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Abstract. We show that the underlying complex manifold of a complete non-compact two-dimen-
sional shrinking gradient Kéhler—Ricci soliton (M, g, X) with soliton metric g with bounded scalar
curvature Rg whose soliton vector field X has an integral curve along which Rg /4 0 is biho-
lomorphic to either C x P! or to the blowup of this manifold at one point, and that the soliton
metric g is toric. We also identify the corresponding soliton vector field X in each case. Given these
possibilities, we then prove a strong form of the Feldman—Ilmanen—Knopf conjecture for finite time
Type I singularities of the Kidhler—Ricci flow on compact Kihler surfaces, leading to a classification
of the bubbles of such singularities in this dimension.
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1. Introduction

1.1. Overview

A Ricci soliton is a triple (M, g, X), where M is a Riemannian manifold endowed with
a complete Riemannian metric g and a complete vector field X, such that

1 p)
Ri + —fxg == 1.1
ic(g) Ftxg =78 (L.1)

for some A € {—1,0,1}. If X = V& f for some smooth real-valued function f on M,
then we say that (M, g, X) is gradient. In this case, the soliton equation (1.1) becomes

Ric(g) + %g = Hess(f).

Charles Cifarelli: Mathematics Department, Stony Brook University, 100 Nicolls Road, Stony
Brook, NY 11794-3651, USA; charles.cifarelli@stonybrook.edu

Ronan J. Conlon: Department of Mathematical Sciences, The University of Texas at Dallas,
800 W. Campbell Rd., Richardson, TX 75080-3021, USA; ronan.conlon @utdallas.edu

Alix Deruelle: Laboratoire de Mathématiques d’Orsay, CNRS, Université Paris-Saclay,
Batiment 307, rue Michel Magat, 91405 Orsay, France; alix.deruelle @universite-paris-saclay.fr

Mathematics Subject Classification 2020: 53E30 (primary); 32Q15 (secondary).


https://creativecommons.org/licenses/by/4.0/
mailto:charles.cifarelli@stonybrook.edu
mailto:ronan.conlon@utdallas.edu
mailto:alix.deruelle@universite-paris-saclay.fr

C. Cifarelli, R. J. Conlon, A. Deruelle 464

If g is complete and Kihler with Kéhler form w, then we say that (M, g, X) is
a Kdhler—Ricci soliton if the vector field X is complete and real holomorphic, and the
pair (g, X) satisfies the equation

1
Ric(g) + Eixg =Ag (1.2)

for A as above. If g is a Kéhler—Ricci soliton and if X = V& f for some smooth real-
valued function f on M, then we say that (M, g, X) is gradient. In this case, the soliton
equation (1.2) may be rewritten as

Po +100f = Aw,

where p,, is the Ricci form of w.

For Ricci solitons and Kéhler—Ricci solitons (M, g, X ), the vector field X is called the
soliton vector field. Its completeness is guaranteed by the completeness of g [46]. If the
soliton is gradient, then the smooth real-valued function f satisfying X = V& f is called
the soliton potential. Tt is unique up to the addition of a constant. Finally, a Ricci soliton
and a K#hler—Ricci soliton are called steady if A = 0, expanding if A = —1, and shrinking
if A = lin (1.1) and (1.2), respectively.

The study of Ricci solitons and their classification is important in the context of
Riemannian geometry. For example, they provide a natural generalisation of Einstein
manifolds and on certain Fano manifolds, shrinking Kéhler—Ricci solitons are known to
exist where there are obstructions to the existence of a Kidhler—Einstein metric [47]. Also,
to each soliton, one may associate a self-similar solution of the Ricci flow [8, Lemma 2.4].
These are candidates for singularity models of the flow. The difference in normalisations
between (1.1) and (1.2) reflects the difference between the constants preceding the Ricci
term in the Ricci flow and in the Kdhler—Ricci flow respectively when one takes this
dynamic point of view.

In this article, we are concerned with the classification of complete shrinking gradient
Kéhler—Ricci solitons with bounded curvature, the motivation being that such a soliton
encodes how the Kihler—Ricci flow enters a finite time Type I singularity, that is, a singu-
larity where the curvature of the evolving metric does not blow up faster than O((T —¢)™1)
at the finite singular time 7" > 0. More precisely, non-flat shrinking gradient Kdhler—Ricci
solitons are known to appear as parabolic rescalings of finite time Type I singularities of
the Kihler—Ricci flow on compact Kéhler manifolds [13,31]. We focus on the classifica-
tion in complex dimension 2, where a bound on the scalar curvature of the soliton suffices
to bound the full curvature tensor [30]. Assuming therefore bounded scalar curvature, the
soliton is either compact, in which case the underlying manifold is Fano and the resulting
soliton is (up to automorphism) Kahler—FEinstein or the shrinking gradient Kéhler—Ricci
soliton given by [44] depending on the Fano manifold in question, or is non-compact.
Gradient shrinking Kéhler—Ricci solitons are connected at infinity [29] and in this latter
case, there is a dichotomy in the sense that the scalar curvature of the soliton either tends
to zero along every integral curve of X, or X has an integral curve along which the scalar
curvature does not tend to zero. In the former case, it follows that the scalar curvature
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tends to zero globally (cf. Lemma 2.7) and hence the soliton (up to automorphism) is
either that of Feldman—Ilmanen—Knopf [15] on the blowup of C? at one point or the
flat Gaussian shrinking soliton on C2 [11]. Here we use a result of [31] to prove, in
conjunction with [9], that in the latter case the shrinking soliton is isometric to the cyl-
inder C x P!, or it is toric and its underlying manifold is the blowup of C x P! at one
point. Being the only possibilities, this allows us to prove a strong form of the Feldman—
Ilmanen—Knopf conjecture [15] for finite time Type I singularities of the Kéhler—Ricci
flow on compact Kéhler surfaces, and in doing so, identify the possible parabolic rescal-
ings that may appear at such singularities.

1.2. Main results

The simplest examples of complete shrinking gradient Kéhler—Ricci solitons include any
Kihler-Finstein manifold with soliton vector field X = 0 and the flat Gaussian shrinking
soliton on C endowed with soliton vector field 2 - Re(zd,), where z is the holomorphic
coordinate on C. Taking Cartesian products also provides examples. With this in mind,
our first main result can be stated as follows. The statement should be read in the context
of the dichotomy explained above.

Theorem A (Holomorphic classification). Let (M, g, X) be a two-dimensional complete
non-compact shrinking gradient Kahler—Ricci soliton with complex structure J and with
bounded scalar curvature Ry whose soliton vector field X has an integral curve along
whichRg # 0. Then

(i) M is biholomorphic to either C x P! or to Bl,(C x P), that is, the blowup of
C x P! at a fixed point p of the standard torus action on C x P!,

(i)  There exists a biholomorphism y: M — M such that y;'(JX) lies in the Lie
algebra of the real torus T acting on these spaces in the standard way and y*g
is T -invariant.

(i) y;'(JX) is determined and its flow generates a holomorphic isometric S'-action

of (M, J,y*g).

Conclusions (ii)—(iii) for M = C x P! have already been established in [9] where
it was shown that any complete shrinking gradient Kihler—Ricci soliton with bounded
scalar curvature on this manifold is isometric to the Cartesian product of the flat Gaus-
sian soliton wc on C and twice the Fubini-Study metric wp1 on P!, The new possibility
arising is when M is the blowup of C x P! at one point, in which case y; ! (JX) is
given by (2.16). In [1], it is shown that this manifold admits a unique complete shrink-
ing gradient Kdhler—Ricci soliton with bounded scalar curvature. Combined with The-
orem A, [9, Corollary C], and [11, Theorem E (3)], this completes the classification of
complete shrinking gradient Kéhler—Ricci solitons with bounded scalar curvature in com-
plex dimension 2 (cf. [1, Theorem B] for a precise statement). This new example models
a finite time Type I collapsing singularity of a Kéhler—Ricci flow with diameter bounded
uniformly from below on the blowup of P! x P! at one point in the vicinity of the excep-
tional curve. Indeed, this is how the soliton is constructed.
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The proof of Theorem A is specifically catered to complex dimension 2, making
heavy use of the theory of J-holomorphic curves in this dimension. The outline is as
follows. We assume that the shrinking soliton (M, g, X) is simply connected as this turns
out to suffice. The bounded scalar curvature assumption implies that the curvature is
bounded [30] and so by results in [11], the flow of JX will generate the holomorphic
isometric action of a real torus on the soliton. Next, we are able to deduce from a result of
Naber [31] that on large balls sufficiently far away from the zero set of the soliton vector
field X centred along the integral curve of X along which Ry 4 0, (M, g) is C*°-close
to the model cylinder C x P!, As the complex structures will consequently also be close,
we use the perturbation theory of J-holomorphic curves to perturb a holomorphic P! in
the cylinder to a holomorphic P! with zero self-intersection in M itself. Taking an S!
inside the aforementioned real torus generated by J X, we can then move this P! around
and identify M with C* x P! at infinity. Complete shrinking solitons with bounded scalar
curvature have finite topological type [14], therefore we may blow down all of the (—1)-
curves in M and obtain its minimal model M,;,. A continuity argument using Gromov’s
compactness theorem for J-holomorphic curves then allows us to extend the P ! -foliation
of M at infinity into the interior of My, and in doing so, identify M, as a P!-bundle
over a non-compact Riemann surface S. Compactifying this picture, the assumption of
simple connectedness allows us to ascertain that S compactifies to an S2, leaving us with
the diffeomorphism type of M, as R? x S2. After analysing the structure of the zero
set of X, we may then use the flow of the vector fields X and JX to construct a com-
plex torus equivariant biholomorphism between M, and C x P!. The manifold M is
therefore biholomorphic to either M, or to the blowup of M, at finitely many points.
The blowup points of My, must be contained in the zero set of the vector field that X
induces on My, which itself is contained in a P!. Furthermore, the sign of —Kjy dic-
tated by the shrinking soliton equation allows M to contain only (—1)-curves, ruling out
iterative blowups of My, at a point. These two properties limit the number of blowup
points to one, leading to the statement of Theorem A (i). The biholomorphism construc-
ted between M and the manifolds of part (i) is torus-equivariant and uses the flow of X
and JX, hence naturally has the property regarding the vector field stated in (ii). The
toricity of the soliton metric follows from an application of the version of Matsushima’s
theorem for shrinking gradient Kihler—Ricci solitons proved in [11]. For this step, the
assumption of bounded scalar curvature is crucial. Finally, knowing that JX lies in the
Lie algebra of the ambient torus means that it can be identified as it has the property that it
minimises a certain functional, known as the weighted volume functional [11,41]. In fact,
knowing the two possibilities for M allows us to compute this vector field explicitly in
each case. This yields (iii).

1.2.1. Application to the Kdihler—Ricci flow. For a complete shrinking gradient Kéhler—
Ricci soliton (M, g, X) with X = V& f for f: M — R smooth, one can define an ancient
solution g(¢), t < 0, of the Kéhler—Ricci flow

dg (1)

Srraiaie Ric(g(2))
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with g(—1) = g by defining g(¢) := —t¢/g, t < 0, where ¢, is a family of diffeo-
morphisms generated by the gradient vector field —%X with ¢_; =1id, i.e.,

dor o VL@
ot 2t e ’
These Kéhler—Ricci flows model the formation of finite time Type I singularities of the
flow [31] which we now define. We recall the following from [13] in the context of the
Kéhler—Ricci flow.

A family (M, g(¢)) of smooth complete Kéhler manifolds satisfying the Kdhler—Ricci
flow

g (1)
ot
on a finite time interval [0, T), T < 400, is called a Type I Kdiihler—Ricci flow if there
exists a constant C > 0 such that for all ¢ € [0, T),

= —Ric(g(1))

sup |[Rm < .

up IRMg ) lg) = 77—
Such a solution is said to develop a Type I singularity at time T (and T is called a Type I
singular time) if it cannot be smoothly extended past time 7'. It is well known that this is
the case if and only if

lim sup sup |[Rmg (1) g(r) = +00; (1.3)
t—>T— M
see [21] for compact and [36] for complete flows. Here Rmg ;) denotes the Riemannian
curvature tensor of the metric g(z).
Since Type I Kédhler—Ricci flows (M, g(¢)) have bounded curvature foreach ¢ € [0,T),

the parabolic maximum principle, applied to the evolution equation satisfied by |Rm|§, "
shows that (1.3) is equivalent to

1
R > ——— forallt € [0, 7).
Slllllp| Mg ()l g(r) = ST —p ore [0.7)

This motivates the following definition.

Definition 1.1 ([13, Definition 1.2]). Let (M, g(¢)),t € [0,T), T < 400, be a Kdhler—
Ricci flow. A space-time sequence (p;,t;) with p; € M and t; — T~ is called an essential
blowup sequence if there exists a constant ¢ > 0 such that

Rmy y(pi) > .
IRmg @ g (Pi) 2 77—
A point p € M in a Type I Kéhler—Ricci flow is called a Type I singular point if there
exists an essential blowup sequence with p; — p on M. We denote the set of all Type I
singular points by .
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The set X; has been characterised in [13, Theorem 1.2]. As already noted, in general
it is known that a suitable blowup limit of a complete Kdhler—Ricci flow at a point of Xj
is a non-flat shrinking gradient K#hler—Ricci soliton with bounded curvature [13, 31].
Therefore, assuming the development of a finite time Type I singularity, thanks to the
classification given by Theorem A, we are able to obtain as a corollary the following
strong form of the Feldman—Ilmanen—Knopf conjecture for such singularities on compact
Kahler surfaces [15, Example 2.2 (3)].

