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Abstract. We prove the nonlinear stability of the planar viscous shock up to a time-dependent shift
for the three-dimensional (3D) compressible Navier—Stokes equations under the generic perturba-
tions, in particular, without zero mass conditions. Moreover, the time-dependent shift function keeps
the shock profile shape time-asymptotically. Our stability result is unconditional for the weak pla-
nar Navier—Stokes shock. Our proof is motivated by the a-contraction method (a kind of weighted
L?-relative entropy method) with time-dependent shift for the stability of viscous shock in the
one-dimensional (1D) case. Instead of the classical anti-derivative techniques, we perform the sta-
bility analysis of the planar Navier—Stokes shock in the original H2-perturbation framework and
therefore zero mass conditions are not necessarily needed, which, in turn, brings out the essen-
tial difficulties due to the compressibility of viscous shock. Furthermore, compared with 1D case,
there are additional difficulties coming from the wave propagations along the multi-dimensional
transverse directions and their interactions with the viscous shock. To overcome these difficulties,
a multi-dimensional version of the sharp weighted Poincaré inequality, a-contraction techniques
with time-dependent shift, and some essential physical structures of the multi-dimensional Navier—
Stokes system are fully used.

Keywords: compressible Navier—Stokes equations, planar viscous shock wave, time-asymptotic
stability.
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1. Introduction

We are concerned with the time-asymptotic stability of planar viscous shock wave for the
3D compressible Navier—Stokes equations

{ d;p + dive(ou) =0, (t,x) e Rt xQ, 0

d¢(pu) + divx(pu ® u) + Vi p(p) = puAxu + (1 + A) Vydivyu.

Here p = p(t, x): RT x Q@ — R¥, u = u(t, x) = (u1, u2, u3)' (£, x): RT x Q@ - R3
represent the mass density and the velocity of a fluid in Q C R3, respectively, and p(p) =
bpY (b > 0,y > 1) stands for the classical y-law pressure, and both constants i and A are
viscosity coefficients satisfying the physical constraints

nw>0, 2u+31>0.

Without loss of generality, we normalize b = 1 from now. We are concerned with the
Cauchy problem of the 3D Navier—Stokes system (1.1) in x = (xq, X2, x3)! € Q :=
R x T2 with T? := (R/Z)?. The initial data

(0, w)|t=0 = (po,uo) = (p+,u+) asx; — £oo (1.2)

is prescribed with the far-fields conditions p+ > 0 and u+ = (u1+,0,0)" as x; — o0,
and the periodic boundary conditions are imposed on (x5, x3) € T?2 for the solution (p, u).
The large-time asymptotic behavior of the solutions to the 3D compressible Navier—
Stokes system (1.1)—(1.2) with different end states (o4, u+) without shear is conjectured
to be determined by the planar Riemann problem of the corresponding 3D Euler system

drp + divx (pu) =0,

d¢(pu) + divx (pu ® u) + Vi p(p) =0, 13
(p—,u-), x1 <0, ’

(o+,u4), x1>0.

(p.u)(0,x) = {

The solution to the Riemann problem (1.3) in general contains two nonlinear waves, i.e.,
shock and rarefaction waves and the above conjecture towards the time-asymptotic stabil-
ity of the Riemann solutions is well established in the 1D case. In 1960, I1’in—Oleinik [7]
first proved the stability of shock and rarefaction wave for the 1D scalar Burgers equa-
tion. Then Matsumura—Nishihara [22] proved the stability of viscous shock wave for the
1D compressible Navier—Stokes system with physical viscosity under the zero mass con-
dition. Independently, Goodman [1] proved the same result for a general system with
“artificial” diffusions. Then Liu [18], Szepessy—Xin [26] and Liu—Zeng [19] removed
the crucial zero mass condition in [1,22] by introducing the constant shift on the viscous
shock, the diffusion waves and the coupled diffusion waves in the transverse characteristic
fields. Masica—Zumbrun [20,21] proved the spectral stability of viscous shock for the 1D
compressible Navier—Stokes system under a spectral condition, which is slightly weaker
than the zero mass condition. Huang—Matsumura [5] proved the stability of a composite
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wave consisting of two viscous shocks for the 1D full compressible Navier—Stokes equa-
tions with non-zero initial mass and the condition that the strengths of two viscous shocks
are suitably small with same order. Note that all the above results for the stability of
shocks are based on the classical anti-derivative techniques, which are essentially suitable
to the 1D case and seems not applicable to the multi-dimensional system (1.1) directly.

On the other hand, the time-asymptotic stability of rarefaction wave for the 1D com-
pressible Navier—Stokes system was proved by Matsumura—Nishihara [23, 24] by using
the direct L2-energy methods due to the expanding property of rarefaction wave. Very re-
cently, Kang—Vasseur—Wang [11, 12] proved the stability of the combination wave of vis-
cous shock and rarefaction (even with viscous contact) for the 1D compressible Navier—
Stokes system by using a-contraction methods with the time-dependent shifts to overcome
the difficulties caused by the incompatibility of viscous shock and rarefaction.

In multi-dimensions, Goodman [2] first proved the time-asymptotic stability of weak
planar viscous shock for the scalar viscous equation by the anti-derivative techniques
with the shift function depending on both time and spatially transverse directions, and
then Hoff—Zumbrun [3, 4] extended Goodman’s result to the large amplitude shock case.
Recently, Kang—Vasseur—Wang [ 10] proved L2-contraction of large planar viscous shocks
up to a shift function depending on both time and spatial variables.

Comparatively speaking, there are very few results on the nonlinearly time-asymptotic
stability of planar viscous shocks for the multi-dimensional Navier—Stokes system (1.1)
due to the substantial difficulties in the high-dimensional propagation of shocks and the
nonlinearities of the system. In 2017, Humpherys—Lyng—Zumbrun [6] proved the spectral
stability of the planar viscous Navier—Stokes shocks under the spectral assumptions by
the numerical Evans-function methods, and one can refer to the survey paper by Zum-
brun [28] for the related results and the references therein.

The aim of this paper is to prove the nonlinearly time-asymptotic stability of planar
viscous shock wave up to a time-dependent shift for the 3D compressible Navier—Stokes
system (1.1) by using the weighted energy method under the generic H 2-perturbations
without the zero mass conditions.

The compressibility of viscous shock, which substantially causes the “bad” sign terms
in L? elementary entropy estimates, is the main difficulty in proving its time-asymptotic
stability by energy methods. In the 1D case, the classical anti-derivative technique was de-
veloped to make full use of the compressibility of viscous shock, and then the zero mass
conditions, or generic perturbations with non-zero mass distribution but with the constant
shift on the viscous shock and the diffusion waves on transverse characteristic fields,
are necessarily needed to clearly define the anti-derivative variables for the perturbation
around the viscous shock [1,18,19,22,26]. However, the above anti-derivative techniques
cannot be applied directly to prove the stability of planar viscous shocks for the multi-
dimensional Navier—Stokes system (1.1). Alternatively, Kang—Vasseur [8, 9] developed
the a-contraction method (a kind of weighted L2-relative entropy method) with time-
dependent shift to obtain L2-contraction of shock wave to the viscous conservation laws.
One of the advantages of a-contraction method is that it is not necessary to introduce the
anti-derivative variables for the perturbation and fully use the time-dependent shift in the
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original perturbation to control the compressibility of shock. The idea can also be applied
to prove the stability of planar viscous shock to the multi-dimensional scalar conservation
laws [10] and the stability of the combination wave of viscous shock and rarefaction for
the 1D compressible Navier—Stokes system [11].

Our proof of the time-asymptotic stability for the multi-dimensional Navier—Stokes
shock is motivated by the a-contraction method. However, compared with 1D stability,
there are several new difficulties:

(i)  We need to establish a 3D version of the sharp weighted Poincaré inequality (see
Lemma 3.1) together with the time-dependent shift X(¢) defined in (3.9) to control
the compressibility of planar shock.

