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Abstract. We provide a ribbon tensor equivalence between the representation category of small
quantum SL(2), at parameter ¢ = e™/P and the representation category of the triplet vertex
operator algebra at integral parameter p > 1. We provide similar quantum group equivalences for
representation categories associated to the Virasoro and singlet vertex operator algebras at central
charge ¢ = 1 — 6(p — 1)2/p. These results resolve a number of fundamental conjectures coming
from studies of logarithmic CFTs in type Aj.
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1. Introduction

We prove a number of fundamental conjectures which relate quantum group representa-
tions for SL(2), and modules for non-rational vertex operator algebras (VOAs) at central
charge ¢ = 1 — 6(1 — p)?/p. We consider specifically the triplet W,, singlet .M, and
Virasoro Vir, vertex operator algebras.

For the Virasoro VOA, we consider a category of modules which is the logarithmic
analog of a rational minimal model. By logarithmic we mean, in the simplest sense, that
the theories under consideration are non-rational, i.e. non-semisimple. The rational min-
imal models occur at central charge ¢, , = 1 — 6(p — q)?/(pq), for coprime p,q > 1.
Their logarithmic analogs, which occur at central charge ¢ = ¢, 1, were first considered
in works of Pearce, Rasmussen, and Zuber [72, 73], though from a physical perspective.

The triplet and singlet algebras have been studied extensively from both physical and
representation-theoretic perspectives (many of these papers are included in our references
below), with both algebras appearing first in work of Kausch from the early 90s [56].
Taken together, these three classes of vertex operator algebras, Vir., M, and ‘W, provide
the most well-studied non-rational VOAs, or logarithmic chiral CFTs, available to us at
the present moment.

In recent works of Creutzig, McRae, and Yang [21,66], and earlier work of Tsuchiya
and Wood [77], it was shown that each of the VOAs mentioned above admits a corre-
sponding ribbon tensor category of “affine” representations. We denote these representa-
tion categories by

rep(r‘)irc‘)afﬁ rep('j"{p)aff, TCP(Wp) (1)

respectively. For rep('W,), we simply consider finite length ‘W,-modules. The construc-
tions of the categories rep('Vire)air and rep(sMp ), are slightly more involved, and are
recalled in Sections 10.2 and 11.1 below. Let us say here that the simple objects in
rep(Vire)ar and rep(Mp)ar are those simple modules of integral lowest (conformal)
weight h, s = ﬁ((np —8)2 —(p — 1)?), n,s € Z. An important point is that the
categories (1) are all affine, in the sense that they each admit a distinguished tensor
generator, or distinguished faithful representation if one prefers (cf. [29, Section IL.5,
Corollaire 5.2]).

We compare the tensor categories of (1) to categories of representations for quantum
SL(2) at parameter ¢ = exp(mi/p). We consider specifically the categories

repSL(2)4, rep(ugy(slz)), rep(uy(slz))

of character graded representations of Lusztig’s divided power algebra UqL“S(gIz), char-
acter graded representations of small quantum SL(2), and usual representations of small
quantum SL(2) respectively (see Sections 3.1 and 12.1). We establish the following col-
lection of equivalences, which were conjectured across the works [12, 14, 16,24,44].
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Theorem (9.5/10.1/12.1). There are equivalences of ribbon tensor categories

K : rep SL(2); —> rep(Virc)att,
W rep(ty (sl2)) = rep(Mp)a,
O : rep(uy (sl2)) = rep(W,).

The particular ribbon structures employed on the quantum group sides of Theorems
9.5, 10.1, and 12.1 are those “inverse” to the standard choices of [52,64] (see Section 3.1).
We note that in the process of proving the above result we establish modularity of the
category rep('W,) of triplet modules (see Theorem 4.7). This point may be of independent
interest.

For a clearer historical account, the equivalences K and ® were originally conjectured
to exist in works of Bushlanov, Feigin, Gainutdinov, and Tipunin [12], and Gainutdinov,
Semikhatov, Tipunin, and Feigin [44] respectively. The basis for these conjectures was
that a number of invariants for quantum groups and their corresponding vertex opera-
tor algebras were (essentially) observed to agree. Indeed, it was argued in [36] that the
modular group representations for u,(sl>) and ‘W, agree, and also that their fusion rings
agree [41]. Furthermore, it was shown in work of Nagatomo and Tsuchiya [68], and subse-
quently McRae and Yang [66], that there is an abelian, non-tensor, equivalence between
rep(uq(sl2)) and rep(W,). At the particular parameter p = 2, Creutzig, Lentner, and
Rupert verified that this equivalence can in fact be enhanced with the desired tensor struc-
ture [20]. The possibility of the equivalence W was alluded to in the works of Creutzig
and Milas, and Costantino, Geer, and Patureau-Mirand [14, 24], then was conjectured
explicitly in work of Creutzig, Gainutdinov, and Runkel [16].!

As one might expect, analogs of Theorems 9.5, 10.1, and 12.1 have been conjec-
tured in arbitrary Dynkin type [37,59, 76]. The analog of the equivalence ® at a given
almost-simple algebraic group G, for example, proposes an equivalence of modular ten-
sor categories between representations of the small quantum group for G at ¢ = e™!/?,
and modules for the “logarithmic W -algebra” ‘W, (G) of [4,76]. Here, for the small quan-
tum group, one should specifically take the cocycle corrected variant of [42, 69].

While additional infrastructure is needed to address these conjectures outside of type
A; - in particular the VOAs ‘W,(G) need to be studied further — the results herein
give credence to the claim that representations of quantum groups and CFTs should
be strongly intertwined, even in the logarithmic context. If we consider type A-; for
example, and suppose a sufficiently strong understanding of the algebras 'W,(SL(n)),
one could presumably employ the Hecke presentation for rep SL(n), of [27, Proposi-
tion 4.7], and follow the arguments of the present text, using [69, Proposition 7.3] and
[15, Proposition 7.4.2], to provide the desired equivalences between rep(u4(sl,)) and
rep('W,(SL(n))) at arbitrary n.

I'To be clear, our equivalence W concerns the “integral part” of [ 16, Conjecture 1.4]. See Remark
12.2 for details.
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1.1. Methods

Let us focus on the equivalence © : rep(u,(sl2)) —> rep(W,) of Theorem 9.5, which is
the primary target of this work. We first note that our small quantum group u,(sl>) is
the cocycle corrected variant of [16,43], which we accept at this point as the “correct”
version of the small quantum group at an even order root of unity. A point which is essen-
tial to this work is the observation [69] that the category of representations rep(uq(sl2))
can be understood as the de-equivariantization of rep SL(2), along the embedding Fr :
rep(PSL(2)) — rep SL(2), provided by Lusztig’s quantum Frobenius functor [64]. Of
course, this is a rather technical statement, but the point is the following (Proposition 9.2):
One can identify tensor functors rep(u4(sl2)) — o7 to a given tensor category ./ with a
particular class of tensor functors rep SL(2), — </ out of big quantum SL(2).

With this general framework in mind, we observe furthermore that tensor maps out of
rep SL(2), are classified in work of Ostrik [70]. (See Theorems 5.3 and 9.4.) In particular,
a tensor map rep SL(2), — &/ to a some category .« is specified by a choice of self-
dual object W in the target .2, which satisfies certain non-degeneracy properties. So we
approach the equivalence ® by leveraging the works [70] and [69] in tandem.

Of course, in order to produce the equivalence ® in the suggested manner, we must
have a clear understanding of the category of modules rep('W,), and in particular of its
self-dual tensor generator X 2+ . One obtains such a concrete understanding of rep('W,) by
exploiting relationships between matrix entries of compositions of intertwining operators
and differential equations on the sphere. Such relationships go back to the beginnings of
CFT, and are also central to the philosophies of, say, Huang [45] and Tsuchiya—Wood [77].
(See Section 8.) This approach is also present in the recent works [21,66]. The equivalence
O is therefore deduced via a propitious interplay between category-theoretic and analytic
techniques.

The equivalence K for the Virasoro is essentially a corollary of our arguments for the
triplet, which we employ in conjunction with works of Creutzig, Kanade, McRae, and
Yang [19, 66]. The equivalence W is deduced from a non-trivial analysis of the represen-
tation category rep(Mp )., and an additional analysis of certain rational actions of the
torus C* on the categories rep(u4(sl>)) and rep('W,).

Remark 1.1. In work of Creutzig, Lentner, and Rupert [20], the authors suggest an alter-
native construction of the equivalence ® for the triplet, and they realize their construction
explicitly when p = 2. The methods employed in [20] differ significantly from the ones
employed here, and we invite the curious reader to consult the aforementioned text.

Remark 1.2. Our results for the triplet VOA rely on explicit understandings of the
indecomposable projectives and fusion rules for rep(W,). Such structural results first
appeared in works of Nagatomo, Tsuchiya, and Wood [68, 77], though by most accounts
some details are missing from [68]. With this point in mind, we note that independent
(re)constructions of the indecomposable projectives and fusion rules for rep('W,) can be
found in recent work of McRae and Yang. See in particular [66, Section 7.1].
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1.2. Outline

Sections 2—4 cover background material. Section 5 recalls Ostrik’s classification of tensor
functors out of rep SL(2)4, and also recalls basic facts about the Temperley—Lieb category.
In Section 6 we perform a straightforward calculation of all braidings for the Temperley—
Lieb category. Sections 7 and 8 are dedicated to an analysis of the self-dual generator X 2+
of rep(W,). In Sections 9-12 we establish the equivalences ®, K, and W for the triplet,
Virasoro, and singlet vertex operator algebras, respectively. In the appendices we cover
some technical information regarding induction for VOA extensions, and the calculus of
(de-)equivariantization for tensor categories equipped with algebraic group actions.

2. (Finite) tensor categories

We cover some basic information about finite tensor categories. Our presentation is based
on the texts [10,34], as well as the paper [35]. We work over the base field k = C.

2.1. (Finite) tensor categories and fusion categories

A tensor category (over C) is a C-linear, Hom-finite, abelian monoidal category % which
is rigid, has all objects of finite length, and has a simple unit object 1. Rigidity means
that all objects X in % have left and right duals X * and * X [34, Section 2.10]. A tensor
functor between tensor categories is, by definition, an exact, C-linear, monoidal functor.
By a natural isomorphism between tensor functors we mean a natural isomorphism which
respects the monoidal structures in the expected ways. The following basic observation
will be used throughout the text.

Proposition 2.1 ([28, Proposition 1.19]). Any tensor functor between tensor categories
is faithful.

A tensor category is called finife if it has finitely many simple objects, up to isomor-
phism, and enough projectives. A tensor category is called a fusion category if it is finite
and semisimple.

Abstractly, any finite tensor category 4 admits an abelian equivalence ¢ = rep(B) to
the representation category of a finite-dimensional algebra. (One can take specifically B to
be the endomorphism ring of a projective generator.) For some examples, one can consider
the category € = rep('W,) of finite length modules over the triplet vertex operator algebra.
One sees from results of [3,13,46,77] that rep('W,) admits a natural finite tensor category
structure. Also, for any finite-dimensional quasi-Hopf algebra u [34, Section 5.13], the
category rep(u) of finite-dimensional u-representations has the natural structure of a finite
tensor category, with the product ® on rep(#) induced by the coproduct on u.
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2.2. Frobenius—Perron dimension

For € a tensor category, the Grothendieck ring K(%) is a Z-ring [34, Definition 3.1.1],
in the sense that it is a free Z-algebra with specified basis {x; }; C K(%) and non-negative
structure coefficients c{f o XicXj = Dk cl[" Xk The basis {x;}; is provided by the iso-
classes of the simples, {[X;] : X; simple in €}, and the unit [1] in K (%) is provided by
the unit object in 4. When ¥ is a finite tensor category, the Grothendieck ring K(%) is
of finite rank over Z.

For any finite rank Z 4 -ring A one has a canonically associated dimension function
FPdim : A — R called the Frobenius—Perron dimension. For any x in the specified basis
for A, the Frobenius—Perron dimension FPdim(x) is defined as the maximal non-negative
real eigenvalue of the linearmap x - — : R ®z A — R ®z A. Since multiplication by x is
represented by a matrix with non-negative entries, the Frobenius—Perron theorem ensures
the existence of such an eigenvalue. Furthermore, FPdim(x) > 1 for any such x [34,
Proposition 3.3.4].

The function FPdim is a ring homomorphism, and it is in fact the unique character
of A which takes positive values on the given basis [34, Proposition 3.3.6]. We apply
the above general construction to deduce a dimension function FPdim : K(%) — R for
the Grothendieck ring of any finite tensor category 4. The uniqueness properties of the
Frobenius—Perron dimension imply the following (standard) result.

Lemma 2.2. If B is a finite-dimensional quasi-Hopf algebra, then for any V in rep(B),
FPdim(V) = dimc (V).

Proof. The vector space dimension defines an algebra map dimc : K(rep(B)) — R which
takes positive values on each class [V'] of a non-zero representation V. Since FPdim is the
unique character of K(rep(B)) with this property, it follows that FPdim = dimc. |

We also have a general notion of Frobenius—Perron dimension for Z 4 -rings them-
selves [34, Definition 3.3.12], which reduces to the following in our setting.

Definition 2.3 ([34, Definition 6.1.7]). For any finite tensor category %, the Frobenius—
Perron dimension of € is defined as

FPdim(%) := »  FPdim(P;) FPdim(X;).

1

where the sum runs over the isoclasses of simples X;, and each P; is the projective cover
of X, i

2.3. Surjective tensor functors

A tensor functor F : ¥ — Z is called surjective if any object in & is a subquotient
of F(X) for some X in €. We have the following two essential results.
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Theorem 2.4 ([35, Theorem 2.5]). If F : € — & is a surjective tensor functor between
finite tensor categories, then the image F (P) of any projective object P in € is projective

in9.

Theorem 2.5 ([35, Proposition 2.20]). If F : € — 2 is a surjective tensor functor
between finite tensor categories, then FPdim(2) < FPdim(%), and if equality holds, then
any surjective tensor functor F : € — 2 is an equivalence.

2.4. Tensor generators

For a collection {Y; }; of objects in a tensor category €, let (Y¥;); denote the smallest (full)
tensor subcategory in 4 which contains the Y; and is closed under taking subquotients.
We call this subcategory the tensor subcategory in € generated by the Y;. We say € is
tensor generated by the collection {Y;}; if € = (Y});.

2.5. Braided tensor categories, ribbon tensor categories, etc.

A braiding on a tensor category % is a chosen collection of natural isomorphisms cy,y :
X®Y > Y ®X, foreach X and Y in &, which satisfy the equations

cxyez = ([(d®cx,z)(cxyy ®id) and cxgy,z = (cx,z ®id)(id @ cy,z) (2)

for each triple of objects in €, and cx/,y/(f ® g) = (g ® f)cx,y for each pair of mor-
phisms f : X — X" and g : Y — Y’ in ¥. We also require that the braidings ¢,y and
cx.1 composed with the unit isomorphisms are the identity. A tensor category equipped
with a particular choice of braiding is called a braided tensor category.

Remark 2.6. We have suppressed the associator in the equations (2).

For a braiding ¢ on a tensor category %', we let ¢ denote the square operation C)z(,Y =
cy,xcx,y. The Miiger center Zyuo (%) of a braided tensor category ¢ is the full subcat-
egory consisting of all objects X in € for which c)z(’_ = idyg—. We call a finite braided
tensor category non-degenerate if the Miiger center Zyg (%) is just Vect, i.e. if any Miiger
central object is isomorphic to some additive power of the unit.

A rwist for a braided tensor category % is a choice of natural automorphism 6 of the
identity functor, i.e. a collection of natural isomorphisms 0y : X — X for each X such
that

Oxey = (0x ® Oy)cky

for all X and Y in €. A ribbon tensor category is a braided tensor category with a choice
of twist 8 which is stable under duality, in the sense that 9; = Oy for all X in ¥.
A modular tensor category is a finite, non-degenerate, ribbon tensor category. Note that,
unlike some authors, we do not require a modular tensor category to be semisimple. When
it is, we call it a modular fusion category.
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2.6. Tensor categories coming from vertex operator algebras

Let 'V be a vertex operator algebra (VOA). VOAs and their modules carry an action of
the Virasoro algebra, coming from the conformal vector w € V. By a generalized V-
module W is meant a module in the obvious algebraic sense, together with a grading
W = [1,ec W) into generalized eigenspaces of the Virasoro operator L(0). The pres-
ence of the adjective ‘generalized’ here is unfortunate and historical, and merely refers to
the subspaces W, being generalized eigenspaces. We are primarily interested in grading-
restricted W, which means each subspace W/;) is finite-dimensional, and for each r € C
we have W, ;) = 0 for all sufficiently small k € Z. For example, 'V is a grading-restricted
generalized module over itself, where all V{;) are actually eigenspaces for L(0), and
where all weights r are integers. A common requirement on generalized modules is Cj-
cofiniteness (defined e.g. in [46]).

In the series of papers [49-51], Huang, Lepowsky and Zhang give technical con-
ditions under which a full subcategory of the category of grading-restricted generalized
V-modules can be a braided tensor category. In particular, see [51, Theorem 12.15, Corol-
lary 12.16]. In these cases, the VOA V itself serves as the unit, and all structure maps are
deduced via a certain analysis of multivalued functions on the punctured complex plane.
We should be clear that, when we speak of a class € of V-modules admitting a braided
tensor structure, the braided tensor structure is specified uniquely. In general, the problem
is that, for a given class of V-modules, no such structure may exist.

Establishing rigidity is more subtle. The dual of a grading-restricted generalized mod-
ule W should be the contragredient W*, which is the natural V-module structure on the
restricted dual [], W(t) In a natural sense, (W*)* can be identified with W — this is
clearly true as a vector space (since the W, are finite-dimensional), but as well the for-
mula for the vertex operator of (W*)* collapses to that of W. In establishing rigidity,
the (co-)evaluation maps are generally clear up to scaling; the challenge is to verify the
rescalings are finite.

Such a tensor category of VOA modules comes equipped with a twist provided by
the exponential 6 = e iL(O), which one verifies as in [45, Theorem 4.1]. (A concise
recounting of the situation can be found in [19, Section 3].)

We follow the standard VOA practice of distinguishing between modules and repre-
sentations. The notion of a representation of a VOA V (i.e. a homomorphism from V to
some sort of VOA canonically associated to the vector space W), and its relation to V-
modules, is much more subtle than it is for say associative algebras. This is discussed in
more detail in the book [60], which also serves as a standard introduction to VOA theory.

3. Quantum SL(2)

We recall basic information for the category of quantum SL(2)-representations, and give
two interpretations of the small quantum group for SL(2) at a root of unity ¢ € C*. Much
of our presentation is general, in the sense that the quantum parameter ¢ can be an arbitrary
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(non-zero) complex number. However, when specificity is needed, we focus on the even
order case ord(¢) = 2p.