Theorem B (Non-collapsing). Let (M, g(t)) be a Type I Kiihler-Ricci flow on [0, T),
T < 400, on a compact Kdihler surface M and suppose that x € Xy is a Type I singu-
lar point as defined in Definition 1.1. Then for every sequence A; — +00, the rescaled
Kdhler-Ricci flows (M, g;(t), x) defined on [—A;T,0) by g;(t) := A;jg(T + %) sub-
converge in the smooth pointed Cheeger—Gromov topology to the unique shrinking gradi-
ent U(2)-invariant Kdhler—Ricci soliton of Feldman—Ilmanen—Knopf [15] on the blowup
of C? at one point if and only if lim; 7~ volg (1) (M) > 0.

This theorem characterises the Feldman—Ilmanen—Knopf shrinking Kadhler—Ricci soli-
ton as the unique shrinking soliton that models finite time Type I non-collapsed sin-
gularities of the Kihler—Ricci flow on compact Kahler surfaces. The “if” direction of
Theorem B is known to hold true for U(n)-invariant Kdhler—Ricci flows on the blowup
of P” at one point [20]. Moreover, on this manifold, it is known that any U(n)-invariant
solution of the Kihler—Ricci flow developing a finite time singularity is a singularity of
Type I [39]. Similar results were obtained by Médximo [26] for n = 2. However, contrary
to a folklore conjecture, not every finite time singularity of the Kdhler—Ricci flow is of
Type I [25], although this is expected to be the case for Kédhler—Ricci flows on compact
Kihler surfaces.

The proof of Theorem B is by contradiction. Assuming that the volume is non-collaps-
ing, we consider the volume evolution of the unique (—1)-curve in the Feldman—Ilmanen—
Knopf shrinking soliton under the Kidhler—Ricci flow to rule out other possible shrinking
solitons appearing as the rescaled limit. For the other direction, we assume volume col-
lapsing and the appearance of the Feldman—Ilmanen—Knopf shrinking soliton to derive
a nonsensical lower bound on the volume of a (—1)-curve in the original manifold. This
direction crucially relies on the structure of collapsing singularities of the Kdhler—Ricci
flow in complex dimension 2 given by [43] and the asymptotics and symmetry of the
aforementioned soliton.

Given Theorem B, we can now classify the finite time Type I rescaled limits of the
Kéhler—Ricci flow on a compact Kahler surface M. To this end, let (M, g(¢)):e[o0,T) be
a Kihler—Ricci flow developing a finite Type I singularity when t = T > 0. Take the
blowup limit as is done in Theorem B. If lim;_.7— volg(;)(M) > 0, then Theorem B
asserts that the blowup limit is the Feldman—Ilmanen—Knopf shrinking soliton on the
blowup of C? at one point. This picture is consistent with finite time singularities of
the Kéhler—Ricci flow on compact Kéhler surfaces being of Type 1. Indeed, under the
assumption of non-collapsing, it is known that the flow contracts finitely many disjoint
(—1)-curves on M [3, Theorem 3.8.3]. On the other hand, if there is finite time collapsing
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att =T > 0,1i.e., if lim;—7- voly (1) (M) = O, then either lim,;_,7— diam (M, g(¢)) =0,
which is a “finite time extinction”, or lim;_,7— diam(M, g(¢)) > 0. In the former case,
[43] asserts that M is Fano and the Kihler class of g(0) lies in ¢ (M). The work of Perel-
man (see [35]) gives us the upper bound diam(M, g(¢)) < C(T — t)%, which, for the res-
caled limit g; (¢), t <0, translates to diam(M, g; (t)) < C |t|. This latter bound implies that
the rescaled limit is compact, hence being a shrinking soliton, is Fano with its (up to auto-
morphism) unique shrinking soliton structure. In the latter case, the blowup limit cannot
be Fano as the compactness of such a manifold implies that lim;_,7— diam (M, g(¢)) = 0,
a contradiction. By Theorem B, the blowup limit cannot be the shrinking soliton of
Feldman-Ilmanen—Knopf. Hence the only possibility is that the blowup limit is the cylin-
der C x P! or the shrinking soliton of [1]. The precise soliton that appears would depend
upon the proximity of the blowup point to a (—1)-curve. This collapsing picture is also
consistent with finite time singularities of the Kédhler—Ricci flow on compact Kihler sur-
faces being of Type I as under the assumption of finite time collapsing, it is known that
the underlying complex manifold is birational to a ruled surface [3, Proposition 3.8.4].

1.3. Outline of paper

We begin Section 2.1 by presenting the background material on J-holomorphic curves
that we need to prove Theorem A. We then recall in Section 2.2 the basics of shrink-
ing Ricci and Kihler—Ricci solitons. In Section 2.3, we digress and mention some basics
on polyhedrons and polyhedral cones that we need before moving on to some relevant
information concerning Hamiltonian actions in Section 2.4. Section 2.5 then comprises
the background material on toric geometry that we need. In particular, we recall the
definition of the weighted volume functional and discuss its properties in Section 2.5.4.
Moreover, in this section, we determine explicitly the unique holomorphic vector field
on the manifolds of Theorem A (i) that could be the soliton vector field of a shrinking
gradient Kdhler—Ricci soliton with bounded scalar curvature.

In Section 3, we prove Theorem A. We first prove in Proposition 3.1 a smooth clas-
sification of the underlying manifold, a precursor to the holomorphic classification given
by Proposition 3.9. This section concludes by completing the proof of Theorem A.

In the final section, namely Section 4, we prove Theorem B.

2. Preliminaries
2.1. J-holomorphic curves

In this section, we summarise the tools from the theory of J-holomorphic curves that we
need in the context of Kihler manifolds. The source for this material is [27, 28].

Let (M, J) be an n-dimensional complex manifold, and let (X, j) be a compact
Riemann surface with complex structures J and j, respectively. We say that a smooth
map u: ¥ — M is a J-holomorphic curve if the differential du is a complex linear map
with respect to j and J, i.e.,

Jodu=duoj.
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A smooth map u: (2, j) — (M, J) is J-holomorphic if and only if
dyu =0, (2.1)

where {
dyu = E(du + Joduoj).

By definition, a J-holomorphic curve is always parametrised. A J-holomorphic curve
u: (X, j) — M is said to be multiply covered if there exist a J-holomorphic curve u':
(X', j’) — M and a branched covering ¢: ¥ — ¥’ of degree strictly greater than 1 such
that u factors as u = u’ o ¢. The curve u is called simple if it is not multiply covered.
If u is a multiply covered J-holomorphic curve from P!, then by the Riemann—Hurwitz
formula, ¥’ = P1L.

We henceforth restrict ourselves to J-holomorphic spheres, that is, when & = P!,
For a given homology class A € H>(M, Z), we denote for such curves the moduli space
of solutions to (2.1) by

M(A;J) ={ueC®PL.M)|Jodu=duo j, u(P"H] = 4}
and the subspace of simple solutions by
M*(A;J) ;= {u € M(A;J) | uis simple}.

For a compact Riemannian manifold N, let Q°(N, E) denote the space of smooth
sections of the bundle E — N. Moreover, let A%! := A%IT*P! denote the bundle of 1-
forms on P! of type (0, 1). Assume now that (M, J ) is Kihler with a given Kihler form o
and for a given smooth (not necessarily J-holomorphic) curve u: P! — M, we define
a map

Fu: QUPLu*TM) — QU(P, A% @7 u*TM)
as follows. Given £ € QO(P!, u*TM), let
Dy, (€): u*TM — exp, (§)*TM

denote the complex bundle isomorphism given by parallel transport along the geodesics
§ > €XPy(z)(s§(2)) with respect to the Levi-Civita connection V induced by . Then
define

Fu(§) 1= @u (€)' 9 (expy (£)). 2.2)
write Q' (P1, u*TM) := QO(P', A%! ®; u*TM), where we drop the subscript J
when there is no ambiguity, and let D, denote the linearisation d %, (0) of ¥, at 0.
Then D, defines an operator

Dy: QUPLu*TM) — QGNP u*TM),
which in our situation with J a complex structure is given by

D,§ = %(VE + Jw)VEo j) (2.3)
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for every £ € QO(P', u*TM) [28, Proposition 3.1.1], i.e., D, £ is the projection of V&
onto Q®! (P!, u*TM). This is a real linear “Cauchy—Riemann” operator (cf. [28, Ap-
pendix C]), hence is Fredholm [28, Theorem C.1.10], meaning that it has closed range
and finite-dimensional kernel and cokernel. The Riemann—Roch theorem asserts that its
Fredholm index is

index D,, = 2n + 2c;(u*TM),

where n = dimc M . In the case that u: P! — M is actually a J -holomorphic curve, Dy, is
precisely the Dolbeault d-operator

9: QOu*TM) — Q¥ (u*TM).

If in addition D, is surjective, then M*([u(P1)]; J) is a smooth oriented manifold near u
of real dimension 2n + 2¢;(u*TM) [28, Theorem 3.1.5].
The following is well known.

Proposition 2.1 (Local deformations). Let M be a two-dimensional complex manifold
with complex structure J, let C be a simple embedded J-holomorphic sphere with
C.C =0, and let D denote the open ball of radius 1 in C. Then there exists an open
neighbourhood U of C that is diffeomorphic to D x P with {t} x P! a J-holomorphic
sphere in M for eacht € D and {0} x P! = C.

Proof. Fix a parametrisation u: P! — C C M. As u is J-holomorphic, we know that
§ su = 0. The linearisation D, of , at 0 is then Fredholm and is precisely the Dolbeault
d-operator with respect to J, namely

Dy = 3: QUu*TM) — QO u*TM).

Moreover, as C has a trivial holomorphic normal bundle, we have the direct sum decom-
position u*TM = @ & O(2), a splitting that is respected by 9. Therefore, recalling the
proof of [28, Lemma 3.3.1], we can consider the action of 9 on each factor separately. For
any holomorphic line bundle L — P!, the cokernel of 3: QP! L) —» QOY(P, L) is
precisely the Dolbeault cohomology group H%) 1 (P!, L). Now, we have an isomorphism

Hy"'(P', L) = (Hy (P, L*))",

where Hgl’0 (P!, L*) is the space of holomorphic one-forms with values in the dual
bundle L* and which itself is isomorphic to H°(P!, L* ® Kp1), the space of holo-
morphic sections of the bundle L* ® Kp1 by Kodaira—Serre duality. Hence

Hgo’l(IP’l,@) = Hg’l(Pl,o(z)) =0.

In particular, D,, is surjective of Fredholm index 8, so that M*([C]; J) is a smooth ori-
ented manifold of real dimension 8 near u. Indeed, it follows from [28, Corollary 3.3.4]
that D, is surjective for every v € M*([C]; J), hence M*([C]; J) itself is a smooth
oriented manifold of real dimension 8.
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Recall that M*([C]; J) comprises parametrised J-holomorphic curves. The six-di-
mensional real Lie group PSL(2, C), which we henceforth denote by G, acts freely on
M*([C]; J) via reparametrisation

g-v=vog ! forallgeGandve M*(C];J).
We consider the quotient space
M*([C; J) == M*([CL: J)/G.

This is precisely the space of J-holomorphic spheres in M in the same homology class
as C and is a smooth oriented manifold of real dimension 8 — 6 = 2. As C is simple and
embedded, McDuff’s adjunction formula [28, Corollary E.1.7] implies that every sphere
in M *([C]; J) is embedded in M . In addition, the fact that C.C = 0 implies that any two
distinct P1’s in M~*([C]; J) are disjoint in M.

Set M*([C]: J) xg P! = (M*([C]; J) x P1)/G, where G acts on M*([C]; J) x P!
by g-(v,z) = (vog !, g-z). Then M*([C]; J) xg P! is a smooth manifold of real
dimension 4 which is a P!-bundle over 4 * (IC1; J). We define an evaluation map ev by

ev: M*([C]; ) xg Pl = M, [(v,2)]+~ v(2).

This is a smooth map between two oriented smooth manifolds of the same dimension that
maps every fibre {[(v,z)] | z € P!} biholomorphically onto an embedded J -holomorphic
sphere in M, with distinct fibres being mapped to distinct J-holomorphic spheres in M
with {[(«,z)] | z € P!} being mapped to C. In particular, ev is an immersion between two
manifolds of the same dimension, hence is a local diffeomorphism. Choosing a trivialisa-
tion of the P!-bundle in a neighbourhood of the fibre {[(u, z)] | z € P!} now yields the
result. ]

Next, for a compact Riemannian manifold N, for an integer K > 1 and a real num-
ber p > 2, let W*P(N, E) denote the completion of the space QO(N, E) of smooth
sections of the bundle E — N with respect to the Sobolev W*-P-norm. Again, assume
that (M, J) is Kahler with Kéhler form o and endow (P!, j) with the Fubini—Study
form wp1 compatible with j. For a given smooth curve u: P! — M and real number
p > 2,let

XP .= whr (P u*TM), Y2 :=LP(P', A% @, u*TM), (2.4)

where all relevant norms are understood to be with respect to w and wp1 and the Levi-
Civita connection V determined by w. Then the maps ¥, and D, defined above for
smooth sections extend in a natural way to maps F,: X — Y.

One can prove that if u is an approximate J-holomorphic curve with sufficiently sur-
jective operator D,,, then there are J-holomorphic curves near u, and the moduli space
can be modelled on a neighbourhood of zero in the kernel of D,,. More precisely, we have
the following theorem.
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Theorem 2.2 ([27, Theorem 3.3.4] with £ = P! and u: ¥ — M smooth). Let p > 2 and
let || - || denote the operator norm. Then for every constant c¢q > 0, there exist constants
8 > 0 and ¢ > 0 such that the following holds. Let u: P! — M be a smooth map and
0u:YE — X7 be aright inverse of D,, such that

1Qull < co. ldullLr <co, [Bsullrr <38,

with respect to a metric on P such that vol(P') < co. Then for every £ € ker(D,,) with
|ElLr < 8, there exists a section € = Qyun € XE such that

07 (expy (E+ Qum) =0, [ Qunllwr.r < cllds(exp,(E)Lr-

This theorem is proved using the implicit function theorem. Given a surjective oper-
ator D,,, one technique for constructing a right inverse Q,, is to reduce the domain of D,,
by imposing pointwise conditions on £ so that the resulting operator is bijective, and then
taking Q,, to be the inverse of this restricted operator. We will use this to prove the fol-
lowing two corollaries of this theorem.