(i) For the stability analysis of the 1D Navier—Stokes system in [8, 9], Lagrangian
structure of the system is fully utilized. However, this structure cannot be kept
in Eulerian coordinates, especially in the multi-dimensional case. Therefore, we
need to find a new effective velocity & := u — (20 + A) Vg (see also (4.1)) in 3D
Eulerian coordinates and the rewritten system (see (4.2)) has the similar stability
structure as one in Lagrangian coordinates.

(iii) Some physical underlying structures of the multi-dimensional Navier—Stokes sys-
tem (1.1) are used. We use the Hodge decomposition to decompose the diffusive
term Agu into the irrotational part Vedivgu and the rotational part Ve x Vg X u and
borrow some ideas from the stability of planar rarefaction wave in [14—17] to over-
come the wave propagations along the transverse directions and their interactions
with the planar viscous shock.

The rest part of the paper is organized as follows. In Section 2, we first list the prop-
erties of the planar viscous shock and then state our main result. In Section 3, we first
present some useful functional inequalities, and then construct the shift function and give
the proof of our main theorem based on the local existence in Proposition 3.5 and uniform
in time a priori estimates in Proposition 3.6. In Section 4, we reformulate the problem in
new variable function (v, /) first, and then prove the uniform in time H Z-estimates in
Proposition 3.6.

2. Planar viscous shock and main result

In this section, we first describe the planar viscous shock and then state our main result
on the time-asymptotic stability of planar viscous shock for the 3D compressible Navier—
Stokes equations (1.1) under generic H 2-perturbations without zero mass conditions.

2.1. Viscous shock wave

First we depict planar viscous shock. For definiteness, we consider 2-shock and 1-shock
case that can be treated similarly.
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It is well known that the Riemann problem of 1D compressible Euler system

{ 81p + B, (pu1) = 0,

2.1)
at(loul) + 8x1 (pu% + P(P)) =0,

with Riemann initial data

(b= u1-), x1 <0,

(p"r!ul'i‘)’ X1 >O’

(0, u1)(0, x1) = (po,u10)(x1) = {

determined by the far-field states (1.2), admits a 2-shock wave solution with the speed o

(p— u1-), x1 <ot,

(p+,u14), x1 > ot.

(ps ul)(t’ -xl) = {
This provided that the following Rankine—Hugoniot condition:

{ =0 (p+ = p-) + (p+u14+ — p-u1-) =0, 2.2)

—0(p+t14 — p-tt1-) + (pruiy — p-ui_) + (p(p1) — p(p-)) =0,
and the Lax entropy condition
Az (p+. u14) <o < Az(p—,u1-)

with A,(p,u1) = uy + / p’(p) being the second eigenvalue of the Jacobi matrix of the
Euler system (2.1), hold true. Denote by § the 2-shock wave strength § := |p(v-) —
p()| ~ vy —v-| ~ ui— —uy4| and set

£ =(61,6,83) withé =x; —otand§; =x;, 1 =2,3.

Correspondingly, planar 2-viscous shock wave (p*, u®)(&1) with u® (&) := (u}(£1),0,0)",
connecting (p—, u—) and (p4+, u+), for the 3D compressible Navier—Stokes equations sat-
isfies the ODE system

d(
—o(p") + (P°u1) =0, ()= dle)’ (2.3)

—a(p’u}) + (p°W$)?) + p(p®) = Qu+ )},
for the far-field conditions
(0°, u])(=00) = (p—,u1-), (p*,up)(+00) = (p+,uU1+). (2.4)

Using new variables (¢, £), we can rewrite system (1.1) as

{ 0;p — 00g, p + dive(pu) =0, 2.5)

¢ (pu) — 0 dg, (pu) + dive(pu ® u) + Vep(p) = pAgu + (1 + 1) Vediveu.
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If we introduce the volume function v = %, then we can further rewrite system (2.5) as

0;v—00g, U+ u-Vev) = diveu,
{ p(d: £ £v) g 2.6)

p(0:u —00g,u +u - Veu) + Vep(v) = (2 + A)Vediveu — uVe x Ve X u,
where the pressure is defined by p(v) = bv~" and we have used the identity
Agu = Vedivgu — Ve X Ve X u

for the viscosity term.
Similarly, by using the volume function

the ODE system (2.3) is transformed into
P’ (o (v*) +uj(v®)) = (uy),
p (=0 ) +ui(y)) + p(v*) = Cu+ 1)),

where p(v®) = (v¥)77. Integrating (2.3); on (—o0, £1), we get

2.7)

—op® + p'ul = —op— + p_ui— =: —0x. (2.8)
Therefore, system (2.7) and far-field conditions (2.4) can be rewritten as

{ —0x(v*)" = (u})’, 29)
—0x(u}) + p(v*) = 2u + D),

and
1
(71} (00) = ). (P u)(H00) = (pun). ve = (10)
By (2.9) (or (2.2)) and (2.8), it holds that

{ —0x (V4 — V) = U4 — Ui,
—0x(U1+ —u1-) + p(v4) — p(v-) = 0.

Therefore, we have

0*2\/_M>0

Vy — V-

for 2-shock.
The existence and properties of the 2-viscous shock wave (v*®, u3)(§1) can be summa-
rized in the following lemma, while its proof can be found in [22].
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Lemma 2.1. Fix the right end state (vy,u14) and for any left end state (v—_,u;_) €
S2(v4, u14), there exists a unique (up to a constant shift) solution (v°,u3)(&1) to sys-
tem (2.9), (2.10), and moreover the following hold:

vg] > 0, "fsl = —0*1@1 <0,
and
[v¥(§1) — v_| < C8e~COkE1l VE <0,
V¥ (£1) — v4| < C8e™ Okl VE > 0,
(0], .l )| < €82 COl1 VE €R,

|(v51$1’u§$1$1)| = C8|(v§1’u§$1)| VEieR,
2
|(v§1$1$1’ui$151$1)| =Cs |(v§1,M§;1)| VE e R.

Remark 2.2. In fact, Lemma 2.1 can be proved by using ODE (2.3)—(2.4) for (o°, u{)(&1),
and then to (v¥, u3)(§1), not directly from system (2.9)—(2.10).

2.2. Main result
Now we can state the main result as follows.

Theorem 2.3. Let (p*,u®)(x1 — at) be the planar 2-viscous shock wave defined in (2.3)—
(2.4) with u® := (u},0,0)". Then there exist positive constants 8y, o such that if the shock
wave strength § < 8o, and the initial data (pg, u) satisfies

[(po(x) — p*(x1), uo(x) — u* (x1)) | m2@®xT2) =< €0,

then the 3D compressible Navier—Stokes equations (1.1) admit a unique global in time
solution (p, u)(t, x), and there exists an absolutely continuous shift X(t) such that

p(t,x) = p*(x1 — ot = X(1)) € C([0, +00); H*(R x T?)),
u(t,x) —u’(x; —ot —X(t)) € C([0, +00); H*(R x T?)),
Ve(p(t, x) — p*(x1 — ot —X(2))) € L*(0, +00; HL (R x T?)),
Ve (u(t, x) —u(x; —ot —X(1))) € L2(0, +00; H*(R x T?)).

@2.11)

Furthermore, the planar 2-viscous shock wave (p*, u®)(x1 — o't) is time-asymptotically
stable with the time-dependent shift X(t),

lim sup |(p,u)(t, x) — (p°, u*)(x1 —ot —X())| =0, (2.12)
1700y eRxT2

and the shift function X(t) satisfies the time-asymptotic behavior

Jlim IX(1)| = 0. (2.13)
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Remark 2.4. Theorem 2.3 states that if the two far-fields states (o4, u+) in (1.2) are
connected by the shock wave, then the solution to the 3D compressible Navier—Stokes
equations (1.1), or equivalently (2.6), tends to the corresponding planar viscous shock
with the time-dependent shift X(z) under the generic H2-perturbations, in particular,
without zero mass conditions.

