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Abstract. The wave kinetic equation describes the effective dynamics of the second moments of
the Fourier modes of the NLS solution at the kinetic timescale, and in the kinetic limit in which the
size of the system diverges to infinity and the strength of the nonlinearity vanishes to zero, accord-
ing to a specified scaling law. This equation was fully and rigorously derived from the nonlinear
Schrodinger (NLS) equation in dimensions d > 3 in our earlier work.

Here, we investigate the behavior of the joint distribution of these Fourier modes and derive
their effective limit dynamics at the kinetic timescale. In particular, we prove propagation of chaos
in the wave setting: initially independent Fourier modes retain this independence in the kinetic limit.
Such statements are central to the formal derivations of all kinetic theories, dating back to the work
of Boltzmann (Stosszahlansatz). We obtain this by deriving the asymptotics of the higher Fourier
moments, which are given by solutions of the wave kinetic heirarchy (WKH) with factorized initial
data. As a byproduct, we also provide a rigorous justification of this hierarchy for general (not
necessarily factorized) initial data.

We treat both Gaussian and non-Gaussian initial distributions. In the Gaussian setting, we prove
propagation of Gaussianity as we show that the asymptotic distribution retains the Gaussianity of
the initial data in the limit. In the non-Gaussian setting, we derive the limiting equations for the
higher order moments, as well as for the density function (PDF) of the solution. Some of the results
we prove were conjectured in the physics literature, others appear to be new. This gives a complete
description of the statistics of the solutions in the kinetic limit.

Keywords: wave turbulence thoery, wave kinetic theory, propagation of chaos, wave kinetic
heirarchy, Feynman diagrams, Stosszahlansatz.

1. Introduction

Propagation of chaos is a central theme in all kinetic theories in statistical physics.
Roughly speaking, it states that for a microscopic system with many interacting objects
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(particles or waves), two distinct objects should be statistically independent in the kinetic
limit. Of course, this independence is not true before taking the limit, even if it is true
at initial time, because naturally the dynamics produces correlations between the objects.
Nonetheless, the fact that this independence is resurrected in the limit is a cornerstone of
the whole kinetic description, in both particle and wave kinetic theories. In fact, almost all
formal derivations of kinetic models, dating back to founding work of Boltzmann, assume
propagation of chaos to hold in order to get a closed kinetic equation for the lowest non-
trivial marginal or moment of the solution.

Mathematically speaking, propagation of chaos can be phrased in terms of the asymp-
totics of appropriate correlations or joint distributions of the solution. In wave kinetic
theory, also called wave turbulence theory, these are given by the (second and higher
order) moments of the Fourier modes of the solution to the dispersive equation that
describes the microscopic system. If u(¢) is this solution, the second moment E [ii(z, k)|?
is the central quantity whose asymptotics, in the kinetic limit, is given by the wave kinetic
equation (WKE), which acts as the wave analog of Boltzmann’s equation. The formal
derivations of this equation in the physics literature, dating back to the pioneering works
of Peierls, Hasselman, and others [22,23,28-30,34], are based on the unjustified assump-
tion of propagation of chaos, which effectively allows one to represent higher order mixed
moments by products of second order ones, thus yielding a closed equation for the second
moments.

A rigorous derivation of the WKE at the kinetic timescale, starting from the nonlin-
ear Schrodinger (NLS) equation with random initial data, has been given in our recent
work [12]. This is the first result of its kind for any dispersive system (we will review
some of the literature below). The derivation is done via a delicate analysis of the iter-
ates of the NLS equation and their second order correlations, which are represented by
ternary trees (and couples of such trees) often called Feynman diagrams. The analysis of
such diagrams involves (a) identifying the leading order diagrams called regular couples,
(b) proving that all remaining diagrams lead to negligible contributions, and (c) control-
ling the remainder term in the iteration. This outline is rather simplistic; in reality there
are other almost-leading diagrams whose contributions have to be analyzed separately.
Moreover, the problem of estimating the diagrams is probabilistically critical in the sense
of [14], which is added to the factorial growth of the number of diagrams, to make the
execution of this outline far from trivial. We will review some elements of that proof in
Section 3 below, and also refer the reader to [12, Section 3] for a more detailed exposition.

In particular, the proof in [12] does not require establishing propagation of chaos for
the higher moments of the solution in order to obtain the effective equation for the second
moment, in sharp contrast with the earlier works that make use of the BBGKY and other
similar hierarchies. This brings us to the main goal of this manuscript, which is to establish
propagation of chaos and the corresponding (wave kinetic) hierarchy a posteriori relying
on the analysis introduced in [12]. Highly interesting results and unique features will
appear, for the higher order statistics, depending on the initial distribution of the data, as
we discuss both Gaussian and non-Gaussian initial distributions (for concreteness, only
the Gaussian case was treated in [12]). In the former case, we will prove propagation of
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Gaussianity, which states that the asymptotic distribution of the modes remains Gaussian
as it is initially. In the latter case, we will derive the limiting equations for the probability
density function. We remark that this gives a complete description of the statistics of the
solutions in the kinetic limit, for both Gaussian and non-Gaussian initial distributions.

1.1. The kinetic setup

To state our results more precisely, let us first recall the wave kinetic setup starting with
the microscopic system given by the cubic nonlinear Schrodinger equation. In dimension
d > 3, we set this equation on a large torus of size L. The torus may be rational or
irrational, which can always be rescaled to the square torus Tf = [0, L]d but with the
twisted Laplacian

Ap = @u) N B0+ + BU0).

where 8 = (B!....,8%) € (RT)? determines the aspect ratios of the torus. Consider the
cubic NLS equation

(NLS)

(i0; — Ap)u + A*|ul*u =0,
u(0,x) = uin(x),

with random initial data u(0) = uy,, and

1 _ ik o
() = 7 D Wn(K)e>™ (k) = Vnin ()i (@). (DAT)

d
keZ§

Here Z,‘f = (L™'2)?, ni, is a nonnegative Schwartz function on R?, and ny () are i.i.d.
random variables satisfying

Eng =0, E [nel> = 1.

This distribution of initial data will be called Gaussian if the law of each 5y is a standard
complex Gaussian, and will be called non-Gaussian otherwise. Define

1 1 L2

=22L7% Tin=——== —1r.
« kin = ox2 T 2 ad

The parameter o stands for the strength of the nonlinearity' and Ty, is the kinetic
timescale at which the NLS dynamics is approximated by that of the WKE. The kinetic
limit is taken by letting L — oo (large box limit) and @« — 0 (weak nonlinearity limit),
according to some scaling law that specifies the relative rate of those two limits.

'With overwhelming probability for large L, it can be shown that the size of the nonlinearity
(say in L? norm) is comparable to «. This follows from the probabilistic analysis performed in [12],
but can also be seen by simple heuristic considerations (cf. the introduction of [12]). We also note
that it is common in the physics literature to use a different parametrization of the Fourier series in
(DAT) by replacing the L~ factor in (DAT) with L—d/ 2 in which case & would be defined as A2
and Tiin = 1/(20%).
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The general form of a scaling law is « = L™Y where 0 < y < oo, with the under-
standing that if y = 0 then the ¢ — O limit is taken after the L — oo limit, and vice
versa for y = oo. As explained in the introduction of [12], not all scaling laws are admis-
sible for the kinetic theory, and the admissibility range can depend on the shape of the
torus (i.e. the Diophantine properties of 8). Indeed, without any Diophantine conditions
on B, the admissible range of y is 0 < y < 1, and one can show (e.g. [9]) that if y > 1,
then the kinetic description does not hold, for example when 8 = (1,..., 1). Imposing
generic Diophantine conditions on 8 by removing a set of “bad” vectors of zero Lebesgue
measure, widens the admissible range of y to 0 < y < d /2.

In [12], we treated scaling laws of the form &« = L™ with y < 1 but sufficiently close
to 1. When y < 1 no requirements on the shape of the torus are needed, but for the endpoint
y = 1, the torus needs to have generic shape, i.e. 8 should belong to the complement of a
fixed Lebesgue null set 3 defined by a set of explicit Diophantine conditions (Lemma 2.1).
We remark that the result in [12] has been extended to the full range y € (0, 1) in [13]. In
the current paper, for the sake of concreteness, we will stick to the setup in [12] and adopt
the scaling law o = L~!, with the understanding that the result also applies to the same
range of y as in [13] and without any Diophantine condition on . Hence, throughout the
proof we will assume S is generic in the above sense, A = L@ ~1/2 and Ty, = L2/2.

For 0 < § <« 1 depending on n;,, define the solution n = n(¢, k), for ¢t € [0, §] and
k € R?, to the wave kinetic equation

{3tn(t,k) = K(n().n(t).n))(k),

(WKE)
n(0,k) = niy(k),

with the nonlinearity

K (1, ¢2, ¢3) (k)

= /(]Rd)3{¢l (k1) P2 (k2)p3(k3) — p1(k)pa(ka)p3(ks) + @1 (k1) (k)p3(ks3)
— ¢1(k1) 2 (ka)pa(k)}
x 8 (ki —ka + ks — k) - 8(|kilg — |kalg + k|5 — |k[5) dk1 dko k3. (KIN)

Here § is the Dirac delta, and for k = (k!, ... ,kd) and £ = (£, ... ,Kd) we denote
k|3 = (k.k)g. (k.0)g:=B'k"L" +-- 4 k7.

The following theorem is the main result of [12], which describes the evolution of
the variance E|ii(z, k)|? in the limit. Here and below, the expectation [E is always taken
under the assumption that (NLS) has a smooth solution on [0, § - Ti;,], which happens
with overwhelming probability.

Theorem 1.1 ([12, Theorem 1.1]). Fix A > 40d, B € (]R+)d \ 3, and a function ny, > 0
such that

n; ‘= max k98 n, < C; < o0.
” m”@‘“)d ]| <40d ” k m”L2 =t1
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Assume the law of each ny is Gaussian. Let § be small enough depending on (A, B, C1),
and L be sufficiently large depending on 8. Set A = L@ ~V/2 5o 0 = L™ and T, = L?/2.
Then the equation (NLS), with random initial data (DAT), has a smooth solution up to

time 5
SL
T = - = 8+ Tiin
with probability > 1 — L4, Moreover,
~ t
lim sup sup E|u(t,k)|2—n( ,k)‘ =0, (1.1)
L= e[0T kezd Tiin

where n(t, k) is the solution to (WKE).

Remark 1.2. Theorem 1.1 is stated in [12] for Schwartz n;,. A closer look at the proof
shows that it remains true as long as n;, € ©*°¢, and § should only depend on the G*%¢
norm of nj,; see [12, remarks after Theorem 1.1]. The same comment also applies to all
the main results of the current paper.

1.2. Propagation of chaos: The Gaussian case

As mentioned above, the proof of Theorem 1.1 does not require obtaining asymptotics on
the higher Fourier moments. Such information is provided in our first main result, which
can be viewed as an extension of Theorem 1.1.

Theorem 1.3 (Propagation of chaos and Gaussianity). Under the same assumptions as
Theorem 1.1 above, fix a positive integer r and nonnegative integers pi, ..., pr and
qi.---.qr. If pj # qj for atleast one j with 1 < j <, then

.
lim sup sup E(H(ﬁ(l,kj))pf(ﬁ(t,kj))qf)‘ =0. (1.2)
L=oo1el0.7) (ky,...k)e@dy ' V=i

ki#k; (Vi)

Here, as in Theorem 1.1, the expectation is taken only when (NLS) has a smooth solution
on [0, T] where T = § - Tyin (which has probability > 1 — L™4). If pj = qj for each
1 <j <r,then

r r pj
lim sup sup IE(H |z'i(t,kj)|2p./) — H(pj)! -H(L,kj) =0.
L—004¢[0,T) (e1,ekr)e@é)r ! V=1 j=1 Tiin
ki#kj (YiZ])
(1.3)

A key feature of Theorem 1.3 is that, up to error terms that vanish as L — oo, we have

r r
E(l_[l |ﬁ(l,kj)|2pf> A l—[l E |i(t,k;)[*?/, and all other moments are ~ 0.  (1.4)
Jj= j=
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This means that, for fixed 7, the random variables (¢, k) for different £ become indepen-
dent in the limit (at least in terms of the marginal distributions of any finitely many of
them), which justifies rigorously the propagation of chaos assumption in the literature, as
described at the beginning of this paper.

Note that these coefficients cannot be independent without taking limits, because cor-
relations will always be produced by the nonlinear interactions in the NLS equation.
Nonetheless, this independence reappears in the kinetic limit as L — oo and o — 0,
for the same subtle and deep reason that makes the kinetic approximation in (1.1) hold.
Namely, the only nonvanishing interactions contributing to the expectations in (1.1)—(1.3)
are those obtained by concatenating blocks of basic interactions called (1, 1)-mini couples
and mini trees (see Figures 1-3), thus forming what we call regular couples (for second
moments) or regular multi-couples (for higher order moments, see Section 1.6). Such
interactions can only be built if p; = g, in the notation of Theorem 1.3; moreover, in
the higher order case, the associated structure actually decouples into second order struc-
tures, hence (1.4) naturally occurs. The same reasoning also holds in the non-Gaussian
case below (Section 1.3), for which (1.4) remains valid.

In addition, in this Gaussian setting we have

t p
E |i(t, k)|*? ~ p! n(ﬁk) , (1.5)

which means that the law of (¢, k) in the limit is Gaussian with variance n(z/ Ty, k)
as long as the initial state at = 0 is Gaussian. This has been conjectured in the physics
literature under the name of propagation of Gaussianity (see also the discussion following
Theorem 1.5).

1.3. The non-Gaussian case

Highly interesting results appear in the non-Gaussian case, where unlike Theorems 1.1
and 1.3, the law of 1z may not be Gaussian. While the second moments still follow the
WKE in this setting, the non-Gaussianity of the initial law starts to manifest itself at the
higher (> 4) order moments and statistics. We will assume the law of 7y is rotationally
symmetric,” and has exponential tails. Then we have the following modification to Theo-
rem 1.3:

Theorem 1.4 (Evolution of moments). Suppose the i.i.d. random variables {ny(w)} have
a law that is rotation symmetric, and satisfies

pr = E e < (Cor)l, p1 = 1.

2Though rotation symmetry seems to be always assumed in physics literature, it would be inter-
esting to see what happens without this assumption, in particular if (1.10) remains true. Here the
loss of gauge invariance may lead to additional contributions, but probably they will be error terms
in the end.
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for some constant Cy (this is equivalent to E(elnklﬁ) < 00 for small B > 0). Then the
same limits in (1.1) and (1.2) remain true. Moreover, instead of (1.3), we have

(T lae k)P ) = T w, (%k,)
]=l mn

j=1

lim sup sup
L=001e[0.7) (ky,....kr)e(@d)"
kiFk; (Vi#j)

=0. (1.6)

Here the functions i, (t, k) is defined as follows: recall n(t, k) is the solution to (WKE).
Let ny(t, k) be the solution to the equation

{B,no(t,k) = Ko(t, k),

(WKE-0)
n(0,k) = niy(k),

where

Ko(t, k) = /(Rd)g no(t, k) n(t, kn(t,ks) — n(t, ko)n(t, ks) — n(t, ky)n(t, ka)}
x 8(ki — ko + k3 — k) - 8(|k1|3 — |kal3 + k3|3 — k|3) dky dka dks.  (KIN-0)

Define also n(t, k) = n(t, k) —no(t, k). Then

q

2
pg(t. k) = Z(Z) (@ = P)pp - (o(t. k)P (n (2. k)77 (1.7)

p=0

Note that if {nx} is Gaussian, then p, = p!, so (1.7) yields 4 (¢, k) = q!(n(¢, k))4,
and we recover Theorem 1.3. Similarly, for ¢ = 1 we have (¢, k) = n(t, k), so Theo-
rem 1.1 remains true in the non-Gaussian case.

Note that in Theorem 1.4 we still have (1.4), thus propagation of chaos remains true
in the non-Gaussian case. In addition, instead of (1.5) we have

E [i(t, k)|*? ~ wp(t/ Tiin, k)

where 1, (2, k) is defined as in (1.7). As far as we know, these expressions for higher order
moments are new.
We remark that Theorems 1.3 and 1.4 actually hold for moments whose degree (given

by > 7_1(p; + g;) in the notation of (1.2)) may diverge as L — oc. Indeed, we will see
’ log L

in the proof that this degree can be taken as high as log L (for Theorem 1.3) or Togloz D)2

(for Theorem 1.4).

Under slightly stronger assumptions, Theorem 1.4 allows us to describe the evolu-
tion of the law of individual Fourier modes in terms of the density function, which then
provides a full description of the statistics of the NLS solution in the limit. This is sum-
marized in our next theorem below.

Theorem 1.5 (Evolution of density). In Theorem 1.4, assume further that ., < C"(2r)!
for some constant C (this is equivalent to E(eP1"k) < oo for small B > 0). Recall the
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solution n = n(t, k) to (WKE), and define
o) = [ nkin(kon(e ks — ke + ks = k)
(R4)3
x8(lk1lg — k2[5 + |kalp — |k|g) dky dka dks,  (1.8)
Yie(t) = /( d)3{n(t,k1)n(t,k3) —n(t,ka)n(t, k3) —n(t, ki)n(t, k2)}
R

X 8(ky — ko + ks — k)8 (k1[5 — k2|5 + ksl — [k|3) dky dkp dks.  (1.9)

Let the density function of each ni(®) be px = p«(v), where v € C is also viewed as
an R? vector; assume py is a radial function. Let p = pg(t, v) be the solution to the
linear equation

drpr = ka)APk - Ykz(t)v - (VP )s
1 v (1.10)
pk(O) B nin(k)p*(\/nin(k))'

Clearly each py is also radial. Fix t € [0, 8], a positive integer r and distinct vectors
k; e RE(1<j<r). Letkj(.L) € ZZ (1 <j <r)besuch thatkj(-L) —ki(l<j<r)as
L — oo. Then the random variables

@ - Tin: k). 001 - Tign, kD)) (1.11)
converge in law, as L — oo, to the random variable with density function

pkl(tvvl)'pkz(t’UZ)“'pkr(tv Ur)- (112)

The factorization structure in (1.12) is a consequence of propagation of chaos, which
has been established in Theorem 1.4; thus the main feature of Theorem 1.5 is the evolution
of the individual density (1.10). It appears that this equation has only been discovered
fairly recently in the physics literature (see [8,25], and [28, Section 6.6]).