Corollary 2.3 (Deformation of trivially-embedded curves). Let M be a manifold of real
dimension 4, let (g, J) and (g, J) be two Kdihler structures on M, and let u: (P!, j)—
(M, J ) be a smooth J -holomorphic curve with trivial self-intersection. Denote the Levi-
Civita connection of g by V. Then for all x € u(PY), there exists ¢ > 0 such that if

lg—Blz +IV(@e—-Dlg+I1J-Tlzg <e (2.5)

on some sufficiently large compact subset K C M containing u(P), then there exists
a unique smooth sectlonf e T(u*TM) with S(x) = 0and ||E||Co <C|J - J||c0(]1>l )
such that B

v = exp,(§): (P, j) - (M., J)

is a smooth J -holomorphic curve (in the same homology class as u(P') with x € v(P1)).

Proof. Let F, denote map (2.2) corresponding to the data (u, g, J ) and recall from the
proof of Proposition 2.1 that the linearisation D,, of Fy, at 0 with respect to J is Fredholm
of index 8 and is precisely the Dolbeault d-operator with respect to J, namely

D, =0: Q°u*TM) — sz‘;l(u*TM).

Via the direct sum decomposition u*TM = O & O(2), the kernel of D, is spanned by
{1,22, 2125, 22} with [z : 22] homogeneous coordinates on P!, Identifying x with its
pre-image under u, restrict D,, to the subspace Q°(u*TM )0y of Q°(u*TM) of smooth
sections that vanish in the tangential directions at the points x, z; = 0,and z; = 0on P L
and vanish in the normal direction at x. (If z; (x) = 0 for some i = 1, 2, then just choose
an arbitrary point on P! distinct from z; = 0 and z, = 0 for the sections to vanish.) Then
the restriction
DW: QOu*TM) @) — Q‘}:‘(u*TM)
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is an isomorphism. Fix p > 2, and let (XZ)(g) and ¥Z denote the Sobolev completion
of Q°(u*TM) o) with respect to the W'-?-norm and the completion of Q°(P!, A*! ® 7
u*T M) with respect to the L?-norm induced by g and the choice of Kihler metric on P!,
respectively. Then D defines an isomorphism D{": (X)) — 2.

Next consider 3 gu. Let X2 and Y2 be as in (2.4) defined with respect to w and
the choice of Kiahler metric on P!, and let (X)) denote the Sobolev completion of
QOu*TM) o) with respect to the W1-P-norm induced by the aforementioned metrics.
Then the linearisation D,, defines a map

D,: XP — ¥Y?

which we can restrict to (X4 ) (o) and compose with the projection pr: ¥} — Y2 to obtain
a map
(proDy)@: (XE) ) — YL.

Explicitly, the composition pr oD, is given by
1 ~ 1 ~ ~
(proDy)(§) = J(Duf + I DyE 0 j) = ((VE—JIVE) +(J + J)VEo ). (2.6)

As clearly (X,f)(o) = (.’)Zf,’)(o), we also have an isomorphism 5,(,0): (Xf,’)(o) — g,f Thus,
from the openness of the invertibility of bounded linear operators, we know that there
exists § > 0 such that ||5L(,0) — (proD,) || < § implies the invertibility of (proD,)©®.
In light of (2.3) and (2.6), we estimate that

| Dy — proDy| < C(|V — 6||c0(11=>1,g>') + 7 - j"CO(Pl,g)),

and so (proD,)© is invertible if (2.5) holds true for & > 0 sufficiently small. Moreover,
if | — Jlcop1 g) is sufficiently small, then pr is an isomorphism. Hence, by shrinking
& > 0 further if necessary, we can assert that the restricted map

DO (X2 o) — Y2
is itself an isomorphism. As
l0sullr < C(105u —d5ullLr + 105ullLr) < CIIJ = Tllcow! z)-
——
=0
control on ||J — fllcO(]Pl’g) allows us to assume that ||d ||z » is as small as we please.
Therefore, applying Theorem 2.2 with & = 0, we deduce that for all & > 0 sufficiently

small, there exists a unique section E € (X&) (o) such that the map v := exp, (E) is J-
holomorphic and ||§||y1.» < C|dul|Lr. Thus,

Illwr.r < Clldsullze < CIlJ = Tllcogt z)-

The desired estimate on § now follows from Sobolev embedding. The fact that v is
smooth follows from elliptic regularity and the smoothness of J [28, Proposition 3.1.9].



On finite time Type I singularities of the Kihler—Ricci flow on compact Kihler surfaces 475

By construction, g(x) = 0'so that x € v(P!), and v(P!) lies in the same homology class
as u(P1), hence v has the required properties. Finally, the uniqueness of v is a con-
sequence of the triviality of the normal bundle of v(IP!) and the positivity of intersections
of complex subvarieties in a complex surface [28, Theorem 2.6.3]. ]

The next corollary is reminiscent of [24, Theorem 5].

Corollary 2.4 (Deformation of (—1)-curves). Let M be a manifold of real dimension 4,
let (g.J) and (8, J) be two Kihler structures on M, and let u: (P!, Jj)— (M, J) be
a smooth J -holomorphic (—1)-curve. Denote the Levi-Civita connection of g by V. Then
there exists € > 0 such that if

lg—Elz +IVg—Dlg+1J - Tz <e

on some sufficiently large compact subset K C M containing u(P), then there exists
a unique smooth section § e T(W*TM) with ||§||Co <C|J - j”CO(]PI’g) such that v :=
expy, (§): (P, j)— (M, J) is a smooth J -holomorphic (—1)-curve (in the same homology
class as u(P1)).

Proof. Let F,, denote map (2.2) corresponding to the data (u, g, J ) and recall from the
proof of Proposition 2.1 that the linearisation Dy, of Fy, at 0 with respect to J is precisely
the Dolbeault 9- operator with respect to J, namely

Dy, =0: Q°u*TM) — Q(}’l(u*TM).

This is Fredholm of index 6 (cf. the proof of Proposition 2.1) and via the direct sum
decomposition u*TM = O(—1) & O(2), the kernel of Du is spanned by {z?, z1z5, 22
with [z; : z,] homogeneous coordinates on P!, Restrict D, tothe subspace QO (u*TM ()
of QO(u*TM) of smooth sections that vanish in the tangential directions at the points
z1 =0, z; = 0, and at an arbitrary point of P! distinct from z; = 0 and z, = 0. Then the
restriction

DMV: QOu*TM) 1y — sz‘;‘(u*TM)

defines an isomorphism. The proof now proceeds verbatim as that of Corollary 2.3 without
the last sentence. ]

2.2. Shrinking Ricci solitons
The metrics we are interested in are the following.

Definition 2.5. A shrinking Ricci soliton is a triple (M, g, X ), where M is a Riemannian
manifold endowed with a complete Riemannian metric g and a vector field X satisfying
the equation

. 1 1
Ric(g) + chxg = Eg. 2.7
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We call X the soliton vector field and say that (M, g, X) is a gradient Ricci soliton
if X = V& f for some real-valued smooth function f on M. In this latter case, equa-

tion (2.7) reduces to
. 1
Ric(g) + Hess, (f) = 5.

where Hess, denotes the Hessian with respect to g.

If g is complete and Kahler with Kéhler form w, then we say that (M, g, X) is a shrink-
ing gradient Kdhler—Ricci soliton if X = V& f for some real-valued smooth function f
on M, X is complete and real holomorphic, and

po +i00f =, (2.8)

where p,, is the Ricci form of w. For gradient Ricci solitons and gradient Kdhler—Ricci
solitons, the function f satisfying X = V& f is called the soliton potential.

As the next result shows, the soliton potential of a complete non-compact shrinking
gradient Ricci soliton grows quadratically with respect to the distance.

Theorem 2.6 ([5, Theorem 1.1]). Let (M, g, X) be a complete non-compact shrinking
gradient Ricci soliton with soliton vector field X = V& f for a smooth real-valued func-
tion f: M — R. Then for x € M, f satisfies the estimates

de(p.v) =)’ = C = () < J(dg(p.2) + 2

for some C > 0, where dg(p, -) denotes the distance to a fixed point p € M with respect
to g. Here, ¢y and c; are positive constants depending only on the real dimension of M
and the geometry of g on the unit ball B, (1) based at p.

In particular, f is proper.
We also know the following regarding the asymptotics of four-dimensional shrinking
gradient Ricci solitons.

Lemma 2.7. Let (M, g, X) be a complete non-compact shrinking gradient Ricci soliton
of real dimension 4 with soliton vector field X = V8 f for a smooth real-valued function
f:M — R and with bounded scalar curvature Rg such that Rg — 0 along every integral
curve of X. Then Ry — 0. Moreover, there exists a constant C > 0 such that 0 < Rg <
C =1 outside a sufficiently large compact subset of M.

Proof. On a shrinking gradient Ricci soliton of real dimension 4 with bounded scalar
curvature Rg, we see from [30, Theorem 1.3] that the bounds [30, (3.4)] hold true so that
[30, Theorem 3.1] applies. The Harnack estimate from [30, (3.73)] then implies that if R,
is strictly smaller than the constant in this Harnack estimate at some point x in the level set
{f =n}fort; € R with {X =0} C f~1((—o0,11]), then R, decays like C f ~! along the
integral curve passing through x for some constant C > 0 independent of x. Thus, for the
first assertion, it suffices to show that there exists ; € R with {X =0} C f~!((—o0,11])
so that R, is as small as we please on { f = 1;}.
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To this end, note that since R, is bounded, the zero set of X is compact (cf. [11, proof
of Lemma 2.26]), hence by properness of f (cf. Theorem 2.6), there exists #o > 0 so that
{X =0} C f~1((~o0, ©]). Through the gradient flow of f, the level sets { f = ¢} are
therefore diffeomorphic to { f = to} for all ¢ > f¢. In particular, all integral curves of X
may be parametrised by { /' = fo}. Let xo € { f =t} and choose & > 0. Then since R, — 0
along each integral curve of X by assumption and R, > 0 [46], there exists x, lying along
the integral curve of X passing through xo with f(xg) :=t; > fo such that 0 <Rg (xg) <e.
We can then find an open neighbourhood of x; in {f = #;} such that 0 < R, < 2e.
Flowing this neighbourhood back to x( along —X, we obtain an open neighbourhood Uy
of xo in { f = to}. By properness of f, the level set { f = ty} is compact and so can be
covered by finitely many such neighbourhoods U;, i = 0, ..., N. Letting #; denote the

maximum of the corresponding tl./, i=0,...,N,wefindthat 0 <Ry <2eon{f =11}
and {X =0} C f~'((—o0,11]), as required. By [30, (3.73)], it now follows that R, decays
globally like C f 1. n

Complex two-dimensional complete non-compact shrinking gradient Kéhler—Ricci
solitons with scalar curvature tending to zero at infinity were classified in [11, The-
orem E (3)]. They comprise the flat Gaussian soliton on C? and the example of Feldman—
Ilmanen—Knopf [15] on the blowup of C?2 at one point, up to the action of GL(2, C).

2.3. Polyhedrons and polyhedral cones

We take the following from [12] and [33, Appendix A].

Let E be a real vector space of dimension 7 and let E* denote the dual. Write (-, -)
for the evaluation E* x E — R. Furthermore, assume that we are given a lattice ' C E,
that is, an additive subgroup I' >~ Z". This gives rise to a dual lattice I'* C E*. For any
v e E* c eR,let K(v,c) be the (closed) half space {x € E | (v,x) > ¢} in E. Then we
have the following.

Definition 2.8. A polyhedron P in E is a finite intersection of half spaces, i.e.,

,
P = ﬂ K(vi,c;) forv; € E*, ¢; € R.

i=1

It is called a polyhedral cone if all ¢; = 0, and moreover a rational polyhedral cone if
all v; € I'* and ¢; = 0. In addition, a polyhedron is called strongly convex if it does not
contain any affine subspace of E.

The following definition will be useful.

Definition 2.9. A polyhedron P C E* is called Delzant if its set of vertices is non-empty
and each vertex v € P has the property that there are precisely n edges {e1,...,e,} (one-
dimensional faces) emanating from v, and there exists a basis {1, ..., &,} of I'* such
that &; lies along the ray R(e; — v).
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Note that any such P is necessarily strongly convex.
The asymptotic cone of a polyhedron contains all the directions going off to infinity
in the polyhedron.

Definition 2.10. Let P be a polyhedron in E. Its asymptotic cone, denoted by € (P),
is the set of vectors « € E with the property that there exists «® € E such thata® + ta € P
for sufficiently large ¢ > 0.

The asymptotic cone may be identified as follows.
Lemma 2.11 ([33, Lemma A.3]). If P = (i_, K(vi,c;), then €(P) = (i_; K(v;,0).

In particular, the asymptotic cone of a polyhedron is a polyhedral cone. In addition,
we see that for two polyhedrons P, Q,in E,

QCP=TEP)CE).
Compact polyhedrons can be characterised by their asymptotic cone.
Lemma 2.12 ([33, Corollary A.9]). A polyhedron P is compact if and only if € (P) = {0}.
We also have the following.
Definition 2.13. The dual of a polyhedral cone C isthe set C¥Y = {x € E* | (x,C) > 0}.