Remark 2.5. The shift function X(¢) is proved to satisfy the time-asymptotic behav-
ior (2.13), which implies that

lim ﬁz

t—>+o0 f

Oa

that is, the shift function X(¢) grows at most sub-linearly with respect to the time ¢, and
therefore, the shifted planar viscous shock wave (p°, u®)(x; — ot — X(¢)) keeps the orig-
inal traveling wave profile time-asymptotically.

Remark 2.6. Theorem 2.3 is the first analytical result on the time-asymptotic stability of
planar viscous shock wave to the multi-dimensional system (1.1) with physical viscosities
as far as we know. Moreover, our stability result is unconditional for the weak planar
Navier—Stokes shock in the 3D case.

Notation. Throughout this paper, several positive generic constants are denoted by C
without confusion. We define

x'i=(x2,x3), dx':=dxadxs, and & :=(5,8), dE:=d&dés.

For 1 <r < oo, we denote L" := L"(Q) = L" (R x T?) and use the notation || - || :=
I - |22 For a non-negative integer m, the space H™(£2) denotes the m-th order Sobolev
space over € in the L2-sense with the norm

1/l o= (invlfnZ)%,
=0
0= ([ 1rpas)t = ([ [ 1rrasag)”

Also, we denote

IC/ O Nam = I1f lm + gl

3. Proof of main result

3.1. Some functional inequalities and local existence of solution

We first present a 3D weighted sharp Poincaré type inequality, which is a 3D version of
the 1D weighted Poincaré inequality in [9] and plays a very important role in our stability
analysis.
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Lemma 3.1. Forany f:[0,1] x T? — R satisfying

1 2
[Vy [
1— d 24 220 ldyidy’ < oo,
/1r2/(; [y1( ol ST Y1(1—Y1)] nar =

the following inequality holds:

1 _ 1 1
L[ 1= ianay <5 [ [ =i, Pavay

| yf| '
dy’, 3.1
16772/TZ/ y1i(l—=y1) yrdy G-D

where f = Jr2 fol fdydy’ and dy' = dy,dys.

Proof. The proof is motivated by that of the 1D weighted Poincaré inequality in [9],
and here we need to concern the transverse directions (y2, y3) € T? additionally. Let
{Py:[-1,1] = R},ez n>0 be an orthogonal basis of the Legendre polynomials, that are
the solutions to the Legendre differential equations

e ((1 ) Py (x1)> — —n(n + ) Pu(x1), (3.2)

and satisfy the orthogonality in L2[—1, 1], i.e., fjl P;Pjdx; = 6;j. Then for fixed x’ =
(x2,x3) € T? and any w(-, x’) € L?[—1, 1], we have

o] 1
win ) = Y a@)P). ) = [ e Pdn.
i=0 -

In particular, we see that Py(x1) = f =: Py, thus

1 1
/ co(x")Py(x1)dx' = PO[ co(x)dx' = —/ / w(xy, xNdx dx' =
T2 T2 2 T2 J-1

If we set Co := [2 co(x')dx’, then
o0
win ) = = Y )P [ el Pod
i=0 T2

= Zci(x/)Pi(xl) + (co(x") —¢o) Po.
im1

Then we have

1 00 1
/ / |lw—w|?dx dx’ = Z/ / c?(x") P2 (x1)dxdx’ + / lco — Co|?dx’
T2 J-1 =172 /-1 T2

=: A; + A,.
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By the Legendre differential equations (3.2), we obtain

1
/;r2/ (1 = x3)|0x, w|*dx1dx’
-1

1
= —/ / 3z, (1 = x3) 0y, w)wdxdx’
T2 J-1

1
= —/ / x, (1 = X33, w)(w — W)dx;dx’
T2 J-1

1 o0 / d 00 / /
= —Az /;1 aXI(;Ci(x )(1 _X%)d__xlpi(XI)) ZCJ-(X )Pj(xl)d-xldx

J=1

1 00
oL (; 1)1 =) S P ) o) — ) Pod
ad 1
N ;/11‘2 /_1 i(i + 1)ci2(X/)Pi2(xl)dX1dx/

o0 1

=2y [ deridndy =24,
. T2 J-—1
i=1

which implies that

1

1
A < —/ / (1 = x3)| 0y, w|*dx1dx’.
2 T2 J—-1

For A,, by using the Poincaré inequality, we get

1
A2 < (27)2 /r];z |Vx/C0|2dX/

1 1 2 1 2 )
m/p ((/1 B)QwPdel) + (/1 8x3wP0dx1) )dx
1 1 2 1 2 )

“g [ ([ rman) ([ ) Jos

1 1

1 1
477—2/T2 /_1 |Veow|?dxdx’.

Combining the above two estimates on A; and A,, we have

1 1 1
/ / |lw — w|?dx dx’ < —/ / (1 = x7)|0x, w[*dx1dx’
T2 J-1 2 Jr2J

1 1
+ —f f |Veow|?dxdx’.
47T2 T2 J-1

IA
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By a change of variables y; := x12+1 Vi =x W, y) =wyr — 1,y) = w(xy, x'),

we get

1 _ 1 1
[/|W—W|2dy1dy’s—/ /yl(l—yowylWdeldy’
T2 Jo 2 Jr2 Jo

1 1
— vV, W2dydy',
+4n2fT2/0|y [“dy1dy

where W := [1» fol Wdy,dy'. Notice that 0 < y;(1 — y;) < 1 for y; € [0, 1], and so

>4
yi(l—y1)

Then we can prove (3.1). [

Now we present a 3D Gagliardo-Nirenberg inequality in the domain Q = R x T2,
whose proof can be found in [13,27].

Lemma 3.2. It holds for g(x) € H*(Q) with x = (x1, X2, x3) € Q := R x T? that

1 1 1 1
||g||L°°(Q) = ‘/EHgHZZ(Q) ”8x1 g”zz(g) +C ”ng”ZZ(Q) ”Vig”ZZ(Qy (3.3)
where C > 0 is a positive constant.

Then we list several estimates of the relative quantities. For any function F defined
on R, we define the associated relative quantity for v, w € R4 as

F@|w) = F(v) — F(w) — F'(w)(v — w).

We gather, in the following lemma, some useful inequalities on the relative quantities
. . — . —r+l1
associated with the pressure p(v) = v~ and the internal energy Q(v) = ”yﬂ . The

proofs are based on the Taylor expansions and can be found in [9].

Lemma 3.3. For given constants y > 1 and v— > 0, there exist constants C, 8, > 0 such
that the following hold true:

(1) For any v, w such that0 < w < 2v_, 0 <v < 3v_,
lv—w|*> < COMW|w), |v—w]*<Cpw). (3.4)
(2) Forany v,w > %=,
lp(v) — p(w)| = Clv —w|. 3.5)
(3) For any 0 < § < 8, and for any (v, w) € Rﬁ_ satisfying |p(v) — p(w)| < 8, and
lp(w) — p(v-)| <6,

y+1 1
plw) < (5= + C8)lp@) = pw)l (36)
lp@) = p)? 1+ (p) — p(w))?
(vlw) = e e (3.7)
ot 2p v w) W pPr(w)
owhw) = ( +C8)lp(v) = p(w)l. (3:8)

1
2yp" 7 (w)
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Finally, we give an estimate involving the inverse of the pressure function p(v) =v~7,
while its proof can be found in [9], and the local existence of classical solution to the 3D
compressible Navier—Stokes equations (1.1).

Lemma 3.4. Fix v— > 0. Then there exist 8o > 0 and C > 0 such that for any vy > 0,
such that 0 < § := p(v=) — p(v4) < 8, v— < v < vy, we have
v—v_ . v— vy 1 p"(vo)
pw)—p-)  ply)—p)  2p'(-)?
For the classical solution, system (1.1) for (p, u)(¢, x) is equivalent to system (2.6) for
(v, u)(t, &). We then work with system (2.6) for (v, u)(¢, ).

(v —vy)| < C82.

