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Abstract. We show that the underlying complex manifold of a complete non-compact two-dimen-
sional shrinking gradient Kähler–Ricci soliton .M;g;X/ with soliton metric g with bounded scalar
curvature Rg whose soliton vector field X has an integral curve along which Rg 6! 0 is biho-
lomorphic to either C � P1 or to the blowup of this manifold at one point, and that the soliton
metric g is toric. We also identify the corresponding soliton vector fieldX in each case. Given these
possibilities, we then prove a strong form of the Feldman–Ilmanen–Knopf conjecture for finite time
Type I singularities of the Kähler–Ricci flow on compact Kähler surfaces, leading to a classification
of the bubbles of such singularities in this dimension.
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1. Introduction

1.1. Overview

A Ricci soliton is a triple .M; g; X/, where M is a Riemannian manifold endowed with
a complete Riemannian metric g and a complete vector field X , such that

Ric.g/C
1

2
LXg D

�

2
g (1.1)

for some � 2 ¹�1; 0; 1º. If X D rgf for some smooth real-valued function f on M ,
then we say that .M; g;X/ is gradient. In this case, the soliton equation (1.1) becomes

Ric.g/C
�

2
g D Hess.f /:
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If g is complete and Kähler with Kähler form !, then we say that .M; g; X/ is
a Kähler–Ricci soliton if the vector field X is complete and real holomorphic, and the
pair .g;X/ satisfies the equation

Ric.g/C
1

2
LXg D �g (1.2)

for � as above. If g is a Kähler–Ricci soliton and if X D rgf for some smooth real-
valued function f on M , then we say that .M; g;X/ is gradient. In this case, the soliton
equation (1.2) may be rewritten as

�! C i@x@f D �!;

where �! is the Ricci form of !.
For Ricci solitons and Kähler–Ricci solitons .M;g;X/, the vector fieldX is called the

soliton vector field. Its completeness is guaranteed by the completeness of g [46]. If the
soliton is gradient, then the smooth real-valued function f satisfying X D rgf is called
the soliton potential. It is unique up to the addition of a constant. Finally, a Ricci soliton
and a Kähler–Ricci soliton are called steady if �D 0, expanding if �D�1, and shrinking
if � D 1 in (1.1) and (1.2), respectively.

The study of Ricci solitons and their classification is important in the context of
Riemannian geometry. For example, they provide a natural generalisation of Einstein
manifolds and on certain Fano manifolds, shrinking Kähler–Ricci solitons are known to
exist where there are obstructions to the existence of a Kähler–Einstein metric [47]. Also,
to each soliton, one may associate a self-similar solution of the Ricci flow [8, Lemma 2.4].
These are candidates for singularity models of the flow. The difference in normalisations
between (1.1) and (1.2) reflects the difference between the constants preceding the Ricci
term in the Ricci flow and in the Kähler–Ricci flow respectively when one takes this
dynamic point of view.

In this article, we are concerned with the classification of complete shrinking gradient
Kähler–Ricci solitons with bounded curvature, the motivation being that such a soliton
encodes how the Kähler–Ricci flow enters a finite time Type I singularity, that is, a singu-
larity where the curvature of the evolving metric does not blow up faster thanO..T �t /�1/
at the finite singular time T > 0. More precisely, non-flat shrinking gradient Kähler–Ricci
solitons are known to appear as parabolic rescalings of finite time Type I singularities of
the Kähler–Ricci flow on compact Kähler manifolds [13, 31]. We focus on the classifica-
tion in complex dimension 2, where a bound on the scalar curvature of the soliton suffices
to bound the full curvature tensor [30]. Assuming therefore bounded scalar curvature, the
soliton is either compact, in which case the underlying manifold is Fano and the resulting
soliton is (up to automorphism) Kähler–Einstein or the shrinking gradient Kähler–Ricci
soliton given by [44] depending on the Fano manifold in question, or is non-compact.
Gradient shrinking Kähler–Ricci solitons are connected at infinity [29] and in this latter
case, there is a dichotomy in the sense that the scalar curvature of the soliton either tends
to zero along every integral curve of X , or X has an integral curve along which the scalar
curvature does not tend to zero. In the former case, it follows that the scalar curvature
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tends to zero globally (cf. Lemma 2.7) and hence the soliton (up to automorphism) is
either that of Feldman–Ilmanen–Knopf [15] on the blowup of C2 at one point or the
flat Gaussian shrinking soliton on C2 [11]. Here we use a result of [31] to prove, in
conjunction with [9], that in the latter case the shrinking soliton is isometric to the cyl-
inder C � P1, or it is toric and its underlying manifold is the blowup of C � P1 at one
point. Being the only possibilities, this allows us to prove a strong form of the Feldman–
Ilmanen–Knopf conjecture [15] for finite time Type I singularities of the Kähler–Ricci
flow on compact Kähler surfaces, and in doing so, identify the possible parabolic rescal-
ings that may appear at such singularities.

1.2. Main results

The simplest examples of complete shrinking gradient Kähler–Ricci solitons include any
Kähler–Einstein manifold with soliton vector field X D 0 and the flat Gaussian shrinking
soliton on C endowed with soliton vector field 2 � Re.z@z/, where z is the holomorphic
coordinate on C. Taking Cartesian products also provides examples. With this in mind,
our first main result can be stated as follows. The statement should be read in the context
of the dichotomy explained above.

Theorem A (Holomorphic classification). Let .M; g;X/ be a two-dimensional complete
non-compact shrinking gradient Kähler–Ricci soliton with complex structure J and with
bounded scalar curvature Rg whose soliton vector field X has an integral curve along
which Rg 6! 0. Then

(i) M is biholomorphic to either C � P1 or to Blp.C � P1/, that is, the blowup of
C � P1 at a fixed point p of the standard torus action on C � P1.

(ii) There exists a biholomorphism 
 WM ! M such that 
�1� .JX/ lies in the Lie
algebra of the real torus T acting on these spaces in the standard way and 
�g
is T -invariant.

(iii) 
�1� .JX/ is determined and its flow generates a holomorphic isometric S1-action
of .M; J; 
�g/.

Conclusions (ii)–(iii) for M D C � P1 have already been established in [9] where
it was shown that any complete shrinking gradient Kähler–Ricci soliton with bounded
scalar curvature on this manifold is isometric to the Cartesian product of the flat Gaus-
sian soliton !C on C and twice the Fubini–Study metric !P1 on P1. The new possibility
arising is when M is the blowup of C � P1 at one point, in which case 
�1� .JX/ is
given by (2.16). In [1], it is shown that this manifold admits a unique complete shrink-
ing gradient Kähler–Ricci soliton with bounded scalar curvature. Combined with The-
orem A, [9, Corollary C], and [11, Theorem E (3)], this completes the classification of
complete shrinking gradient Kähler–Ricci solitons with bounded scalar curvature in com-
plex dimension 2 (cf. [1, Theorem B] for a precise statement). This new example models
a finite time Type I collapsing singularity of a Kähler–Ricci flow with diameter bounded
uniformly from below on the blowup of P1 � P1 at one point in the vicinity of the excep-
tional curve. Indeed, this is how the soliton is constructed.
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The proof of Theorem A is specifically catered to complex dimension 2, making
heavy use of the theory of J -holomorphic curves in this dimension. The outline is as
follows. We assume that the shrinking soliton .M; g;X/ is simply connected as this turns
out to suffice. The bounded scalar curvature assumption implies that the curvature is
bounded [30] and so by results in [11], the flow of JX will generate the holomorphic
isometric action of a real torus on the soliton. Next, we are able to deduce from a result of
Naber [31] that on large balls sufficiently far away from the zero set of the soliton vector
field X centred along the integral curve of X along which Rg 6! 0, .M; g/ is C1-close
to the model cylinder C � P1. As the complex structures will consequently also be close,
we use the perturbation theory of J -holomorphic curves to perturb a holomorphic P1 in
the cylinder to a holomorphic P1 with zero self-intersection in M itself. Taking an S1

inside the aforementioned real torus generated by JX , we can then move this P1 around
and identifyM with C� �P1 at infinity. Complete shrinking solitons with bounded scalar
curvature have finite topological type [14], therefore we may blow down all of the .�1/-
curves in M and obtain its minimal model Mmin. A continuity argument using Gromov’s
compactness theorem for J -holomorphic curves then allows us to extend the P1-foliation
of M at infinity into the interior of Mmin and in doing so, identify Mmin as a P1-bundle
over a non-compact Riemann surface S . Compactifying this picture, the assumption of
simple connectedness allows us to ascertain that S compactifies to an S2, leaving us with
the diffeomorphism type of Mmin as R2 � S2. After analysing the structure of the zero
set of X , we may then use the flow of the vector fields X and JX to construct a com-
plex torus equivariant biholomorphism between Mmin and C � P1. The manifold M is
therefore biholomorphic to either Mmin or to the blowup of Mmin at finitely many points.
The blowup points of Mmin must be contained in the zero set of the vector field that X
induces on Mmin, which itself is contained in a P1. Furthermore, the sign of �KM dic-
tated by the shrinking soliton equation allows M to contain only .�1/-curves, ruling out
iterative blowups of Mmin at a point. These two properties limit the number of blowup
points to one, leading to the statement of Theorem A (i). The biholomorphism construc-
ted between M and the manifolds of part (i) is torus-equivariant and uses the flow of X
and JX , hence naturally has the property regarding the vector field stated in (ii). The
toricity of the soliton metric follows from an application of the version of Matsushima’s
theorem for shrinking gradient Kähler–Ricci solitons proved in [11]. For this step, the
assumption of bounded scalar curvature is crucial. Finally, knowing that JX lies in the
Lie algebra of the ambient torus means that it can be identified as it has the property that it
minimises a certain functional, known as the weighted volume functional [11,41]. In fact,
knowing the two possibilities for M allows us to compute this vector field explicitly in
each case. This yields (iii).

1.2.1. Application to the Kähler–Ricci flow. For a complete shrinking gradient Kähler–
Ricci soliton .M;g;X/ withX Drgf for f WM !R smooth, one can define an ancient
solution g.t/, t < 0, of the Kähler–Ricci flow

@g.t/

@t
D �Ric.g.t//
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with g.�1/ D g by defining g.t/ WD �t'�t g, t < 0, where 't is a family of diffeo-
morphisms generated by the gradient vector field �1

t
X with '�1 D id, i.e.,

@'t

@t
.x/ D �

rgf .'t .x//

2t
; '�1 D id:

These Kähler–Ricci flows model the formation of finite time Type I singularities of the
flow [31] which we now define. We recall the following from [13] in the context of the
Kähler–Ricci flow.

A family .M;g.t// of smooth complete Kähler manifolds satisfying the Kähler–Ricci
flow

@g.t/

@t
D �Ric.g.t//

on a finite time interval Œ0; T /, T < C1, is called a Type I Kähler–Ricci flow if there
exists a constant C > 0 such that for all t 2 Œ0; T /,

sup
M

jRmg.t/jg.t/ �
C

T � t
:

Such a solution is said to develop a Type I singularity at time T (and T is called a Type I
singular time) if it cannot be smoothly extended past time T . It is well known that this is
the case if and only if

lim sup
t!T�

sup
M

jRmg.t/jg.t/ D C1I (1.3)

see [21] for compact and [36] for complete flows. Here Rmg.t/ denotes the Riemannian
curvature tensor of the metric g.t/.

Since Type I Kähler–Ricci flows .M;g.t// have bounded curvature for each t 2 Œ0;T /,
the parabolic maximum principle, applied to the evolution equation satisfied by jRmj2

g.t/
,

shows that (1.3) is equivalent to

sup
M

jRmg.t/jg.t/ �
1

8.T � t /
for all t 2 Œ0; T /:

This motivates the following definition.

Definition 1.1 ([13, Definition 1.2]). Let .M; g.t//, t 2 Œ0; T /, T < C1, be a Kähler–
Ricci flow. A space-time sequence .pi ; ti /with pi 2M and ti ! T � is called an essential
blowup sequence if there exists a constant c > 0 such that

jRmg.ti /jg.ti /.pi / �
c

T � ti
:

A point p 2 M in a Type I Kähler–Ricci flow is called a Type I singular point if there
exists an essential blowup sequence with pi ! p on M . We denote the set of all Type I
singular points by †I .



C. Cifarelli, R. J. Conlon, A. Deruelle 468

The set †I has been characterised in [13, Theorem 1.2]. As already noted, in general
it is known that a suitable blowup limit of a complete Kähler–Ricci flow at a point of †I
is a non-flat shrinking gradient Kähler–Ricci soliton with bounded curvature [13, 31].
Therefore, assuming the development of a finite time Type I singularity, thanks to the
classification given by Theorem A, we are able to obtain as a corollary the following
strong form of the Feldman–Ilmanen–Knopf conjecture for such singularities on compact
Kähler surfaces [15, Example 2.2 (3)].

Theorem B (Non-collapsing). Let .M; g.t// be a Type I Kähler–Ricci flow on Œ0; T /,
T < C1, on a compact Kähler surface M and suppose that x 2 †I is a Type I singu-
lar point as defined in Definition 1.1. Then for every sequence �j ! C1, the rescaled
Kähler–Ricci flows .M; gj .t/; x/ defined on Œ��jT; 0/ by gj .t/ WD �jg.T C

t
�j
/ sub-

converge in the smooth pointed Cheeger–Gromov topology to the unique shrinking gradi-
ent U.2/-invariant Kähler–Ricci soliton of Feldman–Ilmanen–Knopf [15] on the blowup
of C2 at one point if and only if limt!T� volg.t/.M/ > 0.

This theorem characterises the Feldman–Ilmanen–Knopf shrinking Kähler–Ricci soli-
ton as the unique shrinking soliton that models finite time Type I non-collapsed sin-
gularities of the Kähler–Ricci flow on compact Kähler surfaces. The “if” direction of
Theorem B is known to hold true for U.n/-invariant Kähler–Ricci flows on the blowup
of Pn at one point [20]. Moreover, on this manifold, it is known that any U.n/-invariant
solution of the Kähler–Ricci flow developing a finite time singularity is a singularity of
Type I [39]. Similar results were obtained by Máximo [26] for n D 2. However, contrary
to a folklore conjecture, not every finite time singularity of the Kähler–Ricci flow is of
Type I [25], although this is expected to be the case for Kähler–Ricci flows on compact
Kähler surfaces.