Note that in the Gaussian case (Theorem 1.3) we have p«(v) = 7n~le I Then the
solution to (1.10) equals

or(t,v) = (mn(t, k)) e PP/n@h)

so by (1.12), the limit distribution is given by independent Gaussians with variance n (¢, k),
which provides another manifestation of the propagation of Gaussianity. Other solutions
to (1.10) can be obtained and analyzed using the method of characteristics in Fourier
space (see [7]).

1.4. The wave kinetic hierarchy

By taking p; = 11in (1.3) or (1.6) we obtain the limits
J

r

ne(t, ke, k) o= Lli_)n;oIE(H |a(z,k,-)|2). (1.13)

j=1
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These limit quantities are conjectured to solve an infinite hierarchy of equations called
the wave kinetic hierarchy (WKH), which is a linear system for symmetric functions
ny =ny(t, ky,...,k), and has the form

dnr(t, ke, ... k)

= Z/(Rd)3 §(by — Lo+ €3 —k;) - 811 |5 — [Lalg + €35 — |k;|3) by des des

X[nra(t by, kj—1. 61 0 ba kg k)
+ npga(tkro . kjo, bk s koK)
—nppa(toke, o ki1 kLo 03, kg, - k)
—nppa(toky, .o ki1 0 bk kg, . k)] (WKH)

This hierarchy is the analog of Boltzmann and Gross—Pitaevskii hierarchies, and is for-
mally derived in recent works such as Chibarro et al. [5, 6], Eyink—Shi [18] and Newell—
Nazarenko—Biven [29], though it also follows from much earlier works including the
foundational work of Peierls (see [3,28,30]).

The key property of (WKH) is factorizability: factorized initial data of the
form (n;)n(ky, ..., k) = ]_[lr-:l nin(kj) leads to factorized solutions of the form
ne(t ki, ....ky) = ]_[;:1 n(t, kj) where n(t, k) solves (WKE) with initial data n;,. This
follows from direct calculations together with a suitable uniqueness theorem, which is
recently proved by Rosenzweig and Staffilani [31].

In the above sense, we can view (WKH) as a generalization of (WKE) that allows for
dependent Fourier modes. Indeed, suppose the initial data u;, of (NLS) is given by (DAT)
with %, (k) being independent for different k. Then Theorem 1.4 implies that the limit
(1.13) will be a factorized solution to (WKH) with factorized initial data, which is in fact
the tensor product of the solution to (WKE). However, if u;, does not have independent
Fourier modes, then the initial data (n, )i, (k1, ..., k), i.e. (1.13) at time 0, will not have
factorized form, in which case (1.13) at time # is conjectured to be a more general solution
to (WKH).

Such scenario may arise, as discussed in [31, Section 1.3], if one considers a hybrid,
or “twice randomized data” problem of (NLS) as follows: Instead of taking nj, deter-
ministic in (DAT), we choose it randomly according to a probability measure ¢ defined
on the space of all nonnegative functions n;,, in such a way that the new random func-
tion nyy, is independent of the pre-fixed i.i.d. random variables {7y }. When 7 are random
phases (x (w) = €% (@) with 6 uniformly distributed on the circle), this process of ran-
domization is referred to as the “Random Phase and Amplitude” assumption in the wave
turbulence theory literature, where in this general setup different amplitudes are not nec-
essarily independent.

In other words, we are choosing a random initial data whose law of distribution (as a
probability measure) is given by a suitable average of those specific probability measures
which are laws of distribution of random data of the form (DAT), i.e. having independent
Fourier coefficients. This averaging is achieved by first generating a random nonnega-
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tive function n;, according to the probability measure ¢ on the space of all nonnegative
functions, and then selecting the random initial data as (DAT) with some pre-fixed i.i.d.
random variables {7 }. Since independent Fourier modes in (DAT) correspond to factor-
ized solutions to (WKH), we know, using also the linearity of (WKH), that the above
process will result in a solution to (WKH) which is an average of certain factorized solu-
tions. These are referred to as “super-statistical solutions” in Eyink—Shi [18] and may
provide a possible explanation of intermittency in wave turbulence.

Just like (WKE), the rigorous derivation of (WKH) has been an outstanding open
problem. In fact, these two problems are closely related; as mentioned at the begin-
ning of this paper, there are many earlier works on similar problems that first derive the
corresponding hierarchies and then restrict to factorized solutions to obtain the kinetic
equations. In the wave turbulence context, such an approach is theoretically possible but
has not yet been successful. Instead, we are following the exactly opposite route: we first
derive the kinetic equation (WKE) in [12], then apply the same techniques to derive the
hierarchy (WKH) a posterori, in the current paper. So our last main result is the rigorous
derivation of (WKH) for general nonfactorized initial data, which we state as follows.

Theorem 1.6 (Derivation of (WKH)). Fix a positive number X > 0 and a sequence of
i.i.d. random variables {ny } as in Section 1.1 that satisfy the requirements of Theorem 1.4.
Suppose (n;)in = (n;)in(k1, ..., k,) are nonnegative symmetric functions of k; € R4
(1 < j <r) such that

“(nr)in”@“()dl’ = sup “k‘fl k‘rxra]fj} "'8£:(nr)in(kla---ykr)”Lz fclr (1.14)
lej|,|B; 1<40d

for some large constant C1 (note C; Z X). We say (n, )i, is admissible if for any r > 2
we have

/(nr)m(kl,...,k,)dkr=ae.(nr_l)in(kl,...,kr_l), /(nl)m(kl)dklzae.
R4 R4
(1.15)

Consider a probability measure  on the set A of nonnegative functions m = m(k)
on R?, which is defined by

A= {m ‘R? > R : [m|ga0a < Ci, / m(k)dk = %} (1.16)

RY
For this {, consider the hybrid initial data u;, which is given by (DAT), except that ni,
should be replaced by m, which is another random variable with values in 4, such that

m is independent with all the 0y and the law of m is given by {. We say (n; )i, is hybrid if
there exists a ¢ such that for the above choice of Uiy,

E(TT 1)) = (o)tk, . k) (1.17)
j=1

for any L and any distinct k; € ZZ (1<j<r).
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Let T = § - Tign where § is as in Theorem 1.1 (except Cy is now defined by (1.14));
the other parameters are as in Theorem 1.1. Then we have the following:

(1) The sequence (n; )y, is hybrid if and only if it is admissible; in this case the measure
¢ is unique.

(2) Assume (n;)in is admissible. Then with the hybrid initial data defined above, the equa-
tion (NLS) has a smooth solution up to time T with probability > 1 — L™4. Moreover,
for any fixed r we have

r

t
lim sup sup E(l_[|z’i(t,kj)|2>—nr(—,kl,...,k,)‘=O, (1.18)
Looote0. Tl k.. krye@dy | V=1 Tin
kiF#k; (Yi#j)
where n,(t,ky, ..., k;) is the unique solution to (WKH) constructed in [31] with

initial data (n;);,. For any 0 <t < §, this solution (n,)(t) is admissible in the sense
of (1.15) for the same X.

&4 norms defined in

We make two remarks regarding Theorem 1.6. First, the
(1.14) are much stronger than the £ norms defined in [31], because of the strong G40d
norm used in Theorem 1.1. It may be possible to relax this regularity assumption to
match [31], but this requires refining the proof of Theorem 1.1 (and Theorems 1.3—1.5),
which we are not doing here.

Second, the admissibility requirement (1.15) seems natural in view of the conclu-
sion (1): anything that actually arises from these hybrid initial data must be admissible.
Nonadmissible solutions to (WKH) do exist, but they are probably not physically mean-

ingful, as pointed out in [31].

1.5. Background literature

The proof of Theorems 1.3—1.6 are based on the framework introduced in [12] to prove
Theorem 1.1. That work comes as a culmination of an extensive research effort over the
past years to provide a rigorous justification of the wave kinetic equation starting from
the nonlinear dispersive PDEs as first principle [4,9-11, 15-17,19,27]. This is Hilbert’s
sixth problem for waves; its particle analog is the rigorous derivation of the Boltzmann
equation from Newtonian mechanics (see [2,20,21,26] and references therein). We refer
the reader to the introduction of [12] for a discussion of the developments leading up to it.

We should remark on the progress that has happened since the submission of [12].
First, we mention the work of Staffilani and Tran [33], who consider a high (> 14)
dimensional discrete KdV-type equation, with a Stratonovich-type stochastic multiplica-
tive noise, which has the effect of regularly randomizing the phases of the Fourier modes.
In the presence of this noise, the authors derive the associated kinetic equation at the
kinetic timescale Ty;, and in the scaling law o = L0 They also have a conditional result
in the absence of noise, which assumes that some a priori estimates hold for the solution,
and they verify that these conditions are met for some more restrictive sets of initial data.
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Another work in this direction is due to Ampatzoglou—Collot—-Germain [ 1] which con-
siders the problem of deriving the WKE in an inhomogeneous setting. The authors derive
this equation from a quadratic NLS-type equation for short (asymptotically vanishing)
timescales, which, similar to [11], is a subcritical version of the critical setting considered
here and in [12].

Note that the works [4,9-12, 15-17,27] concern cubic nonlinearities or 4-wave inter-
actions, while the works [1,19,33] concern quadratic nonlinearities or 3-wave interactions.
Both models represent a lot of important physical scenarios. Although the cubic case is
considered in the current paper and in [12], we believe that the quadratic case can be
treated in the same way without much difference in strategy (as exhibited by [1]).

1.6. Idea of the proof

Before discussing the main ideas, we first review the proof of Theorem 1.1 in [12]. The
basic strategy is to perform a high order expansion of the NLS solution in Fourier space
as

N
A(t.k) =Y gnlt. k) + Ry (t.k). k eZf. (1.19)
n=0

Here, N is the order of the expansion which diverges appropriately with the size L of
the domain, g, is the n-th Picard iterate, and Ry is the remainder. The iterates , can
be written as the sum of $, where 7 runs over all ternary trees that have n branches;
these are often called Feynman diagrams. To derive (WKE) in [12], one has to compute
the asymptotics of the second moments E |ii(z, k)|> which leads to the analysis of the
correlations E(g7, d7,) for trees 7; and T of at most N branches. These expressions
naturally lead to the notion of couples which consist of fwo ternary trees whose leaves
are paired to each other. The key observation is that the leading couples in the expansion
take a very special form, which we call regular couples, namely they are obtained by
appropriately concatenating (1, 1)-mini couples and mini trees (see Figures 1-3). The
proof in [12], as described before, then reduces to (a) establishing the precise asymptotics
of the regular couples, which is made possible by their precise, albeit highly complex,
structure, (b) showing that the remaining couples are of lower order, which constitutes the

heart of the proof, and (c) showing the remainder R y is also of lower order.
Now, in Theorem 1.3, we are interested in the higher order moments of the solutions,
where the order R can be arbitrarily large (or even grow to infinity with L). If we perform

the same expansion (1.19), then we need to consider expressions of the form

E(gr (t.k0)E ... §7p (t. kr)F)

where, as usual, a minus superscript denotes complex conjugation. This leads to the key
new concept in the current paper, which we call gardens,’ that are formed by R trees
whose leaves are paired to each other.

3This name is partly inspired by the song Spiritual Garden of Yukari Tamura (2005).
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In the Gaussian setting of Theorem 1.3, gardens are the only new structures that
emerge. Since R can be arbitrarily large and may even grow to infinity with L, the anal-
ysis of gardens of R trees will be a lot more complicated than that of couples of two
trees. However, the methodology introduced in [12], originally designed to treat couples,
is in fact so robust that it can be extended to gardens—even for very large R—with some
additional twists. Indeed, the leading contributions here come from those gardens that
are formed by putting together R/2 couples (we call them multi-couples), which can be
analyzed using the results of [12]. In particular, as shown in [12], only the regular multi-
couples, where each of the R/2 couples is regular, provide the top order contributions;
these can be explicitly calculated as in [12] to match the desired right hand side expres-
sions, and the rest is of lower order.

As for the gardens that are not multi-couples, we apply the procedure of [12] (which
are defined for couples but can be easily generalized to gardens) and conclude that they
are of lower order (Proposition 4.7). A few technical differences occur here (such as in
combinatorics, cf. Proposition 6.4 and [12, Proposition 9.6]), but the most important one,
which is also the reason why these terms are of lower order, comes from the structure
of the molecules (see Section 6) associated with such gardens. This is stated in Propo-
sition 6.3 (for comparison, we have y = m instead of y < m — R /2 for multi-couples),
which can be used to establish a power gain in the counting estimates (Proposition 6.8,
note the m — R /2 in the exponent), and subsequently the lower order bounds.

In the non-Gaussian setting (Theorem 1.4), we need to introduce even more general
structures. In fact, gardens appear from dividing the leaves of the R trees as above into
two-leaf pairs. In the Gaussian case, due to Isserlis’ theorem, only expressions associated
with gardens need to be considered; in the non-Gaussian case, we have a substitute of
Isserlis’ theorem (Lemma 9.1), which is reminiscent of the cumulant expansions of the
moments of random variables, but with the important quantitative estimates included. This
leads to the notion of over-gardens which are basically the same as gardens but allow
pairings of more than two leaves. Again, in this setting, we identify the leading over-
gardens (called regular ones) and prove that the complementary set is of lower order. It is
here that the non-Gaussianity starts to manifest itself, as regular over-gardens contribute
to the leading terms in addition to regular gardens, which explains the difference between
(1.3) and (1.6).

In all the proofs above, as well as in [12], the leading structures (regular couples,
multi-couples and over-gardens) are still highly complex objects, whose number grows
exponentially (rather than factorially) in their size. However, their redeeming feature is
that one can write down exact expressions for them in the kinetic limit which allows one
to match their contribution, order by order, with the solutions of the kinetic equations that
appear in (WKE), (WKE-0), or (WKH).

Finally, Theorem 1.5 is a direct consequence of (1.3) and (1.7), and uniqueness of the
moment problem in this setting (i.e. the moments uniquely define the law, see Lemma 9.6)
and Theorem 1.6 basically follow from averaging the results of Theorem 1.3 in different
scenarios, and applying the Hewitt—Savage theorem (see Lemma 10.1) to represent arbi-
trary densities by tensor products.
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We remark that the proof in this paper relies heavily on the notions and framework
introduced in [12]. On the other hand, despite a few places where we briefly go over
the results and proofs of [12], the majority of this paper is devoted to the new components
needed in the higher order setting. In particular, the gardens we introduce are fundamental
objects with important new features (such as Proposition 6.3), which will play significant
roles in future studies of wave turbulence.

1.7. Organization of the paper

The paper is organized as follows: In Section 2 we review the setup and present some
reductions of the problem. In Section 3, we review the argument in [12] and the needed
results from there. In Section 4, we introduce the notion of gardens, their elementary
combinatorial properties, and state the needed estimates to prove Theorem 1.3. These
estimates are then proved in Sections 5-8. In Section 9 we deal with the non-Gaussian
case and prove Theorems 1.4 and 1.5, and in Section 10 we prove Theorem 1.6.

2. Preliminary reductions

2.1. Reduction of (NLS)

As in [12], we make the following reductions. Suppose u is a solution to (NLS), and
define a = ay (¢) such that

ar(t) = e—smL2|k|§t . o 2iAM 8Tt 08 Tin - 1. ), 2.1)
where M is the conserved mass of u. Then it solves the equation
drap = €4(a,a,a)i(t),
{ak(O) = (ar)in = V()i (@),

(2.2)

with the nonlinearity

Ci(f. 8 Wi ()

) _ L2
=St Z €k koky € T HERRKSR B (1) g, (Dhiy (). (23)
k1—ko+ka=k

In (2.3) and below, the summation is taken over (ky, k2, k3) € (Zi)3, and

1 ifkay & {k1,ks},
6k1k2k3 = —1 lfkl = k2 = k3, (24)

0 otherwise,

and the resonance factor is

Q= Q(ky, ko, k3, k) := |k1|§ - |k2|%3 + |k3|§ - |k|§ =2(ky —k,k —k3)ﬂ. (2.5)
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Note that €, ,, is always supported in the nondegenerate set
G = {(kl,kz,k3) : either kz ¢{k1,k3}, or kl = kz = k3} (26)

Below we will focus on the system (2.2)—(2.3), with the relevant terms defined in (2.4)—
(2.6), for time ¢ € [0, 1].

