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Abstract. We prove that the derivative nonlinear Schrodinger equation in one space dimension is
globally well-posed on the line in L2(IR), which is the scaling-critical space for this equation.
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1. Introduction

The derivative nonlinear Schrédinger equation
id:q +q" +i(lq1*q) =0 (DNLS)

describes the evolution of a complex-valued field g defined on the line R. Here and below,
primes indicate spatial derivatives.

Physical applications of (DNLS) are reviewed briefly in Section 1.4 below. There, we
also discuss certain well-documented changes of variables that convert (DNLS) to other
evolutions of interest in the physical sciences.

One of the most basic questions we should ask of any model is whether it is well-
posed: Do solutions exist? Are they unique? Do they depend continuously on the initial
data? Without such properties, it is unclear whether the model is capable of making exper-
imentally falsifiable predictions. The well-posedness question also forms an important
benchmark in our understanding of an equation. Gaps between well- and ill-posedness
results leave open the possibility that there are basic physical processes—instabilities
and/or stabilizing mechanisms—that remain undiscovered.

The principal goal of this paper is to show that (DNLS) is globally well-posed
in L2(R):

Theorem 1.1. The (DNLS) evolution is globally well-posed in L*(R). More precisely,
there is a jointly continuous map ® : R x L2(R) — L2(R) that agrees with the data-to-
solution map when restricted to Schwartz-class initial data.

It is not wanton abstraction to define the data-to-solution map as an extension from
Schwartz-class initial data; indeed, this is the textbook approach to defining the Four-
ier transform on L2(R) and is widespread in nonlinear PDE. The heart of the matter
is to prove key metric properties that allow one to extend the mapping to general ele-
ments of L2 and then to ensure that the extension retains the many good properties of its
Schwartz-class restriction.

A relatively small fraction of this paper would suffice to show that L2-precompact sets
of Schwartz initial data are mapped under the flow to C;([~T, T]; L?(R))-precompact
sets of orbits. (Here 7 > 0 must be finite, but is otherwise arbitrary.) This would be a
new result and it trivially yields the existence of solutions; however, it goes no way to
justifying uniqueness, nor continuous dependence on the initial data. This thinking helps
us appreciate the uniqueness statement embedded in Theorem 1.1: no matter how we
approximate an L? initial data by a sequence of Schwartz initial data, the corresponding
trajectories will converge and they will converge to the same limit! In particular, our
solutions have the group property.

Theorem 1.1 implicitly asserts that Schwartz initial data lead to global unique solu-
tions. This is true. While uniqueness of smooth solutions is easily verified via the Gron-
wall inequality, the existence of global solutions for large Schwartz-class initial data is,
in fact, a very recent result! (See the discussion in Section 1.1.) Although the existence of
such solutions is not a prerequisite for our methods, building on this result leads to a much
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clearer exposition. Moreover, without the triumphs of these authors, which we celebrate
in Section 1.1, we would not have had the courage to pursue the results of this paper.

Next, we wish to discuss why Theorem 1.1 considers initial data in L?(R). There are
several reasons that make L?(R) a natural space in which to study (DNLS). First, the
L? norm is conserved by the flow; indeed, we have the microscopic conservation law

dilgl* + 9x[2Im(q'q) + 21¢|*] = 0. (1.1)

Second, it is a scale-invariant space: if ¢ (¢, x) is a smooth solution to (DNLS), then so too
is

a(t.x) == VA (A%, Ax) (1.2)

for every A > 0. Notice that this transformation does not affect the .2 norm of the initial
data (nor indeed at any later time).

Long-standing physical intuition dictates that dispersive equations will be ill-posed
below the scaling-critical regularity. For the case of (DNLS), this is justified by the
self-similar solutions constructed in [10, 31]. Beyond proving that well-posedness fails
in H*(R) with s < 0, these solutions even show that it fails in weak- L2, which is a scale-
invariant space!

It is a matter of some pride for us that we are able to treat (DNLS) in the most natural
scale-invariant space. It is only quite recently that global-in-time solutions could be con-
structed for large data in scaling-critical spaces for any kind of dispersive PDE. Moreover,
we are dealing with a focusing nonlinearity (e.g. soliton solutions abound). Many focus-
ing dispersive equations do not admit large-data global solutions; it is typical for wave
collapse to occur above a certain threshold size (as measured in scaling-critical spaces).

There is an obvious scapegoat here: (DNLS) is completely integrable [25]. However,
scaling-critical well-posedness does not seem to be the norm for such models: it fails
for KdV, NLS, and mKdV! The phenomenology of (DNLS) becomes even more curi-
ous when we endeavor to find a quantitative expression of the continuous dependence
of the solution on its initial data. As discussed below, we know that when s < 1/2, the
data-to-solution map cannot be uniformly continuous on any neighborhood of the origin
in H%(R). This is quite different from the behavior of the mass- or energy-critical NLS,
for example, where the data-to-solution map is real-analytic (cf. [28]).

It is perhaps better to compare (DNLS) to other models with derivative nonlinear-
ity. For the notoriously difficult two-dimensional wave maps equation, for example,
Tataru [49] proved that the data-to-solution map (defined on scaling-critical balls) is
Lipschitz in lower regularity norms. We will show in Proposition 1.12 that this fails for
(DNLS)—again (DNLS) appears less continuous! Complete integrability, it seems, is not
a stern parent that keeps its flows safe and orderly; rather it is permissive and allows its
solutions to become quite wild before issuing the rebuke of ill-posedness.

Earlier we singled out the H*®(R) family of spaces in our discussion of well- and ill-
posedness. Already the natural prerequisite that the /inear Schrédinger equation be well-
posed is quite restrictive; this precludes the consideration of L”-based Sobolev spaces
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with p # 2. As we will see below, H*(R) spaces are both the most natural and most
studied classes of initial data; indeed, they arise from the consideration of conservation
laws for (DNLS). Building on Theorem 1.1, we will prove the following:

Corollary 1.2. (DNLS) is globally well-posed in H®(R) for every s > 0.

Prior work in this direction is discussed at length in the next subsection. It is evident
that Theorem 1.1 guarantees the existence and uniqueness of solutions for data in H*
with s > 0. That such solutions remain bounded in H* is known as persistence of reg-
ularity and may be deduced as a consequence of conservation laws. To complete the
proof of well-posedness, one must upgrade continuous dependence from the L? metric
to the H® metric. As demonstrated in several prior works of the authors [5, 18,27, 29],
this is easily done if one can verify that H®-equicontinuous sets of initial data lead to
H*-equicontinuous ensembles of orbits.

Definition 1.3. A subset Q of H*(R) is H*(R)-equicontinuous if for every ¢ > 0 there
isa § > 0 such that

sup sup [lg(x +y) —q(x)|us <e.
qeQ |y|<é

This definition extends naturally to any translation-invariant Banach space of func-
tions on any group. For bounded continuous functions on R?, one recovers the notion
of equicontinuity familiar from the Arzela—Ascoli Theorem. Indeed, this more general
notion of equicontinuity was introduced precisely to formulate the analogous compact-
ness theorem in L? (R?) spaces; see [42].

We will also need the second key requirement for compactness, albeit only in the L?
setting:

Definition 1.4. We say that Q € L?(R) is tight if

limsup sup / lg(x)|*dx = 0.
R—o0 g€Q JIx|=R

The transportation of L2 norm is expressed by (1.1). As is characteristic of dispersive
equations, we see that the flux of the conserved quantity involves more derivatives than
the conserved quantity itself. While this is an obstacle in our path to proving tightness, it is
also the key property of microscopic conservation laws that provides for local smoothing
estimates.

To formulate local smoothing estimates, we must first agree on how to localize the
solution in space. We will do this through the Schwartz-class function

Yi(x) = sech(9x—9) and its translates ¥, (x) := ¥ (x — ). (1.3)

There is nothing terribly special about this choice. The fact that it has slow exponential
decay (relative to unit scale) is quite convenient; beyond this, it is merely the case that
this choice has served us well in the prior work [18].



Global well-posedness for the derivative nonlinear Schrdinger equation in L2(R) 847

Theorem 1.5 (Local smoothing). Let Q C S(R) be both L2-bounded and equicontinu-
ous. For each T > 0, solutions q(t) to (DNLS) with initial data q(0) € Q satisfy

T
sup / 10 2410 dt <10 1902 (1.4)
neRrR J-T

Corollary 1.6. The solutions constructed in Theorem 1.1 are distributional solutions;

indeed, the data-to-solution map is continuous as a mapping of L*(R) into L} (R x R).

The first striking thing about Theorem 1.5 is the fact that the estimate is only claimed
for equicontinuous sets, not balls. This is of necessity, as we will show in Proposition 1.11,
and reiterates the nonperturbative nature of our analysis.

Other than proving Corollary 1.6, Theorem 1.5 will play no role in the analysis. It
is not strong enough! For example, it is not sufficient to prove tightness. For that pur-
pose, we will need the stronger estimate (4.2) expressed in terms of our local smoothing
spaces X ,3 /2 introduced in Section 2.3. In essence, these spaces capture the local smooth-
ing norm living at frequencies |&| > k. In this way, (4.2) expresses that there is little local
smoothing norm at high frequencies and consequently, little transportation of the L2 norm
by the high frequencies.

1.1. Prior work

Local well-posedness of (DNLS) was first proved in H¥(R) for s > 3/2 via energy
methods in [50, 51]. Subsequently, this was improved to s > 1/2 by Takaoka [45] via
contraction mapping in X*? spaces. The solution so constructed is a real-analytic func-
tion of the initial data.

As explained in [46, Section 7], the results of [45] show that the data-to-solution map
cannot be real-analytic (or even C3) on H*(R) for any s < 1/2. Indeed, by analyzing the
family of solitons reviewed in Section 1.3, it was shown in [4] that the data-to-solution
map cannot even be uniformly continuous (on bounded sets) in H*(R) fors < 1/2.

Contraction mapping arguments have also been applied in other function spaces.
Local well-posedness of (DNLS) in certain Fourier—Lebesgue and modulation spaces was
shown in [13] and [14], respectively. In both cases, the spaces are based on s > 1/2 num-
ber of derivatives. It is noted in [14] that if fewer derivatives are used, the data-to-solution
map cannot be smooth.

We discussed earlier how this irregularity of the data-to-solution map challenges the
naivest notions of complete integrability. It also has profound implications in terms of
methods. For a generation now, work on well-posedness problems for dispersive PDE has
been dominated by contraction mapping arguments in increasingly sophisticated spaces,
employing ever subtler harmonic analysis tools. By their very nature, solutions built by
contraction mapping will be real-analytic functions of their initial data. The poor regular-
ity of the data-to-solution map in the setting of Theorem 1.1 is a strong signal that very
different methods will be needed.

Let us turn now to the question of global well-posedness. The standing paradigm here
is to extend local-in-time results by employing exact (or approximate) conservation laws.
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As a completely integrable system, (DNLS) has a multitude of exact conservation laws.
The most basic three are

M(q) = / g2 dx. (L5)
H(g) =1 / 147 — Gq) + lqI*] dx. (1.6)
Ha(q) = / (4P + 2ilq@d —dq) + LlqI] dx. (L.7)

The functional H (g) will be called the Hamiltonian since it generates the (DNLS) dynam-
ics in concert with the Poisson structure

(F,G}:= /[@—Z(@—g)’ +

The problem with these conservation laws is that they are not coercive for large initial
data, specifically, when M(q) is large. It was observed in [19] that coercivity does hold
if M(q) < 2w, which was used to obtain global well-posedness in H!(R) under this
restriction. The subsequent works [7, 8,37,46] ultimately led to H*-well-posedness for
s > 1/2 under the M(gq) < 27 restriction.

Later, Wu showed that the 27 barrier was illusory and that a priori bounds could be
obtained under the weaker restriction M(q) < 4m; see [55,56] and [11]. Global H*-well-
posedness for s > 1/2 and M(q) < 4w was then shown in [15].

The 4 barrier is certainly not illusory: Algebraic solitons (see (1.26)) are explicit
solutions of (DNLS) with M(g) = 4, but for which all other polynomial conservation
laws vanish. Applying the symmetry (1.2) to these algebraic solitons, we see that the
polynomial conservation laws alone cannot provide the kind of control that is needed; see
the discussion surrounding (1.27). Because of such obstructions, the behavior of large-
data solutions to (DNLS) was for a long time a terra incognita.

The first definitive evidence that large data do not blow up was provided via the inverse
scattering approach; see [21-23,34,35,40,41,44]. Among these works, we wish to single
out [22] as not only constructing solutions (without any spectral hypotheses), but also
proving continuous dependence on the initial data. Concretely, they proved that (DNLS)
is globally well-posed in H?2(R) = { f € H? : x> f € L?}. Combined with the local-in-
time arguments in [19], this result shows that (DNLS) is globally well-posed in Schwartz
space.

Strong spatial decay requirements are a prerequisite for the inverse scattering
approach as we understand it today. Currently, there is no satisfactory theory of forward
nor inverse scattering in any H*(R) space (not only for (DNLS), but also for KdV, NLS,
and mKdV). On the other hand, one of the major strengths of the inverse scattering method
is its ability to describe the long-time behavior of solutions. Indeed, a soliton resolution
result for generic data in H 2,2 (R) was proved in [20]; see also [21, 36].

The large-data impasse in Sobolev spaces was dramatically broken by Bahouri and
Perelman in the recent paper [3]. By synthesizing the existing well-posedness theory with

oo S
hQll’l’j

(5¢) ] dx. (1.8)
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an in-depth analysis of the transmission coefficient, they proved that (DNLS) is globally
well-posed in H/2(R).

For what follows, it is more convenient to discuss the reciprocal of the transmission
coefficient and to define this quantity, a(k; ¢), via a Fredholm determinant. For k > 0, we
first define

Alk;q) = (k — ) V2q(k +0)"% and T(k:q) := (k + 92k — 8)~V/2,
(1.9)

which extend to x < 0 via A(—«;q) = —I'(x; g). By Lemma 2.5 below (reproduced
from [30]), both A and I' are Hilbert—Schmidt operators; thus we may define

a(ix;q) = det[l1 —ikATY. (1.10)

This expression originates from a perturbation determinant based on the Lax pair for
(DNLS) discovered in [25]. In particular, it is conserved under the (DNLS) flow; see [32]
for a proof of this.

It follows from (1.10) that k + a(k; g) extends to a holomorphic function in both the
upper and lower half-planes. While this extension was essential for [3] and the paper [17]
that we will discuss shortly, we will not need this here and so restrict our attention to the
case where k = i« is purely imaginary.

The central problem overcome by [3] was the ineffectual nature of the conservation
laws attendant to (DNLS); however, this solution did not provide new conservation laws
with which to fill the void. In particular, [3] does not provide a priori control on lower
regularity norms, nor the means to address the question of equicontinuity in such spaces.

Using the ideas of [3] as a jumping-off point, the paper [17] shows that (DNLS) does
preserve L2-equicontinuity. Note that this assertion takes the form of an a priori bound
on Schwartz-class solutions since solutions were not known to exist for merely L2 initial
data. In fact (and this will be important for us), the paper [17] shows that this equicontinu-
ity property is enjoyed by any flow preserving the perturbation determinant (1.10) and so
by the entire (DNLS) hierarchy:

Theorem 1.7 ([17]). Let O < §(R) be L?-bounded and equicontinuous. Then

O« = {q € S(R) :a(k;q) = a(k;q) for some § € Q} (1.11)
is also L*-bounded and equicontinuous.

A key motivation for addressing the equicontinuity question in [17] is that it unlocks
a large number of tools in the study of (DNLS); it was this realization that lead [27] to the
explicit formulation of this equicontinuity problem.

The first tools unlocked by the equicontinuity property are low-regularity conservation
laws, specifically conservation laws at the level of H® for 0 < s < 1/2. Such laws were
first derived in [32] following the approach of [30]; however, they were only applicable
to small solutions. The realm of applicability was first raised to M(g) < 4m in [27] by
proving equicontinuity in that regime and then to arbitrarily large solutions in [17].
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Equicontinuity also unlocks higher regularity conservation laws for large data. In [27],
L?-equicontinuity and the conservation of H,(q) are shown to provide global H!(R)
bounds. In [2], the result of [17] is used as the base step of an inductive argument to cover
H*(R) spaces for all s > 1/2. This brings closure to the question of coercive conser-
vation laws: we now know that H*-bounded sets of Schwartz-class initial data lead to
H*-bounded solutions for all s > 0.

To prove local smoothing, we need microscopic conservation laws such as (1.1), rather
than mere conserved quantities. Note that (1.1) itself is useless for this purpose because
the current is not coercive. Already for the proof of (1.4), we need scaling-critical coercive
microscopic conservation laws and the full proof of well-posedness will require even more
subtle estimates.

Just such microscopic conservation laws were worked out in [47] and will be recapit-
ulated in Proposition 3.5. The structure of these laws closely resembles those of the
NLS/mKdV hierarchy presented in [18]. There is a good reason for this: the Kaup—Newell
Lax operator for (DNLS) can be written as

|t 0][e=09 kg
L(k;q) := |:0 _1] [iﬁé K+8] (1.12)

which closely resembles the AKNS-ZS Lax operator of the NLS/mKdV hierarchy. We
will only discuss this operator for k € R. Throughout this paper,

Vi =i+/|k|] whenk <O0.

There is one more prior result that we wish to discuss, namely, global well-posedness
in H'/®(R). This was first shown in [27] for initial data satisfying M(q) < 4, a restric-
tion that was removed in [17]. This result was shown using the first-generation method of
commuting flows introduced in [29] and reviewed below.

1.2. Description of the method

The principal problem we must address in order to prove Theorem 1.1 is this: given T > 0
and an L2-convergent sequence ¢, (0) of Schwartz initial data, show that the correspond-
ing (Schwartz-class) solutions ¢y, (t) converge in L2(R) uniformly for |t| < T.

Given the breakdown of uniform continuity of the data-to-solution map (on bounded
sets) and the further instabilities highlighted in Proposition 1.12, it is difficult to conceive
of a method of controlling differences of solutions in terms of their initial data. It was
to address this specific challenge that the method of commuting flows was introduced
in [29].

To explain the method of commuting flows, let us imagine that we wish to prove
well-posedness of the flow generated by a Hamiltonian H in L?; in our case, H is given
in (1.6). Central to the method is the construction of a one-parameter family of Hamilto-
nians H, whose flows satisfy the following three properties:

(1) they commute with the H flow,
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(2) they are well-posed in the target well-posedness space L2,
(3) they converge to the H flow as x — oo.

Let us temporarily take for granted the existence of the family of Hamiltonians H,
satisfying these properties. Their construction for (DNLS) is quite involved and will be
discussed shortly. Demonstrating that they satisfy the three properties requires almost the
entire bulk of this paper.

Property (1), namely commutativity of the flows, can be expressed as

oV VH o psIVHe _ ,sIVHe o JJVH _ ,JVI[tH+sH]

e for any 5,7 € R,

where we adopt the exponential notation for the flow of a vector field and write JV for
the symplectic gradient. The relevance of this relation to demonstrating that a sequence of
(Schwartz) solutions ¢y (¢) is Cauchy in C([—T, T]; L?) may be best understood via the
following identity:

Gn(t) — gm(t) = [e"7VHe g, (0) — "7V He g, (0)]
+ [EZJV(H—H,C) _ Id] o etJVHan (0)

— [ VH=HO _1q] 6 ¢ VHe g, (0). (1.13)

Property (2) is well-posedness of the H, flows. This implies that the first term on the
right-hand side of (1.13) converges to zero as n, m — oo for each fixed «. In order to
prove that the sequence g, (¢) is Cauchy in C([—T, T]; L?), it remains to show that

limsup sup sup ||[e"/ VH~H) _1d] 0 '/ VHe g, (0)] ;2 = 0. (1.14)

k—>oo n [t|<T

We will refer to the flow generated by the Hamiltonian H — H, as the difference flow.
Relation (1.14) embodies the statement that as x — o0, the difference flow converges to
the identity. This is a quantitative interpretation of property (3).

In implementing the method of commuting flows, we have come to regard properties
(1) and (2) as selection criteria for the H, Hamiltonians, leaving property (3) as the key
analytical difficulty that must be faced.