The proof of Theorem B is by contradiction. Assuming that the volume is non-collaps-
ing, we consider the volume evolution of the unique .�1/-curve in the Feldman–Ilmanen–
Knopf shrinking soliton under the Kähler–Ricci flow to rule out other possible shrinking
solitons appearing as the rescaled limit. For the other direction, we assume volume col-
lapsing and the appearance of the Feldman–Ilmanen–Knopf shrinking soliton to derive
a nonsensical lower bound on the volume of a .�1/-curve in the original manifold. This
direction crucially relies on the structure of collapsing singularities of the Kähler–Ricci
flow in complex dimension 2 given by [43] and the asymptotics and symmetry of the
aforementioned soliton.

Given Theorem B, we can now classify the finite time Type I rescaled limits of the
Kähler–Ricci flow on a compact Kähler surface M . To this end, let .M; g.t//t2Œ0;T / be
a Kähler–Ricci flow developing a finite Type I singularity when t D T > 0. Take the
blowup limit as is done in Theorem B. If limt!T� volg.t/.M/ > 0, then Theorem B
asserts that the blowup limit is the Feldman–Ilmanen–Knopf shrinking soliton on the
blowup of C2 at one point. This picture is consistent with finite time singularities of
the Kähler–Ricci flow on compact Kähler surfaces being of Type I. Indeed, under the
assumption of non-collapsing, it is known that the flow contracts finitely many disjoint
.�1/-curves onM [3, Theorem 3.8.3]. On the other hand, if there is finite time collapsing
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at t D T > 0, i.e., if limt!T� volg.t/.M/ D 0, then either limt!T� diam .M; g.t// D 0,
which is a “finite time extinction”, or limt!T� diam.M; g.t// > 0. In the former case,
[43] asserts thatM is Fano and the Kähler class of g.0/ lies in c1.M/. The work of Perel-
man (see [35]) gives us the upper bound diam.M;g.t// � C.T � t /

1
2 , which, for the res-

caled limit gj .t/, t < 0, translates to diam.M;gj .t//�C jt j. This latter bound implies that
the rescaled limit is compact, hence being a shrinking soliton, is Fano with its (up to auto-
morphism) unique shrinking soliton structure. In the latter case, the blowup limit cannot
be Fano as the compactness of such a manifold implies that limt!T� diam .M; g.t// D 0,
a contradiction. By Theorem B, the blowup limit cannot be the shrinking soliton of
Feldman–Ilmanen–Knopf. Hence the only possibility is that the blowup limit is the cylin-
der C � P1 or the shrinking soliton of [1]. The precise soliton that appears would depend
upon the proximity of the blowup point to a .�1/-curve. This collapsing picture is also
consistent with finite time singularities of the Kähler–Ricci flow on compact Kähler sur-
faces being of Type I as under the assumption of finite time collapsing, it is known that
the underlying complex manifold is birational to a ruled surface [3, Proposition 3.8.4].

1.3. Outline of paper

We begin Section 2.1 by presenting the background material on J -holomorphic curves
that we need to prove Theorem A. We then recall in Section 2.2 the basics of shrink-
ing Ricci and Kähler–Ricci solitons. In Section 2.3, we digress and mention some basics
on polyhedrons and polyhedral cones that we need before moving on to some relevant
information concerning Hamiltonian actions in Section 2.4. Section 2.5 then comprises
the background material on toric geometry that we need. In particular, we recall the
definition of the weighted volume functional and discuss its properties in Section 2.5.4.
Moreover, in this section, we determine explicitly the unique holomorphic vector field
on the manifolds of Theorem A (i) that could be the soliton vector field of a shrinking
gradient Kähler–Ricci soliton with bounded scalar curvature.

In Section 3, we prove Theorem A. We first prove in Proposition 3.1 a smooth clas-
sification of the underlying manifold, a precursor to the holomorphic classification given
by Proposition 3.9. This section concludes by completing the proof of Theorem A.

In the final section, namely Section 4, we prove Theorem B.

2. Preliminaries

2.1. J -holomorphic curves

In this section, we summarise the tools from the theory of J -holomorphic curves that we
need in the context of Kähler manifolds. The source for this material is [27, 28].

Let .M; J / be an n-dimensional complex manifold, and let .†; j / be a compact
Riemann surface with complex structures J and j , respectively. We say that a smooth
map uW†! M is a J -holomorphic curve if the differential du is a complex linear map
with respect to j and J , i.e.,

J ı du D du ı j:
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A smooth map uW .†; j /! .M; J / is J -holomorphic if and only if

x@Ju D 0; (2.1)

where
x@Ju WD

1

2
.duC J ı du ı j /:

By definition, a J -holomorphic curve is always parametrised. A J -holomorphic curve
uW .†; j /! M is said to be multiply covered if there exist a J -holomorphic curve u0W
.†0; j 0/!M and a branched covering �W†! †0 of degree strictly greater than 1 such
that u factors as u D u0 ı �. The curve u is called simple if it is not multiply covered.
If u is a multiply covered J -holomorphic curve from P1, then by the Riemann–Hurwitz
formula, †0 D P1.

We henceforth restrict ourselves to J -holomorphic spheres, that is, when † D P1.
For a given homology class A 2 H2.M;Z/, we denote for such curves the moduli space
of solutions to (2.1) by

M.AIJ / WD ¹u 2 C1.P1;M/ j J ı du D du ı j; Œu.P1/� D Aº

and the subspace of simple solutions by

M�.AIJ / WD ¹u 2M.AIJ / j u is simpleº:

For a compact Riemannian manifold N , let �0.N; E/ denote the space of smooth
sections of the bundle E ! N . Moreover, letƒ0;1 WD ƒ0;1T �P1 denote the bundle of 1-
forms on P1 of type .0; 1/. Assume now that .M;J / is Kähler with a given Kähler form !

and for a given smooth (not necessarily J -holomorphic) curve uW P1 ! M , we define
a map

FuW �
0.P1; u�TM/! �0.P1; ƒ0;1 ˝J u

�TM/

as follows. Given � 2 �0.P1; u�TM/, let

ˆu.�/W u
�TM ! expu.�/

�TM

denote the complex bundle isomorphism given by parallel transport along the geodesics
s 7! expu.z/.s�.z// with respect to the Levi-Civita connection r induced by !. Then
define

Fu.�/ WD ˆu.�/
�1x@J .expu.�//: (2.2)

Write �0;1J .P1; u�TM/ WD �0.P1; ƒ0;1 ˝J u�TM/, where we drop the subscript J
when there is no ambiguity, and let Du denote the linearisation dFu.0/ of Fu at 0.
Then Du defines an operator

DuW �
0.P1; u�TM/! �

0;1
J .P1; u�TM/;

which in our situation with J a complex structure is given by

Du� WD
1

2
.r� C J.u/r� ı j / (2.3)
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for every � 2 �0.P1; u�TM/ [28, Proposition 3.1.1], i.e., Du� is the projection of r�
onto �0;1.P1; u�TM/. This is a real linear “Cauchy–Riemann” operator (cf. [28, Ap-
pendix C]), hence is Fredholm [28, Theorem C.1.10], meaning that it has closed range
and finite-dimensional kernel and cokernel. The Riemann–Roch theorem asserts that its
Fredholm index is

indexDu D 2nC 2c1.u�TM/;

where nD dimCM . In the case that uWP1!M is actually a J -holomorphic curve,Du is
precisely the Dolbeault x@-operator

x@W �0.u�TM/! �0;1.u�TM/:

If in additionDu is surjective, then M�.Œu.P1/�IJ / is a smooth oriented manifold near u
of real dimension 2nC 2c1.u�TM/ [28, Theorem 3.1.5].

The following is well known.

Proposition 2.1 (Local deformations). Let M be a two-dimensional complex manifold
with complex structure J , let C be a simple embedded J -holomorphic sphere with
C:C D 0, and let D denote the open ball of radius 1 in C. Then there exists an open
neighbourhood U of C that is diffeomorphic to D � P1 with ¹tº � P1 a J -holomorphic
sphere in M for each t 2 D and ¹0º � P1 D C .

Proof. Fix a parametrisation uW P1 ! C � M . As u is J -holomorphic, we know that
x@JuD 0. The linearisationDu of Fu at 0 is then Fredholm and is precisely the Dolbeault
x@-operator with respect to J , namely

Du D x@W �
0.u�TM/! �0;1.u�TM/:

Moreover, as C has a trivial holomorphic normal bundle, we have the direct sum decom-
position u�TM D O ˚ O.2/, a splitting that is respected by x@. Therefore, recalling the
proof of [28, Lemma 3.3.1], we can consider the action of x@ on each factor separately. For
any holomorphic line bundle L! P1, the cokernel of x@W�0.P1; L/! �0;1.P1; L/ is
precisely the Dolbeault cohomology group H 0;1

x@
.P1; L/. Now, we have an isomorphism

H
0;1
x@
.P1; L/ Š .H 1;0

x@
.P1; L�//�;

where H 1;0
x@
.P1; L�/ is the space of holomorphic one-forms with values in the dual

bundle L� and which itself is isomorphic to H 0.P1; L� ˝ KP1/, the space of holo-
morphic sections of the bundle L� ˝KP1 by Kodaira–Serre duality. Hence

H
0;1
x@
.P1;O/ D H 0;1

x@
.P1;O.2// D 0:

In particular, Du is surjective of Fredholm index 8, so that M�.ŒC �I J / is a smooth ori-
ented manifold of real dimension 8 near u. Indeed, it follows from [28, Corollary 3.3.4]
that Dv is surjective for every v 2 M�.ŒC �I J /, hence M�.ŒC �I J / itself is a smooth
oriented manifold of real dimension 8.
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Recall that M�.ŒC �I J / comprises parametrised J -holomorphic curves. The six-di-
mensional real Lie group PSL.2;C/, which we henceforth denote by G, acts freely on
M�.ŒC �IJ / via reparametrisation

g � v D v ı g�1 for all g 2 G and v 2M�.ŒC �IJ /:

We consider the quotient space

zM�.ŒC �IJ / WDM�.ŒC �IJ /=G:

This is precisely the space of J -holomorphic spheres in M in the same homology class
as C and is a smooth oriented manifold of real dimension 8 � 6 D 2. As C is simple and
embedded, McDuff’s adjunction formula [28, Corollary E.1.7] implies that every sphere
in zM�.ŒC �IJ / is embedded inM . In addition, the fact that C:C D 0 implies that any two
distinct P1’s in zM�.ŒC �IJ / are disjoint in M .

Set M�.ŒC �IJ /�G P1 � .M�.ŒC �IJ /� P1/=G, whereG acts on M�.ŒC �IJ /� P1

by g � .v; z/ 7! .v ı g�1; g � z/. Then M�.ŒC �I J / �G P1 is a smooth manifold of real
dimension 4 which is a P1-bundle over zM�.ŒC �IJ /. We define an evaluation map ev by

evW M�.ŒC �IJ / �G P1 7!M; Œ.v; z/� 7! v.z/:

This is a smooth map between two oriented smooth manifolds of the same dimension that
maps every fibre ¹Œ.v; z/� j z 2 P1º biholomorphically onto an embedded J -holomorphic
sphere in M , with distinct fibres being mapped to distinct J -holomorphic spheres in M
with ¹Œ.u; z/� j z 2 P1º being mapped to C . In particular, ev is an immersion between two
manifolds of the same dimension, hence is a local diffeomorphism. Choosing a trivialisa-
tion of the P1-bundle in a neighbourhood of the fibre ¹Œ.u; z/� j z 2 P1º now yields the
result.

Next, for a compact Riemannian manifold N , for an integer k � 1 and a real num-
ber p > 2, let W k;p.N; E/ denote the completion of the space �0.N; E/ of smooth
sections of the bundle E ! N with respect to the Sobolev W k;p-norm. Again, assume
that .M; J / is Kähler with Kähler form ! and endow .P1; j / with the Fubini–Study
form !P1 compatible with j . For a given smooth curve uW P1 ! M and real number
p > 2, let

Xp
u WD W

1;p.P1; u�TM/; Ypu WD L
p.P1; ƒ0;1 ˝J u

�TM/; (2.4)

where all relevant norms are understood to be with respect to ! and !P1 and the Levi-
Civita connection r determined by !. Then the maps Fu and Du defined above for
smooth sections extend in a natural way to maps FuWX

p
u ! Y

p
u .

One can prove that if u is an approximate J -holomorphic curve with sufficiently sur-
jective operator Du, then there are J -holomorphic curves near u, and the moduli space
can be modelled on a neighbourhood of zero in the kernel ofDu. More precisely, we have
the following theorem.
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Theorem 2.2 ([27, Theorem 3.3.4] with†D P1 and uW†!M smooth). Let p > 2 and
let k � k denote the operator norm. Then for every constant c0 > 0, there exist constants
ı > 0 and c > 0 such that the following holds. Let uW P1 ! M be a smooth map and
QuWY

p
u ! X

p
u be a right inverse of Du such that

kQuk � c0; kdukLp � c0; kx@JukLp � ı;

with respect to a metric on P1 such that vol.P1/ � c0. Then for every � 2 ker.Du/ with
k�kLp � ı, there exists a section z� D Qu� 2 X

p
u such that

x@J .expu.� CQu�// D 0; kQu�kW 1;p � ckx@J .expu.�//kLp :

This theorem is proved using the implicit function theorem. Given a surjective oper-
ator Du, one technique for constructing a right inverse Qu is to reduce the domain of Du
by imposing pointwise conditions on � so that the resulting operator is bijective, and then
taking Qu to be the inverse of this restricted operator. We will use this to prove the fol-
lowing two corollaries of this theorem.

Corollary 2.3 (Deformation of trivially-embedded curves). Let M be a manifold of real
dimension 4, let .g; J / and .zg; zJ / be two Kähler structures on M , and let uW .P1; j /!
.M; zJ / be a smooth zJ -holomorphic curve with trivial self-intersection. Denote the Levi-
Civita connection of zg by zr. Then for all x 2 u.P1/, there exists " > 0 such that if

jg � zgjzg C jzr.g � zg/jzg C jJ � zJ jzg < " (2.5)

on some sufficiently large compact subset K � M containing u.P1/, then there exists
a unique smooth section z� 2 �.u�TM/ with z�.x/ D 0 and kz�kC0 � CkJ � zJ kC0.P1;zg/
such that

v WD expu.z�/W .P
1; j /! .M; J /

is a smooth J -holomorphic curve (in the same homology class as u.P1/ with x 2 v.P1/).