3.1. Big quantum SL(2)

Consider an arbitrary parameter { € C*, and let A denote the character lattice for SL(2),
so that A = %Za with « simple and positive. Let (—, —) denote the normalized Killing
form on A, so that (o, @) = 2. We consider the tensor category

the category of A-graded representations

rep SL(2); = {of Lusztig’s divided power algebra U g““s(slz)

} = rep(U; (sl2)).

The final algebra U; (sl) is the modified quantum enveloping algebra of [64, Chapter 31],
and for the A-grading we require that toral elements in U, g‘us (s1) act on the A-space V)
via the appropriate eigenfunctions. We refer to objects in rep SL(2)¢ as SL(2);-represen-
tations.

For a finite order parameter, ord(¢(2) = p for example, we require that the toral ele-
ments in the quantum group act as

K-v=¢@My and |: K;;0:| ‘v = |: (O;A)]v, where |:Z:| is the ¢-binomial.

At such ¢ the category rep SL(2), can then be described explicitly as the category of finite-
dimensional A-graded vector spaces V equipped with linear operators E, F, E?) F(P) .
V' — V which shift the grading as

E-ViCVita: EP-ViCVigpa: F-ViCViea. FP V3 CVipa

and satisfy the standard quantum group relations of [63,64]. At an infinite order parameter
one can deduce a similar (but slightly easier) presentation of rep SL(2)¢.

LetQ:V @ W — V ® W denote the diagonal endomorphism associated to the nor-
malized Killing form,

Qv @ w) = ¢Wee®deeW)y, @ (0, ) = 2.
When ¢ is of finite order, ord(¢2) = p, we have the formal element
p—1 1
— (Z é-—n(n 1)/2 (é. é.)n L S prg Fn)Q 1
- [n]!
=(1-(C-¢HE®F +-)Q7", (3)

which acts as a well-defined linear endomorphism on products V' ® W of quantum group
representations. Similarly, at an infinite order parameter we have the element R defined
by replacing the finite sum (3) with the evident power series. The element R provides an
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R-matrix for the category rep SL(2)¢, so that we have the associated braiding

cvw: VW WV,

1_;-)7;

CV,W(U ® w) =Ry - (w®v) = é-—(degv,degw) Z é——n(n—l)/z (é‘ F'w ® E™v,
_ [n]!

(see [52,64]).

Remark 3.1. To be clear, the normalized Killing form takes half-integer values on the
character lattice A, so that the definitionof @ =3, .2 § 411, ® 1, involves a choice
of square root for {. We simply halve the argument and take the positive square root of
the magnitude to define ¢'/2 := /|¢| exp(i arg/2), where 0 < arg < 27 is such that
¢ = |¢|e'®2. There is, however, another R-matrix for rep SL(2); defined by taking the
negative square root of |¢| and, accounting for reverse braidings, we observe a total of
four possible braidings on the category of SL(2),-representations.

We refer to the above braiding on rep SL(2)¢, defined by taking the positive square
root of the magnitude |{| and corresponding R-matrix (3), as the standard braiding on
rep SL(2)¢.

Suppose now, for the sake of specificity, that ¢ is of even order ord({) = 2 p. The cate-
gory rep SL(2)¢ is pivotal [34, Definition 4.7.7], with slightly unorthodox pivotal element
provided by the grouplike K”~!. We consider the Drinfeld morphism

= (&= 1y
uw W — W, uW(w) — é-(degw,degw) Z é-n(n+1)/2é-n(degw,a) [n]'

n=0

F'E"w,

defined by R to find the corresponding twist
O =uwK Pt Ww — W,
1 (s 0.0 ez dez ) 5 g 1)/2 b Do) (= 1"
— _(_ eg w,o eg w,deg w n(n n eg w,o nn
O (w) = (=1) ¢ >t ¢ i FE"w.

This twist provides the category rep SL(2); of quantum group representations with a rib-
bon structure.

n=0

3.2. Simple objects in rep SL(2)¢ and the standard representation

For any dominant weight A € A, i.e. any weight of the form A = na/2 with n posi-
tive, we have a uniquely associated simple module L (1) in rep SL(2); of highest weight
A. Furthermore, these representations exhaust all of the simple objects in rep SL(2)¢
[62, Proposition 6.4]. Each L(A) appears as

L(A’) = CU)L @ (CU)L—mla @ @ Cv}t—mn()t)aa
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where the m; are positive integers which depend on A. At A = «/2 we obtain a 2-dimen-
sional simple representation

V= L(%a) =Cvy ®Cvy with vi; = Vig).

We call V the standard representation for SL(2) .

When ¢ is of infinite order, each simple L(no//2) is of dimension n 4 1 and the cate-
gory rep SL(2)¢ is semisimple. Indeed, at such { we have the obvious abelian equivalence
between classical representations rep SL(2) and rep SL(2); which induces an isomor-
phism on Grothendieck rings.

Consider now ¢ of finite order, and take p = ord(¢?). We adopt special notations for
the first p simples:

Vi=1=L(00), V2=V =L(3a), V3=L(),.... Vp = L(pgloc). 4)

Each simple V; is of dimension s, and has non-vanishing weight spaces in degrees
(s—1-=2j)a/2,forall j =0,...,5s — 1.

By considering the behaviors of weight spaces under the tensor product, it is easy
to see that each simple L(A) is a quotient of some power V®” of the standard repre-
sentation. The following is well-known, and is a consequence of the fact that the simple
representation V), is also projective [12, Lemma 3.2.1].

Lemma 3.2. The standard representation V generates rep SL(2)¢ as a tensor category.

As for the simples of highest weight > pT_la, each simple L(r Za) is (r + 1)-dimen-
sional, is supported in weight spaces (r — 2 j)%a for 0 < j <r, and is annihilated by E
and F. We have the following basic result.

Lemma 3.3 ([6, Theorem 1.10]). Each simple L(A) admits a unique decomposition L(1)
= L(w) ® Vi, where p € pZ% and A = p + *5ta.

Proof. The general version of this theorem is covered in [6]. In our case, one can examine
the product L (i) ® V; directly to see that it admits no submodules, and so is simple. Since
L(p) ® Vs is of highest weight A = u + %a, we conclude L(i) ® Vi = L(A). |

3.3. Lusztig’s quantum Frobenius

For the remainder of the section we suppose ¢ is of even order ord({) = 2 p, again for the
sake of specificity.

Let us consider the sublattice AM := pZa in A. The collection of objects in
rep SL(2); whose A-grading is supported on the sublattice AM forms a tensor subcat-
egory in rep SL(2)¢. This subcategory is semisimple and is equivalent to the category
of representations of classical PSL(2). Indeed, Lusztig’s quantum Frobenius provides a
braided tensor embedding

Fr : rep(PSL(2)) — rep SL(2)¢
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(see [64, Chapter 35]). Furthermore, the image of the functor Fr is precisely the Miiger
center of rep SL(2); [69, Theorem 5.3], so that we have an identification

Zwmig (rep SL(2)¢) = rep(PSL(2)).

3.4. Small quantum SL(2) as a quasi-Hopf algebra [16]

Recall our standing assumption ord({) = 2p. As an algebra, the small quantum group
ug(sl2) := ug (SL(2)) has a presentation

ug(slz)

K—-K!
=gt

We let G = (K) denote the subgroup of units in u¢(sl,) generated by K.

The quasi-Hopf structure on u¢ (sl5) is a “toral perturbation” of the usual Hopf struc-
ture induced by the algebra inclusion u¢ (sl2) — Ug“us(sIz) into Lusztig’s divided power
algebra [63, 64]. While we will not explicitly describe the quasi-Hopf structure here, let
us say that the (co)associator ¢ € u¢ (s12)®3 lies in the group of grouplikes (CG)®3, and
the coproduct is of the form

= (C(E,F,K)/(KZP —1,EP FP [E,F]— KE —*E, KF — §_2FK).

AE)=EQRL+MKQ®E), AF)=FQL '+M (K '®F), AK)=K®K

with L € CG and M, M’ € CG ® CG. The counit u¢(sl,) — C is the usual one. (More
details can be found in [16,42,69].)

The category of u¢(sl,)-representations admits a ribbon structure for which the
restriction functor

res® = (res, T”) : rep SL(2)¢ — rep(u¢(sl2))

becomes a map of ribbon tensor categories, after we introduce a non-trivial tensor com-
patibility 777y, : res(V) ® res(W) — res(V ® W) [69, Proposition 6.3].

The particular form of the quasi-Hopf structure on u¢(sl,) will not be important for
us. Indeed, when addressing the tensor category rep(u¢(sl»)) we prefer the presentation
of Section 3.5 below. There are, however, some advantages to considering the quasi-Hopf
interpretation of representations for the small quantum group. Namely, simple facts about
the representation theory of u¢(sl») are clear from this concrete perspective.

We observe for u¢(sl>) the anomalous 1-dimensional representation

x=Cuvp, E-v,=F-v,=0, K-v,=—0,.

Since y is 1-dimensional, one sees abstractly that it must be invertible in the tensor
category rep(u¢(sl2)), and since y is in fact the unique non-trivial 1-dimensional rep-
resentation for u¢ (sl2), we see that it is self-dual. So y ® y = 1.

There are furthermore a total of 2 p simple u; (s[,)-representations which correspond
to the 2p characters of the group of grouplikes G. The first p simples are provided by
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the images of the simples V§ in rep SL(2); under restriction. The final p simples are
given as the products y ® Vj, so that we have a complete list of simple representations,
{Vs, x® Vs :1<s < p}, up to isomorphism.

The fact that the restriction functor rep SL(2); — rep(u¢(sl»)) is a tensor functor, or
rather admits the structure of a tensor functor, tells us that the fusion rules for rep(u¢ (sl2))
are the expected ones. To be more precise, the fusion rules are those one would calculate
from the naive Hopf structure on u;(sl») induced by that of U {Lus(s[z).

3.5. Small quantum SL(2) as Frobenius de-equivariantizaton [9, 69]

We have the quantum Frobenius Fr : rep(PSL(2)) — rep SL(2); of Section 3.3, and
can consider the central algebra object & := Fr ¢ (PSL(2)) in the category Rep SL(2)¢
of infinite-dimensional quantum group representations. (Specifically, Rep SL(2); is the
category of arbitrary U ;”S(glz)-modules M which are the unions [_J M, of finite-dimen-
sional subobjects M, in rep SL(2)¢.) We consider the de-equivariantization

the monoidal category of finitely presented}

(rep SL2)eJps2) = { ¢-modules in Rep SL(2);

(see [9,26]). The category (rep SL(2)¢)psL(2) is monoidal, with product ® 5, and we have
the monoidal functor
dE :repSL(2)¢ — (repSL(2)¢)psrz), dE(V) =0 @V

(see [57, Theorem 1.6]). There is a unique ribbon structure on (rep SL(2)¢)psi(2) such
that the de-equivariantization map dE is a map of ribbon monoidal categories, and we
consider (rep SL(2)¢)psi(2) as a ribbon category with its induced ribbon structure.

Theorem 3.4 ([69]). The category (rep SL(2)¢)psL(2) is finite, rigid, and non-degenerate,
and hence modular. Furthermore, there is a ribbon tensor equivalence

C ®% — : (tepSL(2)¢)psiiz) — rep(ue (sl2))
which fits into a diagram

res

repSL(2)¢

rep(uz (sl2))

dE Coy-
(rep SL(2)¢)psL(2)

The above result is comprised specifically of [69, Corollary 5.6, Proposition 6.3,
Corollary 7.2]. We argue in the present paper that one should observe an equivalence

F : (rep SL(2)¢)psi2) —> rep(Wp)

directly from the de-equivariantization of rep SL(2)¢, rather than from the representation
category of the quasi-Hopf algebra u¢ (sl,). This is very natural from the VOA perspec-
tive, as we will see starting next section. Indeed, we will interpret the de-equivariantization
dE as the induction of Vir.-modules to 'W,-modules.
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4. Modules over the triplet algebra

We provide basic information regarding the tensor category of modules for the triplet
vertex operator algebra ‘W, In this section, by module we mean finite length general-
ized module. Most of our presentation is deducible from works of Adamovié-Milas [3],
Nagatomo-Tsuchiya [68], and Tsuchiya—Wood [77], although some of our conclusions
are not explicitly in the literature.

As explained in the introduction, we compare modules over the triplet algebra to rep-
resentations of quantum SL(2) at a particular complex parameter g.

Throughout this work we fix ¢ = ™/,
The parameter g appears in a number of formulas related to modules for the triplet algebra.

We similarly fix the central charge ¢ = 1 — 6(p — 1)2/p.

4.1. Tensor categories for Cy-cofinite VOAs

To keep this subsection relatively short, we will use some standard technical terminology
without defining it — see e.g. the series of papers [49-51] for details in a very general
context.

By a strongly-finite VOA we mean a simple C,-cofinite VOA of positive energy with V
isomorphic to V* as V-modules. By rep('V) we mean the category whose objects are
finite length generalized V-modules, and whose morphisms are homomorphisms. For
simplicity we will just call these modules. In this context, ‘finite length’ is equivalent
to ‘grading-restricted’ or ‘quasi-finite-dimensional’ (see [46, Proposition 4.3]).

Recall from Section 2.6 that VOA modules carry actions of the Virasoro algebra.
When the VOA is strongly finite, the eigenvalues of L (0) are rational. Any module W has
a minimum such eigenvalue, called the conformal weight h(W).

The category rep(V) for strongly finite V has finitely many simples [30, Proposi-
tion 3.6] and enough projectives [46, Theorem 3.23]. In fact, rep('V) is a braided monoidal
category [46, Theorem 4.11] (we use monoidal here rather than tensor because the latter
usually requires rigidity), with the tensor unit being V itself. It is a finite tensor category
provided the simple modules (hence all modules) are in addition rigid (see [21, Theo-
rem 4.4.1]).

4.2. The triplet algebra and some modules

We consider the triplet vertex operator algebra ‘W), at an arbitrary integer parameter p > 1.
Let V /50 be the lattice VOA associated to the ,/p-scaling of the root lattice O C h* for
SL(2), where Q is given its normalized Killing form (o, @) = 2, and we employ the
non-standard conformal vector

r, p—1
w = Za(71)|0> + ﬁo{(_z)m) S VﬁQ'
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Then ‘W), is a vertex operator subalgebra of V /¢, and both algebras are of central charge
¢ =1—6(p —1)?/p. We therefore have a sequence of inclusions

Vire - W, — VﬁQ,

where Vir, is the simple Virasoro VOA at the prescribed central charge. (Details can be
found in [3].)

rep('Wp) is a braided finite tensor category: that ‘W, is strongly finite is proved in
[3, 13], while rigidity is proved in [77] (with some details fleshed out in [21]). The cate-
gorical duals *X and X* of X are both identified with its contragredient. In Theorem 4.7
we prove that rep(W,) is a modular tensor category, as was expected. We denote the
tensor product on rep('W,) via the generic notation ®.

The VOA ‘W, has precisely 2 p simple modules X si, 1 <s < p, and the triplet algebra
itself appears as the simple W, = X 1+ . As modules for the Virasoro algebra we have

X =@ em—Dtomrs. Xy = P2mLoms.

m>1 m=1

where &£, ; is the simple Virasoro module of lowest conformal weight
1
hns = —((np —5)* = (p = 1)*) 5)
4p

(see [3]) and central charge ¢. Therefore X' and X have respective conformal weights

1 1 _ 3 1 1
hf = hl,s=E(S2—1)—§(S—1) and &y = hz,s=zp+5(32—1)—s+§.
In the case s = 2 the above expression reduces to 1 = % -1

The triplet algebra ‘W, = X 1+ is generated as a VOA by the conformal vector @
together with three vectors of conformal weight 2p — 1. The conformal vector generates
the subalgebra Vir.. Each of those three vectors generates over Vir, a copy of £3,;. We
establish in this paper the ribbon tensor equivalence of rep SL(2), with a subcategory of
rep(Vir.); under this equivalence, £3 1 is identified with the image by Lusztig’s quantum
Frobenius of the adjoint representation of PSL(2), and ‘W, (as a Vir.-module) with the
regular representation of PSL(2). From the point of view of VOAs, this happens because
Aut('W,) = PSL(2, C) [2, Theorem 2.3], and the orbifold (fixed-point subalgebra) of this
PSL(2, C)-action on ‘W, is Vir,.

Remark 4.1. With the two notations PSL(2) and PSL(2, C) we are simply distinguishing
between PSL(2) considered as an algebraic group, or group scheme, and its corresponding
discrete group, or Lie group, of C-points.

4.3. The fusion ring for rep(W,) and Frobenius—Perron dimensions

Let us recall some basic information from [77].
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Proposition 4.2 ([3, Theorems 4.4, 5.9], [68, Theorem 5.1]). The object X; is projective
(and simple) in rep(W,).

An independent verification of the projectivity of X ; can also be found in [66, Propo-

sition 7.7].

Theorem 4.3 ([77]). In the fusion ring K(rep('Wp)), the class [X 1+ | is the unit, the
class [X{ ] acts as [X{] - [XF] = [X.F], and the class [X2+] acts as

{ [X2+] ’ [Xsi] = [Xsi_l] + [Xsﬂirl whenl <s < p,
[X5]- [XF] = 20XF] + 20X 5]

The above two results imply the following.
Corollary 4.4. The tensor category rep('Wp) is generated by X 2+ .

Proof. By Theorem 4.3 each simple object in rep('W,) appears as a subquotient of some
power (X 2+ )®” 5o that each simple object lies in the subcategory (X 2+ ) of rep('W,) gen-
erated by X 2+ . By Proposition 4.2, the projective cover &2 of some simple object X also
appears in (X 2+ ). Via the composite

X*® 2 > X*@X 51,

exactness of the tensor product, and projectivity of the product X* ® & in rep(W,)
[35, Proposition 2.1], we find that the unit object 1 admits a surjection from a projective
object which lies in (X 2+ ). It follows that the projective cover of 1 lies in <X2+ ), and
subsequently that all projectives in rep(W,) lie in (X 2+ ). Hence the subcategory (X 2+ ) is
all of rep('W,). [

Via associativity, the formulas of Theorem 4.3 determine the fusion rules for
K(rep(W,)) completely. Furthermore, one can explicitly calculate the fusion ring of
u4(sl,)-representations to find that there is a unique isomorphism of Z*-rings

T : K(rep(uq(sl2))) = K(rep(W,)) (6)

which sends the class [V] of the generator to [X,"]. We consider the Frobenius—Perron
dimension of the category rep('W,) (see Section 2.2).

