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Abstract. We study the local dynamics of generic skew-products tangent to the identity, i.e. maps
of the form P(z, w) = (p(z), q(z, w)) with dPy = Id. More precisely, we focus on maps with
non-degenerate second differential at the origin; such maps have local normal form P(z, w) =
(z—2%2 4 0(z3), w + w? + bz2 + O(||(z, w)||?)). We prove the existence of parabolic domains,
and prove that inside these parabolic domains the orbits converge non-tangentially if and only if
b € (1/4, 400). Furthermore, we prove the existence of a type of parabolic implosion, in which
the renormalization limits are different from previously known cases. This has a number of conse-
quences: under a diophantine condition on coefficients of P, we prove the existence of wandering
domains with rank 1 limit maps. We also give explicit examples of quadratic skew-products with
countably many grand orbits of wandering domains, and we give an explicit example of a skew-
product map with a Fatou component exhibiting historic behaviour. Finally, we construct various
topological invariants, which allow us to answer a question of Abate.
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1. Introduction

Skew-products are holomorphic self-maps of C? of the form

Pz, w) = (p(2).q(z, w)).

An important feature of these maps is that they preserve the set of vertical lines in C2.
This means that we can view the restriction of P” to aline {z} x C as the composition of n
entire functions on C, which allows techniques from one-dimensional complex dynamics
to be applied. The dynamics of skew-products is therefore in some ways reminiscent of the
dynamics of one-variable maps; however, in recent years, several important results have
shown that these maps have rich and interesting dynamics [22,27,28, 35]. For example,
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in [7], it was shown that there exist polynomial skew-products, i.e. P is a polynomial
map, with wandering Fatou components, a dynamical phenomenon that is known not to
occur for polynomial maps in one complex dimension. The proof of the main result in
that paper involves the adaptation of parabolic implosion to the skew-product setting (see
also [6, 8, 10] for further results on parabolic implosion in several complex variables).
Polynomial skew-products were also used in [15,33] to construct robust bifurcations, i.e.
open sets contained in the bifurcation locus of the family of endomorphisms of P? of
given algebraic degree d > 2.

Given a germ of a holomorphic self-map P of C? that fixes the origin, we say that P
is tangent to the identity if it is of the form P = Id 4+ Px(z,w) + O(||(z, w)||¥*1), where
k > 2 and Py : C? — C? is a non-trivial homogeneous polynomial map of degree k. The
study of local dynamics of germs tangent to the identity has received significant attention
over the last decades. For general germs of (C2,0) tangent to the identity, a complete
description of the dynamics on a full neighborhood of the origin is for now far out of
reach. Much effort has been instead devoted to investigating the existence of invariant
manifolds or invariant formal curves on which the dynamics converges to the origin (see
e.g. [1, 19], and more recently [23,24]).

In this paper we investigate the local dynamics of skew-products P which are tangent
to the identity and have a non-degenerate second order differential at the origin. By this
we mean holomorphic maps' P : C2 — C? of the form

P(z,w) = (z + Zaizi,w + Z bi,jziw-i)
i>2 i+j>2

with a,, b2,0, bo’z 3’é 0.
Up to conjugacy by a linear automorphism of C2, such maps may be reduced to a map
of the form

P:(zw)e (z =224 0@z, w+w? + bz> + O(||(z, w)[?)),
and after a second conjugacy by an automorphism of C?2 of the form
(z,w) ~ (z,e**w + Bz?),

we may finally assume that P is of the form P(z, w) = (p(z),q(z, w)) with

52 3 4
{p(z) =z —z"4az’>+ 0(z%), (D)

q(z,w) := w + w? 4+ bz? 4+ bozw? + b30z* + O(||(z, w)||*),
where a, b, by 3,b3,0 € C.

A study of the local dynamics of skew-products in the case b = 0 in (1.1) has been
undertaken in [35], where a full description of the dynamics on a neighborhood of a

I'We believe that with extra care, most of our results could be stated for germs; however, in an
effort to keep statements from being excessively technical, we have chosen to work in the setting of
globally defined maps.
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parabolic fixed point at the origin was achieved. However, most of the difficulty and rich-
ness of the dynamics (including the phenomenon of parabolic implosion and the existence
of wandering domains) comes precisely from the term bz2.

In fact, although maps of the form (1.1) are generic among polynomial skew-products
which are tangent to the identity (after analytic conjugacy), we will see that they have
considerably complicated local dynamics. We see the investigation of those maps (1.1)
and the results of this paper as a first step (generic case) towards the systematic analysis
of the local dynamics of all polynomial skew-products which are tangent to the identity.

Notation. Throughout this paper, we will be using the notation ¢, (w) := ¢(z, w) (in
particular, go = ¢(0, -)).

1.1. Parabolic domains and parabolic implosion

Definition 1.1. Let P be a holomorphic self-map of C? with a parabolic fixed point at the
origin. A parabolic domain of P is a maximal invariant connected domain U C C? such
that the origin is contained in the boundary of U and the iterates P‘f‘u converge locally
uniformly on U to the origin. Moreover, we say that a parabolic domain is tangent to
a direction v if each point from the domain is attracted to the origin along trajectories
tangent to v.

We begin by discussing the existence of parabolic domains for maps of the form (1.1),
which depends only on b:

Theorem 1.2. Let P be a map of the form (1.1).

(1) If b € (1/4,00), the map P has an invariant parabolic domain which is not tangent
to any directions.

(2) Ifb € C\ (1/4,00), the map P has an invariant parabolic domain which is tangent
to one of its non-degenerate characteristic directions.

The main novelty here lies in the first statement of this theorem, while the second
statement can be deduced from results of Hakim and Vivas. Invariant parabolic domains
which are not tangent to any direction are also sometimes called spiral domains (see the
beginning of Section 3 for a precise definition). Such domains were first constructed by
Rivi in her thesis [30, Proposition 4.4.4]. Rong [31, Theorem 1.4] gave sufficient condi-
tions for the existence of spiral domains for some class of maps tangent to the identity.
However, his result does not apply to maps of the form (1.1).

From now on we will assume that b > 1/4, and we introduce the following notations:

V4b —1
= @i= e™¢, Bo:= (bos —a)(ctp — 1). (1.2)
Observe that since b > 1/4, we have ¢ > 0 and o > 1.
In what follows we will see that in the case b > 1/4 and B¢ € R, there is parabolic

implosion, which has many interesting dynamical consequences.
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Definition 1.3. Let P be of the form (1.1), and ¢, 0 € C. The generalized Lavaurs map
of phase o and parameter « is defined as

Lo, 0:z,w) =y (agy, (w) + (1 — )y (2) + 0). (1.3)

where ¢, is the incoming Fatou coordinate of p, ¢, the incoming Fatou coordinate of go
and ¥z the outgoing Fatou parametrization of go.

The definitions and basic properties of Fatou coordinates, horn maps and Lavaurs
maps are recalled in Section 2. The generalized Lavaurs map is defined for (z, w) €
Bp x Bg,, where B, and B, are basins of a parabolic fixed point at the origin for p
and go respectively. If @ = 1, then the map w — £(,0; z, w) does not depend on z and
coincides with the classical Lavaurs map of phase o of the one-variable polynomial ¢y.
Moreover, generalized Lavaurs maps satisfy the following functional relation:

L(a,0; p(2),q0(w)) = goo L(a,0;z,w) = L(a,0 + 1;z,w) (1.4)
forall (z, w) € B, x By,,.

Definition 1.4. Given real numbers « > 1 and B € R, we say that a strictly increasing
sequence (1 )x>o of positive integers is («, 8)-admissible if its phase sequence (Ok )k>0,
defined by oy := ngy1 —ang — fInng, is bounded. If 8 = 0, we will simply call such
a sequence a-admissible.

Observe that for any o > 1 and B € R, there always exists («, §)-admissible
sequences: it suffices to define inductively ngyq := |ang + fInng | and take ng € N
large enough, where |-| denotes the floor function. For this particular type of («, f)-
admissible sequence, we have oy € (—1, 0] for all k € N. However, describing the phase
sequence is in general a difficult problem; for instance, even in the particular case of the
%-admissible sequences of the form ng 41 = L%n « |, the phase sequence is not fully under-
stood (see [14]). An interesting question is the existence of («, f)-admissible sequences
with converging phase sequence, which will be discussed in detail below.

The following is the main technical result of this paper.

Main Theorem. Let P be a map of the form (1.1). Let ag, Bo be as in (1.2), and assume
thatb > 1/4 and By € R. Let (ny)x>0 be an (o, Bo)-admissible sequence and let (0x )k >0
denote its phase sequence. Then

PUEHITIE (P (2), w) = (0, £(0. T +0x3z,w)) +0(1)  (ask — 00)

with uniform convergence on compacts in 8, x By,, and where ' is a constant depending
only on a,b, by 3, b3 (see (5.1) for its explicit expression).

The case where b > 1/4 and B¢ ¢ R is briefly discussed in Remark 5.14.

The usefulness of this Main Theorem (and of similar results, such as [7, Proposition A]
is that by applying it successively, one can estimate more and more precisely certain high
iterates of P in terms of iterates of the maps £, : w > L(ag, ' + o%; z, w). Therefore,
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one can transfer dynamical properties of &£, to obtain information on the dynamics of P.
These maps £, are quite complicated (they are non-explicit, transcendental maps, with
infinitely many critical points and in general infinitely many critical values). However,
by thinking of them as a one-parameter family of maps (£;);egs,, we can use ideas
from one-dimensional bifurcation theory to obtain information on the dynamics of &£, for
certain values of z. Moreover, under the additional assumption that g € Nx>», we prove
in Section 7 that these maps are semi-conjugate to finite type maps in the sense of Epstein,
which allows us to obtain a more precise understanding of their dynamics, and in turn, of
the dynamics of P.
We list below some consequences of the Main Theorem.

1.2. Existence of wandering domains and Pisot numbers

The Fatou set is the largest open set in C2? on which the family of iterates (P"),eN is
normal. A Fatou component 2 is a connected component of the Fatou set, and it is called
wandering if for every (k,m) € N x N*, we have P¥t"(Q) N P*¥(Q) = #. A non-
wandering Fatou component is a pre-periodic Fatou component. The first examples of
polynomial maps with wandering Fatou components were introduced by Buff, Dujardin,
Peters, Raissy and the first author [7] in (see also [6]); other examples were constructed by
Berger and Biebler [9], by completely different methods, for Hénon maps and polynomial
endomorphisms of P2. In the opposite direction, Ji [20,21] gave sufficient conditions for
the absence of wandering domains near an attracting invariant fiber for a skew-product
map.
The examples from [7] are polynomial skew-products of the form

2
Gy (pq0) + %)

with p(z) = z — 22 + O(z3) and g(w) = w + w? + O(w?), and are not tangent to the
identity at the origin. One can simplify the investigation of these maps by passing to a
finite branched cover y? = z. This brings these maps to a form that is tangent to the iden-
tity, but with degenerate second order differential at the origin. In particular, these maps
are not of the form (1.1) considered in the present paper, which explains the difference in
the dynamical features.

Definition 1.5. Let Q2 be a Fatou component of the map P. A Fatou limit function on Q
is any limit value of the sequence of maps (P|rsl2)n€N'

We define the rank of a Fatou component €2 as the maximal rank of dA,, where x €
and A ranges over all Fatou limit functions on €.

Note that for endomorphisms of C2, any wandering domain either has rank 0 (all
Fatou limits are constant) or rank 1. So far, the only known examples of wandering
domains in C? have been of rank O (that is, the examples constructed in [6, 7, 9]). In
other words, Theorem 1.6 below gives the first examples of rank 1 wandering domains in
complex dimension 2.
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Theorem 1.6. Let P be a map of the form (1.1), and assume that there exists an («g, Bo)-

admissible sequence with converging phase sequence. Then P has a wandering domain
of rank 1.

We are therefore led to the question: for which values of @ and B does such a sequence
exist? Before stating an answer, recall the definition of Pisot numbers:

Definition 1.7. A real algebraic integer « > 1 is called a Pisot number if all of its Galois
conjugates are in the open unit disk in C (in particular, integers > 2 are Pisot numbers).

The next definition is not standard terminology, but it will be convenient for our pur-
poses:

Definition 1.8. We say that « > 1 has the Pisot property if there exists a real number ¢
such that ||¢a® || — 0, where | - || denotes the distance to the nearest integer.

We recall here two classical results from number theory that justify the terminology
of “Pisot property”:

Theorem ([29]). Let & > 1 be an algebraic number and { be a non-zero real number such
that ||La® || — 0. Then « is a Pisot number and ¢ lies in the field Q(c).

Theorem ([29]) There are only countably many pairs ({, &) of real numbers such that
. #0, o > 1, and the sequence ({{otk})kzo has only finitely many limit points. Moreover,
if (¢, @) is such a pair where « is an algebraic number, then « is a Pisot number and
lies in the field Q(a). Here {-} denotes the fractional part of the number.

In particular, an algebraic number has the Pisot property if and only if it is a Pisot
number. Moreover, it is a long-standing conjecture known as the Pisot—Vijayaraghavan
problem that Pisot numbers are the only real numbers with the Pisot property.

Definition 1.9. We say that a sequence (0k)x>o converges to a cycle of period { if the
subsequence (0k¢+ j)k>0 converges for every 0 < j < £.

We can now state an almost sharp condition on « and j for the existence of an («, 8)-
admissible sequence with converging phase:

Theorem 1.10. Let o > 1 and B € R.

(1) There exists an o-admissible sequence with phase sequence converging to a cycle
if and only if a has the Pisot property. Moreover, in that case there exists an o-
admissible sequence with phase sequence converging to 0.

(2) (a) If there exists an (a, B)-admissible sequence with phase sequence converging to
a periodic cycle, then o has the Pisot property.

a—1k;

(b) Conversely, if a has the Pisot property and B = T~ T
coprime integers with ko > 1, then there exists an («, B)-admissible sequence

where k1 and ko are

whose phase sequence converges to a cycle of period k.
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(@ oy =2 b))y = 1+2ﬁ (non-integer Pisot number)

Fig. 1. Vertical slices z = constant of quadratic skew-products (1.5) for two different values of «p.
In red, wandering domains; in blue, the two parabolic basins; in shades of grey, the basin of infinity.
Observe that figure (a) is go-invariant while figure (b) is not.

Note that if the Pisot—Vijayaraghavan conjecture is true, then there exists an «-admis-
sible sequence with converging phase sequence if and only if « is a Pisot number.

It is natural to ask whether the condition of Theorem 1.6 is necessary or not. When
there are no (o, §)-admissible sequences whose phase sequence converges to a periodic
cycle, the condition means that any wandering Fatou component whose orbit remains in
Bp x By, would have to remain bounded under a sequence of non-autonomous com-
positions of generalized Lavaurs maps with non-periodic sequences of phases. Proving
rigorously whether such a thing is possible or not is likely to be difficult, but it seems
reasonable to expect that for generic values of « it is not the case.

If we now specialize to the case of degree 2, Theorems 1.6 and 1.10 imply that for any
Pisot number g > 1, the map

2 2 1 w? 2
(z,w)|—>(z—z,w+w +(Z+W)z) (1.5)
has a wandering domain of rank 1 (see Figure 1). Those are the first completely explicit
examples of polynomial maps with wandering domains, as well as the first examples in
degree 2 and the first examples of wandering domains with rank 1.
Recall that two Fatou components €2; and 2, are in the same grand orbit (of Fatou
components) for P if there exist nq,n, € N such that P"1(27) = P"2(2;). One may

%In [7], there are explicit examples of polynomial maps for which numerical experiments
strongly indicate the existence of wandering domains. It is possible that a rigorous argument could
be made to prove the existence of wandering domains for these explicit maps as well.
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ask whether for polynomial endomorphisms of P? there exists a bound on the number of
grand orbits of wandering domains that would depend only on the degree. The following
theorem gives a negative answer:

Theorem 1.11. Let P be of the form (1.5) and let ag > 1 be an integer. Then P has
countably many distinct grand orbits of rank 1 wandering domains.

Note that in contrast to e.g. arguments involving the classical Newhouse phenomenon,
we do not use perturbative arguments in the proof of Theorem 1.11, and the maps consid-
ered are completely explicit. In fact, more precisely, we construct an injective map from
the set of hyperbolic components in a specific family of modified horn maps into the set
of grand orbits of wandering Fatou components of P; see Theorem 7.6 and the beginning
of Section 7.

1.3. Topological invariants and horn maps

We will now investigate a few consequences of the Main Theorem on the topological
classification of skew-products tangent to the identity.