Proof. Let zFu denote map (2.2) corresponding to the data .u; zg; zJ / and recall from the
proof of Proposition 2.1 that the linearisation zDu of zFu at 0 with respect to zJ is Fredholm
of index 8 and is precisely the Dolbeault x@-operator with respect to zJ , namely

zDu D x@W �
0.u�TM/! �

0;1
zJ
.u�TM/:

Via the direct sum decomposition u�TM D O ˚ O.2/, the kernel of zDu is spanned by
¹1; z21 ; z1z2; z

2
2º with Œz1 W z2� homogeneous coordinates on P1. Identifying x with its

pre-image under u, restrict zDu to the subspace �0.u�TM/.0/ of �0.u�TM/ of smooth
sections that vanish in the tangential directions at the points x, z1 D 0, and z2 D 0 on P1,
and vanish in the normal direction at x. (If zi .x/ D 0 for some i D 1; 2, then just choose
an arbitrary point on P1 distinct from z1 D 0 and z2 D 0 for the sections to vanish.) Then
the restriction

zD.0/
u W �

0.u�TM/.0/ ! �
0;1
zJ
.u�TM/
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is an isomorphism. Fix p > 2, and let . zXp
u /.0/ and zYpu denote the Sobolev completion

of �0.u�TM/.0/ with respect to the W 1;p-norm and the completion of �0.P1; ƒ0;1 ˝ zJ
u�TM/with respect to theLp-norm induced by zg and the choice of Kähler metric on P1,
respectively. Then zD.0/

u defines an isomorphism zD.0/
u W . zX

p
u /.0/ ! zY

p
u .

Next consider x@Ju. Let X
p
u and Y

p
u be as in (2.4) defined with respect to ! and

the choice of Kähler metric on P1, and let .Xp
u /.0/ denote the Sobolev completion of

�0.u�TM/.0/ with respect to the W 1;p-norm induced by the aforementioned metrics.
Then the linearisation Du defines a map

DuW X
p
u ! Ypu

which we can restrict to .Xp
u /.0/ and compose with the projection prWYpu ! zY

p
u to obtain

a map
.pr ıDu/.0/W .Xp

u /.0/ !
zYpu :

Explicitly, the composition pr ıDu is given by

.pr ıDu/.�/ D
1

2
.Du� C zJDu� ı j / D

1

4
..r� � zJJr�/C . zJ C J /r� ı j /: (2.6)

As clearly .Xp
u /.0/ D . zX

p
u /.0/, we also have an isomorphism zD.0/

u W .X
p
u /.0/! zY

p
u . Thus,

from the openness of the invertibility of bounded linear operators, we know that there
exists ı > 0 such that k zD.0/

u � .pr ıDu/.0/k < ı implies the invertibility of .pr ıDu/.0/.
In light of (2.3) and (2.6), we estimate that

k zDu � pr ıDuk � C.kr � zrkC0.P1;zg/ C kJ � zJ kC0.P1;zg//;

and so .pr ıDu/.0/ is invertible if (2.5) holds true for " > 0 sufficiently small. Moreover,
if kJ � zJ kC0.P1;zg/ is sufficiently small, then pr is an isomorphism. Hence, by shrinking
" > 0 further if necessary, we can assert that the restricted map

D.0/
u W .X

p
u /.0/ ! Ypu

is itself an isomorphism. As

kx@JukLp � C.kx@Ju � x@ zJukLp C k
x@ zJukLp„ ƒ‚ …
D0

/ � CkJ � zJ kC0.P1;zg/;

control on kJ � zJ kC0.P1;zg/ allows us to assume that kx@JukLp is as small as we please.
Therefore, applying Theorem 2.2 with � D 0, we deduce that for all " > 0 sufficiently
small, there exists a unique section z� 2 .Xp

u /.0/ such that the map v WD expu.z�/ is J -
holomorphic and kz�kW 1;p � Ckx@JukLp . Thus,

kz�kW 1;p � Ckx@JukLp � CkJ � zJ kC0.P1;zg/:

The desired estimate on z� now follows from Sobolev embedding. The fact that v is
smooth follows from elliptic regularity and the smoothness of J [28, Proposition 3.1.9].
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By construction, z�.x/ D 0 so that x 2 v.P1/, and v.P1/ lies in the same homology class
as u.P1/, hence v has the required properties. Finally, the uniqueness of v is a con-
sequence of the triviality of the normal bundle of v.P1/ and the positivity of intersections
of complex subvarieties in a complex surface [28, Theorem 2.6.3].

The next corollary is reminiscent of [24, Theorem 5].

Corollary 2.4 (Deformation of .�1/-curves). Let M be a manifold of real dimension 4,
let .g; J / and .zg; zJ / be two Kähler structures on M , and let uW .P1; j /! .M; zJ / be
a smooth zJ -holomorphic .�1/-curve. Denote the Levi-Civita connection of zg by zr. Then
there exists " > 0 such that if

jg � zgjzg C jzr.g � zg/jzg C jJ � zJ jzg < "

on some sufficiently large compact subset K � M containing u.P1/, then there exists
a unique smooth section z� 2 �.u�TM/ with kz�kC0 � CkJ � zJ kC0.P1;zg/ such that v WD
expu.z�/W .P

1; j /! .M;J / is a smooth J -holomorphic .�1/-curve (in the same homology
class as u.P1/).

Proof. Let zFu denote map (2.2) corresponding to the data .u; zg; zJ / and recall from the
proof of Proposition 2.1 that the linearisation zDu of zFu at 0 with respect to zJ is precisely
the Dolbeault x@-operator with respect to zJ , namely

zDu D x@W �
0.u�TM/! �

0;1
zJ
.u�TM/:

This is Fredholm of index 6 (cf. the proof of Proposition 2.1) and via the direct sum
decomposition u�TM D O.�1/˚ O.2/, the kernel of zDu is spanned by ¹z21 ; z1z2; z

2
2º

with Œz1 W z2� homogeneous coordinates on P1. Restrict zDu to the subspace�0.u�TM/.1/
of �0.u�TM/ of smooth sections that vanish in the tangential directions at the points
z1 D 0, z2 D 0, and at an arbitrary point of P1 distinct from z1 D 0 and z2 D 0. Then the
restriction

zD.1/
u W �

0.u�TM/.1/ ! �
0;1
zJ
.u�TM/

defines an isomorphism. The proof now proceeds verbatim as that of Corollary 2.3 without
the last sentence.

2.2. Shrinking Ricci solitons

The metrics we are interested in are the following.

Definition 2.5. A shrinking Ricci soliton is a triple .M; g;X/, whereM is a Riemannian
manifold endowed with a complete Riemannian metric g and a vector field X satisfying
the equation

Ric.g/C
1

2
LXg D

1

2
g: (2.7)
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We call X the soliton vector field and say that .M; g; X/ is a gradient Ricci soliton
if X D rgf for some real-valued smooth function f on M . In this latter case, equa-
tion (2.7) reduces to

Ric.g/C Hessg.f / D
1

2
g;

where Hessg denotes the Hessian with respect to g.
If g is complete and Kähler with Kähler form!, then we say that .M;g;X/ is a shrink-

ing gradient Kähler–Ricci soliton if X D rgf for some real-valued smooth function f
on M , X is complete and real holomorphic, and

�! C i@x@f D !; (2.8)

where �! is the Ricci form of !. For gradient Ricci solitons and gradient Kähler–Ricci
solitons, the function f satisfying X D rgf is called the soliton potential.

As the next result shows, the soliton potential of a complete non-compact shrinking
gradient Ricci soliton grows quadratically with respect to the distance.

Theorem 2.6 ([5, Theorem 1.1]). Let .M; g; X/ be a complete non-compact shrinking
gradient Ricci soliton with soliton vector field X D rgf for a smooth real-valued func-
tion f WM ! R. Then for x 2M , f satisfies the estimates

1

4
.dg.p; x/ � c1/

2
� C � f .x/ �

1

4
.dg.p; x/C c2/

2

for some C > 0, where dg.p; �/ denotes the distance to a fixed point p 2M with respect
to g. Here, c1 and c2 are positive constants depending only on the real dimension of M
and the geometry of g on the unit ball Bp.1/ based at p.

In particular, f is proper.
We also know the following regarding the asymptotics of four-dimensional shrinking

gradient Ricci solitons.

Lemma 2.7. Let .M; g; X/ be a complete non-compact shrinking gradient Ricci soliton
of real dimension 4 with soliton vector field X D rgf for a smooth real-valued function
f WM !R and with bounded scalar curvature Rg such that Rg ! 0 along every integral
curve of X . Then Rg ! 0. Moreover, there exists a constant C > 0 such that 0 � Rg �
Cf �1 outside a sufficiently large compact subset of M .

Proof. On a shrinking gradient Ricci soliton of real dimension 4 with bounded scalar
curvature Rg , we see from [30, Theorem 1.3] that the bounds [30, (3.4)] hold true so that
[30, Theorem 3.1] applies. The Harnack estimate from [30, (3.73)] then implies that if Rg
is strictly smaller than the constant in this Harnack estimate at some point x in the level set
¹f D t1º for t1 2R with ¹X D 0º � f �1..�1; t1�/, then Rg decays like Cf �1 along the
integral curve passing through x for some constant C > 0 independent of x. Thus, for the
first assertion, it suffices to show that there exists t1 2 R with ¹X D 0º � f �1..�1; t1�/
so that Rg is as small as we please on ¹f D t1º.
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To this end, note that since Rg is bounded, the zero set of X is compact (cf. [11, proof
of Lemma 2.26]), hence by properness of f (cf. Theorem 2.6), there exists t0 > 0 so that
¹X D 0º � f �1..�1; t0

2
�/. Through the gradient flow of f , the level sets ¹f D tº are

therefore diffeomorphic to ¹f D t0º for all t > t0. In particular, all integral curves of X
may be parametrised by ¹f D t0º. Let x0 2 ¹f D t0º and choose "> 0. Then since Rg! 0

along each integral curve ofX by assumption and Rg � 0 [46], there exists x00 lying along
the integral curve ofX passing through x0 with f .x00/ WD t

0
0> t0 such that 0�Rg.x00/ < ".

We can then find an open neighbourhood of x00 in ¹f D t 00º such that 0 � Rg < 2".
Flowing this neighbourhood back to x0 along �X , we obtain an open neighbourhood U0
of x0 in ¹f D t0º. By properness of f , the level set ¹f D t0º is compact and so can be
covered by finitely many such neighbourhoods Ui , i D 0; : : : ; N . Letting t1 denote the
maximum of the corresponding t 0i , i D 0; : : : ; N , we find that 0 � Rg < 2" on ¹f D t1º
and ¹X D 0º � f �1..�1; t1�/, as required. By [30, (3.73)], it now follows that Rg decays
globally like Cf �1.

Complex two-dimensional complete non-compact shrinking gradient Kähler–Ricci
solitons with scalar curvature tending to zero at infinity were classified in [11, The-
orem E (3)]. They comprise the flat Gaussian soliton on C2 and the example of Feldman–
Ilmanen–Knopf [15] on the blowup of C2 at one point, up to the action of GL.2;C/.

2.3. Polyhedrons and polyhedral cones

We take the following from [12] and [33, Appendix A].
Let E be a real vector space of dimension n and let E� denote the dual. Write h�; �i

for the evaluation E� �E ! R. Furthermore, assume that we are given a lattice � � E,
that is, an additive subgroup � ' Zn. This gives rise to a dual lattice �� � E�. For any
� 2 E�, c 2 R, let K.�; c/ be the (closed) half space ¹x 2 E j h�; xi � cº in E. Then we
have the following.

Definition 2.8. A polyhedron P in E is a finite intersection of half spaces, i.e.,

P D

r\
iD1

K.�i ; ci / for �i 2 E�; ci 2 R:

It is called a polyhedral cone if all ci D 0, and moreover a rational polyhedral cone if
all �i 2 �� and ci D 0. In addition, a polyhedron is called strongly convex if it does not
contain any affine subspace of E.

The following definition will be useful.

Definition 2.9. A polyhedron P � E� is called Delzant if its set of vertices is non-empty
and each vertex v 2 P has the property that there are precisely n edges ¹e1; : : : ; enº (one-
dimensional faces) emanating from v, and there exists a basis ¹"1; : : : ; "nº of �� such
that "i lies along the ray R.ei � v/.
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Note that any such P is necessarily strongly convex.
The asymptotic cone of a polyhedron contains all the directions going off to infinity

in the polyhedron.

Definition 2.10. Let P be a polyhedron in E. Its asymptotic cone, denoted by C.P /,
is the set of vectors ˛ 2E with the property that there exists ˛0 2E such that ˛0C t˛ 2P
for sufficiently large t > 0.

The asymptotic cone may be identified as follows.

Lemma 2.11 ([33, Lemma A.3]). If P D
Tr
iD1K.�i ; ci /, then C.P / D

Tr
iD1K.�i ; 0/.

In particular, the asymptotic cone of a polyhedron is a polyhedral cone. In addition,
we see that for two polyhedrons P , Q, in E,

Q � P ) C.P / � C.Q/:

Compact polyhedrons can be characterised by their asymptotic cone.

Lemma 2.12 ([33, Corollary A.9]). A polyhedronP is compact if and only if C.P /D¹0º.

We also have the following.

Definition 2.13. The dual of a polyhedral cone C is the set C_ D ¹x 2 E� j hx;C i � 0º.

It is clear that for two polyhedrons P , Q, in E,

Q � P ) P_ � Q_:

2.4. Hamiltonian actions

Recall what it means for an action to be Hamiltonian.

Definition 2.14. Let .M; !/ be a symplectic manifold, and let T be a real torus acting
by symplectomorphisms on .M; !/. Denote by t the Lie algebra of T and by t� its dual.
Then we say that the action of T is Hamiltonian if there exists a smooth map �! WM ! t�

such that for all � 2 t,
�!y� D du� ;

where u� .x/ D h�!.x/; �i for all � 2 t and x 2 M and h� ; �i denotes the dual pairing
between t and t�. We call �! the moment map of the T -action, and we call u� the
Hamiltonian (potential) of �.