In our experience, (1.14) has always proved to be a very difficult problem. First, we
must acknowledge that the difference flow inherits all the strong instabilities of the ori-
ginal flow. As the H, flow is typically a diffeomorphism, it cannot undo these problems.
The one big advance, however, is that we no longer need to control differences of solu-
tions: ¢, and ¢, are now completely decoupled. This is partially offset by the fact that
the initial data for the difference flow is not ¢, (0), but rather e’/ VHx g, (0) where ¢ varies
over [—T, T]. As a result, we will need to show that the difference flow converges to the
identity uniformly across sets of initial data about which we know very little.

As in previous works, we will exploit that {e’/VHxg,(0) : n € N, |t| < T} inher-
its equicontinuity from the precompact set {g, (0)}. This follows from Theorem 1.7 and
the fact that the H, flows constructed below conserve a(ik; q). Refracted through this
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perspective, property (3) becomes the following assertion:

limsup sup sup |[[e"/VH=H) _1d](g)]|,2 =0 (1.15)

k=00 qe€Q |t|<T

for any L2-bounded and equicontinuous set O € §(R).

It is natural to seek to prove (1.15) by estimating the difference-flow vector field, that
is, the time derivative under this flow. As a prerequisite, one needs to be able to make
sense of the nonlinearity appearing therein—this includes the nonlinearity under the H
flow, which for (DNLS) is (|g|%¢)’.

The method of commuting flows was applied to (DNLS) in [27], treating initial data
in H /6. Conservation laws were used to bound the resulting solution in L$° H /6, which
allowed the authors to prove (1.15) with L? replaced by H ~*. The lost derivatives were
then recovered using equicontinuity, specifically, the general statement that if a sequence
qn converges in H? and is equicontinuous in H* for s > ¢, then it converges in H*. The
relevance of H /€ is that it embeds into L3 and this allows us to interpret the nonlinearity
(I¢1*q)’ as an element of L H for any o < —3/2.

Already in the first application of the method of commuting flows in [29], which was
for KAV in H~!, it was not possible to estimate the difference-flow vector field directly.
To address this problem, the authors introduced a gauge transformation (a diffeomorphic
change of unknown), whose difference-flow dynamics they could estimate pointwise in
time (albeit with a sizable loss of derivatives, which were then recovered using equicon-
tinuity).

One advantage of this first-generation method of commuting flows, where the dif-
ference flow (with or without a gauge) is estimated pointwise in time, is that it works
equally well for problems posed both on the line and on the circle. However, there are
models (such as NLS and mKdV) where the threshold regularities for well-posedness
are different in the two geometries. The treatment of these equations in [18] necessitated
the introduction of a second-generation method of commuting flows, based on new local
smoothing and tightness estimates.

The job of local smoothing estimates is to make sense of the vector field as a space-
time distribution in instances where this cannot be done pointwise in time. As the central
problem is to control the difference flow by estimating the size of the corresponding vector
field, one must develop local smoothing estimates for this flow. This is almost paradoxical:
local smoothing is an expression of high-frequency transport; however, our ultimate goal
is to demonstrate that the difference flow converges to the identity. The demonstration
of sufficiently strong smoothing estimates for the (DNLS) difference flow (see Proposi-
tion 6.1) requires a vast amount of work; we will return to this topic after the Hamiltonians
H, have been introduced.

Using local smoothing, we will only be able to prove convergence of the difference
flow to the identity locally in space (cf. Theorem 7.1). The role of the second new ingredi-
ent, tightness, is to overcome this limitation. As both radiation and solitons move under
the (DNLS) flow, establishing tightness is challenging. For (DNLS) this is accomplished
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in Proposition 5.1 below and relies on the subtle control of the high-frequency transport-
ation provided by (4.2).

1.2.1. The Hy flows and their properties. To introduce the Hamiltonians H, for (DNLS),
we return to the perturbation determinant (1.10), or rather, to the closely related quantity

A(k;q) == —sgn(x) logla(ik; q)] = —sgn(k) logdet[1 — ik AT]. (1.16)

As discussed above, a(ik; q) is conserved by the (DNLS) flow. This guarantees that both
the real and imaginary parts of the (complex) functional A(x; g) Poisson commute with
the (DNLS) Hamiltonian H(q).

The inclusion of sgn(k) in (1.16) ensures that A(k; ¢) has the same asymptotic expan-
sion as k — F00. This expansion shows that A(k; q) encodes all the polynomial conser-
vation laws of (DNLS); it begins

A q) = 5M(q) + 7 H(q) — 5= Ha(q) + O(5) (1.17)
for g € §$(R). Rearranging this formula leads one to believe that
H.(q) := 4k Re A(k;q) (1.18)

is a good approximation for the (DNLS) Hamiltonian H (q), at least as k — co. Moreover,
the Poisson commutativity of Re A(x;g) and H(gq) noted above guarantees that H,, and H
also commute. This is the sought-after property (1) from our overview of the method of
commuting flows.

The preceding discussion has been predicated on the nonvanishing of a(ik; ¢), so that
one may safely take the logarithm in (1.16). This issue is discussed in [27], where it is
shown that A(x; q) is well-defined provided « is sufficiently large; however, (by neces-
sity) the restriction on « is not dictated solely by the size of ¢, but also by its frequency
distribution.

Informed by the many computations ahead of us, in this paper we adopt the expedient
of using (1.2) to rescale solutions ¢ so that we may impose a single restriction on «,
namely, |«| > 1. The goal of the rescaling is to make g(£) small at frequencies |&| > 1;
such smallness is conveniently expressed through the following notion:

Definition 1.8. Fix 0 < o < 1/2. Given § > 0, we say that Q C §(R) is §-good if it is
L2-bounded, Lz—equicontinuous, and it satisfies

o [ EEEP
1%

2
s | St e 46 = (1.19)

Although the parameter o could be frozen once and for all, say ¢ = 1/4, we believe
that retaining the symbol o makes it easier to check our computations.

As reviewed in Section 3, the series (1.16) converges uniformly on all §-good sets
(once § is small enough). Local well-posedness of the H, flow for §-good sets of initial
data follows from Picard’s Theorem because the corresponding vector field is Lipschitz.
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Moreover, these solutions remain Schwartz-class and conserve A(x;q) for all |x| > 1.
These assertions were shown in [27, Section 5].

In order to construct a global-in-time H, flow, we must ensure that orbits remain §-
good as time progresses. This is accomplished by combining the fact that the H, flow
preserves a(ix; q) together with the following consequence of Theorem 1.7:

Corollary 1.9. Let Q C S(R) be an L?-bounded and equicontinuous set. Given § > 0,
there exists A = A(Q, §) such that the set

Qi = {x/xq(kx) eSMR) :alix;q) =alix;q) for some g € Q} is§-good.

Before turning to the difficult topic of analyzing the difference flow, let us pause to
summarize the preceding discussion as a theorem. In particular, this theorem encapsulates
properties (1) and (2) of the H, flows.

Theorem 1.10. There exists 89 > 0 sufficiently small such that for any 0 < § < §y and
L?-bounded and equicontinuous set Q C §(R), the H, flow is globally well-posed on
the set Q7 in the L? topology, where A(Q, §) is chosen according to Corollary 1.9. In
particular, solutions remain Schwartz-class and in the set Qi Moreover, the (DNLS)
flow also preserves the set Q;\ and commutes with the Hy flow.

All the assertions made here about the H, flow were proved in [27] contingent on the
question of equicontinuity that was subsequently resolved in [17]. As discussed earlier,
the existence of global Schwartz-class solutions to (DNLS) follows from [19, 22]. That
such (DNLS) solutions conserve the transmission coefficients is a classical result.

1.2.2. Analysis of the difference flow. This occupies the bulk of this paper and requires
many new insights.

To understand the difference flow, we must first give the explicit form of this evolution.
This relies on the functional derivatives of H,, which are easily deduced from those of
A(k; q) given in (3.5).

The functions g15(x) and g1 (x) appearing in (3.5) are the two off-diagonal entries of
the Green’s function corresponding to the Lax operator (1.12) evaluated on the diagonal
x = y. Together with a third component y(x), these functions will be recurrent charac-
ters in our story and Section 3 is devoted to a detailed elaboration of their algebraic and
analytic properties.

Combining the functional derivatives with the Poisson structure (1.8), we find an
explicit formula for the difference flow evolution:

idg=—q"~i(qPq) + 2[Vkg|,(k) — =Kkg},(—K)]. (1.20)

The goal of this section is to explain how to prove (1.15) for the difference flow given
by (1.20).

Unlike all other terms, the nonlinearity (|¢|>q)’ appearing on the right-hand side of
(1.20) does not make sense pointwise in time for g € C,L? and so we are immedi-
ately tasked with finding a remedy. Despite strenuous efforts, we were unable to find a
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gauge transformation that would allow us to estimate the resulting difference-flow vector
field pointwise in time. Based on previous successes with the diagonal Green’s function
[18,29], it is natural to imagine that this might be a satisfactory gauge. This idea is refuted
by (3.28), as explained there. Therefore, we are forced to adopt the second-generation
method of commuting flows.

As discussed earlier, the characteristic features of the second-generation method are
the use of local smoothing estimates to control the difference flow and the resulting neces-
sity of showing that compact sets of initial data lead to tight ensembles of orbits under the
(DNLS) flow, over bounded time intervals. The proof of the tightness statement relies on
refined local smoothing estimates for the (DNLS) flow.

Local smoothing estimates are a direct expression of the dispersive nature of an equa-
tion: high frequencies travel rapidly and so spend little time in any fixed spacetime region.
As such, they originate from the linear/dispersive part of the equation.

As discussed in [48], there are two standard ways for proving local smoothing estim-
ates for a linear equation: via spacetime Fourier transforms and via monotonicity identit-
ies. When the nonlinearity may be treated perturbatively, local smoothing estimates can
be transferred directly from the underlying linear flow to the full nonlinear equation. Cor-
respondingly, it matters little what method one uses for establishing the linear estimates.
In the nonperturbative regime considered in this paper, we have no choice but to pursue
an approach based on monotonicity identities for the full nonlinear flow.

All monotonicity-type identities we know originate from microscopic conservation
laws of the form

3p+ V-7 =0. (1.21)

In one spatial dimension for example, this implies

at[tanh(x)p(t,x) dx = /sechz(x)j(t,x) dx. (1.22)

In the rare event that one can find such a law with j > 0, (1.21) constitutes true
monotonicity. It is more reflective of actual practice however to find a coercive term j; in
the current and then integrate (1.22) to obtain

T
/ /sechz(x)jl(t,x) dxdt <2 sup
-T

lt|<T

/ tanh(x)p(z, x) dx

T
+/ /sechz(x)[jl—j](t,x)dxdt. (1.23)
-T

The utility of this inequality rests on finding a suitable microscopic conservation law.
First, one must find a density p whose integral can be controlled uniformly in time.
Second, one must be able to identify a coercive part j; of the current that controls the
sought-after local smoothing norm. Third, one must be able to control the contribution of

J1—J.
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For our analysis we need two one-parameter families of microscopic conservation
laws, one for (DNLS) and one for the difference flow (1.20). These can be found in Pro-
position 3.5, with the density given in (3.27). Local smoothing for (DNLS) is proved in
Proposition 4.1 and for the difference flow in Proposition 6.1.

The first task is to estimate the integral of the density p in (3.27) uniformly in time.
This is achieved in Lemma 4.2. The complicated structure of this density makes this a
nontrivial task. Moreover, to prove tightness of orbits under the (DNLS) flow we need the
refined local smoothing estimate (4.2), which requires us to prove that the contribution of
p converges to zero in the high-frequency regime. The analysis of p in Lemma 4.2 relies
on the detailed study of the diagonal Green’s functions carried out in Section 3.

Our second task is to identify a coercive part in the currents appearing in Proposi-
tion 3.5. In our analysis, the quadratic terms jlgﬂLS and jd[izf} of the currents will play the
role of j; in (1.23). Although these are not sign definite, we are able to demonstrate the
requisite coercivity up to acceptable errors. For the treatment of jlgﬂLS, see the discussion
surrounding (4.32). Extracting coercivity from jd[ﬁ requires considerable regrouping and
the estimation of many error terms and commutators; see the treatment of (6.40).

The third and most difficult part of obtaining local smoothing estimates is controlling
the remainder of the current j; — j. In defocusing problems, the most dangerous parts
of j; — j typically have a favorable sign. When the problem treated is subcritical, the
second term on RHS(1.23) can be controlled by interpolating between LHS(1.23) and a
priori conservation laws. A small data hypothesis can also provide the smallness needed
to bound the contribution of j; — j by a small fraction of LHS(1.23). The problem studied
here has none of these favorable features. In fact, any of these features would yield local
smoothing estimates that depend only on the norm of the initial data; this is ruled out by
Proposition 1.11.

In our case, the remainder j; — j comprises the quartic and higher order terms l'lgii]s
and jd[f-f“]. There is an enormous number of contributions that need to be controlled.
Moreover, these cannot be estimated directly using the L2 norm of ¢ since they involve
both derivatives and higher powers of g. Instead, we endeavor to control these contribu-
tions using local smoothing and a bootstrap argument.

As we are dealing with a large-data scaling-critical problem, there is no easy source
of smallness for closing the bootstrap. This is one of the key analytical challenges we
must overcome in this article. The subcriticality of the models treated in [18] expressed
itself through the appearance of negative powers of the large parameter x, which provided
the requisite smallness. For (DNLS), we are forced to simultaneously exhibit two copies
of the local smoothing norm (to be bootstrapped) and a third factor encoding equicon-
tinuity (the source of smallness) for every single error term. To achieve this, we must
identify and exploit many subtle hidden cancellations in the flow—see, for example, the
carefully curated decompositions of jlgii]s and jd[i?f“] appearing in (4.27) and in the proof
of Lemma 6.3, respectively.

The analysis of these error terms relies on a large body of work built up in the pre-
ceding sections of the paper. In Section 2 we introduce the norms used to quantify both
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equicontinuity and local smoothing. We also need to introduce and analyze a Banach
algebra B of bounded multiplication operators on our equicontinuity spaces. This section
also contains a suite of basic nonlinear estimates used later in the paper.

Much of Section 3 is devoted to proving estimates on the diagonal Green’s functions.
These arise in several places in our analysis: not only are they an integral part of the
microscopic conservation laws, but they also appear in (1.20) because they encode the
functional derivatives of A(k;¢q). The culmination of Section 3 is the estimation of the
diagonal Green’s functions and key nonlinear combinations thereof in the equicontinuity
and the local smoothing spaces. We also elucidate the structure of these functions in terms
of a new class of paraproducts introduced in this section; see, for example, Lemma 3.11
and Proposition 3.12.

A second class of paraproducts which incorporates the localizing weights intrinsic
to local smoothing estimates is introduced in Section 4. A key feature of our analysis
is demonstrating that one may distribute these localizing weights to all entries in these
paraproducts. This is important since any one of the input functions in a paraproduct may
be the highest frequency term and so will need to be estimated in the local smoothing
norm. The culmination of Section 4 is the proof of the local smoothing estimates for the
(DNLS) flow stated in Proposition 4.1.

Tightness of orbits for solutions to (DNLS) is proved in Section 5. This argument is
quite short because of the strength of the estimate (4.2) proved in Section 4.

Section 6 contains a proof of local smoothing for the difference flow (1.20). It is the
most demanding part of the paper and relies on all the analysis that precedes it. Indeed,
the needs of this section dictated much of the prior development.

Section 7 combines all that precedes it to prove convergence of the difference flow
to the identity, locally in space. Finally, a short Section 8 deduces all the main theorems
from these prerequisites.

1.3. The soliton menace

In this subsection we present the family of soliton solutions to (DNLS) and use them to
exhibit some of the instabilities of this equation.
For each value of 6 € (0, /2), the function

v s lcos(8) cosh(x) —i sin(6) sinh(x)]* ;. cot(26)
qo(x:0) = v/2sin(26) [cos2 () cosh?(x) + sin?(#) sinh?(x)]? ¢

provides initial data for a soliton solution to (DNLS). In understanding the shape of this
function, it is useful to note that the central factor can be written as Z3/|Z|* with Z =
cos(6) cosh(x) — i sin(f) sinh(x) = cosh(x — i0). The soliton with this initial data takes
the form

q(t,x:0) = go(x + 2cot(20)1: f)el? cosec> @) (1.24)

Further solitons can be obtained by translation, phase rotation, and scaling.
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The 6 — 0 limit of this solution exists and is identically zero. Indeed
lgoll?» = 86. (1.25)

In the form we have presented, the & — /2 limit does not exist. However, by rescaling
in accordance with (1.2), a limit can be recovered, namely, the algebraic soliton

2(1 —ix) oix/2
(1 +ix)? '

/4 Wwith initial data qga(x) =

q(t.x) = ga(x —1)e (1.26)
This solution embodies a key obstruction to coercivity of the polynomial conservation
laws. Indeed, while M(g,) = 4 all other polynomial conserved quantities vanish. These

properties also hold for all rescalings (1.2) of g,. However,
lgarllgs = 00 asA — oo (1.27)

for any s > 0.

To see that g, also witnesses an obstruction to using the perturbation determinant
(1.10) to prove equicontinuity we note that a(ix;g,,2) = 1 forall A > 0. However, {g4,3 :
A > 0} is not an equicontinuous family.

Let us now turn our attention to the soliton with & = /4, which simplifies to

2e'*[cosh(x) — i sinh(x)]?
[cosh?(x) + sinh?(x)]>

qs(t,x) = (1.28)
The subscript s appearing here emphasizes that this is a stationary soliton. (While it
does oscillate in time, it does not propagate through space.) This property makes it the
archenemy of local smoothing and Strichartz estimate. In particular, our next proposition
shows that inequality (1.4) does not hold for sets Q that are merely L2-bounded. This
further emphasizes the nonperturbative nature of the (DNLS) flow in the L? topology.

Proposition 1.11. Local smoothing and Strichartz norms cannot be controlled solely by
the L? norm of the initial data. Concretely, there is a sequence of solutions g, to (DNLS)
satisfying M(q,) = 27 but

1 1
[ ||sech12(x)qn(t,x)||ill/2 dt — oo and / / |gn(t,x)|® dx dt — oo
-1 x -1JR

asn — Q.

Proof. We choose the g, to be rescalings of ¢g; according to (1.2) and observe that
M(qs,) = 27 but

1 1
/ ||se:ch12()c)qs,;L(I,x)||§_11/2 dt ~ A and / f |qs,;k(t,x)|6 dxdt ~ A% =
-1 x -1JR

As the last topic of this section, we demonstrate another instability inherent to
(DNLS). Concretely, we will show that it is not possible to prove uniqueness of solutions
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via Gronwall’s inequality in lower regularity spaces. This is a widely successful unique-
ness technique and a key ingredient in constructing solutions via compactness/uniqueness
arguments; the Gronwall inequality yields Lipschitz dependence in H*® of the data-to-
solution map. However, our next proposition shows failure of Lipschitz dependence, no
matter how negative one chooses s.

Proposition 1.12. Fix s < 0. There are times t, — 0 and pairs of solutions q, and G, to
(DNLS) such that

th) — qn(t s
qnllL2 + llgnllL2 — ut — 0. .

4 (0) = Gn(0) [l 225
Proof. We choose g, and g, to be distinct rescalings of the soliton solution (1.24) with
parameter 6,. We first choose 6, — 0 to ensure that their L? norms converge to zero;
see (1.25).
The key idea to exploit is the fact that ¢, and g, travel at different speeds. To ensure
that their separation at time #, diverges, we require that

[An —)~L,1| cot(20,)t, —> oo yet t, >0 asn — oo. (1.30)

In order to compute the overall size of the norms at the times 0 and #,,, it is convenient
to compute the Fourier transform of a soliton exactly. The key identity is this:

/ cosh(x —i0) oY gy e %

cosh?(x + i6) ~ Cosh(Z8) [cos(26) — & sin(26)], (1.31)

which follows by a simple residue computation. It follows from this that §o(£) has a
simple zero at the origin, yielding three cases: s < —3/2, s = —3/2,and s > —3/2.