Proposition 3.5 (Local existence). Let (v¥,u*)(&1) be the planar 2-viscous shock wave
withu®(§1) := (u§(§1),0,0)". For any E > 0, suppose the initial data (vo,u¢)(x) satisfies

[(vo(x) —v*(x1), uo(x) — u’ (x1)) | m2(rxT2) < E.

Then there exists a positive constant Ty depending on E such that the 3D compressible
Navier-Stokes system (2.6) has a unique solution (v, u)(t, §) on (0, Ty) satisfying

v—v'e C([0,To]; H*(R x T?)), Ve(v—v*) € L*(0, To; H' (R x T?)),
u—u'e C([0, Tol; H*(R x T?)), Ve(u —u®) € L*(0, To; H*(R x T?)),
and fort € [0, Ty), it holds that

t
swp (v =~ @)+ /0 (Ve = v*) % + Ve — )| 4)d e
7€[0,¢

< 4ll(wo — v*, uo —u*) |72

Proposition 3.5 can be proved by a standard way, see [25].

3.2. Construction of shift function X(t)

For notational simplification for any function f(§;), denote

F7XED) = fE = X)),

where the shift function X(¢) is defined in (3.9).

The definition of the shift function X(#) depends on the weight function a: R — R
defined in (4.8). For now, we will only assume that [|a||¢1(g) < 2. Then we can define the
shift X(¢) as a solution to the ODE

. M —X
x0 =5 [ [ 000500 - p() Xndeidg

Ox

- [ [ e @) e - erHegtdaag ] 0
T2 JR

X(0) = 0,
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where tglezfunction hi = uj — (2 + A)0g, v* defined in (4.4) and the constant M :=
%yz—t/l ;(UU_*) with o_ = /—p’(v-).

Let Z(¢, X(¢)) be the right-hand side of equation (3.9);. Thanking to the facts that
lallcrwy <2, V¥l c2r) < v+, and ||v§1 L1 &) < C§, we can find some constant C > 0,
such that

C _ P
sup 121,01 = 5 laller (vlle + 10N ee) [ [ 10958618 < €. G0
XeR T2 JR

and
C — S\ — !
sup 0x 20,301 = 5 laler (ol + 102 Xu) [ [ j00)Magids < c.
XeR T2 JR

Then ODE (3.9) has a unique absolutely continuous solution X(¢) defined on any inter-
val in time [0, 7] by the well-known Cauchy-Lipschitz theorem. In particular, since
IX(¢)| < C by (3.10), we can obtain |X(¢)| < Ct Vt € [0, T].

3.3. Proof of Theorem 2.3

In order to prove Theorem 2.3, we shall combine a local existence result from Proposi-
tion 3.5 together with a priori estimates from Proposition 3.6 by continuity arguments.

Proposition 3.6 (A priori estimates). Suppose that (v, u)(t, £) is the solution to (2.6) on
[0, T] for some T > 0, and ((v*)7X, u®)X)(&1) is the solution to (2.7) with the shift
Sfunction X = X(t), which is an absolutely continuous solution to (3.9). Then there exist
positive constants 8o < 1, yo < 1 and Cy independent of T, such that if the shock wave
strength § < 8¢ and

v— )X eC(0,T]; H*R x T?)), Ve(v—(°)*) e L?(0,T; H' (R x T?)),
u— W) *eC(0,T]; H*R xT?)), Veu— @))€ L*0,T; H*R x T?))

with

1= sup (v — @) u— @) ) ) g2 < xo. (3.11)
0<t<

then the following estimate holds:

T .
sup [0 — (0 X — )1 ya + 8 [0 X (1) P

0<t<T
T
+ [0 (/109X @ = @) )P+ Ve — @) )71+ Ve — @) )132)d1
< Coll(vo — v*, ug — u®) | 3. (3.12)

In addition, by (3.9), we have
IX()| < Collv— () X(t,)|pe VI <T. (3.13)

Proposition 3.6 will be proved in Section 4.
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Based on Propositions 3.5 and 3.6, we can prove the global existence part of Theo-
rem 2.3 by the continuity arguments, while the time-asymptotic behavior part will be left
at the end of the paper.

Proof of Theorem 2.3. We first prove (2.11) in Theorem 2.3 by the continuation method
based on Propositions 3.5 and 3.6. Consider the maximal existence time of the solution

Tnax :=sup{z > 0| sup [[(v—*) ™, u— @) )0 g2 < xo}- (3.14)

t€[0,¢]
We shall show the maximal existence time Tp,x = +00 by the following steps. We define
Xo Xo } = _ X0
4°8JC,) T 4

where yo and Cj are given in Proposition 3.6.

)

g0 = mm{

Step 1: Suppose that || (vo — v°,ug —u®)| g2 < &9 < L2 (= E), by local existence result in
Proposition 3.5, there is a positive constant 7y = T (&) such that a unique solution exists
on [0, Tp] and satisfies || (v — v*,u —u*) (1) || g2 < 2[|(vo — v* 1o — u*) || 2 <2E = £ for
t € [0, Ty]. Without loss of generality, we can assume 7y < 1. Then the Sobolev inequality
implies || (v — v*)(?)||Loe < CXO fort € [0, Tp]. Using v— < v*(£1) < v4 and the smallness
of xo in Proposition 3.6, we get 5= < v(t, &) < 2vy4 for (¢,§) € [0, To] x Q. Therefore,
we can see that (3.10) holds for ¢ e [0, To], and we can deduce from (3.9) that |X(z)| < Ct
for ¢t € [0, Tp]. Then by the mean value theorem, we obtain

— _ X0
I = @) u’ = @) Oz = XOI©, uf)llg> < C821 < Cdy < g
for suitably small §y. Therefore, it holds for ¢ € [0, Ty] that

Iw = @) u = @) O g2

<=2 u—u)O) g2 + (0° = @) — @) )0 | 2

Hence, we can apply the a priori estimates from Proposition 3.6 with T = T and get the
estimate

10 = @)= @) Ol = VCallvo =" tt0 =)l < v/Coso = 22

IA

for ¢t € [0, To].

Step 2: If the maximal existence time Tp,,x < +00, then there is a positive integer N > 1,
which may depend on xg, such that Tmax € (N — 1)Ty, NTp]. We can choose the small
constant 8y satisfying v/89 < +~—. We know from step 1 that

I — v u— us)(To)Ilm
([Che (vs)_X — @) )Tl + 1(0° = @)’ = @) )N (To) | g2

Xo Xo -
< — = =
<D _Dg,

IA
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Hence, we can apply local existence result in Proposition 3.5 by taking t = T as the new
initial time. Then we have a unique solution on [Ty, 27y] with the estimate

I = v u =)Dl > <20 = v*ou —u*)(To)l| > < 28 = 22

2
for ¢ € [Ty, 2Ty]. This together with step 1 implies that ||(v — v, u — u®)(?) || g2 <

X0

2

holds for ¢ € [0, 2Tp]. Similarly to step 1, we can show that |X(¢)| < Ct holds for t €
[0, 2T9]. Using the smallness of §y, we have

I° = @)X u’ = @) O lg> = XOF ug ) a2

< C831 < 2C80/80 < C8p < X2
Therefore, it holds for ¢ € [0, 27Tp] that

1w = @)™ u = @) ™)) 2
< =v*u—u ) Ol g2 + 10— @) 5w = @) )|z
=< % + % < Xo-

Hence, we can apply the a priori estimates from Proposition 3.6 again with T" = 27, and
get the estimate

0= @)= @Ol = VColl(vo = v* 1o =2 = v/Coso = 2
fort € [0,2Tp].