Define

ƒ! WD ¹Y 2 t j �!.Y / is proper and bounded belowº � t:

By Theorem 2.6, this set is non-empty for ! a complete non-compact shrinking gradient
Kähler–Ricci soliton. In addition, it can be identified through the image of �! in the
following way.
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Proposition 2.15 ([33, Proposition 1.4]). Let .M; !/ be a (possibly non-compact) sym-
plectic manifold of real dimension 2n with symplectic form ! on which there is a Hamilto-
nian action of a real torus T with moment map �! WM ! t�, where t is the Lie algebra
of T and t� its dual. Assume that the fixed point set of T is compact and that ƒ! ¤ ;.
Then ƒ! D int.C.�!.M//_/.

2.5. Toric geometry

In this section, we collect together some standard facts from toric geometry as well as
recall those results from [9] that we require. We begin with the following definition.

Definition 2.16. A toric manifold is an n-dimensional complex manifold M endowed
with an effective holomorphic action of the algebraic torus .C�/n such that the following
hold true:

� The fixed point set of the .C�/n-action is compact.

� There exists a point p 2 M with the property that the orbit .C�/n � p � M forms
a dense open subset of M .

We will often denote the dense orbit simply by .C�/n � M in what follows. The
.C�/n-action of course determines the action of the real torus T n � .C�/n.

2.5.1. Divisors on toric varieties and fans. Let T n � .C�/n be the real torus with Lie
algebra t and denote the dual pairing between t and the dual space t� by h� ; �i. There is
a natural integer lattice � ' Zn � t comprising all � 2 t such that exp.�/ 2 T n is the
identity. This then induces a dual lattice �� � t�. We have the following combinatorial
definition.

Definition 2.17. A fan † in t is a finite set of rational polyhedral cones � satisfying

(i) For every � 2 †, each face of � also lies in †.

(ii) For every pair �1; �2 2 †, �1 \ �2 is a face of each.

To each fan † in t, one can associate a toric variety X†. Heuristically, † contains all
the data necessary to produce a partial equivariant compactification of .C�/n, resulting
in X†. More concretely, one obtains X† from† as follows. For each n-dimensional cone
� 2 †, one constructs an affine toric variety U� which we first explain. We have the dual
cone �_ of � . Denote by S� the semigroup of those lattice points which lie in �_ under
addition. Then one defines the semigroup ring, as a set, as all finite sums of the form

CŒS� � D
°X

�ss
ˇ̌
s 2 S�

±
;

with the ring structure defined on monomials by �s1s1 � �s2s2 D .�s1�s2/.s1 C s2/ and
extended in the natural way. The affine variety U� is then defined to be Spec.CŒS� �/.
This automatically comes endowed with a .C�/n-action with a dense open orbit. This
construction can also be applied to the lower-dimensional cones � 2 †. If �1 \ �2 D � ,
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then there is a natural way to mapU� intoU�1 andU�2 isomorphically. One constructsX†
by declaring the collection of all U� to be an open affine cover of X† with transition
functions determined by U� . This identification is also reversible.

Proposition 2.18 ([12, Corollary 3.1.8]). Let M be a smooth toric manifold. Then there
exists a fan † such that M ' X†.

Proposition 2.19 (Orbit-cone correspondence, [12, Theorem 3.2.6]). The k-dimensional
cones � 2 † are in a natural one-to-one correspondence with the .n � k/-dimensional
orbits O� of the .C�/n-action on X†.

In particular, each ray � 2† determines a unique torus-invariant divisorD� . As a con-
sequence, a torus-invariant Weil divisor D on X† naturally determines a polyhedron
PD � t�. Indeed, we can decomposeD uniquely asD D

PN
iD1 aiD�i , where ¹�iºi � †

is the collection of rays. Then by assumption, there exists a unique minimal lattice element
�i 2 �i \ � . The polyhedron PD is then given by

PD D ¹x 2 t� j h�i ; xi � �aiº D

N\
iD1

K.�i ;�ai /: (2.9)

2.5.2. Kähler metrics on toric varieties. For a given toric manifold M endowed with
a Riemannian metric g invariant under the action of the real torus T n � .C�/n and Kähler
with respect to the underlying complex structure of M , the Kähler form ! of g is also
invariant under the T n-action. We call such a manifold a toric Kähler manifold. In what
follows, we always work with a fixed complex structure on M .

Hamiltonian Kähler metrics have a useful characterisation due to Guillemin.

Proposition 2.20 ([19, Theorem 4.1]). Let ! be any T n-invariant Kähler form on M .
Then the T n-action is Hamiltonian with respect to ! if and only if the restriction of ! to
the dense orbit .C�/n �M is exact, i.e., there exists a T n-invariant potential � such that

! D 2i@x@�:

Fix once and for all a Z-basis .X1; : : : ; Xn/ of � � t. This in particular induces
a background coordinate system � D .�1; : : : ; �n/ on t. Using the natural inner product
on t to identify t Š t�, we can also identify t� Š Rn. For clarity, we will denote the
induced coordinates on t� by x D .x1; : : : ; xn/. Let .z1; : : : ; zn/ be the natural coordin-
ates on .C�/n as an open subset of Cn. There is a natural diffeomorphism LogW .C�/n!
t � T n which provides a one-to-one correspondence between T n-invariant smooth func-
tions on .C�/n and smooth functions on t. Explicitly,

.z1; : : : ; zn/
Log
7��! .log.r1/; : : : ; log.rn/; �1; : : : ; �n/ D .�1; : : : ; �n; �1; : : : ; �n/; (2.10)

where zj D rj e
i�j , rj > 0. Given a function H.�/ on t, we can extend H trivially to

t � T n and pull back by Log to obtain a T n-invariant function on .C�/n. Clearly, any
T n-invariant function on .C�/n can be written in this form.
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Choose any branch of log and write w D log.z/. Then clearly w D � C i� , where
� D .�1; : : : ; �n/ are real coordinates on t (or, more precisely, there is a corresponding
lift of � to the universal cover with respect to which this equality holds), and so if � is
T n-invariant and ! D 2i@x@�, then we have that

! D 2i
@2�

@wi@ xwj
dwi ^ d xwj D

@2�

@� i@�j
d� i ^ d�j : (2.11)

In this setting, the metric g corresponding to ! is given on t � T n by

g D �ij .�/d�
id�j C �ij .�/d�

id�j ; (2.12)

and the moment map � as a map �W t � T n ! t� is defined by the relation

h�.�; �/; bi D hr�.�/; bi

for all b 2 t, wherer� is the Euclidean gradient of �. The T n-invariance of � implies that
it depends only on � when considered a function on t � T n via (2.10). Since ! is Kähler,
we see from (2.11) that the Hessian of � is positive definite so that � itself is strictly
convex. In particular, r� is a diffeomorphism onto its image. Using the identifications
mentioned above, we view r� as a map from t into an open subset of t�.

2.5.3. Kähler–Ricci solitons on toric manifolds. We define what we mean by a shrinking
Kähler–Ricci soliton in the toric category.

Definition 2.21. A complex n-dimensional shrinking Kähler–Ricci soliton .M; g; X/
with complex structure J is toric if M is a toric manifold as in Definition 2.16, JX lies
in the Lie algebra t of the underlying real torus T n that acts on M , and g is T n-invariant.
In particular, the zero set of X is compact.

It follows from [45] that H 1.M/ D 0, hence the induced real T n-action is auto-
matically Hamiltonian with respect to !. Working on the dense orbit .C�/n � M , the
condition that a vector field J Y lies in t is equivalent to saying that in the coordinate
system .�1; : : : ; �n; �1; : : : ; �n/ from (2.10), there is a constant bY D .b1Y ; : : : ; b

n
Y / 2 Rn

such that

J Y D biY
@

@� i
or equivalently, Y D biY

@

@� i
: (2.13)

From Proposition 2.20, we know that LX! D 2i@x@X.�/. In addition, the function X.�/
on .C�/n can be written as hbX ;r�i D b

j
X
@�

@�j
, where bX 2Rn corresponds to the soliton

vector field X via (2.13). These observations allow us to write the shrinking soliton equa-
tion (2.8) as a real Monge–Ampère equation for � on Rn.

Proposition 2.22 ([9, Proposition 2.6]). Let .M; g; X/ be a toric shrinking gradient
Kähler–Ricci soliton with Kähler form !. Then there exists a unique smooth convex real-
valued function � defined on the dense orbit .C�/n �M such that ! D 2i@x@� and

det.�ij / D e�2�ChbX ;r�i: (2.14)



C. Cifarelli, R. J. Conlon, A. Deruelle 482

A priori, the function � is defined only up to addition of a linear function. However,
(2.14) provides a normalisation for � which in turn provides a normalisation for r�, the
moment map of the action. The next lemma shows that this normalisation coincides with
that for the moment map as defined in [11, Definition 5.16].

Lemma 2.23. Let .M;g;X/ be a toric complete shrinking gradient Kähler–Ricci soliton
with complex structure J and Kähler form ! with soliton vector field X D rgf for
a smooth real-valued function f WM ! R. Let � be given by Proposition 2.20 and norm-
alised by (2.14), let J Y 2 t, and let uY D hr�; bY i be the Hamiltonian potential of J Y
with bY as in (2.13) so thatrguY DY . Then LJXuY D 0 and�!uY CuY � 1

2
Y � f D 0.

To see the equivalence with [11, Definition 5.16], simply replace Y by J Y in this
latter definition as here we assume that J Y 2 t, contrary to the convention in [11, Defin-
ition 5.16] where it is assumed that Y 2 t.

Proof of Lemma 2.23. By definition, we have that

d.LJXuY / D LJX .duY / D �LJX .!yJ Y / D 0;

where we have used the fact that LJX! D 0 and ŒJX; J Y � D 0. Therefore, LJXuY is
equal to a constant which must be zero as JX has a zero because X D rgf and f is
proper and bounded from below (cf. Theorem 2.6), hence attains a local minimum. This
proves the JX -invariance of uY .

The final equation follows by differentiating (2.14) with respect to Y . Indeed, from
(2.11) and (2.12) we see that on the dense orbit,

!n

nŠ
D volg D det.�ij / d�1 ^ d�1 ^ � � � ^ d�n ^ d�n

D
det.�ij /
.�2i/n

dw1 ^ d xw1 ^ � � � ^ dwn ^ d xwn:

Recalling that f denotes the Hamiltonian potential of JX 2 t so that f D hbX ;r�i on
the dense orbit, (2.14) may therefore be rewritten as

log det
� .�2i/n!n

nŠdw1 ^ d xw1 ^ � � � ^ dwn ^ d xwn

�
C 2� � f D 0:

By differentiating along Y , this yields the relation

0 D Y � log det
� .�2i/n!n

nŠdw1 ^ d xw1 ^ � � � ^ dwn ^ d xwn

�
C 2Y � � � Y � f

D tr! LY! C 2uY � Y � f D 2�!uY C 2uY � Y � f;

where we have made use of [9, Lemma 2.5] in the last line. From this, the result fol-
lows.

Given normalisation (2.14), the next lemma identifies the image of the moment map
� D r�.
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Lemma 2.24 ([9, Lemmas 4.4 and 4.5]). Let .M; g; X/ be a complete toric shrinking
gradient Kähler–Ricci soliton, let ¹Diº be the prime .C�/n-invariant divisors in M , and
let† � t be the fan determined by Proposition 2.18. Let �i 2 † be the ray corresponding
to Di with minimal generator �i 2 � .

(i) There is a distinguished Weil divisor representing the anticanonical class �KM giv-
en by �KM D

P
i Di whose associated polyhedron (cf. (2.9)) is given by

P�KM D ¹x j h�i ; xi � �1º (2.15)

which is strongly convex and has full dimension in t�. In particular, the origin lies in
the interior of P�KM .

(ii) If � is the moment map for the induced real T n-action normalised by (2.14), then the
image of � is precisely P�KM .

2.5.4. The weighted volume functional. As a result of Lemma 2.23, we can now define
the weighted volume functional.

Definition 2.25 (Weighted volume functional, [11, Definition 5.16]). Let .M; g; X/ be
a complex n-dimensional toric shrinking gradient Kähler–Ricci soliton with Kähler form
! D 2i@x@� on the dense orbit with � strictly convex with moment map � D r� normal-
ised by (2.14). Assume that the fixed point set of the torus is compact and recall that

ƒ! WD ¹Y 2 t j h�; Y i is proper and bounded belowº � t:

Then the weighted volume functional F Wƒ! ! R is defined by

F!.v/ D

�
M

e�h�;vi!n:

As the fixed point set of the torus is compact by definition, F! is well defined by
the non-compact version of the Duistermaat–Heckman formula [33] (see also [11, The-
orem A.3]). This leads to two important lemmas concerning the weighted volume func-
tional in the toric category, the independence of ƒ! and F! from the choice of shrinking
soliton !.

Lemma 2.26. The set ƒ! is independent of the choice of toric shrinking Kähler–Ricci
soliton ! in Definition 2.25 and is given by ƒ! D int.C_/, where C WD ¹x j h�i ; xi � 0º
and ¹�iº are as in Lemma 2.24.

Proof. Recall from Proposition 2.15 that ƒ! is given by int.C.�!.M//_/, where the
moment map �! with respect to !, normalised by (2.14), depends on !. However, no
matter the choice of ! in Definition 2.25, normalisation (2.14) implies by Lemma 2.24 (ii)
that the image of M under the moment map is always given by P�KM , a fixed polytope
determined solely by the torus action. Therefore, ƒ! is independent of the choice of !
in Definition 2.25. Finally, the asymptotic cone of this polytope (as a subset of t�) is, by
Lemma 2.11, given by C . This leads to the desired expression for ƒ! .
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Note that C is always a strongly convex rational polyhedral cone in t, although not
necessarily of full dimension, whereasC_ is always full-dimensional, although not neces-
sarily strongly convex.

Lemma 2.27. The functional F! is independent of the choice of toric shrinking Kähler–
Ricci soliton ! in Definition 2.25. Moreover, after identifying ƒ! with a subset of Rn

via (2.13), F! is given by F!.v/ D .2�/n
�
P�KM

e�hv;xi dx, where x D .x1; : : : ; xn/

denotes coordinates on t� dual to the coordinates .�1; : : : ; �n/ on t introduced in Sec-
tion 2.5.2.