In the regime where (1.30) and |4, — in| & Ay both hold, elementary (but lengthy)
computations show

M:f"inlllqn(o) —GnO)lzs®) < g0 O)lzs @) ~ g (tn) = Gn(tn) |l Es -

With this information it is not difficult to choose the necessary parameters. ]

1.4. Equivalent models and their physical origins

Let us begin by noting that (DNLS) does not admit a focusing/defocusing dichotomy:
the sign of the nonlinearity can be reversed by simply replacing x — —x. Likewise, the
relative coupling of the three terms in (DNLS) can be freely adjusted by rescaling the
space and time variables.

To the best of our knowledge, (DNLS) first appears in the literature as a model for the
propagation of large-wavelength Alfvén waves in plasma. For a further discussion of this
scenario, including how this effective model informs our understanding of the stability of
such Alfvén waves, see [26,39,43,53].
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It is easily seen that (DNLS) does not inherit the Galilean symmetry of the linear
Schrodinger equation. Indeed, if ¢ solves (DNLS), then

v(t, x) = e R gy 2kp) (1.32)
solves
i0;v+v" +i(Jv]*v) + kjv[*v = 0. (1.33)

Here k € R is fixed but arbitrary.

This computation indicates that the traditional cubic nonlinear Schrédinger equations
(both focusing and defocusing) are ‘embedded’ inside (DNLS) in the limit of large modu-
lation. While we know of no mathematical work on this embedding, we will describe two
physical systems which speak to this phenomenology.

The combined nonlinearities of (1.33) arise naturally in nonlinear optics. While neg-
ligible in many experimental scenarios, the derivative nonlinearity becomes physically
important in the propagation of short pulses (cf. [1,52]).

One early application of the cubic nonlinear Schrodinger equation was to modeling
amplitude modulations of Alfvén waves, with the unknown function describing devi-
ations from a plane wave. (In our earlier discussion of (DNLS) as model of Alfvén waves,
q describes the entire amplitude of the wave, not fluctuations.) One of the key assump-
tions in deriving this model is that the characteristic length of the modulations far exceeds
the carrier wavelength. As argued in [38], the combined nonlinearities of (1.33) allow one
to extend the realm of applicability of this effective model to include cases where these
two length scales are almost comparable.

As part of a search for completely integrable PDE, a different form of derivative non-
linear Schrodinger equation was uncovered in [6], namely,

id:q +q" +ilql*q =0. (1.34)

It was subsequently discovered (see e.g. [54]) that this model can be obtained from
(DNLS) via a change of variables. The change of variables in question takes the following
form:

X

w(t, x) = q(t, x)e’®  with <I>(t,x)=/ lg(t, v)|> dy (1.35)

and v € R fixed. With a little work, we find that w satisfies
iw, +w” =2i(v — DwPw +i@2v — Hw?d’ — JvQ2v — D{w|*w. (1.36)

When v = 1/2, we recover (1.34). When v = 1, we obtain the Gerdjikov—Ivanov form of
derivative NLS; see [12].

The more general nonlinearity presented in (1.36), as well as that arising by fur-
ther incorporating the Galilei transformation (1.32), appears naturally in the study of the
Benjamin—Feir instability in the theory of water waves; see [9,24,33].
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It is easy to see that both changes of variables, (1.33) and (1.35), are real-analytic
diffeomorphisms on L2(R); indeed, they are diffeomorphisms on H*(R) for every s > 0.
Thus Theorem 1.1 guarantees the following:

Corollary 1.13. The evolutions (1.33) and (1.36) are globally well-posed in L*(R).

When we look at (1.36), it seems all the more surprising that large data GWP holds,
since it fails for the focusing quintic nonlinear Schrodinger equation!

2. Preliminaries

Throughout, we will use scaling-homogeneous Littlewood—Paley decompositions with
frequency parameters N € 2Z. Concretely, choosing a smooth, nonnegative function ¢
supported on |§] < 2 with ¢(§) = 1 for || < 1, we define P<y as the Fourier multiplier
with symbol ¢(§/N) and then Py = P<y — P<p/». Observe that

1= Z Pn.
Ne2Z

Such decompositions will be ubiquitous and we often adopt the more compact notations

IN=PNnf. f<n = P<n foand fon = [1 = P<y]f.
As a similar expedient, we often write Fourier multipliers under their arguments. For
example, for « > 0,

4__ .= (4k? —9%)"V2¢ and

. -1

q
2k+0

For s € R and || > 1 we define the Sobolev space H; as the completion of §(R)
with respect to the norm

lally = [ @+ €120 d.

and write H° = HY.
Associated to the localizing function ¥, defined in (1.3), we have

[vee-wdn =282 adso s =g [ feowuePde @
R R

2.1. Equicontinuity spaces

To quantify the equicontinuity, for o, s € R and |«| > 1 we define
_ 2 2(s—0)|£120 |, A
lallzg, = kP01 q] s = / e @)1 dé. 2.2)

and take EJ = E7 .
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We write B for the space of bounded functions that belong to the homogeneous Besov
51/2 S .
space B,'S,. We equip this space with the norm

I£ 1B :=IflLee + sup NY2| fullL2.
Ne2Z

This space is an algebra; see Lemma 2.3 below. Moreover, by Lemma 2.4, multiplication
by functions in B defines a bounded operator on our equicontinuity spaces.

Our next lemma shows how the spaces Eg , allow us to track the equicontinuity prop-
erties of orbits.

Lemma 2.1. Let Q C L? be bounded and equicontinuous. For o > 0 we have

lim sup [lg|lgg, = 0. (2.3)

Kk—>00g€Q

Proof. The claim follows from the estimate

lalleg, < la<nlEg, + lg>nllEg, S (N/)?NlgllL2 + llg>n L2,
by choosing the frequency N € 2% appropriately. ]

Lemma 2.2. Fors >0 >0, 8 € R, andk > 1,
* d
[ Nl 5 2 ~ P lg a4
K A 4 0.K
Further, ifk > 2 and I, = [1,k/2] U [2k, 00) then

[Vl 42~ laly @5)

Proof. Decomposing into Littlewood—Paley pieces,

o0
2 NZ(O'-‘rﬂ) 2(s—0o) dx
[ 4l ¥ [ g,
K
N2G+B) 2By 2
~ (k+N)20 ||61N ”LZ K ”q”Eg;i{—ﬁ

In order to integrate in x one considers separately the cases N < ¥ and N > «, breaking
the integral into the regions [k, N] and [N, co) in the latter case. The estimate (2.5) is
proved similarly. ]

Lemma 2.3. For0 <o < 1/2 and x > 1 we have the estimates

I /gl < I flBlgla, (2.6)
Il a2l flles  + 1 Nlgg. 1. (2.7

20, 20,x%

118 < I fllzee + 1 f L (2.8)
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Proof. To verify (2.6), we employ the basic decomposition
Pn(fg) = Pn [f~Ng$N + fengN t+ ) fMgM]- (2.9)
M>2N

From Bernstein’s and Holder’s inequalities, we see that

1Nz S I fanllrzlgsn o+l fenlzollg~nlzz+ Y N2 farll2llga 22
— M>2N
SN2 flglglla. ~

from which (2.6) follows easily.
The estimate (2.7) follows from Bernstein’s inequality:

Ifls S%° Y N>l fwlleg,  +x7° Y N2l 1 leg,
N <|x| N>|x|
< RHS(2.7).
Turning now to (2.8), we recall that the convolution kernel associated to Py is

a Schwartz function which integrates to zero. Indeed, it can be written in the form
NK'(N x) for some Schwartz function K. Integrating by parts, we find

NY2|| fyll> < N2

f K(NG =) ') dy‘

L S UKl e

LX
< Mz u
Lemma24. Let0 <0 <1/2,0<s <0+ 1/2, and |x|,k > 1. Then we have the estimate
Il flleg, + 1/ g, ~ 12x =) fllgg, (2.10)

and the product estimates

| felleg, < 1/ gg. lgle. @.11)
| felleg, < %1721 f lgg Il Igllsg, + lg'lEg, ] 2.12)

20.x%

In particular, if ¢’ € § we have the localization estimate
léfleg, <¢ I/ lEG,- (2.13)
Proof. The estimate (2.10) follows from
1= 0) /I3y = 4Pl f Wy + 17 1 -

For the product estimate (2.11), we have

2(s—o) Ny20
1 felGe, ~ D G 1PN (f)17 -
N
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Decomposing as in (2.9) and using the Holder and Bernstein inequalities, we estimate

2(S—U)N20’
1 f8l3e, < Z o S 22l gen 3o

2(3 o) N20
+Z Lo LS M furl ] gl
M<KN

2(? o) N20
+Z SO S N furllalgn e

M>2N

The first summand is easily seen to be acceptable. To estimate the second summand,
we first sum in N and then apply Schur’s test:

2(s—0) N 20 2
D[ 2 MY farle] lew 2
N

M<KN

(2(s— G)NZO'M 1/2 M
2
Slelz Y. T YA
Mi<M><«N

2 M2 e MS
< gl Z mﬂfm leg N /a2,
Mi<M, ~

2 2
<71 Nl

Arguing similarly, we estimate the remaining summand by

2(s—o) Ny20 2
S| X N sl g2
N

M>2N

KZ(S*U)NZGJrlM*l/ZMf]/Z
> | far 2L g 2

2
< gl
N<M1§M2

2 M2 (et Mo)S
SlslE X Sy 1 leg, L g,

M <M,
< /1%, gl

The estimate (2.12) follows as a corollary of (2.11) and (2.7). The localization estimate
(2.13) follows from (2.11) and (2.8). [

2.2. Operator estimates

We begin with the basic Hilbert—-Schmidt bound for the operators A(q) and I'(g) intro-
duced in (1.9). This estimate appeared already in [30, Lemma 4.1]:

Lemma 2.5 ([30]). Forq € L? and k > 0 we have

2 T2 ~ £)_14®P 14112
IAIR, = IT1B, ~ [ tog(s+ 5)HLL de < Mlgls. 219
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Using this lemma as our basic tool, we obtain the following basic estimates when
g € L? is frequency localized.

Lemma 2.6 (Operator estimates). For || > 1,0 <0 <1/2, and 0 <s <o + 1/2 we

have

2

1@ 5 = IT@N) 13 ~ gy log(d + 25) lgw 2. 2.15)
2
IA@M) llop = IT@M llop S 725 log(4 + ) g l22. (2.16)
2 —
D IAUM oy S ety log®?(4+ 25) sup MTV2| fig |2, 2.17)
M<N Me2Z
—1/2p1/2~0
MZN IAC lop S B 1 f L g, (2.18)
=<
Nl/Zfo N)S

Y IAU)llop S e e L/ L sg (2.19)
M<N

Proof. The estimate (2.15) follows immediately from Lemma 2.5. The estimate (2.16)
follows from (2.15) for N > k and the Bernstein inequality:

IAG@Mllop < llgnlizee < Y llgw .2 (2.20)

for N <«.
Claim (2.17) follows from (2.16):

S IAUNe S Y e log 2 (4 + )MV Sy

M<N M<N
< by log¥2(4 + 22) sup M7V fiy 2.
Me2Z
as does (2.18):
M1/2 1/2 ‘ | 1/2N1/2 o
MZN IACS3)lop S 2 i log"/2(4 + 22) | farllL2 s WA= 1 £ g,
= =
and (2.19):
1/2—0 s 2
YA 5 Y MG tog! 2 (4 + 22| fu |l e S RHS(2.19). m
M<N M<N
Corollary 2.7. Forq € L?> and0 <o < 1/2,
VilADllop S glleg,  uniformly for i > 1. 221

In particular, if Q is a bounded and equicontinuous subset of L? then

lim sup i [[A(g)[lop = 0. (2.22)

Kk—>00 geQ
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Proof. Using (2.18) and Lemma 2.5, we may bound
\/E”A(Q)Hop 5 \/E Z ”A(qM)”op + \/E“A(Q>K)”0p

M <k
Slglleg, + lg>cllz2 < llglleg,

which settles (2.21). Lemma 2.1 then yields (2.22). [ ]

Lemma 2.8. For0 <o < 1/2 and k > 1 we have

_ w3 2
IAWRa: 018, < 67° | b [ llal g (2.23)

Proof. Decomposing into Littlewood—Paley pieces, applying (2.19) and (2.13) at low fre-
quency, and (2.15) at high frequency, we have

LHS(2.23) = [t{A(¥3q: )%}

8
s Y MA@ ) In AP, @)l [T IAPY, @0l

Ni~Naz-=Ng Jj=3

N360 (14 N,)60 N2\ P, (¥39) Py, (3 q)
< ) weamyeanye g4+ )] xszai |32 xzszai a2 Nalg

N{~N>
< RHS(2.23).

The fact that N ~ N, must hold is most evident by computing the trace (which is unitarily
invariant) in Fourier variables. [

2.3. Local smoothing spaces

To control the local smoothing property, for s,2 € R and |«| > 1 we define

w2 2 N I
g1 %5y = f | s [pesre 20" dp, (2.24)
1
lalf o= sup [ @1 . (2.25)

As before, when k = 1 we denote F*(h) = F{(h) and X* = X7.

We note that as a consequence of Lemma 2.10 below, we obtain an alternative char-
acterization of X, that is closer to that used in [18]; see Remark 2.11. The additional
complexity apparent in (2.24) is necessitated by the scaling criticality of the problem.

Multiplicative commutators are an essential tool for repositioning the spatial loc-
alization factors within the paraproducts appearing in our analysis of local smoothing
estimates. The next lemma, which extends [18, Lemma 2.8], is our basic workhorse in
this task:
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Lemma 2.9. For |x|,|k| > 1, 5,0 e R, 1 < p <00, r € Z, and integer |{| < 24, all fixed,
we have the following, uniformly for u € R and q € §(R):

12 £ 8)* (2 + 3)° Y (¢ — ) qllLr ~ 2 £ 8)* 2 + 3)7 (¢ — 8) Y qllLr.  (2.26)
Ifboth s,0 € Z then (2.26) also holds for p € {1, co}.

Proof. The Mikhlin multiplier theorem shows that the choice of + signs is immaterial
and we shall restrict attention to the + case.

Both inequalities can be treated simultaneously through a slightly larger family of
estimates involving two parameters 6, v € Z. Specifically, adopting the notation

W =2+ 09)°Q2k + 9)°(x —9)"
it suffices to show that for each pair 6, v € Z,
Wyt e — )y~ 0= )W gllr < llgllze.

(In fact, just the two cases (6, v) = (r,0) and (6, v) = (—r, r) are truly needed.)

When 1 < p < oo, complex interpolation allows us to restrict attention to the case
where s, 0 € 7, which we do in what follows.

The next step is to perform additive commutations, moving each positive power of a
differential operator toward its inverse, one factor at a time. Proceeding in this fashion
until all positive powers of said differential operators are exhausted leaves a very concrete
(but combinatorially very messy) finite linear combination of products of operators from
the following list:

vy, v, @+ )T e+ )7 e—a) 7 - )Ty

where m is any integer satisfying 0 < m < |a| + |s| + |v| 4 |0]. In this way, we see that
the proof will be complete if we can show that any operator on the list is L?-bounded for
every 1 < p < oo.

Boundedness of the first two operators in the list is trivial given our choice of V.
The boundedness of the remaining operators can be deduced from their explicit kernels.
Indeed, ¥¢(x — 8)~1y ¢ has kernel

K(x.y) = v )y ()L™ M1, .  which satisfies |K(x, y)| <¢ e~ 2%,
Thus L?-boundedness follows from Schur’s test. |

As we are dealing with a nonlinear equation, one needs to understand how to estimate
products in our local smoothing spaces. Due to the low regularity of the objects we are
treating in this paper, each term in the product must itself satisfy local smoothing estimates
in order for the product to be bounded. This dictates the structure of our basic product
estimates below.
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Lemma 2.10. [f0 <o < 1/2, |x|,k > 1, h e R, 1 <{ < 12 is an integer, and ¢' € §
then

|%| ”q”FKI/Z(h) + ”q”Fl?/Z(h) ~ ”(2% - 8)q”F,}/2(h) (227)

and we have the product estimates

1 /2l g2 < T2 00F vz g 1@ = D)glzg, 4+ 1/ 1gg, 1k = D)l 1724, )

(2.28)
1 /8l 32y S 1l L0 W vz g 122~ Dgllg, | + 12— 8)Fllzg, gl p3r2 g )
(2.29)
We also have the localization estimates
via h—
/ | 7o e dp < g1, (230)
||¢q”FK1/2(h) S¢ ”q”FKl/z(h) (231)

Proof. For (2.27), we first use Lemma 2.9 to obtain
L h—
12 = 012, ~ [ 125 =) ZEE 50

A [ | e Ve bt [N e

2 2
~ P12 2y + a2y

Using space-translation invariance, it suffices to prove (2.30) for h = 0. If £ = 12,
the claim follows from the definition. Otherwise, define T}, ,,: L* — L? to have integral

kernel 2V3/4 2 2y1/2
4+ (424
B o N (L e W e

and apply Schur’s test to bound
Ty llop < 1EVPUEW2 @0 < WL 272 5 ol
We then apply (2.1) to obtain
[ 1 s e
= ///” %”m/z “ %”H 3/2€ ~ 2001 dvidvydu

vita Vi3q — L
1 Tseowi ool Tuwa llon | s v | iz [ rne™ 20 dvr dva dps

yl+lvaol | 'H-\ I 12 12
< /// I R | it s dvy dva

2
19121720
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In the last step we first integrated in 1 and then used LZ-boundedness of the resulting
convolution operator.

Turning next to the product estimates (2.28) and (2.29), we take s € {1/2,3/2}, u € R,
and use (2.9) to estimate

1 12 2
| = V2 7 [
N 2s+2
< Z U Pon WS 2 Pen (W 5) 7 oo

25+2
+ Z A 1 P<n (W Pl o | Pov (V10172

2542 2
+Z“;i}v)2 [ > NPIPMWE N2 Por V)2 | -

M>2N

Recalling (2.7), (2.10), and (2.13), we bound the first summand by

N)2s+2
A= 1 P (W P17 I Pn (V) 1 e
N

<l AL e Dl W Sgleg, , + 10 S8) g,

20,

< |%| IHWHHS-H”(ZX a)gllegoix'

For (2.29), we bound the second summand in a symmetric fashion, reversing the roles
of f, g. For (2.28), we instead apply Schur’s test with (2.10), (2.13), and (2.26) to bound

3 2
%[ Z MY Py 2| 1PN (U212

< @) )2
| =Ze=

Ge+M1)2o M2~ My 2™
x Y Pu, W Nz, | P (W) e,
M, =<M;

S |}f|—l || WM(ZM—B)g 2

2
Y s flEg, -
The third summand is again bounded using Schur’s test, (2.7), (2.10), and (2.13):

s 2
SUEDSE Y NPIPMWE 2] Pemgllz ]
N

M>2N

A+M)S T+ M)IM? | Pagy (W5 f) Prr, W5 )
<lelz Y L T L

(1+M2)§'+1(K+M1)M1/2 ” Jax2—92 “HS"‘1 ”W“Hﬁ']
M <M,

< |%| 1”mHH5+1”(2x a)g”ivrgax

The estimates (2.28), (2.29) then follow from (2.30).
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Applying Schur’s test in Fourier variables, we find

)3/ WV
Sup ” \/E‘a,cz 232 ¢w6 ?8K§/232 ||0p ~¢ L

In this way, we see that

Vil v
| 7255 e S0 | 7 | e
and consequently (2.31) follows from (2.30). ]

Remark 2.11. As a consequence of the proof of Lemma 2.10, we note that

lallr2 ~ sup I m” L2H3/2 (2.32)

Indeed, the inequality
2 vi2qg 2
”q”XJ/Z < sup Hﬁ”,ﬂgm/z
neR
follows immediately from the definition. For the converse inequality, we argue as in
(2.30): in view of (2.1),
vi2qg 2
” Va2—32 ||L%H3/2
ViZq Vi2q
N // 1Ty lop 177,05 llop ” «/4,(—217_32 HL%H3/2 ” Jﬁ ”L§H3/2 dvydv,

2
~ ||q||L?F;(1/2(h)

3. Green’s functions and microscopic conservation laws

By the Green’s function, we mean the integral kernel associated to the inverse of the Lax
operator presented in (1.12). It is not a given that this operator is invertible; we will rely
on the subtle interplay between the spectral parameter « and the equicontinuity proper-
ties of ¢. This same issue was discussed in the introduction in connection with making
sense of A(k;q). Indeed, it formed the central rationale for introducing the notion of a
§-good subset of L2(R); see Definition 1.8. Let us begin our discussion by revisiting the
construction of A(k;q).