In dimension 1, the topological classification of germs tangent to the identity is simply
given by the parabolic multiplicity, that is, the order of vanishing of f — Id at the origin
[12,32]. However, the analytic classification of germs tangent to the identity is consider-
ably more complicated: by a result proved independently by Ecalle and Voronin [16,36]
the so-called horn maps (also called Ecalle—Voronin invariants) are complete invariants.

To our knowledge, no complete topological classification is available for germs tan-
gent to the identity in C2. Our results imply that such a classification must also be
complicated even in the seemingly simple class of skew-products; in fact, it resembles
the analytic classification for one-dimensional parabolic germs.

A first remarkable consequence of the Main Theorem is that the coefficient b is a
topological invariant, among maps of the form (1.1):

Theorem 1.12. Let Py and P, be two maps of the form (1.1), and assume that there exists
a homeomorphism Yy defined near the origin, with §(0,0) = (0, 0), such that

hoPr = Pol.

Let b;,a;, B; (with1 <i <2) beasin(1.2), and assume that b; > 1/4 and B; € R. If both
pairs (o;, B;) admit an («;, B;)-admissible sequence with a converging phase sequence
then (a1, B1) = (a2, B2), and so in particular by = b,.

In [2] Abate asked whether maps of the form
Guwa): fzw) = +uz2+ 1 —-wzw,w+vw? + (1 —v)zw)
withu +v # land u,v # 0

are topologically conjugate to each other. Using Theorem 1.12 we can now answer this
question negatively. Indeed, observe that for u = 1 and v # 0 this map is conjugate, via
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a linear automorphism, to the map

1= 2
(z, W) > (z—zz,w+w2+ 4” 22), (1.6)

which is of the form (1.1). In particular, when v € i R* in (1.6), such maps satisfy » > 1/4
and B = 0. Then Theorem 1.12, together with Theorem 1.10, asserts that all maps of the
form (3,,,,1) with u = 1 and v = 2mi /In p, where p is a Pisot number, belong to different
local topological conjugacy classes.

We now turn to a slightly stronger equivalence relation than local topological conju-
gacy:
Definition 1.13. We define an equivalence relation ~ on maps of the form (1.1) by

declaring that P; ~ P, & there exists a homeomorphism b defined near the origin, with
§(0,0) = (0,0), such that h o P; = P, o fj and ) is of the form (z, w) = (f(2), g(z, w)).

Theorem 1.16 below will provide further information on the equivalence classes of ~.
First, let us recall the definition of a horn map of a one-variable holomorphic map, and
some of its basic properties; see Section 2 and e.g. [7, Appendix] for more details.

Definition 1.14. Let f(z) = z 4+ z? + O(z3) be an entire map. Let z/)} and ¢; denote
its incoming and outgoing Fatou coordinates respectively, and let 1//} = (q‘)/?)_1 (which
extends to an entire map).

(1) The lifted horn map of f is & := ¢} ) wj‘,’. It is defined on (w}’)_l(ﬂf), and com-
mutes with translation by 1: E¢(Z + 1) = E¢(Z) + 1.

(2) The horn map of f is the unique map / such that h(e?*7%) = £2!78/(2) Tt extends
to a holomorphic map fixing both 0 and co.

By construction, the lifted horn map is semi-conjugate to the Lavaurs map, and the
horn map therefore describes the action of the Lavaurs map on the quotient space 8¢ /{ f).
We now introduce a two-dimensional analogue of horn maps and lifted horn maps:

Definition 1.15. Let P be a map of the form (1.1). Let us define the lifted horn map of P
of phase o by

Hy(Z, W) :=(Z, a0 Ego(W) + (1 —@0)Z + 0) =: (Z, Hz,,(W)). (1.7)

The map H, satisfies the functional relation Hy(Z + 1,W + 1) = Hy(Z, W) + (1,1),
so it descends to a map H, defined on C2/{(1, 1)), which we call the horn map of P of
phase o.

In fact, we have the following two relations:

(Z+1,W)=
(Z.W+1)=

(Z, W)+ (1,1 — ),

H, H,
ﬁo I:IO'(Za W) + (Oa 050)‘
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Therefore, the map H, descends to a map on C2/Z? if and only if oy € N. However,
even when oy ¢ N, H, always descends to the horn map defined above on C2/{(1, 1)).

Theorem 1.16. Let Py and P, be of the form (1.1), with b; > 1/4 and B; € R, and assume
that Py ~ P,. Let Hé denote their respective horn maps. Then there exist 01,0, € C such

that Hc}l and ng are topologically conjugate on C?/{(1, 1)).

Finally, using Theorem 1.16, we obtain the following corollary.

Corollary 1.17. Under the assumptions of Theorem 1.16, the number of grand orbits of
critical points of q; in By, is the same for i = 1,2. In particular, for any k € N, there exist
P1, P; of the form (1.1) such that Py(z, w) — P2(z,w) = O(||(z, w)||*), but P; ~ P;.

If g : C — C is a holomorphic map and x € C, recall that the grand orbit of x is the
set of y € C such that there exist n,m € N with f"(x) = f™(y).

Note that the maps P; and P, are by assumption globally defined maps on C2,
assumed to be topologically conjugate only on a neighborhood of the origin. It is nat-
ural to ask whether Theorems 1.16 and 1.12 extend to case where P; and P, would only
be germs. As mentioned above, we believe it is the case; however, since the proofs are
already technical, we have chosen to restrict ourselves to globally defined maps for sim-
plicity. Observe however that for Corollary 1.17 to make sense it is necessary that the
maps P; are globally defined.

1.4. Fatou components with historic behavior

In [9], Berger and Biebler construct wandering Fatou components €2 for some maps f
(which are Hénon maps or endomorphisms of P2) that have historic behavior, meaning
that for any x € €2, the sequence of empirical measures

1 n
€n(X) = ; ngk(x)
k=1

does not converge.

To our knowledge, these are the only known examples so far of Fatou components for
endomorphisms of P¥ or for Hénon maps with historic behavior. Note that in the case
of the wandering Fatou components constructed in [7] and [6], the sequences (e, )neN
converge to the Dirac mass centered at the parabolic fixed point at the origin. In dimen-
sion 1, it follows easily from the Fatou—Sullivan classification that no Fatou component
of a rational map on P! can have historic behavior; and for moderately dissipative Hénon
maps, it follows from the classification of Lyubich and Peters [25] that periodic Fatou
components cannot have historic behavior.

Using the Main Theorem of this paper, we give here new, explicit examples of poly-
nomial skew-products (which may be chosen to extend to endomorphisms of P?) which
have a Fatou component with historic behavior:
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Corollary 1.18. Let P(z,w) = (p(2), ¢(z, w)) be a polynomial skew-product satisfying
the following properties:

(1) p(z) =z —z%2 4+ 0(23).

(2) P has two different fixed points tangent to the identity of the form (0, w;) and (0, w,),
which both satisfy the conditions that o; € N* and 8; = 0, with the notations of the
Main Theorem and in appropriate local coordinates.

Then P has a Fatou component Q2 with historic behavior. More precisely, for any
(z,w) € Q, the sequences (e, (z, w))neN accumulates on

10y — O Oy — 1
= s e+ ———8
M1 o0y — 1 0,w1) o0y — 1 (0,w2)
and on
o] — 1 10 — 0

= —9 ) .
M2 w1 — 1 0wy) T iy — 1 (0,w2)

More explicitly, these conditions are given by:
() p(z) =z—22+ 0(z3).
(2) P has two different fixed points tangent to the identity of the form (0, w;) and (0, w»),
with ¢ (w;) = 2.
(3) p"(0) = qq'(w1) = qq’(w2).
@) Ifb; := %32—3(0, w;), then b; > 1/4 and o; := ez”/\/“b"__l € N*.
Example 1.19. With
p(z) i =z—2z°
and ¢(z, w) := go(w) + a(z) with

go(w) 1= w + w? — 5w* + 6w’ — 2w®

_ (1 n? 2 2
a(z) = (4_1 + W)Z (1-2)~,

the map P satisfies the conditions above, with w; = 0 and w, = 1, ®; =2 and ; = 0.

and

Note that we could replace p by z + z — z2 + z° in the previous example to obtain
an example which extends to an endomorphism of P2.

Although we believe that the Fatou component constructed in Corollary 1.18 is wan-
dering, we have not been able to prove so. Note however that if it is not the case, then
this would be the first example of an invariant (for some iterate of P) non-recurrent Fatou
component whose limit sets depend on the limit map, which would give an affirmative
answer to [25, Question 30] for X = C? and for X = P2.

Structure of the paper

We recall in Section 2 the definitions and properties of Fatou coordinates. In Section 3,
we recall the classical properties of parabolic curves and prove Theorem 1.2. In Section
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4, we introduce approximate Fatou coordinates and prove key estimates on how close the
dynamics is to a translation in these approximate Fatou coordinates. The Main Theorem is
proved in Section 5. Finally, Sections 6, 7, 8, 9 and 10, are devoted to the proofs of Corol-
lary 1.6, Theorem 1.11, Theorem 1.16, Corollary 1.18 and Theorem 1.10 respectively.

Notations

For x > 0, we will use the notation In x to denote the natural logarithm of x, and for
z € C \ R_ we will use log z for the principal branch of the logarithm at z.

2. Fatou coordinates

We recall in this section the definition of Fatou coordinates of one-variable holomor-
phic maps, as well as some classical facts about their domains of definition, asymptotic
expansion near the parabolic fixed point, and covering properties. The material described
in Section 2.1 applies more generally to germs, while the material of Section 2.2 does
require a globally defined map. However, for our purposes, it is enough to restrict our-
selves to the setting where f is an entire map.

2.1. Local properties

Unless otherwise stated, we refer the reader to [7, Appendix] for the proofs of the state-
ments appearing in this subsection.

Consider an entire function f(z) = z + a>z? + aszz® + O(z*) where a, # 0. For
r > 0 small enough we define the incoming and outgoing petals by

Pr={lazz +r[<r} and P?={lazz—r|<r}

The incoming petal ﬂ’jﬁ is forward invariant, and all orbits in 5)} converge to 0. The
outgoing petal 5’; is backward invariant, with backward orbits converging to 0.

On 5)} and P2 one can define the incoming and outgoing univalent Fatou coordinates
¢J‘, : 5)} — C and qb}’ : ﬂ)j‘f — C, solving the functional equations

$hof(2)=dp(z)+1 and ¢ o f(z) = P%(z) + L.

Moreover, the set qb} (?f‘) contains a right half-plane and ¢/‘} (ﬂ’; ) contains a left half-
plane.

For the most part, the simple definition of petals given above will be sufficient for our
purposes. However, in Lemma 8.3 we will need to work with larger petals, whose union
covers a punctured neighborhood of the origin.

Accordingly, for any R > 0, let

P.:={ZecC:R—ReZ <|mZ|}, P%:={ZeC:R+ReZ <|mZ|},

and let P%o be the respective images of f’%o under the map z > —1/z.
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t/o

By [11, Definition 3], up to taking R > 0 large enough, the Fatou coordinates ¢
are defined and univalent on the “fat petals” P‘/ ?. Observe that P, UP% isa punctured
neighborhood of 0.

Neither the incoming nor the outgoing Fatou coordinates may be extended to a mero-
morphic function in a neighborhood of the origin in general; however, they do satisfy the
following asymptotic expansion as z — 0 inside ?fl/ ? respectively:

¢f(z) —L - Blog(—L) + o(1), 2.1)
az arz

¢f(z) —L — blog( ! ) + o(1), (2.2)
az azz

where b := 1 —a3/a3.

Fatou coordinates are only unique up to an additive constant; in the rest of the paper,
we will work with the unique normalized Fatou coordinates for which the asymptotic
expansions above hold, with no constant terms.

: - 1
From the estimate (2.1), we first deduce that (¢/‘,) L Z)~ — 5z a8 Re Z — oo. Then,

substituting (¢J‘,)_1(Z) = —‘12#2 + 0(%) in (2.1) again, we obtain
1 -1
@7)"1(2) = —a3" (Z + Blog(—az—z) + 0(1)) . (2.3)
Finally, note that for every zo € 8y we have
zi = [*(20) = @5) 7 ($)(20) + k)
= —i(q&}(zo) +k+blnk +o(1)”"

1 /1 1 v (z 2
__L(1_bklmk ¢\ (k)
a \k k2 k2 k3

hence Re(azzx) = —¢ L4+ O(I“k) and Im(azzg) = O(kiz).
Recall that with our ch01ce of normalization, p(z) = z — z? 4+ O(z3), so that the
previous estimates apply to p with a, = —1; and go(w) = w + w? + O(w?), so that

they apply to go with ap = 1.

2.2. Global properties

Any orbit which converges to 0 but never lands at 0 must eventually be contained in 3’]‘,
Therefore, we have the following description of the parabolic basin:

Br=J .
n>0

Using the relation qu‘, o f*= qb} + n, the incoming Fatou coordinates can be uniquely
extended to the attracting basin B. On the other hand, the inverse of gbj? can be extended
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to an entire map denoted by w/‘,’, which satisfies the functional equation

foyZ) = YAZ + 1),

This entire function is then called an outgoing Fatou parametrization.

2.2.1. Covering properties of Fatou coordinates. We first record the covering properties
of ¢>j‘, and 1//}’ in the next two propositions:

Proposition 2.1 ([11, Proposition 2]). The set of critical points of the map ¢>} 1By —>C
is exactly

crit(¢y) = () £ (erit(f) N By).

neN
Moreover, ¢} : 8y — C is a branched cover.
Proposition 2.2 ([11, Proposition 3]). A point Z € C is a critical point of 1//; if and
only if there exists n € N* such that wj‘? (Z —n) e crit(f). Moreover, the map 1,0}‘3 :

C\ (1//;)71(Pf) — C\ Py is a covering, where Py := | J,5, f"(crit([)) is the post-
critical set of f.

2.2.2. Lifted horn maps, horn maps and Lavaurs maps.

Definition 2.3. The Lavaurs map of phase 0 € C isthe map £¢, : By — C defined by
L1o(w) i= Y2 W) +0).

In order to better study the dynamics of £, it is convenient to introduce the follow-
ing map which is semi-conjugate to it:

Definition 2.4. The lifted horn map of phase o € C is the map defined on Uy :=
(wj?)_l(i?f) by Ers (W) 1= qjj‘, o w]‘,’(W) + 0. We will simply denote by & the lifted
horn map of phase 0.

The open set U s has at least two connected components, one containing an upper half-
plane and the other containing a lower half-plane. We record here the following property
of the lifted horn maps:

Proposition 2.5 ([11, Proposition 4]). The set of critical values of Ey is
CV(&r) ={gy(c) +n:cecrit(f) N By andn € L}.

It is not difficult to check that & (W + 1) = &¢(W) + 1, so that 7 (and &y, for
any o € C) descends to a well-defined map on the cylinder C /Z. Then, identifying C/Z
with C*, we obtain a unique map % : U — C* such that

h(e* ™) = exp(2i & (W)),

where U is the image of Uy = (1//}’)_1(58f) under W+ ¢2™W _ The map # is called
the horn map of f, and the horn map of phase o is hy 1= e h. It can be proved
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that it extends holomorphically at 0 and oo, and the extension fixes both points (see [7,
Appendix] and references therein).

3. Parabolic domains and parabolic curves

3.1. Parabolic curves

Let P be a holomorphic germ fixing the origin which is tangent to the identity of order
k > 2, i.e. amap with a homogeneous expansion

P=1d+ Pr+ Pry1+---,

where Py # 0. We say that v € C2 \ {(0,0)} is a characteristic direction for P if there
exists a A € C such that Pr(v) = Av. If A 5% 0 then v is said to be non-degenerate;
otherwise it is degenerate. We shall denote by v — [v] the canonical projection of C2 \
{(0,0)} onto P!. The director of a characteristic direction v is the eigenvalue of the linear
operator

d(Pp)p) —1d : Ty P! — Ty P

A parabolic curve for P is an injective holomorphic map ¢ : A — C?2, satisfying the
following properties:

(1) A is a simply connected domain in C with 0 € JA,
(2) ¢ is continuous at the origin and ¢(0) = (0, 0),
(3) ¢(A) is invariant under P and P"|,a) — (0, 0) uniformly on compact subsets.

We say that a parabolic curve is tangent to [v] € P if [p(§)] — [v] as £ — 0 in A. This
implies that for any given point z in the parabolic curve the orbit (P”(z)) converges to the
origin tangentially to v, i.e. [P"(z)] — [v] in P!. We now recall the following classical
result due to Ecalle [16] and Hakim [18, 19]:

Theorem 3.1. Let P : C2 — C? be a holomorphic germ fixing the origin which is tangent
to the identity of order k > 2. Then for any non-degenerate characteristic direction v there
exist (at least) k — 1 parabolic curves for P tangent to [v]. Moreover, if the real part of
the director of a non-degenerate characteristic direction v is strictly positive, then there
exists an invariant parabolic domain in which every point is attracted to the origin along
a trajectory tangent to v.

