will mean that Mz.c/ D c, where ��p.z/ D Z, which will prove the lemma.
Let U0 WD . o1 /

�1.B2/. We claim that there exists Z0 2 C such that 
.Z0/ 2 @U0
and x is not a critical value of gZ0 .

Since  o1 W C ! C is an entire function, U0 � C is an open set whose boundary
contains a continuum. From the expression of 
 , if we fix any W0 2 C, then for Z0 WD
1

1�˛1
.W0 � ˛1�

�
1.c/ � �1/ we have 
.Z0/ D W0; therefore, the set of Z 2 C such that


.Z/ 2 @U0 is the image of @U0 under an affine map and also contains a continuum.
On the other hand, the critical values of gZ are of the form A2;Z.v/, where v is a

critical value of ��2 ı  
o
1 . Therefore, the set of Z 2 C such that x is a critical value of gZ

is a countable set, so we can indeed find Z0 2 C such that 
.Z0/ 2 @U0 and x is not a
critical value of gZ0 .

Next, observe that gZ D gZ0 C .1 � ˛2/.Z �Z0/. Therefore, if we define h.Z/ WD
x C .˛2 � 1/.Z �Z0/, the equation gZ ı 
.Z/ D x becomes equivalent to

gZ0 ı 
.Z/ D h.Z/: (9.2)

Let D be a disk centered at x such that D contains no critical values of gZ0 . This
is possible because of our choice of Z0 and because the set of critical values of gZ0 is
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discrete, in fact finite in C=Z. Let � > 0 be small enough that h.D.Z0; �// b D. Let
� WD 
.D.Z0; �//; it is an open neighborhood of W0 2 @U0. By Lemma 9.2, there exists
D1 b�\U0 such that gZ0 WD1!D is a conformal isomorphism. In particular, gZ0 ı 
 W
V ! D is a conformal isomorphism, where V WD 
�1.D1/ is a conformal disk that
is compactly contained in D.Z0; �/. By the definition of � and V , we therefore have
h.V / b gZ0 ı 
.V / D D, andD;V are conformal disks with smooth boundaries. It then
follows from the Argument Principle that there exists Z 2 V satisfying (9.2), and the
lemma is proved.

Proof of Corollary 1.18. We consider an inductive sequence of integers defined by nkC1
D ˛1nk if k is even and nkC1 D ˛2nk if k is odd.

By the Main Theorem applied twice, we have

P nkC2�nk .znk ; w/ D .znkC2 ;Mz.w//C o.1/

with local uniform convergence for .z;w/ sufficiently close to the point .z0;w0/ given by
Lemma 9.3.

Since w0 is a superattracting fixed point for Mz0 , there exists r > 0 such that
Mz0.D.w0; r// b D.w0; r=2/, and by continuity there exists � > 0 such that for all
z 2 D.z0; �/ we have Mz.D.w0; r// b D.w0; r/.

Let V be a connected component of P�n0.pn0.D.z0; �// � D.w0; r//. For n0 large
enough and .nk/ satisfying the induction relation above, we have, for any k 2 N and
.z; w/ 2 V ,

P n2k .z; w/ 2 Bp �D.w0; r/: (9.3)

In particular, V � K.P /, where

K.P / WD ¹.z; w/ 2 C2
W .P n.z; w//n2N is boundedº:

Therefore, V is contained in the Fatou set of P . Let � be the Fatou component of P
containing V .

Finally, let us prove that � satisfies the historicity property. We claim that

lim
k!1

1

n2kC1 � n2k

n2kC1X
jDn2kC1

ıP j .z;w/ D ı.0;w1/ (9.4)

and

lim
k!1

1

n2kC2 � n2kC1

n2kC2X
jDn2kC1C1

ıP j .z;w/ D ı.0;w2/: (9.5)

Informally speaking, this follows from the fact that it takes n2kC1 � n2k iterations to
“pass through the eggbeater” associated to .0; w1/, and n2kC2 � n2kC1 to pass through
the one associated to .0; w2/.