2.2. Reduction of Theorem 1.3

By plugging in (2.1) we can reduce Theorem 1.3 to proving the following bounds:
r —
([ Ttax, )7 @ @) )| sp L™ @7
j=1

if p; # ¢qj forsome 1 < j <r,and

r r
[E(TTlax, P> ) =TT pstnt6e k? | <a L7, (28)
j=1 j=1
uniformly in ¢ € [0, 1] and in kq, ..., k, € Zl‘{ satisfying k; # kj, with v > 0 being an
absolute constant and the implicit constants depending on R := (p1 + -+ pr + ¢1 +

)2
Note that if a (¢) solves (2.2) then e'?ay (r) solves the same equation, with the initial
data obeying the same law. From this it is easy to deduce that

.
E(H(akj(t))pj (ax; (l))qj) =0 ifpi+-+pFq+-+4qr
j=1

Below we will always assume p; + -+ p» = ¢q1 + -+ + g = R. As we consider
the limit L — oo with R fixed, we may assume R < log L. We shall introduce a simpler
notation as follows. For 1 < j < r, take p; copies of the variable k; with sign + and g;
copies of the variable k; with sign —, and rename them as (k7 ..., k> ) with associated
signs ¢; (1 < j < 2R). For simplicity we will write k; instead of k}" below. Then (2.7)
and (2.8) result from the following unified and more precise estimate:

2R
(E(]‘[ag(r))—z I lk_/=kj,l_[(+)n(8t,kj)‘§R!-M§H-L_". (2.9)
j=1

P {j.j'te? J
Here we denote zt = z and z~— = Z, and the sum is taken over all partitions & of
{1,...,2R} into two-element subsets {j, j'} such that {;; = —(;. The first product is

taken over all {j, j'} € P, and the second is over all 1 < j < 2R such that {; = +.
Finally, My, is defined as

My, =1+ sup |n(8t, k)|, (2.10)
tef0,1], keR4

and the implicit constant in (2.9) depends only on (d, 8, nj,) but not on R.
The goal of the rest of the paper is to prove (2.9).
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2.3. Parameters and notations

Most of our parameters and notations are taken from [12]. First, we fix g € (R1)%\3,
where 3 is defined by the following lemma.

Lemma 2.1 ([12, Lemma A.1]). There exists a Lebesgue null set 3 C (R1)4 such that
the following hold for any B = (B',..., %) € (R1)4\3:

(1) For any integers (K', K?) # (0,0), we have
IB'K' + B2K?| 2 (1 + |K' |+ |K*)) ' log *2 + |K'| + |K?).  (2.11)

(2) The numbers B, ..., ,Bd are algebraically independent over Q, and for any R we
have

#H(X,Y,Z) e (Z9)% : |X|,|Y],|Z] < R, X #0, max(|{X,Y)g],[(X,Z)g]) < 1}

Throughout this paper, we will use C to denote any large constant that depends only
on the dimension d, and use C T to denote any large constant that depends on (d, 8, ni,);
these may differ from line to line, and note in particular that they do not depend on the
value of R in (2.9). The notations X <Y and X = O(Y) will mean X < C*Y unless
otherwise stated.

Recall that A > 40d and §, which is small enough depending on 4 and C T, are fixed
as in Theorem 1.3. We also fix v = (100d)™! < 1 and define N = |(log L)*]. Note that
the value of N is different from the one in [12]. As above, we assume R < log L. For later
purposes we may need slightly larger values (like 2 R), but all our proofs work equally fine
as long as R < 2log L, which will be satisfied throughout the paper. Note that we do not
assume any inequality between § and R.

We adopt the shorthand notation k[A] = (kj)jea and similarly for other vectors,
and also define da[A] = [];c4 de;. We also use multi-indices p with the usual nota-
tions. Define the time Fourier transform (the meaning of = later may depend on the
context)

ﬁ(}t) Z/Ru(t)e—b‘li/\t dr, u([) — Aﬁ(k)eZniAt di.

Define the X* norm for functions F = F(t,k) or G = G(¢, s, k) by
| Fllxe =/<x>1/9sup<k>K|ﬁ(x,k>|dx,
R k
IGlles = [ () + ) sup ()16 G k)| a2 s

where ~ denotes the Fourier transform in ¢ or (¢, s). When F or G does not depend on k,
this norm will not depend on « and will be denoted by X . Define the localized version X<
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(and similarly Xjoc) as

I Fllxg, = inf{|Fllx<:F = Ffor0<t <1},

G llx, —lnf{”G”XK :G=Gfor0<t,s <1}

If we only use the value of G in some set (for example {¢t > s} in Proposition 3.8), then
in the above definition we may only require G = G in this set. Define the Z norm for
a function a = ag(t) by

lall = Sup L7 (kY ar (). (2.13)
kez¢

3. A brief summary of [12]

The results of this section are proved in [12]. Here we state the relevant propositions and
definitions that will be needed in the proof below.

3.1. Trees, couples, and decorations

We first recall the definitions of trees, couples, and decorations, which are drawn directly
from [12].

Definition 3.1 ([12, Definition 2.1]). A ternary tree T (we will simply say a tree below)
is a rooted tree where each nonleaf (or branching) node has exactly three children nodes,
which we shall distinguish as the left, mid and right ones. We say 7 is trivial (and write
T = e)if it consists only of the root, in which case this root is also viewed as a leaf.

We denote generic nodes by n, generic leaves by I, the root by r, the set of leaves by £
and the set of branching nodes by N . The scale of a tree T is defined by n(7) = | N |, so
ifn(7)=mnthen |£|=2n+land |T| =3n + 1.

A tree T may have sign + or —. If its sign is fixed then we decide the signs of its
nodes as follows: the root r has the same sign as 7, and for any branching node n € N,
the signs of the three children nodes of n from left to right are (¢, —¢, ¢) if n has sign
¢ € {£}. Once the sign of T is fixed, we will denote the sign of n € T by ;. Define the
conjugate 7 of a tree T to be the same tree but with opposite sign.

Deﬁnition 3.2 ([12, Definition 2.2]). A couple @ is an unordered pair (7, 77) of two
trees 7* with signs + and — respectively, together with a partition & of the set £+ U £~
inton + 1 pa1rw1se dlS_]Oll’lt two-element subsets, where £7 is the set of leaves for 7,
and n = nT + n~ where n¥ is the scale of 7%. This 7 is also called the scale of (,‘2,
denoted by n(@Q). The subsets {[,I'} € £ are referred to as pairs, and we require that
ty = —{, i.e. the signs of paired leaves must be opposite. If both 7+ are trivial, we call
@ the trivial couple (and write @ = X).

For a couple @ = (7+, 7, #2) we denote the set of branching nodes by N* =

N1 U N7, and the set of leaves by £* = £ U £~ ; for simplicity we will abuse notation
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and write @ = T U T ~. We also define a paired tree to be a tree where some leaves are
paired to each other, according to the same pairing rule for couples. We say a paired tree
is saturated if there is only one unpaired leaf (called the lone leaf). In this case the tree
forms a couple with the trivial tree e.

Definition 3.3 ([12, Definition 2.3]). A decoration % of a tree T is a set of vectors
(ky)unes such that ky, € Zi for each node 1, and

kn =ku, —kun, + kny, orequivalently Cnkny = {u kn, + Copkny + Cuzkns,

for each branching node 1 € N, where {y is the sign of u as in Definition 3.1, and
ny, 1y, n3 are the three children nodes of n from left to right. Clearly a decoration &
is uniquely determined by the values of (ky)(cg. For k € Z¢, we say Z is a k-decoration
if ky = k for the root r.

Given a decoration 2, we define the coefficient

€ =[] €ku, kuykns - 3.1)
neN
where €, i,k i8 as in (2.4). Note that in the support of €5 we have (ky,, ky,, ku;) € ©
for each n € N. We also define the resonance factor Q24 for each n € N by

Qu = Q(kn, . kny kg kn) = |kn 15 — [kuy |5 + [kns |3 — kal3. (3.2)

A decoration & of a couple @ = (TF, T, &) is a set (ky)ne@ Of vectors such that
9% = (kw)peq =+ is a decoration of 7+, and moreover ky = ky for each pair {[,'} € 2.
We define €5 := €4+ €4, and define the resonance factors Qy for n € &* as in (3.2).
Note that we must have k,+ = k.~ where r* is the root of 7¥; again we say & is a
k-decoration if k,+ = k,— = k. Finally, we can define decorations & of paired trees, as
well as €5 and Q2 etc., similar to the above.

Definition 3.4 ([12, Definition 4.2]). Define a regular couple to be a couple formed from
the trivial couple x by repeatedly applying one of the steps A and B, where in step A one
replaces a pair of leaves with a (1, 1)-mini couple, and in step B one replaces a node with
a mini tree. Here a (1, 1)-mini couple is a couple formed by two trees each of scale 1 such
that no siblings are paired, and a mini tree is a saturated paired tree of scale 2 such that no
siblings are paired. See Figures 1-3. We also define a regular tree to be a saturated paired
tree 7 that forms a regular couple with the trivial tree. This is equivalent to the definition
in [12, Remark 4.15], namely that 7 can be obtained from a regular chain by replacing
each leaf pair with a regular couple. Here a regular chain (see [12, Definition 4.6]) is
defined to be the result of repeatedly applying step B at a branching node or the lone leaf
starting from the trivial tree o. Note that the scale of a regular couple or a regular tree is
always even.

Proposition 3.5. The number of regular couples and regular trees of scale n is at
most C".

Proof. See [12, Corollary 4.9]. [
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Code 00

/N
N

Code 01

/N
/N

Fig. 1. A (1, 1)-mini couple. Here and below, two leaves of same color are paired There are two

possibilities indicated by codes 00 and 01 as in [12].

Code 30

N
N

Code 31

Fig. 2. A mini tree. There are six possibilities indicated by codes 10, 20, 30, 11, 21,31 as in [12].
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Fig. 3. Steps A and B as in Definition 3.4.
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Lemma 3.6. Let T be a tree of scale n. For any node n € T define iy to be the number
of leaves in the subtree rooted at n. Then, for any n € N, consider the values of [y where
w is a child of n, and let the second maximum of these values be py. Then

[Tus=s
fg < :
oy 2n +1
Proof. See [12, Lemma 6.6]. [

(3.3)

3.2. Expansion ansatz and regular couples
The following results are taken from [12].
Proposition 3.7. For any tree T, define

) " it SL2
(F7)e(r) = (W) ¢(T) 26@/@ l_[ T IEndL Ot gy H nin(ky) - ni‘r ().
9

neN lel
(3.4)

Here n is the scale of T, E(T) = [luen ((Cn), 2 runs over all k-decorations of T, and
D is the domain

D = {t[N]:0 <t <ty <t whenever 1’ is a child of n}. (3.5)

We may expand ay (t) as

N
ar®) = S Fk O + b, @@ = Y @rr@®. (36

n=0 n(Tt)=n

where the second sum is taken over all trees T+ of sign + such that n(T ) = n.
The remainder b satisfies the equation

b=R+ZLb+ Ab,b)+ E(b,b,b), (3.7)
where the terms on the right hand side are defined by
R= JCi(uv.w). Lb=>) JC(u.v. w),
0) 1)

Bb.b) = JCL(u.T,w), C(b.b.b)=ICL(b.b.b).
@

(3.8)

In (3.8) the summations are taken over (u, v, w), each of which being either b or ¢, for
some 0 < n < N; moreover in the summation Z(j) for 0 < j <2, exactly j inputs in
(u,v,w) equal b, and in the summation Z(o) we require that the sum of the three n’s in
the 3y ’s is at least N.

Lastly, uniformly int € [0,1] and k € Zl‘f, we have

Y E(n kG ®) —n(tk)| S L7 (3.9)

0<ny,ny<N
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Proof. The expansion (3.6) is introduced in [12, Sections 2.2.1, 2.2.2], and (3.4) follows
by combining the formulas in [12, Section 5.1]. Equation (3.7) for b is deduced in [12,
Section 2.2.2]. Finally, (3.9) is a qualitative version of Theorem 1.1, which is proved
in Section 12 of [12]. Note that here we are choosing N = |(log L)*] instead of N =
|[log L |, but the proof is not affected as long as (say) N < L3, |

Proposition 3.8. For any couple @, define

8§\ . - )
Kal(t,s, k) = (W) ¢ (@)Zeg/g H TiEadLRutn gp H nin (k).
&

neN* leL*
(3.10)

Here n is the scale of @, {*(Q) = [[ep*(iln), & runs over all k-decorations of @, the
last product is taken over all | € £* with sign +, and & is the domain

& = {t[N*]:0 <ty <ty when 1’ is a child of u;
ta<tformne Nt 1y <sforne N7}, (3.11)
Now suppose @ is a regular couple with scale 2n where n < (log L)°, then there exist
a function (K@ )app(t, 5, k), which is the sum of at most 2" terms such that each term has

the form 8" - §A(t, s) - M (k) (with possibly different § A and M for different terms), and
that

1§ Alx. < (CH". | lsupd |82 M (k)| < (CTY'(k)™***  for each term, ~ (3.12)
pl<40

1K@ (t.5.k) = (Ka@)ap(t. 5. k) | ga0a < (CT8)" LT (3.13)

Similarly, for any regular tree T with lone leaf 1, define

* § n~r~ i )
Jc,,(z,s,k)z(m) Z(J)Z/@ [T @ tman, [T mntko.  (.14)
2

newN le\{l«}

Here n is the scale of T, E('J") = [luen ((8n), Z runs over all k-decorations of @, the
last product is taken over all | € L\{L} with sign +, and D is the domain

D ={t[N]:0 <ty <ty <twhenn'isachildof u; 7(,)r > s} (3.15)

where (14)? is the parent of L. Suppose T has scale 2n where n < (log L)?°. Then there
exists a function (K3 )app (¢, 5, k), which is the sum of at most 2" terms, such that each term
has the form §" - gA*(t,s) - M* (k) (with possibly different §A* and M* for different
terms), and

[gA |x0 < (CH", sup [3°M*(k)| < (CT)"  for each term, (3.16)
|ol<40d
IKF (2, 5.k) = (KFapp(t.5.5) o =< (CTE)"L72. (3.17)

Proof. This follows from [12, Propositions 6.7, 6.10]. Whether the upper bound for 7 is
(log L)® or (log L)*° does not affect the proof (again, as long as n < L5°). n
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4. Gardens

4.1. Structure of gardens
The key concept of this paper is a generalization of couples, which we call gardens.

Definition 4.1. Given a sequence ({1, ..., {2r), where {; € {£} and exactly R of them
are +, we define a garden § of signature ({1, ..., {2r) to be an ordered collection
(71, ..., Tar) of trees such that J; has sign {; for 1 < j < 2R, together with a parti-
tion & of the set of leaves in all 7} into two-element subsets (again called pairings) such
that the two paired leaves have opposite signs; see Figure 4. The width of the garden is
defined to be 2R, which is always an even number. The scale n(§) of a garden § is the
sum of scales of all 7; (1 < j <2R). We denote by £* = £ U --- U £ the set of
leaves and by N* = N7 U --- U Mg the set of branching nodes, where &£; and N; are
the sets of leaves and branching nodes of 7;.

Note that a garden of width 2 is just a couple. If the set {1,...,2R} can be partitioned
into two-element subsets such that for each such subset {j, j’}, the leaves in 7; and T}
are all paired with each other (in particular {;» = —{;), then we say this garden is a multi-
couple. In this case, this garden is formed by R couples (7}, 7;+). If each of them is a
regular couple then we say the multi-couple is regular. A trivial garden is a garden when
all 7; are trivial trees; note that it is always a regular multi-couple (formed by R trivial
couples). If in a garden &, no two trees 7; and 7}, have all their leaves paired with each
other, then we say the garden is mixed.

Definition 4.2. Given a garden §, a decoration of §, denoted by .Z, is a set (ky)neg of
vectors where 1 runs over all nodes of § such that (kn)ne7; is a decoration of J; for each
1 < j <2R, and ky = ky for each pair {n, n’} of leaves. Given vectors (kyq,...,kaR), we
say a decoration is a (kq, . .., kar)-decoration if krj =kj foreach 1 < j <2R, where r;
is the root of 7;. For any branching node n € N *, define Qy as in (3.2); see Figure 4. We
also define € y = ]_[]2-51 €;, where €4 )i is defined as in (3.1), with &; being the restriction
of 7 to 7.

Definition 4.3. Define steps A and B for gardens in the same way as for couples in
Definition 3.4; see Figure 3. Define a garden § to be prime if it is not obtained from any
other garden by performing steps A or B.

Proposition 4.4. For any garden § there exists a unique prime garden 8y such that g is
obtained from Gy by applying steps A and B. This & is called the skeleton of §. Finally,
G is a trivial garden, if and only if '§ is a regular multi-couple.

Proof. The proof is the same as that of [12, Proposition 4.13]. For the convenience of the
reader we present the proof here. Denote the inverse operations of A and B by A and B,
where one collapses a (1, 1)-mini couple or a mini tree to a leaf pair or a single node. To
prove existence of , by definition, one just needs to repeatedly apply A and B until no
such operation is possible.
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agl—| ag+] -] agl—] g+ ag—)

keg[+] k[

as|+| ag|—| g+ agl—|  agl+] as|—)

Fig. 4. An example of a garden (Definition 4.1) of width 4 and scale 7, together with a decoration
(Definition 4.2). The signs of nodes are also indicated; the signature is (+, —, +, —).

To prove uniqueness of Gy, we just make one key observation: if § contains two
basic objects (i.e. (1, 1)-mini couples or mini trees), and we let ]ﬁ)l and ]ﬁ)z be the inverse
operations associated with them, then ﬁl]ﬁz = ]]3)2]13)1. In fact, this just shows that col-
lapsing one of the basic objects does not affect the other, which can be directly verified
by definition.

Now we can prove the uniqueness of i by induction. The base case is easy: suppose
uniqueness is true for § of smaller scale; then for any ¥ we shall look for (1, 1)-couples
and mini trees (Definition 3.4). If there is none then § is already prime; if there is only
one, then we apply A or B to collapse it and apply induction hypothesis for the resulting
garden. Suppose there are more than one, then we apply A or B to collapse any one
of them and apply induction hypothesis for the resulting garden. The final result does not
depend on the first A or B we choose, because any two such steps, which can be performed
for the original §, must commute as proved above. Therefore & is unique. ]

Proposition 4.5. Suppose § is a garden with skeleton . Then § is formed from Gy by
replacing each leaf pair with a regular couple and each branching node with a regular
tree; see Figure 5. This representation is unique.