Lemma 4.5. FPdim(rep('W,)) = FPdim(rep(u4(sl2))) = 2p>.

Proof. The isomorphism (6) sends each simple [V] over u,(sl2) to [X;'], and each
simple [y ® V] to [X;7]. Since the Frobenius—Perron dimension of an object is deter-
mined by its action on the Grothendieck ring, we find now

FPdim(X ) = FPdim(y ® V;) = FPdim(V;) = s.
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Furthermore, by a direct comparison of composition factors for the projective covers
Py — Vi and ﬁsi — XSi ([68, Proposition 4.5], [66, Theorem 7.9], [58, Proposi-
tion 2.3.5]), one sees also that for the projective covers of the simples we have

T[P] =21 Tlx® P]=[Z;].

so that the Frobenius—Perron dimensions of the projective covers agree as well. It follows
that

FPdim(rep(W,)) = FPdim(@ 7% Xsi)
s, £

=2 FPdim(@ P ® Vs> = FPdim(rep uy(slz)) = 2p3. |
A

4.4. The ribbon structure and modularity of rep('W,)

We recall that the category of 'W,-modules is ribbon, with twist provided by the exponen-
tial of the zero mode of the conformal vector

0 = e2niL(0)

Applying this to the simples described in Section 4.2 gives the following.

Lemma 4.6. The twist 0 acts on the simple modules X as the scalars
GX"" _ (_1)(s—l)q(s2—l)/2 and 9Xs_ _ _e37rip/2q(s2—l)/2.
In particular, 0 + = —q32.
2

Proof. One simply checks the value of ¢27:L(®) on the vector v;t of lowest conformal
weight in X,

2miL(0) £ _ 2m‘hsiv:|:
T =

e e 5 -

We plug in the weights h;t to obtain
2
Q2mihd eXp(m(s2 - 1)) exp(—mi(s — 1)) = (—1)6=Dg62=D/2
p

and
2wihy 3 1, . . 3mip/2 ,,(s2—1)/2
e =exp nz§p+n12—(s —1)—2mis+ni) =—e q ,
p

as claimed. [

One can use the above formula for the twist to establish modularity of the category
rep('Wp) of triplet modules.
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Theorem 4.7. The category rep(W,) is a non-degenerate, and hence modular, tensor
category.

Proof. By naturality of the braiding, if a given object X is Miiger central, then all of its
simple composition factors are also Miiger central. Additionally, the unit object in a finite
tensor category admits no extensions [35, Theorem 2.17]. So Zyye(rep(W,)) = Vect if
and only if the only Miiger central simple is the unit object. So we can simply check the
braidings of X 2+ against the simples, using the formula for the twist given in Lemma 4.6,
to observe the claimed triviality of the Miiger center. Let us compute.
The fusion
XFeXxt=xt oxt,,

at1 <s < p, implies that the twist 6, + has eigenvalues

+
Fex

0

+ = (—])Sq(s2_2s)/2 and 6 4 = (_l)sq(52+2s)/2.
X1 X511

Similarly 6, + @x— has eigenvalues
2 K}

_e3mp/2q(s2—2s)/2 _eSnip/Zq(s2+2s)/2.

and OXgr =

Ox- =
5=l 541

Since ¢° = ¢~ if and only if s = p, we see that each twist 9X2+®XA¢ € Endy, (X2+ ® XF)
has two distinct eigenvalues when 1 < s < p. The competing endomorphism 6, + ® 6, +

2 K
acts as a scalar, so that the square braiding

0 o0 wo7ly=¢2
X eoxid ( X+ ® X;t) X+ xE

is not the identity at 1 < s < p. It follows that no such simple X si is Miiger central.
Ats =1and + = —, we have X;7 ® X| = X5 and 6x; = —e3"/2¢3/2 while

Oy + ® Ox— = 3™P/243/2 Hence
2

X

-1 —1 2
—] = _ 0 ~) =
1= Oyrox; © Oyt ®0x1) =iy oo

and we conclude that X is not Miiger central.

Finally, for X ;t we note that the twist QX 3mip/2

has an eigenvalue —e or 1,

+oxiE
. . . 2 P
while 9X2+ ® OX} is scaling by

(_l)pq(p2—1)/2q3/2 _ eSnip/Zq or esnip/zq(p2—1)/2q3/2 =g,

respectively. From this information we conclude, just as above, that the square braiding

c; + g has an eigenvalue £¢~', so that the objects X Ijt are not Miiger central. This
2 4P

exhausts all non-trivial simples in rep('W,), and we conclude that the Miiger center of

rep('Wp) is precisely Vect. |
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5. Ostrik’s theorem

We recall a theorem of Ostrik, which classifies tensor functors rep SL(2); — «#/ from
quantum SL(2) into an arbitrary tensor category 7.

Our presentation is relatively robust, and we discuss various mechanisms employed
in the proof of Ostrik’s theorem in detail. In particular, we recall the construction of the
Temperley—Lieb category TL(d) and its universal properties. The Temperley—Lieb cate-
gory will play a prominent role in many of the arguments in the sections that follow.

5.1. Ostrik’s theorem

By a self-dual object W in a tensor category </ we mean a triple (W, coev, ev) of an
object W, and mapscoev:1 — W ® W andev: W ® W — 1 which identify W as its
own left and right dual (in the sense of [34, Section 2.10]).

Definition 5.1. For a self-dual object W in a tensor category 7, the intrinsic dimension
of W is the composite endomorphism

dW) =1 wew S,

Since End ., (1) = C idy, we can identify the endomorphism d (W) with a scalar. Also,
when W is simple, this scalar d (W) is independent of choice of structure maps for W, and
so is an invariant of W as an object in .«/. When W is not simple however, this dimension
does depend on the choices of coevaluation and evaluation. So calling such a dimension
intrinsic is a slight abuse of language in this case.

Remark 5.2. More generally, when W is simple and not self-dual, all that can be defined
is an intrinsic squared dimension. When o/ has a pivotal structure, the square of the
intrinsic dimension of W equals the product of the left and right categorical dimensions
of W.

For a self-dual object W of intrinsic dimension d (W), there is a unique-up-to-inver-
sion scalar ¢ € C* such that (W) = —(¢ 4+ ¢{~1). Hence the order ord(¢?) is an invariant
of W as a self-dual object, or simply as an object in &7 when W is simple. Let us call this
number the quantum order of o7 at W, or just the quantum order of W'.

As we explain below, when W is of (finite) quantum order p, the coevaluation and
evaluation maps provide a collection of self-dual objects W; =1, W, =W, Ws,..., W,
in @7 and splittings

WeW, =W,y ®W,yq forallr < p.

Each object W, is of intrinsic dimension #=(¢" ! 4 ¢"73 + ... 4 {77 1) for appropriate
choice of signs. In particular, d(W,) = 0. We say W is non-reduced (resp. reduced) if the
object W, is non-vanishing (resp. vanishes) in .27
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Theorem 5.3 (Ostrik’s Theorem [70, Section 2.6]). Suppose <f is a tensor category,
and W is a self-dual object in o/ of intrinsic dimension —( + {~V). Suppose also that
ord(¢?) < oo, and that W is non-reduced. Then there is a uniquely associated (exact)
tensor functor

Fw :1epSL(2); — &/ with Fw(V) = W.

Furthermore, any tensor functor F : rep SL(2); — & is isomorphic to Fw for some
non-reduced, self-dual object W .

As we recall below, the standard representation V in rep SL(2); is self-dual, and the
equality Fyy (V) = W in the statement of Theorem 5.3 should be interpreted as an identi-
fication of self-dual objects. So, Fyy is required to send the (co)evaluation maps for V to
the (co)evaluation maps for W. Theorem 5.3 appears precisely in [70, Remark 2.10]. We
sketch the proof of Ostrik’s theorem below.

For consistency, we call a self-dual object non-reduced whenever ord(¢?) = oo as
well. In the infinite order (or generic) case, the appropriate analog of the above theorem
holds. Namely, a self-dual object W in ./ which is of infinite quantum order uniquely
specifies a map Fw : rep SL(2); — /. This generic version of Theorem 5.3 is well-
known, and is easily deduced from our presentation.

Remark 5.4. Consider the situation presented in Theorem 5.3. In the case in which W is
self-dual and reduced, with d(W) = —(¢ + ¢~1), we obtain a uniquely associated tensor
functor Fyy : €(SL(2), ) — <7 from the semisimplified representation category of SL(2)
at ¢. The category %' (SL(2), {) is explicitly the quotient of the category of tilting modules
in rep SL(2)¢ by the ideal of negligible morphisms [10, Section 3.3]. An example of a

tensor category < realizing this case is the modular fusion category rep(L;[;(k, 0)) with

¢ = e™/k+2) where L;Q(k’ 0) is the rational C,-cofinite VOA associated to affine sl,
at level k € Z~¢ [60, Chapter 6]. So, a more complete recounting of Ostrik’s theorem
would include the reduced case as well. This point, however, is inessential for our study.

5.2. The Temperley—Lieb category

Consider TL(d), the Temperley—Lieb category at parameter d € C ([55], [39, Appendix]).
This category has objects [n], for each non-negative integer n, and morphisms
Homry ([m], [n]) given as the C-linear span of non-crossing pairings (non-crossing
planar string diagrams) between m points and n points, up to isotopy. So, a general
morphism from [5] to [7] is a sum of diagrams which look like

AVANERN\V/

Composition is given by stacking diagrams vertically, where we reduce any diagram with
loops to a diagram without loops by replacing each loop with the scalar d, () = d -id €
Homry ([0], [0]).



Quantum SL(2) and logarithmic vertex operator algebras at (p, 1)-central charge 797

The category TL(d) is a C-linear, rigid monoidal category with products given by
placing diagrams alongside each other horizontally, so that [n] ® [m] = [n + m]. The
generating object [1] is self-dual with coevaluation and evaluation given by the cup and
cap morphisms

coev(;] = U € Homp ([0], [2]), ev[i) = N € Homyy ([2], [0]).

Hence all products [m] = [1]® are also self-dual, and the object [1] is of intrinsic dimen-
sion
d([1]) = evpjocoevy = QO =d.
The category TL(d) has a universal property among monoidal categories equipped with a
chosen self-dual object. We recall this universal property momentarily, after introducing
a preferred additive completion of TL(d).
Let 7 £(d) denote the Karoubi, followed by additive, completion of the Temperley—

Lieb category
T £(d) = Kar(TL(d))®.

So, we construct T £(d) by splitting idempotents in TL(d ), then adding in finite sums of
objects.

Theorem 5.5 ([40, Theorem 4.1.1], [82, Lemma 6.1]). For </ a C-linear, pre-additive
monoidal category, and W a self-dual object in </ of intrinsic dimension d, there is a
unique linear monoidal functor Fy : TL(d) — </ with Fy ([1]) = W, Fy (coev[y)) =
coevy, and Fy (ev]) = evw.

When <f is a tensor category, the aforementioned universal map extends uniquely to
an additive monoidal functor Fy : TL£(d) — .

By “unique” we mean unique up to natural isomorphism of monoidal functors.

Proof. As an alternative to the cited texts, one can note that TL(d) admits a monoidal
presentation by generators and relations [78, Section 2.2], with generating object [1]
and generating morphisms given by evaluation and coevaluation. One then applies [78,
Lemma 4.3.1] to obtain the claimed universal property. ]

5.3. The self-dual generator for SL(2)¢
The object V in SL(2) is self-dual, with (co)evaluation maps

coev:1—>V®V, coev(l) =120, Qu_y —Y?v_; @ vy,
ev: V®V -1, ev(vi ®vy) =ev(v_; @ v_y) =0,
ev(vy @ v_y) = =712,
ev(v_; ® vy) = ¢V/2.

One deduces these morphisms via the (co)evaluation maps for the usual dual V* and the
explicit SL(2)¢-isomorphism

¢:V = V¥, p(u) = V207 puoy) = /201,
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where v’ denotes the dual function to v; in the above expression. We then calculate the
dimension
d(V) =evocoev =—( +¢7h).

The following result is fundamental.

Theorem 5.6 ([33, Lemma A.7], [70]). Ford = —(C + ¢71Y), the map
Fy : T&£(d) — repSL(2)¢,
determined by the self-dual object V, is fully faithful, and restricts to an equivalence
Fy :T£(d) > Tt
onto the subcategory of tilting objects in rep SL(2)¢.

While the tilting category 7¢ in rep SL(2); admits a rich representation-theoretic struc-
ture (see e.g. [5, 7, 8, 75]), for us it is simply the full, additive, Karoubian, monoidal
subcategory in rep SL(2); generated by V. This category is all of rep SL(2)¢ precisely
when ¢ has infinite order, or is £1.

Sketch proof of Theorem 5.6. Fully faithfulness of the initial functor
Fy : TL(d) — rep SL(2)¢

follows from [33, Lemma A.7] via base change, and implies that the corresponding map
from the completion 7 &£(d) is also fully faithful. Since the indecomposable objects in 7z
are summands of the powers Fy ([n]) = V®” of the standard representation [75, Propo-
sition 4], the image of 7 &£(d) is precisely the subcategory 7z of tilting objects. |

From the above identification 7 &£(d) = 7 we deduce a universal property for the
subcategory of tilting modules in rep SL(2)¢.

Corollary 5.7 ([70, Theorem 2.4]). For any tensor category <7, and self-dual object W
in o of dimension d(W) = —(& + V), there is a unique additive monoidal functor
Fw : T¢ — o with Fyy (V) = W, Fy(coevy) = coevy, and Fy (evy) = evy.

As stated above, J¢ = repSL(2)¢ when ord({) = oco. So Corollary 5.7 already implies
the generic version of Ostrik’s theorem.

When ¢ is of finite order, ord({2) = p, recall that we have the p simple SL(2)¢-
representations V; of respective highest weights (s — 1)ae/2 for s < p, as in (4). These
simples V all lie in the subcategory of tilting modules in rep SL(2)¢. It follows that for
any self-dual object W in ./ which is of dimension d(W) = —(¢ + ¢™1), the functor Fy
defines distinguished objects W in <7 by taking

Wi=1, W,=W, and W;= Fy(V;) foralls < p. 7

These W; are alternatively defined via certain idempotent endomorphisms in TL(d)
[53,81].
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5.4. The proof of Ostrik’s theorem

We paraphrase the proof from [70]. Consider W a self-dual object in <7 of dimension
d(W) = —(¢ +¢71), and ord(¢?) = p < oco. Suppose also that W is non-reduced. In
the arguments below, by a tensor triangulated category we simply mean a triangulated
category with a compatible rigid monoidal structure.

Fix F = Fw : 7t — /. We consider the bounded homotopy category K? (Tz) of
tilting complexes and have maps

A: K®(T:) - D®(SL(2)¢) and RF : K®(T;) — D®(«) (8)

induced by the inclusion ¢ — rep SL(2) and the additive map F : 7; — <. Here DP (%)
denotes the bounded derived category [80, Chapter 10] of the given abelian category %,
and RF denotes the composite
KbF liz
Kb (@) =5 K () = DP ().
All of the functors of (8) are maps of tensor triangulated categories.

By a general result of Beilinson, Bezrukavnikov, and Mirkovi¢ ([11], [8, Proposi-
tion 2.4], [70, Proposition 2.7]), the functor 4 : K? (Tz) — Db (SL(2)¢) is an equivalence
of tensor triangulated categories. We consider the candidate extension of F to all of
rep SL(2); defined via the composite

F := (repSL(2); — D”(SL(2)¢) A7 K (T) 2E, pb(w) , ). 9

The functor .% is a perfectly well-defined map of additive categories, and satisfies
F |7, = F. We must argue now that .7 is exact, and preserves tensor products, provided
F(V,) #0.

We claim that, for any V' in rep SL(2)¢,

the cohomology H*(RF o A1 (V)) vanishes in all non-zero degrees. (10)

If we can verify this claim, then the tensor map rep SL(2); — DP? (o7 appearing in (9) has
image in the abelian subcategory D?(27)® of objects with cohomology concentrated in
degree 0, and it follows that .%# is an exact, C-linear, monoidal functor as desired. Indeed,
in this case we have an exact tensor functor rep SL(2); — D?(/)?, and composing with

the tensor equivalence H° : D?(27)® = o we see that .7 is exact and monoidal.

As all objects in rep SL(2), are obtainable from the simples via extension, it suffices
to prove the desired vanishing (10) for all of the simples L(A) in rep SL(2)¢. As explained
in [70, Section 2.6], it furthermore suffices to prove the desired vanishing (only) at the 2-
dimensional simple L(%a) in rep SL(2)¢. For this final claim one writes out L(%a) asa
3-term complex

AY(L(%2a)) =0>L—>VQ®L - L—>0

of tilting modules, and observes that after tensoring with the projective V), the com-
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plex A~! (L(%a)) ® V) is isomorphic to a tilting module L” concentrated in degree 0 in
Kb (7) [70, Sublemma 1, Section 2.5]. We therefore calculate

RF(A—I(L(ga))) & F(Vy) = RF(A—I(L(ga)) ® vp) ~ F(L"),

and find that the leftmost object has cohomology concentrated in degree 0. Via exactness
and faithfulness of the product on &7 [10, Proposition 2.1.8], and the fact that F (V)
is non-zero in ./ by assumption, we conclude that RF(A_l(L(ga))) has cohomology
concentrated in degree 0, as desired. So we establish the desired vanishing (10).

We conclude finally that when W, = F(V},) # 0in </, the map .# :repSL(2); — &
of (9) provides the desired extension of F' : 7t — &/ to all of rep SL(2);. Uniqueness
follows from the fact that, by the above information, any two such extensions .% and .%’
of F must have isomorphic derived functors, and hence must themselves be isomorphic.

6. Braidings for TL(d) and quantum group representations

We directly calculate all possible braidings on TL(d), and on rep SL(2)¢. The results of
this section are used to determine when a given tensor functor F : rep SL(2); — & into
a braided tensor category .7 is in fact a braided tensor functor.

6.1. Calculating braidings for TL(d)

Consider d € C and write d = —(¢ + ¢™1) for some ¢ € C*. Recall that there is a
unique solution to the equation d = —(X + X~!) up to inversion, so that the choice
here is between ¢ and ~!. We define the square root ¢!/2 unambiguously by halving the
argument of ¢ and taking the positive square root of the magnitude |¢|. Throughout the
section we abuse notation and write coev (resp. ev) for the coevaluation morphism coevyy]
(resp. evaluation morphism ev(;)) in TL(d).

Consider the Temperley—Lieb category TL(d) and write, for any non-negative inte-
ger m, TL,,,(d) = Homry ([m], [m]). We have the map f : [2] — [2] given by

f=UoN =coevoev

and the two elements {id[5], /'} form a basis for the endomorphism ring TL,(d). When
d # 0 we furthermore have the idempotent d ~!  which realizes [0] as a summand of [2]
in the Karoubi completion of TL(d).