Additionally, by [19, Section 3], when the director of a non-degenerate parabolic curve
is not a natural number, the corresponding parabolic curve is asymptotic to a unique (in
general divergent) invariant formal power series.

From now on, let P be a map of the form (1.1) and observe that its characteristic
directions are given by the equations

—z2 = )z,
w? + bz? = Jw.
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It follows that aside from the trivial non-degenerate characteristic direction (0, 1),
there are two other non-degenerate characteristic directions (1, c¥), where c*
roots of

are the

w>+u+b=0. (3.1)

Note that ¢c* = —1/2 =4 ic where c is the solution of ¢2 = b — 1/4 with Re(c) > 0.
Clearly, Im ¢ = 0 if and only if b > 1/4. Moreover, for b = 1/4 we have ¢c™ = ¢~ =
—1/2. The directors of the characteristic directions (1, ci) are F2ic; in particular, when
b € (1/4, o0), neither of them is a natural number.

It follows from Theorem 3.1 that aside from the trivial parabolic curve contained in
the invariant line z = 0, there are two parabolic curves which are tangent to the non-
degenerate characteristic directions (1, ¢¥) respectively. By Hakim’s construction, these
parabolic curves may be written as holomorphic graphs z — (z,{*(z)) over a small petal
&P, = D(r, r). Since parabolic curves are invariant under P, the functions ¢ *+ satisfy the
functional equations

4:(£*(2)) = £ (p(2)).

From this we can easily compute the first few terms of the formal power series to which
they are asymptotic:

b—1)b
tE(z) = ctz + (ci(@ + w)z2 + 0(z%), (3.2)
where b b
a—>bo3+b3p
®:=bh _ 3.3
0,3 + b (3.3)

3.2. Parabolic domains and proof of Theorem 1.2

We now turn to the proof of Theorem 1.2, which we break into the following two propo-
sitions.

Proposition 3.2. Ifb € C \ (1/4,00), then the map P has an invariant parabolic domain,
in which each point is attracted to the origin along trajectories tangent to one of its non-
degenerate characteristic directions.

Proof. We have two cases:

Case 1: Letb e C\[1/4,00). As mentioned above, a straightforward computation proves
that the directors of (0, 1) and (1, c¢¥) are —1 and —1 — 2¢* = F2i¢ respectively. Note
that for our choice of b we have Im ¢ # 0, hence exactly one of the directions (1, ci) has
a director with a strictly positive real part. By Theorem 3.1, if the real part of the director
of a non-degenerate characteristic direction v is strictly positive, then there is an invariant
parabolic domain in which each point is attracted to the origin along trajectories tangent
tov.

Case 2: Letb = 1/4. First, observe that as b — 1/4, the characteristic directions (1, c¥)
are getting closer to each other, and in the limit they merge to a single characteristic
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direction v = (1, —1/2). In the terminology of Abate—Tovena [3], v is an irregular char-
acteristic direction, hence by the result of Vivas [34, Theorem 1.1] there exists an invariant
parabolic domain in which each point is attracted to the origin along trajectories tangent
tov. |

Proposition 3.3. If b > 1/4, then each of the two non-vertical parabolic curves is con-
tained in parabolic domains UT which are not tangent to any direction.

Note that we do not claim that U™ # U™, although we believe it is the case.

Proof of Proposition 3.3. Let D(x, p) :={z € C : |z — x| < p} denote the disk centered
at x with radius p. Let r > 0 be so small that p(D(r,r)) C D(r,r) and p is injective on
D(r, r). Note that both P and F¥(z,w) = (z, w + £+ (z)) map the set D(r,r) x C into
itself. Therefore by conjugating P with F* we obtain a well-defined holomorphic map
on D(r, r) x C given by

P(z.w) := (p(2).q:(w + LT (2) — ¢ (p(2))), (3.4)

where

4:(w +57(2) = ¢: (£ (2))

=w+w?+2ctzw + O(sz,zzw, w3).

4z(w + 57 (2) = £ (p(2))

Note that in these coordinates, the line w = 0 is invariant under P and therefore (1,0)
is now a non-degenerate characteristic direction of this map.
By making a blow-up w = uz of the map (3.4), we obtain the map

P(z,u):= (z =22+ 0(Z%),u(l +i2cz) + zu? + O(z*u)) (3.5)

that is holomorphic on D (r, r) x C. Moreover, if r is sufficiently small then there exists a
holomorphic function 4(z) defined on D(r, r) such that

P(z.u) = (p(2).4(z.w) = (2 — 22 + O(2*), ue2*+ ) 4 212 4 0(z2u?)).
Let us define D, := {(z,u) : [u| <r, z € D(r,r)}.

Lemma 3.4. There exists a sequence of real numbers 0 < r; <r such that for any
(20, u0) € D 1= U5 {(z,u) : [u] < r;, z € D, rj’?)} we have P"(zy,uq) € D,

for all n > 0. Moreover, the sequence P"(zo,uo) is bounded away from the origin.

Proof of Lemma 3.4. Let j € N* and zg € K; := D(r, rj]ﬁ). Note that

1 1 1
Re p*(zg) = -+ O D7) and  Im p"(z0) = O an ,
n n? n?

with uniform bounds depending only on the compact K; and hence on r and j, for all
n > 1 (see Section 2). Using this, we define
i2¢c

2 2
. Bon— u u-lnn
Juu) 1= proj P(p" ™" (z0),u) = ue +@’"<Z°>+7+0( — )
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where ®, = 0(12—;) depends only on z¢ and is uniformly bounded on K; and the constant
in 0("2’112“") is uniform on K; x D(0, r).

We need to prove that there exists 0 < r; < r such that for every 1o € D(0, r;) and
every zg € K;j we have (z,,u,) = ﬁ"(zo,uo) € D, forall n > 1. In particular, we need
to prove that |u,| < r foralln > 1.

Observe that u, = (f, o---0 f1)(ug) foralln > 1 and let U := t(u) = —1/u. For
n > 1 we define

i2¢ _ 1 Inn Inn
en(U) 1= (o fyor )(U) = Ue -0 4 1 4 0(—2, —2)
n n* Un
It suffices to prove that there exists 0 < r; < r such that for all (zo, Up) where zy € K;
and |Up| > 1/r; we have |g, 0---0 g1(Up)| > 1/r foralln > 1.
Observe that since c is real, there exists C; > 0 such that

Gl < |e—zﬁ;ﬁ (400 < ¢
on K; for all n > 1. By making a non-autonomous change of coordinates
Un(U) = e~ YrZh (izzTL'*'@k)U’
we obtain

G,(U) = %11 ognoYu(U)

1 <« ize Inn Inn
= U 4+ —e2k=1U75400) L o == =
+ ne + n? " Un?

1 ; ; Inn Inn
— U + —pi2¢nti2ey+h(zo) 4 i —
+ n + n? " Un?

where §) := Z,‘f’:l Oy is a holomorphic function of z,. Here, we have used the fact that
k=17 =y +Inn+ O(2), where y is Euler’s constant, and that } ;_, O(z1) =
b(zo) + 0(1“7"), where the bounds are uniform on K;.

Since ¢ # 0 is real, it follows from Abel’s summation formula that there exists a
constant C > 0 such that

n n
‘Z %enclnk _ ‘Zk—(l—ﬂc)
k=1 k=1

for all n > 1. This implies that G, o --- 0 G{(U) = U + O(1) for all n > 1, where the
constant in O(1) depends only on K.

Next observe that g, o--- 0 g1(U) = Y41 0 G, 0o--- 0 G1(U), hence there exists
Aj > 0 such that for all |Up| > 1/r and all zo € K; we have

<C

C;'Uol — Aj < |gno---0g1(Uo)| < Ci|Us| + 4

foralln > 1.
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From this it immediately follows that there exists 0 < r; < r such that for every |Up| >
1/r; we have |g, o0 g1(Up)| > 1/r for all n > 1. Moreover, for every |Up| > 1/7;
the sequence g, o --- o g1(Up) is bounded away from infinity.

Thus we have proven that for any (zo,uo) € K; x D(0,r;), we have (z,,u,) € D, for
all n > 0, where the sequence (u1,),>0 is bounded away from the origin. This concludes
the proof of Lemma 3.4. ]

Let us resume the proof of Proposition 3.3. Let Q := {(z,zu + {1 (2)) : (z,u) € D}; it
is a connected open set whose boundary contains the origin, and P(£2) N 2 # @. Indeed,
P maps D(r,r) x {0} C D into itself, hence P (D) N D # @. From the lemma above, it
immediately follows that the iterates P"S’2 converge to the origin locally uniformly on €2,
which is therefore contained in some invariant parabolic domain U™ . It remains to prove
that this parabolic domain is not tangent to any direction. Let (zg, wo) € 2 and (z,,, w,) =
P"(z9, wp) and observe that since z,, # 0, for all n € N we have [z, : w,] =[1 : l;_:] =
[1:u, +ct +o(1)].

Recall that in Lemma 3.4 we have shown that

Un = proj, P"(zo,u0) = v oy} 0 Gy o0 Gy o T(ug),

where G; and v; depend holomorphically on z¢ and ¥ (U) is linear in U. Moreover,
1
Gpo---oGrot(u) =——+ 0(1)
u

as u — O for all » > 1 where the bound in O(1) depends only on the compact K;. Hence
every limit map of the iterates (P") on D is of the form (z,u) > (0, 7(z, u)), where 7 is
a non-constant holomorphic function and g—z £ 0.

Therefore, there is no vector v € C? such that the sequence [P”(z, w)] would converge
to [v] in P! for all (z, w) € Q.

The proof of the existence of an invariant parabolic domain U™ that contains the
parabolic curve associated to the characteristic direction (1, ¢™) follows verbatim with an
appropriate change of sign. ]

4. The error functions

Here, we introduce and study properties for one of the main objects to appear in our argu-
ments: the functions A(z, w), A(z, w) and Ag(z), which measure how far the dynamics
is from a translation in certain local coordinates.

Let P be a skew-product of the form (1.1), and recall that v = (1, ci) are two non-
degenerate characteristic directions of P, where cE = —% +ic.

Definition 4.1. Let
¢t (2) - w)

1
Vz(w) = —— log(m
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where log is the principal branch of logarithm and let®
14
Yow) = e (w) £ o
2c

Note that with this choice of branch, ¥, is defined on C \ L, where L is the real
line through ¢ (z) and ¢~ (z) minus the segment [{~(z), {7 (2)]. In particular, ¥ and ¥2
are both defined in a disk centered at w = %(é‘ *(z) 4+ ¢~ (z)) whose radius is of order z.

Remark 4.2. Observe that if Im % < 0 (or equivalently, if w is in the half-plane to
the left of L), then

w—{*(z ))

w—§¢(2) )

¢t )—w

@ 0 (or equivalently, if w is in the half-plane to the right of L), then

og — L w—"(@)
o =g G )

. 1
vt = i tog(

and if Im

Definition 4.3. Let

1 1

. t/o t/o .
A(z.w) 1= Yy © 4z (w) = YYow) =z, Ap(w) = ~ @) + o 1.

Note that the formula for A(z, w) does not depend on whether the ingoing or outgoing
coordinate v, is used, and is therefore well-defined. The map A is for now defined on the
openset {(z,w) € P, x C:w ¢ L; and gz (w) ¢ Ly(z)}; however, we will see below that
it extends analytically to a bi-disk D(r, r) x D (0, r).

Proposition 4.4. (1) Ay is analytic near 0, and Ag(w) = (b3 — Hw + O(w?).
(2) There exists r > 0 such that for all z € D(r, 1), A(z,-) extends analytically to the
disk D0, r).

Proof. Ttem (1) is an easy computation. For (2), observe that if r > 0 is small enough,
zeD(r,r)andw ¢ L;, q:(w) ¢ Lp(z), we have

A(z,w):23_,Clog(qz<w)‘f+("(z))) Llog(w—¢+<z))_z

g:(w) == (p(z)) ) 2ic “\w—¢(2)
1 (qz<w>—z+(p(z>> , qz(w)—é‘(p(Z)))_Z

2ic w—itz) T w={(2)
— LIO (QZ(LU) —q:(¢T(2)) . qz(w) —qz(é‘_(z))) .
= 2ic w_§+(Z) : w_é'—(z)

3The map Y2 should not be confused with 2, the latter being the outgoing Fatou parametriza-
tion. In our notation the outgoing Fatou parametrization will always have a function in its subscript,
whereas the map defined above will always have a point in its subscript.
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Taking r > 0 even smaller if necessary, we may assume further that for all z € D(r, r),
we have ¢, (w) # ¢, (% (2)) if w € D(0,7) \ {¢*(2)}, and that g, has no critical point on
D (0, r). For this choice of r, it is then clear that w — A(z, w) has removable singularities
atw = £+ (2). [

Proposition 4.5. Let ® be as in (3.3). We have
A(z,w) = zAo(w) + (O + 1/2 — bo 3)z% + O(23, 2%w),
where the O-constants are uniform for (z, w) € C? near (0,0) (with z € P5)-

Proof. Let K be a compact in C*, and let w € K. By a straightforward computation we
obtain

1 w={te)\ _ 1 (T@-T@) @) -(E (@) 3
ﬁl"g(w—ﬁz))‘ﬁ( w T w )*0(“
R S S @.1)
w w 2w
Using this we can now show that
o oo o0 PG O e o,
A 7 R T R TR )
_ oz z2 B 0z2 z? 3
" o a2y O
This implies that
A(z,w) = zAp(w) + @zz(i _ )
w o go(w)
z? 1 1 2 3
+ 5 (oo w7 * o) OO

2
= zAo(w) + O2% + %(1 —2by3) + O(z%, 2%w)
= zAo(w) + (® 4+ 1/2 — b 3)z% + 0(z3, 2%w).

Here, we have used the fact that A(z, -) is analytic, hence all terms in w with negative
powers are canceled.

Note that the constant in O(z3, z2w) a priori depends on K C C*. Let ¢, (w) :=
w; by Proposition 4.4 it is holomorphic on D (0, r). We have proved that for
compact K C C*, forall w € K, and for all z € P, we have |¢,(w)| < Ck. By taking
K = {|w| = r/2} we therefore obtain the same estimate |¢,(w)| < Cg forall |w| < r/2
because of the maximum modulus principle. This gives the desired uniformity. ]

Definition 4.6. Asin [7],letv € (1/2,2/3) and let

R, ={WeC:|z|'"V/10 <ReW < m/c — |z|'7V/10
and —1/2 <ImW < 1/2}.
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Definition 4.7. Let y, (W) = W + (bo3 — 1)R(z, W), where
R(z, W) :=cze F.(W) (4.2)
and F, is the primitive on Rg of W > e~" cot(c W) vanishing at o

A straightforward computation shows that R(z, W) is a solution of the linear PDE

R + R _ ot(cW) 4.3)
2o+ oy = czcot(eW). .

Lemma 4.8. We have
W) THW) = —czcot(cW) — /2 + O(z2 cot(c W), 22).
Proof. We have

+ _ = 2icW
oy oy = B2 e (44

and using the fact that ¥ (z) 1= (=1/2 +ic)z + (w +ic®)z2 + 0(z3),
we get the conclusion. ]

Lemma 4.9. Assume that ¥,(w) € R;, and let W := Y. (w), Wi := 1//1‘,(2) oqz(w) and
z1 := p(z). Then

|R(z1, W) — R(z, W) — ez? cot(c W)| = O(|z|*F9) (4.5)
with8 :=2v —1 > 0.

Proof. In the computations that follow, we will frequently use the bound cot(cW) =
O(sin(cW)™1), valid for W € Ry. Let x := (z, W) and h := (z1, W1) — (z, W). Then
by Taylor—-Lagrange’s formula, we have

R(x +h) — R(x) — dRy(h) = /01 a _Zt)zdszHh(h, h) d 4.6)
and
d2Ry (h.h) = Rz-(y)h} + 2Rzw (y)hiha + Rww (y)h3
where R, := %271;, etc. Moreover, R,, = 0, and

R.w(z, W) = ce F.(W) + ¢ cot(c W),

Ryw(z, W) =cz (eWFc(W) + cot(cW) — smz(c—cW))

Since e = O(1) and F.(W) = O(log W,log(W — 7/c)) = O(sin(cW)~1) in Ry, we
have
R.w(z, W) = O(sin(cW)™ ).