Proof. The proof is basically the same as that of [12, Proposition 4.14]. To prove exis-
tence, we can induct on the scale of §. The base case § = § is obvious. Suppose the
result is true for §, and let 4 be obtained from § by applying A or B. We know that &
is obtained from & by replacing each branching node with a regular tree 7; (1 < j < n),
and replacing each leaf pair by a regular couple @; (1 < j < m). Then:

(1) If one applies step A, it must be applied either at a leaf pair belonging to some
regular couple @; (1 <i < m), or at a leaf pair belonging to some regular tree 7; (1 <
i < n). In this case the other regular trees and regular couples remain the same, and the
regular tree 7; or regular couple @; is replaced by AT; or A@Q;.
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Fig. 5. A garden whose skeleton is the garden in Figure 4; see Proposition 4.5. Here each J; and Tj’
represents a regular tree, and each @; represents a regular couple.

(2) If one applies step B, it must be applied either at a node belonging to some regular
couple @; (1 <i <m), or at a node belonging to some regular tree 7; (1 <i < n). In this
case the other regular trees and regular couples remain the same, and the regular tree 7;
or regular couple @; is replaced by B7; or BQ;.

In either case, notice that a regular tree or a regular couple still remains a regular tree
or a regular couple after applying step A or B. This proves existence.

Now to prove uniqueness of the representation, note that by Definition 3.4, the process
of forming ¥ from g can also be described as follows: (i) first replace each branching
node of G by a regular chain, forming a garden &,; (ii) replacing each leaf pair in &,
by a regular couple to form §. Given §, clearly G, uniquely determines the regular
chains in step (i), and also uniquely determines the regular couples in step (ii) replacing
the leaf pairs in Gy, so it suffices to show that § uniquely determines §,,. Now we can
show, via a case-by-case argument, that &, contains no nontrivial regular subcouple (i.e.
no two subtrees rooted at two nodes in G, form a nontrivial regular couple). Since § is
formed from §,; by replacing each leaf pair with a regular couple, we see that &, can be
reconstructed by collapsing each maximal regular subcouple (under inclusion) in § to a
leaf pair (because any regular subcouple of ¥ must be a subcouple of one of the regular
couples in § replacing a leaf pair in ). Clearly this collapsing process is commutative
as explained in the proof of Proposition 4.4, hence the resulting couple iy is unique. This
completes the proof. ]

Proposition 4.6. Given any Gy, the number of gardens § that has scale m, width 2R and
skeleton 8y is at most C" 1R,
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Proof. This is basically the same as [12, Corollary 4.16]. If § has scale m and width
2R, then G has scale at most 2 and width at most 2R. Given g, to construct §, using
Proposition 4.5, we just need to choose a regular tree at each branching node of 9, and
a regular couple at each leaf pair of . Note that the number of branching nodes in g
is at most m, and the number of leaf pairs in G is at most m + R. Thus the number of
choices for ¥ is at most

Z C(;” C;’m/ < CerR,

ny+-+n,, <m

where m" = 2m + R, and Cy is an absolute constant as in Proposition 3.5. n

4.2. Expressions Mg for gardens §

Given a garden § = (71, ..., Jor) with width 2R, signature ({1, ..., {3r) and scale m,
and k; € Zl‘f foreach 1 < j < 2R, and time ¢ € [0, 1], define

Mg(lskl, cee k2R)

(2Ld 1) (ﬁ)zey/ [T eméwtt @ntm g, ]_[ D). @)

neN* legL*

Here {*(9) = [[epy*(ln) and € » = ]_[251 €9, where Z; is the restriction of .¥ to T;
(which is a k;-decoration of 7;), the sum is taken over all (ky, ..., kyg)-decorations .7,
the last product is taken over all [ € £* with sign +, and J is the domain

d = {t[N*]:0 < tw < tq <t whenever 1’ is a child of u}. 4.2)

By using Isserlis’ theorem [12, Lemma A.2] and repeating the arguments in [12, Sec-
tion 2.2.3], we can find, for any tree 7; (1 < j < 2R) with sign {;, that

2R
E([T6E)E0) = D Myt kr.... . Kar). (43)
J=1 P
Here the sum is taken over all possible pairings & that make (77, ..., J3r) a garden, and

§ is the resulting garden.

We can reduce (2.9) to the following two propositions. Here Proposition 4.7 is the key
component, and Proposition 4.8 follows from similar arguments. Note also that Proposi-
tion 4.8 is actually an improvement of [12, Propositions 12.1, 12.2], where the decay of
exceptional probability is improved from L4 to e~(og L),

Proposition 4.7. Fix R and ({1, ...,{R) and (ky, ..., kaR) and (my,...,maR). Assume
R <2logL,andmj < N (1 <j <2R), andsetm :=my + ---+ map. Let

S =" Mg(t.ki.... k). (4.4)
g
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where the sum is taken over all mixed gardens § = (71, ..., T2Rr) of width 2R and sig-
nature ({1, ..., LaR) such that the scale of Tj is mj for 1 < j < 2R. Then

|L§ﬂ| < (C+51/4)mL_VR (4.5)
uniformly in t and in (ky,...,kaR).

Proposition 4.8. With probability > 1 — e~ (2 L e have

()i ()] S (k) U(CH VY22’ R (1) S (k)04 (CH/E)N/2elos 1)’
(4.6)
forall0 <n < N3, as well as

||$n||Z—>Z 5 (C+«/g)"/2e(l°gL)3 (47)

forall 0 < n < N, uniformly in any k € Zi andt € [0, 1]. Here R and £ are defined in
(3.8), and the Z norm is defined in (2.13).

Before proceeding, we illustrate how Propositions 4.7 and 4.8 imply Theorem 1.3.

Proof of Theorem 1.3. We only need to prove (2.9). Let E; be the event that (NLS) has
a smooth solution on [0, T], and E C E; be the event that Proposition 4.8 holds.c then
P(E1) = P(E) > 1 —¢~(e D),

Note that, under the assumption E, we can bound the remainder b defined in (3.6) by
6]z < e Cog L)* This can be proved similarly to [12, Proposition 12.3]. In fact, equation
(3.7) satisfied by b can be written as

b=1-LMT1+ZL+ -+ 2V YR+ B(Db.b) +€(b.b.b)). (4.8)

We view this as the fixed point equation for a contraction mapping from the set {b € Z :
6]z < e~ Uoz L)4} to itself, hence the solution b is unique and satisfies the desired bound.
The contraction mapping property follows from the estimates (using also the definition
of 8 and €, see (3.8))

IRz < 20, wo)
Igullz < 25D (V0 < n < N?), 4.10)
[9€+(f.g. Wz < L™ | fllzlgllzlhllz, 4.11)
1L 2oz < 0D (Vo <n < N), (4.12)
11— 2" Mzoz < 2. (4.13)

Here (4.9)—(4.10) follow from (4.6) and our choice N = [(log L)*], (4.11) is elementary,
and (4.12)-(4.13) follow from (4.7), our choice N = |(log L)*] and Neumann series
expansions.

Now, to prove (2.9) we need to calculate

2R
E<1E1 .j]:[l ay/ (;)). (4.14)
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As assumed, we have R < log L. Using mass conservation we can bound |ag; ()| < Lé
for each k;, so if E is replaced by E{\E in (4.14), the corresponding contribution is
bounded by

‘E<1E1\E Ha ([))‘ < P(Ec)deR < e—llogL)? [ 2d log L <1710,

so we may replace Ey by E in (4.14). Under the assumption E, we may expand a; (¢)
using (3.6), which leads to different combinations of terms.

Consider the terms where all factors are of the form . For such factors we will also
replace 1g by 1, and deal with the resulting error term later. Hence, we get a contribution

2R
> E(JT6EmE o). (4.15)
j=1

For fixed (m, ..., maR), using the second expansion in (3.6) and (4.3), we can write

2R
E(TT(n i 009 ) = Y- Motk kar), (4.16)
J=1 g

where the sum is taken over all gardens § = (71, ..., Jor) of width 2R and signature
(¢1,. .., C2R) such that the scale of 7} is m; for 1 < j <2R. Note that by definition, each
§ is uniquely expressed as the union of some couples and a mixed garden; suppose the
number of couples is Ry < R, and R, := R — R;. If R, = 0, then there is a unique

partition & of {1,...,2R} into two-element subsets {j, j'} such that {;; = —; and
{T;,T;+} is a couple for each pair {j, j'}; moreover, for Mg(t,k1,...,kaR) to be nonzero

one must have k; = k. For J fixed, the contribution of this part of sum equals

[T W=, ZeMcz(l kik = T Tty E(Fm)E () (om, oY (),
{.j'}e? {U.j'eP
4.17)
where for fixed {j, j'} € &, the sum is taken over all couples @ = {7}, 7;+} such that the
two trees have signs {; and {;- and scales m; and m;- respectively, and the equality in
(4.17) follows from (4.3). Now, upon summing over all choices for (my,...,m,g) and
using (3.9), we find that this contribution equals

> 1k,_kﬂ“(n(az,k,»)w(r“))

P {j.j'}eP
+
—Z [T W=« ]] )n(5z,k,-)+0(R!Mk{?nL‘”),
P {j.j'eP Y

where in the last inequality we have used 1 + |n (8¢, k)| < Min for each j.
Next, consider the contribution where R, > 0. Up to a factor (; )Rl' < (2R)*R2R|
and a permutation, we may assume {J;_1, 72;} is a couple for R2 4+1<j <Rand
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9 = (T1,...,T2R,) is a mixed garden. Again we must have kp;_1 = kpj for R, + 1 <
j < R;if we fix (my,...,maR,) and sum over the other mj, then in the same way as

above, we can bound the corresponding contribution by

R

CR?FPR! [T (nGt.kaj) + OL™)) Y K, (t.ky.....kary).  (4.18)
j=R>+1 %

where the sum is taken over all mixed gardens &, = (71, ..., T2r,) of width 2R, and
signature ({1, ..., {2Rr,) such that the scale of 7} is m;. By Proposition 4.7 we have

(4.18) < @QR)*2R!- M, - st tmam)/S VR,

Upon summing over (11, ..,Mm2R,) and using R < log L, we can bound this contribution
by the right hand side of (2.9).

Finally, we show that all the remainder terms are bounded by the right hand side
of (2.9). In fact, the above arguments imply that

2R N
E(JTT@¢ )| < Rt-ME. where § =" du:
=1 ! 0
j= n=

in particular, we have

2R

E(]‘[ G, (z>|2) < QR)!- MZE. (4.19)

J=1

Since R < log L, this allows us to control the terms where all factors are of the form ¢,,
but with 1 replaced by 1 — 1g (where we simply apply Cauchy—Schwarz and use the fact
P(E°) < e~ (ogL) 3); similarly, if at least one factor in the expansion is the remainder b,
then we can also apply Cauchy—Schwarz and use the bound |bg ()| < e~(og Ly* together
with (4.19) to control this term. This completes the proof. ]

From now on we will focus on the proof of Propositions 4.7 and 4.8.

5. Irregular chains

5.1. Reduction to prime gardens

Let Gy be the skeleton of a garden &, which is then a prime garden. By Proposition
4.5, 8 can be obtained from Gy by replacing each branching node m with a regular
tree 7, and replacing each leaf pair {m, m’} in ¥y with a regular couple @),
Similar to [12, Section 8.1], using Proposition 3.8, we can reduce Mg (¢, k1, ...,kaR) to
an expression that has similar form to Mg, (¢, k1, ..., kag). For the sake of completeness
we briefly recall the reduction process below.
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Recall that

Mg(l,kl, .. sz)

- (50) ¢ Tes T et g 1% k. 6
neN* lef*
where m is the scale of §, 4 is the domain defined in (4.2), .% is a (kq, ..., kaR)-
decoration and other objects are as before, all associated to the garden §. By definition, the
restriction of .# to nodes in gy forms a (kq, ..., kogr)-decoration of Gy, and the relevant
quantities such as €2, are the same for both decorations (i.e. each 2, in the decoration
of Gy uniquely corresponds to some €2, in the corresponding decoration of ).

Now, let {m, m'} be a leaf pair in g, which becomes the roots of the regular sub-
couple Q) in ¢ We must have ky = kyy. In (5.1), consider the summation in the
variables k, where 1t runs over all nodes in Q@) other than m and (these variables,
together with ky, and ky,/, form a ky,-decoration of C‘Z(m’m/)), and the integration in the
variables t,, where 1 runs over all branching nodes in (Q(m’m/), with all the other variables
fixed. By definition, this summation and integration equals, up to some sign { *(Q )y
and some power of §(2L4~1)1, the exact expression K guw.w) (tmr, fau'yr s k). Here
we assume { = + and {y = —, and m? is the parent of m (if w is the root of some
tree then t,» should be replaced by ¢; similarly for (m")?). The relevant notations here
and below are defined as in Proposition 3.8.

Similarly, let m be a branching node in &, which becomes the root p and lone leaf g
of a regular tree 7 in @. We must have k, = kq. In (5.1), consider the summation
in the variables ky, where 1 runs over all nodes in 7@ other than p and g (these vari-
ables, together with k,, and kg, form a ky,-decoration of 7 (™), and the integration in the
variables t;, where 1 runs over all branching nodes in 7 with all the other variables
fixed. In the same way, this summation and integration equals, up to some sign E(T(m))
and some power of §(2L4~1)~!, the exact expression JC,J’E(m) (tpr . tg, kp). Here p? is the
parent of p (again, if p is the root of some tree then #,,» should be replaced by 7).

After performing this reduction for each leaf pair and branching node of g, we can
reduce the summation in (5.1) to the summation in ky, for all leaves and branching nodes
m of G, i.e. a (kyq, ..., kag)-decoration of Gy . Moreover, we can reduce the integration
in (5.1) to the integration in ty, for all branching nodes m of §y (for a regular tree, the
time variables f,» and t, for § correspond to tyy» and ty, for Gy where m? is the parent
of m). This implies that

8
Mg(t,ky,...,kaRr) = (ﬁ) c* (ﬁk)Z/ €s, l‘[ oinmi-L? Qutn dty
neNy
(+) .
X 1_[ J{Q(m.m’) (tmpa Z(m’)l’a km) 1_[ ‘Ky'(m) (th, I, km)v (5'2)
meLy meN]
where my is the scale of G, Jg is the domain defined in (4.2), F is a (kq, ..., k2R)-

decoration of §, the other objects are as before but associated to the garden . More-
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over in (5.2), the first product is taken over all leaves m of sign + with m’ being the leaf
paired to mt, the second product is taken over all branching nodes m, and m? is the parent
of mt.

Using Proposition 3.8, in (5.2) we can decompose

K@(rn,m’) = (Ka(mvm/))app + %Q(m.m’), ;'(m) = (J{;:(m))app + %;(m)- (5'3)

Here (K ganw))app and (K2 () )app are the leading terms in Proposition 3.8, and each
is a linear combination of functions of (¢, s) multiplied by functions of k, which in turn
satisfy (3.12) and (3.16); the remainders Zgu.w) and %’;(m) satisfy (3.13) and (3.17).

We may fix a mark in {&, R} for each leaf pair and each branching node in &g which
indicates whether we select the leading term (- - )upp or the remainder term % or Z£*;
for a general garden ¥ we can do the same but only for the nodes of its skeleton G.
In this way we can define marked gardens, which we still denote by &, and expressions
of the form (5.2) but with K g/ and K ;‘,(m) replaced by the corresponding leading
or remainder terms, which we still denote by Mg. By definition, any sum of Mg over
unmarked gardens § equals the corresponding sum over marked gardens § for all possible
unmarked gardens and all possible markings.

In the next section we will define the notion of irregular chains to exhibit the cancel-
lation between Mg for some different gardens § with specific symmetries.

5.2. Irregular chains and congruence

The notion of irregular chains for gardens is defined in the same way as for couples (see
[12, Section 8.2]).

Definition 5.1 ([12, Definition 8.1]). Given a garden ¥ (or a paired tree 7), we define an
irregular chain to be a sequence (1, . .., 1y) of nodes such that (i) n; 41 is a child of n;
for 0 < j < g — 1, and the other two children of n; are leaves, and (ii) for0 < j <g —1,
there is a child m; of n; which has opposite sign to 1j 41, and is paired (as a leaf) to a
child p; 41 of nj1 1. We also define py to be the child of 1ty other than 1t and m,.

Definition 5.2 ([12, Definition 8.2]). Consider any irregular chain # = (n,...,n4). By
Definition 5.1, we know p; is the child of nn; other than n; 7 and mj for0 < j < g —1,
thus p; has the same sign as n; (hence it is either its first or third child). Now for two
irregular chains J = (no, ..., 1g) and ¥’ = (ng, ..., ny), with p; and p; etc. defined
accordingly, we say they are congruent if {y, = g"f)’ and for each 0 < j < g — 1, either
p; is the first child of n; and p; is the first child of n’, or p; is the third child of n; and
v/ is the third child of n’, counting from left to right.

In particular, if ¢ and the congruence class (and hence {y, ) are fixed, then an irregular
chain J is uniquely determined by the signs {y; for 1 < j < g. We relabel the nodes
n;,p; (0 <j <q)bydefining {b;,c;} ={n;,p;}, and thatb; =n; ifand only if {n, = +.
Further, we label the two children of 1, other than p, as e and f, with {, = 4+ and s = —.
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Proposition 5.3 ([12, Proposition 8.3]). Let # = (nyg,...,1ny) be an irregular chain. For
any decoration 9 (or &), its restriction to n; (0 < j < q) and their children are uniquely
determined by 2(q + 2) vectors kj, {; € Zi (0<j <q+1) such that ky, = k; and
ke, =4 for0 < j < q, and ke = kq+1 and ks = £;41. These vectors satisfy

ko—z():kl—zl =---=kq+1—€q+1 =Z/’l,

and for each 0 < j < q we have §u; Qu; = 2(h. kj+1 —k;)g. Moreover, €k, kv kn,, =
€kj 1L 4L, Where (W1, 2, n;3) are the children of n; from left to right. We say this
decoration has small gap, large gap or zero gap with respect to J if 0 < |h| < m,
|h| > m or h = 0 respectively.