We subsequently take 0 < o < 1/2 to be fixed. If Q is a §-good subset of L2(R), then
Corollary 2.7 shows that

|/c|1/2HA(q;/<)HOp < lgllgg <8  uniformly for || > 1 and g € Q. (3.1
As shown in [27, Lemma 5.1], it follows that if § is sufficiently small then

A(k;q) = —sgn(x) logdet[l —ik(k — ) tq(k + 9)"1gq] = sgn(K)Z% tr{(ikAT)*}
£>1 (3.2)

defines a real-analytic function of « and g. Moreover, the domain of this function includes
all [k| > 1 and an L? neigborhood of Q.
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It is important to define A(«; ¢) in such a neighborhood of Q (rather than just on Q)
to ensure that the functional derivatives are well-defined. We find that

[$4f + %4 fldx = sgn(K)E :tr{(iKA(q)F(q))mi/c[A(f)F(q) + AT (]}
q q A
m= (3.3)

As Lemma 2.5 and (3.1) show, this series defines a bounded linear functional of f € L?
and correspondingly the functional derivatives exist as L2 functions.

Duality also gives an efficient way to introduce the functions y(k; q), g12(k; q), and
g21(k; g) that will be of central importance in what follows: for a, b, ¢ € L2,

/[gzlb + g12¢ +yaldx =sgn() r{[¢ L][L7" - Lg']}. (3.4)

Here L, denotes the Lax operator (1.12) with g = 0.

Lemma 2.5 and (3.1) guarantee that a Neumann expansion of the right-hand side of
(3.4) yields a convergent series for all a, b, ¢ € L?(R). On comparing these series with
those of (3.3), we find

5-—1«/—5’12 and §—2=—«/Eg21- (3.5)

It is evident from (3.4) that g2, g21, and y are closely connected with the mat-
rix Green’s function evaluated on the diagonal (i.e. at the coincidence of the two spa-
tial points). For the continuity needed to make sense of this directly, see [18, Proposi-
tion 3.1].

For simplicity of exposition, the discussion above only constructed g12, g21, and y as
L? functions. By estimating more carefully (as was done in [27]), one finds that the series
defining g12, g21, and y converge in H! to real-analytic functions of ¢; moreover, these
functions are Schwartz whenever ¢ € §.

Direct computations also reveal certain basic identities among these functions; see
[18] or [47]. Concretely, we have

g12(k) = —g21(—).  y(k) = y(=K).  A(K) = —A(—¥), (3.6)
as well as
Qo = 26g12 — kM 2q(y + 1), (3.7
ghy = —2kga1 — ik'?G(y + 1), (3.8)
y' = 2" (qga1 +idg12). (3.9)

Lastly, we have the quadratic identity

2812821 + 3v* +y =0, (3.10)

which can be proved by differentiating the left-hand side and applying (3.7)—(3.9).
Using these relations, we may write

g2 =525[a + D] ga =25 [Gy + D]y =2 o

— 2
= oiple+4ia (82)°) 55 = saerald —4ia (535)°]:
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While it is very elementary to check these last two identities, it is much less obvious that
they are key to efficiently treating a lot of what follows.

To prove our theorems, we require bounds for these functions in the B, E, and F
spaces introduced in Section 2. We start with the following:

Lemma 3.1. For § sufficiently small and Q C S a §-good set, the following estimates
hold uniformly for q € Q and |k| > 1:

ly(e: )l < IIqllEa <8 (3.12)

lg12(kc; @) B + ||g21(’<,61)||B < lglleg, - (3.13)
(k3q) ()

| 5565 15 + 133565 | < lalleg, - (3.14)

Proof. To prove (3.12), we argue by duality. To this end, we test against functions f
satisfying supyscoz M ~V2|| farll2 < 1 and employ

(fy(e:q)) =sgn() Y (i) tr{[(c = ) 'k + 0) ') (c — )" [}
>1

+sgn(k) Y (i) tw{[(c + )7 G — ) q) (e + ) .

>1

Let us first observe that by (2.18) and (1.19), there exists C > 1 such that

sup || Y [AGgm)llop < C8,
Ne2Z M<N

uniformly in |k| > 1. Note also that by Lemma 2.6 and our assumptions on f,

2 2
S AU o < iy log¥2(4 + 22). AU, < o/ iy log(4 + 25).

M=<N

Decomposing into Littlewood—Paley pieces, using that the two highest frequencies
must be comparable, together with Lemma 2.6 and the preceding estimates, we find that

) te{[c — ) g + )7 q (e — )" £
< (€MD Y N 10632 (4 4 N0y A (i), 1A (g 3,

N{~N>
+(CHV 3 el AN I3 1AW 13 A (G llop
N{~N>>N3
2
S(CHPD N N 10g®2 (44 k) llgm 22 llgw, 2
Ni~N>
_ | |1/2Nl—o' N2
+(C8)>D 3 Wlog(“‘i‘ﬁﬂwm lz2llqleg,
Ni~N>

< (C)* Vgl

Choosing § sufficiently small, we may sum in £ > 1 and so deduce (3.12).
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Further reducing § if necessary, the estimates (3.12) and (2.6) allow us to sum the
geometric series and so obtain

1
Ex=a PES (3.15)
Regarding (3.13), we use (2.7), (2.10), (3.11), and (2.11) to obtain
lgizllz < Il ™2k = Dgiallzg, . < 11+ Ivlsllales, .
The bound (3.13) then follows from (3.12) and (3.6).
The estimate (3.14) follows directly from (3.13), (3.15), and (2.6). ]

Lemma 3.2. For § sufficiently small and Q C § a §-good set, the following estimates
hold uniformly for g € Q and |x|,k > 1:

%] llg120) g, + 181200 Eg, < |}f|1/2||Q||E§’K (3.16)
el llyCOllgg, + 1V 0Ol gg, S %' ?llglee llglleg, . (B7)
/
el | £ | o, + [(32) GO o, < 1% lldll e, - (3.18)

Moreover, in view of (3.0), g21 also satisfies the estimates (3.16) and (3.18).
Proof. In view of (3.7), (2.11) and (3.12),
l@x = Dgrallgg, < 1xIV2g(+1)lgg, < el qlpg, 1 + 17 5]
S gl g, -

The estimate (3.16) then follows from (2.10).
Recalling —y = % from (3.11), the estimates (3.16) and (3.14) show that

Pl lyColleg, S 1%l llg120)leg, |25 | 5

1/2
< x"2lqlleg, gl gg

20, ){
To complete the proof of (3.17), we complement this with the estimate
Iy 0l eg, < 1el"?llglleg,  Ngllgg, .

for which we employed (3.9), (2.12), and (3.16).
Using (2.11), the fact that B is an algebra, and the estimates (3.14)—(3.17) and (1.19),
we obtain

| 2 - 8)212 ”EU < 2x - 3)g12||Em“ 2ty ”B + 1y’ ”Em” (2?5)2 “B
< P lgll g, (1 + lalizg, )
< |x"2\glgg, -

The estimate (3.18) now follows from (2.10). ]
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Lemma 3.3. For § sufficiently small and Q C § a §-good set, the following estimates
hold uniformly for q € Q, |x|,k > 1, and h € R:

|%| ||g12(%)||FKl/2(h) + ||g12(){)”FK3/2(h) 5 |%|1/2”q”FKl/2(h)’ (319)
e 1y GOl 12 + VGO g2 < 112l g2y lllEg, . (3.20)
£120%) g12(x) 1/2

! | =Ty | Fl2m T I 51300 Hpg/Z(h) S el Mgl gz gy (3.21)

Proof. Using the quadratic identity (3.10) together with (2.27)—(2.29), followed by (3.16)
and (3.17), we get

el 1y GOl g 172y + 1Y O £372
< e 7V22% — D)yl g

20,x%

~1/2
+ || / HE‘XHM lgizllee + g2l

20.k 20,k

1% =07l par2gs
]H:}:a}"xﬂ)d ||gl2||FKl/2(h) + ”g12“F,f/2(h)]

< IIQ||2EgM 2% = Dyl g1r2gy + gl £g

20,

HE{XHM ||g12||FK‘/2(h) + ||g12||FK3/2(h)].
Using (1.19) we deduce
1% = 0¥l g2y < Il g, , maxilxl lgizl pyragy + 812l garagy)  (3:22)

and so (3.20) will follow from (3.19).
From (3.22) and (3.7) together with (2.27), (2.28), and (3.17), we obtain

II:}:ZLX[|%| ”ng“FKl/z(h) + ||g12||FK3/2(h)]
< e Pllg(+ V)l 1y

< "2l 2y + Il 72 12 = D7 llsg, , + lallzs, 1% = DYl 2,

S 11 214l a2y + lalg, )+ i3y maxtiel gl gyrmgy + 81215272y -

The estimate (3.19) then follows from (1.19).
It remains to prove (3.21). As a preliminary, let us pause to observe that

2
Qx =) (52)" = 352 - (x - )52

Using (2.11), (3.14), and (3.18), we get

@ = 0)(£5) ] g

o S|l 05 g < lalg o 323)

while by (2.28) and (3.18),

T o PR e e [P F = P (PR 1 P

S llalleg, | x =) $2 | pire. (3.24)

20.,x% 2+y
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Using (2.27) together with (3.11) followed by (2.28), (3.23), and (3.24) we obtain
LHS(.21) < [|(2% = 052 | 12
2 2
S 1l gl gz + gl g | e =) (52) | gy +lalleg, , [@x =) (FE2) | i

< I Plalprall + lalg 141l [@x =0 E2 ] e,

Using (1.19), we may absorb the second term on the right-hand side above into the left-
hand side, thus settling (3.21). [

A consequence of Lemmas 3.2 and 3.3 is the following:

Corollary 3.4. Fix § sufficiently small and let Q C § be a §-good set. All functions f
from the following list (and so finite linear combinations thereof ):

q, 94,
2x=+9 249 2x+d g12(%) 2x+d g21(%)
i‘/; 812(%), f/; g21(%)a Jj/; 2_;_21,(”), xﬁ 2_’2_]),(}{)’ (325)
2k+d 2k+0 2k+0 g12(k) 2kt g21(k)

Tgn(’()v VK g21(k), k24700 vk 247k

satisfy the estimates

1Az < gllez, 11 Eg

20.,x%

< lglleg, - 1/ leg < lqlleg. (326)

I F12gy S NalFrzmys 11 g2gy < 09l g2,
uniformly for q € Q, |x|, |k| > 1, and h € R.

As we discussed in the introduction, multi-parameter local smoothing estimates are
essential for our analysis. As we are in the nonperturbative regime, the only reasonable
approach to proving such estimates is via monotonicity identities. In all examples that we
are aware of, such monotonicity identities stem from a proper understanding of conserved
densities and their corresponding currents. This line of thinking leads inevitably to the
problem of finding a microscopic representation for the conservation of A(x; q).

It is invariably easy to find microscopic representations for conserved quantities that
are polynomial in the underlying field (and its derivatives), such as the mass or energy.
However, even in these simple cases there is no universal algorithm for finding such
microscopic laws; indeed, this is an ill-posed problem—the corresponding cohomology
class does not have a unique representative.

When the conserved quantity in question is more complex, discovering a microscopic
representation becomes truly challenging. All the more so when we need our represent-
ative to be coercive, if it is to be useful. This is the case for A(x; ), which is defined as
the logarithm of a Fredholm determinant or as an infinite series of traces; see (3.2). Struc-
turally, each of these traces is a paraproduct in g. Nevertheless, just such a microscopic
representation was presented in [47] based on the density

ig21(%;q) - g12(%;q)

. . 3.27
e +yoeq) U e+ y000) G20

pGeq) =q -
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In finding (3.27), the authors of [47] were very much guided by the analogous form
for the AKNS-ZS hierarchy discovered in [18]. The analogue for KdV was found in [29],
although this is of little assistance. Indeed, these few examples would lead one to believe
that the answer will always be a rational function of matrix elements of the diagonal
Green’s function; this notion is refuted in [16].

Once these densities have been discovered, it is not fundamentally difficult to derive
the corresponding current (though it may require considerable labor) because the time
derivative of the Green’s function may be deduced from the Lax pair representation of the
flow. For example, under the (DNLS) flow,

i L g12 = —[4x* — 2ixlq*g12 + [2*2q + ix'?|q12q + %' 2¢1(1 + y)

. ) (3.28)
—glh —iQlql*g, +iq*gh).

We include this to illustrate the point made in the introduction that (unlike for NLS and
mKdV) this change of variables alone does not allow us to treat ¢ € L2. Concretely, we
note that for ¢ € L? one cannot make sense of the term |g|?¢ appearing in the former
expression as a distribution. This cannot be remedied by the other terms because they are
distributions!

The following proposition gives the currents associated to the density (3.27) and was
proved in [47]:

Proposition 3.5. Let Q C § be §-good for § sufficiently small. Under the (DNLS) flow,
we have 0;p(x) + 0x jpnis (%) = O for all |x| > 1, where

/ . =/
. 2 . q'821 119812 2
= -2 + —F +
Jonis = (|q| ix)p \/;(2 ) ilql

= B Qe+ 0+ilglP)g — 55 £ Qe =0+ ilgl)g + il (3.29)

Likewise, for k > 1, d;p() + 0 jaitt (¢, k) = O under the H — H, flow. Here,
JaittGe, 1) = Z($25) 002 + 8 + ilg)g — 2>/ (L2 — 121200 ]
— TR (F5) 00[@x =0 +ilg)q - 2672 (2550 + 4250)]
. 2 2
+ilgl? — v ) + L5 v(—n). (3.30)

In our application of the microscopic conservation laws to the proof of local smooth-
ing, we require a detailed understanding of the structure of the lower order terms (in
powers of ) of the currents. To this end, we adopt the notation from [18] of using square
brackets to identify specific terms in power series expansions:

20y = sgn(i) 20 (8, [ = 9) " g + )Gl — ) gl + 9)'8y)

so that
g5 M) = Zg””“ (). gi2lk) = Zg”“ : (3.31)
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The terms g21 26+ ang y124 admit correspondingly simple definitions; however, we will

212 )[2€+1]

also use this notation on more complicated analytic functions of ¢ such as (2 ey

20
P24, and j ]Z[)NI]S

Using (3.11), we can derive the following explicit expressions:

>

(1] _ kg [ _ —ivkg 2] _ ~: G
812 = 2¢=9> 821 = k49 VY ZKq_B : %—i—i)’ (3.32)
3] _ 2ik3/2 g 3] _ 2x3/2 p
812 = 211’;—8 [ ’ 2/<q—3 ) 2/:2—8]’ 821 = 22_1_3 [CI . 2Kq_a . 2Kq+3], (3.33)
as well as
1 [=3] _ 2i 1= 2
7B =250E83)] (3.34)
1 [=3] _ — 2
=) = w5ml($)7] (3.35)

To represent our expansions for higher order terms in a concise form, we introduce a
space of paraproducts. We begin by introducing a generating set of operators:

g = {1d} U {5225 : |x| = 1). (3.36)

One may regard the elements of § as letters in an alphabet. We then define the set §*
to be the set of (finite) words built from the alphabet §. Specifically, elements in §* are
finite products of the form

Li...L, wherel; €§. (3.37)

Note that each factor L; may have a different parameter ;.

Example 3.6. For all |x| > 1, the operator

4%2—-02 — 2x—0 2z+3

2
4x 2% = ﬁ*

is a word over the alphabet §.

We say that the paraproduct m belongs to the class S(1) if it admits a representation
as a finite linear combination of paraproducts m; satisfying

mi[f1=T;f whereT; € §*.

We will frequently consider families of paraproducts depending continuously on one
or more parameters. For example, all the paraproducts in Proposition 3.12 depend continu-
ously on the parameter ». When this is the case, we will say such a family is in S(1) only
if the coefficients in this linear combination are uniformly bounded in the parameter(s).

Example 3.7. For all |x| > 1, the operators

2x—0 __ ) 2x
2x%+0 — “2x+0

a and —1Id

2;c+3

are elements of S(1).
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For n > 2, we inductively define S(n) as linear combinations of paraproducts that
admit the representation

J
m[fl» s fn] = Tl:l_[ mj[fa(nj71+l)v s fo(nj)]]’ (338)
j=1

where 0 =ng <--- <ny =nareintegers,m; € S(n; —n;_1),T € §*,ando € G, isa
permutation. The product appearing in (3.38) is a pointwise product of functions (and not
a composition of operators). As in the case n = 1, we require the coefficients in the linear
combination to be uniformly bounded in any parameters.

This definition is clearly symmetric, in the sense that whenever m € S(n) and o € &,
we have

m[fo(l), ey fg(n)] € S(n) (3.39)
Further, by induction on 7, our definition is consistent with interior products, in the sense
thatif2 <k <n,m; € S(k),and m, € S(n + 1 — k) then

mi[fr..... fier.malfe. ... fal] € S(). (3.40)
We illustrate our paraproduct classes with an example motivated by (3.33):

Example 3.8. For all |x| > 1, the paraproduct

mlfi. fa. f3] = 2 a[fl T 32;{+a]

is an element of S(3) that can be expressed in the form (3.38) with o = 1d,

25 omilfil= fi. malfdl = 3250, malfs]l = 5255 /5

While paraproducts are often regarded as multilinear objects, our use of them here
is closer to that of a polynomial in a single variable, namely, ¢g. More accurately, our
paraproducts will solely be populated by the objects appearing in the list presented in
Corollary 3.4. Moreover, in estimating these paraproducts, we will only be employing
the information (3.26) about these objects. With these considerations in mind, we will
frequently employ the expedient of writing paraproducts as m[ f, ..., f]. Similarly, if an
expression involves paraproducts my, ..., my € S(n), we simply denote each paraproduct
by m as in, e.g., (3.47) below.

We demonstrate this notation with two examples from the proof of Proposition 3.12
below:

T =

Example 3.9. If |x| > 1 the paraproduct

2 2. 2
mlfr, fa, fa] = 4x 2x+32x+3f3 inafl'bc)—i{-afz']%

is an element of S(3). We may then write

8ix3 21 _ 2ix / q’

2x—3[4x2_32|4;¢g_a2| 1= 25— Bm[Zx 3 T prve 32]

’ 7

2ix f
25— 8m[2z 30 2%—9° dx2e 32]

(3.41)

where each f represents either ¢ or g, which are both elements of the list (3.25).
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One should observe that using the definition of S(3), the expression (3.41) could be
further simplified to read

ml[ﬁ,f, ﬁ] oreven (2x) 2mslf. f. f]

with m1, m, € S(3). However, we will need the additional structure appearing in (3.41)
when we apply Proposition 3.12.

Example 3.10. If |x| > 1 then, recalling Example 3.7, the paraproduct

mlf1, fa. f3] = 2i(3255.1) fa /o

is again an element of S(3). From (3.32), we then have

[2] _ 2ix q q ”
2” d [ () 4}:2 32] T 2%—0 [2z+3 2x—0 4;;2_32]
x q q q”
2x—3M [ 2x—0° 2%x—03° 43%2—92 ]

7

f f
o Ul e B v e £ (3.42)

where each f represents an element of the list (3.25).

Just as in the case of (3.41), one could further simplify (3.42) to read

mi|yls. 51 f] ot (0 2malf, £, f]

with mq, m, € S(3). The additional structure in (3.42) will be exploited later.
As a first application of our paraproducts we have the following:

Lemma 3.11. For { > 1 and |x| > 1 we have the representations

[2e+1]
f ()= 5= am[f f 2x 2%—0 2xf—8]’ (3.43)
@ £+1
[>24+1] _ f f
fglz () = _2xx,3m[ﬁ~~~,f,_2,‘,37”.,—2%78], (3.44)
¢ 41
1 [2¢+1] _ f f
¢ 441
1 (=28+1] f f
¢ 4+1

where each m is in S(2¢ + 1) and each f represents an element from the list (3.25).