Proof. We first show that the given integral is finite. To demonstrate this, it suffices to
show that hv; xi > 0 on the complement of a compact subset of P�KM . To this end, recall
that 0 2 int.P�KM / so that the intersection of the hyperplane ¹x 2 Rn j hv; xi D 0º with
P�KM is non-empty. We claim that the polyhedron Q WD ¹x 2 P�KM j hv; xi � 0º is
compact. Indeed, by Lemma 2.12, Q is compact if and only if C.Q/ D ¹0º. To derive
a contradiction, assume that there exists a non-zero vector w 2 C.Q/. Then from the
definition of the asymptotic cone, one can see that Q contains a ray of the form x0 C tw,
t � 0, for some x0 2Q. Taking the inner product with v, it follows that hv; x0 C twi > 0
for t � 0 because hv;wi > 0 by virtue of the fact that

Q � P ) C.Q/ � C.P /) C.P /_ � C.Q/_) int.C.P /_/ � int.C.Q/_/:

This yields the desired contradiction.
Now, no matter the choice of shrinking soliton, the map r�W t! P�KM defines a dif-

feomorphism with image the fixed polytope P�KM thanks to normalisation (2.14). The
independence of F! from ! and the given expression then follows from the following
computation, where r�W t! P�KM is used as a change of coordinates:

F!.v/ D

�
M

e�h�;vi!n D

�
t�T n

e�hr�.�/;vi det.�ij .�// d�d�

D .2�/n
�

t

e�hr�.�/;vi det.�ij .�// d� D .2�/n
�
P�KM

e�hx;vi dx:

Thus, we henceforth drop the subscript ! from F! and ƒ! when working in the toric
category. The functional F Wƒ ! R is proper in this category, hence attains a critical
point in ƒ.

Proposition 2.28 ([9, proof of Proposition 3.1]). The functional

F.v/ D .2�/n
�
P�KM

e�hv;xi dx

is proper on ƒ.

In general, such a critical point turns out to be unique and characterises the soliton
vector field of a complete shrinking gradient Kähler–Ricci soliton.
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Theorem 2.29 ([11, Lemma 5.17], [5, Theorem 1.1]). Let .M; g; X/ be a complete
shrinking gradient Kähler–Ricci soliton with complex structure J , Kähler form !, and
bounded Ricci curvature. Then JX 2 ƒ! , F! is strictly convex on ƒ! , and JX is the
unique critical point of F! in ƒ! .

Having established in Lemmas 2.26 and 2.27 that in the toric category the weighted
volume functional F and its domain ƒ are determined solely by the polytope P�KM
which itself, by Lemma 2.24, depends only on the torus action on M (i.e., is independent
of the choice of shrinking soliton), and having an explicit expression for F given by
Lemma 2.27, after using the torus action to identify P�KM via (2.15), we can determine
explicitly the soliton vector field of a toric shrinking gradient Kähler–Ricci soliton onM .
We illustrate how to do this in the following examples.

Example 2.30. Consider P1 with the C�-action given by � � ŒZ0 W Z1� D Œ�Z0 W Z1�.
Then its torus-invariant divisors are D0 D Œ0 W 1� and D1 D Œ1 W 0�. The corresponding
fan in R is given by †P1 D ¹0; Œ0;1/; .�1; 0�º and �KP1 D D0 CD1, the associated
polyhedron P�KP1

of which can naturally be identified with the interval Œ�1; 1� � R.
The Fubini–Study metric !P1 is Kähler–Einstein and, in particular, 2!P1 is a shrink-
ing gradient Kähler–Ricci soliton on P1 with soliton vector field X D 0. Working with
2!P1 2 2�c1.�KP1/, on the dense orbit C� � P1, 2!P1 has Kähler potential

�2!P1
WD log.1C jzj2/ �

1

2
log.4jzj2/ D log.e2� C 1/ � � � log.2/;

so that !P1 D 2i@
x@�2!P1

. It is then straightforward to verify that �2!P1
satisfies (2.14)

with bX D 0 and that the image of @�2!P1

@�
is the interval Œ�1; 1�. The weighted volume

functional is then given by

FP1.v/ D 2�

� 1

�1

e�vx dx:

This is defined for all v 2 R and indeed, the asymptotic cone of the compact polytope
Œ�1; 1� is just the point 0 so that C_ D R. Clearly, F 0.v/ D 0 if and only if v D 0, as
expected.

Example 2.31. Consider C endowed with the standard C�-action. Then there is only one
torus-invariant divisor, namely D D ¹0º. The fan in R is simply †C D ¹0; Œ0;1/º and
�KC D D with the corresponding polyhedron given by P�KC D Œ�1;1/. On the dense
orbit C� � C, the Euclidean metric !C has Kähler potential

�!C D
1

4
jzj2 � log jzj �

1

2
D
1

4
e2� � � �

1

2
:

This satisfies (2.14) with bX D 1 and the image of
@�!C
@�

is Œ�1;1/. The asymptotic
cone C of Œ�1;1/ is given by Œ0;1/ and accordingly, the weighted volume functional

FC.v/ D 2�

� 1
�1

e�vx dx
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is only defined on the interior of the dual cone C_, namely .0;1/. We compute

F 0.v/ D �2�

� 1
�1

xe�vx dx D
ev

v2
.1 � v/:

Hence, as expected, FC has a unique critical point at vD 1, with the corresponding soliton
vector field on C given by

X D
@

@�
D r

@

@r
;

where z D rei� 2 C for r > 0 and � D log.r/.

Example 2.32. Next we consider the Cartesian product C � P1 of the previous two
examples. We equip C � P1 with the product .C�/2-action and denote by t1 and t2 the
Lie algebras of the real S1’s that act on C and P1, respectively. Then we have an obvi-
ous solution to (2.14) given by the product metric !C C 2!P1 together with the soliton
vector field XC�P1 D XC CXP1 D r

@
@r

with r D jzj, where z is the complex coordinate
on the C-factor. Explicitly, the fan †C�P1 comprises products �1 � �2 � t1 ˚ t2, where
�1 2 †C and �2 2 †P1 . The polyhedron P�KC�P1

� t D t1 ˚ t2 can be identified with
the subset of R2 defined by the inequalities

P�KC�P1
D ¹.x1; x2/ 2 R2 j x1 � �1; �1 � x2 � 1º:

From this, one can easily see that if v D v1 C v2 with v1 2 t1 and v2 2 t2, then

FC�P1.v/ D FC.v1/FP1.v2/:

The fact that FC and FP1 are convex and positive implies that F 0
C�P1

.v/ D 0 if and only
if F 0C.v1/ D F

0

P1
.v2/ D 0, as expected.

Example 2.33. Let M D Blp.C � P1/ denote the blowup of a fixed point p of the
.C�/2-action on C � P1 and write J for the complex structure on M . Then M inher-
its a natural .C�/2-action with respect to which the blowdown map � WM ! C � P1 is
.C�/2-equivariant. In terms of the toric data, the exceptional divisor E of � defines an
additional invariant divisor and the polyhedron PC�P1 is modified accordingly,

P�KM D ¹.x1; x2/ 2 R2 j x1 � �1; �1 � x2 � 1; x1 C x2 � �1º:

Here, the new face with inner normal �E D .1; 1/ corresponds to E. Define two auxiliary
functions F1 and F2 of a real variable t > 0 by

F1.t/ D

�
P�KM

x1e
�t.2x1Cx2/ dx1dx2;

F2.t/ D

�
P�KM

x2e
�t.2x1Cx2/ dx1dx2:

These functions are, up to a scaling factor of �.2�/�2, the components of the gradient
of the weighted volume functional FM Wƒ! R of M restricted to the ray generated by
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.2; 1/ 2 t. Thus, if there exists some � > 0 such that F1.�/ D F2.�/ D 0, then the point

.2�; �/ 2 R2 would be a critical point of FM . First, we claim that F2.t/ � 0. Indeed,
computing directly, we see that

F2.t/ D

� 1

0

� 1
�1

x2e
�t.2x1Cx2/ dx1dx2 C

� 0

�1

� 1
�.x2C1/

x2e
�t.2x1Cx2/ dx1dx2

D
t�3

2
et .et � 1/ �

t�2

2
et �

t�3

2
et .et � 1/C

t�2

2
et D 0:

Since FM .t.2; 1// is proper and convex as a function of t > 0 (cf. Proposition 2.28 and
Theorem 2.29), this implies that there is a � > 0 such that both F1.�/ and F2.�/ vanish
simultaneously. We next determine the value of �. Since

F1.t/ D �

� 0

�1

� 1

�.x1C1/

x1e
�t.2x1Cx2/dx2dx1 �

� 1
0

� 1

�1

x1e
�t.2x1Cx2/dx2dx1

D
t�2

2
et C

t�3

2
sinh.t/ � et .t�2et C t�3.et � 1// �

t�3

2
sinh.t/

D
t�3

2
et .2et .1 � t / � .2 � t //;

we see that F1.�/ D 0 for � the x-coordinate of the unique non-zero point of intersection
of the graphs ofG1.t/D 2et .1� t / andG2.t/D 2� t . In particular, � cannot be equal to
1, 2, 1

2
, or indeed any algebraic number. Numerical approximations in fact give �� 0:64.

Let .z1; z2/ be complex coordinates on the dense orbit .C�/2 � C� � P1 �M . Writ-
ing zj D rj ei�j with rj > 0, set �j D log.rj / as before. Then the soliton vector field X
on M may be written as

X D �
�
2
@

@�1
C

@

@�2

�
D �

�
2r1

@

@r1
C r2

@

@r2

�
: (2.16)

3. Proof of Theorem A

Consider a complete non-compact shrinking gradient Kähler–Ricci soliton .M; g; X/
with bounded scalar curvature, with complex structure J and with soliton vector field
X D rgf for a smooth real-valued function f WM ! R. Then f is proper and bounded
from below (cf. Theorem 2.6), hence attains a minimum, and g complete implies that X
is complete [46]. Let GX0 denote the connected component of the identity of the holo-
morphic isometries of .M; J; g/ that commute with the flow of X . Since g has bounded
Ricci curvature, GX0 is a compact Lie group by [11, Lemma 5.12] and X being com-
plete implies that JX is complete by [11, Lemma 2.35]. Moreover, JX is Killing by
[17, Lemma 2.3.8]. Hence the closure of the flow of JX in GX0 yields the holomorphic
isometric action of a real torus T on .M; J; g/ with Lie algebra t containing JX . Com-
pactness of the zero set of X [11, Lemma 2.26] and hence JX implies that the fixed point
set of T is compact. Moreover, as f attains a minimum, T will have at least one fixed
point. Finally, as H 1.M/ D 0 by [45], T will act on M in a Hamiltonian fashion.
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Using results from J -holomorphic curves (cf. Section 2.1), we identify the candidate
non-compact complex surfaces that may admit a complete shrinking gradient Kähler–
Ricci soliton with bounded scalar curvature whose soliton vector field has an integral
curve along which the scalar curvature does not tend to zero. We first work under the
assumption of simple connectedness and classify up to diffeomorphism.

Proposition 3.1 (Smooth classification). Let .M; g; X/ be a two-dimensional simply
connected complete non-compact shrinking gradient Kähler–Ricci soliton with bounded
scalar curvature Rg withX Drgf for some smooth function f WM !R. Assume thatX
has an integral curve along which Rg 6! 0. ThenM is diffeomorphic to either C � P1 or
Blp.C � P1/, that is, the blowup of C � P1 at one point p. In the former case, the zero
set of X is contained in a unique P1 and in the latter case, in the pre-image under the
blowup map of the P1-fibre containing the blowup point.

Proof. Since there exists a point of M where Rg ¤ 0, g is non-flat and so globally we
know that Rg > 0 [32]. As X has an integral curve along which Rg 6! 0 by assumption,
this means that there exist " > 0 and a sequence of points ¹xiºi lying along this integral
curve going off to infinity as i !1 such that Rg.xi / > ". By assumption Rg is bounded,
thus we read from [30, Theorem 1.3] that the norm of the full curvature tensor Rm.g/
of g is bounded. It subsequently follows from [31, Corollary 4.1] and the classification of
real three-dimensional complete shrinking gradient Ricci solitons [30, Theorem 1.2] that
the sequence of pointed manifolds .M;g; xi /, after passing to a subsequence if necessary,
converges in the smooth pointed Cheeger–Gromov sense to . yM; yg; yp/, where yp 2 yM
is a base point and . yM; yg/ is isometric to R4 endowed with the flat metric, or yM is
diffeomorphic to R2 � S2 or to the Z2-quotient R � ..S2 � R/=Z2/, where Z2 flips
both S2 and R, or to a quotient of R� S3 by a finite group acting on the S3-factor, and yg
is the standard product metric on these spaces. Write yr for the Levi-Civita connection
of yg. What we have then is a sequence of relatively compact open subsets Ui �� yM
exhausting yM and containing yp, together with a sequence of smooth maps �i WUi ! M

that are diffeomorphisms onto their image, such that �i . yp/ D xi and

j yr
k.��i g � yg/jyg ! 0 for all k � 0, (3.1)

smoothly locally on yM as i !1. Now, the aforementioned boundedness of jRm.g/jg
implies that all of the covariant derivatives with respect to g of Rm.g/ are bounded by
Shi’s derivative estimates. Furthermore, by [31], .M;g/ has a lower bound on its injectiv-
ity radius. The conditions of [7, Theorem 3.22] are therefore satisfied and consequently
we can assert that . yM; yg/ is Kähler. Since Rg.xi / > " for all i , . yM; yg/ is clearly not flat
and so the limit R4 can be discarded. Lifting to the universal cover of the remaining can-
didates for yM , we obtain a Kähler structure on R2 � S2 or on R� S3 with Kähler metric
we still denote by yg. The following claim allows us to discount the case R � S3 next.

Claim 3.2. R � S3 does not admit a complex structure with respect to which the product
metric yg is Kähler.
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Proof. Suppose to the contrary that R � S3 admits a complex structure J with respect
to which the product metric yg is Kähler. Let q D .x; y/ 2 R � S3. Then we have the
decomposition Tq yM D TxR˚ TyS3. Let Y 2 TxR be a unit vector. Then J compatible
with yg implies that yg.Y; J Y / = 0 which in turn implies that J Y 2 TyS3. Let H be
an arbitrary holonomy transformation with respect to yg of Tq yM and act by H on J Y .
Then since the holonomy of yg is trivial on the R-factor and J is parallel, we see that
H.J Y /D J.HY /D J Y , i.e.,H fixes J Y , forcing J Y D 0. This is a contradiction.

We therefore arrive at the fact that yM is covered by R2 � S2. We next identify the
yg-compatible complex structure on this space.