Step 3: Thus, repeating this continuation process, we can extend the solution to the inter-
val [0, N Tp] successively. At the time ¢t = N Ty, it holds

I —=v*, u —u’)(NTo)| g2

IA

I — @) u— @) NT) g2+ (v — @) u’ = @) )NTo)ll 2
<Xo KXo _Xo_g
- 8 8 4 =

Hence, we can apply Proposition 3.5 by taking t = N Ty as the new initial time. Then we
have a unique solution on [N Ty, (N + 1)Tp] with the estimate

I —v*ou =)Dl > < 200 = v*ou —u*)(NTo)| o < 28 = L2

2
fort € [NTp, (N + 1)Tp], which implies that || (v — v*,u —u®)(t)|| g2 < %2 holds for 7 €

[0, (N +1)Tp]. Meanwhile, we can also show that |X(¢)| < Ct¢ holds forz € [0, (N +1)Tp].
Using the smallness of §y, we have

1* = @) = @) ) Oz = IXOI @, ug ) 2

< C831 < C/So(N +1) < C8y < X°.
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Therefore, it holds for ¢ € [0, (N + 1)Tp] that

Iw = @) u = @) )0 g2
<l =v'u =) Ol gz + 10" = @)% u’ = @) Ol

X0 X0
< — — < .
=5 + 3 Xo

Hence, we can apply Proposition 3.6 again with T = (N + 1)Tp and get the estimate
— - Xo
I — @) u— @) )02 < VColl(vo —v°.ug —u¥)ll g2 < v/Cogo < )

fort € [0, (N 4 1)Tp]. This indicates that the solution has been extended to the interval
[0, (N + 1)Tp], which contradicts that Ty, (< NTp) is the maximum existence time.
Therefore, the maximum existence time defined in formula (3.14) is infinity, that is,
Tinax = +00. ]

4. Uniform-in-time H %-estimates

Throughout this section, C denotes a positive constant which may change from line to
line, but which stays independent on § (the shock strength) and « (the total variation of
the function a(&1)). We will consider two smallness conditions, one on §, and the other
on % In the argument, § will be far smaller than %.

4.1. Reformulation of the problem

We introduce a new multi-dimensional effective velocity
hi=u—Q2un+ A)Vev. “4.1)

Then the system (2.6) is transformed into

p(0:v —0dg, v +u - Vev) —divgh = 2 + 1) Agv, 42)
p(d:h — 0 dg, h +u - Veh) + Vep(v) = R, )
where 5 ),
R =12 (G Vv — diveuViv) — Vs x Ve xu. 4.3)
v
We also set
hy = u — 2u 4+ A)dg,v*, h° = (h{,0,0)". 4.4)

We use here a change of variable £, — &; — X(t), then system (2.7) can be rewritten as
() X (=09, ()X + ) X0, (v°) ) — g, (BT
= (2p + Mg, ()7, (4.5)
() X (=09, (M) ™ + () e, (h) ™) + 3¢, p((v*) ) = 0.
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It follows from (4.2) and (4.5) that
pde (v — (V) ™) = 0pdg, (v — (V) 7X) + pu - Ve(v — (v*) %)
—divg(h — (h*)™) — 5((1),()351 )X+ F g, )X
= 2u+ 1) Ag(v = ©)Y), (4.6)
pde(h = (h*)™%) = 0pde, (h — (h*) ™) + pu - Ve(h — (h*) ™)
+ Ve(p(v) — p((v*) ) = X(0)pdg, (h*) X + Fg, (h*) X = R
where
F= —0(p — () + puy — (p*u}) ¥
-X -X
(ps) — (0= (P)) + plur — @) ™)
_ s\—X _ -X _ s\—X
St A0 L L VT YRR V1 Gl Gl B SO
v v v
We define the weight function a(&;) by
K
a) =1+ <(pv-)— p(v*(§1))). (4.8)
where the constant « is chosen to be small but far bigger than § such that
§ <k < CWs. (4.9)
For definiteness and simplicity, we can choose k = V8.
Notice that
1 <a(é) <14k, (4.10)
and «
d'(k) = ——P ")vg, >0, a'| ~ E|U§1|- (4.11)
Lemma 4.1. Let a(§y) be the weighted function defined by (4.8), then
L [ ao(001e0) ™)+ Sih - 4y ¥R )agiay
= X()Y() + B(t) — G(t) — D(1), (4.12)

where

Y0 = = [ [ agp(00ie)™) + 31h - 1) X7 dsiag

/ / Xop' (V) ™) (v — (%) X)(Us)gxdfldé
- /TZ fR"_XP(hi);X(hl — (1) X)dEdE

9
B(1) ;=) Bi(t)

i=1
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with
B = 5- [ [ az¥lpe) = p(@y M Pasias
B2(1) = o / [ pol0 M wgkase

Bs(t) := / /—aglx(hl—(hs)_x)zdg dg,

|h— ()X

2 )dfldél,

B (1) —/ /Fagl Q(vl(vs) )+
A
mow=AﬁAa*ﬁ%L¢«wYﬁw%?

s\—X 5\y—X hl_(hi)_x
x g (0= () (v - ) X = H )

dgide,
Bo) ==+ 2) [ | [ a0 (o) = p() ™)

x 3, p((v*) )y (p 1T (0) — pTITF () NN dE1dE
B = —Cutd) [ [ a5y o

X (p(0) = P )0, (p(v) — p((v*) ) dE1dE
Bs(t) = (21 + 2) /T 2 /R aZX (p ) — p(*) ), p(0) )

<y (pT TV (0) - p Y () ) dEdE
By i= [ [ aX0= ) Rigrag

and

h3 + h?
6o =o. [ [ aXowlwyMdanag +o. [ [ ax ] Banay

[ /as‘ P = pl()°
s

/ / X (@0 - (vS)—")stlds’
4

=ZGi(f),

i=1

D) = G+ [ [ a0 0w - (M) Pagds

hl _ (hS)—X _

Dl agae

Remark 4.2. Since o*aglx > 0and a~X > 1, G(¢) consists of four terms with good sign,
while B(#) consists of bad terms.
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Proof of Lemma 4.1. We set a X := a(£; — X(¢)). Multiplying (4.6); by —a X(p(v) —
p((v*)7X)), we obtain
3 (@ *pQv]|(v*) ™)) = 0, (@ XpQ (0| (v*) ™))
+dive (@ X puQ(v](v*) ™) + a X (p(v) — p((v°) F))dive (h — (h*)™)
= —X()ag, pQ@|(©*) ) = X()a X pp'(*) ) (0 — @) )W) ¥
+ (=0p + pur)ag  Q|(v*)™X) = (=op + pur)a”* p(o|(v*) ) (V)
+aXF(p) — p((*) N
— (2p + D)dive (@ X (p(v) = p((°) ) Ve (v — (v°)79))
+@u+ MVe(@ X (p) = p(©*) ™)) - Vv — (0°) 7). (4.13)
Using (4.7) the definition of F, and (2.8) the definition of o, we get
—op + pur = —o ()X + (p'u) X —o(p— (0°) ™) + (pur — (p*uy) ™)
— 6, + F. 4.14)
Thus, we have
(=op + pu1)ag X Q| (v*) ™) = (—ox + Flag X Q| (v*)™),
— (=op + pur)a X p| (@) ) W)X +aXF(pv) — p((v°) )W)
= 0xa X p] ()T + Fa™¥p'(0) ) (v — ()T ).
Notice that
Vev = YeP®) _ Ver®)
Py _ypty(v)
Hence, the last term on the right-hand side of (4.13) can be rewritten as
Qu+M)Vel@X(p(v) = p((v°) ) - Ve — (v) ™)

- - Vep(v) Vep((v*)™X)
= u+Ha Ve (p) = p(0) ) - (— - (
§ (—ypH'V(v) —ypl+y((vs)—x)>
d 0 s\—X
+ 2u + )L)ag_lx(p(v) — p((vs)_x))< g P(V) _0g p((H™%) )

—yp" @)yt ()X
x| Ve(p)=p((v*) )
o't ()
1 1
X 0 1P((Us)_x) 1 - 1
: (VP]+V(U) yp“y((vs)‘x))
_ s\—X
_ (2M + A’)aE—X(p(v) _ p((vS)—X)) afl (p(U) ?((U ) ))
1 14+-
yp V()
— Qu+ Nag X (pw) = p(v*) 7)), p((*)7Y)