Similarly, Rww (z, W) = O(z sin(cW)72).
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Using h; = O(z?) and h, = O(z), we deduce
d?Ry(h, ) = O(z>sin(c W) ™) + O(23 sin(c W) ?) (4.7)

Since W € R, by assumption, we have z3 sin(cW)~2 = 0(|z|'*?") = 0(|z|*T%)
with § := 2v — 1 > 0. Therefore

|R(z1, W1) = R(z, W) = dRx(h)| = O(z|**?).
It now remains to compare d R () and cz? cot(c W). First, note that
h=(=z>4 0%,z + 0(zw, 2%)) = (=22 + 0(z*),z + O(z*sin(cW)™1)).

Indeed, by Lemma 4.8 and the assumption that W € R, we have w = O(z sin(cW)™!).
Therefore

dRx(h) = Rz(x)h1 + Rw (x)h2
= —22R,(x) + zRw(x) + O(z>R;, z? sin(c W) ' Ry)
= cz?cot(cW) + O(z3 sin(c W)L, 23 sin(c W) 72),

hence we have
|dRx(h) — cz2 cot(cW)| = O(|z|**?). .

Definition 4.10. We define A(z, w) := Ap(z) © 1//;](2) ogz(w) — xz o Yi(w) —z.
Proposition 4.11 (Almost translation property). Let § :=2v — 1 > 0. Then
|A(z.w) = A2 = O(z]**?)
for all (z, w) such that ¥ (w) € Rz, where A 1= O + 1 — 3bg 3/2.
Proof. Letzy := p(z), W := ¢ (w) and Wy := ¢, o q.(w). We have
Az w) = Yzy 0¥, 0z (W) — gz 0 YL(w) — 2

=V;, 0qz(w) — Y (w) — 2 + (boz — D)(R(z1, W1) — R(z, W)).

By Lemma 4.9,
|A(z, w) — A(z, w) — cz2(bo 3 — 1) cot(c W)| = O(|z|*T9).
On the other hand, by Proposition 4.5 we have

A(z,w) = zAg(w) + (® + 1/2 — by 3)z% + 0(z%w, 2°)
= (bo3— Dzw + (O + 1/2 — by 3)z* + O(zw?, z%w, z°),

so Lemma 4.8 yields

A(z,w)=(1 —b0,3)c22 cot(cW)+z2(O+1— 3bo3/2)+ 0(zw?, 22w, z3, 23 cot(c W)).
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Putting all of these estimates together, we get
|A(z, w) — Az?| = O(|zw?|, |z2w], |z]3, |z]*T9). (4.8)

Finally, since by assumption ¥/, (w) € R, we have |[w| = O(|z|"). Indeed, by Lemma 4.8
and the definition of R, w = O(zsin(cW)~1) = O(|z|/|z]'™") = O(|z|").
Finally, using v € (1/2,2/3) we have
o |zw?| = O(|z|'T?") = O(|z|**?), since § = 2v — 1 by definition;
o |22w| = 0(z]>*) = O(|z|'T?") since 2 + v > 1 + 2u;
o |23 = O(|z|'*?Y) (again, since 1 + 2v < 3).

Therefore (4.8) gives the required estimate
|A(z, w) — Az2| = O(|z|*F9). .

Lemma 4.12. As W — 0in Ro, we have

1 1 720
F.(W) = - log(cW) — - /0 e “logsin(cu) du + o(1). 4.9)

Similarly, as W — w/c in Ry, we have

1 1 w/c
F.(W) =e ™~ log(m —cW) + — / e "logsin(cu) du + o(1). (4.10)
¢ € Jr/2c)

Proof. Recall that
w

F.(W) = / e " cot(cu) du.
7/(2c)

An integration by parts gives

1 1 v
F.(W) = Ee_W logsin(cW) + - // e "logsin(cu) du,
w/(2¢)

which implies both (4.9) and (4.10). [

5. Proof of the main theorem

We begin this section by explaining how the map ., defined in the previous section,
transforms the complex plane.

Let D be the disk of radius 1¢(z) — {7 (2)| = ¢|z| + O(z?) centered at £ (T (z) +
{7 (2)). Let S(z, R) be the union of the two disks of radius R that both contain the points
t*(z), &7 (z) on their boundary. The radius R will be sufficiently small, to be fixed later.
The definition of $(z, R) of course only makes sense when the distance between ¢ (z)
and {7 (z) is less than 2R, which once R is fixed will be satisfied for |z| sufficiently small.
Our choice of R will depend on the map g, but not on z.
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Fig. 2

The line L, through {*(z) and ¢~ (z) cuts the complex plane into the left half-plane
H! and the right half-plane H?. We define §'/°(z, R) := §(z, R) N HY°. The map ¥,
maps the disk D to the shaded strip [, =] x iR. The image of §(z, R) is bounded
by two vertical lines, intersecting the real line in points of the form F3= + O(z); see

Figure 2. Next we define 3’;{0 :=D(FR, R) and observe that $/°(p" (z), R) ——=> ﬂ’;{o
forall z € B,.
Fixing constants: We choose constants v € (1/2,2/3) and R > 0 such that
(i) the inverse g 1 is well defined on D(0,2R);
(i) qo(Pg) C Pp and qo’l(J’I‘;) C Pp.
Fixing a compact: For the rest of this section we fix a compact subset K’ x K C 8, x By,
Fixing an integer: We fix ng € N large enough that for every n > no we have p"(K’)
C P} and g5 (K) C P, where k, = |n"].
Notations: Given a point (zo, wo) € K’ x K, we will write €; := p"T/(z9) and w; :=
Gej_1 ©Gej_p © "+ 0 ey (Wo).
Remark 5.1. Unless otherwise stated, all the constants appearing in estimates depend
only on the compact K’ x K, but not on the point (zg, wg) or the integer 7.

In computations throughout this section, we will frequently use the following Euler—
Maclaurin formula for the estimate of a finite sum:

m—1

Zf(j)=/ f)dx + 5(f(n) = fm) + 75(f'(m) + f'(m)) + p(f.m,n),

Jj=n

where f is a smooth function and |p( f, m,n)| < 1;—0 fnm | f"(x)]dx.
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5.1. Entering the eggbeater

We start with the following lemma which tells us that the first k, elements of the non-
autonomous orbit w; will be suitably close to the autonomous orbit {g; (wo)}, assuming
that we have chosen sufficiently large 7.

Lemma 5.2. There exists ng > 0 such that for every 0 < £ < k (where n > ng) we have
Bgo (We) = ¢y (wo) + £ + 0(1) (as n — 00) and wg, = ot 0(1“”) € Pp.

Proof. We use induction on £. For £ = 0 the claim clearly holds. Now we assume that
Bgo(Wj) = ¢ (wo) + j + o(1) forall 0 < j < £ < ky and we proceed to prove that
the same holds for j = £ + 1 < k,. Note that ¢, (w;) = ¢, (wo) + j + o(1) implies

w; = g4 (wo) + o(1) = O(1/))
Observe that forall 0 < j < £ + 1 we have

b0 Wit1) = by, (qo(w)) + be} + O(}, €jw?, et w)))
- ¢q0 (w]) + 1 + O((¢q0) (U)])6 (¢q0) (w])el wj (¢q0) (LU])6 )

€?
J
_27 jWj, € )
J
P2
Z’nj n2)
k2
n

1
—¢q0(w])+1+0( E)

= ¢f10(wj) + 14 0(
= ¢;0(wj) + 1+ 0(

In the last two equalities we have used the fact that €, = O(
0(%) > 0(%). It follows that

a7) < O(y) and w; =

k2
B (Wesr) = B (wo) + £+ 1+ ZO(— =)

2 9
n
j=0 J

S

kzﬁl 14
—¢qo(wo)+£+1+0( o8 )

n
: ka

= ¢! (wo) + €+ 1+ 0(;72)

= ¢ (wo) + £+ 1+ o(1),

where the last equality holds since k, = |[n" | forv € (1/2,2/3). Note these computations
are only valid if w; € By, for all 0 < j < £ + 1, but clearly this is the case for all
sufficiently large n. The fact that the choice of good n’s does not depend on £ is derived
from the above o(1) estimate. Therefore by induction we obtain ¢, (wg,) = ¢y, (wo) +
kn + 0(1). Furthermore since ¢, (w) = —1/w + (1 — by 3) log(—w) + o(1), we also
obtain wy, = —¢- + 0(1"”) and hence wy, € Py for all sufficiently large 7. |



Dynamics of skew-products tangent to the identity 585

Lemma 5.3. For all sufficiently large n we have

2
Gkn

2
Zwkn

Ekn

+

Ve, (Wk,) = — + o(ex,)-

Proof. First observe that ¥, (wg,) is well defined for all sufficiently large n. Indeed, for
all large n we have €, € P, and wg,, € $'(¢,,, R). From the computation in the proof
of Proposition 4.5 we can conclude that

. €k €k 0 €
w — __Fkn + n_4 n
Wekn( kn) Wy, zw]%n ( 3 )

2

€ € k3

Z—ﬁ—FL;—FO(ék,,'—;)
Wk, n

€k €k
=—-——"+ 2—; + o(ek,),
Wk, wkn

where the last two equalities follow from the same argument as in the proof of the previous
lemma. ]

Remark 5.4. By Lemma 5.2 we have wy,, € # and since $*(eg,,, R) — Pp asn — oo
we can conclude that wy, € $'(eg,, R) for all (z9, wp) € K’ x K and all sufficiently
large n. Moreover, by combining Lemmas 5.2 and 5.3 we also get

Wk, = —léx, [" + o(eg,)

and hence Ipékn (Wk,,) € Re,,, forall (zo, wo) € K’ x K and all sufficiently large n (recall
that R, was introduced in Definition 4.6).

Definition 5.5 (Approximate Fatou coordinate). Let ®, := y, o y..

Lemma 5.6 (Comparison with incoming Fatou coordinates). We have

1 k2
e_q)ekn (wkn) = ¢¢L]0(wk,,) + ﬁ + (l — b0,3) Inn + E* + 0(1),

n

where

7/(2¢)
E' = (bos — 1)(lnc - / e " Insin(cu) du).
0

Proof. Recall that by Lemmas 5.2 and 5.3 we have
1 Inn
=—— +0(—
T ( K )

2
Ekn_ + i
Wk, 2w2

n

and

Ve, Wk,) = — + o(ek,,)-
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Next, we have

1 1
_q)ékn (wkn) = _Xek,, o Wékn (wkn)
k €k

n n

w
P c(1 = bo3)e" Fe(W) with W := Ve, Wiy)

1 k2
=—+ L —c(1- b0,3)€WFc(W) +o(1).
Wk, 21

Note that e = 1+ O(W) = 1 + O(eg,, /w,) and therefore by Lemma 4.12,

€k 7/ (2¢)
ceW F.(W) = log(——") +1Inc —/ e *Insin(cu)du + o(1)
w 0

n

m/(2¢)
= —log(—wg,) —Inn +Inc — / e " Insin(cu)du + o(1).
0
Putting all together we get
1 1 k2 .
— @, (wk,) = ———+(1—bo,3) log(—wk, ) + 5= + (1 —bo,3) Inn + E* +o(1)
€k, " Wk, 2n
k2
:¢;0(wkn)+ﬁ+(1—b0,3)lnn+E‘+o(1). [

5.2. Passing through the eggbeater

Definition 5.7. Let g, B be as in (1.2) and define M,, := | (o — 1)n + BoInn], where
|-] is the floor function. Let £,, := [e™/“k, | and p, := {(ao — 1)n + Bo Inn}, where {-}
denotes the fractional part. Finally, we define W; := @, (w;).
Lemma 5.8. Fork, <i <M, —{,, we have W; € R, and

i—1
W; = Wk,, + Z € + I‘I(ej,wj).
J=kn
Proof. We prove this by induction oni.

e Initialization: It comes from the fact that Wy, = k,/n + O(k?/n?) (see Lemmas 5.2,
5.3 and 5.6).

e Inductive step: Let k, <i < My — {, and assume that W; € R, forall k, < j <i.
We need to prove that also W; € R, . First recall that by Proposition 4.11 we have

i—1 i—1
Wi Wi, = & =| 2 Agwp)|

J=kn Jj=kn

- C C(i —kn) 1
P e e e ()
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where we have used the Euler—Maclaurin formula to compute the sum Z;'_:lk,, ﬁ

and the fact that ¢; = n}”. + O(%), and that /I(€j, w;) = 0(6]2) whenever

®c; (wj) € Re;. Moreover, since i < My, — £, we have
Cii —kn) 0(1)
(n+kp)n+i)  \n

i—1

1
Wi=We, + > ¢ +0(=

J=kn

and therefore

i—1

n+i +kn+0 k2
n — —
n+ky n n2

Now observe that

ln(l + i) T meln Tk 0(1),
n C n C n n

k k2
e +0(€i17v) =Re W, <ReW; < z__"+ 0(_;)
n

and therefore

T _ _
== e | +0(ei1 V)

and Im W; = O(k2/n?). Finally, note that all the bounds in the O(-) terms above can be
chosen to be independent of i. Therefore, there exists N > 0 (independent of i), such
that for every n > N we have W; € R; aslongas W; € R, forallk, <j <i. =

In the above proof we have seen that Wy, ¢, = /¢ — |ep,—e,|' ™" + 0(611‘,;1[4"),
but for our purposes we will need the following sharper estimate.

Lemma 5.9. We have

b4 G 1
o = %4 % o)
c n

where

k2 .
Gp = —e 7, + ﬁ + (1 =boz)e ™ Inn —e™p, + $g, (Wo) +C

and

Ci=(—a)e ™ Z 4 (1= ™) (0 + 2(1 —bos) + (a — 1) — ¢}, (z0)) + E
c
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Proof. First recall that by Proposition 4.11 and Lemma 5.8 we have
Mll_ell_l
Wity—t = Wi, + Y € + Al w))
J=kn
My—t,—1
=Wi, + Y. (¢ +A+0(F)).
J=kn
Also recall that by Lemmas 5.2 and 5.6 we have

1 k2 1
Wi, = —(¢ﬁlo(w0) +kn+ =+ (1 —bo3)Inn + E‘) + o(—)
n 2n n
e (1= @) Inn + ) + ¢ (z0) :
1 —a)ln(n + j) + ¢, (z In“n
€& = F )2 B 0( 3 )
n+j (n+7j) n
First observe that since M,, = O(n) and €; = O(jﬁ) < 0(%) we have
My—Ly—1 My—Ly—1 | My—Ly—1 I
7 _ 2 _ 2
L A= 3 ad o(l_H) =Y Al —i—o(;).
J=Kn J=Kn

J=kn
Next we define the functions

(I—a)In(n + j) + ¢,(20)

1
81(j) = PR 8(j) =~—

(n+j)? ’
. . . In% n
83(j) =€ —81(j) —82(j) = O )
Then
M,—4,—1 2
) In“n 1
5 o) o),
; n n
J=kn
and therefore
M,—{,—1 M,—{,—1 1112}’1
S og= Y i)+ 80+ 0( - )
J=kn Jj=kn

Furthermore, by the Euler—Maclaurin formula applied to §; + &5, we get
M;—{,—1

Y 1) +80))

J=kn

M, —{, 1
- / (5107 + 5200 dj + 51 () — 1My — )

+ P(81 + 8, kn, My — L, — 1)

M,—{, M,,—L, 1 1
=/ 81(j)dj +/ 82(j) dj +—(1—e_”/c)+0(—).
kn 2n n

n
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Next we compute the two integrals in the above expression:

Mu—tn M, —¢
/k $1(j)dj =1n(w)

n—+ky,
1 1 k {
= Z 4 oz —a)(1 = eT/) =0 oo, S et
C n n n n
1 2 —2m/c p2 1
1 1 k { 1
=T oz —a)(1 — eIy _pmme Ly K gl a(—),
C n n n n n

where we have used the fact that 1/2 < v < 2/3 and k2 — e~27/°¢2 = O(n"). For the
other integral we have

Mll_e)l . . . 1 1
/kn RG = (dmat ¢"(z°))(n +My—ty n +kn)

(1 + My =) Inn + kn))

+(1—a)( n+ M, —1{, P
_ 1 —n/c |Jp— . 1 Cafe T
= —(1=a)(e™ = 1) + (7 = D)y (z0) + (1 —a@)e™™/ =
n n p -
+(1—a)(e—ﬂ/c_1)hl_”+0(1)
n n
N %((1 —a+ () = 1) + (1 _a)e—n/c%)

+ (1 —a)e ™ - 1)111711 + 0(%).

Therefore,
My—L,—1
" 1 1 k l
Y G =T hos—a) 1 —e )L ey, Zh et
, c n n n n
Jj=kn
1 1
+(1—a)e ™ - 4 0(—).
n n
Next, observe that €7 = §7(j) + O(%) , so that
My—{,—1 My—L,—1 Inn
Yo=Y s+ O(n_z)'
J=kn J=kn

By the Euler—Maclaurin formula, we have
M,—t
n n 1 1
—— _di+ol=
/,, TR (nz)

1 1 1
T n+ky, _n—i—M,,—K,, +0(;)

Mﬂ _ell -1

> 8G)?