Claim 3.3. Up to a sign on each factor, the only complex structure on R2 � S2 with
respect to which yg is Kähler is the standard complex structure yJ on C � P1.

Proof. Suppose that qD .x;y/2R2�S2� yM . Then we have the decomposition Tq yM D
TxR2 ˚ TyS2. Suppose that there exists another complex structure zJ on R2 � S2 with
respect to which yg is Kähler, and let Y 2 TyS2 be a unit vector. Then with respect to the
aforementioned decomposition, we can write zJY D a yJY ˚ U for some a 2 R, jaj � 1,
and U 2 TxR2. We parallel transport the quadruple ¹Y; zJY; yJY; U º around a non-trivial
closed loop in the S2-fibre of yM containing q using the connection yr. As yg is flat in the
R2-direction, U will remain unchanged under this action. Moreover, zJ and yJ are parallel
with respect to yg. Thus, as the holonomy of S2 is SO.2/, we find that for every unit vector
Z 2 TyS

2, zJZ D a yJZ ˚ U , leaving us with U D 0 and jaj D 1.
We next consider a unit vector Y 2 TxR2. Then with respect to the splitting Tq yM D

TxR2 ˚ TyS2, we have that zJY D U ˚ b yJY for some b 2 R, jbj � 1, and U 2 TyS2.
Arguing as before, parallel transport in the S2-fibre of yM containing q using yr demon-
strates that zJY D V ˚ b yJY for all V 2 TyS2, forcing V D 0 and jbj D 1. From this, the
assertion follows.

Thus, without loss of generality, we may assume that the aforementioned Kähler struc-
ture on R2 � S2 is standard, i.e., simply .yg; yJ /. It then follows that yM is biholomorphic to
C �P1 as the Z2-quotient thereof, acting freely and holomorphically, would introduce an
RP 2 as a complex submanifold yielding a contradiction. Returning to (3.1), set Ji WD��i J
and gi WD ��i g. Arguing as in [7, proof of Theorem 3.22] (see also [34, pp. 16–18]), we
see that Ji converges smoothly locally to a yg-parallel complex structure J1 on yM which
by Claim 3.3, we can without loss of generality take to be equal to yJ .

Fix a large ball BR. yp; yg/ � yM of radius R > 0 centred at yp with respect to yg,
and let yuW P1 ! C denote the unique yJ -holomorphic sphere passing through yp. Since
jJi � yJ jyg ! 0 as i !1, by Corollary 2.3, for i sufficiently large, yu may be deformed
to a Ji -holomorphic sphere uWP1! yM with zero self-intersection. By the estimate given
in Corollary 2.3, the image of uW P1 ! yM will eventually be contained in BR. yp; yg/.
Thus, outside any fixed compact subset K of M , v WD ��1i ı uW P

1 ! M will define
a J -holomorphic curve in M with trivial normal bundle and zero self-intersection lying
in M nK for i sufficiently large.
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Henceforth, we write C WD v.P1/. Then C:C D 0. Recall the real torus T acting
on M introduced at the beginning of this section, and let ! denote the Kähler form
of g. The function f , the Hamiltonian potential of JX , is, as the soliton potential, proper
and bounded from below (cf. Theorem 2.6). Consequently, Proposition 2.15 allows us to
find an element J Y 2 ƒ! � t whose flow generates an S1-action and that admits a real
Hamiltonian potential uY that is proper and bounded from below. Since the fixed point
set of T is non-empty and contained in the zero set of X , a compact subset, [33, Pro-
position 1.2] implies that the zero set of Y is non-empty and compact. Moreover, by
[11, Lemma 2.34], we also know that Y and J Y are complete. Hence we can define for
all time the holomorphic flow of the vector fields Y and J Y which we denote by �Yt
and �J Yt , respectively, for t 2 R. As the next claim shows, the image of a holomorphic
sphere under the flow of Y and J Y is determined by the image of one point on the sphere.

Claim 3.4. For x 2 M , let Lx 2 ŒC � be a holomorphic sphere in M with x 2 Lx . Then
�Yt .Lx/ (resp. �J Yt .Lx/) is the unique holomorphic sphere in M lying in ŒC � passing
through �Yt .x/ (resp. �J Yt .Lx/).

Proof. It is clear that the image of Lx under the flow of Y and J Y is a holomorphic
sphere in M lying in ŒC � passing through �Yt .x/ and �J Yt .x/, respectively. No other
holomorphic sphere in ŒC � can pass through these points since C:C D 0.

Holomorphic spheres containing a zero of Y are fixed by the flow of Y and J Y .

Claim 3.5. Let L 2 ŒC � be a holomorphic sphere in M . Then the following are equiv-
alent:

(i) Y vanishes at some point x 2 L.

(ii) �Yt .L/ D �
J Y
t .L/ D L for all t .

(iii) Y is tangent to L.

Proof. (i)) (ii) By Claim 3.4, �Yt .L/ is the unique holomorphic curve in ŒC � passing
through �Yt .x/. Since �Yt .x/ D x, we deduce that �Yt .L/ D L.

(ii)) (iii) This is clear.

(iii)) (i) A holomorphic vector field tangent to P1 has at least one zero.

If Y is nowhere vanishing along the holomorphic sphere, then the image sphere is
disjoint from the original.

Claim 3.6. Let L 2 ŒC � be a holomorphic sphere in M . Then Y is nowhere vanishing
on L if and only if there exists " > 0 such that �Yt .L/\L D ; and �J Yt .L/\L D ; for
all 0 < jt j < ".

Proof. If Y is nowhere vanishing on L, then Y cannot be tangent to L for otherwise it
would have a zero along L. Thus, Y has a normal component at some point x 2 L so that
�Yt .x/ … L for 0 < jt j < " for some " > 0. By Claim 3.4, for such values of t , �Yt .L/ will
be the unique holomorphic sphere in ŒC � passing through �Yt .x/, hence will be disjoint
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from L. A similar argument applies to J Y . The converse follows from the implication
(i)) (ii) of Claim 3.5.

As the zero set of Y is compact, by choosing i sufficiently large, we can guarantee
that Y is nowhere vanishing along C so that Claim 3.6 applies with L D C . Hence-
forth, working with the C�-action generated by Y and J Y , in light of Claim 3.5, we
then see that Y and J Y will be nowhere vanishing on the C�-orbit of C in M . Define
OrbC�.C / WD ¹g � C j g 2 C�º �M .

Claim 3.7. There exists a finite cyclic group Zk � S
1 �C�, k � 1, such that the induced

action of C�=Zk on OrbC�.C / is free.

Proof. Claim 3.4 implies that the C�-action on this orbit descends to a (transitive) C�-
action on the holomorphic P1’s in ŒC � contained in OrbC�.C /. Claim 3.6 then implies
that this action on the holomorphic P1’s is locally free. Compactness of S1 implies that
the stabiliser group in S1 � C� of C under this action is a finite subgroup of S1, hence
is a cyclic group of the form Zk for some k � 1. The induced action of C�=Zk on the
holomorphic P1’s in ŒC � contained in OrbC�.C / will therefore be free. Claim 3.4 then
tells us that the induced action of C�=Zk on OrbC�.C / will be free.

As C�=Zk Š C�, we may therefore assume without loss of generality that the C�-
action generated by Y and J Y on OrbC�.C / is free. We define a map

ˆW C� � P1 !M; .g; y/ 7! g � .v.y//: (3.2)

Since the C�-action is free, this defines a biholomorphism onto its image, holomorphic
along the P1-direction, and for dimensional reasons demonstrates that for some compact
subsetK ofM containing the zero set of Y ,M nK is biholomorphic to P1 �C�. Indeed,
recall that the Hamiltonian potential uY WM ! R of Y is proper and bounded from below
and that the zero set of Y is compact so that the level sets u�1Y .¹yº/ of uY are compact
and, through the gradient flow of uY , diffeomorphic for all y > R for some R sufficiently
large and positive. Hence with M having only one end [29, Theorem 0.1], we obtain
a decomposition of the unique end of M as

S
y2.R;C1/ u

�1
Y .¹yº/. In this picture, one

can see that the positive gradient flow of uY , that is, the positive flow of Y , moves out
to infinity along the unique end of M and from [11, Proposition 2.28], we also read that
the negative gradient flow of uY , i.e., the negative flow of Y , accumulates in the zero set
of Y , a non-empty compact analytic subset of M . Thus, the image of ˆ is precisely the
complement in M of the zero set of Y , and so M fibres as a trivial P1-bundle on the
complement of this compact analytic subset. Notice that all the P1-fibres of the fibration
are homologous to C .

Next, being complete and having bounded scalar curvature, M has finite topological
type [14, Theorem 1.2], henceK contains only finitely many .�1/-curves. There therefore
exists a sequence of blowdown maps, each contracting at least one .�1/-curve, which give
rise to the minimal model $ WM !Mmin of M whose complex structure we still denote
by J . As M is simply connected, Mmin will also be simply connected. Furthermore, the
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.�1/-curves in K are necessarily fixed by the C�-action on M induced by the flow of Y
and J Y and so the C�-action will extend to a C�-action on Mmin in such a way that the
map $ WM ! Mmin is equivariant with respect to these two actions. The holomorphic
vector field Y on M therefore descends to a holomorphic vector field Y on Mmin with
compact zero set, vanishing at least at the points of Mmin that are blown-up to obtain M .
It is also clear thatˆ induces a biholomorphism fromMmin n$.K/ to P1 �C�. We claim
that this P1-fibration at infinity extends in a smooth manner to the interior of Mmin. This
we prove via a continuity argument.

To this end, consider the set

A WD ¹x 2 $.K/ j x is contained in a holomorphic P1 representing ŒC �º;

where we enlarge K if necessary so that a tubular neighbourhood of its boundary is foli-
ated by P1’s representing ŒC �. Then we have the following.

Claim 3.8. The set A is equal to $.K/.

Proof. First note that A is non-empty and that the openness of A is immediate from
Proposition 2.1. As for closedness, let xi be a sequence of points in A with xi ! x for
some x 2 A. Then for each i , there exists a J -holomorphic curve ui WP1 ! M passing
through xi representing ŒC �. Being contained in the same homology class, these curves
all have uniformly bounded area. Therefore, by the Gromov compactness theorem [18],
there exists a subsequence converging to a tree of k holomorphic P1’s with multiplicity
in ŒC �. This limit may be written as ŒC � D

Pk
iD1 ai ŒCi �, ai > 0. Then

0 D ŒC �:ŒC � D
X
i¤j

aiaj ŒCi �:ŒCj �C
X
i

a2i ŒCi �:ŒCi �:

Now, from the equation defining a shrinking Kähler–Ricci soliton, we know that for any
J -holomorphic curve yC inM , �KM :Œ yC � > 0 so that Œ yC �:Œ yC � � �1 by adjunction. As we
are working onMmin, this implies that ŒCi �:ŒCi �� 0 and so kD 1 and accordingly, the limit
is a smooth P1 with multiplicity one. This gives closedness and the claim now follows.

Hence we conclude that Mmin exhibits the global smooth structure of a P1-fibration
over a real surface S , with each fibre lying in the homology class ŒC �.

We next holomorphically compactify Mmin by adjoining a P1 at infinity using the ˆ
from (3.2) to obtain a closed compact real manifold xMmin that admits the structure of
a smooth S2-bundle over a closed compact real surface xS that itself is obtained from S

by adding a point at infinity. By construction, this additional fibre will be preserved by
the induced C�-action on xMmin. As Mmin is simply connected, xMmin will be simply con-
nected by the Seifert–Van Kampen theorem. It then follows from a long exact sequence
[2, (17.4)] that xS is simply connected, hence is diffeomorphic to S2. Consequently, xMmin

is diffeomorphic to either S2 � S2 or to the blowup of P2 at one point, the only two S2-
bundles over S2 [40]. In either case, removing an S2-fibre shows that S is diffeomorphic
to R2 and that Mmin is diffeomorphic to S2 �R2 with the S2-fibres defining J -holomor-
phic spheres in Mmin.
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Being a compact analytic subvariety of Mmin, the zero set of Y must comprise a finite
union of isolated points and P1-fibres of Mmin. Now, those fibres containing a zero of Y
are fixed by the C�-action induced by Y and J Y by Claim 3.5. Otherwise, by Claim 3.6,
the image of a fibre is disjoint from the original. What we deduce therefore is that the S1-
action defined by the flow of J Y on Mmin induces an S1-action on S � R2 with finitely
many zeroes, and in turn via ˆ an S1-action on xS � S2 with finitely many zeroes, one of
which is at infinity. Averaging the round metric on S2 over this action, we may assume that
the S1-action is isometric. Then [23, Theorem (4)] tells us that the S1-action on xS has pre-
cisely two zeroes. As one of these zeroes occurs at infinity, we conclude that the C�-action
on Mmin fixes precisely one P1-fibre. Denote this fibre by L0. By Claim 3.5, Y is then
tangent to L0, and by Claim 3.6, the zero set of Y is contained in L0. As the flow of J Y
induces an S1-action on L0, we again see from [23] that the zero set of Y comprises
the whole of L0 (if the S1-action is trivial) or precisely two points. As M is obtained
from Mmin by blowing up finitely many points of Mmin at which the vector field Y van-
ishes, we see that M is obtained from Mmin by blowing up finitely many points of L0.
Blowing up more than one point would introduce at least one holomorphic sphere in M
with self-intersection .�k/ for some k � 2. This is not possible because using adjunction,
the restriction of �KM to every holomorphic curve in M must be positive by the shrink-
ing soliton condition. Hence $ WM ! Mmin is the identity or the blowup of Mmin at one
point of L0. Set E WD$�1.L0/. Then E contains the zero set of Y onM and hence also
the fixed point set of T . But the flow of JX , being dense in T , implies that this latter set
coincides with the zero set of X . This completes the proof of the proposition.

We now consider yM WD C � P1 endowed with the standard holomorphic action of
the real two-dimensional torus yT with Lie algebra yt and zM WD Blp.C � P1/, the blowup
of yM at a fixed point p of the yT -action on yM . The torus action on yM induces in a natural
way the holomorphic action of a real two-dimensional torus zT on zM with Lie algebra zt
such that the blowdown map � W zM ! yM is equivariant with respect to the action of zT
and yT . Recall the real torus T generated by the flow of JX with Lie algebra t contain-
ing JX acting on .M;J;g/ in a holomorphic isometric fashion with a compact fixed point
set introduced at the beginning of this section. Theorem A (i) will follow from the next
proposition, an improvement from the smooth category of the previous proposition to the
complex category.