It is clear that for two polyhedrons P, Q,in E,

QcP=PCQY

2.4. Hamiltonian actions
Recall what it means for an action to be Hamiltonian.

Definition 2.14. Let (M, w) be a symplectic manifold, and let T be a real torus acting
by symplectomorphisms on (M, w). Denote by t the Lie algebra of 7" and by t* its dual.
Then we say that the action of T' is Hamiltonian if there exists a smooth map pt,: M — t*
such that for all ¢ € t,

—a)Jé' =d Ug,

where u¢(x) = (e (x), ) forall { € t and x € M and (-, -) denotes the dual pairing
between t and t*. We call u, the moment map of the T-action, and we call ug the
Hamiltonian (potential) of {.

Define
Ay :={Y €t| uu(Y) is proper and bounded below} C t.

By Theorem 2.6, this set is non-empty for @ a complete non-compact shrinking gradient
Kéhler—Ricci soliton. In addition, it can be identified through the image of w, in the
following way.
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Proposition 2.15 ([33, Proposition 1.4]). Let (M, w) be a (possibly non-compact) sym-
plectic manifold of real dimension 2n with symplectic form w on which there is a Hamilto-
nian action of a real torus T with moment map [,: M — t*, where t is the Lie algebra
of T and t* its dual. Assume that the fixed point set of T is compact and that A, # 0.
Then Ay, = int(€ (e (M))Y).

2.5. Toric geometry

In this section, we collect together some standard facts from toric geometry as well as
recall those results from [9] that we require. We begin with the following definition.

Definition 2.16. A toric manifold is an n-dimensional complex manifold M endowed
with an effective holomorphic action of the algebraic torus (C*)" such that the following
hold true:

e The fixed point set of the (C*)"-action is compact.

e There exists a point p € M with the property that the orbit (C*)” - p C M forms
a dense open subset of M.

We will often denote the dense orbit simply by (C*)* C M in what follows. The
(C*)™-action of course determines the action of the real torus 7" C (C*)".

2.5.1. Divisors on toric varieties and fans. Let T" C (C*)" be the real torus with Lie
algebra t and denote the dual pairing between t and the dual space t* by (-, -). There is
a natural integer lattice I’ >~ Z”" C t comprising all A € t such that exp(1) € T" is the
identity. This then induces a dual lattice ['* C t*. We have the following combinatorial
definition.

Definition 2.17. A fan X in t is a finite set of rational polyhedral cones o satisfying
(i) Forevery o € Z, each face of o also lies in X.

(i1) For every pair 01,07, € X, 01 N 03 is a face of each.

To each fan X in t, one can associate a toric variety Xy . Heuristically, ¥ contains all
the data necessary to produce a partial equivariant compactification of (C*)", resulting
in Xx. More concretely, one obtains X5 from X as follows. For each n-dimensional cone
o € X, one constructs an affine toric variety U, which we first explain. We have the dual
cone 0¥ of 0. Denote by S,; the semigroup of those lattice points which lie in ¢ under
addition. Then one defines the semigroup ring, as a set, as all finite sums of the form

ClSsl = { 3 Ass |5 € o,

with the ring structure defined on monomials by Ag, 51 - As,52 = (A5, As,) (51 + 52) and
extended in the natural way. The affine variety U, is then defined to be Spec(C[Sy]).
This automatically comes endowed with a (C*)"-action with a dense open orbit. This
construction can also be applied to the lower-dimensional cones 7 € X. If 01 N0y = 7,
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then there is a natural way to map U into Uy, and Uy, isomorphically. One constructs Xy
by declaring the collection of all U, to be an open affine cover of Xy with transition
functions determined by U;. This identification is also reversible.

Proposition 2.18 ([12, Corollary 3.1.8]). Let M be a smooth toric manifold. Then there
exists a fan X such that M ~ Xx.

Proposition 2.19 (Orbit-cone correspondence, [12, Theorem 3.2.6]). The k-dimensional
cones 0 € X are in a natural one-to-one correspondence with the (n — k)-dimensional
orbits Oy of the (C*)"-action on Xx.

In particular, each ray o € ¥ determines a unique torus-invariant divisor D, . As a con-
sequence, a torus-invariant Weil divisor D on Xy naturally determines a polyhedron
Pp C t*. Indeed, we can decompose D uniquely as D = ZzN=1 a; Dg,, where {0;}; C X
is the collection of rays. Then by assumption, there exists a unique minimal lattice element
v; € 0; N T'. The polyhedron Pp is then given by

N
Pp ={xet*|(v.x)=—a;} =) K(vi.—a). (2.9)

i=1

2.5.2. Kdhler metrics on toric varieties. For a given toric manifold M endowed with
a Riemannian metric g invariant under the action of the real torus 7" C (C*)” and Kihler
with respect to the underlying complex structure of M, the Kihler form w of g is also
invariant under the 7"-action. We call such a manifold a toric Kihler manifold. In what
follows, we always work with a fixed complex structure on M.

Hamiltonian Kdhler metrics have a useful characterisation due to Guillemin.

Proposition 2.20 ([19, Theorem 4.1]). Let w be any T"-invariant Kdihler form on M.
Then the T™-action is Hamiltonian with respect to o if and only if the restriction of o to
the dense orbit (C*)" C M is exact, i.e., there exists a T" -invariant potential ¢ such that

w = 2idd¢.

Fix once and for all a Z-basis (X1, ..., X,) of I' C t. This in particular induces
a background coordinate system £ = (£',...,£") on t. Using the natural inner product
on t to identify t = t*, we can also identify t* = R”. For clarity, we will denote the
induced coordinates on t* by x = (x',...,x"). Let (z1,..., z,) be the natural coordin-
ates on (C*)" as an open subset of C”. There is a natural diffeomorphism Log: (C*)" —
t x T" which provides a one-to-one correspondence between 7" -invariant smooth func-
tions on (C*)” and smooth functions on t. Explicitly,

Lo
(21, 2n) 5 (102(r1), - .. 108(rn), O1s - Bn) = (E1v- v En 01, 00), (2.10)

where z; = rje'%, r; > 0. Given a function H(£) on t, we can extend H trivially to
t X T™ and pull back by Log to obtain a T"-invariant function on (C*)". Clearly, any
T"-invariant function on (C*)” can be written in this form.
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Choose any branch of log and write w = log(z). Then clearly w = & 4 i6, where
£ = (£',...,&") are real coordinates on t (or, more precisely, there is a corresponding
lift of 6 to the universal cover with respect to which this equality holds), and so if ¢ is
T"-invariant and w = 2i 85(]), then we have that

% Pp . .
=92 g = i J
w_Z’awiawfdw’Adwf_agiagfds Adb7. 2.11)
In this setting, the metric g corresponding to w is given on t x 7" by

g = ¢ij()dE' d§’ + ¢y (£)do' do’, (2.12)

and the moment map w as amap u:t X 7" — t* is defined by the relation

(1(€.0).b) = (V§(§).b)

for all b € t, where V¢ is the Euclidean gradient of ¢p. The T"-invariance of ¢ implies that
it depends only on & when considered a function on t x 77" via (2.10). Since w is Kéhler,
we see from (2.11) that the Hessian of ¢ is positive definite so that ¢ itself is strictly
convex. In particular, V¢ is a diffeomorphism onto its image. Using the identifications
mentioned above, we view V¢ as a map from t into an open subset of t*.

2.5.3. Kdhler—Ricci solitons on toric manifolds. We define what we mean by a shrinking
Kéhler—Ricci soliton in the toric category.

Definition 2.21. A complex n-dimensional shrinking K#hler—Ricci soliton (M, g, X)
with complex structure J is toric if M is a toric manifold as in Definition 2.16, J X lies
in the Lie algebra t of the underlying real torus 7" that acts on M, and g is 7" -invariant.
In particular, the zero set of X is compact.

It follows from [45] that H'(M) = 0, hence the induced real 7"-action is auto-
matically Hamiltonian with respect to . Working on the dense orbit (C*)” C M, the
condition that a vector field J Y lies in t is equivalent to saying that in the coordinate

system (El, oo, &m0y, ..., 0,) from (2.10), there is a constant by = (b;, e b;’,) e R”
such that 3 5
JY = b;w or equivalently, Y = b;a—gt,. (2.13)

From Proposition 2.20, we know that £xw = 2i 30X (¢). In addition, the function X(¢)
on (C*)" can be written as (bx, Vo) = b}( %—"}, where by € R” corresponds to the soliton
vector field X via (2.13). These observations allow us to write the shrinking soliton equa-
tion (2.8) as a real Monge—Ampere equation for ¢ on R”.

Proposition 2.22 ([9, Proposition 2.6]). Let (M, g, X) be a toric shrinking gradient
Kdihler—Ricci soliton with Kdhler form w. Then there exists a unique smooth convex real-
valued function ¢ defined on the dense orbit (C*)" C M such that ® = 2i3d0¢ and

det(g;) = e 20F(bx.Ve), (2.14)
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A priori, the function ¢ is defined only up to addition of a linear function. However,
(2.14) provides a normalisation for ¢ which in turn provides a normalisation for V¢, the
moment map of the action. The next lemma shows that this normalisation coincides with
that for the moment map as defined in [1 1, Definition 5.16].

Lemma 2.23. Let (M, g, X) be a toric complete shrinking gradient Kiihler—Ricci soliton
with complex structure J and Kdihler form w with soliton vector field X = V& f for
a smooth real-valued function f: M — R. Let ¢ be given by Proposition 2.20 and norm-
alised by (2.14), let J Y € t, and let uy = (V¢, by) be the Hamiltonian potential of J Y
with by asin (2.13) so that V8uy =Y. Then £ yxuy = 0and Apyuy + uy — %Y - f=0.

To see the equivalence with [11, Definition 5.16], simply replace ¥ by JY in this
latter definition as here we assume that J Y € t, contrary to the convention in [11, Defin-
ition 5.16] where it is assumed that Y € t.

Proof of Lemma 2.23. By definition, we have that
d(€jxuy) = Lyx(duy) =-Lsx(wiJY) =0,

where we have used the fact that £7xyw = 0 and [J X, JY] = 0. Therefore, £ yxuy is
equal to a constant which must be zero as J X has a zero because X = V& f and f is
proper and bounded from below (cf. Theorem 2.6), hence attains a local minimum. This
proves the J X -invariance of uy .

The final equation follows by differentiating (2.14) with respect to Y. Indeed, from
(2.11) and (2.12) we see that on the dense orbit,

n

Y = Vol = det(¢y)) d§' AdO' A+ A dE" A dO"
n!

_ det(¢ij)

= 2 dw AdBE A Adw™ AdD".
(=20)"

Recalling that f denotes the Hamiltonian potential of JX € t so that f = (bx, V¢) on
the dense orbit, (2.14) may therefore be rewritten as

(—2i)" "
1 dt( - _ ) 20— f =0.
ogde nldw! Adw! A -+ Adw™ A dw” 2/
By differentiating along Y, this yields the relation
(=2i)" 0"
0= -1 d( ) 2 -p—Y-
ogdet T A d T A A dwn ndwn) T eV

=tr, Lyw +2uy — Y - f =2A,uy +2uy —Y - f,

where we have made use of [9, Lemma 2.5] in the last line. From this, the result fol-
lows. [

Given normalisation (2.14), the next lemma identifies the image of the moment map
u=Vo.
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Lemma 2.24 ([9, Lemmas 4.4 and 4.5]). Let (M, g, X) be a complete toric shrinking
gradient Kihler—Ricci soliton, let {D;} be the prime (C*)"-invariant divisors in M, and
let ¥ C t be the fan determined by Proposition 2.18. Let o; € X be the ray corresponding
to D; with minimal generator v; € T'.

(1) There is a distinguished Weil divisor representing the anticanonical class —K s giv-
enby —Ky = )_; D; whose associated polyhedron (cf. (2.9)) is given by

P_k, ={x|(vi.x) > -1} (2.15)

which is strongly convex and has full dimension in t*. In particular, the origin lies in
the interior of P_g,,.

(ii) If u is the moment map for the induced real T"-action normalised by (2.14), then the
image of  is precisely P_g,,.

2.5.4. The weighted volume functional. As a result of Lemma 2.23, we can now define
the weighted volume functional.

Definition 2.25 (Weighted volume functional, [11, Definition 5.16]). Let (M, g, X) be
a complex n-dimensional toric shrinking gradient Kédhler—Ricci soliton with Kihler form
w =2 85¢ on the dense orbit with ¢ strictly convex with moment map © = V¢ normal-
ised by (2.14). Assume that the fixed point set of the torus is compact and recall that

Ay :={Y €t | (u,Y) is proper and bounded below} C t.

Then the weighted volume functional F: A, — R is defined by

Fy(v) =/ e~ wvln,
M

As the fixed point set of the torus is compact by definition, F,, is well defined by
the non-compact version of the Duistermaat—Heckman formula [33] (see also [11, The-
orem A.3]). This leads to two important lemmas concerning the weighted volume func-
tional in the toric category, the independence of A, and F,, from the choice of shrinking
soliton w.

Lemma 2.26. The set A, is independent of the choice of toric shrinking Kdhler—Ricci
soliton w in Definition 2.25 and is given by A, = int(CY), where C := {x | {v;, x) > 0}
and {v;} are as in Lemma 2.24.

Proof. Recall from Proposition 2.15 that A, is given by int(€ (e (M))Y), where the
moment map [, With respect to w, normalised by (2.14), depends on w. However, no
matter the choice of w in Definition 2.25, normalisation (2.14) implies by Lemma 2.24 (ii)
that the image of M under the moment map is always given by P_g,,, a fixed polytope
determined solely by the torus action. Therefore, A, is independent of the choice of w
in Definition 2.25. Finally, the asymptotic cone of this polytope (as a subset of t*) is, by
Lemma 2.11, given by C. This leads to the desired expression for A,,. ]
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Note that C is always a strongly convex rational polyhedral cone in t, although not
necessarily of full dimension, whereas C is always full-dimensional, although not neces-
sarily strongly convex.