Similar representations hold for g1 and %.

Proof. We prove all four identities simultaneously by strong induction on £.
When £ = 1, the identity (3.43) follows from (3.33). Using (3.11) and (3.32), we may

write
2

\/L’(_) (") 2(2;};+3) [q : 2zq+a : 2xq+a]’
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which gives (3.45) when £ = 1. Using (3.11) we may also write

[>3] _ 4 1 (2x—d 1 (2%4d g
fglz 00) = =554 - 7= f/;ng)'z;ﬁa( }f/; 521
1 [=3] _ 2 1 (2%+d 1 (2x4)
Tg(%) () = =557 [‘1 : 2x+8( i‘/; zg%y) ) 2x+8( f/; 2g+y)]
the identities (3.44) and (3.46) for £ = 1 then follow from Corollary 3.4,

Now assume that (3.43)—(3.46) are true for all 0 < £’ < £ — 1. Using (3.11) we see
that

{—1
1 [26+1] [2n+1] 1 [2(4—1-n)+1]
fglz (’f) . Po— 3[q fglz f(zgi;/) ]’
n=
-2
1 >2e+1 [2n+1] 1 [=2({—1-n)+1]
/=812 160 = 02z 3l fglz ﬁ(%) ]
n=
[>2¢—1] 1
— 55la7 812 Tz(%)]’
{—1
1 [24+1] _ 2 1 [2n+1] 1 [2(—1—n)+1]
)M e = -3 5l ) ) )
n=
-2
1 [>2£+1] . 2 1 [2n+1] 1 [=2((—1—-n)+1]
=) 0) == zeale () 7= 5) ]
n=0
2 1 [>2¢—-1] 1
— meala iz (83) 7= (3%)]
and hence (3.43) through (3.46) follow from the inductive hypothesis, (3.39), and (3.40).

(]
As a second application, we have the following:

Proposition 3.12. Denote u = Then we have the representations

g __
4x2—92"

7

fglz (’f) = 16i*|u|u + 24i° [u*u’ + 2;; 3 m[zxf—a’ 2xf—a’ 4x2—82]

x S S’ f’
+ s ml 55 5 4%2_32]
= 16i*u|?u + 24ix3|u)®u’ + 8ix?|u|*u”

’ "

f f ]
2x—3° 2x—0° 4%2—92

i S S £ i f S’ S’
+ 2%—0 m[2z—3 > 2x%—0° 4;{2—82] + 23¢—0 m[Zx—B > 2%—0° 4x2—32]’ (347)

+ i [u' Pu + 120 (W) + 525 m|

(o) = —9638|ul* — 965° |u|* (u'tt — uit')

f f f! f’ f f f
+ m[Zx—B’ 2%—3° 2%—3° 2x—a] + m[f, 2%—3° 2%—3° 4%2_32]’ (3.48)

4 6. 14 / /
fglz (}‘) —1922¢7 |u| *u — 4802 [u|*u” + 2;;173’"[](’ 2xf—a’ 2xf—a’ 2;{—3’ 2;:—3]

"

1 f f f
+ s S S i 5 ) (3.49)
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7

v = 128005 |ul® + m[ 1. f. 2;:f—a’ 2xf—8’ 2xf—3’ 2;{—6]’ (3.50)
fglz (’f) —2560i"°[u|®u + 2x1—3m[f’ e 2sz—8’ 2zf—3’ 2zf—3’ 2;{—3]' (3.51)

Further, we have the representations

7

1 [3] A4 12 f f f
Ty(%) (0) = b ul"u + 57 m[zz—a’ 2%—0° 2x—8]

4p, 12 312 3.2
= bt |ulPu — 8 uPu’ — 20 + 5 m[ f, 2){_3,4%2_32]

1 f 7 ’
+ sl 5= 23 )
= doe*|u)?i — 8o |u P’ — 2Puu’ + 4x®|uPi”

7 7

+ 60 ' |2t + 527 (') U + 550 m[Z;ff 3 2;{ 7 a7

il f f f” Gl f [’ [’
+ 59 M35 3= w=z ) + m s mm e )
(3.52)

7

1 _ 71,14 f f f
J_;(zg%y) o) = 320" |ul*a + 2x+3m[f o M M M ]

= 32i" Jul*ii — 1281}(6|u|4 " — 48ix®|u|?uu’

"

f
+ 2x+8m[ff 2x 30 2x—0° dx2— 32]

’ ’

S f
+ 2x+3m[f’ 2x%—0° 2x—09° 2x—0° 2x—3]’ (3.53)

10,16 1 f f DA
f(ﬁgj-ly) o) = —320% 05 + mrlf L 5w T Tl 359

Throughout, the paraproduct m lies in S(n) for an appropriate integer n, each f
represents an element from the list (3.25), and identical expressions hold with x replaced
by —x.

Proof. Using (3.32), we derive the identity
v = 8ix®|u|? + 4ix® 't — uit) — 2ixu’|?. (3.55)
To obtain the first expansion for \/LE g£32] (%) in (3.47), we use (3.11) to write

(31 _

}812 = 2x— [”Vm] -

2x— B[MI [2]]

= 2200 [l + 251005 — it yu] — S5 [ Pu) = 5 [y P,

Recalling Examples 3.9 and 3.10, the last two summands are of the form

2%i ’ ’ "

f f f f f
25— Bm[Zx 3> 2%—9° qr2— 32]+ 25— 3m[2x 30 2%—9° qn2— 32] (3.56)

and so acceptable.
For the remaining summands we first use

s = o+ e 5t 3.57)
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to write

_ P03 _ _
122”‘3 ('t — uit"yu] = 8ix®'it — uit )u + g’;‘_g [(w'd — uit')u],

where we note that the second summand is of the form (3.56) and so acceptable. Expand-

ing further, we have

1 _ 1 i) 1 92
P Rl rri v S v pra B (3.58)

which we apply to get

3217{3 [|u|2u] — 16i}t4|u|2u + 16i%3|u|2u’ 4 8ixulu + 81;: 32[| |2u]

where the final summand is again of the form (3.56). This completes the proof of the first
expansion recorded in (3.47).

We now turn to the second expression for JL; g£32] (%) in (3.47). We again use (3.11) to
write

3
ol = 205 (uPu) + 1825 (' — it Y] — S5 [ P+ [P

- m[()’ (21— 8is3|u?)u.

’

By (3.55), the final summand is seen to be of the form 2”173m[2kf73, 2;{73’ 4}{{232], and
so acceptable. We then use (3.57) to write

. 2,2
— S0 P+ ) = 4 P+ ") — 322 P+ P
and note that the final summand is of the form
a f f 14 8 f ’ 4
2x—am[2x—8’ 2%—9° 4x2_32] + 2x—8m[2x—3’ 2%—3° 4%2_32]’ (3.59)

and so acceptable. Applying (3.58), we similarly have

lzft’f; [t — wit'yu] = 8is®[(u'it — uit ] + 4ix[(u'ii — it )u]

+ 4”‘ i o[t — i),

where the final summand is again of the form (3.59). Expanding even further, we have

1 1 3 92 13
gz Bl vl v S o S o e B

which we apply to the remaining term to get

201y 2uls = 1603* ul?u + 8ix[|uPul’ + 4ix?[Jul?u]” + 4220 [|u ?u)].

The final term is once again of the form (3.59) and so acceptable. Combining these expres-
sions, one obtains the second expansion recorded in (3.47).
Turning next to 1, we use (3.10) to write

yH = 1P — 210l — 241l
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For the first summand, we use (3.55) to express

’ ’

_%[y[z]]z = 320®u)* + 32 |u|? ('it — uit') + m[z;‘ffa, 2}{:3, 2,{73, 5]

For the second summand, we use (3.47) and (3.32) to write

[1] 50,12 q 4,121 @
—2g12 821 = =32 ulPu 7l — 48 ul*u’ 5
f//

+ m[zxf—a’ 2xf—3’ 2;{—/37 z;{—,a] +m[f, zxf—av 2ch—8’ )

Writing i
in the first two terms on the right-hand side, we obtain

2B gl — 6435 ul* + 3255 [ulPuit’ — 963 |u P
f//

+ m[zxf—a’ 2xf—3’ 2;{—8’ 2;{—8] + m[f, 2xf—8’ 2zf—8’ 4x2—32]'

Thus, using (3.6) we also have

—2g£12] g?l] = —64xS ul* — 32¢° |u|*itu’ + 963> |u|*it'u

7

+ m[zxf—a’ Zth—B’ 2;{—87 2;{—3] + m[f, 2xf—8’ 2xf—8’ 4}52—32]'

Combining these expressions gives us (3.48).
Next, consider (3.49). Using (3.11) and then applying (3.48), we find

1[5

ﬁglz = 2x1—3 [y[4] q]
[—96x8|u|*q — 962 lu|*(u'ti — uit')q]

2%8

1 S S
+2x 8m[f2}t3 2x%—0° 2x—0° 2x— 3]

f//

S
+2x Bm[ffz;t 0’ 2x—0° 42— 82]

’ 7

For the first term, we employ (3.58) to write

962 4 71,14 6 4 96x°92 4 96x° 4
—asllul*q] = =192 |u|*u — 96¢° (Ju|*u)" — 225 [lul*u] + 5255 [Ju|* u”],

where the third and fourth terms are seen to be acceptable. Similarly, for the remaining
term we apply (3.57) to get

32”3[|u|2(u’ﬁ —uit') q] = —1922%|u|? (it — uit yu — %ﬁzaﬂmz(u’ﬁ —uit)u]

+ 3)6{"3[|u| w'a —uuyu",

where the second and third summands are similarly acceptable. This completes the proof
of (3.49).
For y!®), we again use the quadratic identity (3.10) to write

1) = Pl 23 — 2613651 — 2615851 -

14 —vVy
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For the first term, we use (3.48) and (3.32) followed by (3.55) to obtain

2] 4] _ 61,14 ,[2 S f f S’
_V[ ]V[ ] = 96x |u| )/[ ] + m[f’f’ 2x—0° 2x—0° 2x—0° 2;:—3]

7

_ ,91,,16 f f S S
= 768ix |u| + m[f’ f’ 2%—0° 2x—0° 2x—0a° 27573]'

Next, applying (3.49) and (3.32) followed by (3.60), we have

5 . a ’
—2g§2]g£1] = —384ix®ul*u 2xq+3 + m[f, . 2xf—a’ 2xf—8’ 2xf—3’ 2;—3]

_ . 91,16 f f f f
= —768ix° [ul® +m[ f. f. 55 55> 5e=5 323 )-

Another application of (3.6) then gives us

1 . ’
_2g£2]g£1] = —768ix°[u|® + m[f, 1. 2xf73’ 2;{:3’ 2xJ:B’ z;{fa]‘

For the remaining term, we use the first expansion in (3.47), (3.6), and (3.33) to
express

[31_[3] _ 9/2 12, [3] 9/21.,12- 3] !
—2812821 = —16ix° lul"ugsy — 16x / lul"ugy, +m[ﬁﬁ2xf—a’2xf—a’2xf—a’ 2;{—3]

/

_ 91,16 f f S
= —5120%" Ju|” + m[f’ 1. 2x—8’ 2%—0° 2%—0° 2x—8]'

Combining all of these expressions gives us (3.50).
Using (3.11) and (3.50), we may write

2810 = 551 al

_ 1 :91,,16 1 f f f f!

= s [-12800° i) + ggm| £, . £y e s 2]
-, 10 6 1 !

= —2560i5 " |u|"u + 2x—am[f’ 1t 2zf—3’ 2xf—a’ 2xf—a’ 2;{—3]’

which settles (3.51).
Using (3.11), (3.32), and (3.60) we may write

[3] g 2
#0657 = mammliEn)]
3 5 oN\2 G2
= 2%:13 [”(z;qura) ]_ 2(2;}:+a) [”U(zxq+a) ]
- io\2
= 2x+3[|u|2 - 2x+3[|”|2”/] + 2x+a[”(“) 1- 2(2;}:+a) [”N(%ﬁta) l

from which the first expansion in (3.52) follows easily using

11 9

2x%+3 2%~ 2xQ2x+0)°

To obtain the second expression in (3.52), we expand even further:

Witz

[3] _
) = 2x+8[| ul ] — 2x+3[|u|2 T+ 2x+a[”(”/)2] - 2}t+8[ "]

’ "

f
+ 2x+3m[2x—3’ 2x—0° 4”2_32]
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and use
1 1 + 92
2x+0 2x 4x2 4x%2(2%x+0)

for the first summand and
1 _ 1 3
2x+0 — 2x  2x(2x+9)
for the second summand. The last expression in (3.52) is derived by expanding #Jra one
further degree for each summand.

For (3.53) we again use (3.11), (3.32), and (3.60) to obtain

[5] ] g (3]
) = Falesds k(85"
g (3] i g (3]
= 25 8] - 2l s (85

_ ;?,if; [|u|2 1 (£ [3]] 8ix3[ —/ 1 (&)[31]

2ix n_q
- 2x+8[ 2x+8 f(2+y
We then expand 5 3 and use (3.52) and to obtain (3.53).

Similarly, for (3 54) we use (3.52) and (3.53) to write

7] (5] 3192
«/%?(25%1/) = zfclj:a [q2x+3 }(fi;) 1- 325 [q[ﬁ(%) Il
= — S (g5 lul*a) — 225 0g ul*i?]

’

1 f f f f
+ 2%+8m[f’ WAy B e By B 2;:—6]’

to which we apply (3.60). |

4. Local smoothing for the DNLS

In this section we prove local smoothing for Schwartz solutions of (DNLS):

Proposition 4.1 (Local smoothing for the DNLS). Let Q C § be an L?-bounded and
equicontinuous set such that

Qx = {e""VHg 1t < landq € 0}
is a §-good set for a sufficiently small 8. Then the local smoothing estimate

lglixi2 < lg0)lL2 4.1

holds uniformly for q(0) € Q.
Further, equicontinuity holds in the local smoothing topology, in the sense that

lim sup ||q||X1/2—0 4.2)

k—00 q(0)eQ



B. Harrop-Griffiths, R. Killip, M. Ntekoume, M. Vigan 886

We remind the reader that Corollary 1.9 guarantees that for any L2-bounded and
equicontinuous set Q, there is a uniform rescaling such that the corresponding Q. is
8-good. For the remainder of this section, we fix Q. C § satisfying the hypotheses of
Proposition 4.1.

Our proof of Proposition 4.1 rests on the microscopic conservation law presented in
Proposition 3.5. Taking

bu(x) = /0 V) dy. 43)

and integrating by parts, we obtain

t=1

1
im [ [ doasteiaoitaxdr = tm [ oo d (4.4)

t=—1

To bound the right-hand side of this expression, we use the following:

Lemma 4.2 (Estimate for p). The following estimates hold uniformly for g € Q«, kK, x> 1,
and pu € R:

[ mpsiar x| < 5, 1+ lal @3

/ o ‘Im [ pesiarg, ax

Proof. A computation yields

JEI )
e dpde < glgg 11+ g7l (46)

i [ o2 q)pdr = % [ G0 gt dv— 3 [ g .
so using (2.13) we get

-1 -1 2
= 0 bl gyl e < %7 alyg

‘Im/pm(x;q)% dx

Turning to the higher order terms, we use (3.34) and (3.35) to write

. s _ — 2
PG q) = g 525 [a(£5)°] + - 525 [a(£2)7).

Thus, by (3.14) and the fact that || 51 lop < 27!, we obtain

'Im / P s )by x| < o bl oz Nl [ 22 oo + [ 2257 cc]
<o lalZalalg

which completes the proof of (4.5).
The estimate (4.6) follows from (4.5) and Lemma 2.2. [

Turning to the left-hand side of (4.4), the main challenge is to control the remainder

terms j]%ils. To do so, we need to distribute the exponential weight v;* across the argu-
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ments of paraproducts in S(n). To accomplish this, we introduce a modified space of
paraproducts, Sio(72), which involve a spatial parameter 1 € R. While this construction
will aid our proof of Proposition 4.1, its true value will only become clear when we turn
to the significantly more involved problem of obtaining local smoothing estimates for the
difference flow in Section 6.

We define an extended set of generators

Goc =89 U {SiIWﬁSqul//;(, wﬁSilw;eSﬂ . |€] < 24 is an integer and S € §*},
4.7)

which are -dependent operators. Recall that the set § was defined in (3.36) and generates
the set §* of finite words over the alphabet ¢, as in (3.37). We similarly take §,*_ to be
the set of words over the alphabet .

Example 4.3. If |x| > 1 and |¢| < 24 is an integer then

{ 2x - _ { 2x —£2x+0\ _2x *
Wuzwa‘/’u _( W2x+d 70 2x )2z+3 Egloc'

Paralleling the construction of S(n), we say that a paraproduct m is in Sy (1) if it
admits a representation as a finite linear combination of elements of &..

For n > 2, we inductively define Sjo.(n) as finite linear combinations of paraproducts
that admit the representation

J
mifieo ful = T TTmiUo s Soupl]. 43)
=1

J— — 1 *
where 0 = ng < --- <njy = n areintegers, m; € Sioc(n; —n;_1), T € G ,ando € &,.

On both sides of (4.8), all paraproducts are evaluated at a common value of p. This will
be the standing convention whenever we combine paraproducts in Sy (7).

As in the case of S(n), we require all coefficients in these linear combinations to be
uniformly bounded in any parameters.

Example 4.4. Recall from Example 3.8 that for |x| > 1, the paraproduct
3
mifi fo fol = 5551 hiatZs i)
isin S(3). We may write
Smlfi. fo 3l = mlS [ v v fl
w
where 71 € S)o.(3) has representation
~ 3 [— Vit YiSf
Al fo. Bl = Vit sV o By Sew )

24 _2x —24
o 2%—0 w# ’

mi[fil = fi, malfo] = Wﬁzi)ﬁa(l/f,fgfz), m3[ f3] = Wﬁzfig(%:gﬁ)

Example 4.4 demonstrates one of the key motivations for the introduction of this
class of paraproducts; this is codified in property (i) of Lemma 4.6. It is mandated by

which can be expressed as in (4.8) witho =1d, T = ¢
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the necessity of employing local smoothing estimates on each and every argument of our
paraproducts.
We first record a result which will be used in the proof of Lemma 4.6.

Lemma4.5. If T € §, then the conjugated operators

2+3T 2

2—49 2 2 240 2 2—0a
3390 2 Lo T35 and 4T (4.9)

243 2
belong to Sioc(1).

Proof. By definition, any 7' € §,;_ may be written as a finite product of the generators .
As conjugating a product is equivalent to conjugating each factor, it suffices to verify the
claim in the case T € G-

The elements of . come in five kinds. The easiest case to deal withis T' € § because
then 7 commutes with 2 + d and all four operators in (4.9) are equal to T. In what
follows, we will treat the first two operators in (4.9) for each of the four remaining kinds
of generators in §,.. The remaining two operators in (4.9) may be treated in a parallel
manner.

To unify our treatment of the first two operators in (4.9), we will show that

2k+0 2K
2k T2K+8

for any |k| > 1 whenever T = Sill/fﬁS:Hlﬁ;e orT = wbeilw;eS:Fl with S € §*\{Id}
and |[{| < 24.
—_ 14 —L :
7T =S8"y,Sy,", we write

1
Zl;craTzfia = [(S 231(%3) WM(S 23ia) ][Vfﬁ 2’;58 wuézxzia] Toc-

Similarly, if 7 = y{ S~y ;¢S we may write

is a linear combination of words in 5, (4.10)

2u+d g 2% _ [264D L 2 - -1,
S Toets = [555 Vusess ¥ ][1/fu(5 2K+3) o (S325)] € G-
Next we consider the caseT =S WﬁS -1 w,;é. By the definition of §*, we may write
S = 57 + 3 S or S = S . We present the details in the
case § = 5~ +3

Using the 1dent1ty
2k+0 _2x 2x x _ 0

2K 2x+0 — 2x+0 + i 2%+0

and the symmetric identity with x <> k, we may express

1249 2k
21c+8 + % K 2x+3Swl/«S 2% 2Kk+0

_ L o—1_ 2 -1 9

- SI//MS 2k+3 + % K 2,¢+3SWM [2K+3 + sz+8]

_ I4 1 2« 2k+9  2x —1 2k

- SI//MS 2k+9 + [ 2K 2x+0 2x+a]S‘/’uS 2k+0
2x+aSV’uS 2x+3

_ 1 2k 2k+0 _2x o—1_2k
_SWMS 2:c+3+ 2k 2z+BSwMS 2x+8

S ST 325 + 522 SveS

2k+9 - L
Sy fs T 2 = SyLsT!