Proposition 3.9 (Holomorphic classification). Let .M; g; X/ be a two-dimensional sim-
ply connected complete non-compact shrinking gradient Kähler–Ricci soliton with bound-
ed scalar curvature Rg with X D rgf for some smooth function f WM ! R. Assume
that X has an integral curve along which Rg 6! 0. Then there exists an equivariant biho-
lomorphism ˛ from .M; T / to . yM; yT / or . zM; zT / with respect to which ˛�.JX/ lies in yt
or zt, respectively. In particular, in the latter case, ˛�.JX/ is given by (2.16).

Proof. We have already established in Proposition 3.1 that M is diffeomorphic to either
C � P1 or to Blp.C � P1/ and that there is a map $ WM ! Mmin to Mmin, a mani-
fold diffeomorphic to S2 �R2 with the S2-fibres defining holomorphic spheres in Mmin,
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with $ the identity or the blowup of Mmin at a point p of a P1-fibre L0 of Mmin,
as appropriate. Let y� WMmin ! R2 denote the projection map. Then we obtain a map
� WD y� ı$ WM ! R2. Without loss of generality, we may assume that L0 D y��1.¹0º/.
Proposition 3.1 then tells us that M0.X/, that is, the zero set of X , is a compact ana-
lytic subset of E WD ��1.¹0º/, where E is equal to L0 if $ is the identity, or to two
holomorphic P1’s meeting transversely, each of self-intersection .�1/, otherwise. In this
latter case, we denote these curves by L1 and L2. In both cases, the forward flow of �X
accumulates in E by [11, Proposition 2.28] and the action of T preserves E. Indeed, this
last point follows from Claims 3.4 and 3.5 (which also hold with Y replaced by X ) if $
is the identity map, and from the following claim otherwise.

Claim 3.10. The vector field X is tangent to any .�1/-curve in M .

Proof. A neighbourhood of any .�1/-curve in M is biholomorphic to a neighbourhood
of the zero section of OP1.�1/. Along this zero section, we have a canonical holomorphic
splitting of TM as TP1 ˚ OP1.�1/. The normal component of X in this splitting must
therefore vanish which yields the claim.

This claim in fact implies that when $ is the blowup map, L1 and L2 are both pre-
served by the action of T . Thus, no matter what $ may be, the action of T on M will
induce an action of T on Mmin. In the particular case when $ is the blowup map, the
point of intersection of L1 and L2 will be fixed by T . We denote this point by x so that
x 2M0.X/ \E ¤ ;.

Suppose first that $ is the blowup map so that M is diffeomorphic to Blp.C � P1/.
We begin by noting the following.

Claim 3.11. If X jLi is non-trivial for i D 1 or i D 2, then jM0.X/ \ Li j D 2.

Proof. As X jLi is non-trivial, the restriction of f to Li is non-constant, hence attains
a global maximum and a global minimum on Li . At these points, d.f jLi / D 0. Then
as X is tangent to Li by Claim 3.10, we actually have that df D 0 at these points so
that X jLi has at least two zeroes. But X jLi is a holomorphic vector field on P1, hence
has at most two zeroes.

Now, by [16, proof of Lemma 1], f is a Morse–Bott function on M . The critical
submanifolds of f are precisely the connected components ofM0.X/. SinceM is Kähler,
the Morse indices (i.e., the number of negative eigenvalues of Hess.f /) of the critical
submanifolds are all even [16]. Write

M0.X/ DM
.0/
[M .2/

[M .4/;

where M .j / denotes the disjoint union of the critical submanifolds of M0.X/ of index j .
We already know from Proposition 3.1 that M0.X/ � E, and from [11, Claim 2.30] we
know that M .0/ is a non-empty connected compact complex submanifold of M , hence is
equal to either L1, L2, or an isolated point of E. We analyse the structure of M0.X/ in
each of these cases separately, beginning with the following.
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Claim 3.12. If M .0/ comprises a single point, then jM0.X/ \ Li j D 2 for i D 1; 2.

Proof. Recall that ¹xº D L1 \ L2 and assume that M .0/ D ¹yº for some point y 2 E.
If x D y, then y is an isolated zero of both X jL1 and X jL2 . The result then follows by
applying Claim 3.11 to both L1 and L2. If x ¤ y, then assume without loss of gener-
ality that y 2 L1. Then the zero set of X jL1 comprises at least two points, namely x
and y. Claim 3.11 implies that in fact jM0.X/ \ L1j D ¹x; yº. Considering X jL2 next,
the zero set of this vector field contains x. If X jL2 is non-trivial, then the result fol-
lows from Claim 3.11. Otherwise, assume that X jL2 � 0. Then as M .0/ is connected,
we have that x 2 M .2/ [M .4/. Now, if x 2 M .4/, then by [4, Proposition 6] there exist
local holomorphic coordinates .z1; z2/ centred at x such that the holomorphic vector field
X1;0 WD 1

2
.X � iJX/ takes the form

X1;0 D a1z1
@

@z1
C a2z2

@

@z2

for some a1; a2 2 R<0. This implies in particular that x is an isolated zero of X , contra-
dicting the fact that X jL2 � 0. Hence necessarily x 2M .2/ so that L2 �M .2/.

For each z 2 L2, f is decreasing along the forward flow of �X emanating from z,
hence this flow accumulates at y 2 L1 by [11, Proposition 2.28]. As in [6, p. 3332],
we can use the forward flow of �X to construct a holomorphic sphere Rz W P1 ! M

in M with Rz.0/ D z and Rz.1/ D y. Assume that x ¤ z and call the resulting holo-
morphic sphereD. Also recall the holomorphic sphere C with zero self-intersection from
the proof of Proposition 3.1. Then for i ¤ j , Lj D$�C �Li ,D:Li > 0, andD:Lj > 0,
which leads to the conclusion thatD:$�C > 0. This is a contradiction and the claim now
follows.

Next, we have the following.

Claim 3.13. If M .0/ D Li , then jM0.X/ \ Lj j D 2 for j ¤ i .

Proof. In this case, X jLj is non-trivial as M .0/ ¤ E and is connected. The result then
follows from an application of Claim 3.11 to Lj .

Thus, the induced action of the real torus T on Mmin will fix either two points on L0
or the whole of L0 and the forward flow lines of the vector field �X induced on Mmin

accumulate in L0. If dimR T D 2, then by identifying a point off of L0 and ¹0º � P1

in M and yM , respectively, and using the actions, one can construct an equivariant biho-
lomorphism ˛W .Mmin; T /! . yM; yT /.

If jM .0/j D 1 and dimR T D 1, then the flow of X and JX on Mmin induces a C�-
action on Mmin which by Claim 3.7 we may assume to be free on Mmin n L0. In addition,
Claim 3.12 implies that the fixed point set of T will comprise precisely two isolated
points in L0, say a and b. As the forward flow lines of �X on Mmin accumulate in L0,
the closure of every orbit of this C�-action on Mmin is a copy of C obtained by adjoining
either a or b to the orbit in question. Choose an orbitOa andOb passing through a and b,
respectively. Then each orbit will intersect every fibre of the P1-foliation of Mmin n L0
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at precisely one point. Indeed, if an orbit intersected a P1-fibre L in Mmin n L0 at two
points x1, x2 2 L; x1 ¤ x2, say, then there would exist a g 2 C�, g ¤ 1, such that
g � x1 D x2. By Claim 3.4, we would then have that g � L D L. The element g would
then define an automorphism of L Š P1 and would therefore have at least one fixed
point. This contradicts the freeness of the C�-action on Mmin n L0. Define a global real
holomorphic vector field JV on Mmin in the following way. Restricted to a P1-fibre L,
JV will be the unique real holomorphic vector field tangent to L vanishing at Oa \ L
and Ob \ L that generates a holomorphic S1-action, the direction of the flow of which
relative to the points Oa \ L and Ob \ L will be the same as that on L0 relative to a
and b, and the time 2�-flow of which is the identity map. The flow of V and JV will
generate a C�-action on Mmin that commutes with the flow of X and JX . To see this
last point, it suffices to verify that ŒX; V � D 0 on Mmin n L0. To this end, we set up
an equivariant biholomorphism C� � P1 ! Mmin n L0 in the following way. Pick an
arbitrary fibre uWP1! L �Mmin nL0. By pre-composing with a suitable Möbius trans-
formation, we can assume that u.0/ D Oa \ L and u.1/ D Ob \ L. As in (3.2), we
extend u to a biholomorphism ‰WC� � P1 ! Mmin n L0, equivariant with respect to
the standard C�-action on the first component of the domain and the C�-action gener-
ated by X and JX on the range. By construction, ‰�1 has the property that it pushes
forward 1

2
.V � iJ V / to a global holomorphic vector field on C� � P1 tangent to the

P1-fibres and vanishing along .C� � ¹0º/[ .C� � ¹1º/. In particular, this holomorphic
vector field generates another C�-action on C� � P1 and the map ‰ will also be C�-
equivariant with respect to this action on the domain and that generated by 1

2
.V C iJ V /

on the range. Observing that the two C�-actions on the domain of‰ commute, the desired
vanishing of ŒX; V � is now clear. The result of this is that T is contained in a real two-
dimensional torus acting holomorphically on Mmin and hence we reduce to the previous
case.

If M .0/ D Li for some i D 1; 2, then by Claim 3.13, the fixed point set of T will
comprise either two isolated points, a case that we have already dealt with (independent
of the dimension of T ), or a P1 given by$.M .0//. In this latter case, the argument of the
proof of [9, Claim 4.15] tells us that dimR T D 1 (this argument is local). The argument
of [9, Claims 4.16 and 4.17] then yields an equivariant biholomorphism ˛W .Mmin; T /!

. yM; yT /.
Finally, if M .0/ D E, then the fixed point set of yT will comprise a P1 given by

$.M .0//, that is, an instance of the previous case. This covers all possibilities for$ equal
to the blowdown map and so we have an equivariant biholomorphism ˛W .Mmin; T / !

. yM; yT /. Being equivariant then allows us to lift this to an equivariant biholomorphism
˛W .M; T /! . zM; zT /.

Suppose now that $ is the identity map so that M is diffeomorphic to C � P1 and
M DMmin. Then E D P1 and is preserved by the action of T . AsM0.X/ � E, we must
therefore have that the fixed point set of T comprises either two points in E or the whole
of E. Being connected, it follows that jM .0/j D 1 in the former case and that M .0/ D E

in the latter case. All possibilities thereafter have then been dealt with above and we
conclude that there is an equivariant biholomorphism ˛W .M; T /! . yM; yT /.
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In both cases, the fact that JX generates T and ˛ is equivariant implies ˛�.JX/ 2 zt
or ˛�.JX/ 2 yt, as appropriate.

We now conclude the proof of Theorem A.

Completion of the proof of Theorem A

Given .M; g; X/ as in the statement of Theorem A, let Muniv denote the universal cover
of M . Then since M has finite fundamental group [45, Theorem 1.1], we can write
M D Muniv=� , where � is a finite group of biholomorphisms of Muniv acting freely.
Lifting the shrinking soliton structure toMuniv, we read from Proposition 3.9 thatMuniv is
biholomorphic to either yM or zM . Thus, item (i) of Theorem A will follow from Proposi-
tion 3.9 if we can establish that Fix.�/ ¤ ;. This we prove in the next claim.

Claim 3.14. Every element of a finite group � of biholomorphisms acting on yM or zM
has a fixed point.

Proof. Any biholomorphism of zM must preserve the two .�1/-curves, hence it must fix
their point of intersection x.

As for yM , any automorphism 
 2 � sends a P1-fibre to a P1-fibre, hence 
 induces an
automorphism of the C-factor of yM . Every finite automorphism group of C is a rotational
group. In particular, the origin is fixed by the action, and so there exists a P1-fibre of yM
fixed by � . Every Möbius transformation has a fixed point. This observation completes
the proof of the claim.

The biholomorphism ˛WM ! M given by Proposition 3.9 has the property that
˛�.JX/ lies in Lie.T /, the Lie algebra of the real torus T from Theorem A (ii). Let
X 0 WD ˛�.X/, g0 WD .˛�1/�g, and consider the complete shrinking soliton .M; X 0; g0/.
The fact that ˛ is a biholomorphism implies that the background complex structure here
is still J . In particular, JX 0 2 Lie.T /.

Let GX
0

0 denote the connected component of the identity of the holomorphic isomet-
ries of .M; J; g0/ that commute with the flow of X 0. As explained at the beginning of
Section 3, the assumption of bounded scalar curvature implies that the closure of the flow
of JX 0 in GX

0

0 yields the holomorphic isometric action of a real torus T 0 on .M; J; g0/
with Lie algebra t0 containing JX 0. Without loss of generality, we may assume that T 0 is
maximal in GX

0

0 . Corollary 5.13 of [11] asserts that GX
0

0 is a maximal compact Lie sub-
group of the Lie group AutX

0

0 .M/, the connected component of the identity of the group
of automorphisms of .M; J / that commute with the flow of X 0; cf. [11, Proposition 5.8]
as for why AutX

0

0 .M/ is a Lie group. Thus, T 0 is a maximal real torus in AutX
0

0 .M/. For
each v 2 Lie.T /, JX 0 2 Lie.T / implies that Œv; JX 0� D 0 so that Œv; X 0� D 0. Hence
each element of T commutes with the flow of X 0 and so T itself is a Lie subgroup
of AutX

0

0 .M/. For dimensional reasons, T is maximal in AutX
0

0 .M/, therefore by Iwas-
awa’s theorem [22] there exists an element ˇ 2 AutX

0

0 .M/ such that ˇ.T 0/ˇ�1 D T .
Since ˇ commutes with the flow of X 0, necessarily dˇ�1.X 0/ D X 0. Moreover, ˇ�.g0/ is



C. Cifarelli, R. J. Conlon, A. Deruelle 498

invariant under the action of T . Let 
 WD ˛�1 ı ˇWM !M . Unravelling the definitions,
we conclude that 
�g is invariant under the action of T and 
�1� .JX/ D JX 0 2 Lie.T /.
This yields item (ii) of Theorem A. Note that the background complex structure 
�J is
still equal to J because 
 is a biholomorphism.