Lemma 2.27. The functional F, is independent of the choice of toric shrinking Kihler—
Ricci soliton w in Definition 2.25. Moreover, after identifying A, with a subset of R"
via (2.13), Fy, is given by F,((v) = Q)" fP—I(M e~ X dx, where x = (x!,..., x™")
denotes coordinates on t* dual to the coordinates (& L &") on t introduced in Sec-
tion 2.5.2.

Proof. We first show that the given integral is finite. To demonstrate this, it suffices to
show that (v, x) > 0 on the complement of a compact subset of P_g,,. To this end, recall
that O € int(P_g,, ) so that the intersection of the hyperplane {x € R” | (v, x) = 0} with
P_k,, is non-empty. We claim that the polyhedron Q := {x € P_g,, | (v, x) <0} is
compact. Indeed, by Lemma 2.12, Q is compact if and only if €(Q) = {0}. To derive
a contradiction, assume that there exists a non-zero vector w € €(Q). Then from the
definition of the asymptotic cone, one can see that Q contains a ray of the form x¢ + fw,
t > 0, for some x¢ € Q. Taking the inner product with v, it follows that (v, xo + tw) > 0
for ¢ > 0 because (v, w) > 0 by virtue of the fact that

Q CP=T¢€Q)CEP)=TE(P) CE(Q) =int(€(P)) Cint(€(Q)Y).

This yields the desired contradiction.

Now, no matter the choice of shrinking soliton, the map V¢:t — P_g,, defines a dif-
feomorphism with image the fixed polytope P_g,, thanks to normalisation (2.14). The
independence of F, from @ and the given expression then follows from the following
computation, where V¢:t — P_g,, is used as a change of coordinates:

Fo) = [ emon = [ 0O gery () dids
M txT"

= @2n)" / e~V det(¢y; (£)) dE = (21)" / e~ gy, n
t

Pk,

Thus, we henceforth drop the subscript w from F, and A, when working in the toric
category. The functional F: A — R is proper in this category, hence attains a critical
point in A.

Proposition 2.28 ([9, proof of Proposition 3.1]). The functional

F(v) = Qn)" / e~ gx

P_k,,
is proper on A.

In general, such a critical point turns out to be unique and characterises the soliton
vector field of a complete shrinking gradient Kidhler—Ricci soliton.
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Theorem 2.29 ([11, Lemma 5.17], [5, Theorem 1.1]). Let (M, g, X) be a complete
shrinking gradient Kdhler—Ricci soliton with complex structure J, Kdhler form w, and
bounded Ricci curvature. Then JX € A, F, is strictly convex on A, and JX is the
unique critical point of F,, in A,.

Having established in Lemmas 2.26 and 2.27 that in the toric category the weighted
volume functional F and its domain A are determined solely by the polytope P_k,,
which itself, by Lemma 2.24, depends only on the torus action on M (i.e., is independent
of the choice of shrinking soliton), and having an explicit expression for F' given by
Lemma 2.27, after using the torus action to identify P_g,, via (2.15), we can determine
explicitly the soliton vector field of a toric shrinking gradient Kidhler—Ricci soliton on M.
We illustrate how to do this in the following examples.

Example 2.30. Consider P! with the C*-action given by A - [Zg : Z1] = [AZo : Z4].
Then its torus-invariant divisors are Do = [0 : 1] and Do, = [1 : 0]. The corresponding
fan in R is given by Xp1 = {0, [0, 00), (—00, 0]} and —Kp1 = Do + D, the associated
polyhedron P_g_, of which can naturally be identified with the interval [-1,1] C R.
The Fubini—Study metric wp1 is Kédhler—Einstein and, in particular, 2wp: is a shrink-
ing gradient Kahler-Ricci soliton on P! with soliton vector field X = 0. Working with
2wp1 € 2mcy(—Kp1), on the dense orbit C* C P!, 2wp1 has Kihler potential

1
D20, 1= log(l + [2%) — 5 log(4]z]?) = log(e® + 1) — & ~ log(2).
so that wp1 = 2i 88¢2w - It is then straightforward to verify that ¢, ,, satisfies (2.14)

with by = 0 and that the image of 942 éPl is the interval [—1, 1]. The welghted volume
functional is then given by

1
Fpi(v) = 27r/ e "dx.
-1
This is defined for all v € R and indeed, the asymptotic cone of the compact polytope
[—1, 1] is just the point O so that C¥ = R. Clearly, F’(v) = 0 if and only if v = 0, as
expected.

Example 2.31. Consider C endowed with the standard C*-action. Then there is only one
torus-invariant divisor, namely D = {0}. The fan in R is simply ¢ = {0, [0, c0)} and
—Kc¢ = D with the corresponding polyhedron given by P_g. = [—1, c0). On the dense
orbit C* C C, the Euclidean metric wc has Kihler potential

|2

¢ 1| log |z : —§
= —|Z — 10 Z——:—e —_——
wc = g g )

%C

This satisfies (2.14) with by = 1 and the image of is [—1, 0o0). The asymptotic
cone C of [—1, 00) is given by [0, co) and accordingly, the weighted volume functional

(e ¢]

Fc(v) = 271/ e "rdx

-1
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is only defined on the interior of the dual cone CV, namely (0, c0). We compute

oo el)
F'(v) = —271/ xe " dx = —(1-v).
-1 v
Hence, as expected, F¢ has a unique critical point at v = 1, with the corresponding soliton

vector field on C given by
d d

r

X:£: a—r7

where z = re’? € C for r > 0 and & = log(r).

Example 2.32. Next we consider the Cartesian product C x P! of the previous two
examples. We equip C x P! with the product (C*)?-action and denote by t; and t, the
Lie algebras of the real S1’s that act on C and P!, respectively. Then we have an obvi-
ous solution to (2.14) given by the product metric wc + 2wp1 together with the soliton
vector field X¢yp1 = Xc + Xp1 = r% with r = |z|, where z is the complex coordinate
on the C-factor. Explicitly, the fan X, p1 comprises products o1 X 0, C t; @ ta, where
01 € X¢ and 0 € Xp1. The polyhedron P_g C t = t; @ t, can be identified with
the subset of R? defined by the inequalities

cxpl

Pk o ={(x1.x2) €R?|x; > -1, -1 <xp < 1}.

From this, one can easily see that if v = vy + v, with v; € t; and v, € t5, then
Feyp1(v) = Fc(v1) Fpi(v2).

The fact that Fc and Fp: are convex and positive implies that F ((,Z‘X]P’l (v) = 0 if and only
if Fe(v1) = Fpy (v2) = 0, as expected.

Example 2.33. Let M = Bl,(C x P!) denote the blowup of a fixed point p of the
(C*)2-action on C x P! and write J for the complex structure on M. Then M inher-
its a natural (C*)2-action with respect to which the blowdown map 7: M — C x P! is
(C*)2-equivariant. In terms of the toric data, the exceptional divisor E of 7 defines an
additional invariant divisor and the polyhedron P, p1 is modified accordingly,

Pogy ={(x1.x2) €R* | x1 > =1, -1 < xp < 1, xy + x2 > —1}.

Here, the new face with inner normal vg = (1, 1) corresponds to E. Define two auxiliary
functions F; and F;, of a real variable # > 0 by

Fi(t) = / xle_’(2x1+x2) dxi1dx;,

P_kpr
Fz(t) = / X2€71(2x]+x2) dxldxz.

—Kpr

These functions are, up to a scaling factor of —(27)2, the components of the gradient
of the weighted volume functional Fps: A — R of M restricted to the ray generated by
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(2, 1) € t. Thus, if there exists some A > 0 such that F; (1) = F>(1) = 0, then the point
(21, 1) € R? would be a critical point of Fys. First, we claim that F,(¢) = 0. Indeed,
computing directly, we see that

1 00 0 00
Fz([) = / / x2€_t(2x1+x2) dxlde + / / xze_t(2x1+x2) dxlde
0 -1 -1 J—(x2+1)

= iet(et -1 - Eet — :et(et -1+ ﬁe’ = 0.
2 2 2
Since Fjs(2(2, 1)) is proper and convex as a function of ¢ > 0 (cf. Proposition 2.28 and
Theorem 2.29), this implies that there is a A > 0 such that both Fj(4) and F,(A) vanish

simultaneously. We next determine the value of 1. Since

0 1 o] 1
Fi(t) = —/ / xpe PN g dxy —/ / xpe PN g dxy
—1J=(x1+1) o J-1

12 13 13
= —e' + —sinh(r) — e’ (t %€’ + 17 3(e' — 1)) — — sinh(¢)
2 2 2
(3
= 76’(2?(1 —1)—(2-1)),

we see that F'; (1) = 0 for A the x-coordinate of the unique non-zero point of intersection
of the graphs of G (¢) = 2e’(1 —t) and G, () = 2 — ¢. In particular, A cannot be equal to
1,2, %, or indeed any algebraic number. Numerical approximations in fact give A ~ 0.64.

Let (z1, z2) be complex coordinates on the dense orbit (C*)2 ¢ C* x P! ¢ M. Writ-
ing z; = rje'% with r; > 0, set & = log(r;) as before. Then the soliton vector field X

on M may be written as

X:A(ziJri) =A(2r1%+r2%). (2.16)

3. Proof of Theorem A

Consider a complete non-compact shrinking gradient Kéhler—Ricci soliton (M, g, X)
with bounded scalar curvature, with complex structure J and with soliton vector field
X = V& f for a smooth real-valued function f: M — R. Then f is proper and bounded
from below (cf. Theorem 2.6), hence attains a minimum, and g complete implies that X
is complete [46]. Let Gg( denote the connected component of the identity of the holo-
morphic isometries of (M, J, g) that commute with the flow of X. Since g has bounded
Ricci curvature, Gg( is a compact Lie group by [11, Lemma 5.12] and X being com-
plete implies that JX is complete by [11, Lemma 2.35]. Moreover, JX is Killing by
[17, Lemma 2.3.8]. Hence the closure of the flow of JX in Gg( yields the holomorphic
isometric action of a real torus 7 on (M, J, g) with Lie algebra t containing JX. Com-
pactness of the zero set of X [11, Lemma 2.26] and hence J X implies that the fixed point
set of T is compact. Moreover, as f attains a minimum, 7 will have at least one fixed
point. Finally, as H'(M) = 0 by [45], T will act on M in a Hamiltonian fashion.
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Using results from J-holomorphic curves (cf. Section 2.1), we identify the candidate
non-compact complex surfaces that may admit a complete shrinking gradient Kéhler—
Ricci soliton with bounded scalar curvature whose soliton vector field has an integral
curve along which the scalar curvature does not tend to zero. We first work under the
assumption of simple connectedness and classify up to diffeomorphism.

Proposition 3.1 (Smooth classification). Let (M, g, X) be a two-dimensional simply
connected complete non-compact shrinking gradient Kdhler—Ricci soliton with bounded
scalar curvature Rg with X = V& f for some smooth function f: M — R. Assume that X
has an integral curve along which Rg > 0. Then M is diffeomorphic to either C x P! or
Bl,(C x P), that is, the blowup of C x P! at one point p. In the former case, the zero
set of X is contained in a unique P! and in the latter case, in the pre-image under the
blowup map of the P-fibre containing the blowup point.

Proof. Since there exists a point of M where Rg # 0, g is non-flat and so globally we
know that R > 0 [32]. As X has an integral curve along which Rg 4 0 by assumption,
this means that there exist € > 0 and a sequence of points {x;}; lying along this integral
curve going off to infinity as i — oo such that Rg (x;) > . By assumption R, is bounded,
thus we read from [30, Theorem 1.3] that the norm of the full curvature tensor Rm(g)
of g is bounded. It subsequently follows from [31, Corollary 4.1] and the classification of
real three-dimensional complete shrinking gradient Ricci solitons [30, Theorem 1.2] that
the sequence of pointed manifolds (M, g, x;), after passing to a subsequence if necessary,
converges in the smooth pointed Cheeger—Gromov sense to (M g. D), where p € M
is a base point and (M 2) is isometric to R* endowed with the flat metric, or M is
diffeomorphic to R? x S2 or to the Z-quotient R x (($2 x R)/Z,), where Z, flips
both S2 and R, or to a quotient of R x S3 by a finite group acting on the S3-factor, and g
is the standard product metric on these spaces. Write V for the Levi-Civita connection
of g. What we have then is a sequence of relatively compact open subsets U; CC M
exhausting M and containing p, together with a sequence of smooth maps ¢;: U; — M
that are diffeomorphisms onto their image, such that ¢; (p) = x; and

|VE(¢rg — &)z — 0 forallk >0, (3.1)

smoothly locally on M as i — oo. Now, the aforementioned boundedness of IRm(g)|¢
implies that all of the covariant derivatives with respect to g of Rm(g) are bounded by
Shi’s derivative estimates. Furthermore, by [31], (M, g) has a lower bound on its injectiv-
ity radius. The conditions of [7, Theorem 3.22] are therefore satisfied and consequently
we can assert that (1\7[ , &) is Kihler. Since Rg (x;) > ¢ for all 7, (1\2 , &) is clearly not flat
and so the limit R* can be discarded. Lifting to the universal cover of the remaining can-
didates for M, we obtain a Kihler structure on R2 x S2 or on R x S3 with Kihler metric
we still denote by g. The following claim allows us to discount the case R x S* next.