2x+8 (4.11)
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We then apply (4.11) to get

2k+0 2k __ [2«+0 lo—1_ 2k 2k+0d.,—¢ 2k

2K T2K+3 - [ 2K SwMS 2K+B][ 2K 1% 2K+3]
_ 2k 2% [2k4+07 2k | _ 2% 7 _2k
- T2:<+a + 2x+a[ 2k T2/<+8] 2x+8T2:<+a

. _Ar.L _0d —L € 2k+9 ., — 2
+ 2x+8T[w,u2x+8wM ][wu I;K wu ZKiB]’ (4'12)

where T = §1ﬂﬁ§_1w;( € G

loc*

By using Examples 3.7 and 4.3, we see that

d Id — 2% and wﬁ 2;:_3 w;e =1Id— [w( 2x —L 2M+3] 2x (413)

2%+ 2%+ W2x+3 Y " 2x 12x+3
: . . . * f 2640 _ 2K
are linear combinations of words in &7 . Consequently, (4.12) shows that if <=7 7=

is a linear combination of words in §;_ then so is 2’;728 T Kzi 5. In this case, (4.10) follows

by induction on the minimal number of letters required to spell S as in the sense (3.37).
The base case corresponds to taking T =1d.

Finally, we consider the case 7" = llfﬁS w;eS ~1. Arguing as in the previous case and
using (4.11) (with £ replaced by —£), we get

2k+4d 2k __ [2k+d.,.¢ 2k 2k+0 -l o—1_ 2k
2K T2K+8 _[ 2k M2K+3][ 2K SWM S 2K+3]

_[2k+d.,,.¢ 2k —L 2K 2k+0 .0 2% —{ 2k 72«40 2k
_[ 2k wMZK-i-awu ]T2K+3 +[ 2k W 23%+0d 7 10 2K+8] 2K 2k+0

2k+9d .0 2k —L { 2% —02x+d7 2x T 2k
_[ 2K wM2K+B I ][wM2%+3 no2x ]2x+6T2K+8
2k+0d .4 2k —{ ] —17_ 0
+[ 2k M2K+3w,u ][wu2x+awu ]T2/c+8’

where T = Iﬁﬁgl//ljégfl € G

loc*

Using (4.13) and observing that

2k+0 .0 2x —{ 2k __ 2x [2K+32;¢+3 { 2% 2k —Z][ £ 2k+9 ., — 2k ]
2k P U2x4+d P 2k+d T 2x+dL 2¢ 2% T U2x+d 2k+0 T K n 2 TH 2k+0

2+ T 2K is 4 linear com-

is a word over the alphabet §,., we again see that whenever e | 3047
bination of words in §%_, so is 2’;7;3 T ,fj_ 5. The proof of (4.10) in this case is completed

by inducting on the minimal number of letters required to spell S ]

Lemma 4.6 (Properties of Sj,c(n)).

(i) (Distribution of exponential weights) If m € S(n) then for any nonnegative
Lo,.... Ly withfy +---+ £, =24 we have

mlfi..... W2 = wlomvi fi.. vl fl,
mlfr..... fo¥2 = yomalwlt fio.. v 5 £l

where m; € Sioc(n).

(i) (Symmetry) If m € Sic(n) and o € &,, then

m{foys-- -+ fom)] € Stoc(n).

(iii) (Interior products) If 2 <k <n, my € Sic(k), and my € Sioc(n + 1 — k) then
ml[fl»-- . 7fk—19m2[fk"-- »fn]] S S]OC(”)'



B. Harrop-Griffiths, R. Killip, M. Ntekoume, M. Vigan 890

(iv) (Leibniz rule) If n > 2 and m € S\c(n) then
m[fl/""»fn—lv fn] = aml[flv""fn] +m2[f1’(2_8)f2’ f3~~~7fn]

+ o malfro. fa1, (2= 0) ful. (4.14)
where my,...,my, € Sjc(n).
(v) (Holder’s inequality) If m € Sioc(n) and 1 < p, p; < oo with 1/p =1/p; +
-+« + 1/ py then
n
Imlfr.. s fallee S [T 1A L2 (4.15)
j=1

uniformly in (.

Proof. Part (ii) is an immediate consequence of the definition. Part (iii) follows from an
easy induction in k.

We turn now to the proof of part (i), which we prove by induction on n. We will
prove the very slightly stronger statement that for all m € S(n), and nonnegative integers
Lo, ..., Ly with £y + -+ + £, = £ <24 we may find /11 € Sjoc(n) such that

mlfio .l = URORWE fi . (4.16)

For the base case of (4.16) we write m € S(1) as a linear combination
n
mifl=3 T f.
i=1
where ¢; € C and T; € §*. In this case, (4.16) follows from writing

n
m{f1e =¥y iy Ty O f1=yomly) f]
i=1
and noting that ¥ Ty, = (Wi Ty, " T T; € 8.
For the inductive step, we fix N > 2 and assume that (4.16) is true for all 1 <n <
N — 1. We recall that elements of S(N) are linear combinations of paraproducts with the
representation

J
mlfi,.... fn] = T[l_[ milfom;_1+1)s-- - fa(n,)]],
=1

where 0 =ng <---<ny=N,mj € S(n; —nj_1), T € §*,and 0 € ©y. Without loss
of generality, we assume o = Id. Applying the inductive hypothesis we write

J
mifi o Nl = v oo w0 TTmilU oo o]
J=1
an_lJrl

J
zwﬁof[nrﬁj[%/« Jnj_i+1eees ﬁnjf"f]]’

j=1
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where T = wﬁ_("Tl//ﬁo_( € gy and m; € Sic(nj —nj_1). From (4.8), it is then clear
that m € Sjoc(N). The proof of the inductive step is completed by considering linear
combinations of paraproducts of this form.

We now turn to part (iv), which is also proved by induction on n. All the requisite

ideas can be understood most transparently from the treatment of the base case n = 2.

Given aword T € &5, we express
2 _ 2 724+32+) 2 p2-9
73l 0=35T5 25— 73l 7 (“.17)
2 _ 2437 2 248 _ 2-97_2
T35 =5Tmss— 3 T (4.18)
By Example 3.7 (with x = —1) the operator g—fg is a linear combination of words in §*.

Combining this with Lemma 4.5, we see that both LHS(4.17) and LHS(4.18) are linear
combinations of words in g, ..
For the base step n = 2, it suffices to consider m € Sjo.(2) that can be expressed as

m[f1. f2] = T[hi[fi] - h2l f2]].

where T € g and 1, hy € Sioc(1). We define the paraproducts k1, k> via

kilf]= s55mlf], kalf] = 0ha[555].

By (4.17) and (4.18) we see that k1, k € Sjoc(1). We also define

LSl = ha[5%5 1]

and have £ € Sjoc(1) by definition.
We then compute

mlfi, f2) = T[2=d)ki[/i] - ha[ f2]]
= TQ2-9)[ki[f1]-h2[f2]] + T[k1[f1]- 0ha[ f2]]
= 2—0)S[ki[f1]- 2 f2]] + T [k1[ /1] - k2[(2 =) f2]]
=—0S[k1[A1]- ha[ o]+ S[k1[ /1] - €[22 = 3) o] |+ T [k1 [ /1] - k2[(2 = 9) f2] ]
=0m1[f1, /2] =mz|[f1,(2—0) 2]

where S = 52T 22 € §* by (4.10) and my,ms € Sioc(2) by definition.
To prove part (v), we first apply Lemma 2.9 to see that every element of &}, is

bounded on L? whenever 1 < p < oco. The claim follows from a final inductiononn. =

To state our paraproduct estimates for (DNLS), it will once again be convenient to

employ the convention that if m € Si,c(n) and fi, ..., f, satisfy the estimates (3.26),
then we denote the expression m[ f1, ..., fu] by m[f, ..., f]. Moreover, if an expression
involves several paraproducts my, ..., myg € Si.(n), then we denote each paraproduct
by m.

With this convention in hand, we turn to our paraproduct estimates for (DNLS):
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Lemma 4.7. Let m € Sioc(4) and [ satisfy (3.26). Then the following estimates hold
uniformly for h € R and |x| > 1:

e 200|h 14 d/'l“

[|[ v rovir 885 22w ax
+ / ' / mYS SV s W) dx
S bl allF gy lalgg, - 419

Further, if m € Sioc(6) then uniformly for h € R and |x| > 1,
[|[ s rovirvi ot 3545

S 7 a2 gy lal3g gl - @20

_ 1y
e 200 =1 d,u

. W) A
e 200|h ul d[,L

]dx

Proof. To prove these estimates, we decompose each f* into Littlewood—Paley pieces and
estimate the two highest frequencies in L2 with a view to employ (2.30). To estimate the
remaining lower frequency pieces, we rely on the following lemma.

Lemma 4.8. For any f satisfying (3.26), we have

IS Nl S N0+ N)7igllgg . (4.21)
W5 SN llze < el N7 (%] + N)*llgllgg, - (4.22)
uniformly for 0 < £ < 12 and N € 2%. In particular,
1/2—0
Y mwm Wi mliee S g lalsg. (4.23)
M<N
Y 1/2
Y wrwmlWaNullee < ey lales, - (4.24)
M<N

Proof. The bounds (4.21) and (4.22) follow easily from Bernstein’s inequality, (2.13),
and (3.26). To obtain the last two bounds, one considers separately the contribution from
M < |x|and M > |x|. L]

We start by considering (4.20). By decomposing into Littlewood—Paley pieces and
employing Lemma 4.8, we find

w;if d
[Wp,f 1/fp,f 1/f,u,f I//,u, > 23— 8] X
3 ) GG H | 2w, (W )l H 12w, (W )l
Ni=-=Ng j=3
2|~ N340 (14 Np)2° 4 4 2 2
S Z (|x|2+N2)17202 ||PN1 (wy,f)”LGpNz (V’Mf)”LZHQHEg ”q”EgGJ{
Ni=N>
S L v (] ||6]||ZEgM-

In view of (2.30) and (3.26), this contribution is acceptable.
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Next we consider the first term on LHS(4.19). Decomposing into Littlewood—Paley
pieces once again, we have

[wﬂf wﬂf 23— 8 2x B(WMf)]
= Y [P S P (S ), PYED 2= py (6 1)),

M ,M>,M3,My

To continue, we split the sum into two pieces: the first where M4 < max M; and the
second where My = max M;.

For the first summand, we apply (4.15) to estimate the terms with the two highest
frequencies in L? and the remaining terms in L. We then apply Bernstein’s inequality
followed by (4.24) to the N4-term and (4.22) to the N3-term to estimate

2.

My ,M>,M3,M4
My<max M

m[Pat, (O 1), Pagy (9 ), WD 20 p (46 £)] i

2 4
Yo mmetws [T, e Ol [T 12w, S )l

N1=N2>N3>Ny Jj=1 Jj=3

(1+N)NJ~° 6 6 2
5 Z |}l|1/2+a(|K|+Nz)(|;‘+N3)l/2_20 ”PN] (Wu,f)”Lz”PNz(w;Lf)”Lz ”q”Ego}t
Ni=N2=N3 ) ’

1 N 2—0
< D mmmeiamy e | Pn DNz | P (W Dzl g,
Ni>N>

14N5)1—0 14N>\ 1/2 6 6 2
> sy () PN WS Ol | Pry W N el
Ni>N> '

-1 6 2 2
S WSS 1l

A

A

Note that the frequency parameters N; represent a permutation of the parameters M;
so as to account for the largest contribution. Integrating with respect to the measure
e~ 200 =1 dp and applying (2.30) and (3.26), we obtain an acceptable contribution.

For the second summand, we first use (4.14) to redistribute the derivative:

>

My>My, M3, M3

= )

My>My,M>,M3

LD

My=My,M>,M3

>

My>=My,M>,M3

/ [Paty (WS 1), Paay (90 f), WD 220 py (6 £)] g

[ L= Pa ). P ). P P

/ m[Paty (WS 1), (2 — ) Pagy (w8 f), oW Py (S

/ [Paty (W), Paty (0 1), 222 Pagy (0 ). D0 |
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where each m; is in S, (4). We then proceed as in the first case to estimate each term by

2 4
Yo mews [T, e Hlle [T 1P, ) e

N1>=N>>N3>N4 Jj=1 Jj=3

1+N3)2 % 6 6 2
s Z \x|0+'/2(|x(|+N1§2|x|+N2)1/2*2‘7 ”PN] (‘W;,Lf‘)”L2 ”PNz(wuf)”Lz ”q”Ega}{
Ni=N> '

-1 6 2 2
S WSl

which is seen to be acceptable after an application of (2.30) and (3.26).
Applying a parallel argument, the second term on LHS(4.19) can be bounded by

(1+N>)
Y e H 1Px, (U5 )2 1"[ 1Px, (WS )lles.
N1=N2>N3>Ny Jj=3
which is acceptable, as demonstrated above. This completes the proof of (4.19). ]

Combining Proposition 3.12 and Lemma 4.7, we have the following:

Lemma 4.9. The following estimate holds uniformly for g € Q«, h € R, and » > 1:

/ ’Im ,]g;g OOyt dx

e _
em 20t dp < | T gl G p gy lalGg, - (425)
In particular, in view of Lemma 2.2,

/ /‘Im/ /JD;i]s(%)Wmdxdz

e~ 200 lh— “Idud}f < ||‘I||X1/2||q”L°°E" :

(4.26)
Proof. Using (3.29) and (3.6), we may write
tm 158, 00) = Im{zw(&)[zﬂw v Fx(&)w(—w]
[ L) 00+ A 5355 0ld
+i[ =($5) 00 + A () =0]lalPq}. 4.27)
Using (3.46), we may integrate by parts to obtain
[ S E P rdvitas = [mlverss 55 2w nas
where m € Sjoc(4). We then apply (4.19) to obtain
/ '/ L ($5) 500 gy 2 dxlem w1 dp < e T gl g lalEg - (428)
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Similarly, from (3.46) we have

[ S e aPavzt dx = [mlvt futroi v f 5 S5 ax
where m € S}, (6). Recalling (3.32) and (3.60) we obtain
[T 0 + (8 0l laPavt dx
= / #'lq2qy2* dx = / m[WS LS £0S f 22 (W )] dx

where m € Sjc(4) and we recall that u = . Applying (4.19) and (4.20) then gives

4 _
42 —92

R )
e 200|h Ll dl’L

/ [ )00 + A Enllatavi dx
S Pl allF gy lalEg, - 429
Another application of (3.46) gives us
5 4 4

[ VR cqut ax = [ mlut fut vt 5 S ax

where m € S} (6). Further, from (3.52) we have
3 _

[ 1) o0~ aralayitax = [ mlvtrvis 3. 2 @) s

where m € Sjoc(4). Once again we use (4.19) and (4.20) to bound

/’/ (32%) [>3](}f) — 4 |ulPulqy )t dx

e~ bolhnl gy,

— 2 2
S e g2 g

In particular,

I )
S| 1/R(3) =700 + VR (82) = ) gt d om0
S e THalF2pllalzg, - 430)

The estimate (4.25) then follows from combining (4.28) through (4.30). [

Proof of Proposition 4.1. Combining the identity (4.4) with Lemmas 4.2 and 4.9 we find

/ / ‘Im/ / JRs G2 dx di|em 20 M=l gy d

S 20 pg 11+ N2 + lal202] @3D)



B. Harrop-Griffiths, R. Killip, M. Ntekoume, M. Vigan 896

It remains to consider the quadratic terms in jpnrs. A computation yields
Im ji s = 2Re{ L7} —Re{ L3} . (4.32)
We may then integrate by parts to obtain
i [ 850wz dx = 2000120 1+ 2Re [1032. 5mla 124 ax.
To estimate the error, we use

(V.2 5| = — g (0D + 200, 8] 5 — e (0

together with (2.13) to bound

[ s Yatw 2y dx

—1y,112
SEa

Thus,

lv2aly, % | [ iReouitdx

+ 57 gl
Integrating in x over [k, 00), using (2.4) and then (4.31) we get

D S A
p / 13202 e 0" 5 Nl pg 11+ a1 ez + 2]

Estimating
H ¥\ ”2 < ” Po1(¥)2q) H2 + “ Po1(¥)2q) ”2
Vaz—2 \L7H32 ~ N 292 IL7H3/? Va2—32 IL7H3/?
< =212 1212
=k ||q||L<;>OL% + K”lﬁu q”L?Ell/ZK’
we then get

gl < NalZge £g a5 12 + 1a Lo pg, 11+ NGl 0o 2]+ 72 Na N 00z (4:33)

To prove (4.1) we first take k = 1 and use (1.19) to absorb the first term on the right-
hand side of (4.33) into the left-hand side, and then invoke the conservation of the L2
norm. The estimate (4.2) follows from using (4.1) in (4.33) and then applying (2.3). =

5. Tightness

The goal of this section is to show that the family of orbits emanating from an L2-precom-
pact set of Schwartz initial data remains tight, at least for times ¢ € [—1, 1]. We begin by
constructing a suitable function ¢g for localizing to the spatial region |x| > R for given
R > 100. For such R, we first define

rr(x) = 4 /R R OIS
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Note that y g is odd and vanishes at x = 0. We then define

p
#x0) = | xx()ay.
0
which is even and everywhere positive. Indeed
¢r(x) 2 1 uniformly for |x| > 2R > 200.

In view of this property of ¢, a bounded subset Q C L? is tight in L? if
/gbR()c)|q(x)|2 dx - 0 as R — oo, uniformly for g € Q.

Proposition 5.1 (Tightness for (DNLS)). Suppose Q C S is an L?-bounded and equicon-
tinuous set for which

Qx ={e"”"VHg 1| < landq € 0}
is 8-good for some sufficiently small 8. If Q is also tight, then so too is Q.

Proof. From the microscopic conservation law (1.1) we obtain

d .
G ferarax =4 [ e [Rim@ + 30t avdn G
R=<|pl=<2R

Our goal is to deduce the tightness of Q. from that of O by estimating the right-hand side
above in L!([—1, 1]; dt) and showing that it converges to zero as R — 0.
For the first term on RHS(5.1) we have

1
/ /q/éwi“ dx
-1

where the second inequality follows from decomposing into frequencies < «x and > k. For
the second term on RHS(5.1), we apply the Gagliardo—Nirenberg inequality to bound

12 2 122 vi2qg 2
dt S ”'WM q”L%Hl/Z s K”‘//M q”L%x + H\/ﬁ“l‘%[{3/2v

6 4 6 2 6 2
” w,u,q ”L?J 5 ” 1//qu ”L%Huz ” wuq ”L?OL)ZC

6,12 voa |2 6,112
< [K”wuq”Lgx + ”\/#;_;,z||ld,2113/2]”wu‘1”14301‘§'
In this way we deduce that

1//12 2
IRHSG.Dlly < (10120125 20 + | 72 |2 2o ]+ e 2]

By Fubini, (2.1), and (2.32) we then have
IRHSG. DIy 5 [§1412 12 + 19121/2]10 + lalge 2]

which can be made arbitrarily small by first choosing « large and applying (4.2), and then
choosing R large. ]
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6. Local smoothing for the difference flow

In this section we prove local smoothing for Schwartz solutions of the difference flow.

Proposition 6.1 (Local smoothing for the difference flow). Let Q C 8 be an L?-bounded
and equicontinuous set such that

O« =1{q(t:k) = etJV(H_H")q teR, g€ Q,andk > 2}
is a §-good set for a sufficiently small § > 0. Then the local smoothing estimate

lalixr2 < lgO)llz2 (6.1)
holds uniformly for k > 2 and q(0) € Q.