J=kn

l(1 —e7m) 4 0(1).
n n
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Therefore
M, —{,—1

Z 612 = %(1 — ey —i—o(%).

J=kn
Putting all together we obtain

My—L£,—1

1
W, -, = Wk, + Z (5 + Ae}) +0(—)
j:kn "
2
= z _e_n/ce_n —+ (1 _bO 3)8_].[/6111_” + k_n
c n ’ n 2n?
1 ~ 1
+ = (gL, (wo) + C — e p,) + ”(_)‘ -
n n

Remark 5.10. Since G, = e~ ™/{,, + 0(£,), we have Re G,, < 0 for all large .

5.3. Exiting the eggbeater

Lemma 5.11 (Comparison with outgoing Fatou coordinates). We have wag,—¢, € P,
and

1

EMyu—Ly

b
(CDEM,I_@" (an—ln) - Z)

52
= bgo (Wat,—,) + €L 4 (1= bo3)Inn + E° + o(1),

where
w/c

E°:=(1- 190,3)(z . f e " Insin(cu) du).
c n

/(2¢)
Proof. By Lemmas 5.8 and 5.9 we know that Wiy, —¢, € Re,, _, and Wy, ¢, = /c —
e ™0, /n + o(€,/n). Since W, —, = —CE€M,—t cOt(cWay, —g,) + O(1/n), we have
W, —¢, ~ 1/, and hence wyy, ¢, € PR for all sufficiently large n. By the same com-
putation as in the incoming case, we have

2
€M, —Ln + Mp—4tn

2
WMy —Ln 2an —Ln

1 02
= em,—t, | — +em 4 o) ).
WM, —ty 2n

I'IIEOMn*Zn (wM"_e") == + O(GMn_en)

Recall that ¢ (w) = —1/w + (1 — bo,3) logw + o(1).
Next, we have
cDéMn—Zn (an—Kn) = XeMn—ln © wéMn—ln (an—en)
= Xertn—tn Vers,—e,, WMu—t,) + 7/C)

=n/c+ W —cep,—g, (1 — bo3)e" T F. (W + 7 /c),
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where W := 1//€”Mn e (wpt,,—¢, ), and by Lemma 4.12,

w/c
eVt E. (W 4+ 7/c) = log(eM"—_e") +1Inc+ e”/C/ e “Insin(cu)du + o(1)
WM, —L, n/(2¢)
w/c
= —log was,—¢, — In(e™n) + Inc + e™/¢ / e “Insin(cu)du + o(1).
m/(2¢)

Putting all together we obtain

1
(CDeMn*Kn (an_(n) - T[/C)
€M, —Ly,
! —r/c Z% 0
= — + (1 —bo3)logwpy,—¢, + e = 4+ (1—=bo3)Inn+ E° 4+ 0(1)
WM, —y ' 2n ’
72
= bgo(Wa,—t,) + e‘”/cz—" + (1 =bo3)Inn + E° +o(1). .
n

Lemma 5.12. For M, — £, < j < M, we have w; € P} and

bao(Wj) = ¢ (War,—e,) + j — (My — £y) + o(1).
Proof. Recall that wyy, —¢,, = O(1/4,).
For M,, — {,, < j < M, — 1 we have
b0 (wit1) = o (qo(w;) + be; + 0(7)) = ¢g (wy) + 1+ O(($5,) (w))e?)
= @9 (w)) + 1+ O(e} /w}).

Now, similarly to Lemma 5.2, induction on j proves that w; = O(W—j) > 0(&). This
implies that

$g (Wj+1) = P, (wy) + 1+ O3 /n?)
and therefore, again by induction, ¢g (wm,) = ¢g, (Wam,—¢,) + €n + o(1), where we
have used the fact that O(€3 /n?) = o(1) since £, ~ n" forv € (1/2,2/3). |

5.4. Conclusion

Our Main Theorem is a corollary of the following more general theorem which we prove
first.

Theorem 5.13. We have
PMn(p"(z), w) = (pMr7(2), £(e™°, T — pu: 2z, w) + 0(1)),
where

a—>bos+ b3

I = ("¢ — 1)( =

1
+a+ 5(1 —bo3) + (bo3 — 1)1HC) + (bo,s — a)%

w/c
+ e (1 — by 3) / e "Insin(cu)du. (5.1)
0
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Proof. We have

bao (W) = dg (Wi, —g,) + Ln + 0(1)
1
= aan g, Pertnmen (WMu—ty) = 7/C) =S

= e”/cqﬁfm(wo) — pn +€™°C —E° 4+ 0(1),

EZ

—n/cn

—(1=bo3)Inn—E°+ 4, +0(1)

where the first equality follows from Lemma 5.12, the second from Lemma 5.11, and the
last one from Lemmas 5.9 and 5.8. Note that in this computation we have used the fact
that 5 (e™/°k2 — e™™/<42) = o(1).

Finally, recall that

a — b0,3 + b3’0

© = bho3 + b

w/(2¢)
E'=(bo3—1) (lnc —/ e ¥In sin(cu)du),
0
C=1-a)e ™" 4+1- e ™) (O + 3(1 = bo3) + (a — 1) — ¢4 (20)) + E.
c
E° = (1 — b(),j,)(z —1Inc — e”/C/
¢ 7

A quick computation now gives

w/c
e *In sin(cu)du).
/2c)

™€ — E° = —(e™/¢ — D¢, (z0) + T,

hence
oo (war,) = €™ L (wo) — (€™ — )b (z0) — pu + T + 0(1). n

Remark 5.14. Theorem 5.13 has been proved under the assumption that 8y € R. Follow-
ing essentially the same proof with 8¢ € C (only replacing the definition of M, and p,, in
Definition 5.7 by M,, := | (g — 1)n + Re(Bo) Inn | and p, := {(ao — 1)1 + Re(Bo) Inn}),
one could prove that

w, = (65) 7" (€ By (wo) — (€™/° — 1)y (20) — pn + T + i Im(bo 3 — ) Inn)
+ o(1).

It then seems likely that (z,4, . Wi, ) belongs to one of the parabolic domains U* from
Theorem 1.2, which in turn would imply that (z,, w) belongs to the parabolic basin of
(0, 0) for all n large enough. This also seems to be supported by numerical experiments.

Proof of the Main Theorem from Theorem 5.13. It only remains to rephrase Theorem
5.13 in terms of admissible sequences. Let (1 )r>0 be an («g, Bo)-admissible sequence.
By definition of M, and p,, we have

My, = (@0 — Dng + Bolnng ],
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and pn, = {(ao — 1)ng + Bo Inny}. Therefore, by definition of an («g, Bo)-admissible
sequence, there exists a bounded sequence (my)x>¢ of integers such that

g1 — Nk = My, + myg,

and the phase sequence of (ny)x>o is given by

Ok = ng+1 — Qong — Polnng = ngi1 — (Mn, + ng + pny)
= Mk — Pny -
By Theorem 5.13, we have
PMiuic (p" (2), w) = (p" Mk (2), £(cto, T = pny3 2, w) + (1))
and therefore, by the functional equation satisfied by &£,
PRI (p" (2). w) = P (1 (2), w)

= (pnk+Mnk+mk(Z)’ (o, T+ my — pny: 2z, w) + 0(1))
= (p"k+1(z2), Lo, T + 0k 2, w) + o(1)).

Finally, since z € 8, we have p"4+!1(z) = o(1) and hence we obtain the desired result
P17 (p"(2), w)) = (0, L(ao, T + 0; z, w)) + o(1). [

Remark 5.15. The proof of the Main Theorem does not require that the phase sequence
(0% ) is bounded, but as we will see later this property is crucial for its application.

6. Wandering domains of rank 1

The aim of this section is to prove Theorem 1.6.

Proof of Theorem 1.6. By our assumption, if (0% )xen denotes the phase sequence asso-
ciated to the (cg, Bo)-admissible sequence (1 )ren, then

k—o00
Ok = Ng41 —Qong — Polnng —— 6,

and hence by the Main Theorem we have P"k+17"k (p"k (z), w) k—_)i (0, £ (w)), where
£ (w) := L(xg, T + 0;z, w).

Let E(W) := ¢, o Yz (W) be the lifted horn map of qo (see Section 2). Let us define
o0 :=T + 0, where T is the constant from the Main Theorem, and

HzoW):=a8W)+(1—ag)Z +0
as in Definition 1.15.

Lemma 6.1. There exists a point (2o, Wo) € Bp x By, such that wy is a superattracting
fixed point of the map £ ;,(w).



M. Astorg, L. Boc Thaler 594

Proof. First observe that £ is semi-conjugate to H Z,0, Where Z := ¢,(2). Indeed, we
have £; oy =Yg o H Z,0. Where Y7 is the outgoing Fatou parametrization, hence
it suffices to prove that the map H 7.0 has a superattracting fixed point for appropriate
choice of Z € C.

Let W, be a critical point of & and observe that since & commutes with translation
by 1, for every N € N the point Wy + N is also a critical point of &.

Next, observe that

pEWo+N)—(Wo+N)+0 oWy —Wo+o

= N,
Ol()—l Ol()—l +

hence for sufficiently large Ny € N there exists zy € B, such that

ag&(Wy + No) — (Wo + Ng) + o

Zo = ¢p(z0) = p—

It is then straightforward to check that Wy 4+ Ny is a superattracting fixed point of
H Zo,o (W) |

Let (zo, wo) € B, x By, be such that wy is a superattracting fixed point of £, (w).
Let A 1= {(z,w) € B, x By, : £;(w) = w}. The analytic set 44 has pure dimension 1,
and since wy is a superattracting fixed point of &£, (w), the Implicit Function Theorem
implies that the point (zg, wg) is contained in a regular part of #. Therefore, there exists
a small disk A, centered at z¢ and a holomorphic function n : A, — B, that satisfies
1n(zo) = wo and h(A,,) C +4 where h(z) := (z, n(z)). Moreover, by restricting that disk
if necessary, we can assume that |£,(n(z))] < 1/2on A,.

Lemma 6.2. The map n : A, — C is non-constant.

Proof. Recall that we constructed Zg, Wy € C such that H Zo,0 (Wo) = Wy, and Zy =
¢, (20), n(z0) = ¥z, (Wo). Again by the Implicit Function Theorem, there exists a holo-
morphic map 7 : Az, — C such that 7j(Z) is a fixed point of I-le,o forall Z € Agz,,
where Az, is a small disk centered at Zo. Moreover, n = /7 o 7] o ¢,,. From the expres-
sion of H 7 o it is not difficult to find that 7 (Zy) = 1 — ap # 0, therefore 7 and also 1
are non-constant. (]

By the Main Theorem, for each z € A there exist a disk D, C By, centered at n(z)
and ko > 0 such that

proj, (P"¥ 17"k (p™k (z) x D:)) € D; (6.1)

for all k > ko, where proj, : C> — C denotes the projection on the second coordinate.
Moreover, we can find a continuously varying family of disks {z} x D, C 8, x B4, and
a uniform constant ko with respect to the parameter z € A, for which (6.1) holds. Let us
define an open set

V= |J (p"™0(2)} x D., (6.2)

ZEAZO

and let U be a connected component of the open set P~"*%o (V) containing a point (zg, w’)
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for which P"**0(zg, w’) = (p"*0(z9), we). Observe that for all (z, w) € U we have

P™ (z,w) = Pk k=1 o PHK—1TMk=2 o ... o PMkot1 ko o PKO (2 1)

= (2 £5,50 () + 0(1)),

ano

where z; = p?(z) and w j = Proj, P (z,w) and where the last equality follows from the
Main Theorem. Hence it follows from our construction of the set U that the sequence
(P")r>o converges uniformly on compacts in U to a holomorphic map ¢(z, w) :=
(0, n(z)) where 7 is as above. Moreover, it follows from the proof of the Main Theo-
rem (see Lemmas 5.2, 5.8, 5.12) and (6.1) that for every compact K C U the sequence
PJ(P"(K))isbounded forall 0 < j <nj_,; —nx = My and all k > 0. Hence by Cauchy
estimates, (P”|y)n>0 is normal and therefore U is contained in some Fatou component
QccC2

Lemma 6.3. The map n extends holomorphically to a map n : proj, () — By,, and
there exists a subsequence (P™* )y that converges locally uniformly on Q to the map
®: Q — {0} x By, defined by (z, w) = (0, n(z)).

Proof. Since (P"*) is normal on €2, it has a convergent subsequence, say (P"*). More-
over, Q C 8B, x C and therefore any limit function of a convergent subsequence of (P"*)
must be of the form ®(z, w) = (0, k(z, w)), and «(z, w) = n(z) for all (z,w) € U.
By the identity principle, we therefore have g_llf) = 0 on €2, and so k gives a holomor-
phic continuation of 1 on proj; (€2), which we still denote by 7. Finally, let us argue that
12 proj; (Q) — Bg.

First, observe that if (z, w) € €, then any w-limit point of the orbit (P"(z, w))n>0
has bounded orbit under P. This implies that 7 takes values in the non-escaping locus
C \ 1(go) (which is the filled-in Julia set K(qo) if go is a polynomial) where 1(go) =
{we C:gf(w) — oo, as n — oo} denotes the escaping set of go. Moreover, by
Lemma 6.2, 1 is non-constant and therefore open; and by definition, n(A;,) C By,. Note
that By, is a regular open set, i.e. int(8,,) = By,. Indeed, by Montel’s Theorem, for
a non-linear entire function the union of the forward images of an open set having non-
empty intersection with the Julia set can omit at most one value of the complex plane.
Finally, since 084, = J(q0) = 91(qo), the map n must therefore take values in B,,. =

Since E(W) = W — wi(1 —bo;3) + o(1) as |Im W| — oo (see [7, Appendix]), we
have
Hzos(W)=a¢W + (1 —a9)Z+C +0(1) as|[ImW|— oo (6.3)

for some constant C € C. Let Hy(Z, W) := (Z, ﬁz,g(W)) be the lifted horn map
of P, with the notations of the introduction, and recall that it commutes with the map
T(Z, W)= (Z 4+ 1,W + 1). This map is well defined on C x Ug,. The set of fixed
points of H, can be explicitly written as

. Otog(W)—W o
Fixg = {( p— —l—ao_l,W) :We‘uqo}. (6.4)
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Letus define y(Z, W)= (Z —W,e* ") and U := y(C x Ugy) C C x C*. Observe
that there is a small punctured disk A* such that C x A* C U and there exists a holomor-
phic map ¥ : U — C x C* such that W o y = y o H,. This map ¥ is holomorphically
conjugate to the horn map H, of P (see Definition 1.15). It can be expressed more explic-
itly as

log Y\ log¥
W(X,Y) = (aoX —a0(8( 08 )— 08

— 0 Yl—ot()(h(Y))OtOEZni((l—ao)X-i-a)
2mi 2mi ’ ’

where & is the horn map of go. Moreover, 8(13‘;;11;) - lg’ftf is a single-valued function

since &(W + 1) = &(W) + 1. It extends holomorphically over C x {0} with ¥(X,0) =
(o X + aomi(1 —bo3) — 0,0). We still denote this extended map by W.

Lemma 6.4. 2 is a wandering domain.

Proof. Let ®(z, w) = (0, n(z)) be the limit function as in the lemma above and define
A = proj; (2) C B,. Observe that n(A) = proj,(P(R2)) and X := {(z,n(z)) : z € A}
is connected.

Let Fixy be the analytic variety of fixed points of W and observe that Fixy is closed
in the domain of definition of V. Moreover,

X((XQS(W) —-Ww n o W) _ ((XO(E;(W) - W) + o eZHiW), (6.5)

Ol()—l Ol()—l’ Ol()—l Ot()—l,

and hence

p a08(W)—W+ o W Im W —>00 —ozom'(l—b)—i—ayo.
060—1 (Xo—l O{()—l

(6.6)

Since Fixy is closed, it follows that (W, 0) € Fixy.

Let Bz (w) := oy, (w) + (1 — 2o)¢,(z) + 0. Observe that £, = Y5 o B;, and
if Z .= ¢;,(z), then Hz s = B; o Wc(])o' In other words, B; also semi-conjugates £,
and Hz 5. We let E(z, w) := (¢,(2), Bz(w)), and let

T’ = B(3) C Fixg,

be the “lift” of X. Since E is continuous and X is connected, so is X’.