Let us give a more precise justification. Let k 2 N. By the above argument, we know
that P n2k .z; w/ 2 Bp � D.w0; r/. Therefore, with n WD n2k and . Ozj ; Owj / WD P j .z; w/,
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Lemma 5.8 states that for all k large enough, ˆ Ozj . Owj / 2 R Ozj for all tn � j �Mn � `n,
where tn WD bn�c D bn�2kc, `n D be

�=ctnc, andMn D b.˛1 � 1/nc D .˛1 � 1/n2k (since
we have assumed ˇ1 D 0 and ˛1 2 N�). In particular, by Lemma 4.8,

Owj � w1 D O.j Ozj j
�/ D O

�
1

n�
2k

�
D ok!1.1/

for tn � j �Mn � `n. Moreover, Mn C n2k D n2kC1, so that Mn � tn � `n D n2kC1 �

n2k CO.n
�
2k
/ �k!1 n2kC1 � n2k . This proves (9.4).

The proof of (9.5) is similar, replacing n2k by n2kC1, n2kC1 by n2kC2, and w1 by w2.
Let .z; w/ 2 V , and let us consider en D en.z; w/ WD 1

n

Pn�1
jD0 ıP j .z;w/. By (9.4), we

have

en2kC1 D en2k
n2k

n2kC1
C .1 �

n2k

n2kC1
/ı.0;w1/ C o.1/

D
1

˛1
en2k C

�
1 �

1

˛1

�
ı.0;w1/ C o.1/

and similarly, using (9.5),

en2k D
1

˛2
en2k�1 C

�
1 �

1

˛2

�
ı.0;w2/ C o.1/:

Putting the last two equations together, we find

en2k D
˛1˛2 � ˛2

˛1˛2 � 1
ı.0;w1/ C

˛2 � 1

˛1˛2 � 1
ı.0;w2/ C o.1/;

en2kC1 D
˛1 � 1

˛1˛2 � 1
ı.0;w1/ C

˛1˛2 � ˛1

˛1˛2 � 1
ı.0;w2/ C o.1/:

10. Admissible sequences and Pisot numbers

Finally, we will give the proof of Theorem 1.10. Let us recall that for given ˛ > 1 and
ˇ 2 R, we say that a strictly increasing sequence .nk/k�0 of positive integers is .˛; ˇ/-
admissible if its phase sequence �k D nkC1 � ˛nk � ˇ lnnk is bounded.

Lemma 10.1. For every .˛; ˇ/-admissible sequence .nk/k�0 there exist a real number
� > 0 and a bounded sequence .dk/k�0 of real numbers such that

nk D �˛
k
� k

ˇ ln˛
˛ � 1

C dk ; 8k � 0:

Moreover, if we let �k WD nkC1 � ˛nk � kˇ ln˛, then

�k D �k C ˇ ln � C o.1/;

� D n0 C
ˇ ln˛
.˛ � 1/2

C
1

˛

1X
jD0

�j

˛j
;

dk D �
ˇ ln˛
.˛ � 1/2

�
1

˛

1X
jD0

�jCk

˛j
:
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Proof. First we study the asymptotic behavior of .˛; ˇ/-admissible sequences.

Claim 1. For every .˛; ˇ/-admissible sequence .nk/k�0 there exist constants �; C � 0
such that jnk � �˛kj � Ck for all k � 1:

Proof of Claim 1. Let us first define a sequence vk WD nNCk=˛k , where we have chosen
N sufficiently large so that

nN �

1X
jD0

�
jˇj

˛jC1
ln
�
nN

2

�
C
j jˇj ln˛
˛jC1

C
j�NCj j

˛jC1

�
>
nN

2
;

nN C

1X
jD0

�
jˇj

˛jC1
ln.2nN /C

j jˇj ln˛
˛jC1

C
j�NCj j

˛jC1

�
< 2nN :

Such an N exists because .nk/k�0 is strictly increasing and the phase sequence .�k/k�0
is bounded.

Observe that

vk D vk�1 C
ˇ

˛k
ln vk�1 C

ˇ.k � 1/ ln˛
˛k

C
�NCk�1

˛k

and let us prove that
nN =2 < vk < 2nN ; 8k � 0:

Clearly this holds for k D 0 since v0 D nN . Assume that these bounds hold for all 0 �
j < k. Since

vk D v0 C

k�1X
jD0

.vjC1 � vj / D nN C

k�1X
jD0

�
ˇ

˛jC1
ln vj C

jˇ ln˛
˛jC1

C
�NCj

˛jC1

�
;

the bounds for vk are clearly guaranteed by our choice of N . Moreover, this also implies
that the sequence .vk/k�0 converges to some positive real number