In TL(d) one can calculate the (standard) equations

focoev=d-coev, (f ®1)(1Q® coev)= (coev® 1),
(1® f)(coev® 1) = (1 ® coev).
For an element ¢ € TL,(d) = Endry ([1] ® [1]) let us define
=@ )1 ®c) and ¢y, =id.

The following two results are straightforward, and certainly well-known.
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Lemma 6.1. There are precisely four solutions ¢ € TL,(d) to the equation
cr2),111(coev ® 1) = (1 ® coev)cyoy, 1] (11)
in Homry ([1], [3]), namely
c=2@2f+7) and =TS+,

Proof. Write ¢ = af + b. We have directly

¢, iny(coev ® 1) = (cpry,) ® D1 & cppp,pap)(coev @ 1)
=a(cn)m ® DA Q® f)(coev ® 1) + blcpy,y @ 1)(coev ® 1)
=a?(fDU® fcoev® 1) +ab(1® f + f & 1)(coev ® 1) + b?(coev ® 1)
= (@®>+b*)(coev® 1) +ab(1® f + f ® 1)(coev ® 1)
= (a® + b + dab)(coev ® 1) 4+ ab(1 ® coev).

Since the two representing diagrams for (coev ® 1) and (1 ® coev) are non-isotopic, and
hence these maps are linearly independent in Homry (4 ([1], [3]), the identity (11) implies
the equations

ab=1 = b=a"' andsubsequently d = —(a®+a?).
The final equation gives a? = ¢*!. Hence a = +*+1/2, n

Note that for any braiding ¢ on TL(d) the endomorphism c1),[1] € TL»(d) solves (11).
Note also that any braiding on TL(d) is specified uniquely by its value on [1] ® [1]. So the
above lemma says that there are precisely four possible braidings on TL(d). In the above
formulas, inverting { corresponds to replacing the braiding by its opposite. Changing the
sign of the braiding corresponds to choosing a different square root of ¢. The existence of
the Kauffman bracket implies that all four possibilities are realized as braidings on TL(d).

Proposition 6.2. The category TL(d) has precisely four braidings, and precisely two
braidings modulo inversion. These two braidings (up to inversion) are specified uniquely
by their values on [1] ® [1], and differ only by a sign:

cnnny = £@CVRF + 712,

Proof. The Kauffman bracket (see e.g. [79, Section XII.2.2]) realizes all four of the pos-
sible braidings suggested in Lemma 6.1 as braidings on TL(d ). (These braidings are also
realized as braidings on rep SL(2)¢, which one recalls involves a choice of square root
for ¢.) To pair inverses we check

CFHIDEP T =@+ e+ D 1= 1 .

When d # 0, we have the two idempotents e; = d~! f and e3 = 1 —d ™! f which
provide an alternative basis for the endomorphisms TL,(d). One translates directly to
find ¢1/2 f 4+ 7Y2 = —3/2¢; 4 ¢71/2e3. So, in terms of this basis of idempotents,
Proposition 6.2 yields the following.
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Proposition 6.3. When d # 0, the category TL(d) has precisely two braidings, modulo
inversion, which are specified by the values

ey = (=8 %e + 71 %e;).

6.2. Calculations with the generator V in rep SL(2)¢

Via the equivalence K?(T £(d)) =~ Db(SL(Z);) we observe a bijection between braid-
ings on rep SL(2)¢ and braidings on the Temperley—Lieb category (see Section 5.4). In
particular, restricting along the fully faithful functor Fy : TL(d) — rep SL(2)¢ induces
a bijection between the respective collections of braidings. So we may compare the stan-
dard braiding of Section 3.1, for the category of quantum group representations, with the
possibilities of Proposition 6.2. We perform some calculations with the generator V.

Consider the braiding ¢ on rep SL(2); determined by the R-matrix (3). Since V is
annihilated by the second powers of E and F', we have

cyv(v @) = é-—(deg(v),deg(v/)v/ RV — g—(deg(v),deg(v/)) (6= YHFv' ® Ev
so that
v1 @ vy > V20 @ vy,
vo1 ®vog = P @y,
v ®@v_y > {0 @y,

Vo1 ® V1 > é'l/zvl R v_1 — Zl/z(f - é'_l)v—l ® v1.

vy, v =

Also, the element fy = coev o ev € Endrepsi2), (V ® V) is such that

Jv(vr ®vy) = fy(v—1 ® v_1) =0,
Wi ®v_g) =~ ®@vog +vo1 @ v,
Sfv(vm1 ® V1) =v1 ®v_1 — v @ vy.

One observes an expression for the standard braiding directly from the above calculations.

Lemma 6.4. cyv = /2 fy + V2

7. An analysis of the generator X ;

The object X 2+ is self-dual [77, Theorem 37], and so the material of Section 5.1 implies
the existence of a tensor functor from some quantum group category to rep('W,). As
explained in Theorem 5.3 and Remark 5.4, the precise domain of this functor depends on
the behavior of X 2+ in rep('Wj). In this section we prove the following.

Proposition 7.1. The object X 2+ is of intrinsic dimension d (X 2+ y=—(q+q "), and is
non-reduced.
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Proposition 7.1 implies, via Ostrik’s theorem, the existence of a unique tensor functor

FX2+ :repSL(2)q — rep(W,)

with F + (V) = X 2+ . This functor is examined in more detail in Section 9.
2

We note that the dimension d (X 2+ ) can be calculated directly by following the analysis
of Tsuchiya and Wood [77, Section 4.2]. We will, however, determine the dimension via
abstract arguments which simultaneously address the non-reduced property of X5, and
also provide information on the braiding for rep('W,). At the conclusion of the section we
determine the braiding Cx; x; UP to a sign. We complete our analysis of the braiding in
Section 8.

7.1. Proof of Proposition 7.1

Recall that at p = 2 the product X 2+ ® X2+ is the minimal projective cover of the unit
1=X 1+ [77, Theorem 37], and the evaluation map X 2+ ® X 2+ — 1 identifies 1 with the
cosocle of this projective module. In particular, evaluation is the unique non-zero map in
Homyqy, (X2+ ®X 2+ , 1), up to scaling. This statement also holds at p > 2, since we have
a decomposition X 2+ X 2+ 10X ;' . Therefore at arbitrary p there is a unique linear
map

1(=) : Endy, (X5 ® X;7) — Endy, (1)

defined by composing functions with any non-zero morphism X 2+ ®X 2+ — 1. In terms of
evaluation for example, this map is uniquely defined by the property (1| f) cev =evo f.

Lemma 7.2. At p > 2 the natural braiding on rep('Wp) is such that

2

-3
c = e e
X5 x5 q "e1 +qes,

and at all p the corestriction of the braiding along evaluation is 1|c}2( +oxf =q3.

To be clear, the e; above are the (unique) idempotents in Endqy, (X' 2+ ® X 2+ ) corre-
sponding to the simple factors X 1+ and X 3+ in the product X 2+ R X, ei:=(X 2+ X 2+ —
X5 = X5 o Xxh.

Proof. When p > 2 we have, by naturality of the twist,
OX;'@X;' = bhe; + OX;-63 =e; + 61463

and Q;Jr = ¢3. Hence
2
2 _ -1 -1y _ -3
In general, naturality of the twist gives

IIQX;F@X;(Q;j- by 6;5—) = q_3(1|9X2+®X2+) = 4_391 = q_3~ u
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Lemma 7.3. The category rep('Wp,) is of finite quantum order at X2+ (see Section 5.1).
Furthermore, this order divides p.

Proof. Take ¢ € C* such that d(X2+) = —({ + ¢™1). Then by the fusion rule for rep('W,),
and induction, we observe

dOXGH) = £+ e T

forall 1 <r < p. But now, the simple X ; is projective, and so must be of dimension 0.
To make this point more clear, simply note that any composite 1 — X ; ®X ; — 1 must
be 0, since otherwise 1 would appear as a summand of the projective object X ; ® X,
and would therefore be projective — but we know this is not the case.

The vanishing d(X,F) = 0 implies

p—1
0=t =) @,
m=0
SO
p—1
0=@-D(X ") =¢r-1.
m=0
Hence ord(¢?), which is the quantum order of X 2+ in rep('W,), is finite and divides p. m

Lemma 7.4. The object X 2+ is non-reduced in rep('Wp) (see Section 5.1).

Proof. Take ¢ such that d = d(X;7) = —(¢ + ¢!). We already saw at Lemma 7.3 that
ord(¢?) < p. Take p’ = ord(¢?). In the arguments to follow, the fact that p’ < p is of
significance.

We have the universal map FX; 1 Te = TE(d) — rep(Wp), F(V) = X2+, and one

sees by a recursive argument that Fy + (V) = X ;" for all s < p’. Namely, Fy+(V) =
2 2

Fy+(V2) = X2+, and if we assume Fy + (V) = X;F forall r < s then
2 2

= Fys (V) @ Fyy (Vi) = XFext =2xt,ox .

Uniqueness of Jordan—-Holder series therefore forces Fy+(Vs) = X s, as proposed.
2

These identifications imply, in particular, that Fy +(V}/) is isomorphic to the (non-zero)

simple X ; . So we see that X2+ is non-reduced. ]

We can now prove the claimed result.

Proof of Proposition 7.1. We have already seen that X 2+ is non-reduced, in Lemma 7.4.
So we only have to determine the dimension. When p = 2 the object X 2+ ®X 2+ is pro-
jective, and thus the intrinsic dimension of X 2+ is0 = —(i —i~1). Suppose now p > 2.
Fix { such that d = d(X;) = —({ + ¢!). We want to show that { = ¢g*!. We have
the universal map FX2+ : TL(d) — rep(Wp), F([1]) = X2+ Since X2+ is non-reduced,
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the map F, + extends to a tensor functor from rep SL(2)¢ and is therefore faithful [28,
2
Proposition 1.19]. Faithfulness, and the fact that

dimc End, (X;" ® X,57) = dimc Endw, (X;” & X5) = 2,

implies that the map on morphisms F, + : TLa(d) — Endy, ()(2Jr ® X2+) is an isomor-
2
phism.

Now, by Lemma 6.1 and Proposition 6.2, the preimage ¢ € TL,(d) of the element
Cxiox; € Endw, (X2+ ® X2+ ) specifies a unique braiding on TL(d) under which the
functor F. Y+ is braided monoidal. By the calculation of Lemma 7.2, this braiding satisfies

2

i =4 er +qes.

By the constraints placed on braidings on TL(d) given in Proposition 6.3, we see that
{=q*andd =d(X)) =—(q+q7"). n

7.2. The braiding on rep('W,), up to a sign

In keeping with our general convention, we let fXZJr : X2+ R X 2+ - X 2+ ® X2+ denote
the composite of the evaluation and coevaluation maps

Xfex)f-1-XxXrex) .

Since X2Jr is simple, the endomorphism fX2+ is independent of the specific choice of
evaluation and coevaluation.

Lemma 7.5. The braiding on rep('Wp) is specified, up to a sign, as
CX;',X;_ = :I:(q_l/zfX;‘ + ql/Z). (12)

Proof. At p > 2 the endomorphism (12) can be rewritten as +(—g~3/2¢; + ¢q'/%e3)
and squares to the appropriate formula according to Lemma 7.2. At p = 2 the square
of this endomorphismis 2f + ¢ = 2f + ¢ 3, since ¢* = 1 and f2 = 0, where we write
f= fX2+ (At p = 2 the square of f is zero since 1 is not projective, and so does not
appear as a summand of the projective object X 2+ ®X 2+ J)

As explained in the proof of Proposition 7.1, there is a unique braiding on TL(d ) under
which the (faithful) monoidal functor FX2+ : TL(d) — rep('Wp) is braided monoidal. By

the constraints of Propositions 6.2, and the fact that {|c2 Lot = g3 by Lemma 7.2, we
xF.x

see that the only possible values for ¢

2 2
v+ x+ are those of the form (12). ]
2 22

At general p, these two possibilities for the braiding can be distinguished by their
compositions along any non-zero projection X2Jr ® X2+ — 1.

Corollary 7.6. We have 1|cy+ 4+ = +(—q~3/2), with sign + corresponding precisely
2 2
to the sign at (12).
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Proof. One calculates directly

evo (qfl/zfX;_ _I_q1/2) — (qfl/Zd _I_ql/2)ev — _q73/26v. -

8. The braiding for rep('W,)

We calculate the braiding on rep('W,) explicitly via its vertex tensor structure.

8.1. Categorical data for strongly finite VOAs

Let 'V be a strongly finite VOA, and W € rep(V) be a module (recall the discussion
in Section 4.1). Then as in Section 2.6 we obtain the decompositions V = [[72 o Vin)
and W =[], W) by L(0). For each v € V,) we have the vertex operator Yy (v, z) =
Y mez Vmz ™71, where the linear map v, sends Wi,y to Wiy n—m—1)-

To understand the tensor product of V-modules, we need a generalization of vertex
operators called (logarithmic) intertwining operators ¥. If W1, W2, W3 are simple, then

3
an intertwining operator of type (,{> ) has the shape

Yw', z) = ZhOVH—=hWH—h(W?) Z w,lnz_m_l for any w! € W1,

mezZ

where w,, sends W& © W bW 1) s —h W2 —m—14h(W )
ally, when W' are merely indecomposable, each term in the sum will include polynomials
in log(z). More precisely, choosing w' € W,;, and w? € W), let k; be the smallest val-
ues such that (L(0) — r)¥1w! = 0 = (L(0) — s)*2w?; then the mth term in the sum is
hWH=hWH=h(W?)=m=1 {imes a polynomial in log(z) of degree k1 + k» + k3 — 3 with
coefficients in Wg), where

when w! € W(i) More gener-

t=h(W34+r—h(WhH+s—h(W?») —m—1

and ks is the smallest power such that (L(0) — £)*3w3 = 0 for all w? € W(?).

We denote by 'V(WVIVI;:,Z) the space of intertwining operators of that type. Its dimen-
sion equals that of Homy(W! ® W2, W3) [50, Proposition 4.17]. Thus when W3 is

3

simple and W' ® W? is semisimple, dim V( WleWz) will equal the multiplicity of W3 in
wle w2

The tensor unit is V. There is a unique non-degenerate invariant bilinear form on V
up to scaling; let (1, v) denote the one normalized so that (1,1) = 1, where Vo = C1. We
will need an explicit intertwining operator ¥ of type (WW;V*) (for W simple, this space is
always 1-dimensional). It is defined by

(U, y(w, Z)w/) — (eni(h(W)_Wtw)Z_ZWlweL(_l)/ZYW(U, e—:r[iZ—l)eZL(l)w’ w/) (13)

forany v € V, w € W and w’ € W*. The Virasoro operator L(1) lowers weights by 1 (so
automatically kills lowest weight vectors), while L(—1) raises them by 1.
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For VOAs, the braiding isomorphism cy1 pp2 - W@ Ww?2 - Ww?2® W!is skew-
symmetry. More precisely, suppose V is strongly finite and W, W2 are simple. When
W' ® W2 is semisimple (i.e. isomorphic to a sum of simples), we can identify the V-
module W' ® W2 with @y V( WVIVV:,Z) ®c W3, where the (finite) sum is over inequiv-
alent simple V-modules W 3. In this case we can interpret Cy1 w2 as alinear map between

spaces of intertwining operators 'V( wi W2) — 'V( W2W1 )
ch’Wz(ﬂ/)(wz,z)w1 = A LEDY !, ™ z)w? (14)

forany ¥ € V( wi W2) where we are using the skew-symmetry operator €2, defined in
[48, equation (7.1)] (for us, r = 0). The notation e™* here indicates the appropriate choice
of branch of logarithm, needed to evaluate fractional powers. We also use (14) when
W1 ® W2 is not semisimple, though in this case the relation of the intertwining operator
to the tensor product can be slightly more subtle.

8.2. The sign of the braiding

In Proposition 7.1 we determined the dimension d (X2+ ) of X2+ by “abstract nonsense”.
In Lemma 7.5 we similarly determined the braiding on rep('W,) up to a sign, again by
“nonsense”. Here we specify the braiding on the category of triplet modules precisely, by
dealing directly with the vertex tensor structure on rep('W,).

Proposition 8.1. The braiding on rep('W,) satisfies

_ —1/2 1/2
xitxi =4 fX2+ +q".

Proof. By Corollary 7.6, in order to specify uniquely the braiding of rep('W,) it suffices
to apply (14) to the intertwining operator ¥ € W, ( le XF ) defined in (13). For all p, this
Y corresponds to the (unique up to scaling) homomorphism X 2+ ®X 2+ — W,

Take w! = w? = w, a non-zero vector in the lowest weight space of X . which is

1-dimensional. Note that ¥ (w, z)w € z'=3/@P) (x1 + z'W,[[z]]) for some x € C. It is
clear from (13) that x # 0. We find

Cxt xr (Y)(w, z)w € e?LEDmi=3/CPY J1-3/@P) (7 4 zW,[[2])
= —73m@P)Z173/@P) (x 1 4 W, [[2]]).

This must be a multiple of ¥ (since dim ‘W, ( X+VX+) = 1), and because x # 0, that

—3/2.

multiple is thus —¢g ]

For p = 2 the product X 2+ ®X 2+ is not semisimple, but rather is the minimal projec-
tive cover PIJr of the unit. This plays no role in the proof, however. When p = 2, for what

+
it is worth, ¥ is the part of the full logarithmic intertwining operator of type (X?X +)
2 42

coming with the highest powers of log(z).
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For p > 2 we can determine the rest of the braiding in a similar way. Take any non-

X+
zero Y € 'WP(X;};). Then Y (w, z)w € zV/@P) (w3 + z X [[2]]), so

ey xt W yw € VP ICH (wy 4 2 X F[2])
= ™D VCP (3 + 2 X [[2]])

for some w3 € X 3+ . This must be a multiple of ¥, and provided w3 # 0, that multiple
is thus ¢'/2, as desired. It is elementary to show that w3 # 0 using the hypergeometric
function calculations in [21,77]. But we will skip the details as we already know ¢'/2 is
correct from Lemma 7.5 together with the calculation in the preceding proof.

We note that, by naturality of the braiding and the braid relation, the braiding on the
category rep('Wp) is determined uniquely by its value ¢, o+ x; on the generator, as implied
by Lemma 7.5.