1 1
x — - : : (4.15)
<Vp1+y(v) Vp”y((vs)‘x))

=—Q2p+ Aa — @uA+)a X3 (p()—p((v*) ™)
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Multiplying (4.6), by a=X(h — (h*)™X), we have

h—(hS X2 h— (h® —X |2
ALl T i
B O+ dive o) = plw) 50— )

a™*(p(v) = p((W*")™)divg (h — (h*)7¥)

+ divg (a_xpu

— —X(0ag¥p = (AP e X s\X(  (psyX
X(O)ag X p———— + XO)a ™ p(h)g (1 = (1))
—X s\—X sy—X —Xl _(hs) X|2
+ag (p) = p() N0 = (1)) + (—op + pu)ag —————
— Fa X)Xy — () ™) +a X = (")) - R. (4.16)

Before we add (4.13) and (4.16) together, direct calculations yield

h— (hS -X 2
X O X o) — p@) 0 - )
_ s\—X
= —%*ag_lx 1= (h) X = Q) i((v )P
_x|p() = p())? P+
T a, 20, —Oxdg 4.17)

We treat the perturbed flux term in the Eulerian coordinates along the shock wave
propagation direction, which is different from that in the Lagrangian coordinates. It fol-
lows from (4.5) that 043¢, (h$)™X = ¢, p((v*)™X). Hence, using (4.7), we have

Fa_xp’((vs)_x)(v — ()Y = Fa™(h)g* (hh — (h) ™)

$\=Xy ;.5\ —X $)=X)2 4 §aX _x —X\2
— XN = )+ S X - )™
A
ta —Xz“ P ) @)X, (0 — (0))
s-x _hi—()7X
x (v @)X = 0—) (4.18)

Adding (4.13) and (4.16) together, integrating the resultant equation by parts over 2 :=
R x T2, and using (4.15), (4.17) and (4.18), we can obtain (4.12). The proof of Lemma 4.1
is completed. ]

In order to derive the a-contraction property of the viscous shock wave, we decompose
the function Y(¢) in Lemma 4.1 as

5
Y() =) Yi(0),

i=1
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where
Yi(r) 1= f / T N (p) — p() ) dE .
Va0 i= = [ [ a o @0 - 0N w)pasds
_ s\y—X
vao) = [ [ a oty (m - oy x - POELED Dy gy

Yoo i= =5 [ [ ag¥p(in - aty - PO) = Py
T2 JR

O«

p(v) — p((vs)‘x))
Ox

x (h1 — ()X + dEdg’,

h2 + h?
Vs = [ [ ag¥o(0010n) ) + 21 ) dsia

_ sy—X) |2
A[ S RLORT CAmllF

Notice that M
X(t) = ——5 (1) + Y1), (4.19)

and so

) 5 . e
XOY(@) = = XOP +X(0) Y Yi @),

i=3
Then we have the following lemma.

Lemma 4.3. There exists uniform in time C > 0 such that for Vt € [0, T],
5 . 3
= S XOP +B1(0) + Ba(t) + Ba(1) = G1(1) — Ga(t) — 7D()
== [ [1098100) - p@) OPasds
T2 JR

1
v [ [ agipw - p@) MPagds + 5Ga. @20
T2 JR 1 40
Proof. We now rewrite the above functions with respect to the following variables:

w = p(v) — p((*) ™),
Y= p(v—) - p(S(US(%'l))_X) i (421)
= (y2.73) = (£2.53) =1 &,

We use a change of variable £; €R > y; € [0, 1]. Then it follows from (4.8) that a =X (£;) =
1 + «y; and

dy;

1 _ d _
de =57 e, apf =k a1 =k = V6. (4.22)

“ag
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To perform the sharp estimates, we will consider the O(1)-constants

1
o— 1= +/—p'(v2), a—:= v+

2y0_p(v-)’
which are indeed independent of the small constant 8, since UTJF < v_ < v4. Note that
lox —o—| < C§, (4.23)
which together with 62 = —p/(v_) = ypH'% (v—) implies
1 1

02 + p () ™) =C8, |5 - ——F——|=C8. (4.24)
o= yp T () X)
e Estimate on ——|X(t)|2 To do this, we will control Y;(z) and Y,(¢) due to (4.19).
Using (2.8), system (4.5) is transformed into
{ —on ()X — ()X = u + DS, wrs)
—0x (B + p((v*) ), = 0.

Using (4.25), and the new variable (4.22), we obtain

i) = / / NN, (p) — p(0°) XN dErdE’

———2/ /a_xzdyldy’.
oy Jr2 Jo v

Using (4.23) and |a=X — 1| < «, we have

§ 1
o [ [ wanay
[0 2y VN ’]I‘2 0

() = - / / a X op((*) X, (v — (0 X)dErdE

_ (S X
— 8/ / ( ) dyldy/,
T2

we observe that since (by considering v = p(v)_%)

p() = p((*)7%)
yp' 7 (v5)7%)

1
Y.(t) + <Cék+4d+ )()/2/ |lwldy,dy’.  (4.26)
T2 Jo

For

- )™+ | = Clpe) = PP,

then it holds that

o= @4 (@)~ (@) ] = €6+ 1P — P
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This implies

Yo (2) +

1
<Cé8(k+38+ )()/ / |lw|dydy’.  (4.27)
T2 Jo

S 1
5 / / wdyidy’
oZv- J12 Jo

By (4.19), (4.26) and (4.27), we have

2M !
3 / / wdydy’
oZv— J12 Jo

‘X(r) -

2

M § 1
Z—(Yi(m ./ wdyldy’)‘
= 1] c2v_ Jr2 Jo

1
SC(K+5+X)/ / lwldyidy’,
T2 Jo

which yields

M 1
(|72 [ [ wanay
oZv- J12 Jo

which together with the algebraic inequality

2 1 2
~K01) = cwr s 02( [ [ wlinay)

1
<Cle+5+ 77 / / w2dyidy’,
T2 Jo

2
p
7—6125(11—61)2

for all p, g > 0 indicate

ZMZ ! / > U 2 2 ! 2 /
3 / / wdyrdy” ) — [X()] EC(K+3+X)/ / |w|“dydy’.
o vs T2 Jo T2 Jo

Thus, we can get

§ o Ms ! N\’
_W|X(t)| =< _UEUE(/TZ/O U)dyldy)

1
+ C8(k + 8 + x)? /Tz/ lw|?dy,dy’. (4.28)
0

e Change of variables for B;(¢t) (i = 1,2,3). By the change of variables, using (4.23),
we have

1
Bi(?) = d / / w2dy,dy’
204 T2 Jo
1 1 1 1
= L/ / wzdyldy/—kf(———)/ / w2dy,dy’
20_ T2 Jo 2 Ox o_ T2 Jo

1 1
L/ / wrdydy’ + CKS/ / w2dy,dy’. (4.29)
20_ T2 Jo T2 Jo

IA
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For B, (2), by the change of variables and using (3.6), we obtain
B, (1) = o« f / (I +xy)p|(v*)~ X)W dyidy’

y1 ) = () OF
5"*8(1”)[/ (% 7 X>+CX) TR

- o_p(v w? ,
“’*8“”)/ / ") X)*CX) TGO R

<éa_(1+C(k+6+ )())/ / w2dydy’, (4.30)
T2 Jo

where in the last inequality we have used (4.23) and (4.24).
For B3(t), using the algebraic inequality p?> = (¢ + p —q)> < (1 + 9)q?> + (1+ %) X
(p —q)? for & > 0, it holds that

) X )
B < (402 [ [ S aXipw - ) MPdsag + ¢ (14 5) 160,

Since
1 1 2y0_pv-) 2
o3v_a_  o3v. y4+1  y41
by the change of variables and using (4.23), we have

(140 / / M) = p() O drde

_5(1+19)/ / (H"y‘)‘”‘ wdy dy’
’]I‘Z

OU_

w2dy,dy’

2 1
=—0+?)a—(1+Ck+6§+ )())/ / w?dydy’.
y+1 12 Jo

Thus, the following estimate holds:

B;3(1) <

1
+Ck + 6+ )())/ / w?dy,dy’
T2 Jo

1
+C(+ —)§G3(t). (4.31)
s

e Change of variables for G1(t), G4(t). For G1(t), we first use (3.7) to split it into two

parts,
_x|p() = p((v$)™)]?
Gi(t) > os X a d&dg'
0z o[ [ T e UL
Gi,1(0)

_ Ly (o) — p() )P
o J Je S P ()

dgdE'. (4.32)
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We only need to do the change of variables for the good term Gq,(¢) as follows. By
(4.23), (4.24) and the change of variables,

O«

= [ [ a¥ipw - peyMPasag

1
L(l—C&)/ /wzdyldy’,
20_ T2 Jo

which together with (4.29) yields

G1,1(?)