Our proof will mirror that of Proposition 4.1. Once again, we take 0 < o < 1/2 and
O+ as in the hypothesis of Proposition 6.1. Taking ¢,, to be defined as in (4.3) and using
Propostion 3.5, we integrate by parts to obtain

t=1

(6.2)

Im/ /]dncf(q,}f K)w24 dxdt = Im/p(q;}f)qﬁu dx

t=-1

Once again, our main challenge will be to estimate the remainder terms j d[f-f‘t]. To this

end, we start with the following collection of paraproduct estimates, where we use the
1
shorthand duy, = e~ 200/l gy

Lemma 6.2. The following paraproduct estimates hold uniformly for ¢ € Qx, h € R,
||, |k| > 1, and functions f that are admissible in the sense of (3.26):

(1) (Quartic paraproducts) If m € Siy.(4) then

/'/ wll«f 2x— 3 2x B(W/Lf) 4:28232 (W,Lf)] dx dﬂh

6

il 220 (g6 £y, 20 (Y6 f), 20y f)] dx

dun

dun

+

o
o
/

J
/ m[YE f VS WS S). 25l (S )] dx
[l 4 2 20 ) ax

2
ST SN, o g, o 63)

dn

[|[ it vt 225, 22w x| du

+ [|[ v v s 5B ) da|

S gl lalzg.  ©4)
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/ ' [ mlver s . 4;‘2 20 (€ )] dx| i
+f / [y £y f B Gy Y] x| du
+ [\ [ mlver 22wen. 25080, 25 e dx| du
+ [ [ mlv rve s 255 080, S ] dx|
4[| [mlv v s oS ) x| dia
+ / it / m[ L VT2 (g f), 50 (w6 )] dx]| dp
S bl Ml a3y, - 65
(ii) (Sextic paraproducts) Ifm € Sic(6) then
/'f [V vt fovh £ Sl Yl et (i )] x|
+f ' [ vt rovt s 4 A 2wt ). 2w )] dx|
S b R g1 a3l . (66)
/ ' [ ittt 228yt )] dx| dp
S el g1 2 M5 (67
J|[ v st rovitr 525 25 ) |
b [| [l i 25, 55 2 ot ). 22wt )] dx|
4 [l [ mlutfov vt 10 f 5 it ] x|
b [ [ mivt st fut s 38 s AN dx| du
+ [ [l 3 e e T ) x| du
SN g Mg a3, . 68)
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‘ f my £y ;” VAL 2ob gt p) 20 (vf,Lf>] dx| dun

/‘ / ’z;f 3(‘/fuf),2,( ’2x ’21c a(‘//uf) dX)duh

S AV 3 P S ()

()
(iii) (Octic paraproducts) If m € Sioc(8) then

x [ ML SRS Y A S 2 ) x|

S NI, 0, Nl g o (6.10)

/) f m[y, S fvi S ;pf}; ;//;fg ;/:cu]; ;lllfa = 1Ca) dx‘d'“h

V2 f vif vif vl
/|" / wuf wuf 25— a 2n a(wuf) =0 =3 2K=D" 2K ]dx|d“h

+ djtn

@ [l o 13 g S S S Y S ]

Sl g2, lal g lglge - (6.11)
F¢'~(h) o 20.x

(iv) (Decic paraproducts) If m € Sioc(10) then

viS

/%me[wﬁf wuf 2){ 3a---,2}f_3]1ﬁ3 dx d/,Lh

4 6

S PSRRI g g, (6.12)
2 2 2. YEf VAS VLS V21,4
/)K /m[wﬂﬁ RN wlb ’ 2;_37 2:_3, 2’:-_3, ey 2;1_3]'%“ dx‘ d/,l,h
—— ———
4 4

Sl a1 018 a3y - (6.13)

Proof. For all of the ensuing estimates, we follow the argument of Lemma 4.7:
(1) Decompose into Littlewood—Paley pieces.
(2) If derivatives fall at high frequency, integrate by parts using (4.14).

(3) Estimate the two highest frequency terms in L? and the remaining terms in L°° using
(4.15).

(4) Estimate the low frequency terms using Lemma 4.8.

(5) Bound the highest two frequency terms using (2.30).
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We illustrate this in detail with the first term on LHS(6.3). By decomposing into
Littlewood—Paley pieces, we consider

Sl ). P 2 Py 1. 2 Pa (W)

M ,M>,M3,My

We now decompose the sum into three parts.
The first summand is where M3, M4 < max M;. Here, we apply (4.15), Bernstein’s
inequality, and Lemma 4.8 to estimate

2.

My, Mz ,M3,M4
M3, My<max M;

(1+N2)2(1+N3)
) Z (%1 +N2)2( x|+ N3) (x| +Na) 1_[ ”PN (I///,Lf)”Lz l_[ ”PN (Wuf)”Loo

m[ Pagy (S ), D2YED 220 py (6 £y A0 p (46 £ dx

Ny=>+>Ny Jj=3
||~ N 29 (14N2)3 6 6 2
S Y e 1P WD I Py, Ol llalg
N{>N>
<|}f| 1||m||H3/2||q||EU

< |}{| 1K2+J¢ ”

mnwnqny ,

where we note that the M; have been permuted in the first inequality to account for the
o . . . . 1
largest contribution. This is acceptable after integrating with respect to e =200 "~#| ¢;; and

applying (2.30).
The second summand is where M3 < M4 = max M;. Here, we use (4.14) to integrate
by parts and then proceed as for the first summand to obtain

2.

My, M>,M3,My
M3=<Ms=max M;

(1+N>)3
Z (\Jt|+N1)2(|x\+§\/2)(|x|+N4) 1_[ ”PN (1ﬁuf)||L2 l_[ ”PN (wuf)”LW

Ni=+>N4 j=3

Ny 729 (14+N,)3 6 6 2
Y. a1 W Dl 1Py (5 N2 lgllzg,
Ni=N>

e

/ m[Pay (00 ), DBWED 228 py (6 1) S8 py 6 £)] dx

A

A

A

il 12 ig)?
mm/z ES,

< x|

” m ”H%/z ||f]||Ecr

which is again acceptable.
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The final summand, where M4 < M3 = max M;, is estimated in a similar way, using
(4.14) to obtain a contribution of

2

My, M>,M3,My
M4<M3=max Mj

/ [Pary (6 1), D0 WAD) 220 p (6 1) 520 py (6 f)] dx

(1+N>)3
S Y G 1‘[ 1Py, (W )l 1‘[ 1P, (¥ F)lzes,

Niz+=Na j=3

which is again acceptable, as before.
The remaining terms on LHS(6.3) are estimated similarly. In each case, their contri-
bution is bounded by

(1+N5)3
Z U+ N2 (%[ +N3) (% [+Na) 1—[ ”PN/ (w,u,f)”L2 1_[ ”PN (W,Lf)“Loo

]\]1 Z"'2N4 j =3

which is acceptable after summation.
For (6.4), we proceed similarly, to obtain a bound of

oo H 1PN, (WS )2 H 1Py, (WS )l

Niz==N4 J=3
N1—20(1+N )2+2(7 6 6 2
< D) PP WL O Py (U )2 gl g
N1=N>

S “ muys/z”qn%g,

which is acceptable.
For the estimate (6.5) we argue as before to obtain a bound of

(1+N)3
Z (|K|+N2)2(‘J{|+?Vg)(|}c‘+N4) l_[ ”PN (Wuf)”m 1_[ ”PN (w,u,f)”L‘X’

Ni>+>Ny
Ix\_‘N'_z"(lJer) 6 6 2
5 Z (lK‘+N2)22(|7{|+N2)1720 ”PNl (wa)”Lz||PN2(wa)||L2||q||EgUX
Ni>N> '
1
< e 2L

= 7a2llalze
«/4K2 92 lH3/2 Edou’

which is once again acceptable.
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The sextic terms are estimated similarly. For (6.6), after integrating by parts we obtain
a bound of

(1+Np)?
Y GRS H 1PN, e )2 H 1PN, (Wt £)lzoo

Ni>+>Ng Jj=3

\x|71N2_4"(1+N ) 2420
s Y H e R P W Dl P, W D2 laleg la g
N1>N> ’

<|J{| 1K2+}f ||

2 2
m HH3/2 ”‘I”Eg ”(I”Ega‘k ’

which is acceptable.
Similarly, we may bound LHS(6.7) by

Y TS H 1PN, (W3 )2 H 1PN, (W )l

N1=-+>=N¢ J=3
N2 40(1+N )
< Z W”PM W N2l Pvs W M2 llglze
N1>N>
< el | i

4
m ||H3/2 ”q ”Eg ’
which is acceptable.

For (6.8), after integrating by parts we may bound each term by

(1+N>)?
Z (\K|+N2)2(|x\+§V5)(|x|+N6) 1_[ ”PN (Vfuf)”B l_[ ”PN (%Lf)HLoo

N1=+>Ng Jj=3
x| "' N3~ 4‘T(1+1vz)
S Y I ||PN1(wuf)an||PN2<wa)||Lz||q||Ea||q||Eo
N{>N>
< b

mllm/zllqllgcllqllp )

which is again acceptable.
Turning to (6.9), our basic technique gives us a bound of

> > s
(ke [+N2) (k[+ N 3)) (K [+ N7 (4)) (1] + N (5)) (% [+ N 6))
1€@ N1>->Ng

2 6
< [TI1Pw; @t Ollez [T I1Pw; Wt £)llos.
j=1 j=3
where @ is the set of permutations of {3,4, 5, 6}. Estimating the N;(3), Ny() terms in EJ
using (4.21) and the Ny(s), N(6) terms in ES_, using (4.22), we obtain a bound of

20,%

|| T NZ 2O (14 Np)2 H20 4 2 2
Y RGN H||PNj<w,,Lf)||Lz||q||Eg||q||EgM,
NizN> j= .

which is acceptable.
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Turning next to the octic estimates, we may bound LHS(6.10) by

> H rEae H 1PN, (Y )l H 1PN, (¥ £)llzes

Ny>+>=Ng Jj=5 Jj=3

x| ~' N3O (14-Np) I H40 3 4 2
< Y b TR 1‘[ 1P, W Dl llalg lalg
N{>N> j=1
1 2+ 4 2
< | | o “ m||H3/2”ang ”anéfU'%,
which is acceptable.
For (6.11), we argue as in (6.9) so that after estimating the low frequency terms in £

or E20 ,. (depending on the associated denominator) we obtain a bound of

Z |x|—lN23760(1+N2)1+4cr |M‘—1/2—0N23720(1+N2)1+0
(I&|+N2)2 (J|+Np) =20 (lie|+N2)2 (J]|+ N2)3/2—20
Ni=N>

2
< [T1Pw; Wi Dlielaleg laldy
j=1 ’
which is acceptable.
Again applying our basic technique to (6.12), we obtain a bound of

> kP H TN 1‘[||PN (wuf)an]‘[nPN W7 Dllze

Ny=-=Nio Jj=5 Jj=3

|~ NS8O (14 Np) 00 2 6 2
<y M Py W2 N2 lalg lalsg
Ni{>N> j = ’

2
< |%| te +x “ m ||H3/2 ||Q||6Eg ”qqugU% ’
which is acceptable.
Finally, (6.13) again follows the argument of (6.9), (6.11), estimating the low fre-

quency terms in EJ or EJ, , to obtain an acceptable bound of

2
| |71N4780(1+N )66
Y Garrgay e LIPS, Wn Dllellalggllalzg -
Ni=N> j=1 '

This completes the proof of the lemma. ]

Combining Propositions 3.12 and Lemma 6.2, we obtain the following:

Lemma 6.3. Letg € O, h e R,k > 1, and x € I, = [1,k/2] U [2«, 00). Then

/'Im dlff 24 dx

e 200|h wl d/i

11 [ Nalg, + imllalidg ] (6.14)
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Proof. From (3.32), we have

Ly —[Jrela () — Z=eld (-] = —tu" (),
224’ — [Vigld o) — V=gl (-] = =" (k).
We may then use (3.30) and (3.6) to decompose
im 5" = 1m{
- V(3P0 + V() T el 619)
- FlFE) T+ ) el 610
~ e (8500 + 5 (525) (-0)]laPg (6.17)
- F V(55500 + V() 0l 6.18)
~# a5 e + ) H ko 619
— F V()00 + V() ()]
x[Jegis () = Fgis T ()] (6.20)

- L[ ()00 + Z= (88 ()]
x [Vig5 ) — V=g 5 1) — Llgl?q] 621
— S BN ) — yBEH (=) (6.22)

}.K_x

We now proceed to use Proposition 3.12 and Lemma 6.2 to remove the leading order
terms from each line as follows:
For (6.15), we first use (3.46) to write

/ %(52) Lg](x)qtﬂi“dx =x2/m[1pif wuf’zx 3,...,2;‘ 8]1//de

4 6

where m € Sj,c(10), to which we apply (6.12). Next, we use (3.54) to write

/[[(2+y) 7](%) + M(2+y) ( }f)]‘ll//M dx

= x [l £ v 5 Y Y A 2 )
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where m € S},¢(8), which we bound using (6.10). Similarly, we use (3.53) to write

J I8 00 + V(525 e - saiuolaco] gt dx

= [ mlvir v rvir 3 5 S i)

+ [l v 3 S5 2 . 2t ) dx

where each m is in S),.(6), which can be estimated using (6.6). Finally, we use the second
expression on RHS(3.52) to obtain

[ 00 + V(825
+ 16x4|u(}f)|2u/(}t) + 4t ()% U’ (x) | qw24 dx

/ LS == 8(wuf) PR 8232 (e f)]dx

+f m[‘”“ ELWEN. ELLN. 0] dx

where each m is in S},c(4), and then apply (6.3). Combining these estimates and using
(1.19) gives us

/'/[(6.15) — Kzzﬁiz [163¢* [u ()%’ () + 4oc*ii (2)*u’ ()
— 62 u (e[ 06)]q |24 dix e~ 200 1

S g2 g, - (623)

(n)

We estimate the contribution of (6.16) similarly. From (3.46), we have

/f 2+y [27](%)(] 1//24dx

= [ {3 L3 g g 4 A A A 2w ) ax

where m € S),(8), whereas from (3.53) we have

[ 60+ 5 (535 ol g vt s

— [l £ £ 5 B 2w ). A ) dx

where m € Sjoc(6). Using the second expression on RHS(3.52) we get
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[ e + ﬁ(fi‘y)m( )~ 8 o) PG| ¢ 24 dx

/ [Vfuf 2x%— a 2;{ a(wuf) 4;‘;23?32(1%]{)]

+ [ 3G 2w 2w AW dx

where each m is in S} (4). Again applying (6.10), (6.6), (6.3), respectively, and using
(1.19), we have the estimate

/ '[ [(6.16) = 5 (=8 (o) i) g 1w 2 dx|e 200+ dpy

ST a1 lalRg - (624)

()]
For (6.17) we first write

lal*q = 16x*uGoPg +m[ /. f. 5],
where m € S(3). From (3.46), we then have

[ S (E) 0llal ~ 16 uCo Plgy* dx

v VS 2
= [ mlvir vt rvir 3 S S i)
where m € S},:(6), to which we can apply (6.6). Next, we use (3.46) to write

/f 2+y)[_7](}{) 162* [u () *q it dx

= [mlyi s vis B St

4 6

where m € S},.(10), which can be estimated using (6.12). Similarly, using (3.53) we have
[L(&)[S](%) + A= (&L )[5]( )| 162* [u () Pq it dx
NCAVESS = \2%y q

—x [ m[R S v Y S S Y 2 ] ax

where m € S}, (6), which we estimate using (6.6). From (3.52) we have

/[ﬁ(%) (%) + F(Eg}rly)m(_%) — 8oc*|u ()| 2 ()] 16"4|”(}f)|291/fi4 dx

= [ mlvirvirvis 3 3 W) dx

+ [ mlvi st 5 A . 2w ] dx
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where m € Sjo.(4), and can then apply (6.6). Finally, using that

75 ) 0 = i 6o

Je ()"

and (1.19), we obtain the estimate

/ ‘/ [(6:17) = 2 [0 () — 8*[u o) P ()] 16 u () P [y 2 dx e 2014

S Pl gl 02, el R, - (625

(h)
For (6.18), we use (3.46) to write

[ V) cou it ax
= [ mlvi rvirvis s i) dx

where m € S),.(6), and (3.52) to write
/[ﬂ(%)[3](k) + \/_—%(%)[3](_%)] //(K)w24 dx
/ [wu 2x a(wuf) 4;‘:2 3?32 (Wuf)]

where m € Sjoc(4). Similarly, for (6.19) we use (3.46) to write

/f 2+y [_3](%) W(K)l//24dx
[ [W/Lf wltf 2x— 3 (2x (32)(‘?,32 32)(1/f3f)] dx

Applying (6.5) and (6.8) gives us

e 2o lh=1l gy < x| gl 2

/‘/[(6.18)+ (6.19)]y2* dx

h) ”q ||2Ega,x ’ (626)

Turning to (6.22), we first take a test function w € L°° and use (2.26), (2.23), (2.21),
and (1.19) to bound

< DA lopll AU 11 (C Vil Ag)llop)**

{=0

‘/ w y[zg](:l:K)lﬂZ4 dx

3
S K2 2 g g oo

By duality, this yields

8 24 —2| VY34 2 6
lyES Oyt <072 | bl [ allalGg
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For the remaining terms, first use (3.50) to write

/ ) = ¥ (i) + 25600 u ()| Ty 3 dx

4 4
= / m{yd foud foudt £l Vel 228 (gt f)] dx

which we bound using (6.7). Second, apply (3.48) to obtain

/ [y () — yH (=) + 192 Ju (i) [ [’ (k)i (k) — u ()it (k)] |2+ dx

=« / mlys U5 f 22 ), 2w )] dx

7 [l L fvE st e ] dx

which we estimate by (6.4). Together, these give us

/ ' [ 1622~ 5 [1926 0PI ) — w7 )
+2560ik° [u(x)|°] |y 2* dx e~ 200 lh=l gy
S @lalnglalyg. ©27)

For (6.20), we take h = \/i%(%)(ﬂ:}f) and again apply (2.26), (2.23), (2.21),
(1.19), and Corollary 3.4 to estimate

' / h—=gl3 0yt dx| < 3 IAGYD s 1A @Y DIE (C Vil A @) llop)**
£=0

3
S B P 7 )

which is acceptable. For the lower order terms, we use (3.47) and (3.49) to write

/ [fg%](/c) ngz]( K)—48i/<3|u(/<)|2u’(ic)] ﬁ“dx

=K / m[YS ful f 2 WS ). 25 W f)] dx

7 [y f v s ) dx

where each m is in Sjoc(4), and

[ M0 - o + 546 oo

=« [l s s s 35 5 2] x
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where m € S}.(6). As a consequence, if we introduce

2 [Vr(E5) 00 + V= ($5) (0]
x [—48i k3 u(k)|?u’ (k) + 384k |u(k)|*u(k)],  (6.28)

we may apply (6.4) and (6.7) to obtain

/ ‘ / [(6.20) — (6.28)]y2* dx

To estimate (6.28), we first use (3.46) to write

ezl gy < K 191312 Ml g (629)

[ VR o ) P oyt d
= [ mlvirvirvi s ¥ 3 3 S i) ax

where m € Sjo(8), to which we apply (6.11). Similarly,

[ VR o eyt dx

_ 2 2, YAS VRS ViSf
—K/m[l/fuf’“'”//uf’2;?—3’2;—3’2;?—8"“7% a]‘/fudx
N—— ——’
4 4

where m € S),.(10), which can be bounded using (6.13). Further, from (3.52) we have

[ 0 + F(ff;) 0O )y d
= [ vt r ¥ 2w . 5 S A ) as

where m € Sjo.(6), to which we apply (6.9), and

J v o0 + v=x (fi‘y) <x>] Tl a3 d

=« [ mvi 131 45

which we estimate with (6.11). Observing that
Vr(E5) 00 + V= (8) ) = 2inu,
and once again using (1.19), these bounds combine to give us the estimate
/ ' / [(6.28) + 25 [~2ix%u(x)]
x [48i k3 |u (k)| ?u’ (k) — 384K7|u(/<)|4u(1<)]] 34 dx|e~z00h=nl du

lg3glal . (630)

Vo f vif vif
a’zf—a’zf—a]dx’