9. A modular tensor equivalence rep(u, (sl2)) = rep('W,)

At Theorem 9.5 below, we prove that there is an equivalence of (non-semisimple) mod-
ular tensor categories rep(uq(sl2))™" = rep('W,), at quantum parameter ¢ = e” i/P_ Qur
proof relies on a number of technical points. First, we identify tensor functors out of
the de-equivariantization (rep SL(2),)ps1.(2) With a certain class of tensor functors out of
rep SL(2),. We then prove a braided version of Ostrik’s theorem, which is given in The-
orem 9.4 below. These results, in conjunction with the analysis of rep('W,) provided in
Sections 7 and 8, will imply the claimed equivalence.

9.1. De-equivariantization as categorical base change

Suppose ¢ € C* is of even order 2p, for the sake of specificity. We say a functor M :
rep SL(2); — &/ annihilates the central subcategory rep(PSL(2)) C rep SL(2); if the
image of rep(PSL(2)) in &7 is precisely the subcategory Vect C o7 generated by the unit,
and for any W in rep(PSL(2)) and V' in rep SL(2); the diagram

M(cy,.w)

MW ®@ V) ————— - M(V @ W)

| e

M) @ M(V) M(V) ® M(W)

™M(W) M(V)

commutes. Here the vertical maps are the structure maps for M, and v m(v) is the
half-braiding provided by the trivial lift Vect — Z (<) of the unit Vect — 7. (More
precisely, 7 is the half-braiding provided by the unit structure — ® 1 @ id 1 ® —.)
A very practical way to observe the above diagram (15) is the following.

Lemma 9.1. Given a braided tensor functor M : rep SL(2); — < into a braided tensor
category f, M annihilates rep(PSL(2)) if and only if M(rep(PSL(2))) C Vect.
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Proof. Compatibility with the braiding implies that the diagram (15) commutes, after we
replace T with the braiding ¢ for <7. But now, the hypotheses on any braiding requires
cx,y = tx,y for all trivial X, so that compatibility with the braiding implies the dia-
gram (15). [

The following is a general result about de-equivariantization, which we state only in
the case of (rep SL(2)¢)psi.(2). The general situation is discussed in Appendix B.5.

Proposition 9.2. Suppose a tensor functor M : rep SL(2); — &/ annihilates the central
subcategory rep(PSL(2)) C rep SL(2)¢. Then there exists a tensor functor from the de-
equivariantization ( : (rep SL(2)¢ )psi2) — &/ which fits into a (2-)diagram

rep SL(2)¢ M o

(rep SL(2)¢)psi(2)

If o is braided and M is a map of braided tensor categories, then | can be taken to
be a map of braided tensor categories as well. Furthermore, the collection of all such
factorizations { admitting a diagram (16)} admits a natural PSL(2)-action.

As is made clear in the appendix, a more careful statement of Proposition 9.2 would
specify not only the functor M, but also a choice of trivialization of M|;ep(psL(2))-

The factorization p can be written explicitly as 4 = 1 ®ue M(—), where 0 =
Fr 6 (PSL(2)). The ambiguity appears in the choice of the point (algebra map) M& — 1
at which we take the fiber to produce w. The collection of such points for M& has the
structure of a PSL(2)-torsor.

Proof of Proposition 9.2. Suppose we have such a map M : rep SL(2); — &/ which
annihilates rep(PSL(2)). Then the algebra object & = Fr ¢ (PSL(2)) in Rep SL(2); has
image B = MO, an algebra object in Ind Vect C Ind o7. Thus we may consider the
exact monoidal category mod, (B) of finitely presented B-modules in .27. Given any
augmentation (algebra map) B — 1, we have the associated monoidal functor 1 ® g — :
mod.y (B) — &/ [57, proof of Theorem 1.6(3), at 4 = mod./(B) and A = 1] for which

the composite

10—
o 2 mod,, (B) 255 o

is isomorphic to the identity [57, Theorem 1.6(4) at ¥ = o/, A = B, X = 1]. (Note
that we use the canonical central structure on the embedding Vect — o7 in place of the
braidings employed in [57, Theorems 1.5, 1.6].)

The tensor functor M induces an exact C-linear functor between categories of modules

Mg : (rep SL(2)¢)psi(2) — mod(B),

which just sends an object N in Rep SL(2), with a given &-action to the object M(V) in
Ind &7 with its induced B-action, B @ M(N) = M(0 ® N) — M(N). We compose with
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the fiber 1 ® p — at any (fixed) augmentation B — 1 to obtain the desired factoring of M
through the de-equivariantization 4 = (1 ® g —) o Mg, as a C-linear functor.

(We note that since & is a finitely generated commutative algebra object in
Rep PSL(2), B is a finitely generated commutative algebra object in Vect, i.e. a finitely
generated commutative algebra over C. Hence B admits a plethora of augmentations
which are parametrized by Spec(B).)

We now claim that M is a monoidal functor, or rather admits the structure of a
monoidal functor, and hence p is a monoidal functor. We also claim that u is exact. Let
us argue these points.

Since M annihilates rep(PSL(2)) C rep SL(2)¢, the two right B-actions on Mg (N)
induced by the braiding on rep SL(2); and the central structure for the Vect-action on 27,
agree. Additionally, exactness of M implies that the image of the equalizer diagram

M(N® OQN =2 NQN — N ®q N’)
for the action maps on &-modules N and N’ provides an equalizer diagram
M(N)® BQRM(N') = M(N) @ M(N') > M(N ®¢ N') 17

for the corresponding B-modules in Ind 7. Since M(N) ® g M(N’) is the equalizer of
the diagram (17), by definition, the monoidal structure on M induces a unique binatural
isomorphism M(N) ® g M(N’) = M(N ® ¢ N’) which fits into a diagram

M(N) @ M(N') ———=——— s M(N ® N')

structural

i l

M(N) @ M(N') m) M(N ®¢ N')
These isomorphisms give M the structure of a monoidal functor. The functor p therefore
inherits a monoidal structure, as it is a composition of monoidal functors.

For exactness of u, note that the reduction 1 ® g — : mod/(B) — 7 admits a right
adjoint &/ — mod . (B) which sends an object V' in &7 to the B-module in ./ which
is simply V, as an object in </, with B acting through the augmentation B — 1. As
any functor which has a right adjoint is right exact, we see that the reduction functor is
right exact, and hence p is right exact as a composition of right exact functors. Now,
compatibility with duality [34, Exercise 2.10.6] implies that u is left exact as well.

As for the promised identification yu o dE = M, we have the explicit sequence of
natural isomorphisms

podE(V)=pu(@®V)=105 MO V)
~ 185 (M(O) @M(V)) =1®5 (BM(V)) = 1®5 1@ M(V)) = M(V).

The inverse is provided by the natural map M(V) > M(O ® V) - 1 Qg M(O ® V).
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In the braided context, mod ., (B) inherits a braiding from that of <, and the braid-
ing caries through all of the given arguments. The PSL(2)-action comes from the fact
that the PSL(2)-action on &'(PSL(2)), by translation, induces a PSL(2)-action on the
algebra B. This PSL(2)-action permutes the points B — 1 at which we define the functor
p=1®zMy(-). .

Remark 9.3. Note that restriction gives us a functor from rep SL(2); to the representation
category of the small quantum group (not cocycle corrected), which sends rep(PSL(2))
to Vect. However, it does not annihilate rep(PSL(2)) in our sense (it does not satisfy (15)),
and will not factorize as in (16). So Proposition 9.2 cannot be used to establish an equiv-
alence between representations of the non-cocycle-corrected small quantum group and
(rep SL(2)¢ )psL(2)- Likewise, the forgetful functor rep SL(2); — Vect also does not anni-
hilate rep(PSL(2)) in our sense, and so we do not get an induced fiber functor for the
de-equivariantization.

9.2. A braided version of Ostrik’s theorem

Consider a self-dual object W in a tensor category 7. For such W we have an associated
endomorphism

fw WRW —>1—->WQW, fy =-coevoey,

of the second tensor power of W. When the endomorphism algebra End. (W) is 1-
dimensional, the morphism fy is independent of the choice of structure maps coev and
ev. This occurs, for example, when W is simple.

Theorem 9.4. Suppose W is a self-dual object in a braided tensor category <f with
d(W) = —( + V). Suppose also that ord({) < oo, W is non-reduced, and the braid-
ing endomorphism cw,w € Endy/ (W ® W) is in the subspace spanned by fw and the
identity.

Then, under one of the four braided structures on rep SL(2)¢ provided in Proposi-
tion 6.2, the tensor functor Fy : rep SL(2)¢ — &/ promised in Theorem 5.3 is a braided
tensor functor.

Proof. Since the tensor functor Fy is necessarily faithful, its restriction Fw |7, to the
subcategory of tilting modules is faithful as well. As in the proof of Proposition 7.1,
faithfulness and the fact that the braiding endomorphism cw,w is in the image of the map

Fw :End7, (V® V) - End (W ® W)

implies that Fy |7, respects the braidings on 7 and o7, under one of the four braidings
on J¢ considered in Proposition 6.3. Hence the corresponding functor of triangulated
categories

R(Fwlz,) : K*(%) — D*()

is also a map of braided monoidal categories.
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We recall that the inclusion 7z — rep SL(2), induces an equivalence of tensor trian-
gulated categories K (Te) = Db (SL(2)¢) [11], and note the diagram

b (7
K2(T) w1z

/

D?(SL(2)) Db ()

RFwy

The above diagram implies that the functor R Fy is braided monoidal, since both maps
out of K? (T¢) are braided. It follows that the original map Fy,, which one recovers by
restricting R Fy to the subcategory of complexes concentrated in degree 0, is braided
monoidal as well. L]

9.3. A modular tensor equivalence

Theorem 9.5. There is an equivalence of modular tensor categories

~

O :rep(uy(sl2))™ — rep(Wp).
The functor © is such that ©(V) =~ X2+.

The superscript (—)™" indicates that we consider the representation category for
u4(sl,) with inverse braiding, and inverse twist, relative to that of Section 3.1.

Proof of Theorem 9.5. Throughout the proof we consider rep SL(2), with its inverse rib-
bon structure. Since we have the ribbon equivalence (rep SL(2),)psi(2) = rep(uq4(sl2)) of
Theorem 3.4, it suffices to produce such an equivalence ® from the de-equivariantization
(rep SL(2)g)psL(2)-

By Theorem 9.4, Proposition 7.1, and Proposition 8.1 we have a braided tensor functor

Fw :repSL(2)4 — rep(W,)

with Fy (V) = X2+ . Since rep(W,) is generated by X", the functor Fy is surjective.
Consequently, the Miiger center in rep SL(2), maps to a Miiger central subcategory of
rep('W,). But by Theorem 4.7, the category of triplet modules is non-degenerate, so that
the only central subcategory in rep('W,) is Vect. It follows that Fy (rep(PSL(2))) C Vect.
By Proposition 9.2 and Lemma 9.1, the map Fy therefore factors to provide a braided
tensor functor

© : (rep SL(2)g)psLz) — 1ep(Wp)

from the de-equivariantization.
Since ® o dE = Fy we have (V) = X, , and since rep(W,) is generated by X,
we conclude that ® is surjective. Finally, since

FPdim((rep SL(2)q)psL(2)) = FPdim(rep(uq(sl2))) = FPdim(rep('W,)),

by Lemma 4.5, surjectivity of ® implies that ® is an equivalence, by Theorem 2.5.
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Finally, for the ribbon structure, let 6 denote the twist of Section 3.1. The cate-
gory (rep SL(2)4)psL(2), With its reversed braiding, admits precisely two twists, 6! and
KP?6~!. This is because u, (sl,) has precisely two central grouplike elements, 1 and K?.
These twists are such that 9§1 = —¢3/? and K? 9{,1 = ¢3/2. Since the value of the twist
for rep(W,) at X 2+ is —¢>/2, we see that © is an equivalence of modular tensor categories
when we provide (rep SL(2),)psL(2) With the inverse ribbon structure 671, |

10. Results for logarithmic minimal models

Consider Vir., the Virasoro vertex operator algebra at our fixed central charge ¢ = 1 —
6(p — 1)2/ p. This algebra is not C,-cofinite (hence not strongly finite). In [66] McRae
and Yang verify the existence of a vertex tensor structure on a distinguished “affine” cat-
egory rep(Vire),g of Virasoro modules, which we recall below. Some important features
of the category rep('Vir, ). are that it (a) admits a tensor generator, and (b) contains all of
the integral simples £, 5.

We prove the following theorem, which was first conjectured in [12] (cf. [69, Sec-
tion 11.2]).

~

Theorem 10.1. There is a ribbon tensor equivalence K : rep SL(2);" — rep(Vire )arr
which fits into a (2-)diagram

rep SL(2)'® ———— rep(Vire)an

wl lm— (18)

rep(uy(slz))™ % rep('W,)

It was argued by Bushlanov, Feigin, Gainutdinov, and Tipunin [12] that the fusion
rings for rep SL(2), and rep('Vir. ). are isomorphic. The equivalence of Theorem 10.1
categorifies the isomorphism of fusion rings proposed in [12].

Throughout the section we ignore (notationally) the inversion of the ribbon structure
on rep SL(2),, and take for granted that we are considering the category of SL(2),-
representations along with its reverse braiding and inverted twist, relative to that of Sec-
tion 3.1.

10.1. Big categories of VOA modules

We begin with an aside on categories of “big” modules for a given VOA. Let 'V be a
vertex operator algebra with some category rep(V)qs of preferred, finite length modules.
We will require that the inclusion rep('V)4is« C rep('V) into the ambient category of finite
length 'V-modules is fully faithful, and that the class of preferred modules is closed under
taking subquotients.

Given such rep('V)g4;s, we find ourselves in various situations which require a larger
category Rep('V)qisy which contains rep('V) ;s and in which we can, say, take infinite direct
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sums of modules. Formally speaking, we construct such a big category Rep(V)qist by
taking the Ind-category of rep(V)qist [54, Section 6.1]. In our setting, one can understand
this category rather concretely ([54, Corollary 6.3.5], [22, Section 4]): We first consider
the category Rep(V) of arbitrary 'V-modules, with no finiteness assumptions, then take

the full subcategory of V-modules M in Rep(V)
Rep(V)dise 1= 4 for which M is the union | J, My of its
(finite length) submodules My C M in rep(V)gis.

The category Rep('V)gs inherits an abelian structure from the inclusion Rep(V)gisy C
Rep('V), and it is closed under taking arbitrary filtered colimits. We refer to the category
Rep('V)gist simply as the Ind-category of rep('V)gis, or informally as the “big” category of
preferred V-modules.

We note that if rep(V)gis admits a (braided) monoidal structure for which the prod-
uct is right exact and commutes with sums, then Rep(V)gis inherits a unique (braided)
monoidal structure which extends that of rep(V)4;s, and commutes with colimits. In par-
ticular, when rep('V)qisc admits a vertex tensor structure then the big category Rep('V) g is
canonically braided monoidal. One can see [22] for an explicit, vertex-algebraic, analysis
of this extended monoidal structure.

10.2. Categories of Virasoro modules

We recall some results from [17,66]. We adopt a calligraphic notation for Virasoro mod-
ules £, to distinguish such objects from quantum group representations, which we gener-
ally denote via an italic L.

We recall that there is a unique simple Vir.-module of conformal weight 4 for any
h € C. Consider first the category rep(Vir, )iy of finite length Vir.-modules with compo-
sition factors among the “integral weighted” simples &£, 5. The £, s are specifically the
simple Vir.-modules of conformal weight £, s = #((rp —5)%2 = (p — 1)?), where r is
a positive integer and 1 < s < p. We consider all morphisms, so that rep(Vir, )iy is a full
subcategory in the ambient category of all Vir.-modules.

It is shown in work of Creutzig, Jiang, Hunziker, Ridout, and Yang [17], and also
McRae and Yang [66], that the category rep(Vir. )iy satisfies the necessary conditions
to admit a vertex tensor structure, and that the corresponding braided monoidal category
is rigid. This category furthermore admits a ribbon structure provided by the (standard)
exponential @ = e27*L(9)_The authors subsequently define the subcategory

rep(Virc)ase = the full subcategory in rep(Vir, )in (tensor) generated by the simple £ 5.

The subcategory rep(Virc)a in fact contains all of the simples in rep(Virc)in
and so is the subcategory in rep(Virc)ine generated by all of the simple objects &£, .
One can alternatively define rep(Vir. ). as the Miiger centralizer of the triplet algebra
W, = @,-02n — 1)&2n41,1 inrep(Vir)in [66, Theorems 4.4, 5.2, 5.4]. The category
rep("Virc)aff_ is affine in the sense that it admits a tensor generator (cf. [29, Section IL.5,
Corollaire 5.2]).
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Remark 10.2. The categories rep(Vir)in and rep(Vir. ), are denoted by O, and @2 in
[66], respectively.

By a general theory of VOA extensions [19,47], which we recall in Appendix A, we
have an induction functor

w .
F = Ivir"’C s 1ep(Vire)ar — Rep(Wy),

from the affine category of Virasoro modules to the Ind-category Rep('W,) of ‘W,-mod-
ules. McRae and Yang provide the following calculation.

Proposition 10.3 ([66, Proposition 7.4]). For the simple objects &£, s in tep(Virc)ass one
has F(£y.s) = rX£ with e(r) = (—=1)"+1.

The above proposition implies in particular that the induction of each simple object
in rep('Virc ). lies in the usual category rep('W,) of finite length ‘W,-modules. We apply
Lemma A.3 to find the following.

Lemma 10.4. Induction provides a surjective ribbon tensor functor F : rep(Virc)ag —
rep('Wp). In particular, F is faithful and exact.

Proof. Any such induction functor is braided monoidal [57, Theorems 1.6, 1.10], and
exactness of F follows from exactness of the tensor product on rep(Vir.)as, or more
directly from exactness of the tensor product and Lemma A.3. Faithfulness holds because
any tensor functor between tensor categories is faithful [28, Proposition 1.19]. Since
F(£12) = X2+ , and since X2+ generates the tensor category rep(W,) (Corollary 4.4),
we also see that F' is surjective. Compatibility with the ribbon structure follows from the
fact that ‘W, is central in Rep('Virc ), and is a fixed point for the twist, so that

mLO oy = Oy, 2 = (B, @ 956)6%‘7,,,;1: = Oy = 2TLO)|,

at arbitrary £ in rep(Vire)agr- m

10.3. At the level of Grothendieck rings

Lemma 10.5. There is a ribbon tensor functor K : rep SL(2), — rep(Vir, ). which fits
into the diagram (18). In terms of Ostrik’s theorem (Theorems 5.3 and 9.4), K is specified
by the self-dual simple object £1 5 in rep(Vir)ags.

Proof. We have the self-dual object £ in rep(Virc)as [66, Theorem 4.1] which is of
intrinsic dimension

d=d(&1p) =d(F(£12) =d(X) =—(q+q7").