%

v

1
Bi(t) —G11(t) < CKSf / w?dydy’. (4.33)
T2 Jo
For G4(t), using the mean value theorem,

p) — p((v*)™%)
(9]
Using (4.22) and the change of variables, we get

Gi) == [ [ aNagX% - @y Pagas
=5 /0 o |p'52 e pp(&))‘
/ / w?dyydy’

Sa_(1—-C(8 + )())/ / w2dydy’. (4.34)
1 12 Jo

v— ()X = for ¢ between v and (v*) X

> 5(1 —

e Change of variables for D(t). First, by (4.10) a=X > 1, and then using the change of
variables, we obtain

9 _ \—XY)) 2
D“)Z(z“”)/qrz/R' B (00 = PN

yp' TV (v)
_ $y—X)) |2
FQut ) / |Ver (p(v) 1ﬁ((v ) ) 6 dE
T2 yp "V (v)

_ |ay1w| dYI
_(2M+A)/ /0 T dél>d yidy’

Dy ()

Vywl? dgl .
+(2M+A)/ /O T dyl)d dy

Dy (2)

On the one hand, integrating (4.25) over (—oo, £] yields

Qu+2)(")g" = —0u (V)™ —vo) — UL(P((US)_X) — p(v-)).
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On the other hand,

_p) Ny _ 8 dn

s\y—X
(U )51 p’((vs)_x) - )/pH_%((vS)—X) dél'

Hence, we have
8 dyl

(2M+A) 1+1((vs) X) dél

R é(p«vx)—") P

- ;—j(o,%«vsr" “ )+ () ) — po))).

_ p(v-)—p(v4)

which together with 62 = P leads to
) d 1
QA+ D)t = —————((p(v) — P () ¥ o)
yp'* (@)X 46 v — o)

£ (()™) ~ pr s —v0)
= s () ) = PN =00
() = (P )= p()).

Recall that
_ po) = p((v*)™) o p(@)™) = plvy)
y1 = 5 and 1—y; = 5 ,
and it follows that
1 2u+ A @
yi(l=y1) )/p1+%((v5)—x) dé&
. 8 ( W)X —v_ B W)X —vy )
ox(v4 —v) \ p((v5)X) = p(v-)  p((v) %) = p(v4) /"
Then
‘ 1 2+ A dy,  8p"(v-) ‘
il =y1) pp!*3 (o)X dé1  20-(p'(v-))?
‘ 1 2u+A dy $p” (v-) ‘ sp"(v-) |11
=30 ()% 461 20u( )2 207 0)? low o
=11 + I,.
Using Lemma 3.4, we have
I = 1) < W)X —v_ W)X —vy
' o g — o) \p(@) ) = p(uo) T p(ug) — p((09) )

1 p'(vo)
2 (p'(v-))?

(v — v+))‘ <cs2.
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Since it follows from (4.23) that I, < C§2, we get

‘ 1 2u+ A dy, sp”(v-)
il =y1) ypity o)Xy db1 20-(p'(v-))?

< (C8§2. (4.35)

In addition,
s)y—Xy, 1414
p()

Thus, it holds

$\y—X 1
Do = | [y1<1—y1>|ay1 PR
2n+ A dyi /
dyrd
yl(l—yl) )/[JH_V((US) X)<d$1) 1ay

§p” (v-) 2 // 2 /
= =05~ CF) L, | n@ =l wPdnay
Since
plv-) oy +1
20-(p'(v-))*  2yo_p(v-)
we have

1
D)z ad =G+ ) [ | [ na= sl wPanay
0

We can deduce from (4.35) that

Sl 2/L+l 1 2/L+A
=) T a6 C8 = 2 b ()]
YU yp Ty ((09)7X) % —o1p -

Hence, we obtain

_ [Vywl? p(v—) 145 yi(1—y1) (d& ,
Dy(?) = (2M+k)/ / =) p(v)) yp1+i(v_)(d_y1)dyldy

|Vy/w|2 2//L+A 1
Z(I—C(5+X))(2“+”/ / il =y |p'(v-)? 208

_ o_ (2p + )2 VP gy
=1-C(@+ ))_ p"(v_) /Tz/ yl(l—yl) andy.

Combining the estimates on D((¢) and Dy(¢), we have

dydy’

1
D) = a_3(1 — C( + 7)) / / 1= y)dy,wldy,dy’

_ A)? '
[
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e Proof of Lemma 4.3. First, by (4.30), (4.31), (4.33), (4.34) and (4.36), we obtain

By (1) + Ba(1) + Bs(0) — Gi1 (1) — Galt) — 3D(0)
214 D)
7/+

§8a_[1+ Clc+ 8+ 1)+ (1+ Clkc+ 8+ )())—y—(l—C(b’—ir x))]

1
X/ / deyldyl +C(+ —)—G3(l)
T2 Jo 19 K

3 ! )
~a_t=c6+ ) [ [ na- i, uldnas

3 o— (2u+l)2 Vyw* w|? ,
_2a-c6+ 0= dy'.
PO /T/ =y

Choosing «, §, x and ¥ suitably small, we have

B (1) + Bo(t) + Ba(1) — Gt (0) — Ga(1) — D)

6 ! 5 !
< go [ [Cwrdyiay = oo [ [ iyl wPdnay
T

50_ (2u+A)2/ / Vyw , b
- d C -G3(1).
85 p) Jr2do mia_yp @@ G0

Using (3.1) and the fact that

1
w :/ / wdydy’,
T2 Jo
1 1
/ / Iw—wlzdyldy’=/ /wzdyldy’—wz-
T2 Jo T2 Jo

By (3.1), we have

it holds

By (1) + B2(0) + B(t) ~ G1,1(0) — Ga() — 3D

6 ! 5 !
< —Sa_/ / w2dydy’ — —Sa_/ / |lw — w|*dydy’
5 12 Jo

S50- 2u+A)?  S58a— / / |V wl|? , §
— (== — — 2~ __dydy’ + C—Gs(t
( 8  p’(v-) 6472/ [12 y1(1 —yl) yidy + K 30

Sa— ! 2 l ) l 2
=_—— wody dy’ + —805_ wdyldy
20 Jp2 T2

o_ (Z/L +1)?  Sa_ / / Vyw]® rw|2 , )
(=T ha . (437
(5 " 5e) f | ST + LG, @37
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Choosing M = %(x_ofvz, and combining (4.28), (4.32) and (4.37), we obtain
8 o, 2 3
- W|X(f)| + B1(2) + B2(1) + B3(t) — G1(?) — Ga(1) — ZD(f)
So_ 1
< (—% +C8(c + 8+ 2?) / / w?dy;dy’

o Qu+A)?  Sa_ A /
S(elu et iy
s\ § p'(vo) 8112 12Jo yi(1—y1)

5\—Xy |3
/ / _Xl + )/ lp(v) — p((v ) d&d§' + C§G3(I)’
T2 '

P (v9)7%)

which indicates the desired inequality (4.20) by using (4.9). The proof of Lemma 4.3 is
completed. ]

Lemma 4.4. Under the hypotheses of Proposition 3.6, there exists a constant C > 0
independent of k, 8, y and T, such that for all t € [0, T, it holds

[ [ o(ewiwn+ P20 "E)aeae

48 / X()Pdr + [ (Ga(v) + Ga(v) + G°(v) + D(v)dx

<c// (v|3)+| |)d§d§

L CG+ ) /0 Ve — (usr")nzl dr. 4.38)
where
ho(§) = uo(§) — 2u + A)Vevo(§)
and
Ga(1) = %/ / 0"): X (02 + W& dE,
_ 5\y—X
G3(l) = / / |(US)EX|‘I’11 (hS) -X _ p(U) i((v ) ) 2d§1d§/7
* 4.39)
*0i= [ [ 10958 1p0) - p(@*y P asde.