Q� D v0 C

1X
jD0

.vjC1 � vj / D nN C

1X
jD0

�
ˇ

˛jC1
ln vj C

jˇ ln˛
˛jC1

C
�NCj

˛jC1

�
;

where the sum converges absolutely.
Now we define a new sequence uk WD nk=˛k and observe that uNCk˛N D vk . From

the above computation it follows that the sequence .uk/k�0 converges to � WD Q�=˛N > 0,
and since

uk D uk�1 C
ˇ

˛k
lnuk�1 C

ˇ.k � 1/ ln˛
˛k

C
�k�1

˛k
;

we have

� D u0 C

1X
jD0

.ujC1 � uj / D n0 C

1X
jD0

�
ˇ

˛jC1
lnuj C

jˇ ln˛
˛jC1

C
�j

˛jC1

�
:
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Finally, observe that

nk D ˛
kuk D �˛

k
�
1

˛

1X
jD0

�
ˇ

˛j
lnujCk C

.j C k/ˇ ln˛
˛j

C
�jCk

˛j

�
and there exists C > 0 such thatˇ̌̌̌

1

˛

1X
jD0

�
ˇ

˛j
lnujCk C

.j C k/ˇ ln˛
˛j

C
�jCk

˛j

�ˇ̌̌̌
< Ck; 8k � 1:

Claim 2. We have �k D �k C ˇ ln � C o.1/.

Proof of Claim 2. Observe that by the previous claim, we have

�k D nkC1 � ˛nk � kˇ ln˛ D �k C ˇ lnnk � kˇ ln˛

D �k C ˇ lnuk D �k C ˇ ln � C o.1/:

Claim 3. We have

� D n0 C
ˇ ln˛
.˛ � 1/2

C
1

˛

1X
jD0

�j

˛j
; dk D �

ˇ ln˛
.˛ � 1/2

�
1

˛

1X
jD0

�jCk

˛j
:

Proof of Claim 3. Recall that �k D �k C ˇ ln uk . Clearly .�k/k�0 is bounded because
.�k/k�0 is bounded and .uk/k�0 converges to �. From the proof of Claim 1 it now follows
that

� D n0 C

1X
jD0

ˇ

˛jC1
lnuj C

jˇ ln˛
˛jC1

C
�j

˛jC1

D n0 C
1

˛

1X
jD0

jˇ ln˛
˛j

C
�j

˛j
D n0 C

ˇ ln˛
.˛ � 1/2

C
1

˛

1X
jD0

�j

˛j

and

dk D k
ˇ ln˛
˛ � 1

C nk � �˛
k
D k

ˇ ln˛
˛ � 1

�
1

˛

1X
jD0

ˇ

˛j
lnujCk C

.j C k/ˇ ln˛
˛j

C
�jCk

˛j

D k
ˇ ln˛
˛ � 1

�
1

˛

1X
jD0

.j C k/ˇ ln˛
˛j

C
�jCk

˛j
D �

ˇ ln˛
.˛ � 1/2

�
1

˛

1X
jD0

�jCk

˛j
:

Clearly the sequence .dk/k�0 is bounded since .�k/k�0 is bounded.

This completes the proof of Lemma 10.1.

Remark 10.2. By Lemma 10.1 we have �k D �k C ˇ ln uk , where .uk/k�0 converges
to � > 0. Hence the phase sequence .�k/k�0 of an .˛; ˇ/-admissible sequence converges
to a cycle if and only if the sequence .�k/k�0 converges to a cycle of the same period.
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Moreover, since

dk D �
ˇ ln˛
.˛ � 1/2

�
1

˛

1X
jD0

�jCk

˛j
and �k D dkC1 � ˛dk � ˇ

ln˛
˛ � 1

� ˇ lnuk ;

the phase sequence .�k/k�0 converges to a cycle if and only if .dk/k�0 converges to a
cycle of the same period.

Corollary 10.3. Let .nk/k�0 be an ˛-admissible sequence whose phase sequence con-
verges to zero. Then ˛ has the Pisot property.

Proof. Since .nk/k�0 is an ˛-admissible sequence, ˇ D 0 and �k D �k (using the nota-
tion from Lemma 10.1). Moreover, since .�k/k�0 converges to zero, the same holds for
.dk/k�0, and hence k�˛kk ! 0.