Let us assume that Q is not wandering. Up to replacing  with P¢($2) we may assume
that it is periodic, i.e. P™(2) = Q. Observe that this implies that %’ is forward invariant
under the translation 7™. Let y : I — X’ be a smooth curve such that y(0) = (Zy, W)
and y(1) = (Zo + m, Wy + m) (this is possible since ¥’ is connected), and such that
x(y(I)) is a Jordan curve.

Now observe that by (6.4), Fix g _is a holomorphic graph above Uy, and therefore
is conformally equivalent to the upper half-plane; and by (6.5) and (6.6), its image under
x 1s conformally equivalent to a punctured disk. After the addition of the fixed point

(W, 0), we therefore see that Fixy is conformally equivalent to a disk. The
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—agni(1—-b)+o

curve y(y) is a Jordan curve around ( 0T

we have

,0) in that disk. Next by the chain rule

dU(W(Z, W) ody(Z, W) = dy(Hs(Z,W)) o dH,(Z, W), (6.7)

hence at fixed points of H, the linear endomorphisms dW(Z, W) and dH, (Z, W) have
the same eigenvalues. Since H,(Z,W)=(Z.H 7 o) it follows by construction of X/ that
the two eigenvalues of dHy at fixed points from X’ are 1 and A € D(0, 1).

Now let us consider the holomorphic map detdW : Fixy — C. Since y C ¥/, it clearly
follows from (6.7) that |detdW¥| < 1 on y(y). Moreover, by (6.6) and (6.7) we have

—apmi(l—b - (& (W) — W
detdp( A=) 0 0\ p gerar, (2EDY) +- % w
o — 1 ImW‘lTOO o — 1 o — 1

OH EW)—W
lim Zg (%EW) +—2 w
ImW—oo O0W 060—1 (Xo—l
Wely,

= lim aop+o(l)=ap>1,
Im W—o00
Wely,
where the last line is computed using (6.3). But this contradicts the maximum principle,
hence 2 must be a wandering domain. ]

This completes the proof of Theorem 1.6. ]

7. Wandering domains for higher periods

7.1. Simply connected hyperbolic components

In this section we assume that og € N* and go(w) = w + w?. We let h denote the classical
horn map of gq (see Section 2), and recall that

eZin(l—ao)Z+2i”Uﬁ(e2i”W)°‘0 — eZiﬂI:Izia(W). (7.1)

Weleth := ﬁ"‘o, and consider the family (/) ec* defined by & := Ah. By the choice
of go, the maps %, have exactly three singular values:

(1) 0 and oo, which are asymptotic values that are also superattracting fixed points;

(2) one free critical value vy, := Av, where v := 217 a0 (-1/2),

Indeed, these last two properties follow from the classical fact that the map h has exactly
three singular values: 0 and co which are fixed asymptotic values, and v which is a critical
value. We refer the reader to [7, Appendix] for a proof of these facts. In particular, if /1
has an attracting cycle different from 0 and oo, then it must capture v} .

Note that / is a finite type map in the sense of Epstein and it is clear from its definition
that it is semi-conjugate to &£ .
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Definition 7.1. A hyperbolic component of period m in the family (h))ec* is a con-
nected component of the set of A € C* such that 4, has an attracting cycle of period m
different from 0 and oco.

In order to prove that the Fatou components that we construct are indeed wandering,
we will use the following result, which also has intrinsic interest:

Theorem 7.2. Hyperbolic components in the family (hy))ec* are simply connected.

Fig. 3. Parameter space of (/1)) ec*. Hyperbolic components are in black. Red and blue corre-
spond to parameters A for which v, is captured by 0 or co respectively, and white to A such that
v, eventually exits the domain of 4. Observe that for all |A| large enough, v; is captured by oo
(blue). Right: a zoom on a copy of the Mandelbrot set (bottom center of the left figure).

Before proving Theorem 7.2, we introduce some further notations:

Definition 7.3. We let Py, := {(A,2) € C* x C* : z = h’(z)}, and p : P, — C be the
map defined by p(A, z) = (h}")'(2).

Let U be a hyperbolic component of period m and D C C the unit disk. Then U =
proj, (IT), where TIT is a connected component of 5~ !(ID). Since for every A € C*, h;
has only one free singular value, it may have at most one attracting cycle different from 0
and oo; therefore if (A, z1) and (A, z») are in the same fiber of the map proj, : I1 — U,
then z; and z, must be periodic points of the same attracting cycle. This means that
the function p : IT — D descends to a well-defined holomorphic function p : U — D
satisfying p = p o proj;.

Lemma 7.4. Let Uy := U \ p~ 1 ({0}). The map p : Uy — D* is locally invertible.

Proof. We will prove this using a classical surgery argument, originally due to Douady—
Hubbard [13] for the quadratic family. Let Ao € Uy, and let V' be a simply connected open
subset of D* containing p(4¢). Using a standard surgery procedure, we construct for any
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t € V a quasiconformal homeomorphism g; such that g; o i, o g; ! is holomorphic, and
g:(20) is a periodic point of period m and multiplier #. We refer to [6, Proposition 6.7] for
the details (see also e.g. [17, Theorem 6.4]).

We let ¢ : V' — Teich(h,,) be the holomorphic map induced by ¢ — p;, where p;
is the Beltrami form associated to g, and Teich(/,,) is the dynamical Teichmiiller space
of hy,,. For the definition of the dynamical Teichmiiller space, see [4,26]. Let Vc Uy
be a simply connected domain containing A¢. Since for all A € V the free critical value
v, remains captured by the attracting cycle, the family (h,), .y is J-stable by [5, Theo-
rem EJ. In fact, since there are no non-persistent singular relations for the family (7,), .p,
by [26, Theorem 7.4] (stated for rational maps, but whose proof carries over verba-
tim in this setting) the map &y, is in fact structurally stable on P!: there is a second
holomorphic family g, of quasiconformal homeomorphisms &; : P! — P! such that
hyi=gx0hy, 087 forall A € V, and &;, = Id.

We let ¢ : V — Teich(h o) denote the map induced by A +— fi,, where fi is the
Beltrami form associated to g,. Let § := j7 |A=,&2, and observe thaAt since g (vy,) =
vy = Av, we have £(vy,) # 0. By [4, Proposition 5], the derivative ¢’(4) is therefore
non-zero. Therefore, up to restricting V', we may assume that ¢ (V') C @(17) and there
exists a well-defined inverse branch qg_l p(V)—> V.Letc:V — V be the map defined
by ¢ := $'o ¢. Then c is a holomorphic local inverse of p, which maps p(1¢) to A¢; the
lemma is proved. ]

Lemma 7.5. The map p : Uy — D™ is a covering map of finite degree.

Proof. We start by claiming that I is relatively compact in Py,. Indeed, U = proj, (IT) is
relatively compact in C* because if | 4| is small (respectively large) enough, v, is captured
by the superattracting fixed point 0 (respectively co). Moreover, by [5, Theorem A], the
map proj; : P, — C* is proper, because the only two asymptotic values in the family
(hy)rec are persistently fixed. Therefore IT is relatively compact in P,,. Since p is
analytic (hence continuous) on P,,, and since the set ITg := IT \ 5! ({0}) is a connected
component of 51 (D*), this proves that p : IIo — D* is proper. Consequently, so is

p: Uy — D*.
By Lemma 7.4, the map p : Uy — D* is also locally invertible; therefore it is a finite
degree covering map. [ ]

Proof of Theorem 7.2. By the lemma above, p : Uy — D* is a finite degree covering map.
This implies that there exists A9 € U such that Uy = U \ {A¢}, and Uy is isomorphic to a
punctured disk and U to a disk. ]

7.2. Proof of Theorem 1.11
We give here is a slightly more precise statement of Theorem 1.11:

Theorem 7.6. To each hyperbolic component U of the family (hy)cc*, we can associate
a wandering Fatou component Qy of P. Moreover, if Uy # U,, then Qu, and Qy, are
in different grand orbits of P.
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Since «p is an integer, we may choose an «p-admissible sequence () to be simply
np = oclg, which has zero phase sequence, and where ny € N*. By the Main Theorem,
Pre+17k (p™k (z), w) — (0, £(ao, 0; z, w)) uniformly on compacts in B, x B,,. Here
o is simply the constant I" from the Main Theorem, since the phase sequence of (7 )xeN
is zero. Let (Ag, x9) € C* x C* be such that xq is a superattracting periodic point of
exact period £ for 13, Let (2o, wo) € B, X By, be such that e2/7(1-00)¢, (Fo)+2imo — ),
and 21794 (0) — Xo: then wy is a superattracting periodic point of £ (g, 0; zg, -). The
existence of zg and wy follows from the fact that ¢, (J,) contains a right half-plane and
¢3,(P4,) contains a left half-plane; see Section 2.

Since wy is a superattracting periodic point of &£, := £(wg, 0; Zg, -) of period £, there
exists € > 0 such that |§££(w) —wo| < |w — wpl|/4 forall (z,w) € D(z¢,2¢) x D(wy, €).
By the Main Theorem, there exists kg € N such that for all k > k¢ and all (z, w) €
D(zg, €) x D(wyg, €), we have

PHHETIR (™ (2), w) € p"H(D(z0, €)) X D(wo, €/2).

It will be convenient to choose ng > algo and replace the «p-admissible sequence
(ozéc )k by (noocg)k, which we still denote by (nx)x; then the above inclusion holds for all
k>0.Let U := p"0(D(zp,€)) x D(wp, €); an immediate induction proves that

PO C p"tReTO (D (2, €)) X D(wy, €)

for all k > 0 ; in particular, U is in the Fatou set of P. Forany j > 0, let z; := pj (zo).
Let Q = Q(z¢, wo, o) denote the Fatou component containing (z,,, wo) € Up. By
the identity principle and the Main Theorem, Plg"‘z_"o (z,w) — (0, n(z)), where n(z) is
an attracting periodic point of period £ of £, = £(xo,0;z, ), with n(z,,) = we.
Let us now sum up the construction above: given (zg, wg) such that wy is a super-
attracting periodic point of period £ for £,,, and given any no € N large enough, we
have constructed a Fatou component 2(zg, wg, 1n9) of P which contains (z,,, wo) =

(p™0(20), wo), and such that P|’sl2k(£z(_),n£0,n0) — (0,7(2)), where ng = noak.

Lemma 7.7. The Fatou component 2 := Q(zq, W, o) is wandering.

Proof. The proof is similar to the one in Section 6, and we use some of the same notations.
We assume for a contradiction that Q is not wandering: then PP+ (Q) = P?(Q) for
some m € N and p € N*, Up to replacing Q by P?(£2), we may assume p = 0.

There exists some continuous curve joining (z,, Wo) and Pe(zno, wp) inside Q.
Using the convergence of P"x¢7"0 to (0, ), we obtain a curve joining 71(z,,) and
N(Zng+p) inside X := n(A), where A := proj;(2). We let ' be as in Section 6; it is
an open subset of Per,, (Hy) := {(Z, W) € C2: I:I;”(Z, W) = (Z, W)}. Then there
is a curve in ¥’ joining (Zo, Wy) and (Zg + p, Wy + p), where Zg := ¢, (zn,) and
Wy = Oto(]béIO(UJO) + (1 - OlO)ZO +o.

Finally, we consider the image of this curve under the map

e (Z, W) s (eZiTr(l—Ot())Z-i-ZiﬂU,eZiTEW). (72)
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It now becomes a closed loop in IT := e(X’), which we denote by y := (1, ¥2). By con-
struction, the loop Y is non-contractible in C*; however, it is contained in the hyperbolic
component U = proj, (IT), so this contradicts Theorem 7.2. ]

Lemma 7.8. If (z;, w;) (i = 1,2) are such that A; = e2im(1=0)dp () +2i70 410 congers
of two different hyperbolic components U;, and if ng € N is large enough, then the wan-
dering Fatou components Q; := Q(z;, wi, ng) are not in the same grand orbit.

Proof. The idea of the proof is similar. Recall that w; is a superattracting periodic point
of £;, := &£(ap,0;z;,-). Let us denote by ¢; the period of w; under £,.

Assume towards a contradiction that €21 and €2, are in the same grand orbit of Fatou
components for P; then there existm; € N such that P™!(§21) = P™2(§22) =: 2. More-
over, by construction, P‘ "o converges to the map (z, w) — (0, n;(z)), where for
all z € A; 1= proj; (2;), 17, (zi) is a periodic point of period £; of the maps &,
L(ag, 0z, ). In particular, if we let ”k := ngg with £ := lcm({1, £5), then we have
P s (0, ).

By normality, it is easy to see that the multipliers of those fixed points cannot be
repelling: p; (z) := (éﬁﬁi)’(ni (z)) € D forall z € A;. Moreover, p;(z;) = 0. If p; is con-
stant, then in particular p; takes its values in D; and if it is non-constant, then its image is
an open set contained in ]]3), therefore it is also contained in D.

Next, we claim that there exists £ : A := proj; (2) — C such that ; = qévi ofo p™i
for some N; € N. Indeed, since Plg‘i_no — (0,7n;) on ;, there exist functions & : A — C

such that up to replacing (), ) by a subsequence, Plcmo—mi _y (0,&;) on 2, and

ni =& op™
Assume without loss of generality that Ny := m; — m, > 0. Then

(0.£2) = lim P 1072 — fim Pt tNo — pNoo (0,¢)

so that qévo o0& = &,. Sowe cantake £ := &1, Ny := Ny and N, := 0.
Recall now that

E(z,w) 1= (4,(2), 2oy, (W) + (1 — o), (2) + 0),
Tii={(z.n(2) 1z € A;}, I :=E(Z)).
Let y = (y1,y2) : [0, 1] — Q be a continuous curve joining P™1(p™°(z;), wy) and
P2(p"0(z;), wy) in Q. Let (Z;, W;) := E(p™(z;), w;). Then for all k, p € N and
(z, w) € Bp x By,, we have E(p*(2), g8 (w)) — E(z,w) € Z>. In particular, y(¢) :=
E(y1(t), E(y1(2))) gives a continuous curve with the following properties:

(1) 7(0) — E(z1,m(z1)) € Z?;

(2) 7(1) — E(z2, n2(22)) € Z2;

(3) forall t € [0, 1], 7(t) € Pery(Hy), where £ := lem(£y, £5), Hy(Z, W) is the lifted
horn map defined in (1.7), and (% I:Ié,a)()?(t)) e D.

(Property (3) comes from the previous observation that p; (z) € D for all z € A;.)
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Finally, we consider a curve (y1, 2) := e o 7, were e is given by (7.2). Then p; is a
continuous curve joining A and A, inside a hyperbolic component of period (dividing) £
for the family (%) ec*, which is a contradiction. Thus Lemma 7.8 and Theorem 7.6 are
proved. ]

Finally, to deduce Theorem 1.11 from Theorem 7.6, we just need to know that there
are countably many hyperbolic components in the family (/%) cc*. Since we have proved
that the multiplier map is a conformal uniformization of any hyperbolic component on
the unit disk, it is enough to prove that there are countably many A € C* such that /1
has a superattracting periodic point (different from 0 or co). But this follows from e.g.
[5, Proposition 5.1].

8. Proofs of Theorems 1.12 and 1.16

8.1. Proof of Theorem 1.12

Lemma 8.1. Let P be a map of the form (1.1). Let U be a neighborhood of (0, 0) in C2,
and o € C. Then there exists (2o, Wo) € (Bp x By,) N U such that wy is an attracting
fixed point of £, := £(xo,0; 29, ).

Proof. By Lemma 6.1, there exists (z', w’) € 8, x By, such that w’ is a superattracting
fixed point of £./. By the Implicit Function Theorem, for all z in the neighborhood of z’,
there exists n(z) such that w = 5(z) is an attracting fixed point of £,. Moreover, we
have proved in Lemma 6.2 that 7 is a non-constant holomorphic map, hence it is open. In
particular, we may choose Z close to z’ such that the forward orbit of W := 7(Z) under ¢
does not meet crit(gg). Let N € N be large enough that (z¢, wp) := (pN(E),q(I)v (w)) e U;
we will prove that wy is an attracting fixed point of £,.
Indeed, by (1.4), we have

L(ao, 0520, wo) = qiY 0 Lo, 05 2,10) = qbY () = wo,

so wy is indeed a fixed point of &£,.
Secondly,

0
(o, 05 pV (2), ¢ (w)) = P q o £(ap, 03z, w),

(z,w)=(.0)

0
ow (z,w)=(,0)
oL n

9% (000720, w0) (63 () = (43 )ox(ao,o 2) % o (w002, 1)

= (90 )(w) (ao,azw)

Therefore, since (q ) (W) # 0, we have

(&£2) (wo) = —(01070 20, wp) = —— (g, 0:2,w) € D

ow

and wy is indeed an attracting fixed point of &£,. [



Dynamics of skew-products tangent to the identity 603

Lemma 8.2. Let P be a map of the form (1.1), which admits an (o, Bo)-admissible
sequence (N )g>o With a converging phase sequence, whose limit we denote by 6. Let U
be a neighborhood of (0,0) in C2, and let (2o, o) be as in the lemma above. Then for
ko € N large enough, P’ (p"*0(zo),wo) € U forall j € N.