Definition 5.4 ([12, Definition 8.4]). Let # = (uo, ..., 1ny) be an irregular chain con-
tained in a garden § or a paired tree 7. If we replace J# by a congruent irregular chain

= (g, - - ., 1), then we obtain a modified couple §’ or paired tree T by (i) attaching
the same subtree of e and f in & (or 7) to the bottom of ¢’ and ', and (ii) assigning to 1
the same parent of 119 and keeping the rest of the couple unchanged.

Given a marked prime garden &y, we identify all the maximal irregular chains # =
(1o, ..., 1ng) such that ¢ > 103d, and all n 7 and their children have mark £. For each
such maximal irregular chain J, consider #° = (us, ..., ny_s) formed by omitting five
nodes at both ends (so that it does not affect other possible irregular chains). We define
another marked prime couple gsk to be congruent to Gy if it can be obtained from G
by changing each of the irregular chains J€° to a congruent irregular chain, as described
above.

Given a marked garden §, we define g to be congruent to § if it can be formed
as follows. First obtain the (marked) skeleton & and change it to a congruent marked
prime couple ﬁsk Then, we attach the regular couples @™ ) and regular trees 7
from § to the relevant leaf pairs and branching nodes of €. Note that if an irregular
chain #° = (uo, ..., ny) in Gy is replaced by (#°)" = (g, ..., 1) in G, with relevant
nodes m;, p; etc. as in Definition 5.1, then for 0 < j < = q— 1 the same regular couple
QP +1) js attached to the leaf pair {m v ‘ 41} in k. Similarly, for 1 < j < gq, if

é’n// = {u, then the same regular tree T(nf) is placed at the branching node v’ - in Guc:

otherwise the conjugate regular tree 7 /) is placed at n}
Note that the congruence relation preserves the scale of each tree of a garden, i.e. if
= (71,...,TR) and g = (Jl, .. J2R) are congruent, then the scale of 7; equals the

scale of 7} for 1 <j <2R.

5.3. Expressions associated with irregular chains

We shall analyze the expressions associated with irregular chains, in the same way as in
[12, Section 8.3].
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Given one congruence class % of marked gardens as in Definition 5.4, consider the
sum
> Mg(t.ky.... kar). (5.4)
§eF
which is taken over all marked gardens § € % . Let the lengths of all the irregular
chains J¢° involved in the congruence class .%, as in Definition 5.4, be ¢y, ..., ¢q,. Then
|.Z| =22 where Q = g1 + --- + g, Since these irregular chains do not affect each other,
we may focus on one individual chain, say #° = (ny, ..., 1, ); that is, we only sum over
9 € .7 obtained by altering this irregular chain #°.

In the summation and integration in (5.2), we will first fix all the variables ky and t,,,
except ky withn € {n;,p;, mj_1}(1 < j <g)andty withn =n; (1 < j <g—1),and
sum and integrate over these variables. Note that we are fixing ky, and ky, as well as
ke and k¢, in the notation of Definition 5.2, and are thus fixing (ko, £o, kg41,€4+1) and
ko — 4o = kg+1 — L4+1 = h as in Proposition 5.3. It is easy to see that in the summation
and integration in (5.2) over the fixed variables (i.e. those ky and ¢, not in the above list),
the summand and integrand do not depend on the way J° is changed, because the rest of
the couple is preserved under the change of #°, by Definition 5.4.

We thus only need to consider the sum and integral over the variables listed above.
By Proposition 5.3, this is the same as the sum over the variables k; (1 < j < ¢q), with
£; := kj — h, and integral over the variables ¢; := In; (1 < j < g — 1), which satisfies
to> 11>+ >t4—1 >1lg Withfg := ty, and 14 := ty,,. For any possible choice of #° (there
are 27 of them), the sum and integral can be written, using (5.2) and Proposition 5.3, as

5 qg 4 q
) / (W) [Tee) [Temen
4 o>t >>tg—1>1g

Jj=1 Jj=0

q q
% l_[ o2mi8L2 (k) 1—k)) pt) 1_[ K; 300 .J{]’_’;%o dty - dty—1.  (5.5)

j=0 j=1
Here we have
JCJ"J(O = J(j(lj,tj_l,kj —/’l), cht;(o = chfk(lj_l,tj,kj)

if {n;, = +, and

JCJ"J{O = Kj(lj_l,lj,kj), ;:J{o = JC;(lj_l,lj,kj —h)

if {n; = —, where Kj = (K g, .m;_))app and JC;‘ = (JC;(H_/_))app where 7 @) is chosen
to have sign +; note that if 7 is the regular tree conjugate to 7 then JCJ; = JC_;L, and the
same holds for the leading contribution (- - - )4pp.

Note that to calculate the above-mentioned contribution (i.e. the sum (5.4) with only
H° altered), we need to sum over all possible choices of #H° (i.e. all possible choices
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of {n; (1 < j < g)), in addition to the summation and integration in (5.5). This results in
the expression

Z (5.5) = some function of (kg £o, kg+1,Lg+1.%0.14)- (5.6)
tn; {1 (1<j=q)
Now (5.6) is exactly the same expression that is explicitly calculated in [12, Sections

8.3.1, 8.3.2], so we shall take the results of such calculations from [12] and apply them
below. There are three cases depending on the value of & := ko — £.

(1) The zero gap case (h = 0): This is very easy, as we have k; = {;, so in view of the

€kj414;41¢; Tactors we must have ky = --- = kg = ko, so the expression (5.5) gains
a large negative power of L, and can be treated in the same way as the small gap term
below.

(2) The small gap case (0 < || < (1008L)~1): We have

1
(5.6) = (C+5)mwt(l'5/2)q / / G(A)j)(/l, 0, ko, EO) -8(to — tg — G)eni8L2s2*zq
RJO
x e Madod).  (5.7)

Here m is the sum of the scales of all regular couples (,‘Z(pj 1) and regular trees
Ttn)» 1= lkg41l3 — g+115 + [€ol3 — lkol7, and the functions G and & satisfy

1
HAYBG 0 < (Y™, sup / 1Pk 0.ko, L) do S L4, (5.8)
Ako,Lo /0

(3) The large gap case (|h| > (1008L)~1): We have the same expression (5.7) and the
same bound (5.8), but the factor L ~*%¢ on the right hand side of the second inequality
of (5.8) should be replaced by 1.

Below we will ignore the zero gap case. In the other two cases, we define the new
marked garden g as follows. In the small gap case, and in the large gap case assuming
also ko # kg+1, we remove the whole chain #° by setting (po. e, f) (see Definition 5.2)
to be the three children nodes of 1y, with the order determined by their signs and the
relative position of pg, and remove the other nodes (i.e. (1, p;) for 1 < j < g and m;
for 0 < j < g — 1). In the large gap case assuming ko = k441, we must have ko # kg
since kg # kg1 in view of the factor e, ¢, ¢, in (5.5), so in this case we remove the
chain (ng, ..., ng—1), which is the chain J¢° minus one node, in the same way as above.

In either case, denote the scale of §5 by mg. Note that §5 does not depend on the
choice of F#° in the fixed congruence class (except in the large gap case, where this
dependence does not matter), and for the decoration of 5 coming from the decoration
of g, we have {y, 2y, = Q™ for each choice of #°. Then, we can reduce the expression

S M (k... kar) (5.9)
g
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using (5.7), where in (5.9) the sum is taken over all marked gardens § formed by altering
the irregular chain #° in G, and () represents either “sg” or “lg”, where we restrict to
the small gap or large gap case. In fact, using (5.7) we have

s
i)

1
X/RG()L)d)L/O do-Z/Jlfejgf-?(A,a,ko,ﬁo)

IR
x erri)ttno l_[ eé'nzri~8L29utu dln
ne(W)*
(+)
X l_[ K@(m,m’)(lml’, Ly, k)

me(L3)*

<[] Kot twm. k). (5.10)

me(Ng)*

(5.9) = (CT§)™(i8/2)9 - (

Here the sum is taken over all (k1, ..., kog)-decorations Z; of ¥, and the other nota-
tions are all associated with ﬁ;, except J; ; and € 755 instead, for fj( we add one extra
condition tné’ > ty, + o (where n{)’ is the parent of 1g) to the original definition (4.2). As
for € ;<. in the “sg” case we remove one factor €, iy, kny, (Where 1o are the children
of gy from left to right) from the original definition (3.1), while in the “lg” case we set it
to be the same as € g= Moreover, the variables (ko, £¢) are defined as in Definition 5.3,
and the functions G and & etc. are as in (5.7); they satisfy either (5.8) or the alternative
version in the “Ig” case. We also insert the corresponding “sg” or “lg” cutoffs restricting
to 0 < |h| < 1/(1008L) or || > 1/(1008L) in (5.10). Finally, in the functions JC;L(HO)
and K g for the leaf pair {m, m’} containing po, the input variable #,, should be
replaced by ty,, + 0.

Remark 5.5. In the small gap case, due to the absence of €k, |k, kuy, 1N €s<» in
the summation in (5.10), the decoration (k,) may be resonant at the node ngy (i.e.
(kg » kugs - kngs) € ©, see (2.6)), but it must not be resonant at any other branching node.
This resonance may lead to an (at most) L*¢ loss in the counting estimates in Proposi-
tion 6.8, but this can always be covered by the L4 gain from £ in (5.8). See Remark
6.9 for further explanation.

5.4. Summary

Now we may repeat the reduction described above for every irregular chain #° in g,
noticing that these irregular chains do not affect each other, in the same way as in [12, Sec-
tion 8.4]. Let ﬁs’i be the marked garden obtained by removing all the irregular chains #°
from G as described above in Section 5.3. This does not depend on the choice of § in
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the fixed congruence class, nor on the choice of § € .#. We then have

my
ch=@or () T
x/ G(A)da d"Z/,. ej#?(l,a,k[gi])l_[e”“““t"
R [o.1J2 % noot nes
Enmi-8L?Quty (+)
x 1_[ ¢ dtx 1_[ J{a(m.m’)(lml’,t(m/)p,km)
ne(NH* me(Lh)*
* T K etk (5.11)
me(ND)*

Here m6 is the scale of ﬁ:f( and m is the sum of all the m and ¢ in (5.10), the summa-

tion is taken over all k-decorations ﬂjf( of ﬁi, and the other notations are all associated
with ﬁﬁ(, except jfk; instead, for jfk we add the extra conditions fy» > ty + oy (Where
n? is the parent of 1) to the original definition (4.2), for n € E, where E is a subset
of the set (N¥)* of branching nodes. The vector parameters are A = A[E] € RE and
o = o[E] € [0, 1]¥ respectively, and k[g%] is the vector of all the ky’s. The functions

G(A) and P (A,0,k[E1]) satisfy the bounds

HH(An)I/ISGHIS(CJr)’”, sup/ 1P(A. 0. k[@\])]de < 1. (5.12)
nes L Akl@t] /10112

We also insert various small gap or large gap cutoff functions, and some input variables in
some of the K gm.w) or K3, functions may be translated by some oy, in the same way

*

T ()

as in (5.10). Finally, the function € 4 may miss a few e, K, factors compared to
L—40d

Ky ks
the original definition (3.1), but for each such missing factor we can gain a power
on the right hand side in the second inequality in (5.12).

At this point, we may expand the functions K g .w) and JC,J’E(m) (or their leading
or remainder contributions) using their Fourier L' (or X, .) bounds, and combine the K
factors and the J# factor in (5.11) to further reduce to the expression

m—m, k) m;)
=" F () e

x G(A)dA - i tus) / do / € gt
/RAX]R2 [0,1]8 % 'ka "

x [ ebnmidL Qutn TT e utn dry - Xio(A. 0, k[F4]). (5.13)

neA neA

Here the set A = (N¥)* and A = (A[A], A, n) € RA x R2, the function G is different
from the one in (5.11), but still satisfies the same first inequality in (5.12) with weights in A
and p also included. Using the second inequality in (5.12), the X bounds for K g u.m)
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and JC,;",(m) and their components, and the definition of markings £ and &, we deduce
that the function X satisfies

(Jr) — —2VF
| FaGokigihiar =[] G000 L2 s
[0.11 re(ef)*

uniformly in A, where ry is the total number of branching nodes and leaf pairs that are
marked 9 in the marked garden &% . In (5.14) we can also gain a power L~%% per missing

factor €k, iy, in € 4+, as described above.

Ky kn

Note that the garden ﬁﬁ( is still mixed, and prime. Moreover, by definition, it does
not contain an irregular chain of length > 103d with all branching nodes and leaf pairs
marked &. In particular, if ro is the number of branching nodes and leaf pairs that are
marked 3, ry, is the number of maximal irregular chains, and Q is the total length of

these irregular chains, then we have
Q < C(ro + Fin)- (5.15)

Based on this information, as well as the first inequality in (5.12) and (5.14), we will
establish an absolute upper bound for the expression (5.13). This will be done in the
following two sections.

6. Gardens and molecules

Definition 6.1 ([12, Definition 9.1]). A molecule M is a directed graph, formed by ver-
tices (called atoms) and edges (called bonds), where multiple and self-connecting bonds
are allowed. We will write v € M and £ € M for atoms v and bonds £ in M; we also
write £ ~ v if v is an endpoint of £. We further require that (i) each atom has at most
two outgoing bonds and at most two incoming bonds (a self-connecting bond counts as
outgoing once and incoming once), and (ii) there is no saturated (connected) component,
where connectedness is always understood in terms of undirected graphs, and a compo-
nent is saturated if it contains only degree 4 atoms. For a molecule M we define V' to be
the number of atoms, E the number of bonds and F the number of components. Define
x=E—-V+F.

Definition 6.2 ([12, Definition 9.3]). Given a garden , define the molecule M associated
with &, as follows. The atoms of § are all the 4-element subsets formed by a branching
node in n € N™* and its three children nodes. For any two atoms, we connect them by a
bond if either (i) a branching node is the parent in one atom and a child in the other, or
(ii) two leaves from these two atoms are paired with each other. We call this bond a PC
(parent-child) bond in case (i) and an LP (leaf-pair) bond in case (ii). Note that multiple
bonds are possible, and a self-connecting bond occurs when two sibling leaves are paired.

We fix a direction of each bond as follows. If a bond corresponds to a leaf pair, then it
goes from the atom containing the leaf with a — sign to the atom containing the leaf with
a + sign. If a bond corresponds to a branching node n that is not a root, suppose n is the
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Fig. 6. The molecule associated with the garden ¥ in Figure 4. Here atoms 1-4 correspond to
branching nodes k1—k4, and atoms 5-7 correspond to branching nodes £1—{3 in §.

parent in the atom v; and is a child in the atom v,, then the bond goes from vy to v, if nt
has a + sign, and go from v, to v; otherwise. See Figure 6 for an example.

Proposition 6.3. Let § be a mixed garden of width 2R and scale m. Then for the molecule
M associated with '§ as in Definition 6.2, we have y <m — R/2.

Proof. Let§ = (77,...,TR). By definition of mixed gardens we know that no 7; and 7}
have their leaves completely paired. For the molecule M, clearly the number V' of atoms
is m, since each atom in M corresponds to a unique branching node in §. Moreover,
the number E of bonds is 2m — R. This is because each bond corresponds to either a
unique nonroot leaf pair or a nonroot branching node. The total number of leaf pairs and
branching nodes (including roots) is (m + R) + m = 2m + R, but each root should be
subtracted once (it should be excluded from the set of branching nodes if it is a branching
node, and should be excluded from the set of leaf pairs if it is a leaf and is paired to
another leaf), and only once (because there do not exist two roots that are both leaves and
are paired to each other). This implies £ = 2m — R as there are 2R roots.

Finally, forany 7; (1 < j <2R), let S; be the set of atoms corresponding to branching
nodes in 7;. Then M is the union of all §; (1 < j < 2R). By definition all atoms in §;
are connected to each other. Moreover, if some leaf in 7} is paired to some leaf in 7}/
then S; and §;- are also connected to each other. Since the leaves in the union of any odd
number of trees 7; cannot all be paired with each other (since each J; has an odd number
of leaves), and also that the garden does not contain two trees 7; and J7; with their leaves
completely paired, we know that any connected component in M must be the union of at
least four S;, in particular ' < R/2. This impliesthat y = E—V + F <m—R/2. =u

Proposition 6.4. Fix m and R. Given any molecule M of m atoms, the number of gar-
dens § of width 2R and scale m that corresponds to M in the sense of Definition 6.2 is at
most (CR)!C™.

Proof. This is basically the same as [12, Proposition 9.6]. For each atom v € M, each
bond £ ~ v corresponds to a unique node n in the 4-node subset corresponding to v. We
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may assign a code to this pair (v, £) indicating the relative position of u in this subset (say
code 0 if 1t is the parent node, and codes 1, 2 or 3 if nt is the left, mid or right child node).
In this way we get an encoded molecule which has a code assigned to each pair (v, £)
where £ ~ v. Clearly if M is fixed then the corresponding encoded molecule has at most
CcmtR possibilities, so it suffices to reconstruct § from the encoded molecule.

In fact, if the encoded molecule is fixed, then the branching nodes of ¥ uniquely cor-
respond to the atoms of M. Moreover, the branching node corresponding to v, is the a-th
child of the branching node corresponding to vy, if and only if v, and v, are connected by
a bond £ such that the codes of (vq, £) and (v,, £) are o and O respectively. Next, we can
determine the leaves of § by putting a leaf as the a-th child for each branching node and
each «, as long as this position is not occupied by another branching node; moreover, the
a-th child of the branching node corresponding to vy and the B-th child of the branching
node corresponding to v, are paired if and only if v; and v, are connected by a bond £
such that the codes of (v1,£) and (v,, £) are « and B respectively.