Finally, the fact that 
�1� .JX/ is determined in item (iii) is a result of Proposition 2.28
and Theorem 2.29, as we know for this latter theorem that the Ricci curvature of g, hence
that of 
�g, is bounded. That its flow generates an S1-action is clear from the expli-
cit expression of the vector field, given in Examples 2.32 and 2.33 for each respective
possibility of M . As explained at the beginning of this section, JX is holomorphic and
Killing and so the flow of 
�1� .JX/ is holomorphic and isometric for .J;
�g/, as claimed
in the same item.

4. Proof of Theorem B

Recall that .M; g.t// is a finite time Type I Kähler–Ricci flow on Œ0; T /, T < C1,
defined on a compact Kähler surface M , x 2 †I � M is a Type I singular point, and
gj .t/ WD �jg.T C

t
�j
/, t 2 Œ��jT; 0/, for a sequence �j ! C1. Let J denote the

complex structure ofM . From [13,31], we know that a subsequence of .M;gj .t/; x/ con-
verges in the smooth pointed Cheeger–Gromov sense [42, Definition 7.2.1] to a non-flat
complete shrinking gradient Ricci soliton .N; h; p/ with bounded curvature and soliton
potential f and associated Kähler–Ricci flow h.t/, t 2 .�1; 0/, with h.�1/ D h. Uni-
formly bounded curvature implies from Shi’s derivative estimates that the norms of the
derivatives of the curvatures of the metrics gj .t/ are uniformly bounded, hence an applic-
ation of [7, Theorem 3.23] demonstrates that the limit is in fact Kähler so that .N; h/ is
a two-dimensional shrinking gradient Kähler–Ricci soliton with bounded scalar curvature.
Let zJ denote the complex structure of N .

First assume that limt!T� volg.t/.M/ > 0. Then if N were compact, N would be
a del Pezzo surface with h Kähler–Einstein or the shrinking gradient Kähler–Ricci soliton
on the blowup of P2 at one or two points [44]. After unravelling the scaling factors in
the definition of smooth pointed Cheeger–Gromov convergence, this would then imply
that limt!T� volg.t/.M/ D 0, a contradiction. Indeed, let h.t/, t 2 .�1; 0/, denote the
Kähler–Ricci flow associated to .N; h/. Then compactness of N implies that for all 0 <
ı < 1, there exists a diffeomorphism �k WN ! M such that j��

k
gk.t/ � h.t/j < 1 with

derivatives for all t 2 Œ�1;�ı� for k sufficiently large. In particular,

volg.TC t
�k
/.M/ D

vol��
k
gk.t/

.N /

�2
k

�
C

�2
k

! 0 as k !1:

Thus, .N; h/ is non-compact and according to Lemma 2.7, the scalar curvature Rh of h
tends to zero along the unique end of N or there exists an integral curve of the soliton
vector field of .N;h/ along which Rh 6! 0. If Rh! 0, then we would be done by [11, The-
orem E (3)]. Therefore, to conclude the proof of this direction of the theorem, it suffices
to rule out the latter case.
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To this end, recall from Theorem A that if there exists an integral curve of the soliton
vector field of .N;h/ along which Rh 6! 0, then up to pullback by biholomorphism, .N;h/
is the cylinder C � P1 or a hypothetical shrinking Kähler–Ricci soliton on the blowup
of C � P1 at one point. In either case, choose R > 0 such that p 2 f �1..�1; 3R�/,
A WD f �1.Œ2R;3R�/ is a non-empty annulus inN , and such that any .�1/-curves are con-
tained in the set f �1..�1;R�/. This can be done because f is proper (cf. Theorem 2.6).
Then there exist a compact subset U � N containing A, ı 2 .0; 1/, and diffeomorphisms
�k WU !M with �k.p/D x such that ��

k
gk.t/! h.t/ with derivatives on U as k!1

for all t 2 Œ�1;�ı�.
Next, fix a zJ -holomorphic sphere uWP1! A in N with trivial self-intersection. Then

by Corollary 2.3, there exists a sequence of ��
k
J -holomorphic spheres uk W P1 ! N

with trivial self-intersection converging in C 0 to u as k ! 1. In fact, it follows from
standard elliptic bootstrapping arguments that there exists a subsequence, still denoted
by uk , that converges uniformly with all derivatives to u; cf. [27, Proposition 3.3.5 and
Appendix B.4]. Set C WD u.P1/, Ck WD uk.P1/, and let �.t/, t 2 .�1; 0/, denote the
Kähler form associated to h.t/ with associated Ricci form ��.t/. Then (cf. [7, (1.13)])

Œ��.t/� D
Œ�.t/�

�t
; t < 0:

Consequently, using adjunction, we find that for t < 0,

volh.t/.C / D
�
C

Œ�.t/jC � D �t

�
C

Œ��.t/jC � D �2�t

�
C

c1.�KN jC / D �4�t:

Since ��
k
gk.t/! h.t/ and uk ! u in C 1 as k!1, we can assert that for t 2 Œ�1;�ı�,

u�
k
.vol��

k
gk.t/

/! u�.volh.t// on P1 as k !1, so that for t 2 Œ�1;�ı�,

vol��
k
gk.t/

.Ck/! volh.t/.C / D �4�t as k !1:

In other words, for t 2 Œ�1;�ı�,

jvol��
k
gk.t/

.Ck/ � .�4�t/j ! 0 as k !1: (4.1)

On the other hand, let !.t/ denote the Kähler form of g.t/ and �!.t/ the corresponding
Ricci form. Then @!.s/

@s
D ��!.s/, s 2 Œ0; T /, implies that Œ!.s/� D Œ!.0/� � sŒ�!.0/�.

Using this and the fact that �k.Ck/ is J -holomorphic, we compute that

vol��
k
gk.t/

.Ck/ D vol�kg.TC t
�k
/.�k.Ck// D �k volg.TC t

�k
/.�k.Ck//

D �k

�
�k.Ck/

h
!
�
T C

t

�k

�ˇ̌̌
�k.Ck/

i
D �k

�
�k.Ck/

�
Œ!.0/� � 2�

�
T C

t

�k

�
c1.�KM j�k.Ck//

�
D �k

�
�k.Ck/

.Œ!.0/� � 2�Tc1.�KM j�k.Ck/// � 2�t

�
Ck

c1.�KM j�k.Ck//

D �k lim
s!T�

volg.s/.�k.Ck// � 4�t: (4.2)



C. Cifarelli, R. J. Conlon, A. Deruelle 500

To derive a contradiction, we need to show that lims!T� volg.s/.�k.Ck// > c for
some positive constant c independent of k. For this, we require

Claim 4.1. There exists an open subset U �M such that for all k,

�k.Ck/ \ .M n U/ ¤ ;:

Proof. Let U denote the union of the open neighbourhoods of each .�1/-curve in M
for which there exists a biholomorphism onto a neighbourhood of the zero section of the
line bundle OP1.�1/! P1. Then for every k, �k.Ck/ has trivial self-intersection in U
and so cannot be contained in U for any k. In other words, �k.Ck/ \ .M n U/ ¤ ; as
claimed.

Let V be an open subset of M containing every .�1/-curve in M with xV � U .
Since lims!T� volg.s/.M/ > 0 by assumption, we read from [3, Theorem 3.8.3] (cf. also
[3, Definition 3.7.9]) that as t ! T �, g.t/ contracts only .�1/-curves and converges
smoothly locally to a Kähler metric gT on the complement of these curves. In partic-
ular, g.t/ ! gT smoothly on M n V as t ! T �, so that injMnU g.t/ ! injMnU gT
and distg.t/.@U; @V / ! distgT .@U; @V / as t ! T �. Moreover, by the previous claim,
for every k there exists a point xk 2 �k.Ck/ \ .M n U/. Let " WD min¹distgT .@U; @V /;
injMnUgT º. Then for s 2 .0;T / sufficiently close to T ,Bg.s/.xk ; "2 / is contained inM nV
and an application of [37, p. 178, Comment 1] and [37, Proposition 4.3.1 (ii)] (see also
[10, Lemma 5.2]) yields for such values of s the lower bound

volg.s/.�k.Ck// � volg.s/
�
Bg.s/

�
xk ;

"

2

�
\ �k.Ck/

�
�
�

4

� "
2

�2
D
�"2

16
:

As a consequence, we obtain the following uniform lower bound on volgT .�k.Ck//:

volgT .�k.Ck// D lim
s!T�

volg.s/.�k.Ck// �
�"2

16
: (4.3)

To conclude, substitute expression (4.2) into (4.1), then use the lower bound (4.3), and
finally let k !1. This gives the desired contradiction.

Conversely, suppose that .N; h/ is the shrinking gradient Kähler–Ricci soliton of [15]
on the blowup of C2 at the origin and for the sake of a contradiction, assume that

lim
t!T�

volg.t/.M/ D 0:

Then [43] tells us that M exhibits the structure of a Fano fibration � WM ! B over
a base B , where in particular �KM is �-ample. If B is a point, thenM is a del Pezzo sur-
face and [43] (see also [38]) further tells us that the Kähler class of the initial metric g.0/
is c1.M/ and that the diameter diam.M;g.t// of .M;g.t// tends to zero as t! T . In fact,
the work of Perelman (see [35]) gives us the upper bound diam.M; g.t// � C.T � t /

1
2 ,

which, for the rescaled limit gj .t/, t < 0, translates to diam.M;gj .t// � C jt j. This latter
bound implies that .N; h/ is compact which yields a contradiction. Hence we conclude
that B is one-dimensional. The fact that �KM is �-ample now tells us that the generic
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fibre of � WM ! B is a holomorphic P1. Furthermore, by considering the minimal model
of M and using the �-ampleness of �KM , Claim 3.8 applies with $.K/ replaced by M
and ŒC � replaced by the homology class of a P1-fibre of the fibration � WM ! B . The
result is that the singular fibres of M comprise a bubble tree of two .�1/-curves.

Now, recalling the setup outlined at the beginning of this section, let BR WD Bh.p;R/
denote the ball of radius R > 0 centred at p with respect to h. Then for all R > 0 and
ı 2 .0;1/, there exist diffeomorphisms �k WBR!M with �k.p/D x such that ��

k
gk.t/!

h.t/ with derivatives on BR as k !1 for all t 2 Œ�1;�ı�. Let zE denote the exceptional
curve inN and chooseR sufficiently large,RDR1 say, so that zE �BR1 . Then since ��

k
J

converges smoothly locally to zJ as k!C1, we can, by Corollary 2.4, construct a ��
k
J -

holomorphic curve Ek in BR1 for each k sufficiently large such that Ek ! zE in C 0 as
k !C1.

Recall from [15] that the soliton h D h.�1/ lives on C2 blown-up at a point, is U.2/-
invariant, and is asymptotic to a Kähler cone metric on C2. As such, for all � > 0, there
exists a compact subsetK� �N containing zE in the interior such that for all x 2N nK�,
injh.x/ � 3� and supBh.x;injh.x//

jRm.h/jh � �2

3�2
. Set � D 4, take the corresponding K�,

and choose x 2N nK� with jxj D yR for yR> 0 to be chosen later. By the U.2/-invariance
of h, the aforementioned bounds on the injectivity radius and curvature hold at all points
on the sphere ¹jzj D yRº. Choose yR sufficiently large so that BR1 � ¹jzj � yRº and such
that Bh.y; 3�/\ zE D ; for all y 2 ¹jzj D yRº. Next, choose R > R1 sufficiently large so
that ¹jzj � yRº � BR and so that BR contains Bh.y; 3�/ for every y 2 ¹jzj D yRº. Finally,
fix k (depending on R) sufficiently large so that ��

k
gk.�1/ is sufficiently close to h in

derivatives to guarantee that for all y 2 ¹jzj D yRº,

(i) inj��
k
gk.�1/

.y/ � 2�,

(ii) B��
k
gk.�1/

.y; 2�/ � Bh.y; 3�/,

(iii) supB
��
k
gk.�1/

.y;2�/ jRm.��
k
gk.�1//j��

k
gk.�1/

�
�2

2�2
.

As a consequence of (ii), by choosing k larger if necessary, we may assume in addition
that for all y 2 ¹jzj D yRº,

(vi) B��
k
gk.�1/

.y; 2�/ \Ek D ; and B��
k
gk.�1/

.y; 2�/ \ @BR D ;.

Now, �k.Ek/will comprise one of the components of the bubble tree of the two .�1/-
curves in some exceptional fibre of the fibration � WM ! B . Write E.1/ WD �k.Ek/ and
let E.2/ denote the other component. Then ��1

k
.E.2/ \ �k.BR// defines a real surface

in BR intersecting Ek at precisely one point. Let Sk � BR denote the unique connected
component of this real surface intersecting Ek . Then Sk \ @BR ¤ ;, for otherwise Sk
would be contained in BR defining a ��

k
J -holomorphic P1 which, using Corollary 2.4,

could be perturbed to a zJ -holomorphic curve in N distinct from zE (after choosing k
larger if necessary), thereby leading to a contradiction. In particular, it follows that Sk
must intersect the hypersurface ¹jzj D yRº at some point q. Take the unique connected
component Sq

k
� B��

k
gk.�1/

.q; 2�/ of Sk \B��
k
gk.�1/

.q; 2�/ passing through q. Clearly,
if non-empty, the connected components of the boundary @Sk are contained in @BR.
Thus, from (iv) above it follows that @Sq

k
� @B��

k
gk.�1/

.q; 2�/. Next recalling points (i)
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and (iii) above, after unravelling the definitions and noting that �k.S
q

k
/ is J -holomorphic,

an application of [37, p. 178, Comment 1] and [37, Proposition 4.3.1 (ii)] (see also [10,
Lemma 5.2]) allows us to assert that

volgk.�1/.�k.S
q

k
/ \ Bgk.�1/.�k.q/; r// �

�r2

4

for all 0 < r < 2�. Set r D � D 4. Then we find that

volgk.�1/.�k.S
q

k
/ \ Bgk.�1/.�k.q/; 4// � 4�;

which, as �k.S
q

k
/ \ Bgk.�1/.�k.q/; 4/ � E.2/, leads to the lower bound

volgk.�1/.E.2// � 4�:

On the other hand, using [43, (1.2)] and computing as in (4.2) with t D �1, keeping in
mind the fact that .E.2//2 D �1, we derive that

volgk.�1/.E.2// D 2�
�
E.2/

c1.�KM jE2/ D 2�:

This is a contradiction. We therefore conclude that limt!T� volg.t/.M/ > 0, as desired.
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