So we obtain, via the universal property of the Temperley—Lieb category, a linear
monoidal functor Fg, , : TL(d) — rep(Virc)asr. The composition

TL(d) — rep(Vire)as i) rep('Wp)
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sends £ to X, F, so that the composite is the universal map specified by the self-dual
object X 2+ in rep('W,). We have already seen that this map to rep('W,) is faithful, via
Proposition 7.1, Theorem 5.3, and Proposition 2.1, so that the original map Fg, , to
rep(Vir. ). must be faithful as well.

By Ostrik’s theorem we now have a unique extension K : rep SL(2); — rep(Vire)ast
of Fg,, to the category of all quantum group representations. Furthermore, by Theo-
rem 9.4, and the fact that the induction functor F : rep(Virc)as — rep('W,) is a faithful
ribbon tensor functor, we find that K is a map of ribbon tensor categories. The diagram
(18) commutes simply because the functor ® : rep(u,(sl2)) — rep('W,) is constructed by
de-equivariantizing the universal map rep SL(2), — rep('W,) specified by the self-dual
object X3, which is (up to natural isomorphism) just the composite F o K. ]

From this point on, K : rep SL(2), — rep(Vir. ). denotes the braided tensor functor
specified by the self-dual object £ 1 in rep(Vire) .

We recall that the collection of all simples in rep SL(2), is precisely the collection of
products {L(u) @ Vs : € Zzo%, 1 < s < p}. The following describes the behavior of
the functor K on simple objects.

Lemma 10.6. Take 1, = rpa/2 for any non-negative integer r. For the simple objects
inrep SL(2)g we have K(L(1,) ® Vi) = £r11,.

Proof. By the descriptions of the fusion rules for rep SL(2), and rep(Vir,)as, given for
example in [70, Section 2.5] and [66, Theorem 4.11], we observe that the lengths of
the powers V& and éﬁ%g are the same, and that each such power has precisely one
simple composition factor which does not appear in a lower tensor power. Specifically,
the simples L(u,) ® Vy and &£, 11, appear first in the powers V®P"+5) and :ﬁﬁgprﬂ).
So we observe by induction, and exactness of K, that the simples in rep SL(2), map to
simples in rep(Vir, ) ¢, in the prescribed manner. [ ]

The following corollary is immediate.
Corollary 10.7. The induced map on Grothendieck rings
[K] : K(rep SL(2)q) — K(rep(Virc)a)

is an isomorphism of 7 4-rings.

10.4. Projective representations

Proposition 10.8. The functor K sends indecomposable projectives to indecomposable
projectives.

Proof. Since the induction functor F : rep('Vir. ). — rep('Wp,) has an exact right adjoint,
given by restriction along the algebra inclusion Vir, — ‘W, it follows that induction pre-
serves projective objects. The object 1 = &£1,; in rep(Vir. ). has a projective cover @
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with simple socle and cosocle, both of which are just a copy of &£1,1. We have the com-
position series
[@1] = 2[L11] + [£2,p—1]

(see [66, Theorem 5.7]).

Since F(&£2,p—1) = (Xp__l)692 [66, Proposition 7.4], we see that the induction F (@)
is a length 4 projective in rep('W,) which comes equipped with a surjective map to the
unit object. Since the projective cover (@f' of the unit in rep('W,) is also of length 4, we
have 321"’ ~ F(@y).

Let P; be the projective cover of the unit 1 in rep SL(2),. This is just a lift of the
corresponding projective cover in rep(u4(sl2)), and so the image under composition

F oK(Py) = O(res Py) = &}

is the projective cover of X 1+ . Now, in rep(Vir,)as projectivity of @; implies the exis-
tence of a map @ — K(P;) which lifts the surjection K(P;) — K(1) = &£,,;. Applying
induction to rep(W,) we find that any such map is an isomorphism. Since induction is
exact and faithful, it follows that the lift @; — K(P;) is an isomorphism in rep(Vir ).
Hence, K sends the projective cover P; of 1 to the projective cover @ of the unit in
rep(Vire)as-

One similarly argues that the image K(Ps) of the projective cover of each simple Vj
in rep SL(2), is the projective cover of the corresponding simple £ s in rep(Virc)as,
for 1 <s < p. For the projective simples V,, and £;,,, we have already established that
K(V,) = £1,p at Lemma 10.6.

Now, for the remaining indecomposable projectives we have @, = £,1 ® @ in
rep(Vire)ase [66, Theorem 5.9], so that K(L(rpa/2) ® Ps) = @, by the above calcula-
tions and Lemma 10.6. We note finally that each product L(rpa/2) ® P, in rep SL(2),
is the projective cover of the simple L(rpa/2) ® Vi [12, Lemma 4.1] to complete the
proof. ]

As we saw in the proof, Proposition 10.8 implies that K sends the projective cover
of a given simple in rep SL(2), to the projective cover of the corresponding simple in

rep(Vire)af-

10.5. The proof of Theorem 10.1

By Proposition 10.8 all projectives in rep('Vir, ). are in the image of K. By considering
projective resolutions, we see that K is fully faithful, and also essentially surjective, if
and only if its restriction to the additive subcategory of projectives in rep SL(2),, is fully
faithful. In other words, K is an equivalence if and only if its restriction to the subcategory
of projectives is fully faithful.

As any tensor functor is faithful [28, Proposition 1.19], we already know that K is
faithful. So we need only establish an equality of dimensions,

dimc Homgy (2), (P, P') = dime Homy;,, (@, @), (19)
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for indecomposable projectives P and P’ in rep SL(2), with images @ and @’ in
rep(Virc)as. But now, for the corresponding simple L such that P is the projective cover
of L, the dimension of the above Hom space is just the multiplicity of the simple L in the
composition series for P’,

dim(c HOl’nSL(z)q (P, P/) = [L, P/]

Similarly Homy;, (@, @) = [£, @']. Since K induces an isomorphism at the level of
Grothendieck rings by Corollary 10.7, we observe that [L, P] = [£, @], as desired. =

Remark 10.9. As a consequence of Theorem 10.1 we obtain a calculation of the Miiger
center for the affine module category:

rep(PSL(2)) = Zmig(rep SL(2)4) = g (rep(Vire )atr).- (20)

This calculation is also obtainable via the theory of compact group actions on vertex
operator algebras provided in [65, Corollary 4.8]. See in particular the proof of [66, The-
orem 4.3], where the equivalence (20) is obtained modulo the determination of a certain
3-cocyle. This cocycle can furthermore be shown to vanish since the triplet algebra is a
VOA, rather than a super VOA or some more general type of algebra.

11. Categories of modules for the singlet algebra

We describe the (affine) representation category for the singlet vertex operator
algebra M. As with the Virasoro VOA, the singlet is not C,-cofinite (hence not strongly
finite). The singlet algebra sits between the triplet algebra and the Virasoro Vir, C
M, C Wp; in particular, M), is the invariant subalgebra (orbifold) in ‘W, of a maxi-
mal torus C* in Aut(W,) = PSL(2, C) (a subgroup isomorphic to S! also works, but
C* is more natural from our perspective). Going in the other direction, ‘W, is obtained
from M, by extending by an infinite order simple current (invertible simple) which gen-
erates Rep C* ~ Z.

Our presentation is based on work of Creutzig, McRae, and Yang [21], but we provide
further elaborations on the behavior of induction, both from the Virasoro to the singlet,
and from the singlet to the triplet. We also provide a Tannakian (group-theoretic) descrip-
tion of the Miiger center of the affine representation category rep(Mp).s. We discuss
subsequent relationships between singlet modules and representations of quantum SL(2)
in Section 12.

11.1. Categories of singlet modules

The singlet algebra M, has simple modules M labeled by arbitrary functions A € h* =
Ca [1, Section 5]. We are particularly interested in the “integral” (atypical) simples M, s,
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which are labeled by an arbitrary integer r and s € {1,..., p}. Each module M, s appears
as the M,-socle in the corresponding Fock module Fy, ; with Heisenberg weight o ¢ =
1A =-r)- %(1 —5))/Pe € b [25, Section 2].

We consider, first, the category rep(M )iy of finite length grading-restricted M-
modules with composition factors among the integral simples M, . It is shown in [21]
that the category rep(.M )iy admits a rigid vertex tensor structure, and we have the tensor
subcategory rep(Mp ) ,fr in rep(Mp )ine generated by the simples {M, s :r € Z,1 <s < p}.

Remark 11.1. The categories rep(M )in and rep(Mp )asr above are the categories € p¢(p)
and ‘634 » of [21], respectively.

According to the fusion rules of [21, Theorem 3.2.6], the category rep(Mp ) is alter-
natively generated by the distinguished simple M ». For yet another interpretation, the
category rep(Mp)asr is the centralizer of the algebra object W, = €, cz Man+1,1 in
rep(Mp)int [21, Sections 1.1, 5.1].

Each simple M, s in rep(-Mp ), admits a decomposition as a product M, ; ® M, ,
and the simple modules M, ; are all invertible with tensor inverse Mr*:l =M_,15,:.The
simples {M,,; : r € Z} provide a complete list of invertible objects in rep(Mp)asr, and
they satisfy the fusion rule M, 1 ® M, 1 = M, 4, —1,1 [21, Theorem 5.2.1].

We consider the tensor subcategory (M3 ;) in rep(Mp)as generated by the
object M3 1, in the sense of Section 2.4. By the above information, the simple objects
in (M3,1) are precisely those of the form M, ; with r odd.

Lemma 11.2. There are no extensions Exti‘{p (My.1, My 1) = 0 when r and v’ are odd.

Furthermore, when p > 2, there are no extensions between M, 1 and M, at arbitrary
/

r,r’ € 7.

Proof. Suppose p > 2. It suffices to show that the extensions Ext}Mp (1, M,,1) vanish, via
duality. We have the projective resolution of the unit P* =--- — Py 1 ® P> 1 —
P; — 0, where the P, are the projective covers of the simples M, , and P; is the
projective cover of the unit [21, Theorem 5.1.3]. In particular, there are no non-zero maps
from the degree —1 portion of the resolution P lto any M, ;. Hence the subquotient
Exti%p (1, M;.1) of Hom,y, (P_l, M, 1) vanishes.

At p = 2 the above projective resolution of the unit is still valid, but now appears as
-+ = Po,1 @ P2,1 = P1 — 0. So we see that there are no such extensions between 1 and
M, 1 when r is odd. [

We note that at p = 2 there are in fact non-vanishing classes in Extthp (1, My,1) and

Exti%p (1, M> 1), provided by the length 2 quotients of the projective cover P; of the unit.
In any case, the above lemma implies the following.

Corollary 11.3. The tensor subcategory (M3 1) generated by M3 1 in rep(Mp ) is semi-
simple, closed under the formation of extensions in rep(Mp )., and has simple objects
{M; : r odd}.
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11.2. Induction from the Virasoro

As a Virasoro module, the algebra M, decomposes as the sum of simples @nzo Lonti,1-
Hence M, lies in the affine representation category rep('Vir, )as, or rather its Ind-category
Rep(Vire ). (see Section 10.1). We therefore have the induction functor

I =137 :tep(Vire)ur — Rep(Mp), L+ My ® L. @1

which has image in the braided monoidal category of M,-modules whose restriction to
Vir, lies in Rep(Virc )agr [19, Theorem 1.2, Theorem 2.67]. Since rep(Vire ) is rigid, the
functor [ is exact (see Appendix A).

Lemma 11.4. There are isomorphisms
I(£31) =M31© M1 ® M-y and I(L£12) = M.
Proof. We have the adjunction
Homy, (1(£3,1), My,1) = Homy;,. (£3,1, My,1)

and the Virasoro decompositions M1 = @,- L2n+1,1 and Mz = M_y; =
@nzo £2n+3,1. In particular, there is a unique-up_-to-scaling non-zero map £342, —
M, 1 over the Virasoro for r = 3, 1, —1. So, by the above adjunction, we have a non-
zero map [(£3,1) = M, for each such r, and this non-zero map must be a surjection
since each M, is simple. We therefore have the product map /(£3,1) = M3, & M1, &
M_; 1, which must also be surjective since each simple in the codomain is distinct.

Note that the above surjection of Mj,-modules is also a surjection of modules over
the Virasoro VOA. Since the decompositions of /(£3,;) and M3 & M;,; & M_; into
simple Virasoro modules agree:

I(£31) =M, @ L3, = (@ :£2n+1,1> ® (@2 . f2n+3,1) =M31&Mi1 DMy,

n>0 n>0

this surjection must be an isomorphism.

Similarly, we consider the decomposition M, = @n>0 £L2n+1,2 to see that there is
a surjection I(&£1,2) — M ». This surjection must again be an isomorphism since these
two objects have the same decompositions into simples over the Virasoro:

I(&12) = Mp @ L12 =P Lont12 = Mo u

n>0

Of course, the significance of the object £, is that it is the distinguished tensor
generator for the affine representation category rep(Vir.)as. Similarly, the object £3 ;
generates the Miiger center in rep(Vire),g. This just follows from the fact that it is the
image £3; = K(L(pw)) of the central generator L(pa) in rep(PSL(2)) C rep SL(2),,
under the equivalence of Theorem 10.1. One can see in particular Lemma 10.6. The pre-
vious lemma and the aforementioned generating property for £, provide the following.
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Corollary 11.5. The induction functor I has image in the affine subcategory rep(Mp)agr,
and restricts to a surjective, ribbon, tensor functor

I :rep(Vire)ar — rep(d%p)aff- (22)

Proof. Let Rep(Mp,) denote the braided monoidal category of M ,-modules which restrict
to objects in Rep(Vir, ), along the inclusion Vir, — M, by an abuse of notation. We
note that all of the simples M, s in rep(Mp ), lie in this category Rep(Mj) [16, Sec-
tion 2.3], and that the induction functor / is an exact braided monoidal functor, via rigidity
of rep(Virc )as.

We have the (rigid) tensor subcategory rep(-Mp ). in Rep(:M;) which is closed under
taking subquotients, and is tensor generated by the simple M; 5. Since rep(Virc)asr is
tensor generated by the simple &£, and I(£1,2) = M2 by Lemma 11.4, we see that
[ restricts to a surjective, braided, tensor functor as in (22). Compatibility of / with the
twist follows by the same arguments as in the proof of Lemma 10.4. ]

11.3. The Miiger center in rep(Mp)as

As a module over the singlet algebra, we have 'W,, = @n ez Many1,1. In particular, 'W,
lies in the Ind-category of affine representations for the singlet M,, and we have the
braided monoidal functor 1" : rep(Mp) — Rep('W,) provided by induction. The following
basic description of induction is deduced from Creutzig, McRae, and Yang [21] (see also
Lemma A.3).

Proposition 11.6 ([21, Proposition 3.2.5]). Induction restricts to a surjective, braided
tensor functor

I" : rep(Mp)asr — rep(Wp),
and furthermore satisfies I'(M,5) = Xf(r) with e(r) = (=1)"TL,
One can use this result to determine the Miiger center in rep(Mp ).

Lemma 11.7. The Miiger center of rep(Mp)asr is precisely the tensor subcategory (M3 1)
generated by the invertible simple M3 ;.

Proof. Since the induction functor I : rep(Vir¢ )asr — rep(Mp )4 is surjective and braided,
it must send the Miiger center in rep(Vir),s into the Miiger center in rep(Mp)asr. By
Lemma 11.4, M3 is in the surjective image of the Miiger center of rep(Vir: )., and
hence the Miiger center contains (M3,1). By Corollary 11.3, (M3 ;) is the subcategory of
all objects in rep(M ), With composition factors (only) among the M,; with r odd.
To see that no other simples in rep(Mp ). are central, we simply apply the braided
monoidal functor I” : rep(M,)ar — rep(W,) and note that I"(M,.;) = X" centralizes
I'(My ) = X2+ if and only if r is odd and s = 1, by Theorem 4.7. [

We provide a further analysis of the Miiger center in rep(-Mp )., and its behavior
under induction both from the Virasoro and to the triplet algebra.
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Lemma 11.8. The induction functor I : rep(Virc)ar — 1ep(Mp)asr restricts to a surjec-
tive, symmetric tensor functor

Znig (rep(Vire)arr) = Zmiag (rep(Mp )afr)-

Proof. Surjectivity of I implies that I sends the Miiger center in rep(Vire)a to the
Miiger center in rep(Mp)asr. So the result follows from the computation I(&£3,) =
M3 @® M1 & M_y,; of Lemma 11.4, the fact that M3 ; generates the Miiger center
in rep(Mp )ast, and the fact that £3 ; = K(L(p«a)) is Miiger central in rep(Vire ). [

Via Theorem 10.1 and Section 3.3, we know that the Miiger center in rep(Vire).s
is equivalent to the representation category of PSL(2). We have a corresponding group-
theoretic interpretation of the center in rep(Mp ).

Proposition 11.9. The induction functor I" : rep(Mp ). — rep(W,) restricts to a sym-
metric fiber functor Zyig (rep(Mp)ar) — Vect. Furthermore, there is a symmetric tensor
equivalence

Fr' : 1ep(Gm) => Zmiig(rep(Mp)afr)- (23)

For the unfamiliar reader, G, denotes the multiplicative group C*, considered as an
affine algebraic group, and the category rep(Gy,) is identified with the symmetric tensor
category of Z-graded vector spaces. This is the group Z of simple currents, with which
we extend the VOA M), to obtain 'W,,.

Proof of Proposition 11.9. Take 2 = Zyug(rep(Mp)asr). Since I’ is a braided, sur-
jective, tensor functor, it sends the Miiger center in rep(sMp ). to the Miiger center
in rep('W,). But the Miiger center in rep('Wp) is trivial by Theorem 4.7, so that I’ restricts
to a symmetric fiber functor from the Miiger center in rep(JMp )asr, as claimed. It follows
now, by Tannakian reconstruction [28, Theorem 2.11], that there is an algebraic group G
which admits a symmetric tensor equivalence rep(G) — Z.

By our understanding of 2 provided by Corollary 11.3 and Lemma 11.7, G has an
invertible representation C, which generates rep(G) and admits no extensions from its
various tensor powers. This representation therefore specifies a surjective map of alge-
braic groups

G - GL(Cy) = Gy

for which the restriction functor rep(Gy,) — rep(G) = £ is fully faithful and essentially
surjective. This functor is therefore an equivalence, so that 2 = rep(Gy,). |

Remark 11.10. As was the case with the Virasoro, the calculation of the center (23) can
also be deduced from [65].
12. The singlet algebra and torus extended u 4 (sl2)

In this section we establish a quantum group equivalence for the affine representation
category of the singlet vertex operator algebra M,. We compare the singlet to the “torus
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extended” small quantum group 1, (sl,) of [64, Section 36.2.1], at the given parameter
q = exp(wi/p). We prove the following analog of Theorems 9.5 and 10.1 for the singlet
(see Section 11.1).