Finally, note that a node n is a root if and only if it is not a child of any other node,
so we can uniquely identify the roots of the trees. Permuting these 2R roots leads to at
most (CR)! choices, and once a permutation is fixed, the garden § will also be fixed as
the structure of each tree, as well as the leaf pairing structure, has been fixed as above.
This gives at most (CR)!C™ possible choices for §. Note that if one of the trees in § is
trivial, then the reconstruction will be slightly different, but this does affect the result. m

Definition 6.5 ([12, Definition 9.7]). We define the type I and type Il (molecular) chains
in a molecule M, as in Figure 7. Note that type I chains are formed by double bonds, and
type II chains are formed by double bonds and pairs of single bonds. For type I chains,
we require that the two bonds in any double bond have opposite directions. For type 11
chains, we require that any pair of single bonds have opposite directions; see Figure 7.

Type I molecular chain

Type II molecular chain

Fig. 7. The two types of molecular chains. For type II, the single bonds of the same color are paired
single bonds, and must have opposite directions.
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Given a molecule M, the main subject of this section is the following counting prob-
lem associated with M, similar to [12].

Definition 6.6 ([12, Definition 9.8]). Given a molecule M and a set S of atoms. Suppose
we fix () ag € Zi for each bond £ € M, (ii) ¢, € Zl‘f for each (nonisolated, same below)
atom v € M, assuming ¢, = O if v has degree 4, (iii) [, € R for each atom v, and (iv)
fo € Zl‘f for each v € S with d(v) < 4. Define ®(M) to be the set of vectors k[M] :=
(k¢)¢em such that each ky is in Zi and |ky —ay| <1, and

Dtucke=co. D Gulkel3 — T = 57L72 (6.1)

{~v {~v

for each atom v. Here the sum is taken over all bonds { ~ v, and ¢, ¢ equals 1 if £ is
outgoing from v, and equals —1 otherwise. We also require that (a) the values of k; for
different £ ~ v are all equal given each v € S, and this value equals f, if also d(v) < 4,
and (b) for any v ¢ S and any bonds {1, £, ~ v of opposite directions (viewed from v),
we have kg, # ky,. Note that this actually makes © depending on S, but we will omit
this dependence for simplicity. We say an atom v is degenerate if v € S, and is tame if
moreover d(v) < 4.

In addition, we may add some extra conditions to the definition of ©D(M). These
conditions are independent of the parameters, and have the form of (combinations of)
(ke, — k¢, € E) for some bonds £1, ¢, € M and fixed subsets E C Z¢. Let Ext be
the set of these extra conditions, and denote the corresponding set of vectors k[M] by
D (M, Ext). We are interested in the quantities sup #O (M, Ext), where the supremum is
taken over all possible choices of parameters (ag, ¢y, Iy, fo).

Remark 6.7. The vectors k[M] will come from decorations of the garden & from which
M is obtained. In fact, if k[€] is a (ky, ..., kog)-decoration of G, then it uniquely corre-
sponds to a vector k[M]. Let v € M be an atom corresponding to a branching node n € §.
Then d(v) = 4 unless u is the root of some 7}, or some other J; is a trivial tree paired
with a child of n (there may be more than one such 7).

It is easy to check, using Definitions 3.3 and 6.6, that the following holds. If d(v) = 4
then >, , Cyeke =0,and ), _, é‘v,g|ke|§ = —{uQy. If d(v) < 4, then the right hand
sides of the above equations should be corrected by suitable algebraic sums of k; and
(or) k;, and |k; |§ and (or) |k; |/29 where j and i are associated with n as stated above.
Note that all these k; and k; are fixed when considering the decoration k[§]. Moreover,
if (ku,.kn,.kns) € ©, then either the values of k; for different £ ~ v are all equal (and
this value equals k; if d(v) < 4 where j is as above), or for any bonds £, {, ~ v of
opposite directions we have kg, # k¢,. Note that a degenerate atom corresponds exactly

to a branching node n for which €, k. k,, = —1.

Proposition 6.8. Let M be the molecule associated with a mixed garden § of width
2R and scale m, where R, m < (log L)?°. Suppose also that M does not contain any
triple bond. Then D(M) is the union of at most C™ subsets. Each subset has the form
D (M, Ext), and there exist 0 < r < m and a collection of at most C(r + R) molecular
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chains of either type I or type Il in M such that (i) the number of atoms not in one of these
chains is at most C(r + R), and (ii) for any type II chain in the collection and any two
paired single bonds (£1,4{5) in this chain (see Figure 7), the set Ext includes the condition
(ke, = kg,). Moreover,

m+mq

sup #O(M, Ext) < (CHy"s—— =z L@-Dn=R/2)—2vr (6.2)

where m is the number of atoms in the union of type I chains.

Remark 6.9. In view of Remark 5.5, in Definition 6.6 we may also fix some set S* of
atoms such that neither (a) nor (b) is required for v € S*, but we are allowed to multiply
the left hand side of (6.2) by L—404"IS *I. In this way we can restate Proposition 6.8 appro-
priately, and the new result can be easily proved with little difference in the arguments,
due to the large power gains. For simplicity we will not include this in the proof below.

Proof of Proposition 6.8. The proof is basically the same as the proof of [12, Proposi-
tion 9.10]. We define the same steps as in [12, Section 9.3], including the good and normal
steps, and apply the same algorithm as in [12, Section 9.4]. Let the total number of good
steps in the process be r > 0 (we may assume r < m up to a constant because the total
number of steps is at most O(m)), then we may repeat the proofs in [12, Section 9.5]. The
only difference here is the initial state of the molecule (as M is obtained from a mixed
garden rather than a couple), but in the current case we still have V4 + F = O(R),
where V.4 and F are the number of atoms with degree < 4 and the number of connected
components and the constant in O depends only on d.

Note that in [12, proof of Proposition 9.10], the quantities that are monitored include
V,E,F,V;for0< j <4 (the number of atoms with degree j), I/;* (the number of degree
2 atoms with two single bonds), and & (the number of “special bonds” connecting two
degree 3 atoms that have a special form [12, Definition 9.12]). Since V.4 + F = O(R),
it is clear that at the beginning, the value of each of these quantities in the current case
is the same as in [12], up to errors of size O(R). Thus, the same proof as in [12] shows
that M contains at most C(R + r) type I or II molecular chains, such that the number of
atoms not in one of these chains is at most C(R + r). Moreover,

sup #O(M, Ext) < (CHyms—* L@V,

where « and y are calculated retrospectively from the algorithm, as described in [12,
Section 9.2]. The calculation for « is the same up to O(r) errors, so we have k = %
up to errors O(R + r) which are acceptable. To calculate y, note that in [12] we are
actually calculating y — y, and the same proof yields (d — 1)(y — x) < —2vr for the

initial molecule. Now by Proposition 6.3 we know y < m — R/2, hence

m+2ml L(d—l)(m—R/Z)—Zvr’

sup #D (M, Ext) < (CT)"§™

as desired. [
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7. L1 coefficient bounds

We now return to the study of the expression (5.13). Let ﬁ:{( and (rg, ;y) be as in Sec-
tion 5.4. For simplicity, in this section we will write §% simply as &, and the associated
sets (NF)* as N* etc. Recall, by (5.15), that the total length of the irregular chains in §
is at most C(rg + rir). Let E be a subset of N *. We may define, as in (5.13), the function

‘ng(t,s,o,oz[e/\/*])=/~ 1—[ eTiontn qp (7.1)
d

neN*

where 0 = o[E] € [0, 1]%, and the domain J is defined as in (4.2), but with the extra
conditions tyr > ty + 0y for n € E, where n” is the parent of n. Let my, be the scale
of §. We can write

m—m, b)) m6 .
(5.13) = (CT8) = [ —— ;*(g)/ G(A) - eTit1s) dA/ do
2041 RN * xR?2 [0,1]5
x Y € Ug(t.5.0. (BL2CaQu + An)new+) - X (A, 0. k[5)). (7.2)

B4

Let M be the molecule associated with § as in Definition 6.2. It is easy to see that
M contains no triple bond, as triple bonds in Ml can only come from (1, 1)-mini couples
and mini trees (as in Definition 3.4) in §. By the proofs in Section 6, we can introduce at
most C™o sets Ext of extra conditions such that the summation in .# = k[§] in (7.2) can
be decomposed into the summations with each of these sets of extra conditions imposed
on k[§]. Moreover, for each choice of Ext thereis 1 < r; < n6 such that the conclusion
of Proposition 6.8, including (6.2), holds true (with r replaced by ry).

Notice that a type I chain in Ml can only be obtained from either one irregular chain,
or the union of two irregular chains in §; for couples this can be proved in the same way
asin [12, Section 10.1.2] (which deals with type II chains), and the same proof works also
for gardens. Therefore, the total length p of type I chains in M is bounded by the total
length of irregular chains in &, which is at most C(r¢ + riy;). However, each irregular
chain in § also corresponds to a type I chain in the base molecule, so ry; < C(r; + R),
hence p < C(r + R), where r = r¢ + ry. This means the number of atoms in M that are
not in one of the (at most C(r + R)) type II chains is at most C(r + R).

Now, suppose 1t and 1" are two branching nodes in § which correspond to two atoms
in M that are connected by a double bond in a type II chain. Then we must have £y Q=
—Cn 2y under the extra conditions in Ext (see Remark 6.7). In fact, we will restrict {n, n’}
to the interior of this type II chain by omitting five pairs of atoms at both ends of the chain,
in the same way as in Definition 5.4. Then, we make such {un, n’} a pair, and choose one
node from each such pair to form a set NehIf it happens that one of {u, n’} is a parent
of the other, we assume the parent belongs to Neh. Let N™ be the set of branching nodes
not in these pairs, and define N = Nhy ym,

We will be interested in estimates of the function Ug in (7.1) where ay =
SL%t4Qu + Ay, which means that ay + o = py for each n € N~°h, where 1’ is the
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node paired to 1 and pty = Ay + Ay is a parameter depending on A. Under this assump-
tion on ¢y, we can write

Ug(t,s,0,a[N*]) = Vg(t,s,0,a[N]) (7.3)

for some function Vg. This function actually also depends on the parameters u, for
n € N, but we will omit this for notational convenience. We then have to prove the
following.

Proposition 7.1. Suppose § has scale my. For each n € N, suppose that Sy C Z and
#S. < L% Then, uniformly in (t, s), in the choices of (Sn) e > and in the parameters

(Mu)neﬁch’ we have

AT sup  sup |Vg(t.5.0. a[N])]

(My):mu €S (an): lon—myl<l @

< (C+)m6LC(r+R)«/g(log L)C(H_R), (7.4)
wherer =rg + r1.

Proof. The proof is exactly the same as in [12, proof of Proposition 10.1], except that all
the “couples” should be replaced by “gardens”. The reason is that the proof in [12] goes
by induction; moreover, in each inductive step we remove either two branching nodes or
one chain containing modules A and B (see [12, Sections 10.1, 10.2]). In either case this
step involves at most two trees and the other trees are not affected, so the proof is the same
for couples and for general gardens.

In the proof in [12] we have also introduced the simpler structures (for the purpose of
induction) of unsigned couples and double trees, which are naturally replaced by unsigned
gardens and multi-trees (the collection of 2R trees with some branching nodes paired,
compared to two trees in [12]). The rest of the proof is exactly the same. Note also that
the exponents Cr in [12, Proposition 10.1] are replaced by C(r + R) because the number
of type II chains in M, as well as the number of atoms not in one of these chains, is now
C(r + R) instead of Cr due to Proposition 6.8. |

8. Proof of Theorem 1.3

In this section we prove Propositions 4.7 and 4.8, which completes the proof of Theorem
1.3.

8.1. Proof of Proposition 4.7

Note that if § and §’ are congruent in the sense of Definition 5.4, then they have the same
width, the same signature, and the same scale for each of their component trees; moreover,
¢’ is mixed if and only if € is mixed. Thus, the sum in (4.4) can be decomposed into
different terms, where each term has the form (5.4) for one congruence class .%.



Propagation of chaos and higher order statistics in wave kinetic theory 715

For any fixed .%, consider (5.4), which then equals (5.13) and (7.2). Note that in (7.2),
§ actually means ﬁ:f( in our notation. Using the decay factors in (5.14) we can restrict
to the subset where |k; — ar| < 1 (VI € (£%)*) for some fixed parameters (ar), with
summability in (ay) guaranteed. Using the first inequality in (5.12), we may also fix the
value of A (and hence py).

As in Section 6, by decomposing into at most C My terms (where my is the scale
of ﬁﬁ(), we can add the set Ext of extra conditions, which also defines the sets N (as in
Section 7), etc., and the value r; > 1. Let r = ro + rq as above. Then thanks to Ext, we
can use (7.3) to reduce ‘ugi to Vg:; . Moreover, for each n € N , the value L2, Qyq + An

belongs to some subset of R of cardinality at most L3¢, as k[§%] varies (because each ky
belongs to a ball of radius at most n < (log L)2° under our assumptions). In particular,
the value my = |§L204Q2u + An| belongs to a set Sy C Z of cardinality at most L3¢, for
all possible choices of k[§%].

To estimate (7.2) with A fixed, we first integrate in o. Using (5.14), we can estimate
(7.2) using
. 8.1

> lest] - sup [ Vge (t,5,0, (BL*CaQu + An) e )
st ?
where ¥ = k[§%] is a k-decoration of §% (we also have additional factors that will be
collected at the end). We next fix the values of my € Sy for each u; note that then

sup\'Vgg((t,s,a,(SLzé’nQn +/\u)n€[,)| < sup sup|'Vg:;((t,s,a,oz[</\7])|
o

(an): lan—myu|<1 @

by definition, so if we use (7.4) to sum over (my,) in the end, we can further estimate (8.1)

using
Z lesgl- H Li—ar<1 1_[ Lo, —by|<s-11-2 (8.2)

I t A

where ay and b, are constants, and we also include the conditions in Ext. Now (8.2)
is almost exactly the counting problem ® (M, Ext) stated in Definition 6.6, due to
Remark 6.7, except that we only assume |ky — ay| < 1 for leaves [. However, for any
branching node n there exists a child n’ of n such that ky, & ky belongs to a fixed ball
of radius pg, (with py defined Lemma 3.6), so by using (3.3), one can reduce (8.2) to
at most C™0 counting problems, each of exactly the same form as © (M, Ext) in Def-
inition 6.6. Therefore, (8.2) can be bounded using Proposition 6.8 (and Remark 6.9 if
necessary). Collecting all the factors appearing in the above estimates, we get

|(54)| < (C +)m8(m—m6)/283m6/4L—(d—1)m(’)L—2vr0
% LC(r+R)JE(IOg L)CO+R g=(my+a)/2 1 (d=1)my=R/2)=2vry (8.3)
which is then bounded by (Ct§'/4)m [ =3V +R)/2§-4/2 where ¢ is the total length of

type I chains in the molecule obtained from @ . We know ¢ < C(r 4+ R) so §7¢ 12 <
LY0+R/2 which implies that

1(5.4)] < (C+81/4)mL_V(r+R). (8.4)
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Finally, suppose we fix r. Then the molecule associated with ﬁf{( (see Definition 6.2)
is, up to at most C(r 4+ R) remaining atoms, a union of at most C(r + R) type II chains
with total length at most my,. This clearly has at most (C(r + R))!C™ possibilities. By
Proposition 6.4, the number of choices for gﬁ( is also at most (C(r + R))!C™. To form
G« from % one needs to insert at most C(r + R) irregular chains with total length at
most m, which also has at most C™ possibilities. Finally, using Corollary 4.6, we see that
g has at most (C(r + R))!C™ choices. The number of choices for markings, as well as
Ext, are also at most C™ and can be accommodated. This means that if we decompose
(4.4) into terms of the form (5.4), then further decompose by markings and/or Ext etc.,
then each resulting term has an index r > 0 such that each term of index r is bounded
by (CH§V/4ymL=v0+R) (see (8.4)), and the number of terms with index r is at most
(C(r + R))!C™. Therefore

m
(44) = Y (CHVHm LR (i 4+ R)ICT < (CHSYHmLTR (85)
r=0

because in any case r + R is bounded by a power of log L, which is <« L”. This completes
the proof of Proposition 4.7.

8.2. Proof of Proposition 4.8

The proof is almost identical with the corresponding proofs in [12], which we briefly
present here.
First, by Chebyshev’s inequality, to prove (4.6) it suffices to show that

E ‘S;lp (k)* (%)k(t)‘2 < (CHVE)r Lo (8.6)
N4
and 5
E ’s]:lp (k)°4 Jzk(z)‘ < (CHV/EN100d, 8.7)
St

Note that due to our choice N = |(log L)*] instead of N = |log L |, the proof of (4.6)
is conceptually easier than in [12] as we do not need the hypercontractivity property [12,
Lemma A.3] or the higher moment estimates.

Now, to prove (8.6), we argue as in [12, proof of Proposition 12.1] (but with p replaced
by 2), and apply the Gagliardo—Nirenberg inequality to bound the left hand side of (8.6),
up to a multiple L9 by

sup (k)2 (B | ()i (O + E [0, (dn)k (O)?),

St

which is then bounded by (Ct+/8)” L% in the same way as in [12]. In fact, the bound
for E |($n)x (t)|? is as in [12, Proposition 2.5] (again our choice N = |(log L)*] here
does not affect the proof), while the bound for E |9, ()« (¢)|? is as in [12, (12.4)], which
is proved by similar arguments. This settles (8.6). The proof of (8.7) is the same, except
that ¢, is replaced by R and 7 is replaced by N.



Propagation of chaos and higher order statistics in wave kinetic theory 717

Finally, to prove (4.7), again by Chebyshev’s inequality, it suffices to show that the
kernel (£ ”)Ii (&, 5) of the R-linear operator £ (with { € {+} indicating the linear and
conjugate linear parts) can be decomposed as

(@)= > (@)

n<m<N3

and that for each n < m < N3, the kernel (.f”)ff(t, s) satisfies

2
Elsup sup (k— €)% (L"), s)‘ < (CT/Eym L1004 (8.8)
k4 0<s<t<l1
Now the decomposition is provided as in [12, Proposition 11.2], and (8.8) is proved as in
[12, proof of Proposition 12.2] (in particular, this proof does require the hypercontractiv-

m,¢

ity property). Note that in that proof, we actually further decompose (£"), ;" (¢, s) into
(f”)ﬁ’ﬁd (¢, s) for dyadic M, and proves (8.8) for (X”)ﬁ”ie with the right hand side
involving a negative power of M (see [12, (12.10)]). Both proofs carry over to the current
case with our choice N = |(log L)*] without any change, which then proves (4.7) and
completes the proof of Proposition 4.8.