Lemma 10.4. Let .nk/k�0 be an .˛; ˇ/-admissible sequence and .�k/k�0 its phase
sequence. Then .�k/k�0 converges to a cycle of period ` if and only if mk WD nkC` � nk
is an ˛-admissible sequence whose phase sequence converges to `ˇ ln˛.

Proof. Observe that

mkC1 � ˛mk D nkC1C` � nkC1 � ˛.nkC` � nk/

D .nkC1C` � ˛nkC`/ � .nkC1 � ˛nk/

D �`Ck � �k C ˇ ln
nkC`

nk
D �`Ck � �k C `ˇ ln˛ C o.1/:

Corollary 10.5. If .nk/k�0 is ˛-admissible with converging phase sequence, thenmk WD
nkC1 � nk is ˛-admissible and has phase converging to zero.

Proof. This follows from the previous lemma with ˇ D 0.

Lemma 10.6. Let ˛ have the Pisot property. Then there exists an ˛-admissible sequence
whose phase sequence converges to 0.

Proof. Since ˛ has the Pisot property, there is � > 0 such that k�˛kk ! 0. Now we can
define a sequence of integers

nk WD

´
�˛k � k�˛kk if 0 � ¹�˛kº < 1=2;

�˛k C k�˛kk otherwise,

for which clearly nkC1 � ˛nk ! 0.

We shall denote by �.n�/ the phase sequence associated to the sequence .nk/, and by
�.n�/k its k-th element.

Lemma 10.7. Let .nk/, .mk/ be two ˛-admissible sequences, and let j; j1; j2 2 Z. Then

(1) .nkCj / is again an ˛-admissible sequence, and �.n�Cj /k D �.n�/kCj ;
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(2) if .j1nk C j2mk/ is strictly increasing, then it is an ˛-admissible sequence, and
�.j1n� C j2m�/ D j1�.n�/C j2�.m�/;

(3) if .mk/ is ˛-admissible and �k 2 `1, then nk WD mk C �k is ˛-admissible, and
�.n�/k D �.m�/k C �kC1 � ˛�k .

Proof. This is a direct computation.

Observe that Corollaries 10.3 and 10.5 and Lemmas 10.6 and 10.7 imply the following
result which settles claim (1) of Theorem 1.10.

Corollary 10.8. Let ˛ > 1 and m 2 N� be arbitrary. The following are equivalent:

(1) ˛ has the Pisot property;

(2) there exists an ˛-admissible sequence whose phase sequence converges;

(3) there exists an ˛-admissible sequence whose phase sequence converges to a cycle of
exact period m.

Let us mention that for a very special type of ˛-admissible sequences similar conclu-
sions were already made by Dubickas [14].

Remark 10.9. Let .nk/k�0 be an .˛; ˇ/-admissible sequence and denote � D ˇ ln˛
˛�1

and
mk D nk C bk�c. By Lemma 10.1 we have

nkC1 � ˛nk � ˇ lnnk D nkC1 � ˛nk � kˇ ln˛ � ˇ ln � C o.1/

D mkC1 � ˛mk C ¹.k C 1/�º � ˛¹k�º � � � ˇ ln � C o.1/:

It follows that the phase sequence of .nk/k�0 converges to a cycle if and only if the
sequence .mk/k�0 is ˛-admissible and the sequencemkC1 � ˛mk C¹.kC 1/�º � ˛¹k�º
converges to a cycle of the same period as �.nk/.

Finally, claim (2) of Theorem 1.10 follows from Lemma 10.4, Corollary 10.8 and the
following observation. Let .mk/k�0 be an ˛-admissible sequence whose phase sequence
converges to zero (note that such always exists since ˛ has the Pisot property) and let
� WD ˇ ln˛

˛�1
. If � D k1

k2
2 Q then by the above remark the sequence nk WD mk � bk�c is

an .˛; ˇ/-admissible sequence whose phase sequence converges to a cycle of period k2.
This completes the proof of Theorem 1.10.

We conclude this section with the following question.

Question 10.10. Let ˛ > 1 have the Pisot property. We have seen that � 2Q is a sufficient
condition for the existence of an ˛-admissible sequence .mk/k�0 such that the sequence
mkC1 � ˛mk C ¹.k C 1/�º � ˛¹k�º converges to a cycle. Is this condition also neces-
sary?
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