~

Theorem 12.1. There is an equivalence ¥ : rep(y (s12))™ —> rep(Mp ). of ribbon ten-
sor categories which fits into a (2-)diagram

rep(ity (s12))™ —————— rep(M )uir

res® l l’wp ®—

rep( (s12))™ ————— rep(W)
The proof of Theorem 12.1 relies in essential ways on notions of equivariantization
and de-equivariantization for tensor categories, relative to a given algebraic group action.
We recall the relevant constructions in Appendix B.

Remark 12.2. As remarked in the introduction, a quantum group equivalence for the
singlet was conjectured in [14,24]. The works [14,24] conjecture, specifically, an equiv-
alence between representations of the so-called unrolled quantum group uf (sl,) and a
certain extension rep sy (Mp) [23] of rep(Mp)asr by the category of C/Z-graded vector
spaces. The category of uf (slp)-representations is just the category of §*-graded repre-
sentations of u4(sl>), as opposed to those graded by the character lattice A C h*. So the
above theorem differs, to some degree, from the precise conjectures of [14,24].

12.1. The category of 0, (sl,)-representations

We understand the algebra u,(sl,) directly through its representations. A representa-

tion of u,(sl5) is a finite-dimensional A = %Za—graded vector space V' which comes

equipped with p-nilpotent linear endomorphisms E, F : V' — V which (a) shift the degree

by « and —«, respectively, and (b) satisfy the quantum group relations of [63]. So, the con-

struction of rep(ui4(s(2)) is completely analogous to the construction of rep SL(2), given

in Section 3.1, where we simply forget about the additional operators E(?) and FP),
The expected coproduct

AEY=E®1+K®E and A(F)=FQK '+1QF

provides the category rep(ug,(sl2)) with a rigid tensor structure. Furthermore, the
R-matrix and twist from Section 3.1 define a (unique) ribbon structure on the category
rep(,(sl2)) so that the forgetful functor rep SL(2), — rep(u,(sl2)) is a ribbon tensor
functor. This is the standard ribbon structure on the category of u, (sl,)-representations,
and in the statement of Theorem 12.1 we consider rep(u, (sl2)) with its reversed braiding
and inverted twist, relative to this standard structure.

As in the previous sections, we omit the superscript (—)™ from our analysis, and
take for granted that we are considering the category of 0, (sl,)-representations with the
reversed braiding and inverted twist.
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12.2. Triplet modules via (de-)equivariantization

We let Rep(M ), denote the Ind-category of rep(Mp )., which we define as in Sec-
tion 10.1.

The equivalence Fr’ from rep(G,) to the Miiger center of rep(M, ).t sends the algebra
object 0(Gy,) to a commutative algebra object A in the Miiger center of Rep(Mp)as
which, as an M,-module, is of the form

A= D Moni1a =W, (24)

nez

We have the following little lemma.

Lemma 12.3. There is a unique commutative algebra structure on the Mpy-module
@nez M>p1,1 under which it becomes a simple module over itself, i.e. has no non-trivial
ideals.

Proof. Via the equivalence of Proposition 11.9, it suffices to show that the vector space
0 =Cl[t,t7'] = @,z Ct" admits a unique commutative, graded algebra structure for
which deg(¢#") = n and for which & admits no graded ideals. Under any such algebra
structure on @, the grading forces ¢ to actasamap ¢ - —| g, : Oy — 0,41 on each homo-
geneous degree. Now, the image of the action map ¢ - — : & — O is a graded ideal which
contains ¢, and so must be all of &' by simplicity. Since each graded component &), is
of dimension 1, it follows that ¢ - — must be an isomorphism. After rescaling the basis
elements " if necessary, we then have ¢ - t" = "1 and in particular ¢ - t~1 = 1. Asso-
ciativity forces the general calculation 1" - t™ = "+ So ¢ is identified with the expected
localization of the polynomial ring, & = 0(Gy,), as a graded algebra. |

Since both (Gy,) and W, are simple modules over themselves, and the functor Fr’
is an equivalence, the above lemma tells us that the identification of M,-modules (24)
implies an identification of algebras A = Fr’' 0(Gy,) = W, in Rep(Mp ).

The following is obtained almost immediately from [19, Theorem 3.65].

Lemma 12.4. Restriction rep(W,) — Rep(Mp )., and any choice of algebra isomor-
phism ‘W, = A, identifies rep('W,) with the (braided tensor) category of finitely generated
A-modules in Rep(Mp)us. Furthermore, any finitely generated A-module is finitely pre-
sented.

To be clear, by a finitely generated A-module X we mean one which admits an A-
module surjection A ® V — X from a free module, with V' in rep(:Mp ). By a finitely
presented module we mean one which admits an exact sequence A @ W — AQ V —
X — 0, where W and V are in rep(Mp ).

Proof of Lemma 12.4. We understand from [19, Theorem 3.65] that the forgetful func-
tor Rep(Wp)a.r — Rep(Mp ), provides an identification between Rep('Wp ). and the
category of (arbitrary) ‘W,-modules in Rep(M, )., as braided monoidal categories. By

restricting along any algebra isomorphism A — ‘W, we then get an identification between
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Rep(W,)asr and the category of arbitrary A-modules in Rep(sMp)asr. So the claim here is
that the finite length property for objects in Rep('Wp ). corresponds to the finitely pre-
sented property for 'W,-modules in Rep(Mp ).

Now, Lemma 11.6 implies that any free module I'(V) = W, ® V is, in particular,
a finite length 'W,-module in Rep(M,).i. Hence any quotient W, ® V' — X of a free
module is a finite length 'W,-module. So we see that any finitely generated 'W,-module
is of finite length, and so lies in rep('W,). Conversely, since the category rep(<M ), has
enough projectives, surjectivity of the induction functor /' (Lemma 11.6) is equivalent
to the claim that any finite length ‘W,-module X admits a surjection from a free module
W, ® V— X, and so is finitely generated. Finally, since the kernel of such a surjection
W, ® V — X is also of finite length, we observe that any finitely generated module is
also finitely presented. This shows that rep('W,) is identified with the category of finitely
presented 'W,-modules in Rep(M, ). under restriction, as claimed. [ ]

In the language of Section 3.5 and Appendix B.4, we have an identification of braided
tensor categories

finitely presented A = Fr’ (G,
tep(W,) = (rep(My)ar)s, 1= { yP ( )}

modules in Rep(Mp)qs

between finite length W,-modules and the de-equivariantization of rep(-M,) along the
central functor rep(Gy) — rep(Mp). By a general result [9,69], it follows that there is a
categorical action of Gy, on rep(W,) for which we have an equivalence

rep(W,) & = rep(Mp)arr (25)

between the category of G,-equivariant objects in rep(W,) and the affine representation
category of M, [69, Proposition A.2].

Remark 12.5. The equivalence (25) was first observed in [66, Section 7.2], where the
authors proceed via the theory of Lie group actions on vertex operator algebras.

Let us explain the equivalence (25) in more tangible terms. As explained above, the
restriction functor rep('W,) — Rep(Mj, ), identifies finite length modules over the triplet
algebra with finitely generated A-modules in Rep(:M),sr. The algebra A can be written
as W, = A = Mplt,1~"] where 7 is the invertible object M3y andt~! = M| = M_; ;.
Furthermore, the translation action of G, on A = Fr’ 0(G,,) corresponds precisely to the
Z-grading on A — and also ‘W, — specified by taking deg(¢) = 1, deg(r™!) = —1.

With the above framing in mind, a Gy-equivariant object in rep('W,) is just a 'Wp-
module X in Rep(M) ). with a compatible Z-grading so that %! - X} = Xy4;. We are
claiming at (25) that the map

rep("Wp)G‘" = Wp—modZ — rep(Mp)ar, X = Xo, (26)

is an equivalence of categories, and has inverse provided by induction. One can see
directly (or abstractly as above) that this is indeed the case. The functor (26) is further-
more an equivalence of ribbon tensor categories, as its inverse (induction) is compatible
with the ribbon tensor structure.
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12.3. Principles for Theorem 12.1

As recalled in Appendix B, the equivalence (rep SL(2)4)ps(2) = rep(uq(sl2)) of Theo-
rem 3.4 induces a PSL(2)-action on the category of u,(s[,)-representations. We have the
standard torus G, =~ T C PSL(2) of diagonal matrices, and we can restrict the action of
PSL(2) to an action of the torus on rep(u4(sl2)).

Given this torus action on rep(u4(sl2)), we can consider the non-full tensor subcat-
egory rep(ug(sl2))T C rep(uy(slz)) of T-equivariant representations. One should view
objects in rep(uy (s12))7 as u, (sl,)-representations equipped with a compatible rational
T -action, although this is an oversimplification. This subcategory is identified with the
category of U, (sl,)-representations via restriction.

Proposition 12.6 ([69, Proposition 9.1], [9]). There is an equivalence rep(uq(glz))T ~
rep(iy (sl2)) of ribbon tensor categories.

We consider the above theorem in parallel with the equivalence (26) for the singlet.
We claim at this point that (after some error correction if necessary) the equivalence
O : rep(uy(slz)) = rep(W,) of Theorem 9.5 commutes with the G,-actions on these
categories, where we act on rep(u,(sl,)) via the torus G, = T and we act on rep('W,)
in the manner prescribed in Section 12.2. One then obtains an induced equivalence on the
subcategories of G,-equivariant objects

rep(iy (sl2)) = rep(uy (sIz))T ;jc:) rep("Wp)([“’m = rep(Mp),

which provides the claimed result.

12.4. The proof of Theorem 12.1

We use the calculus of equivariantization and de-equivariantization in the proof. One can
see the original texts [9, 26, 69], and/or Appendix B for a review of the topic. (See also
[32].) When needed, we reference specific results from the appendix in the proof of The-
orem 12.1.

Proof of Theorem 12.1. We have the (2-)diagram of braided tensor functors

. I I
rep SL(2)4 == rep(Virc)ay —————— 1ep(Mp) it ———— rep(Wp)
FrT FT/T Tunit
Lem.11.8 Prop. 11.9
rep(PSL(2)) Zurject rep(Gy,) — e Vect

where I and I’ are the appropriate induction functors. By Tannakian reconstruction, and
surjectivity of the map

I |rep(psL(2)) - 1ep(PSL(2)) — rep(Gn),
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we find that I |,p(psi(2)) 1S isomorphic to restriction resy : rep(PSL(2)) — rep(Gy,) along
a group embedding « : G, — PSL(2) ([74, Theorem 2.3.2], [28, Proposition 2.21]). So
the above diagram can be replaced with a (2-)diagram

. I I
rep(Vire)aff —————— 1ep(Mp)ast — rep(W,)

Fr/[ Fr/ T Tunil 27

rep(PSL(2)) e rep(Gn) s Vect

Furthermore, the induction functors provide equivalences

(rep(Vire)ar)psLiz) = rep(Wp) and  (rep(Mp)asr)G,, = rep(Wy),

by Theorems 9.5 and 10.1, and Lemma 12.4 (see also Lemma B.6). These equivalences
provide rational actions of PSL(2) and G, on rep(W,) ([9], [69, Section A.1]), respec-
tively, and there is a unique equivalence of ribbon tensor categories

S (@ep(Vire)asr)psL(2) . (rep(Mp)att) G

which fits into a diagram over rep(W,). The above diagram (27) implies that f is Gp,-
equivariant (Lemma B.9), where Gy, acts on (rep(Vir¢ )asr)psi(2) by restricting the natural
PSL(2)-action along the group embedding & : G, — PSL(2). That is, the G,-action on
rep('W,) deduced from singlet de-equivariantization agrees with the G-action deduced
from Virasoro de-equivariantization and the map o.

Via the diagram of Theorem 10.1, we understand that the equivalence

© : rep(itg (L)) — rep(W,)

of Theorem 9.5 is PSL(2)-equivariant (Lemma B.5), where PSL(2) acts on rep('W,) as
above. We can therefore restrict these PSL(2)-actions along « : G, — PSL(2), and equiv-
ariantize, to obtain an equivalence of braided monoidal categories

@Cm rep(ug (s1,))Cm = rep(Wp)G"‘ (28)

(Lemma B.1).

Now, the map « : G, — PSL(2) identifies G, with a maximal torus in PSL(2), and
all maximal tori are conjugate. So there is an element (closed point) x € PSL(2) under
which conjugation

Ad, : PSL(2) — PSL(2)

sends o(Gp,) to the standard torus T = {diag{a,a~!} : a € C*} C PSL(2). It follows that
the action of x on rep(u4(sl2)) provides a braided monoidal equivalence

X-—: rep(uq(slz))T = rep(uq(gfz))G‘“,

and we find from (28) an equivalence rep(u, (shL))T =~ rep(Wp)Gm. We recall that the
equivariantization of rep(u4(sl,)) by the torus of diagonal matrices is the representation
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category rep(ug(sl2)) [69, Proposition 9.1] to observe finally

rep(iiy (55)) == rep(ug(s12))" == rep(W,) " == rep(Mp)urr.
Compatibility with the ribbon structure follows from the diagram

induced

rep(liy (sl2)) — rep(uy (sl2)) T ————— rep(W,)Cm +—— rep(M,)

®ox

rep(uy(sly)) ———— rep(Wp)

and the fact that all of the functors present, save for possibly the induced map in question,
are (faithful) ribbon tensor functors. ]

Remark 12.7. In the proof we have employed a PSL(2)-action on rep('W,) deduced from
the central embedding rep(PSL(2)) — rep(Vir, ). and the induction functor (see Remark
10.9). We do not claim that this PSL(2)-action is identified with the categorical action
induced by the known PSL(2)-action on ‘W, by VOA automorphisms ([38], [3, Section
71, [2, Section 2]). However, we certainly expect that this is the case.

Appendix A. Induction for VOA extensions

We recall some information regarding extensions of vertex operator algebras and induc-
tion. The original references for the following material are [19,47,57].

A.l. Vertex algebra extensions and induction

Let V be a vertex operator algebra with rep(V)g4;s a full subcategory of distinguished
objects in the category of finite length V-modules. We suppose additionally that the
subcategory rep('V)gis is closed under taking subquotients and admits a vertex tensor
structure as described in Section 2.6. We let Rep(V)4ist denote the associated Ind-category
of distinguished modules, which one can describe as in Section 10.1. In this setting, the
category Rep('V)giy inherits a unique braided monoidal structure for which the product ®
commutes with colimits. Furthermore, this monoidal structure is specified by intertwining
operators [22, Section 6].

Consider rep('V) ;s as above, and suppose we have a vertex operator algebra extension
V — W with ‘W lying in Rep(V)qist, as @ V-module. Then the vertex algebra structure on
W gives it the structure of a commutative algebra object in Rep('V)g;st ([47, Theorem 3.2],
[22, Theorem 7.5]). In such a setting we let Rep('W)g;s denote the abelian category of ‘W-
modules which restrict to 'V-modules in Rep(V)g4;s; along the extension V — ‘W. We let
rep('W)qise denote the full, exact subcategory of finite length 'W-modules in Rep('W) ;-

Consider now a general commutative algebra object A in Rep(V)g. Recall that
an A-module M is called local if the action map act : A ® M — M is such that
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act o cfi y = act, where c4 pr is the braiding for Rep(V)gis. In this way any local
A-module admits an unambiguous A-bimodule structure, and the category of local
A-modules inherits a braided monoidal structure under the product ®4 [71, Theorem 2.5]
(see also [57]). We let Rep®(A) denote the category of all local A-modules in Rep(V)gis,
and let rep®(A) denote the exact subcategory of finite length modules.

Remark A.1. We note that objects in the categories Rep('W)gis and Rep®(A) are not,
a priori, unions of their finite length subobjects. So our use of “Rep” here deviates slightly
from its earlier uses in Section 10.1. However, in all cases which are of interest to us, all
objects in Rep(W)gis; and Rep®(A4)gi; will in fact be unions of their finite length sub-
modules, and these categories will be identified with the Ind-categories of their small
counterparts (cf. Lemma A.3 below).

We have the following essential results of Creutzig, Kanade, McRae, and Yang, and
also Huang, Kirillov, and Lepowsky.

Theorem A.2 ([47, Theorem 3.4], [19, Theorem 3.65]). Consider rep('V)qs as above,
and an extension of vertex operator algebras 1 : 'V — W with ‘W lying in Rep('V)gist. Let
A denote 'W, considered as an algebra object in Rep('V) gisi. Then the category Rep(W)is.
admits a vertex tensor structure, and restriction along  provides an identification of
braided monoidal categories

Rep(W)aise = Rep’(A).

Having fixed a commutative algebra object A in Rep(V)qis, we let RepO(V)disl denote
the Miiger centralizer of A in Rep('V)qs- We then have the free module functor A ® — :
Rep®(V)aist — Rep®(4). This functor is braided monoidal, and is left adjoint to the restric-
tion functor Rep0 (A) = Rep(V)aist [57, Theorems 1.6]. Taking this fact and Theorem A.2
into account, we observe a braided monoidal functor

Iy = W& —: Rep” (V)aist — Rep(W)aig (29)

to the category of ‘W-modules, for any VOA extension V — W with ‘W in Rep(V)gig-

Note that when the category rep(V)qs is rigid, the tensor product ® is necessarily
biexact and commutes with colimits [10, Proposition 2.1.8]. It follows that the induction
functor / y is exact in this case.

Lemma A.3. Consider 'V and ‘W as above. Suppose that ‘W lies in the Miiger center
of Rep(V)dist, the category rep(V)gis is rigid, and the free modules W ® L are of finite
length over ‘W for each simple module L in rep('V)gis. Then

(1) all modules in Rep('W)gist are unions of their finite length submodules;

(2) induction restricts to an exact braided monoidal functor
13 rep(V)aisc = 1ep(W)aist (30)

which is left adjoint to restriction.
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Proof. We first prove (2) and then return to (1). Given that [ y is exact, and I,y (L) is
of finite length for each simple L, we see by induction on the lengths of objects that
1 y restricts to a functor (30) between the subcategories of finite length objects.

(1) Any module M in Rep(W)4;s admits a surjection from its corresponding free
module 7 y (M) =W ® M — M. Here ® denotes the product on Rep(V)gix and the
aforementioned surjection is the action map for M. It therefore suffices to show that any
free module W ® M, with M in Rep(V)gis, is a colimit of finite length modules over 'W.
We therefore write M as a colimit M = li_n)la M, of finite length modules over V and
consider the formula

WM =W elinM, = lim(W& M) = lim I3/ (M)

o o o

to observe that W ® M is in fact a colimit of finite length 'W-modules. |

This should be contrasted with the more familiar case where both V and ‘W are
strongly finite. In this case, W will not lie in the Miiger center in Rep(V) (unless W = V),
and induction lands in Rep(A) rather than in its subcategory Rep®(4).