9. The non-Gaussian case

In this section we briefly discuss the non-Gaussian case, i.e. Theorem 1.4, which we prove
in Sections 9.1 and 9.2 (Theorem 1.5 basically follows from it and is proved separately
in Section 9.3). Since much of the proof will be identical with Theorem 1.3, we will only
elaborate on the parts where the proofs are different.

First, in the Gaussian case our proof yields uniform estimates as long as R < log L
(or R < 2log L); here we will make slightly stronger assumptions

- log L
~ (loglog L)?"

Again we may consider 2R at some places, but it does not affect the result.
Next, using the expansion (3.6), we can reduce the proof of Theorem 1.4 to analyzing
the correlations

2R
E([T#)5, 0)- ©.1)
j=1

The rest of the proof, including the treatment of the remainder term b, can be done in
the same way as with these correlations (see Section 8.2). Specifically, the Gaussian
hypercontractivity inequality, which is used in Section 8.2, can be substituted by similar
inequalities for the current density function thanks to the assumed bound on u, < (Cr)!;
an instance of such argument can be found in [11, Lemma 3.1] which treats the particular
case of the uniform distribution on the unit circle, but the general case can be treated in
the same manner. Therefore, below we will focus on the study of (9.1).
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9.1. A substitute for Isserlis’ theorem

The obvious difference in the study of (9.1) in the non-Gaussian case is that Isserlis’
theorem is not available. Instead we have the following substitute:

Lemma 9.1. Recall all the random variables ny are i.i.d. with radial law, and E |nj|*"
= pr with p1 = 1 and p, < (Cr)! for a positive integer C. Then, for any k; € Zi
(I1<j<n)and{j € {£} (1 < j <n)wehave

E([Tn) = ;A(O) ST TT 1=k, 9.2)

j=1 O Aelj,j'€eA

Here O runs over all partitions of n into even positive integers (in particular, if n is odd
then the right hand side of (9.2) is zero). For fixed O, the O runs over all over-pairings of
the set {1, ...,n} subordinate to O (we use the notation U |= ), which are partitions of
{1,...,n} such that the cardinalities of the subsets exactly form the partition O, and for
each subset A exactly half of the signs ; (j € A) are + and half are —.

The coefficients A(OQ) are constants depending only on O (and n), and A2, ...,2)
= 1; in general we have A(2,...,2,2ay,...,2a,) = A(Q2ay,...,2a,). Moreover, let q be
the sum of the elements in O that are at least 4. Then |A(Q)| < C {’nclq for some constant
C > C.

Proof. We may assume n is even and half the signs {; (1 < j < n) are + and half are
—, since otherwise both sides of (9.2) are zero. Denote by || the number of elements
in O (counted with multiplicity). For two partitions @ and ', we write O’ < O if O’ can
be formed by further partitioning some elements in (9 into even integers (also define >
and < etc. accordingly). Similarly for set partitions ¢ and &”, we write ¢’ < 0 if ¢’ can
be formed by further partitioning some subsets in & (still keeping half of the signs 4+ and
half — in each subset).

Now, for @' < 9, we define &g ¢ as follows: given a partition & = O, consider the
number of partitions ¢’ < & such that &’ |= ©’. The number of choices for &” is indepen-
dent of the choice of &, and we define it to be ¢ @’. Obviously {90 = 1. We define the
coefficients A(O) for each O so that they satisfy the following recurrence relation: first
A(2,...,2) =1, and for each O, we have

[T o= > to.0-2(0). 9.3)

2be0® 0’'<0

Here the product is taken over all elements 2b appearing in ¢, counted with multiplicity.
Clearly the values of of A(Q) for each O are uniquely determined by (9.3). To prove
AQ2,....2,2a4,...,2a;) = A(2ay,...,2a,), we simply notice u; = 1 and if O contains
a certain number of terms 2, then any @’ < @ must contain at least the same number
of 2’s. Then we may proceed inductively using (9.3).

Next we prove (9.2) with A(O9) defined by (9.3). Assume all different values of these
k; are m; (1 <i < r), where for each j there are a; copies of m; with corresponding
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{;j = +, and b; copies with {; = —. We may assume a; = b; (otherwise it is easy to
check that both sides of (9.2) are zero), hence the left hand side of (9.2) is reduced to

r r
E(n |77mi|2ai) = 1_[ Ma; -
i=1 j=1

Note also that O« = (2ay, ..., 2a,) is a partition of n and the sets {j : k; = m;} form
a partition Oy |= O«. Moreover, on the right hand side of (9.2), in order for the product
[L4es ]_[j,j/eA 1y, =k, to be nonzero, one must have @ < @4 and 0 < O, and in this
case this product equals 1. Thus the right hand side of (9.2) equals

YMO) Y 1= £0.0-MO) =[] 1a
i=1

0=<0« O<0y, OO 0O=<0x«

using the definition of £o, @ and (9.3), as desired.
Next we prove that
(n/2)!
A0)] < —— Cob)! 9.4
)= =G T1 @b 9.4)
2be@
for Cy = C + 40. The base case @ = (2, ...,2) is clear. By induction, and using p, <
(Cr)!, we only need to prove that for any @,

|O]|! /(Cob)! 1
2 foorign %bw Cob)! = 2 ©:3)
<0 : 2be® ov):
Now, fix a partition & of {1, ...,n} subordinate to . To construct &’, we first fix a

partition of each element of @ into even positive integers such that the terms in these
partitions exactly constitute ’. Let the number of choices for these partitions be 1¢, o.
Once these partitions are fixed, we have

b1 \? b1\?
number of choices for ¢’ is < HZA , 80 £po < Hzﬂ 10,0’
[Lapeo b! | [Lapeo b! (’9 6

In fact, consider any subset A € 0, say |A| = 2a, witha = by + --- + b, as described
above. To divide 4 into subsets of cardinalities 2b; (1 < j < g) to form part of &’ (we
may call this part 04), we need to divide the set of elements with a + sign and the set
of elements with a — sign separately, leading to at most (a!)?/((b1)!--- (b4)")? choices,
considering also that there may be repetitions due to symmetry. Applying this for each A4,
we get the upper bound (9.6).

We write @ = (2a,...,2a,), and define G(a) = (Cpa)!/(a')?. Using (9.6), we can
bound the left hand side of (9.5) by

Z rt [lapeo G(b)
no,0’

0'<0O |O'|! G(al)"'G(ar)'
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Using the definition of 1@, o/, we can further reduce this to

r

r!
b
X T |>'HG(1>HG()

(P15e-Pr) 2beP;

where each & is a partition of 2a; into even positive integers, and at least one ; is non-
trivial (i.e. contams at least two elements). Suppose g of these r partitions are nontrivial.
Then |Py| + -+ + |P+| = r + q. Thus we get an upper bound

(! )’ |
;( )(r+q>'( pZG()zg ) ©9.7)

where J runs over all nontrivial even partitions of 2a. As ( )
show that

(r+q), < 1/q!, it suffices to

Z () I1 (b>_4 9.8)

2beP
which would then imply that (9.7) < 1/2 and thus complete the induction.
The proof of (9.8) is easy. Note that log G is convex, so if |#| = s, then

((CY’''Gla—s+1)

Gla )211 o0 = G(a)
: min( N L )az(s—l).
= (CO(S — 1))' ’ (CO((J — 5+ 1))C0(S—1)
Using also (m/3)™ < m! < m™, we can further bound this by
1 CCo(s 1) Cols—1) 4 2(s—1)
@ 22/ G(b) = (Comax((s — 1)/3,a — s + 1))Cols—1) = < (a/4)~

The number of choices of & is at most a*~!, so the left hand side of (9.8) is bounded by

a

Zas—l(a/4)—Co(s—1)a2(s—1) < -

§=2

N

provided Cj is large enough (we may assume a > 5, since the cases a < 4 are easily
verified). This proves (9.8), and finishes the inductive proof of (9.4).

Finally, suppose the sum of the elements in (@ that are at least 4 is g. Then |O| >
(n —gq)/2. Thus by (9.4) we have

(n/2)!
A0 )I_m

< Cpn©,

(Col)=D/2(Coq/2)! < (Col)"*(n/2)4*(Coq/2)C01/?

which completes the proof. ]

,,,,,,

(9.3) implies that A(©Q) = 0 for any O # (2,...,2), hence we reduce to Isserlis’ theorem.
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9.2. Over-gardens

Using Lemma 9.2 instead of Isserlis’ theorem, we can replace (4.3) by

2R
E([TW)E ) = Y 2O Most k. .. kar). 9.9)
o

J=1

Here O is a set of over-pairings of the leaves of the trees 7; (1 < j <2R), which is a
partition of these leaves into subsets such that the number of leaves with sign + in each
subset is equal to the number of leaves with sign —. The total number of these leaves
is 2(m + R) where m is the sum of scales of 7; (1 < j < 2R), and & induces an even
partition of 2(m + R), which we denote by O, such that &' = O in the sense of Lemma 9.1.
The coefficient A(O9) is as in Lemma 9.1, and O is the set of these 2 R trees together with
the set of over-pairings, which we refer to as an over-garden. Note that we may also write
0§ = O instead of & |= O. Finally, as in (4.1) we have

Mog(t, ki, ..., kaR)
$ " * T +)
= (W) e ((93)264?/1 I1 e ibn LRt gy, [ nnko. .10
v

neN* leL*

where all the objects are defined as in (4.1), except that for the decoration .# we require
that ky; (nt € A) are all equal for each A € 0.

Clearly an over-garden ¢ can be turned into a garden § by dividing each over-
pairing A € 0 into leaf pairs; below we will write @§ ~ § for this. In this case Mpg is
the same as Mg, except for the finitely many additional conditions of the form ky = ky
associated with the over-pairings structure of (9§, which are added to the decoration .%
in the summation (9.10). Now by (9.9) we have

2R
E([T@n )8 0) =Y 20) Y. Mos(t.ki.....kar). ©.11)
j=1 o

(A

where O is an even partition of 2(m + R) with m = my + --- 4+ maR, and 0§ =
(71,...,T2R) E O is the over-garden of width 2R and signature ({1, ..., {>g) such that
the scale of 7; is m; for 1 < j < 2R. Note that for fixed ¥, the number of @§ such
that 0§ = O and O ~ § depends only on O; similarly, for fixed O§ = @, the number
of & such that O§ ~ § also depends only on . We denote them by o1 (0) and 02(O)
respectively. Thus (9.11) can be rewritten as

2R . 2O
E(]‘[(gmj)i;(z>)=;02((0’)2 S Mogl ki kar),  O12)
j=1

g 0§8~9,09E0

where § satisfies the same condition as @¥§ but it runs over gardens instead of over-
gardens.
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Now the study of (9.1) reduces to the study of the quantities Mpg for over-
gardens 0§ . To this end we introduce the notion of regular over-gardens, and one simple
linear algebra lemma.

Definition 9.3. Define an over-garden 0§ to be a regular over-garden if there exists ¥
such that 99 ~ §, and (i) § is a regular multi-couple (Definition 4.1), and (ii) for each
leaf [ in each over-pairing A € 0 with |A| > 4, the tree J; containing [ must be a regular
tree and [ must be its lone leaf.

Lemma 9.4. Let A C B be two sets of affine linear equations posed on R", in terms of
the coordinates (x1, ..., Xp). Let A D B be the affine submanifold of R" determined by
equations in A and B respectively, assume B # &, and denote p = codimy(B). Let
1<r<n-1.

For any fixed x = (x1,...,xy) € R”, consider the affine submanifold Ay O By
of (Xr41,...,Xn) € R*™" determined by equations in A and B for (X, Xr4+1,...,Xn)
respectively. Let A° D B° be the affine manifold for x such that Ay # & and By # O
respectively. If codim 4o (8B°) = p°, then codim4, (Bx) = p — p° forany x € B°.

Proof. We omit the proof as it is elementary. ]
Now we can state the main estimate for the non-Gaussian case.

Proposition 9.5. Fix R and ({1, ...,0R) and (ky, ..., kaR) and (my, ..., maR) as in
Proposition 4.7. Assume R < 2log L/(loglog L)? and m; <N (1 <j <2R), and set
m:=my + -+ + mag. Consider the sum %' as in (9.12), but we restrict to nonregular
over-gardens 0§ in the summation. Then

|7 < (CrsHymL 9.13)
uniformly in t and (kq,...,kaR).

Proof. Let Q8 be an over-garden and O§ ~ §. Since the expression Mgg in (9.10) is
just the expression Myg in (4.1) with finitely many extra requirements of the form ky = ky/
in the summation, it is clear that Mg can at least be estimated in the same way as Mg
with no power loss. Also the number of @ is at most C™, and for fixed § and O, the third
sum in (9.12) contains o1 () terms, where o1 (@) has the same upper bound as A(Q) in
Lemma 9.2.

Therefore, compared to the bounds for Mg that we already know, we only have
two tasks in proving the desired result: first, gain the extra power L™", and second,
gain enough extra powers to cancel the factor |[A(©)] in case it is too large. Note also
that if @ is given and § and ¢’ are congruent in the sense of Definition 5.4, then the
over-gardens O§ = O, O§ ~ § are in one-to-one correspondence with the over-gardens
0% =0, 09 ~ &', and cancellations between the terms Mgg and Mg are the same
as the cancellations between Mg and Mg/ in Section 5, up to minor modifications. Hence,
we can exploit the same cancellation for irregular chains in ¢ as in Section 5 and [12].
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Now let us go over the process of studying Mg, and see what the extra conditions
ky = ky may do at each step of this process. Below let g¢ be the number of independent
extra equations k;y = ky. Then go ~ ¢, where ¢ is the sum of the elements in @ that are
at least 4, as in Lemma 9.1. In fact, we have

g= > a. qo= Y (a/2-1),

4<ae@ 4<ae@

hence 2¢g¢ < g < 4q¢. We will keep track of the codimension introduced by these g¢ extra
equations to the affine manifold of all possible decorations (ky) using Lemma 9.4.

(1) Assume that § is a regular multi-couple. In this case, we shall estimate the sum-
mation (together with the integration) in (9.10) using the method of [12, Section 6] (note
that here we have to treat all the regular couples in § together—instead of one at a time in
[12, Section 6]—because of the extra conditions linking different regular couples together,
but this will cause minor changes to the proof). In particular, we define the variables xy,
and yy as in [12, proof of Proposition 6.7]. Note that there are 2R linear equations that
any decoration of the leaves of ¥ must satisfy (and such a decoration of leaves uniquely
determines the full decoration of §); moreover, the set of decorations satisfying these 2R
equations is in affine bijection with the set of free variables (xy, yn) (see [12, proof of
Proposition 6.7]).

Now, with the extra conditions, the dimension of the affine manifold of all pos-
sible decorations (ky) gets strictly lower, and the codimension r introduced satisfies
r 2 max(1l,qo — O(R)). In fact, we have r > 0 because at least one extra condition must
take the form k; = ky where [ is not the lone leaf of a regular tree by Definition 9.3,
and this equation will be independent of the 2R original equations stated above (since the
only way for this extra condition to be dependent is for the two trees containing [ and [’
to be distinct and coupled, which would easily imply that they are two regular trees with
lone leaves [ and ['). The lower bound g9 — O(R) is because the number of independent
extra equations is go, and we subtract O (R) because some extra equations combined may
imply some of the 2R original equations.

Using the affine bijection, we know that the (xy, yy) variables must satisfy r inde-
pendent linear equations. Then, we proceed as in [12, proof of Proposition 6.1], and sum
over the (xy, yy) variables one by one. At each step, suppose we are summing over the
pair (x;, y;); depending on the extra equations satisfied by these variables, we have one
of three possibilities: (a) there is no restriction on (x;, y;) and we are summing over all
choices of (x;, y;); (b) we are summing over (x;, y;) that satisfy one linear equation
(such as x; = const or y; = const or x; & y; = const); (c) we are summing over (x;, y;)
that satisfy two linear equations, i.e. over only one point (x ]’-“, y ]’-‘). In either case the sum-
mation can be performed in the same way as in [12], and in cases (b) and (c) we are
gaining a power of L in this summation, compared to the factor L2¢~2 in [12]. Also, by
repeating Lemma 9.4, we know that case (b) or (c) must occur at least 2 r times during
this process.

Therefore, altogether, with these extra conditions we can gain a power L~ for some
small constant ¢ with r 2> max(1, g — O(R)), in the estimate of Mgg compared to Mg.
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This already provides the needed L™ gain. It also covers any possible loss due to A(O)
because |A(0)] < C™m€? < C™(log L)€ by Lemma 9.1, hence

A(O)] = €™ (log L) 7™ - (log L) mx(1-07 01
<C™L"? . (log L)°"

by our choice R < log L/(loglog L)?, which can then be covered by the L™ gain; also
the various losses of C™ are unimportant as they can be absorbed into (C 7)™ in (9.13).

(2) Now we assume § is not a regular multi-couple. Then the sum of Mg already
gains the power L™ in view of Proposition 4.7 and also [12, Proposition 10.4]. It then
suffices to cover the possible loss due to A(@). We perform the reduction steps as in
previous sections, and analyze the extra conditions appearing in each step. As in (1), the
total codimension introduced by the gq extra equations is r = max(1, go — O(R)); we
may assume ¢o > R because otherwise the loss

A(0)] < C"mC < cmLv?
can already be covered by the guaranteed L™ gain. Therefore we now have r = ¢o.