Proof. Assume without loss of generality that U = D(0,r) x D (0, r) for some r > 0. Let
(zo,wp) be given by Lemma 8.1, so that max(|zg|, |wo|) < r. For k¢ large enough, we have
| p/ T (z9)| < r forall j > 0, since limg_ oo p™* (z9) = 0. In particular, we may choose
ko large enough that (p™*0 (z4),wp) € U, and | p’ 70 (z9)| < r for all j > 0. It then only
remains to prove that for a choice of kg large enough, |proj, o P/ (p"*0(z¢),wp)| < r for
all j > 0.

Let o := 6 4 I'. Since wy is attracting, there exists 0 < € < r — |wg| such that
£, (D(wo, €)) € D(wo, €). By the Main Theorem, we may choose k¢ large enough that
for all k > ko,

proj, o PHHITR({p"k (20)}, D (wo. €)) € D(wo, €).

Then, by induction on k, we have proj, o P"*+17"k0(p"*0(zq), wg) € D(wo, €) C
D(, r).
Finally, we claim that for all k > kg and all 0 < j < ng4y — ng,

proj, o P/ (p"*0(29), wo) € D(0, 7).

For 0 < j <ty := |(ng)"], this follows from Lemma 5.2.
For ty < j < ng41 — ng — ooty ], it follows from Lemma 5.8. Indeed, by Lemma
5.8, we have W; € R, forall tx < j < ngy; —ng — |aotx]. Then, by Lemma 4.8,

w; = Y51 (Wy) = —czj cot(eW)) + 0(z) = 0(z; ") = o(1).

Finally, for ngyq — ng — |ootx] < j < ng4y — ng, the claim follows from
Lemma 5.11. [ ]

Lemma 8.3. Let p(z) = z — z? 4+ O(z?) be an entire map. There exists r > 0 such that
if p"(z) e D(0,r) foralln € N, then z € B, U {0}. In particular, lim, ., p"(z) = 0.

Proof. We consider the “fat petals” P},/o, introduced in Section 2. Take r > 0 small enough
that D(0, r) \ {0} is contained in P, U P} . Since P, C B,, we may assume that for all
n € N, p"(z) € P} (for otherwise we are done).

We then have ¢7(p" (z)) = ¢,(z) +n — oo, therefore p"(z) > Oandz € B,. m

Proof of Theorem 1.12. Leth : U — V be a homeomorphism such that j o Py = P, o}
and §(0,0) = (0,0), where U, V are open neighborhoods of (0, 0). Let us begin by proving
that @y = a,. If not, assume without loss of generality that o; < o. Let (n,lc)keN be an
(a1, B1)-admissible sequence with converging phase sequence of limit 8, and let (zg, wo)
be given by Lemma 8.1 applied to P and witho := 6 + T7.
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By Lemma 8.2, there exists ko € N such that for all j > 0,
J n/lco
Py (p1 (zo),wo) e U.
Therefore, for all j > 0,
1

. n . nl
bo P{(p"(20),wo) = P§ o b(p," (20). wo). 8.1)

Let r > 0 be small enough that &£, (ID(wo, 7)) € D(zo, 7).
Up to taking ko large enough, the Main Theorem implies that for all k > ky,

1 | 1
proj, o Py 1 N ((pl (z9)} x D(wo, r)) € D(wo, 7).

An easy induction then gives
nl—nt  np
lim P, O(p1 9(zo), wo) = (0, wyp).
k—o00

1

n
Let (22, w2) 1= h(p, *(20), wo). Then, by (8.1),

S
lim P, 0 (22, w2) = H(0, wyp). (8.2)
k—o00

We now claim that (0, wo) = (0, w3) for some w3 € By,. Indeed, by Lemma 8.3
and (8.2), we have (up to taking U and V' small enough)

proj; o h(0, wp) = lim pg (z2) =0.
J—>+o00
Therefore, §(0, wg) = (0, w3) for some w3 € C, and since for all j € N we have
o P/ (0.wo) = PJ 050, wo) = (0,42 (w3)).

it follows that lim; .o qg (w3) = 0, hence either w3 = 0 or w3 € By,. But since wy # 0
and b is injective, we cannot have h(0, w,) = (0, 0), therefore w3 € By,.

Let € > 0 be small enough that D (w3, €) € By,,and let k1 € N be large enough that
1

nl n
proj, o sz %025, wp) € D(ws, €) forall k > k.
Let k > k; and let n := n,lc — n}cO. Since we have assumed for a contradiction that
o> > o1, we have

kn o= [n¥] <y =g < My — Ly = [(0a — D + olnn| — ™2k, .

1_,1
By Lemma 5.8 (applied with P := P,, z := z and w := proj, o P "0 (25, wp) €
D(ws, €) € By,),

' nl, —al ] nl, —pl 1_,1
e, (proj, o P, TR0 (23, w3)) = e (projy o Py T (PR R0 (23, w5)))

. nl,  —nl
= ®, (p1r0]2 o P, TR (ph(za), w)) € Rey s
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n-‘rn}(_,'_l—n}(
where €; 1= p, (z2). Therefore, by Lemma 4.8,
. "/lc+1_”11<0 n v
proj, o P, (z2,w2) = O(|p3(22)]") = o(1).

But this contradicts (8.2).

Therefore, a, < o and by symmetry, o, = o;.

It remains to prove that 8; = B,. Similarly, we assume, for the sake of contradiction,
that 8, > B;. With the same notations as above, we now have, for k (and hence n) large
enough,

n,lc_H —n,lc =(x;—Dn+BiInn+ O0()
and
My = (a1 — Dn+ Bolnn+ O(1) = nj ., —ng + (B2 — 1) Inn + O(1).
Therefore,
M, -1, < n,lc+1 —n,lc < M,,

and by Lemma 5.12 and Theorem 5.13,

. nl, —nl
qb“I’Z o proj, o le”rl K(z2,wp) = (B1 — B2)Inn 4+ O(1).

In particular,
1

(B2—B1)Inn’

which again contradicts (8.2). Therefore, f; = B>, and we are done. [

"11<+1_"11<
proj, o P, (z2,wp) ~

8.2. Proof of Theorem 1.16

In order to prove Theorem 1.16 we first need to introduce two intermediate results which
are in the same spirit as Lemma 8.2 and Theorem 1.12. We will see it is possible to drop
the assumption on the convergence of the phase sequences if we know that the skew-
products P; and P, are topologically conjugated in a neighborhood of the origin by a
homeomorphism §) : U — V of the form §(z, w) = (f(z), g(z, w)), where U, V are open
neighborhoods of (0,0) in C?2. That is, assume that o P; = P, o ) on U. We may assume
that U, V are bounded in C? and that U = D (0, r) x D(0, r) for some r > 0.

As before, we will also denote by £;, «;, B; for i € {1,2} the quantities appear-
ing in the Main Theorem, and by (n}'c)keN two (o;, B;)-admissible sequences defined by
niq = laing + Bilnny |, where ng = ng is chosen large enough that both sequences
are strictly increasing, and let o; denote their phase sequences.

In what follows we write ¢; (w) := proj, o P; (0, w) fori € {1, 2}.

Lemma 8.4. Letz € By, w € By, ND(0,r), and for any n € N, let z, := p{(z). Then

there exists m € N such that P (Z"}c’ w) € U for all k large enough and all 0 < j <
1 1

Ny — N —m.

Proof. First, since lim, o0 z = 0, zj4p, belongs to an arbitrary neighborhood of 0

for j > 0 and k large enough. Therefore, if we let w; denote the second component of
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Plj (z, 1 w), it is enough to prove that for k and m large enough, w; remains in D (0, r)
forall0 < j < n}c_H —n}C —m.For0<j <t := L(n,lc)"J, this follows from Lemma 5.2.

Fort < j < n}c_H - n,lc — |aqtg ], it follows from Lemma 5.8. Indeed, by Lemma
5.8, we have W; € R, forallfy < j < ”Ilc+1 — n}c — la1tg|. Then, by Lemma 4.8,

w; =y (W) = —cz; cot(cWy) + O(z;) = 0(z|") = o(1).

Finally, the existence of m > 0 (independent of n}c) such that for all n}c 41— n}c -

late] < j < ”Ilc+1 — n}c — m we have w; € D(0, r) follows from Lemma 5.11. [

Proposition 8.5. Let Py and P, be of the form (1.1) with b; > 1/4 and B; € R, and
assume that Py ~ P;. Then (a1, B1) = (02, B2) and so in particular by = b,.

Proof. Let z € B, ND(0,r) and w € By, ND(0, r); in particular, (z, w) € U. By
Lemma 8.4,

. 1 . 1
ho P! (pi*(2).w) = P{ o h(p,* (2).w) (83)
forall0 < j < n}c 41 n,lC — m. In particular, both sides of the equation belong to V.
Let My := | (a2 — l)n}c + B2 lnn}cj and pg 1= {(a2 — l)n}c + B2 lnn}c}. Choose R >0
large enough that V' C ID(0, R)?, and choose (z, w) € U so that

|£2(a2. T2 — pr: §(2), go(w))| > R

for arbitrarily large values of k. We will show that this is always possible. Indeed, let
p € [0, 1) be an accumulation point of the sequence pg. Since 0 is in the Julia set of the
entire map ¢», there exists w € Vy := V' N ({0} x C) such that q;nj (W) — oo for some
increasing sequence (m;);eN. It is easy to see that there exists (z/, w’) € V such that
£o(atp, Ty — p;z', w’) = . Then, using the functional equation

La(az, 2 — p; p2(2), q2(w)) = g2 0 La(a2, I — p; 2z, w),

we have |£2(a2, T2 — p; py” (2'), ¢4 (w'))| > 2R for some fixed j large enough. More-
over, by taking j even larger if necessary, we may assume that z = f~! o p;" /(z') and
w = go_l o q;" /(w") are well-defined and in U. Since p is an accumulation point of the
sequence pg, there are arbitrarily large values of k for which

|£2 (2. T2 — px: §(2). go(w))[ > R

as required.
Next, it follows from Theorem 5.13 that

PM o h(p" (2)w) = PM (2K (5(2)). go(w) + (1)
= (0, £2(c2, T2 — pr: T (2), go(w)) + o(1).

Therefore, by (8.3) and our choice of R, z and w, we must have My > ”11<+1 — n}( — m for
arbitrarily large values of k. Therefore o, > «/1; but then by symmetry, o = 1. Then,
using again the fact that My > ”11<+1 — n}( —m, we find B, > B, and therefore we finally
have, again by symmetry, 81 = B>. |
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Proof of Theorem 1.16. By Proposition 8.5, we have n}c = ni =:ng, o]g = cr,f =: o} and
a1 = o =: o, so we can apply (8.3) with j = ngy —ng —m, k large enough, z € B,,
and w € Uy N By,:

ho PYHTHTR (p1k(2), w) = Py T 0 p(pl* (2), w)
= Py (P o (@) 6(p5F 0 F(2).w)).
By continuity of g, we have g(p;k of(z),w) = go(w) + o(1). By the Main Theorem,
P (PR (2). w) = (o(1), £1(. Ty + 0p: 2. w) + 0(1))
and

PR (phk 0 §(2), g(pyk o f(2), w)) = Py T (phk 0 §(2), go(w) + o(1))
= (o(1), Z2(a, T2 + 0% F(2), go(w) + o(1)).

Finally, let (z;, w;) := P{(p{*(z), w). By Lemma 5.12, ¢2 (Wnyy\—n—m) =
¢g, Wny -y ) —m + o(1), so that

Wny y1—ng—m = L1(et, T'1 + o —m;z,w) + o(1).

Similarly,

Py (P30 f(2). 6(p5* 0 F(2).w))

= (0(1), £2(a, T2 + 0 —m; §(2), go(w) + o(1)).

Putting all this together, we obtain

go(L1(e, Ty + op —m; z,w)) = La(a, T + o —m; F(2), go(w)) +0(1).  (8.4)
Therefore, for any accumulation point o of the sequence (0% )r>0, we have

go(Li(a, I + 0 —m;z,w)) = La(e, 2 + 0 —m;§(2), go(w)). (8.5)

Let us write for simplicity £;(z, w) := £;(«, [y + 0 —m;z, w). Observe that since f and
go conjugate p; to p, and ¢, to g, respectively, there exist homeomorphisms f : C — C
and go : C — C commuting with translation by 1 such that

3o © 97 = ¢3 © go, (8.6)
fogy, =, of. (8.7)

where ¢7 denotes the outgoing Fatou coordinate of ¢;. Indeed, the map ’F is first defined
on a left half-plane, since ¢, is univalent on J#; and its image contains a right half-plane
(see Section 2). Then, using the functional relation %(Z +1) = %(Z ) + 1, we extend ]E
to all of C. The case of go is analoguous, using the fact that ¢7 (57 ) contains a left

half-plane.
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For z, w as above, let Z := ¢, (z) and W := ¢ (w). Let us compute

oo Hy o (W) =¢30g00(¢) " 0 Hy o (W)
= ¢3 0 go o L1(z, ($)) " (W)
(by 8.5) = ¢30 £2(f(2). g0 0 ()~ (W))
= agy o goo (¢7) (W) + (1 —a)gs, (f(2) + 02
= agh o (#9)"' 0 Go(W) + (1 —a)F(2) + 02
=82, (G(W)).

where 0; = o + I'; —m.
Therefore, if we let G(Z, W) = ((Z), go(W)) we have proved that

GoH) (ZW)=HZ oG(Z W).

This relation holds for all z € 8, and all w € 8,4, N Up; therefore it holds forall Z € C
and all W € C with Re Z and Re W large enough.

But since the lifted horn maps I:Iéi commute with translation by the vector (1, 1), this
conjugacy descends to a conjugacy of the horn maps on C2/((1, 1)). |

Proof of Corollary 1.17 . Let &; := ¢, o Y7 be the lifted horn map of g;. Then
(Z,W) € C? is acritical point of Fléi if and only if W is a critical point of &;. Therefore,
the set of critical values of H. f,l, is

CV(H}) ={(Z.aW + (1 —a)Z +0;) : (Z.W) € C x CV(&)}.
which is a union of affine lines in C2. Now recall that
CV(&;) = {¢,,(c) +n :c € crit(g;) N By, and n € Z}.
Therefore, if we let
I; .= {d)l‘h (¢)+n:cecrit(q;) N By, and n € Z such that 0 < Req&fh (¢c)+n <1},
and '
Ly, ={Z,aW+n)+(-a)Z+o0;): Ze€C}.

then the set
cvH) = |J L,
(Wn)el; xZ

is a countable union of affine lines. Next, for any (W, n) € I; x Z we have L’ﬁ,n 1=
Ly, + (1, 1). Let = : C* — C2/((1, 1)) denote the quptient map. Since 7 o I:{(’,I =
Ho; o and 7 is a covering, the set of critical values of H, is CV(H, ) = n(CV(Hy,)).
It is straightforward to check that ”(Llﬁ/n) is an irreducible curve in C2/((1, 1)). More-
over, given (Wi, n1), (Wa,n2) € I; x Z, we have w(Ly, ) = n(Ljy, , ) if and only
if Wiy — W, € Z, which by the definition of I; is equivalent to W; = W,. Furthermore,
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if Jr(L’i,V1 ,n1) # n(L’Wz,nz) then 7T(L’AW1 ,nl) N n(L’WZ,nz) = @. Therefore, CV(H;I_) has
exactly card I; connected components.

By Theorem 1.16, the maps H, ;1 and H 32 are topologically conjugate. The topological
conjugacy must map CV(H[}]) to CV(HgZ); therefore they must have the same number
of connected components.

Finally, we conclude the proof of the first assertion of Corollary 1.17 by observing
that card /; is exactly the number of grand orbits of critical points in 8By, .

For the second assertion, it suffices to observe that this number cannot depend on any
k-jet of ¢; at w = 0. |

We end this section with the following natural question.

Question 8.6. Let Py and P, be of the form (1.1), with b; > 1/4 and B; € R. If P,
and P, are topologically conjugate in some neighborhood of the origin, does that imply
Py ~ Py?

Note that the positive answer to the above question, together with Proposition 8.5,
would imply that the constants «g, B¢ and b are in fact topological invariants.

9. Proof of Corollary 1.18

Let £@ denote the extended Lavaurs maps associated to both parabolic fixed points
(0, w;), and let fg)(w) = cf(i)(oc,-, iz, w). Let M, := ;622) o 139). We denote by B;
the parabolic basins of w; for gg, so that (z, w) — M (w) is defined on B, x B;. We start
by recalling the notion of islands, named after Ahlfors’s famous Five Islands Theorem.