Appendix B. Rational (de-)equivariantization, again

We elaborate on the presentation of [69, Appendix A], which itself is an elaboration
on the presentations of [9, 26], in order to clarify some of the mechanics involved in
the proof of Theorem 12.1. We are generally concerned with equivariantization and de-
equivariantization operations under algebraic group actions, and the stability of these
operations under isomorphisms and restriction. For the VOA theorist, equivariantiza-
tion and de-equivariantization are the two steps which, when combined, capture tensor-
categorically the orbifold construction of VOAs.

B.1. Equivariantization and equivariant tensor functors

Throughout this section we understand that a linear category is, by definition if one
likes, an additive category with a specified action of Vect. Here Vect denotes the sym-
metric monoidal category of finite-dimensional vector spaces, and Ind Vect denotes its
Ind-category of generally infinite-dimensional vector spaces. For a linear category € we
let ®c : Vect x € — € denote the implicit action map. We note that when ¥ is fur-
thermore monoidal, this Vect-action can be identified with the action induced by the unit
structure Vect — €.

For an arbitrary algebra R in Ind Vect and a linear category % the base change %
is the category of finitely presented R-modules in Ind % (cf. [69, Definition 6.1]). Given
an algebra map ¢ : R — S we have the restriction functor t* : ¥s — Ind G and its left
adjoint ¢, : ¥g — Es, which is given by base change t. = S Qg —.

We consider an affine algebraic group G and write R = &'(G) for the algebra of global
functions on G, viewed as a Hopf algebra in Ind Vect with comultiplication A and counit €.



Quantum SL(2) and logarithmic vertex operator algebras at (p, 1)-central charge 831

We recall from [9,26,69] that a rational action of an affine algebraic group G on a tensor
category ¢, or more generally a C-linear monoidal category, is a triple ¢ = (¢, V, ¢) of an
exact monoidal functor ¢ : 4 — %r equipped with natural transformations V : ¢ — A*$?
and € : ¢ — €* whose adjoint maps provide isomorphisms A ¢ = ¢? and €, ¢ = ide
[69, Section 8.1]. We write

$: G — Autg (%) 31)

for a particular choice of G-action on %’. From the above description we see that an action
of G on ¥ is a choice of a particularly structured comonad ¢ for €, or more precisely
for Ind %

An isomorphism between two actions ¢, ¢’ : G = Autg (%) is a natural isomorphism
of monoidal functors 7 : ¢ — ¢’ which forms the appropriate diagrams with the structure
maps V, V', ¢, and ¢’. Also, given two categories ¢ and & equipped with actions ¢ :
G — Autg (%) and ¢ : G — Autg (%), a G-equivariant structure on a tensor functor
F : ¥ — 2 is a choice of an isomorphism of monoidal functors t : F¢p — F which
again forms the appropriate diagrams with the structure maps for ¢ and .

Recall, finally, that the equivariantization €¢ = €©+¢ of a tensor category, relative to
some G-action ¢, is the non-full subcategory of objects V' in € which are equipped with
coassociative, counital, coaction p : V' — ¢ (V). This is the category of comodules over
the comonad ¢. We have the following basic lemma.

Lemma B.1. (a) Iftwo actions ¢,¢’ : G = Autg (€) on a tensor category € are isomor-

phic, via some isomorphism n : ¢ — ¢/, then n induces an equivalence of categories
Ne 1 €C¢ — «G.¢'

(b) If F : € — 2 is a G-equivariant tensor functor, with comparison transformation

v: F¢p = YF, then there is an induced monoidal functor between equivariantizations
FC.:¢% 5 2%  (V.p)— (FV,tFp).
Furthermore, if F is an equivalence then F€ is an equivalence.

Proof. (a) The equivalence 7. sends a ¢-comodule (V, py) to the ¢’-comodule
(V. nv pv). One similarly constructs the inverse n; ! via .

(b) We only speak to the second point, and so assume F is an equivalence. It is clear
that fully faithfulness of F implies fully faithfulness of F€. Similarly, essential surjectiv-
ity of F implies essential surjectivity of F©. Indeed, if an object W in 2 is isomorphic to
some F(V'), and W admits a ¥ -comodule structure py, then F (V') admits an isomorphic
Y-comodule structure, which then induces a corresponding ¢-comodule structure on V'

via 7. So we see that (W, py) is in the essential image of FC. |

B.2. Restricting group actions

Consider a map of algebraic groups @ : T — G. Let R and S be the algebras in Ind Vect
associated to 0 (G) and O(T), respectively. Then we have the map of algebras@ : R — S
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determined by «, and base change along & provides a monoidal functor a4« = S ®r —:
©r — €s. The restriction
$lr : T — Autg(?)

of a G-action (31) along « is defined as the composite functor ¢|T := @« : € — €5
with its induced structure maps. For example, the structure map V|t : ¢|T — A*(p|T)?
is identified under (A, A*)-adjunction by the isomorphism

AdlT = Asludp = (@ ® @)sDsp — (@ ® @)ud> = ($lT)>.

We note that any G-equivariant functor F : € — & inherits a T -equivariant structure,
under the restricted actions on ¢ and 2, via base change.

B.3. Actions by ribbon and braided automorphisms

Let € be a ribbon tensor category. Then the braiding and twist on 4" induces a unique
braiding and twist on the base change ér so that the base change functor R ®¢c — :
¢ — ©r is a braided monoidal functor which commutes with the twist. We say an action
G — Autg (%) is an action by ribbon automorphisms if the associated monoidal functor
¢ : € — 6r is braided and commutes with the twist. Note that preservation of the ribbon
structure, for a given action, is a property and not an additional structure.

One can check that when G acts by ribbon automorphisms, the equivariantization
%¢C admits a unique ribbon structure such that the forgetful functor ¢ — % is a map of
ribbon tensor categories. One also observes that the class of ribbon actions G — Autg (%)
is closed under isomorphism.

Of course, we can omit the twist to obtain the appropriate notion of a rational group
action by braided automorphisms. If a group acts G — Autg (%) by braided automor-
phisms then the equivariantization €’© inherits a unique braiding such that the forgetful
functor is a braided tensor functor.

B.4. De-equivariantization

We again follow [9, 26, 69]. Consider a braided tensor category 6 with a Miiger central
tensor functor i : rep(G) — %, where G is an affine algebraic group. We have the reg-
ular (co)representation &'(G) in Rep(G) = Corep(&(G)) and the corresponding algebra
object = i0(G) in Ind €. The de-equivariantization 6 = %ég,; is, by definition, the
category of finitely presented ¢-modules in Ind €.

The de-equivariantization ég is an exact C-linear monoidal category, with prod-
uct ® ¢, and exact structure induced by the faithful inclusion ¥ — Ind . In most cases,
the de-equivariantization 6g is actually an abelian subcategory in Ind ¥ Rigidity of the
monoidal structure, however, should only hold when i is an embedding, i.e. when the
image of rep(G) in % is closed under taking subquotients (see [69, Sections 5.1, 5.2]).

For a Miiger central functor i : rep(G) — % as above we have the de-equivariantiza-
tion functor, or free module functor dE : € — 6g, V +— & ® V. The category 6 admits
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a unique braiding such that the de-equivariantization map is a map of braided monoidal
categories. If € is additionally ribbon, and the twist acts trivially on the image of rep(G),
then % also inherits a twist. This twist gives g a ribbon structure, in the event that the
de-equivariantization is indeed rigid.

In the statement of the following lemma, by “the” fiber functor for rep(G) we mean the
forgetful functor rep(G) — Vect. We note that there is only one fiber functor for rep(G)
up to isomorphism, in any case [28].

Lemma B.2. Given any Miiger central tensor functor rep(G) — €, the composite rep(G)
— € — 6 factors through the fiber functor rep(G) — Vect — 6g.

By factoring through the fiber functor, we mean that the two maps to 6g are isomor-
phic as monoidal functors.

Proof of Lemma B.2. The unit Vect — g sends a vector space V to the free module
0 ® V. The composite rep(G) — g factors through the de-equivariantization map
rep(G) — (rep(G))g for rep(G) itself. By the fundamental theorem of Hopf modules
[67, Theorem 1.9.4] the de-equivariantization map for rep(G) is isomorphic to the com-
posite rep(G) — Vect — (rep(G))g of the forgetful functor and the unit morphism for

(rep(G))G- u

Remark B.3. One could more generally consider de-equivariantization along central ten-
sor functors from rep(G) to an arbitrary tensor category %, in the sense of [32, Definition
4.15]. We stick to the braided setting for simplicity.

B.5. The rational G-action on 6g, and rep(G)-linear functors

As in the previous section, we consider a Miiger central tensor functor i : rep(G) — &
into a braided tensor category ¥, and fix & = i 0(G).

Take R to be the image of &(G) in Ind Vect under the forgetful functor Rep(G) —
Ind Vect. We have the unit map Ind Vect — Rep(G) so that R is also an algebra object
in Rep(G). Comultiplication provides an R-comodule algebra structure A : 0(G) —
R ® O(G) on the underlying algebra &(G) in Rep G, and we apply i to obtain an i R-
comodule algebra structure on &.

Now, the group G acts naturally on the de-equivariantization ég by braided automor-
phisms, and ribbon automorphisms when in the ribbon context. This action is specified by
the functor ¢ (M) := iR ® M, where M is an &-module in Ind ¢ and & actsoniR ® M
via the coaction A :i0 — iR ® i 0. Coassociativity of the R-coaction on &, and the
counit, provide the necessary transformations ¢ — A*¢2 and ¢ — €*. The following
lemma is straightforward.

Lemma B.4. Consider two Miiger central embeddings i,i’ : rep(G) — €, and the asso-
ciated algebras 0 =i 0(G) and 0’ =i’ 0(G) inInd%. If i and i’ are isomorphic, with a
chosen monoidal isomorphism ) . i — i’, then restricting along the algebra isomorphism
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n: 0 — O provides a G-equivariant braided monoidal equivalence
Cc.i —> 6gi. M— Mlp.

G-equivariance of the restriction functor is realized by the natural isomorphism n ® id :
¢(M)=iRQQM — "R M = ¢'(M).

Let us call a braided category %', with a fixed central tensor functor i : rep(G) — %,
a tensor category over rep(G). By a map of tensor categories over rep(G) we mean a
tensor functor F : ¥ — & and a specific choice of natural isomorphism of tensor functors

l:j = Fi which makes the diagram

rep(G)

2N

€ 2

(2-)commute. In this case we have immediately a G-equivariant functor between the de-
equivariantizations
¢c — Y6,ri, M w— FM,

and Lemma B.4 provides a G-equivariant equivalence Zg, r; = Y, ;. Hence we have
the following.

Lemma B.5. Givenamap F = (F,l): % — 2 of braided tensor categories over rep(G),
there is an induced G-equivariant braided monoidal functor between the de-equivarianti-
zations Fg : 66 — Yg.

We have the following general, and slightly stronger version of Proposition 9.2.

Lemma B.6. Suppose a tensor category 9 is equipped with the trivial rep(G) structure,
rep(G) — Vect — 2, and i : rep(G) — € is an arbitrary tensor category over rep(G).
Then for any map F : € — 2 of tensor categories over rep(G), there is a right exact
monoidal functor [ : 6g — 2 which fits into a (2-)diagram

€

F
dEl \ (32)

b — 2
f
The functor f is unique up to isomorphism, is braided when F is braided, and is exact
when 6g is a tensor category.

Proof. The existence of f, and its conditional exactness and/or braidedness, are estab-
lished as in Proposition 9.2. Below we let R denote the algebra of functions (G),
considered as an algebra object in Ind Vect, and 0 = i O(G).
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To recall, we have F ¢ = unit(R) in Ind & and the counit for R provides an algebra
map FO — 1. We then take f = 1 ® s F, where F denotes the restriction of the given
functor F : ¥ — 2 to a functor between the non-full subcategories of modules

%c = {fin pres O-modules in Ind ¢’} — {fin pres F ¢-modules in Ind Z},

by abuse of notation.

As for uniqueness, we first claim that the monoidal functor 1 ® ;g ¢ dE : 6 — 6G
is isomorphic to the identity. Explicitly, dE ¢ = € ® 0 and the counit for R corresponds
to the algebramap dEC = 0 ® ¢ — ¢ = 1 given by multiplication. For any M in 6g,
dE(M) =0 ® M is the & @ 0-module in Ind ¥, with each copy of & acting on its
respective factor, and the module structure map dE(M) = ¢ ® M — M is a natural
morphism of dE &-modules, where dE & acts on M via the counit/multiplication map
dE O — O = 1. One can check that this map reduces to a natural isomorphism

1 ®upe dE(M) = M.

The above isomorphism provides the claimed natural isomorphism of monoidal functors
1®rdE =~ id.

Consider again F : € — 2 as above, and take f = 1 ® g F. Then for any right exact
monoidal functor f’ : g — 2 which fits into a diagram (32) we have

= flo(l®rdE) = 1Qgr(f' 0dE)=1Qr F = f. -

Remark B.7. If we identify Vect with the category of &'(G)-modules in Rep G, then
Lemma B.6 is in line with various categorical base change formulas in the literature. One
can compare with [31] and [61, Theorem 4.8.4.6], for example.

B.6. Some relative results
Lemma B.8. Consider a map of algebraic groups o : T — G, and a 2-diagram of braided
tensor functors

rep(G) —2 4 rep T
» \ / (33)
1=J resy J

9

Suppose that i and j have Miiger central image. Then, for 0" = jO(T) and 0 =i 0(G),
the braided monoidal functor 0' ® ¢ — : D — Y1 admits a natural T -equivariant struc-
ture.

Let us clarify a few points here. First, the de-equivariantizations Yg and Yt are
defined via the central maps i and j respectively. Second, the base change operation
0’ ® ¢ — is defined via the algebra map

0 =i0G) = jresy OG) % joT) = 0,
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where the first isomorphism is provided by the natural isomorphism implicit in the dia-
gram (33) and & : resy O(G) — O(T) is the algebra map dual to the map of affine group
schemes «. Third, the T-action on Zg is defined via restriction along «, as described in
Section B.2 above. We continue with the proof.

Proof of Lemma B.8. Take res = resy. By Lemma B.4 we may replace i with j o res to
assume that the 2-diagram (33) strictly commutes, i.e. i = j o res. So we consider such a
strict diagram, take ¢ = i 0'(G) and ¢" = jO(T), and let R and S be the corresponding
Hopf algebras in Ind Vect.

The algebraic group map « : T — G specifies a dual Hopf algebramap & : R — S
and, at the level of T-representations, & : res 0(G) — €&(T) is a map of S-comodule
algebras in Rep T. Here the S-coaction on &'(T) is provided by comultiplication, and the
S-coaction on 0 (G) is provided by corestricting the R-coaction along &. (Geometrically,
we are restricting the translation action of G on itself along «.)

We apply j to recover the morphism j& : & — &’ along which we have changed
base to define the functor 0’ ® ¢ — : Y — Pt. The map j& is a map of jS-comodule
algebras in 2. As we explain below, compatibility of j& with the given jS-comodule
structures provides the functor ¢’ ® 5 — with its natural T -equivariant structure.

To say things precisely, we are in search of a natural isomorphism

70 ®6(S®M) = jS® (0 @6 M)

of jS ® ¢’-modules, where ¢’ acts on each product j§ ® X via the coaction &' —
JjS ® 0’, and O acts on the product jS ® M similarly. We consider the two natural maps
in g,

:00(GSOM)— jSRWC' QM) and y:jSRWO'IM)— 0 ®(jS®M),

which are obtained by applying j(—) ® M to the isomorphism (T) ® S — S ® O(T),
f®st> fis® fo,and its inverse S @ O(T) > O(T)® S, s ® f — fo ® S(f1)s,
respectively. The maps 1 and y are mutually inverse, and the fact that & : & — 0" is
JjS-colinear implies that the composites with the projections

0'®(SOM)—— jS® (6’ ® M)
|
proj

0'®6(S®M) 5 jS® (0 ®6 M)

and
JS® (O @M)—— 6 R (jS® M)
|

proj

JS® (0 ®o M) 75 086 (jS ® M)



Quantum SL(2) and logarithmic vertex operator algebras at (p, 1)-central charge 837

are appropriately ¢-bilinear, and hence induce mutually inverse natural isomorphisms on
the quotients

0 ®6(JSOM) = jS®(O' @ M), 7:jS®(O ®@6M)—> 0 ®¢(jS®M).

The fact that 7 commutes with the structure maps A @ —: jS ® — - jS ® jS ® —
for the T-actions on Zg and 21 follows from the comodule algebra axioms for &”.
Specifically, this compatibility follows from the equality of the two maps

OM)RS—>S®S®0(T), f®ar— A(fia)® fo = fia1 @ frax Q@ f3.

The natural isomorphism 7 hence realizes T -equivariance of the base change functor, as
a functor between non-monoidal T -linear categories.

Having established the existence of the above natural isomorphism, we note that 7 is
in fact the unique jS ® &’-linear map which fits into a diagram

M

AN

0 QR0 (jSIM)——— jS® (0 ®c M)

Similarly, the isomorphisms providing the monoidal structures on the functors M —
JjS® M and M +— 0" ® s M are the unique jS-linear and ¢”-linear maps fitting into
diagrams

M ®N

(jS ® M) ®jse6 (jS ® N) = jS® (M ®6 N)

and

(0" ®6 M) R®p (0'®¢ N) = 0'®6 (M ®¢ N)

respectively. One can use these uniqueness properties to check that 7 is indeed compatible
with the monoidal structure on the functor ¢’ Q@ 5 —. [

We now consider a 2-diagram of braided tensor functors

rep(G) e, rep(T)

,l l ; (34)

¢— 2
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where the functor res,, is restriction along an algebraic group map « : T — G. We assume
that i and j are Miiger central and that the de-equivariantization Zr is a tensor category.’
The composition € — 2 — 2t then annihilates rep(G), and so by Lemma B.6 there is
a unique right exact monoidal functor f : 4g — Pt which fits into a 2-diagram

¢—tf .9

]

e —— YDt

Lemma B.9. In the above setting, the induced map f : 6g — Pt inherits a natural
T -equivariant structure.

Proof. Take 0 =i0(G)and 0" = jO(T). Themap f : 6g — Pt is, by definition, the
composition

Fe
=% = {fin pres F &-modules in Ind 2} = Zg

O'®F o
—ZF%°, {fin pres ¢'-modules in Ind 2} = Py ]-

The first map Fg in this composite is known to be G-equivariant and hence T -equivariant,
by Lemma B.5 above. The second map is T -equivariant by Lemma B.8. We conclude that
the composite f is T-equivariant as well. ]
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