Step 1. We first remove the regular couples and regular trees to reduce § to its skele-
ton G as in Proposition 4.4. In the process we are fixing all the remaining ky, variables
(which are determined by the variables ky, for leaves [; of §g) and sum over the vari-
ables ky,, where [, are leaves of these regular couples and regular trees, similar to (1)
above. By Lemma 9.4, there exists r; 4+ r, = r such that for any fixed (ky,), the codi-
mension of the submanifold formed by the (k,) variables is r», and the codimension of
the submanifold formed by the (ky,) variables is r;. By repeating the argument in (1)
above, we can gain a power L™°"2 in summing over the (kg,) variables. Note that some
extra equations satisfied by the (ky,) variables may be of the form ky, = const instead of
kg, = k[/z as in (1), but this does not affect the proof.

Step 2. We further remove the irregular chains from the skeleton ¥y and exploit the
cancellation as in Section 5. Note that if § is not a regular multi-couple, then any O§ ~ §
must be nonregular in the sense of Definition 9.3, so for fixed §, the summation in 0§
we are studying here is still the same as the one in (9.12) even though we have made
the restriction that @¥ is nonregular. Thus, as said above, the cancellation for irregular
chains works the same way in the current situation as in Section 5. The extra conditions
again lead to a gain of powers in L. As in Step 1, we can write r; = r3 + r4 so that we
can gain a power L~¢"3 in the current step, and after removing the irregular chains, the
remaining decoration (of the remaining garden g%, see Section 5.4) still satisfies r4 extra
linear equations.

Step 3. Finally, we reduce the estimate of the remaining expression to the counting prob-
lem associated with the molecule formed from ﬁ:}i. Here we only need to show that if, in
addition to the equations in the counting problem, the variables in question also satisfy r4
additional independent linear equations, then we can improve the upper bound for the
counting problem by a power L~¢"4 with a small constant c.
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To see this, we follow the procedure described in Section 6, and in particular apply
the algorithm introduced in [12, Section 9.4]. In the process, when we fix some of the
variables in each step, we keep track of the codimension, or the number p of independent
equations satisfied by the remaining variables. Initially we have p 2 r4, while in the
end p = 0. Therefore, there must be at least > r4 steps where p strictly decreases. If
this step is a good step in the sense of [12, Section 9.3], then we are gaining a constant
power L™" here; even if it is a normal step, since Ap < 0, by Lemma 9.4, in doing the
counting estimate for this step, we can take into account an additional independent linear
equation satisfied by the variables under consideration. For example, if we perform the
step (3R-1) defined in [12, Section 9.3.8], then the corresponding counting problem we
solve is (say)

a—b + ¢ = const,

|a|i29 - |b|/23 + |c|l23 = const + O(L™?),

a.b,c € Z4, |al,|bl.|c| S 1,

which has O(L2472) solutions. However, if we add to this system another independent
linear equation aa + Bb + yc = const, where («, 8, y) is not a multiple of (1, —1, 1),
then the number of solutions will be at most L¢ with d < 2d — 2. This leads to a
power gain in each such step, so in total we can gain a power L~°"4 for some constant
c.

After the above three steps, the total power we gain would be L=¢(2+73+74) — =7
which is enough to cover the loss C™m¢? from A(®) because r = qo = q. Therefore in
any case we can cover the possible loss with an extra gain of L™", hence (9.13) holds.
This completes the proof. u

With Proposition 9.5 we can now prove Theorem 1.4.

Proof of Theorem 1.4. We use (3.6) to expand IEI(]_[jz-i1 a,ij_ (t)). The estimate for the

. . . . J . .
remainder term b can be done using arguments similar to Section 8.2, which we shall

omit. Then, using also (9.12), we can write

kj - § E (9§(t, | EICI 2R) ( )? (g' )
j—l

£,0 02(0) 0~8, 080

where § runs over all gardens of width 2R such that the scale of each tree is at most N,
and O runs over all even partitions of 2(m + R) where m is the scale of §. By Proposi-
tion 9.5 and summing over all possible m; as in the proof of Theorem 1.3 above, we see
that with R fixed and L — oo, the contribution of nonregular over-gardens 9§ decays
like L™ in the limit. Thus, we only need to consider regular over-gardens 9'g. Suppose
0§ ~ §. Then § is a regular multi-couple. Therefore, unless we can divide {1,...,2R}
into pairs such that for each pair {i, j} we have k; = k; and {; = —{;, the contribu-
tion of regular over-gardens must vanish, in particular (1.2) is true. Now we only need to
prove (1.6).
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For any regular couple @ = (77, 72), the tree 77 is a regular tree if and only if 75 is a
regular tree (and hence the two lone leafs are paired). In this case we say @ is tangential
(since the two trees only have one leaf-pair in common), otherwise @ is nontangential.
Note that by [12, proof of Theorem 1.3] we have

> Ma(t.1.k) = n(8t.k) + O(L™). (9.15)
Q

where @ runs over all regular couples with both trees having scale at most N . If we restrict
to tangential couples only, then the sum should be approximated by n¢ (8¢, k) where ng
is defined in (WKE-0). The easiest way to see this is by observing that the expression
Mg (t,t, k) contains a factor ny, (k) if and only if @ is tangential, because for any regular
tree 7 with root r and lone leaf [ we must have ky = k, = k. Thus, since the sum (9.15)
over all couples exactly matches the Taylor expansion of n(§¢, k) (as shown in [12]),
we know that the sum over tangential couples will exactly match the terms in the Taylor
expansion that contain the factor ni, (k). Due to the form of (KIN), it is easy to see that
the sum of these terms is exactly n¢(¢, k), hence the result. Therefore we have

> Ma(t.t.k) =no(8t.k) + O(L™), (9.16)
@ tangential
Y Ma(t.t.k) =ny(t.k) + O(L™). (9.17)

@ nontangential

We now return to the sum (9.14) over regular over-gardens @§. For (1.6), we may
rename (kq, ..., kzR) so that there are 2a; copies of k;“ for 1 <i < r (with half of them
having sign + and half having sign —) where the k" are all different and

a+---+ar =R.

For simplicity we will write k; instead of k* below. Clearly the 2a; trees corresponding
to the input variable k; must form a; couples in §; assume b; of these a; couples are
tangential and the rest are nontangential, where 0 < b; < a;. Note also that for any 9§ ~
% we have Mpg = Mg because over-pairings can only happen at lone leaves of regular
trees. Therefore, for fixed (b1, ..., b,), we can calculate the contribution of regular over-
gardens as

d N\ 2 a;j—b;
T br=1"[(zl’_) @-sn( Y Matrk))
i=1

@ nontangential
3 MO @)

Mg (t, k1, ... k1, ke, k). 9.18
520 g (1. ky 1 ) (9.18)

§,0’

Here &’ runs over all gardens of width 2(by + --- + b,) which are multi-couples formed
by tangential couples (and otherwise same as §), O’ runs over all even partitions of
2(by + --- + by) such that O' < (2b4,...,2b,), and 03(0’) is the number of regular
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over-gardens @€ such that 9§ ~ & and O§ £ O where O = (O, 2,...,2). We can
further reduce the inner sum in (9.18) to

Z wdv{g([,kh...,kl,---vkrv-'vk’) = IL[( Z M@(I,[,kt))bi

/
9,0’ 02((9) i=1 @ tangential
A(O)a3(0)
————~py!--- b, 9.19
x Y @) bt 019
0/
Finally, in the above summation O’ must be < (2b4,...,2b,) otherwise 63(09’) = 0, and

by definitions and a double counting argument we can show that under this assumption
we have

bil---b,!
) = (9/ T on
E(zbl,...,Zbr)ﬁ 03(0) 02(0")

In fact, fix & = (2by,...,2b;). To construct &’ such that &’ < € and &' = O, we
first divide each subset in & into pairs (which has b;!--- b, ! choices), thus obtaining a
garden ¢, then construct 0§ ~ ¢ and O¢ = O (which has 03(0’) choices) and form &”
accordingly. Note that each &” is counted exactly o, (') times (which is just the number
of choices of § with fixed @§), hence the result.

Now we can reduce the last sum in (9.18) to

'L((5 /)03((9/) / d
E — L p!. b = E 2O 2by /_—| | .
2((9/) 1 ( )E(2b1, ,2br),0 i l/be,

o’ 0'<(2by,...,2by)

using (9.3). Altogether, using (9.16) and (9.17), and then summing over b; (1 <i <),
we get

2R
IE(H a,i_f/i (t))
j=1

r N2
= > H(Zf) (@i = bi) s, (no (81, k)” (1 (51, k)~ + O(L™),

0<b;<a; (1<i<r)i=1

which is just (1.6) given (1.7). This completes the proof. ]

9.3. Evolution of density

Finally, we prove Theorem 1.5. Note that if u, < C”(2r)!, then by (1.7) for any ¢ we also
have u,(t,k) < C"(2r)!, perhaps for some different C. Thus, convergence in law will be
a consequence of the following lemma:

Lemma 9.6. Suppose {X,} are R?-valued random variables such that for any multi-
index [ the limit
A, = lim E(XF)
n—>o0
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exists and |A,| < C™|w|\. Then {X,} converges in law to a random variable X satisfy-
ing E(X*) = A, for any multi-index . Moreover, the law with these given moments is
unique.

Proof. First the assumption implies that [E | X, |? is uniformly bounded in n, thus the
sequence of laws of X, is tight. For any subsequence X, we then have a subsequence
Xn ke that converges in law to (say) some random variable X . For any p, since E | X,,|?/#!
is bounded in 7 it is easy to see that E(X#) = imE(X,') = A, Therefore, it suffices to
prove that the law of the random variables X with E(X#) = A, is unique. This is indeed
true: Since |A4,| < C™|u|!, we have E(e?'X!) < oo for small enough ¢, hence f(£) =
E(e*$X) is well-defined and holomorphic in the region |Im &| < &. The moments E (X *)
uniquely determine the Taylor expansion of f(£) at & = 0, hence uniquely determine the
value of f(£) in a neighborhood of 0—and consequently in the whole region [Im&| < € by
analyticity. In particular, the moments uniquely determine the value of f (&) on R, which
is the characteristic function of X . Thus the law of X is unique, as desired. [

Now, for any # € [0, 5] and k € Zi, consider the unique radial density p = pg (¢, v)
(where v € C is also viewed as an R? vector) such that

/c(v% +v3)" pre(t. v) dvy dvy = piy (2.k)
r 2
= Z(;) (r = PVt - (no(t. k)P (n 4 (1. 5)" 7. (9.20)
p=0

Then by Theorem 1.4 and Lemma 9.6, convergence in law described by (1.11) and (1.12)
is true. Thus to prove Theorem 1.5 it suffices to show that pg (¢, v) solves (1.10). The initial
data p (0) is satisfied by definition since the right hand side of (9.20) equals u,ni, (k)"
when ¢ = 0. Now, by approximating from below, we may assume {j,} is bounded, and
consider

Li(.8) = / T 5 (1, ) dvy dus

-y (7)o ootk o,

p=0

Taking the time derivative and calculating using (WKE), (KIN), (WKE-0) and (KIN-0)
yields

et = Y (7 Yy (oot )P s 0.0 )

p=0
+ (r = p)(no(t, k)P (n4-(2,k)) "P~ (o (1) + ye (n+ (1, k) },  (9.21)
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where o (¢) and yg (¢) are defined in (1.8) and (1.9). This simplifies to

oot =+ X r- (g o)k
p=0 ’
4 (lg)r r D r—p—1
+or(0)- Yy (r—p)-— 1p - (no (2, K)P (ny (1, 5)) P71 (9.22)
o pt \p

The first sum on the right hand side equals £0¢ L, and the second sum equals

r Py +1
S+ 1 L (g o),k

p=0
by changing r to r + 1, which then equals (i § + i£29¢) L. Therefore
9Ly = yi(1) - €dg Ly + ok (1) - (1§ + i%9¢) Ly

Finally, by taking the inverse Fourier transform and switching between Cartesian and
polar coordinates, we can verify that the density pg (¢, v) solves (1.10). This completes
the proof of Theorem 1.5.

10. Proof of Theorem 1.6

In this last section we prove Theorem 1.6. The proof is of “soft” nature and has a different
flavor from the other parts of this paper. The main idea, already hinted at in Section 1.4,
is to represent 1, as an average of tensor products for which one can apply Theorem 1.3.
This is demonstrated in the following lemma, which is a variant of the classical Hewitt—
Savage theorem.

Lemma 10.1 (a variant of Hewitt—Savage). Suppose (n; )i, is as in the statement of Theo-
rem 1.6, satisfies (1.14), and is admissible in the sense of (1.15). Recall the set A defined
in (1.16). Then there exists a unique probability measure { on A such that for any r and
any distinct (ky, ..., ky) we have

ks o) = /A m(ky) -~ m(ky) dE (m). (10.1)

Proof. For simplicity we will write (n,);, just as n,. We may assume X = 1 (other-
wise simply replace n, by ¥ "n, and C; by 271C;). Then each n, is the density of
the joint distribution of some r random variables valued in R, and n,_; is a marginal
of n,. By Kolmogorov’s extension theorem, we can find an infinite sequence (X1, X»,...)
of R¥-valued random variables such that n, is the density of the joint distribution of
(X1....,X,). By symmetry of n,, these random variables X; are exchangeable, so by the
Hewitt—Savage theorem [24], there exists a unique probability measure ¢ on the set M of
all probability measures m on R? such that (10.1) is true with 4 replaced by M.



Y. Deng, Z. Hani 730

Now it remains to prove that ¢ is supported on 4. We will apply the beautiful argument
of Rosenzweig—Staffilani [31, Section 5], which goes back to the work of Spohn [32]. Fix
a Schwartz function ¢ on R? and indices «, B with ||, || < 40d; for any even integer r,
we may test both sides of (10.1) by the tensor product (85/(“(,0)@’ to get

/(m,aﬁk“go)’d;(m):/ nr(kr,... k) []k807 o(ky) dky -+ dky.
M (RE)" J

Jj=1

where (m, 8£k°‘go) is the integral of afk"‘(p against the measure m, in the usual distribu-
tional sense. Recall that ||n, | gaoa;» < C{ from (1.14), so the right hand side is bounded
by

11 k) T ) - e = Il -l = (Crliplze)
Jj=1

For any C, > Cy, by the Chebyshev inequality, this implies that

L({m : |(m, 9 k"9)| = CallgllL2) < (CallplL2) ™" /M(M» O k)" dt(m) < (C1/Co)'
Since r is arbitrary, we conclude that
|0m, 3 k*9)| < Callgll.2 (10.2)

¢-almost surely for any fixed ¢, fixed («, B), and fixed C, > C;. By choosing ¢ in a count-
able dense subset of the Schwartz space, enumerating finitely many possible («, 8), and
choosing a sequence C; = (1 + ¢)Cq, we find that {-almost surely in m, (10.2) actually
holds for all (¢, @, B), and with C; replaced by C;. By the Riesz representation theorem,
this implies that

[k*3Emllz2 < Ci. Vial.|B] < 40d

C-almost surely. By definition this means that m € 4 because m is a probability measure
and X = 1. Therefore {(M\A) = 0, and hence we can define the measure ¢ on # so that
(10.1) is true. u

We are now ready to prove Theorem 1.6.

Proof of Theorem 1.6. First, if (n, )i, is hybrid then it must be admissible. In fact, by the
definition of hybrid initial data we have

/A mky)---mky) A2 (m) = (1 )nkre .. ) (103)

for any distinct k; € Z,‘f (1 < j <r). Since m and (n,);, are all continuous functions,
by taking suitable limits and letting L — oo we know that (10.3) is actually true for all
k; e R? (1 < j < r). Then we simply integrate (10.3) in k,, using the integral condition
in the definition of +, to get (1.15).
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From now on we shall assume (1, );, is admissible. Then by Lemma 10.1, we can find
a unique measure ¢ such that (10.3) holds. Consider the hybrid data u;, described in the
statement of Theorem 1.6. We can view it as obtained by first randomly selecting m € A
with law given by £, then working in the same setting as in Theorems 1.1 and 1.3-1.5 with
the particular choice n;, = m. Since m € 4, by Theorem 1.1 we know that the conditional
probability P(E|m) > 1 — L™ for any m € s, where E is the event that (NLS) has a
smooth solution up to time 7. This implies that

P(E) = /.,4, P(E|m)dé(m) > 1— L4,

Finally, we prove (1.18). As is clear from the proof of Theorem 1.4, the remainder in
(1.6) is in fact O(L™") for some absolute constant v > 0, where the implicit constant in
O(-) may depend on r, but is uniform in (¢, k;) and ni, = m, as long as m € 4. Thus, by
Theorem 1.4, for the hybrid data u;,, for ¢t € [0, T] we have

E(flmawﬂﬁ)::/"E(fhﬁmkﬂﬁjn0dam>
j=1 A o1

J
=/A]'[nz(%,kj) dz(m) + O(L™),
]=1 n

where m(t, k) is the solution to (WKE) with initial data m(0, k) = m(k). It remains to
show that

ne(t. k... ky) = A [ [ 7. k;) dgm).
j=1

In fact, for any m € 4, by definition 7 is the solution to (WKE) with initial data m, so by
direct calculation we see that (71)®” is a solution to (WKH) with initial data m®” . Since
(WKH) is linear, we know that

/ (m)®" d¢ (m) (10.4)
A

is a solution to (WKH) with initial data

/m@@W%ﬂmm
A

due to (10.3). Moreover, since m € 4, for short time ¢ € [0, §], the solution (10.4) clearly
belongs to the class C PSS"‘; defined in [31]; since short time uniqueness is proved in [31]
for solutions in this class, we know that (10.4) has to equal n,, which is the unique solu-
tion to (WKH) in this class with initial data (7, )y,. The admissibility condition (1.15)
follows from the fact that n, equals (10.4) which is an average of factorized solutions for
which admissibility is clearly true (Here we use that the (WKE) conserves the total mass

[ n(z,&) d§). This completes the proof. |
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