Claim 3.2. R x S3 does not admit a complex structure with respect to which the product
metric g is Kéihler.
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Proof. Suppose to the contrary that R x S3 admits a complex structure J with respect
to which the product metric g is Kihler. Let ¢ = (x, y) € R x §3. Then we have the
decomposition TqM =TyR@® T,S3. Let Y € TyR be a unit vector. Then J compatible
with g implies that g(Y, JY) = 0 which in turn implies that JY € T}, S3. Let H be
an arbitrary holonomy transformation with respect to g of TqM and actby H on JY.
Then since the holonomy of g is trivial on the R-factor and J is parallel, we see that
HJY)=J(HY)=JY,ie., H fixes J Y, forcing J Y = 0. This is a contradiction. m

We therefore arrive at the fact that M is covered by R? x S2. We next identify the
g-compatible complex structure on this space.

Claim 3.3. Up to a sign on each factor, the only complex structure on R? x S2 with
respect to which g is Kdhler is the standard complex structure J on C x P!,

Proof. Suppose thatg = (x,y) € R?x §2 ~ M . Then we have the decomposition Tq]\7[ =
TyR? @& T, S2. Suppose that there exists another complex structure J on R? x §2 with
respect to which g is Kahler, and let Y € 7, S 2 be a unit vector. Then with respect to the
aforementioned decomposition, we can write JY =aJY & U forsomea € R, la| <1,

and U € T,R?. We parallel transport the quadruple {Y, JY,JY,U } around a non-trivial
closed loop in the S2-fibre of M containing ¢ using the connection V.As g g is flat in the
R2-direction, U will remain unchanged under this action. Moreover, J and J are parallel
with respect to g. Thus, as the holonomy of S? is SO(2), we find that for every unit vector
Z eT,S?, JZ=alZ & U, leaving us with U = 0 and |a| = 1.

We next consider a unit vector ¥ € T,R2. Then with respect to the splitting 7 M=
T:R2 @ T, S2, we have that JY = U @ bJY forsome b € R, |b| < 1,and U € T}, S2.
Arguing as before, parallel transport in the S2-fibre of M containing ¢ using V demon-
strates that JY = V @ bJY forall V € TySZ, forcing V = 0 and |p| = 1. From this, the
assertion follows. ]

Thus, without loss of generality, we may assume that the aforementioned Kihler struc-
ture on R2 x S2 is standard, i.e., simply (£, J). It then follows that M is biholomorphic to
C x P! as the Z,-quotient thereof, acting freely and holomorphically, would introduce an
R P2 as a complex submanifold yielding a contradiction. Returning to (3.1), set J; := orJ
and g; := ¢ g. Arguing as in [7, proof of Theorem 3.22] (see also [34, pp. 16-18]), we
see that J; converges smoothly locally to a g-parallel complex structure Jo, on M which
by Claim 3.3, we can without loss of generality take to be equal to J.

Fix a large ball Bg(p,3) C M of radius R > 0 centred at p with respect to g,
and let i: P! — C denote the unique J. -holomorphic sphere passing through p. Since
|J; — f|§ — 0 asi — oo, by Corollary 2.3, for i sufficiently large, # may be deformed
to a J;-holomorphic sphere u: P! — M with zero self-intersection. By the estimate given
in Corollary 2.3, the image of u: P! — M will eventually be contained in Bg(p, 2).
Thus, outside any fixed compact subset K of M, v := ¢; ' ou: P! — M will define
a J-holomorphic curve in M with trivial normal bundle and zero self-intersection lying
in M \ K for i sufficiently large.



C. Cifarelli, R. J. Conlon, A. Deruelle 490

Henceforth, we write C := v(P!). Then C.C = 0. Recall the real torus 7 acting
on M introduced at the beginning of this section, and let w denote the Kéhler form
of g. The function f, the Hamiltonian potential of J X, is, as the soliton potential, proper
and bounded from below (cf. Theorem 2.6). Consequently, Proposition 2.15 allows us to
find an element J Y € A, C t whose flow generates an S L_action and that admits a real
Hamiltonian potential uy that is proper and bounded from below. Since the fixed point
set of T is non-empty and contained in the zero set of X, a compact subset, [33, Pro-
position 1.2] implies that the zero set of Y is non-empty and compact. Moreover, by
[11, Lemma 2.34], we also know that ¥ and J Y are complete. Hence we can define for
all time the holomorphic flow of the vector fields ¥ and JY which we denote by ¢,Y
and ¢>tJ Y respectively, for r € R. As the next claim shows, the image of a holomorphic
sphere under the flow of Y and J Y is determined by the image of one point on the sphere.

Claim 3.4. For x € M, let L, € [C] be a holomorphic sphere in M with x € Ly. Then
¢>tY (Ly) (resp. ¢>;’Y(Lx)) is the unique holomorphic sphere in M lying in [C] passing
through ¢Y (x) (resp. ¢ ¥ (Lx)).

Proof. 1t is clear that the image of L, under the flow of ¥ and JY is a holomorphic
sphere in M lying in [C] passing through ¢} (x) and ¢/ Y (x), respectively. No other
holomorphic sphere in [C] can pass through these points since C.C = 0. ]

Holomorphic spheres containing a zero of Y are fixed by the flow of Y and J Y.
Claim 3.5. Let L € [C] be a holomorphic sphere in M. Then the following are equiv-
alent:

(i) Y vanishes at some point x € L.

(i) ¢X¥(L)=¢/Y(L) =L forallt.

(iii) Y istangentto L.

Proof. (i) = (ii) By Claim 3.4, ¢} (L) is the unique holomorphic curve in [C] passing
through ¢,Y (x). Since ¢tY (x) = x, we deduce that ¢tY (L)y=L.

(i1) = (iii) This is clear.

(iii)) = (i) A holomorphic vector field tangent to P! has at least one zero. [

If Y is nowhere vanishing along the holomorphic sphere, then the image sphere is
disjoint from the original.

Claim 3.6. Let L € [C] be a holomorphic sphere in M. Then Y is nowhere vanishing
on L if and only if there exists ¢ > O such that ¢,Y (LYNL =0 and ¢,JY(L) N L =43 for
all0 < |t] < e.

Proof. If Y is nowhere vanishing on L, then Y cannot be tangent to L for otherwise it
would have a zero along L. Thus, Y has a normal component at some point x € L so that
@Y (x) ¢ L for 0 < |¢| < & for some & > 0. By Claim 3.4, for such values of 7, ¢ (L) will
be the unique holomorphic sphere in [C] passing through ¢ (x), hence will be disjoint
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from L. A similar argument applies to J Y. The converse follows from the implication
(i) = (i) of Claim 3.5. |

As the zero set of Y is compact, by choosing i sufficiently large, we can guarantee
that Y is nowhere vanishing along C so that Claim 3.6 applies with L = C. Hence-
forth, working with the C*-action generated by ¥ and JY, in light of Claim 3.5, we
then see that ¥ and J Y will be nowhere vanishing on the C*-orbit of C in M. Define
Orbc+(C):={g-C|geC*}C M.

Claim 3.7. There exists a finite cyclic group Zy C S' C C*, k > 1, such that the induced
action of C* [ Zy on Orbc=(C) is free.

Proof. Claim 3.4 implies that the C*-action on this orbit descends to a (transitive) C*-
action on the holomorphic P!’s in [C] contained in Orbc+(C). Claim 3.6 then implies
that this action on the holomorphic P!’s is locally free. Compactness of S implies that
the stabiliser group in S! € C* of C under this action is a finite subgroup of S, hence
is a cyclic group of the form Zj for some k > 1. The induced action of C*/Zj on the
holomorphic P!’s in [C] contained in Orbc+(C) will therefore be free. Claim 3.4 then
tells us that the induced action of C*/Zj on Orbcx(C) will be free. [

As C*/Zy = C*, we may therefore assume without loss of generality that the C*-
action generated by Y and J Y on Orbc=(C) is free. We define a map

O:C*xP' > M, (g.9)—g-(©»)). (3.2)

Since the C*-action is free, this defines a biholomorphism onto its image, holomorphic
along the IP!-direction, and for dimensional reasons demonstrates that for some compact
subset K of M containing the zero set of Y, M \ K is biholomorphic to P! x C*. Indeed,
recall that the Hamiltonian potential uy: M — R of Y is proper and bounded from below
and that the zero set of Y is compact so that the level sets u;l ({y}) of uy are compact
and, through the gradient flow of uy, diffeomorphic for all y > R for some R sufficiently
large and positive. Hence with M having only one end [29, Theorem 0.1], we obtain
a decomposition of the unique end of M as Uye(R,+oo) u;l({y}). In this picture, one
can see that the positive gradient flow of uy, that is, the positive flow of Y, moves out
to infinity along the unique end of M and from [11, Proposition 2.28], we also read that
the negative gradient flow of uy, i.e., the negative flow of Y, accumulates in the zero set
of Y, a non-empty compact analytic subset of M. Thus, the image of ® is precisely the
complement in M of the zero set of Y, and so M fibres as a trivial P!-bundle on the
complement of this compact analytic subset. Notice that all the P!-fibres of the fibration
are homologous to C.

Next, being complete and having bounded scalar curvature, M has finite topological
type [14, Theorem 1.2], hence K contains only finitely many (—1)-curves. There therefore
exists a sequence of blowdown maps, each contracting at least one (—1)-curve, which give
rise to the minimal model @w: M — M, of M whose complex structure we still denote
by J. As M is simply connected, Mp,;, will also be simply connected. Furthermore, the
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(—1)-curves in K are necessarily fixed by the C*-action on M induced by the flow of Y
and J Y and so the C*-action will extend to a C*-action on M, in such a way that the
map @w: M — My, is equivariant with respect to these two actions. The holomorphic
vector field ¥ on M therefore descends to a holomorphic vector field ¥ on My, with
compact zero set, vanishing at least at the points of My, that are blown-up to obtain M.
It is also clear that ® induces a biholomorphism from My, \ @ (K) to P! x C*. We claim
that this P!-fibration at infinity extends in a smooth manner to the interior of M. This
we prove via a continuity argument.
To this end, consider the set

= {x € w(K) | x is contained in a holomorphic P! representing [C]},

where we enlarge K if necessary so that a tubular neighbourhood of its boundary is foli-
ated by P ’s representing [C]. Then we have the following.

Claim 3.8. The set A is equal to w (K).

Proof. First note that A is non-empty and that the openness of A is immediate from
Proposition 2.1. As for closedness, let x; be a sequence of points in A with x; — x for
some x € A. Then for each i, there exists a J-holomorphic curve u;: P! — M passing
through x; representing [C]. Being contained in the same homology class, these curves
all have uniformly bounded area. Therefore, by the Gromov compactness theorem [18],
there exists a subsequence converging to a tree of k holomorphic P!’s with multiplicity
in [C]. This limit may be written as [C] = Zf-czl a;[C;], a; > 0. Then

0=[C][C] = Za,a,[C][C]+Za [Ci].[Ci].
i#j

Now, from the equation defining a shrinking Kéhler—Ricci soliton, we know that for any
J -holomorphic curve CinM, —KM.[é] > 0 so that [6][6] > —1 by adjunction. As we
are working on My, this implies that [C;].[C;] > 0 and so k = 1 and accordingly, the limit
is a smooth P! with multiplicity one. This gives closedness and the claim now follows. m

Hence we conclude that M,;, exhibits the global smooth structure of a P!-fibration
over a real surface S, with each fibre lying in the homology class [C].

We next holomorphically compactify M, by adjoining a P! at infinity using the @
from (3.2) to obtain a closed compact real manifold M., that admits the structure of
a smooth S2-bundle over a closed compact real surface S that itself is obtained from §
by adding a point at infinity. By construction, this additional fibre will be preserved by
the induced C*-action on My, As Mo, is simply connected, M i, will be simply con-
nected by the Seifert—Van Kampen theorem. It then follows from a long exact sequence
[2, (17.4)] that S is simply connected, hence is diffeomorphic to S2. Consequently, My
is diffeomorphic to either S? x S? or to the blowup of P2 at one point, the only two S2-
bundles over S? [40]. In either case, removing an S 2-fibre shows that S is diffeomorphic
to R? and that M, is diffeomorphic to S? x R? with the S2-fibres defining J -holomor-
phic spheres in M y;y.



On finite time Type I singularities of the Kihler—Ricci flow on compact Kihler surfaces 493

Being a compact analytic subvariety of M,, the zero set of ¥ must comprise a finite
union of isolated points and P!-fibres of M,,,. Now, those fibres containing a zero of Y
are fixed by the C*-action induced by Y and J Y by Claim 3.5. Otherwise, by Claim 3.6,
the image of a fibre is disjoint from the original. What we deduce therefore is that the S-
action defined by the flow of J Y on My, induces an S L_action on S ~ R? with finitely
many zeroes, and in turn via ® an S'-action on S ~ §2 with finitely many zeroes, one of
which is at infinity. Averaging the round metric on S? over this action, we may assume that
the S!-action is isometric. Then [23, Theorem (4)] tells us that the S!-action on S has pre-
cisely two zeroes. As one of these zeroes occurs at infinity, we conclude that the C*-action
on My, fixes precisely one P!-fibre. Denote this fibre by L¢. By Claim 3.5, Y is then
tangent to L, and by Claim 3.6, the zero set of Y is contained in Lg. As the flow of J Y
induces an S!-action on L, we again see from [23] that the zero set of ¥ comprises
the whole of Lg (if the S!-action is trivial) or precisely two points. As M is obtained
from M, by blowing up finitely many points of M, at which the vector field ¥ van-
ishes, we see that M is obtained from M, by blowing up finitely many points of L.
Blowing up more than one point would introduce at least one holomorphic sphere in M
with self-intersection (—k) for some k > 2. This is not possible because using adjunction,
the restriction of —Kjs to every holomorphic curve in M must be positive by the shrink-
ing soliton condition. Hence w: M — My, is the identity or the blowup of M, at one
point of L. Set E := w1 (Lo). Then E contains the zero set of Y on M and hence also
the fixed point set of 7. But the flow of J X, being dense in 7', implies that this latter set
coincides with the zero set of X. This completes the proof of the proposition. ]

We now consider M := C x P! endowed with the standard holomorphic action of
the real two-dimensional torus 7' with Lie algebra Tand M := Bl ((C x P1), the blowup
of M at a fixed point p of the T -action on M. The torus action on M induces in a natural
way the holomorphic action of a real two-dimensional torus T on M with Lie algebra T
such that the blowdown map o: M — M is equivariant with respect to the action of T
and 7. Recall the real torus T generated by the flow of JX with Lie algebra t contain-
ing J X acting on (M, J, g) in a holomorphic isometric fashion with a compact fixed point
set introduced at the beginning of this section. Theorem A (i) will follow from the next
proposition, an improvement from the smooth category of the previous proposition to the
complex category.