Definition 9.1. Let f : U — P! be a holomorphic map, where U C P! is a domain. Let
D C P! be a Jordan domain. We say that D C U is an island for f over Dif f : D — D
is a conformal isomorphism.

Lemma 9.2. Let f(z) = z + z2 4+ O(z3) be a polynomial map with a parabolic fixed
point, and let ¢} : 8y — Cand wf” : C — C denote its incoming Fatou coordinate and
outgoing Fatou parametrization respectively.

(1) For every Jordan domain D C C such that (¢})_1(D) does not intersect critical
orbits of f, and for every open set Q intersecting 08By, qb} has an island D € Q

over D.

(2) For every Jordan domain D C C that does not intersect the postcritical set of f,
1//; has an island D over D.

Proof. Let D C C be a Jordan domain such that (¢/‘,)_1(D) does not intersect critical
orbits of f, and let £ be an open set intersecting 8By

Let Dy := D + k. By Proposition 2.1, ¢} : 8y — C is abranched cover whose critical
points are the precritical orbits of f in 8By; therefore, by the assumptions on D = Dy,
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Dy is simply connected and does not contain any critical value of ¢}, SO qu‘, has an island
Uy above Dy.

By assumption, Uy does not meet any critical orbits of f, and it is simply connected,
so we may define univalent inverse branches of f* for all k, and for k large enough, at
least one such branch g will map Uy compactly into 2 (by normality and the equidistri-
bution of preimages). Let Uy := gx(Up). We then have

Do +k = ¢} (Uo) = ¢}y o f¥(Ur) = ¢ (Up) + k

so that gb}(Uk) = Dy. The domain Uy, is the desired island above Dy.
The second item follows immediately from Proposition 2.2, which implies that

Y2 C\ WY (Py) > C\ Py
is a covering map, where Py denotes the postcritical set of f. ]
Lemma 9.3. There exists zg € B, such that M, has a superattracting fixed point wy.

Proof. The difficulty is that we cannot apply Montel’s theorem, as the domain of M7
shrinks as n — oo. Instead, we will follow closely the proof of the Shooting Lemma
from [5]. Let ¢; (withi = 1,2) denote the incoming Fatou coordinates of w; for go, and let
¥ denote the outgoing Fatou parametrizations associated to w; for go. Let Z := ¢,(2),
AizW)=a;W + (1 —o;)Z + Ty, so that

M:=Y30A2z0¢;0Y70A1z0¢;. O.1

Let ¢ € B be a critical point for ¢¢. Let x € (¥9)"1({c}). Let y(Z) := A1,z 0 ¢! (¢),
andlet gz := Az 7z o ¢ o Y{. If we can find Z € C such that gz o y(Z) = x, then this
will mean that M (c) = ¢, where ¢,,(z) = Z, which will prove the lemma.

Let Up := (y?)1(B2). We claim that there exists Zo € C such that y(Zo) € dUp
and x is not a critical value of gz, .

Since ¥y : C — C is an entire function, Uy C C is an open set whose boundary
contains a continuum. From the expression of y, if we fix any Wy € C, then for Zy :=
1—1a1 (Wo — a19(c) — I'1) we have y(Zo) = Wp; therefore, the set of Z € C such that
y(Z) € Uy is the image of Uy under an affine map and also contains a continuum.

On the other hand, the critical values of gz are of the form A z(v), where v is a
critical value of ¢4 o /7. Therefore, the set of Z € C such that x is a critical value of gz
is a countable set, so we can indeed find Zy € C such that y(Zy) € dUp and x is not a
critical value of gz, .

Next, observe that gz = gz, + (1 — a2)(Z — Zy). Therefore, if we define h(Z) :=
X + (ap — 1)(Z — Zy), the equation gz o y(Z) = x becomes equivalent to

g8z, 0 Y(Z) = h(Z). 9.2)

Let D be a disk centered at x such that D contains no critical values of gz,. This
is possible because of our choice of Z( and because the set of critical values of gz, is
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discrete, in fact finite in C/Z. Let € > 0 be small enough that h(D(Zy, €)) € D. Let
Q = y(D(Zy, €)); it is an open neighborhood of Wy € dUyp. By Lemma 9.2, there exists
D eQNUpsuchthat gz, : D1 — D is aconformal isomorphism. In particular, gz, 0y :
V — D is a conformal isomorphism, where V := y~!(D) is a conformal disk that
is compactly contained in D(Zy, €). By the definition of € and V, we therefore have
h(V) € gz, oy(V) = D, and D, V are conformal disks with smooth boundaries. It then
follows from the Argument Principle that there exists Z € V satisfying (9.2), and the
lemma is proved. ]

Proof of Corollary 1.18. We consider an inductive sequence of integers defined by ny 41
= any if k is even and ng 4 = ang if k is odd.
By the Main Theorem applied twice, we have

PUEA27 (2 W) = (Zng g » Mz (W) + 0(1)

with local uniform convergence for (z, w) sufficiently close to the point (z¢, wo) given by
Lemma 9.3.

Since wq is a superattracting fixed point for M;,, there exists r > 0 such that
Mz, (D(wo, 1)) € D(wo, r/2), and by continuity there exists n > 0 such that for all
z € D(zp, n) we have M (D(wo, r)) € D(wy, r).

Let V be a connected component of P~"0(p"°(ID(zg, 1)) x D(wy, r)). For ng large
enough and (ng) satisfying the induction relation above, we have, for any k € N and
(z,w) eV,

Pk (z,w) € By x D(wp. r). (9.3)

In particular, V' C K(P), where
K(P) :={(z,w) € C?: (P"(z,w))nen is bounded}.

Therefore, V' is contained in the Fatou set of P. Let Q2 be the Fatou component of P
containing V.
Finally, let us prove that 2 satisfies the historicity property. We claim that

1 n2k41
o — 8pi ) = 80 9.4)
k—o0 Mok 41 — Nok j=§+1 P/ (z,w) (0,wy)
and 1 n2k+2
lim Z 8pi(z,wy = 80.w2)- 9.5)
k—o0 ok 42 — N2k+1 Jenar a1

Informally speaking, this follows from the fact that it takes 7,441 — 1, iterations to
“pass through the eggbeater” associated to (0, wy), and npk 4 — Hog41 to pass through
the one associated to (0, wy).

Let us give a more precise justification. Let k € N. By the above argument, we know
that P"2k (z, w) € B, x D(wo, r). Therefore, with n := ny and (2;, ;) := P/ (z, w),
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Lemma 5.8 states that for all k large enough, @, (W) € Rs; forall 1y, < j < My — 4Ly,
where 1, := |n¥] = [n}, |, €y = le™/¢t, |, and M,, = [(o; — 1)n] = (cy — 1)noi (since
we have assumed 81 = 0 and «; € N*). In particular, by Lemma 4.8,

;=1 = 051" = 0 75~ ) = 0kl
Mok

fort, < j < M, —{,. Moreover, M, + noy = nag41,so that My, —t,, — €, = nop4q —
nag + O(n;) ~k—sc0 N2k+1 — Nok. This proves (9.4).

The proof of (9.5) is similar, replacing 1, by nog+1, n2k+1 bY ok 42, and wq by wy.

Let (z,w) € V, and let us consider ¢, = e, (z, w) := % ;:(1) 8Pj(z’w). By (9.4), we
have

n

nak k
2 = 80wy +o(1)
N1

en2k+l = Ok Nak+1

1 1
= aenzk + (1 — a—l)(S(o,w]) + 0(1)

and similarly, using (9.5),

1 1
Cnyp = a_ze"Zk—l + (1 - a_z)S(O,wz) +o(1).

Putting the last two equations together, we find

a0 — 02 oy — 1
eny = ——4 + — +o(1),
nok oy —1 (O.w1) ooy — 1 ©0.w2) (1)
ap —1 o0 — o
R | Sown + m&o,wz) +o(1). ]

10. Admissible sequences and Pisot numbers

Finally, we will give the proof of Theorem 1.10. Let us recall that for given @ > 1 and
B € R, we say that a strictly increasing sequence (1 )r>o of positive integers is (o, 8)-
admissible if its phase sequence oy = ng41 — ang — f Inny is bounded.

Lemma 10.1. For every («, B)-admissible sequence (ny)g>o there exist a real number
¢ > 0 and a bounded sequence (dy)x>o of real numbers such that

Blna
a—1

ne = Ca* —k +dg, Vk=>0.
Moreover, if we let py := ng41 —ang — kB Ina, then

pk = 0k + BIng + o(1),

¢ = no + Blna +1ipj
TN a—)2 T a agd”
J=0
Bine 1 & pi
dyp = — - — :
k (. —1)2 az al
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Proof. First we study the asymptotic behavior of («, 8)-admissible sequences.

Claim 1. For every (o, B)-admissible sequence (ny)x>o there exist constants {,C > 0
such that ny — ta¥| < Ck forallk > 1.

Proof of Claim 1. Let us first define a sequence vy := 1y 1 /a¥, where we have chosen
N sufficiently large so that

" _i 1B nf "N +J'|,3|1110l+|0N+j| _ W
N i+l ) o) 1 o) t1 5

Jj=0
o0
1B J1BlIna  |on4 ;]
N+ Z( ny) + )Tl + i+l <2ny
j=0

Such an N exists because (ny)x>o is strictly increasing and the phase sequence (0% )0
is bounded.
Observe that

plk —Dlna  ontk—1
k + k
o o

Vg = Vg1 + ﬁk Invg—y +
o

and let us prove that
nny/2 <vp <2ny, Vk=>0.

Clearly this holds for k = 0 since vg = ny. Assume that these bounds hold for all 0 <
j < k. Since

jBlno  on4;
vk—v0+2(v,+1—v,)_n1v+2( 1 v + P ESw e b

the bounds for v are clearly guaranteed by our choice of N. Moreover, this also implies
that the sequence (vg)x>o converges to some positive real number

jBlna  ongj
+Z(Uj+l_vj)—”N+Z( ]+11n ]+?+W )

where the sum converges absolutely.

Now we define a new sequence uy := ny/a* and observe that uyxa = vg. From
the above computation it follows that the sequence (1 )x>o converges to ¢ := {/a™ > 0,
and since

Blk—1DIna ox_q
ak + ak

3

U = Uj—1 + — Inug_y +
o
we have

jBIna of
C‘“0+Z(“1+1—“1)—”0+Z( T “f+w+a/+1)-

j=0
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Finally, observe that

1 (J+Kk)Bna o4k

k k i+
= = - Ry : :

ng =a ug =l E ( nuj i + 7 + = )

and there exists C > 0 such that

1 & i +k)B1 ;
_Z(%ln“j+k+ (U +kpna +014;k)

o - o’ o
Jj=0

<Ck, Vk=1. ]

Claim 2. We have py, = o + BIn¢ + o(1).
Proof of Claim 2. Observe that by the previous claim, we have

Pk =Ng41 —ong —kBlna =0 + Blnng —kBlna

=ox +Blnur =or +BIn¢ +o(1). L]
Claim 3. We have
Blno 1 & 0j Blna 1 & Pj+k
= —_ —, d = _ —
¢ n0+( —1)2+aj§0a/ k (a —1)2 a = al

Proof of Claim 3. Recall that pr = o + B Inuy. Clearly (pr)r>o is bounded because
(0% ) k>0 is bounded and (ux )r>o converges to {. From the proof of Claim 1 it now follows
that

o0
1 .
Z lnu] J'B.ﬂ—{— Cf"/

i tl T it

> .
= al J (x—1) = al
and
_ Blna k_ , Blna 1 > B (J+k)Bhna  ojk
dk—ka_1+nk—§a —km——z—.lnuj_i_k-l- O[j —+ a.j
Bina G +k)/3 o ek Plna pro
a—l az + ol (a—1)2 Z '
Clearly the sequence (dg )r>o is bounded since (o )x>o is bounded. [ ]
This completes the proof of Lemma 10.1. ]

Remark 10.2. By Lemma 10.1 we have px = ok + S Inuy, where (ug)r>o converges
to ¢ > 0. Hence the phase sequence (0x)x>o of an (&, 8)-admissible sequence converges
to a cycle if and only if the sequence (px)x>o converges to a cycle of the same period.
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Moreover, since

1 1 < pj 1
dp = ﬂ__zpjfk and ox = dgy1 —ady — B ne — Blnuy,
Ol].=0 J oa—1

C(@—1)2 a

the phase sequence (0% )x>o converges to a cycle if and only if (dg)r>o converges to a
cycle of the same period.

Corollary 10.3. Let (ng)k>o be an a-admissible sequence whose phase sequence con-
verges to zero. Then o has the Pisot property.

Proof. Since (ny)i>o is an a-admissible sequence, § = 0 and px = oy (using the nota-
tion from Lemma 10.1). Moreover, since (0% )x>o converges to zero, the same holds for
(di)k>0, and hence |cak || — 0. L]

Lemma 10.4. Let (ny)x>0 be an (o, B)-admissible sequence and (ok)k>o its phase
sequence. Then (0y)r>o converges to a cycle of period £ if and only if my 1= ng¢ — ng
is an a-admissible sequence whose phase sequence converges to £ In«.

Proof. Observe that

Myt — QM = Ny 140 — N1 — (Mg — k)

= (Mg4140 — ANftg) — (Mg —ang)

Nk+¢
=0y+k — Ok + fIn "

=0y1r — 0 + LB Ina + o(1). L]
Corollary 10.5. If (ng)x>o is a-admissible with converging phase sequence, then my :=
Nk 41 — Nk is «-admissible and has phase converging to zero.

Proof. This follows from the previous lemma with 8 = 0. ]

Lemma 10.6. Let o have the Pisot property. Then there exists an a-admissible sequence
whose phase sequence converges to 0.

Proof. Since o has the Pisot property, there is ¢ > 0 such that ||¢a¥|| — 0. Now we can
define a sequence of integers

tak + ||¢ak|  otherwise,

{cak —|lcak]| if0 < {¢ak} < 1/2,

for which clearly ng4+1 —ang — 0. [

We shall denote by o (n.) the phase sequence associated to the sequence (1), and by
0 (ne)y its k-th element.

Lemma 10.7. Let (ng), (my) be two a-admissible sequences, and let j, ji, jo € Z. Then

(1) (ng+j) is again an a-admissible sequence, and o (e j)k = 0 (Ne)k+ ),
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(2) if (jing + jamy) is strictly increasing, then it is an o-admissible sequence, and
0(j1ne + jaime) = j10(ne) + j20(1me);

(3) if (my) is a-admissible and €} € £°°, then ny := my + € is a-admissible, and
0(ne)x = 0(Ma)k + €x41 — U€k.

Proof. This is a direct computation. ]

Observe that Corollaries 10.3 and 10.5 and Lemmas 10.6 and 10.7 imply the following
result which settles claim (1) of Theorem 1.10.

Corollary 10.8. Let o > 1 and m € N* be arbitrary. The following are equivalent:
(1) o has the Pisot property;
(2) there exists an o-admissible sequence whose phase sequence converges;

(3) there exists an a-admissible sequence whose phase sequence converges to a cycle of
exact period m.

Let us mention that for a very special type of o-admissible sequences similar conclu-
sions were already made by Dubickas [14].

Remark 10.9. Let (nx)r>0 be an (o, f)-admissible sequence and denote 6 = Bna and

a—1
my = ng + |k6|. By Lemma 10.1 we have

N1 —ang —Blnng =ngyy —ang —kBlna— BIn + o(1)
=mpy1 —oamy +{(k +1)0} —afkf} — 60 — BInC + o(1).

It follows that the phase sequence of (nx)x>o converges to a cycle if and only if the
sequence (my)i>o is ¢-admissible and the sequence my 41 —amy + {(k + 1)0} —a{k6}
converges to a cycle of the same period as o (1 ).

Finally, claim (2) of Theorem 1.10 follows from Lemma 10.4, Corollary 10.8 and the
following observation. Let (mx)r>o be an a-admissible sequence whose phase sequence
converges to zero (note that such always exists since o has the Pisot property) and let
0 := ‘ZIT“;)‘ Ifo = % € Q then by the above remark the sequence ny := my — |k8] is
an (o, B)-admissible sequence whose phase sequence converges to a cycle of period k».
This completes the proof of Theorem 1.10.

We conclude this section with the following question.

Question 10.10. Let o > 1 have the Pisot property. We have seen that 0 € Q is a sufficient
condition for the existence of an a-admissible sequence (my)x>o such that the sequence
Mp41 —amy + {(k + 1)0} — a{kB} converges to a cycle. Is this condition also neces-

sary?
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