S 1 a2
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It remains to extract the leading order terms from (6.21). We first use (3.11) and (3.46)
to write

fz(z%)m(’f” =) W) = it (), 6.31)
«/L?(Zgily) ( )+ ﬁ(fﬂ) (_”) = 2xx+am[f’ 2zf—a’ 2zf—a]’ (6.32)

where m € S(3). From (3.44), we then have

/lu (}f)\/ﬂg£>7](:tk)wi4 dx

=« [ m{w roui £ S Y S A )

where m € S),c(8), and

[T =00 + 5 (5385 0] VRl 0wt

Vif vif viSf
/ [Vfuf Vfuf 2;?—3’2;—3’2;5—37””% a]‘//udx
—_—
e 4

where m € S} (10). These terms can be estimated using (6.11) and (6.13), respectively.
Applying (3.49) we have

/ i1’ (00)[Vighy () — vk ghy (—)]p 2t dx
/ [V foyi fo Sl Vil 2oyt ), 220 (it f)] dix

where m € S, (6), which we bound using (6.9). Similarly, we have
[=3]
T =0 + 5 (5= 0]
x [Vig ) — V=g (=) |yt dx
vaf vif v f 1//
— [l foi fov . 3 S G AL 2 o ),

where each m is in Sjo¢(8), which is bounded using (6.11). Using (3.47) we have

/ 111’ (00) [V gy (1) — v/ —reghy (—k) — 32k |u (i) |Pu )]y 2* dx
- / [y £, 2250 £), ZZL S ), 2222 (9 )] d
+ / [wa ‘/fuf 4:28232 (I/I;Lf) 4}{2 32 (I/I;Lf)]
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where each m is in Sjoc(4). This is estimated using (6.5). Also using (3.47) we have
[=3] [=3]
[T 00 + A5 (528)= 0]
x [Vigi3 () = v/=reg i3 (=) = 3211 [ue) Puo) ]yt dx
=« [l rvir 3 S 2wl k] s

viS viS 2
st [l i vt 35 2 S i) ax
where each m € Sjo.(6). A final application of (6.8) and (1.19) gives us the estimate

I ) —
™ A 5 e Mgl Nl g, o (633)

/'/[(6.21) — 639yt dx "

where

2[5 (8500 + 5 () 0l %laPa — 32i u@Pu)]. (634)

However, by writing

3 laPq — 3200 |u () Pule) = —5¢1q1u” (o) — 2ikcu )i (c)g — 8ii>|u ) Pu” (),

and using (6.31), (6.32), we obtain

[42(85)" 00 + 75 (85) =0 [ lalPa — 321 ) Puo)]
= =
- (52) 00 + = (8) 5 0] £laPg - 32k o) Pue) ]
=<l 1 Sl i v )

form € S(4) and m € S(6), respectively. As a consequence, we may apply (6.5) and (6.8)
to obtain

/'/ (6.34) y2* dx

We now collect the leading order terms from our above estimates into quartic and
sextic contributions, as follows:

[

&

e300 < | g2 g, (6.35)

(n)

1= o {480 |u (o) [2qu’ () + 8x5qit (e) 2’ () — 8% u () i) g’
— 1925¢2 [u (i) |2 (o)’ (k) + 3848 |u (i) |2it (k)0 ()},
Jr = ﬁ{—256ix10|u(x)|412(%)q — 15360 k1052 Ju (i) |*u (1) it ()
+ 25600 k2 |u()|®}.
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Combining the estimates (6.23)—(6.27), (6.29), (6.30), (6.33), (6.35) gives us

/’Im ]d[l?f‘q Jl - Jz]wi‘t d_x e_ﬁlh—/” dﬂ

S 1012, (41 a3y + isllal}gl (636)

(h)
To estimate Jq, we write
—48x°[u (o) P qu’ () = =3x>|q1>qu’ (36) = 35> q |2’ (o) v’ (3e) — 122* 2" (o) Gt (e’ (3¢)

= =32|qPqu 0) +°m[ f. [ 5h = = )

where m € S(4). Similarly, we have

8x0qii(x)*u' (x) = x*|q1Pqu’ (o) + *m[ f. f. . )
—3x?1q1Pqu’ o) + Pml £ 555, 55 )

77

+’ml f. f. 5d s )

—8x®ue) P (e)q'

— 192822 lu (k) |21 e )u’ (k) = —48k|u () |*qu’ (k) — 486 |u (i) | %0’ (2¢) u' (k)
= =321q1Pqu () + km[ /. f, f. 755
+ Ksm[ f f S’ £ ]

4K2—02 4K2—02° 4Kk2—02° 4x2—032

384k |u (i) P (k) (k) = 6x2|q2qu’ (k) + km[ . f. f. 55

where each m is in S(4). Applying (6.3)-(6.5) we then have

3[K2u’(l<) xzu’(x)] 24 ) —
[|[ 1 - e gyt e

S haly s [ alg, |+ 5 laliyg ]
For the remaining term in J;, we compute that

(K) qu/(x) q///
K2—x2 T (4kZ=92)(4x2—02)°

and applying (6.5) gives us

lalizg

u 2.,
f ‘ / U g gy die|em 20 dp < 1T g1 2,

Collecting these bounds gives us

flf sz

JR )
e 200‘}’ 'uld/L

S el alEg |, + =iz llalzg] (637)
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Finally, we consider J,. Arguing as for J; we have

4

—256ix"|u()[*ii(x)q = —4ix*|g|*luC)? + 3*m[ f. £ f. 515 555 o5 )
—1536i k152 |u (i) | *u ()it ()
= —6ikc*|q|* u()? + k*m[f, £ £ 5l 5l 5]
f f f f f”
K m[ 4K2—02° 4K2—02° 4Kk2—02° 4k2—032° lc2—32’4;t2—32]’

2560i k2 u(k)|® = 10ik*|q)*u(Kc)|* + k> m[fffzk 3 2xfa T a]

where each m is in S(6). Applying (6.6)—(6.8) gives us

/‘/ Ul P~ WG| 4], 24 Lo bolin g

2 2 -1 2 2
S 1al3g1a12,1 0 [ NalRg, + i lalg -

For the remaining term we compute that

A Px Gl _ g’ 2 i
S = ) G e — ) G ey

and can then apply (6.8) to conclude that

4ilc4 2_,4 2 I ) A
/ ‘ [ L g 24 A e 5 g1, Nl g,

Together, these yield

/'/ Lyt dx

The estimate (6.14) now follows from combining (6.36)—(6.38). ]

h— —
e~ dp < g13g 1912, 2 (¥ Nalg + imllalidg )
(6.38)

Proof of Proposition 6.1. Recall (6.2). Using Lemma 4.2 and (2.4), we estimate

t=1

‘/IK/Im[p(xmdx ]

R )
em 20 "M dppdie| < NlqI7ee pg 1+ g7 00 2] (6.39)
t=-1

Turning to LHS(6.2) and recalling that u(k) =
write

P —L 52> We use (3.30) and (3.32) to

Imjd[izfg(){’/() RC{16K2 (k) 7 (1) + 24200 W (ic) —///(K)}

4722—92 472292
— Re{8[(2 4u2(K32 —/(K) _|_ L;/;/(Ka)z —//(K)}
— 8k Re{ 25901/ (k)} " + 4x® Re{ 7259011 ()} " (6.40)



Global well-posedness for the derivative nonlinear Schrdinger equation in L2(R) 915

Integrating by parts and then applying (2.13) we may bound the contribution of the last
three summands as follows:

'/ 8 24u2(l<32 _/(K) + 41;/;/(/3)2 —//(K)} 1p24 dx
< B Ol g2l 2 W gz + 67 T W) 1 |20 )l
<o gl .
[t i o) vt dx

<

~

— "
[ o g} vt dx

-1 4 2 _
S ) 12 N w1z S 672 gl

=

2. —1 24111 < —1,-1 2
<G g2 |G W Ol g1z S algg

For the remaining term, we write

/{16/(24”2('(321,{//(/() + 24u2(K3)2 —///(K)} ;2L4 dx

. 2 (wlz q)// (1/’24 )// (wlz q)/// (wlzq)///
- / {16" (4;:2—35)(4,(2—32) 4,!é 32 +2(4x2—ag)(4K2—32) yym—s }d

32 (W24 )//
/{16K u  @n2—92) (42— 32)]‘1 ppom az}dx
12 33 W29
+ /{2[ Iz ’(4x2—a2)(4x2—a2)]' py—

" /{16K2 4u2(K;2q [v.*, 4x22 77+ 241;/;/863)2 A\ 4K§i32]q} W dx.

Applying
[ ;1;27 4,,21_32] = _4,‘21 32 {2(1#;112)/3 + (W&Z)//}ﬁﬁ
2
= Kz 32 220+ W) ) s
3
[ ;ILZ’ 4K§_32] = 4K2 32 {2(%12) d+ (W;iz)”}‘mz 2 4K2 32 (W;ILZ)

we may again use (2.13) to bound

'/ {16%[ - Jg - (%2;‘5)”} dx

M ' @x2=02)(4x2—02) 4x2—32

_ 2 ('W24 )/
<l [9,2. g W Ol e+ 922 bl g} | |

-1 2
S %l
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12 93 W29
‘[{2[ "o (4x2—a2)(4x2—a2)]q' aer—gr ) dx
(1/,24 )//

Sl s b @l g, + 57 i admlal g1 | S

-1
<%l
/{16K2 1;2('(3261 [ ;2»%]5} lizdx
< @l g1 |2 02 s Jal ge < lallgg,

3 —
[ 2

-1 12[,,.12 33 -1 2
Sx ||M"(/<)||E11!/x2 lwi2{v) ’W]q”El‘fj < ”q”Eé’a,x'

1/2
El.}(

Combining these estimates gives us

2“m“E2 ‘ /Jcnff(% )Py 24 dx

Collecting (6.39), (6.41), (6.14), and using (2.5), we have

+x Mallgg, - (6.41)

1p12
/H«/#%BZHL Elz/ze =t A1 du

Im ji3 e, Y, dx e 2001l gy doe di

2
+ ”q”L‘,X’Eg
Iy

S Nl pg 1+ NalZoe 2 + 112, 2]

Estimating
H vi2q HZ < ” P (¥)2q) HZ + H Po (¥ )29 ”2
Vae—2 \L7H32 ~ | " Jh2 52 IL7H3/2 Va2—92 IL7H3/2
2
< =201 ,112 H R
K ”q”L‘,X’L)ZC + m L2E12/2’

we then get

lgl%1/2 S NalZeo g g5 12 + (lallzeo g + 6720+ 191700 2)-
x! X} L3

Using (1.19) to absorb the first term on the right-hand side into the left-hand side, (6.1)
then follows from the conservation of the L2 norm. |

7. Convergence of the difference flow
Our main goal in this section is to prove that as k — oo, the flow determined by the differ-

ence of the Hamiltonians H3 = H — H, converges to the identity, locally in spacetime,
uniformly over L2-bounded and equicontinuous sets.
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Theorem 7.1 (Difference flow converges to the identity). Let Q C S(R) be an L>-
bounded and equicontinuous set such that

O, =1{"VHS g g e 0, |t| <1, andk > 2}

is a §-good set for a sufficiently small § > 0. Then

lim sup sup sup ||1/f12 ”VHMC] —

12 —
nw q”L% =0.
k—>00g€0 ueR |t|<1 :

Proof. The L?-boundedness and equicontinuity of the set Q4 extends readily to the set

(Wlg:qe Qs 1<|j| <12, peR}.
In view of this equicontinuity property and employing the fundamental theorem of calcu-
lus, the proof of the theorem reduces to showing that

(wlz tJVHI

lim sup sup || Ir =0. 7.1

Kk—>00 q€Q ne

) ||L}([—1,1];H;5)

A quick computation reveals that

diff diff
ldt (1//12 tJVH ) — W;Z[Fk(etJVHK q)]/

where
Fe(q) = —q' —ilq1’q + 2[Vikg12(k) — V=K g12(—1)].
Thus, (7.1) will follow from

lim sup sup ||w,l.ll,2FK(Q)”L}([—1,1];H;4) =0. (7.2)
Kk—>00g€Qx neR

Employing (3.32) and (3.47), we decompose

Fe(q) = 5= az‘l+m[ff4Kz 32]+m[ 2:{/3 2:{/3]
+ 2 Vieg 5 ) — V=i g5 (i),

where f satisfies (3.26) and each paraproduct m lies in S(3).
The contribution of the linear term is easily estimated via

[ 550 | mes < €210 gl oo 2.

which converges to 0 as k — oo, uniformly for all ¢ € Q, and all i € R, in view of the
conservation of the L2 norm.

To estimate the contribution of the cubic and higher order terms in Fj.(q), we rely on
the consequences of the local smoothing estimates proved in Proposition 6.1. To simplify
our bounds, we introduce

lglloNLs, = ”q”L}X’L% + ||q||X,3/2
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and note that L? conservation and Proposition 6.1 yield

diff
e VH g llones, < llgllz2 (7.3)

uniformly fork > 2 and g € Q.

Lemma 7.2 (Local smoothing estimates). For f satisfying (3.26), we have

CIOR) —
sp | S luzns < 67 alosas.. (7.4)
sup |t £+ S €*llqllones,- (1.5)
w L, x
neR :

Moreover, the following estimate holds uniformly for k > 2, g € Qx, and u € R:

1
/1 IAWR) I3, dt < k> lgle + 1d)s s 12211 By, - (7.6)

Proof. Decomposing into low and high frequencies and using Bernstein’s inequality for
frequencies < x2/3, and Proposition 6.1 for frequencies > x2/3, we may bound

4 1/3 1/3 Yuf
”pr,f”L?Hl/Z Sk ”f”LtOOL}( +x ” x/41:£27—82”L%H,3/2

<« gllbaws, - (1.7)
A parallel argument yields
Wiry -
i TES) ||L%x SK 1/3”q”DNLSK~

Using this latter bound, Sobolev embedding, and interpolation, we obtain

dWhS) B L) 4 s Wisy
||zwx—iaﬂim < |11 s Higx < H%Hgag/z} ;pé‘—ia\hgx

—1/3) 112
Sk /”anNLSK’

which settles (7.4).
Arguing similarly and using (7.7), we may bound

1 1
[ wirig s [0 @O S W12, A1

2/3 4
< €*lq s, -

We now turn to the proof of (7.6). By the Bernstein inequality and Lemma 2.6,

No g2 for No < k1/3,
ST AN @lop £ 3 7 0qll2 + L g sslle fork! < No <k,

N=No ﬁllqlle for Ny > «.
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Employing this estimate and Lemma 2.5, we may bound

IAGIE, = 3 TN s Il Y TAI x|

N1~N> N3=<N>
N2
ST S [0 T P2 (70 ) PR 1
K1/3ZN1~N2
1 —10/3
+ > Y@ m 2 1@ s 2 [0 g, + 5 N Wud)=ersll2]

k1/3<Nj~No<k?2/3

WYuq) Yuq)
+ 2wl el At el

k2/3<Nj~N><k

~10/3

lgll?.+35 II(Wuq)>K1/3||Lz]

)] Yuq)
t Y o loa( i) | e e | e el
N1~N2>K

- - 2
< [P AT N W) s 17 07 2 [+ ]| s e
The estimate (7.6) now follows by interpolation between this bound and
AWz, S lgllz2-
This completes the proof of the lemma. ]

Returning to the contribution of the cubic terms in Fi(q) to LHS(7.2), we employ
Lemmas 4.6 and 7.2 as well as (2.32) to estimate

R | P p—
s lviemlf £zl S WAsIGy 16850 i = P I,
v i2m[ £ 55 7]

ﬂw%unygﬂhlNWMMMJ%QMMSKWM&W-

_4)

In view of (7.3), the contribution of these cubic terms is acceptable.
To estimate the contribution of the quintic and higher order terms in Fy(q), we argue
by duality. To this end, fix w € H. Using Lemma 2.9 and (7.6), we estimate

[

23 2g S yw dx| di

S AW D I3, (VI A@llop)* AW, lop

{>2
< —1/4 4
S lwllzeole™ g liLz + 1(¥ud)>er/3 2]l oxes, -

where we used Corollary 2.7 combined with the fact that Q is §-good in order to sum
in £ > 2. By (7.3) and equicontinuity, the contribution of these terms to LHS(7.2) is also
acceptable. [ ]
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8. Proofs of the main theorems

All the main difficulties have already been addressed in previous sections, albeit under
the assumption that the solutions remain in a §-good set for some universally small § and
only for the time interval [—1, 1]. In this section, we put all the pieces together and show
how to circumvent these illusory restrictions.

Proof of Theorem 1.1. The fundamental question to settle is this: Given an L2-Cauchy
sequence of initial data g, (0) € § and a Cauchy sequence of times ¢, € R, show that their
evolutions gy (f,) under (DNLS) form an L2-Cauchy sequence.

Evidently, the set {¢, (0)} is L?-precompact. Thus by Corollary 1.9, there is a uniform
rescaling parameter A so that not only are the rescaled initial data §-good, but so are their
evolutions under (DNLS) as well as any other dynamics preserving A (x;q). This rescaling
does not meaningfully alter our original ambition—we just replace the original sequences
of solutions and times by their rescaled values (for which we reuse the original names).

It suffices to treat the case where |t,| < 1, because larger values can be treated by
iterating the argument. For example, if 7, — 3/2, then we first run the argument with
t, = 1 and then use ¢, (1), which we now know to be convergent, as initial data to extend
up to the chosen t, — 3/2.

Assuming now that |#,| < 1, Theorem 1.7 guarantees that {g,(¢,)} is equicontinu-
ous and Proposition 5.1 guarantees that it is tight. Thus every subsequence has an L2-
convergent subsequence; we just need to verify that all such subsequential limits agree.
For this purpose, it suffices to test against some fixed w € C°(R).

It is at this moment that we employ the commutativity of (DNLS) and the H, flows.
Using (1.13), our task is reduced to verifying the following two claims:

sup limsup [(w, e’ VHx g, (0) — ' VHe g, (0))] = 0, (8.1)
k>1 m,n—o00
limsup sup sup |(w, [e"/VH=HI _1d](40))| = 0, (8.2)

k—>00 qo€Qx |t|<1

where Q. is defined via (1.11) with the choice O = {¢,(0) : n € N}.
The first of these two claims follows from the L2-well-posedness of the H, flow
shown already in [27, Corollary 5.4]. The second was addressed by Theorem 7.1. ]

Proof of Corollary 1.2. Recall that local well-posedness for s > 1/2 was already proved
by Takaoka [45]. This result is rendered global by the a priori bounds shown in [2, 3].
Consider now 0 < s < 1/2. Evidently, the existence of solutions follows immedi-
ately from Theorem 1.1, as does continuous dependence in the L? metric. Continuous
dependence in the H* metric follows from this and H*-equicontinuity, which was shown
in [27, Theorem 5.6] contingent on the equicontinuity conjecture that was subsequently
resolved in [17]. [

Proof of Theorem 1.5. By Corollary 1.9, there is a uniform rescaling of the set of initial
data Q so that not only are the rescaled initial data §-good, but so are their entire (DNLS)



Global well-posedness for the derivative nonlinear Schrdinger equation in L2(R) 921

evolutions. This allows us to invoke (4.1) from Proposition 4.1 to obtain the local smooth-
ing estimate (over any unit time interval) for the rescaled solutions. The estimate (1.4) for
the unrescaled solutions follows by a simple covering argument. Naturally the resulting
constant depends on the rescaling parameter; however, this is dictated solely by Q. |

Proof of Corollary 1.6. Given initial data ¢(0) € L?, we choose Schwartz-class initial
data ¢, (0) that converge to it in L2. By Theorem 1.1, the solutions ¢, () converge to g ()
in C([-T, T]; L*(R)). To deduce that ¢(¢) is a distributional solution, we need another
form of convergence to handle the nonlinearity. This can be obtained with the aid of
Theorem 1.5 and a Gagliardo—Nirenberg inequality:

19 ®[4n —C]]”z?J < llgn —C]||L;>°L)2({||W12%||E$H1/z + ||WIZQ||Z?H1/2}—>O asn — oo.

X X

Here all norms are taken over the spacetime slab [-7, 7] x R. ]
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