Proposition 3.9 (Holomorphic classification). Let (M, g, X) be a two-dimensional sim-
ply connected complete non-compact shrinking gradient Kdhler—Ricci soliton with bound-
ed scalar curvature Rg with X = V& f for some smooth function f: M — R. Assume
that X has an integral curve along which Rg /> 0. Then there exists an equivariant biho-
lomorphism « from (M, T) to (]\71 T) or (M, T) with respect to which ax(J X) lies in
or 1, respectively. In particular, in the latter case, a(J X) is given by (2.16).

Proof. We have already established in Proposition 3.1 that M is diffeomorphic to either
C x P! orto BIl,(C x P!) and that there is a map w: M — My, to My, a2 mani-
fold diffeomorphic to $2 x R? with the S2-fibres defining holomorphic spheres in My,
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with @ the identity or the blowup of My, at a point p of a P!-fibre Ly of My,
as appropriate. Let 7: My, — R? denote the projection map. Then we obtain a map
7 =7 ow: M — R?2. Without loss of generality, we may assume that Lo = 771 ({0}).
Proposition 3.1 then tells us that My(X), that is, the zero set of X, is a compact ana-
lytic subset of E := 7w ~1({0}), where E is equal to L if = is the identity, or to two
holomorphic IP!’s meeting transversely, each of self-intersection (—1), otherwise. In this
latter case, we denote these curves by L and L,. In both cases, the forward flow of —X
accumulates in E by [11, Proposition 2.28] and the action of 7" preserves E. Indeed, this
last point follows from Claims 3.4 and 3.5 (which also hold with Y replaced by X) if @
is the identity map, and from the following claim otherwise.

Claim 3.10. The vector field X is tangent to any (—1)-curve in M.

Proof. A neighbourhood of any (—1)-curve in M is biholomorphic to a neighbourhood
of the zero section of Op1 (—1). Along this zero section, we have a canonical holomorphic
splitting of TM as TP! @& Op1(—1). The normal component of X in this splitting must
therefore vanish which yields the claim. ]

This claim in fact implies that when @ is the blowup map, L and L, are both pre-
served by the action of 7. Thus, no matter what 7 may be, the action of 7" on M will
induce an action of 7 on My,;,. In the particular case when @ is the blowup map, the
point of intersection of L; and L, will be fixed by 7. We denote this point by x so that
xeMy(X)NE #@.

Suppose first that @ is the blowup map so that M is diffeomorphic to Bl,(C x P1).
We begin by noting the following.

Claim 3.11. If X |y, is non-trivial fori = 1 ori = 2, then |[Mo(X) N L;| = 2.

Proof. As X|r, is non-trivial, the restriction of f to L; is non-constant, hence attains
a global maximum and a global minimum on L;. At these points, d(f|z;) = 0. Then
as X is tangent to L; by Claim 3.10, we actually have that df = 0 at these points so
that X |z, has at least two zeroes. But X |z, is a holomorphic vector field on P!, hence
has at most two zeroes. ]

Now, by [16, proof of Lemma 1], f is a Morse-Bott function on M. The critical
submanifolds of f are precisely the connected components of My (X). Since M is Kéhler,
the Morse indices (i.e., the number of negative eigenvalues of Hess(f)) of the critical
submanifolds are all even [16]. Write

My(X)=MOUM®P UMD,

where M /) denotes the disjoint union of the critical submanifolds of Mo (X) of index ;.
We already know from Proposition 3.1 that My(X) C E, and from [11, Claim 2.30] we
know that M is a non-empty connected compact complex submanifold of M, hence is
equal to either Ly, L;, or an isolated point of E. We analyse the structure of My(X) in
each of these cases separately, beginning with the following.
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Claim 3.12. If M © comprises a single point, then |Mo(X) N L;| = 2 fori = 1,2.

Proof. Recall that {x} = L; N L, and assume that M ©® = {y} for some point y € E.
If x = y, then y is an isolated zero of both X |z, and X|z,. The result then follows by
applying Claim 3.11 to both L; and L,. If x # y, then assume without loss of gener-
ality that y € L;. Then the zero set of X |z, comprises at least two points, namely x
and y. Claim 3.11 implies that in fact |[My(X) N L| = {x, y}. Considering X |z, next,
the zero set of this vector field contains x. If X|z, is non-trivial, then the result fol-
lows from Claim 3.11. Otherwise, assume that X |z, = 0. Then as M (OBT connected,
we have that x € M® U M@ Now, if x € M® | then by [4, Proposition 6] there exist
local holomorphic coordinates (z1, z) centred at x such that the holomorphic vector field
X10:= (X —iJX) takes the form

X0 = alzla—Zl + 612225
for some a,a, € R<y. This implies in particular that x is an isolated zero of X, contra-
dicting the fact that X |z, = 0. Hence necessarily x € M® so that L, € M®.

For each z € L,, f is decreasing along the forward flow of —X emanating from z,
hence this flow accumulates at y € L by [11, Proposition 2.28]. As in [6, p. 3332],
we can use the forward flow of —X to construct a holomorphic sphere R,: P! — M
in M with R;(0) = z and R,(c0) = y. Assume that x # z and call the resulting holo-
morphic sphere D. Also recall the holomorphic sphere C with zero self-intersection from
the proof of Proposition 3.1. Then fori # j, L; = w*C —L;, D.L; > 0,and D.L; > 0,
which leads to the conclusion that D.w*C > 0. This is a contradiction and the claim now
follows. ]

Next, we have the following.
Claim 3.13. [f M© = L;, then |My(X) N Lj| = 2 for j # i.

Proof. In this case, X|r; is non-trivial as M ) £ E and is connected. The result then
follows from an application of Claim 3.11 to L;. ]

Thus, the induced action of the real torus 7" on My, will fix either two points on L
or the whole of L and the forward flow lines of the vector field —X induced on M,
accumulate in Lg. If dimg 7 = 2, then by identifying a point off of Lo and {0} x P!
in M and M, respectively, and using the actions, one can construct an equivariant biho-
lomorphism «: (M, T) — (1\71 T)

If |M(O)| = 1 and dimg T = 1, then the flow of X and JX on M, induces a C*-
action on Mp;, which by Claim 3.7 we may assume to be free on My, \ L. In addition,
Claim 3.12 implies that the fixed point set of 7" will comprise precisely two isolated
points in Lg, say a and b. As the forward flow lines of —X on My, accumulate in Lo,
the closure of every orbit of this C*-action on My, is a copy of C obtained by adjoining
either a or b to the orbit in question. Choose an orbit O, and Oy passing through a and b,
respectively. Then each orbit will intersect every fibre of the P!-foliation of My, \ Lo
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at precisely one point. Indeed, if an orbit intersected a P!-fibre L in M, \ Lo at two
points x1, xp € L, x; # Xx,, say, then there would exist a g € C*, g # 1, such that
g - x1 = x». By Claim 3.4, we would then have that g - L = L. The element g would
then define an automorphism of L = P! and would therefore have at least one fixed
point. This contradicts the freeness of the C*-action on My, \ Lo. Define a global real
holomorphic vector field JV on My, in the following way. Restricted to a P!-fibre L,
JV will be the unique real holomorphic vector field tangent to L vanishing at O, N L
and Oy N L that generates a holomorphic S!-action, the direction of the flow of which
relative to the points O, N L and Op N L will be the same as that on L relative to a
and b, and the time 27-flow of which is the identity map. The flow of V and JV will
generate a C*-action on My, that commutes with the flow of X and JX. To see this
last point, it suffices to verify that [X, V] = 0 on My, \ Lo. To this end, we set up
an equivariant biholomorphism C* x P! — M, \ Lo in the following way. Pick an
arbitrary fibre u: P! — L C My, \ Lo. By pre-composing with a suitable Mobius trans-
formation, we can assume that u(0) = O, N L and u(oco) = Op N L. As in (3.2), we
extend u to a biholomorphism W: C* x P! — M, \ Lo, equivariant with respect to
the standard C*-action on the first component of the domain and the C*-action gener-
ated by X and JX on the range. By construction, ¥~! has the property that it pushes
forward %(V —iJV) to a global holomorphic vector field on C* x P! tangent to the
P!-fibres and vanishing along (C* x {0}) U (C* x {o0}). In particular, this holomorphic
vector field generates another C*-action on C* x P! and the map W will also be C*-
equivariant with respect to this action on the domain and that generated by %(V +iJV)
on the range. Observing that the two C*-actions on the domain of ¥ commute, the desired
vanishing of [X, V] is now clear. The result of this is that 7" is contained in a real two-
dimensional torus acting holomorphically on My, and hence we reduce to the previous
case.

If M©® = L; for some i = 1,2, then by Claim 3.13, the fixed point set of 7 will
comprise either two isolated points, a case that we have already dealt with (independent
of the dimension of 7), or a P! given by @ (M (9). In this latter case, the argument of the
proof of [9, Claim 4.15] tells us that dimg 7 = 1 (this argument is local). The argument
of [9, Claims 4.16 and 4.17] then yields an equivariant biholomorphism «: (M, T) —
(M, T).

Finally, if M(©® = E, then the fixed point set of T will comprise a P! given by
@ (M ©®), that is, an instance of the previous case. This covers all possibilities for 7 equal
to the blowdown map and so we have an equivariant biholomorphism «: (M, T) —
(1\71 , ?) Being equivariant then allows us to lift this to an equivariant biholomorphism
a: (M, T) — (1\71, f).

Suppose now that = is the identity map so that M is diffeomorphic to C x P! and
M = Mpy;,. Then E = P! and is preserved by the action of 7. As My(X) C E, we must
therefore have that the fixed point set of 7" comprises either two points in E or the whole
of E. Being connected, it follows that | M )| = 1 in the former case and that M = E
in the latter case. All possibilities thereafter have then been dealt with above and we
conclude that there is an equivariant biholomorphism «: (M, T) — (M , TA“).
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In both cases, the fact that J X generates T and « is equivariant implies os (JX) € T
or ax(JX) €1, as appropriate. ]

We now conclude the proof of Theorem A.

Completion of the proof of Theorem A

Given (M, g, X) as in the statement of Theorem A, let M,,;, denote the universal cover
of M. Then since M has finite fundamental group [45, Theorem 1.1], we can write
M = M,/ T, where T is a finite group of biholomorphisms of M,,;, acting freely.
Lifting the shrinking soliton structure to M,;,, we read from Proposition 3.9 that M\, is
biholomorphic to either M or M. Thus, item (i) of Theorem A will follow from Proposi-
tion 3.9 if we can establish that Fix(I") # @. This we prove in the next claim.

Claim 3.14. Every element of a finite group T of biholomorphisms acting on M or M
has a fixed point.

Proof. Any biholomorphism of M must preserve the two (—1)-curves, hence it must fix
their point of intersection x.

As for M, any automorphism y € I" sends a P! -fibre to a P! -fibre, hence y induces an
automorphism of the C-factor of M. Every finite automorphism group of C is a rotational
group. In particular, the origin is fixed by the action, and so there exists a IP!-fibre of M
fixed by I'. Every Mobius transformation has a fixed point. This observation completes
the proof of the claim. ]

The biholomorphism «: M — M given by Proposition 3.9 has the property that
a«(JX) lies in Lie(T), the Lie algebra of the real torus T from Theorem A (ii). Let
X' := a+(X), g := (@~ 1)*g, and consider the complete shrinking soliton (M, X', g’).
The fact that « is a biholomorphism implies that the background complex structure here
is still J. In particular, J X’ € Lie(T).

Let Gg( " denote the connected component of the identity of the holomorphic isomet-
ries of (M, J, g’) that commute with the flow of X’. As explained at the beginning of
Section 3, the assumption of bounded scalar curvature implies that the closure of the flow
of JX'in G§ " yields the holomorphic isometric action of a real torus T’ on (M, J, g’)
with Lie algebra t’ containing J X'. Without loss of generality, we may assume that 7”7 is
maximal in Gg(/. Corollary 5.13 of [11] asserts that Ggf, is a maximal compact Lie sub-
group of the Lie group Aut(}f ,(M ), the connected component of the identity of the group
of automorphisms of (M, J) that commute with the flow of X’; cf. [11, Proposition 5.8]
as for why Aut(},(,(M) is a Lie group. Thus, 7" is a maximal real torus in Auté‘”(M). For
each v € Lie(T), JX’ € Lie(T) implies that [v, JX'] = 0 so that [v, X'] = 0. Hence
each element of T commutes with the flow of X’ and so T itself is a Lie subgroup
of Aut()f ,(M ). For dimensional reasons, T is maximal in Aut(),( ,(M ), therefore by Iwas-
awa’s theorem [22] there exists an element € Aut(),( (M ) such that B(T")p~! = T.
Since 8 commutes with the flow of X’, necessarily dB~1(X’) = X’. Moreover, 8*(g’) is
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invariant under the action of T. Let y := o~ ! o B M — M. Unravelling the definitions,
we conclude that y*g is invariant under the action of T and y;'(JX) = JX' € Lie(T).
This yields item (ii) of Theorem A. Note that the background complex structure y*J is
still equal to J because y is a biholomorphism.

Finally, the fact that y ! (J X) is determined in item (iii) is a result of Proposition 2.28
and Theorem 2.29, as we know for this latter theorem that the Ricci curvature of g, hence
that of y*g, is bounded. That its flow generates an S'-action is clear from the expli-
cit expression of the vector field, given in Examples 2.32 and 2.33 for each respective
possibility of M. As explained at the beginning of this section, JX is holomorphic and
Killing and so the flow of y, 1 (J X) is holomorphic and isometric for (J,y*g), as claimed
in the same item.

4. Proof of Theorem B

Recall that (M, g(¢)) is a finite time Type I Kéhler—Ricci flow on [0, T), T < 400,
defined on a compact Kéahler surface M, x € ¥; C M is a Type I singular point, and
gi(t):=A;g(T + AL/_), t € [-A;T,0), for a sequence A; — +o0. Let J denote the
complex structure of M. From [13,31], we know that a subsequence of (M, g; (t), x) con-
verges in the smooth pointed Cheeger—Gromov sense [42, Definition 7.2.1] to a non-flat
complete shrinking gradient Ricci soliton (N, &, p) with bounded curvature and soliton
potential f* and associated Kihler—Ricci flow h(z), t € (—o0, 0), with A(—1) = h. Uni-
formly bounded curvature implies from Shi’s derivative estimates that the norms of the
derivatives of the curvatures of the metrics g; (¢) are uniformly bounded, hence an applic-
ation of [7, Theorem 3.23] demonstrates that the limit is in fact Kéhler so that (N, k) is
a two-dimensional shrinking gradient Kédhler—Ricci soliton with bounded scalar curvature.
Let J denote the complex structure of N.

First assume that lim;_,7— volg(;)(M) > 0. Then if N were compact, N would be
a del Pezzo surface with i Kihler—Einstein or the shrinking gradient Kihler—Ricci soliton
on the blowup of P2 at one or two points [44]. After unravelling the scaling factors in
the definition of smooth pointed Cheeger—-Gromov convergence, this would then imply
that lim;_.7— volg(;)(M) = 0, a contradiction. Indeed, let /(¢), t € (—o0, 0), denote the
Kihler—Ricci flow associated to (N, h). Then compactness of N implies that for all 0 <
8 < 1, there exists a diffeomorphism ¢: N — M such that |¢; gx(¢) — h(?)| < 1 with
derivatives for all 1 € [—1, —§] for k sufficiently large. In particular,
Vlgrgy(V) _ €

— —>0 ask — oco.

volg gy 1) (M) = 22 <3

Thus, (N, h) is non-compact and according to Lemma 2.7, the scalar curvature Ry of A
tends to zero along the unique end of N or there exists an integral curve of the soliton
vector field of (N, h) along which Ry, 4 0. If R, — 0, then we would be done by [11, The-
orem E (3)]. Therefore, to conclude the proof of this direction of the theorem, it suffices
to rule out the latter case.
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To this end, recall from Theorem A that if there exists an integral curve of the soliton
vector field of (N, ) along which Ry, A 0, then up to pullback by biholomorphism, (N, /)
is the cylinder C x P! or a hypothetical shrinking Kihler—Ricci soliton on the blowup
of C x P! at one point. In either case, choose R > 0 such that p € f~!((—o0, 3R]),
A:= f~1([2R,3R]) is a non-empty annulus in N, and such that any (—1)-curves are con-
tained in the set ' ((—oo, R]). This can be done because f is proper (cf. Theorem 2.6).
Then there exist a compact subset U C N containing 4, § € (0, 1), and diffeomorphisms
¢x: U — M with ¢ (p) = x such that ¢; gx (t) — h(¢) with derivatives on U as k — oo
forallt € [-1, —6].

Next, fix a J- -holomorphic sphere u: P! — A in N with trivial self-intersection. Then
by Corollary 2.3, there exists a sequence of ¢; J-holomorphic spheres uy: P! - N
with trivial self-intersection converging in C° to u as k — oo. In fact, it follows from
standard elliptic bootstrapping arguments that there exists a subsequence, still denoted
by u, that converges uniformly with all derivatives to u; cf. [27, Proposition 3.3.5 and
Appendix B.4]. Set C := u(P), Cx := ux(P'), and let t(¢), t € (—o0,0), denote the
Kihler form associated to 2(¢) with associated Ricci form pq (). Then (cf. [7, (1.13)])

[z(@)]

[IO‘E(Z)] = 1 t <0.

Consequently, using adjunction, we find that for 7 < 0,

Vol (C) = /C[T(l)|c] = —I/C[Pr(t)|c] = —27Tf/cf71(—KN|C) = —4mnt.

Since ¢; g (1) — h(t) and ux — u in C' as k — oo, we can assert that for ¢ € [—1, —§],
u}:(vol(p;gk(,)) — u*(voly() on P! as k — oo, so that for ¢ € [-1,—§],

vol¢;gk(,)(Ck) — volp()(C) = —4nt ask — oo.
In other words, for ¢t € [—1, —4],
|vol¢;;gk(,)(Ck) — (—4nt)] >0 ask — oo. 4.1)

On the other hand, let w(¢) denote the Kihler form of g(¢) and p, () the corresponding

Ricci form. Then % = —Pu(s), § € [0, T), implies that [w(s)] = [@(0)] — s[pw()]-

Using this and the fact that ¢ (Cy) is J-holomorphic, we compute that

volysg, (1) (Ck) = Vlekg(T+ALk)(¢k(Ck)) = Ak Volg(”ﬁ)(dnc (Cr)

= /d’k(ck) [w<T " At_k)

= A /qbkww ([a)(O)] -~ 2n<T + ;—k)cl(—Kka(ck)))

bk (Ck)]

= lk/ ([w(0)] = 27T (—Kpmlgcp))) — 27”/ c1(—Kum g (cp))
ox (Cx) Cy

= A Sli)rylL VOlg(s) (Pr(Cy)) — 4mt. 4.2)
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To derive a contradiction, we need to show that lims_.7— volg (5)(¢x (Cy)) > ¢ for
some positive constant ¢ independent of k. For this, we require

Claim 4.1. There exists an open subset U C M such that for all k,

& (C) N(M\U) # 0.

Proof. Let U denote the union of the open neighbourhoods of each (—1)-curve in M
for which there exists a biholomorphism onto a neighbourhood of the zero section of the
line bundle Op1(—1) — P!. Then for every k, ¢ (Cy) has trivial self-intersection in U
and so cannot be contained in U for any k. In other words, ¢x (Cx) N (M \ U) # @ as
claimed. ]

Let V be an open subset of M containing every (—1)-curve in M with V C U.
Since lim,_,7— volg(5)(M) > 0 by assumption, we read from [3, Theorem 3.8.3] (cf. also
[3, Definition 3.7.9]) that as t — T, g(¢) contracts only (—1)-curves and converges
smoothly locally to a Kihler metric g7 on the complement of these curves. In partic-
ular, g(¢) — gr smoothly on M \ V as t — T, so that injy\y g(t) — injp\y &7
and distg ) (dU, V') — distg, (U, V) as t — T~. Moreover, by the previous claim,
for every k there exists a point x; € ¢x(Cx) N (M \ U). Let & := min{distg,. (dU, V),
injpp\py g7} Then for s € (0, T') sufficiently close to T', Bg(s)(xk, 5) is contained in M \ V/
and an application of [37, p. 178, Comment 1] and [37, Proposition 4.3.1 (ii)] (see also
[10, Lemma 5.2]) yields for such values of s the lower bound

€ Te ne?

volg () (B (Ck)) = volg(s) (Bg(s) (Xk, 5) n ¢k(Ck)) > 1(5)2 =T

As a consequence, we obtain the following uniform lower bound on volg,. (¢% (Ci)):

2

volg, (¢ (Ch)) = lim voly(s) ($i(Ch)) = = “3)
s—>T 16
To conclude, substitute expression (4.2) into (4.1), then use the lower bound (4.3), and
finally let k — oo. This gives the desired contradiction.
Conversely, suppose that (N, &) is the shrinking gradient K&hler—Ricci soliton of [15]
on the blowup of C? at the origin and for the sake of a contradiction, assume that

li 1 M) =0.
lim_ volg( (M)

Then [43] tells us that M exhibits the structure of a Fano fibration w: M — B over
a base B, where in particular — Kjs is w-ample. If B is a point, then M is a del Pezzo sur-
face and [43] (see also [38]) further tells us that the Kéhler class of the initial metric g(0)
is ¢1 (M) and that the diameter diam(M, g(¢)) of (M, g(¢)) tends to zero as t — T . In fact,
the work of Perelman (see [35]) gives us the upper bound diam(M, g(¢)) < C(T — t)%,
which, for the rescaled limit g (¢), # < 0, translates to diam(M, g; (¢)) < C|¢|. This latter
bound implies that (N, /) is compact which yields a contradiction. Hence we conclude
that B is one-dimensional. The fact that —Kjs is w-ample now tells us that the generic



On finite time Type I singularities of the Kihler—Ricci flow on compact Kihler surfaces 501

fibre of 7: M — B is a holomorphic P!. Furthermore, by considering the minimal model
of M and using the r-ampleness of — Kz, Claim 3.8 applies with @ (K) replaced by M
and [C] replaced by the homology class of a P!-fibre of the fibration 7: M — B. The
result is that the singular fibres of M comprise a bubble tree of two (—1)-curves.

Now, recalling the setup outlined at the beginning of this section, let Bg := By (p, R)
denote the ball of radius R > 0 centred at p with respect to 4. Then for all R > 0 and
8§ € (0,1), there exist diffeomorphisms ¢ : Bg — M with ¢y (p) = x such that rgr(t) —
h(t) with derivatives on Bg as k — oo forall 7 € [—1, —§]. Let E denote the exceptional
curve in N and choose R sufﬁciiently large, R = R say, so that EcCB R, - Then since ¢ J
converges smoothly locally to J as k — +o00, we can, by Corollary 2.4, construct a ¢;"J -
holomorphic curve Ey in Bg, for each k sufficiently large such that £ — E in C° as
k — +oo.

Recall from [15] that the soliton & = h(—1) lives on C? blown-up at a point, is U(2)-
invariant, and is asymptotic to a Kihler cone metric on C2. As such, for all A > 0, there
exists a compact subset K, C N containing Ei in the interior such that for all x € N \ K,
inj,(x) > 34 and supg, anh(x))|an(h)|h < 3/12 Set A = 4, take the corresponding K,
and choose x € N \ K with |x| = R for R > 0 to be chosen later. By the U(2)-invariance
of h, the aforementioned bounds on the injectivity radius and curvature hold at all points
on the sphere {|z| = R} Choose R sufﬁmently large so that Bg, C {|z| < R} and such
that B, (y,3A) N E = @ for all yed{l|z| = R}. Next, choose R > R; sufficiently large so
that {|z| < ﬁ} C Bpg and so that Bg contains By (y, 3A) forevery y € {|z| = ﬁ} Finally,
fix k (depending on R) sufficiently large so that ¢y gk (=1) is sufficiently close to 4 in
derivatives to guarantee that for all y € {|z| = }

(i) injyrg, () = 22,

(i) Byrgr(—1)(¥.24) C Bi(y.34),

(i) supp,. . 2 RM@E Dt < 55

As a consequence of (ii), by choosing k larger if necessary, we may assume in addition
that for all y € {|z| = R},

(vi) B¢;gk(_1)(y,2)t) N Ex = @ and B¢;gk(_1)(y, 21) N 0Br = 0.

Now, ¢ (E ) will comprise one of the components of the bubble tree of the two (—1)-
curves in some exceptional fibre of the fibration 7: M — B. Write E(;) := ¢ (Ex) and
let E(z) denote the other component. Then ¢, YE@) N ¢k (BR)) defines a real surface
in By intersecting E} at precisely one point. Let Sy C Bg denote the unique connected
component of this real surface intersecting Ey. Then S N dBr # @, for otherwise Sy
would be contained in B R defining a ¢; J-holomorphic P! which, Esing Corollary 2.4,
could be perturbed to a J-holomorphic curve in N distinct from E (after choosing k
larger if necessary), thereby leading to a contradiction. In particular, it follows that Sg
must intersect the hypersurface {|z| = ﬁ} at some point g. Take the unique connected
component S,Z C By, 1n(q.24) of S N Byig, (-1)(q.21) passing through ¢. Clearly,
if non-empty, the connected components of the boundary Sy are contained in dBg.
Thus, from (iv) above it follows that 9.5 g C 8B¢; g (—1) (¢, 24). Next recalling points (i)
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and (iii) above, after unravelling the definitions and noting that ¢ (S ,f ) is J -holomorphic,
an application of [37, p. 178, Comment 1] and [37, Proposition 4.3.1 (ii)] (see also [10,
Lemma 5.2]) allows us to assert that

2
Vol (1) (@ (S{) N By 1) (@i(@).1)) = =

forall 0 < r < 2A.Setr = A = 4. Then we find that

volg, (=1) @k (S{) N Bgy (—1) (Pr(q). 4)) = 4,
which, as ¢y (S;CI) N Bg, (—1)(¢x(q),4) S E(z), leads to the lower bound
VOlgk(_l)(E(z)) > 4m.

On the other hand, using [43, (1.2)] and computing as in (4.2) with t = —1, keeping in
mind the fact that (E(2))? = —1, we derive that

volg, (-1 (E@) = 271/ c1(—Kp|g,) = 27.
Ep)

This is a contradiction. We therefore conclude that lim; . 7— volg () (M) > 0, as desired.
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