= [ [ 19:0) = )y Pagias

Note that by (4.10), (4.11) and the uniform lower and upper boundedness of the vol-
ume function v, we have

G2(1) ~ G2(1),  Gs(1t) ~ G3(r), D(r) ~ D(1),

uniform in time ¢ € [0, T'].
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Proof of Lemma 4.4. First of all, we use (4.12) to have

I R R s PET

= S XOP +Bi() + Ba(0) + Bs(1) — Ga(1) — Galt) ~ 2D(1)

5 .
= 537 XOP +X() ZY () + ZB (1) — ZG () - —D(z)

i=3 i=4

Using Lemma 4.3 and the Cauchy inequality, we find that there exist positive constants C;
and C such that

I R (R R R VR

< _ sy—X _ sy—X4 2 /
<-c, /Tz/R(” X lp@) = p(*) ) Pdgide
G* (1)

e / / Xp) — p(y )P derde’

— mu‘«rnz 5 Z Y (1) + ZB (1) — ZG, (1) — —D(r) + —0G3<z>.

i=4

In what follows, to control the above bad terms, we will use the above good terms G; (¢)
(i = 2,3),D(¢t) and G*(¢). In the following, we control the terms on the right-hand side
of the above inequality one by one. First, for simplicity, we use the notation w = p(v) —
p((v*)™X) asin (4.21). Using (4.22), the 3D Gagliardo—Nirenberg inequality (3.3) in strip
domain and assumption (3.11), we get

¢ [, [axipw - pe) ™ Paads = 5ol [ [ @)gidaag

= S uliag i + vz ( [ [ eoptuasay)’
T2 JR

/ [ (*)5Xdgdg)

= Lol + 192uVeul( [ [ @ng¥urasag)”

K 1
= C—=xlIVew[ VG (1) = D) + C1G*(1)). (4.40)
N 80
Here and further in the paper, the norm || - || always denotes || - || L2rxT2)-

e Estimates on the terms Y;(t) (i = 3,4,5). Since

vaoi =l [ [ agxs

_ s\—X
_ (h_i)—x _ p(U) p((v ) ) déld%./ < Ci /G3(t),
O« VK
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then c s .
—|Y5(0)|]? < C=G3(t) < —G3(1).
5|3()|_ - 3()_40 3(1)

For Y4(t), we first use the definition of 4 and 4* = (h%,0,0)" to estimate 1 — (h*) X in
terms of u — (u¥) X and v — (v¥) X

as follows:

h— )  =u— @)™ - Qu+ Ve — (v5)), (4.41)
which together with assumption (3.11) implies

lh — () 7XI = Cllu — @)X + [[Ve(v = ) ™)) = Crr.
This together with ||a$_1X |Leo < Ck6 and assumption (3.11) leads to
Ya(0)] = C VG lag X Fo (i — @)™ + o = ) ¥1) = Crled)* VG (0.
which implies
%|Y4(f)|2 < Cx*kG3(t) < %G3(I)~

Using (3.8) and assumption (3.11), we have

Ssor = 5 f [axurasas) + ([ [ ¥ g ap)

< pup |, [ozrurasag
+Cullh — (k) —X||2/ / —Xh2+h3ds d¢

< Cx*G*(t) + Ckx’Ga(t) < 4—0(CIGS(t) + Ga(1)).

e Estimates on the terms B; (t) (i = 4,...,9). Recalling the definition of F in (4.7) and
assumption (3.11), we get

IFllee < C(v — (0*) Lo + [luy — ) ¥||ze) < Cy. (4.42)
For B4(?), using (3.8) and (4.42), we have

(= )™)? | B3+
2 2

340)—/ /Fa (@) ™) + )aeid
=C /T . /R |FlagX Q| (@) ™) + |p) — p(v) ™) P)dE1dE’
_ 5\y—X
+C/Tz/RIFIa;X 2+ ; + [ =y - Q) gfm )‘Z)d&dg,

= C/;rz/]l;|F|agxw2d§1d5’+C)((G2(z)+G3(,)).
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By the definition of F' (4.7), we obtain

c/ /|F|agl"w2dgldg/5 c/ /aglx|w|3dgldg’
T2 JR T2 JR

By 1(2)
+ C/ / aglx|h1 — (h“;)_x|w2d§'1d§/
T2 JR
B4 2(7)

—-X _ (1S)y X 2 /
+C/Tz/Ra5' [0g, (v — (v°) ) |w d& 1 dE .

B4 3(2)

The same as in (4.40), it holds
1
Bs1(2) < %(D(f) + C1G°(1)).

Using the Gagliardo—Nirenberg inequality (3.2) in strip domain and Lemma 2.1, we have

_ \—X
B4,2(l‘) < C/ / a{:—X hl _(hi)—X_ P(v) g((v ) )‘wzdi_.ldg/

+C/ / wdEdE *

< Clwl3vG30) \f |, [ovikasiae ) + Lo+ i)
< Cllwl + IV Ve VG OVE + 5o (D(0) + 16 (1)

< CxVRVDDVG 0 + 55D + €16 (1)
< D) + (63 + CIE0),
Using the fact that
Ve(p(v) — p(0°) ) = @)Vl — (05)X) + Ve ) X (0) — p (") ).
we obtain
Ve (v — () )] < CIVe(p)— p(*) )]+ ClFX NI — )]
< CIVe(p)— p(*Y XD+ CIFN I p)— p(0) X, (4.43)
Using (4.43), we have
Bas(t) < C / / X (10g, w] + (0°) N whwds dE
< w219, wlllaz ]| + Clwll G (0)
< Clw] + V2wl | Vew|> Ve + CxG* (1)

< CxV8kD(1) + CxG* (1) < %(D(z) + C1G*(1)).
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Combining the above estimates, we get

B4 (1) < lién(n + %(sz +Gs(t) + C1GE ().

Notice that

—X) _ 9, (p(v) — p((v*) 7))

v =00 )

g 1 1
+ P (565~ )

Using (4.11), we obtain

_ s\y—X
B = C [ [ @)Xl (jul + b — o)X - ZEZLED D gy g
o siox  P) = p((*)™¥) ,
[ 10 gx Rl (o + [ - oy - 2D g g
)
= C8]9g wllVG* (1) +C5||3§1w||\/;\/G3(I)
T C82G (1) + C82VG5 () \/?/Gm)

< %(D(r) + CIG (1) + Gs(1).

Similarly, we have
Bo(1) + B1(1) + B (1)
_ ’ K S\— ’
=c [ [1oogmonwiwidsiag + 5 [ [ 109680 wlulasae
T2 JR T2 JR
vk [ [ eerutaads
T2 JR
< O8], w| VG (1) + Ck |9, w]| VG (1) + CkG* (¢)
1 s
< %(D(l) + GG (1)).

Finally, we control the last term By(¢). Using the definition of R in (4.3), we obtain

Veu - Vev — diveu Vv
v

Bo) = e+ ) [ [ a7 ) dtrdt’

— ,uf / aX(h— (h*)™X) - Ve x Ve x udé&dg’
T2 JR
=:Bo,1(¢) + Bo2(1).
To control Bg ; (¢), we set

u' = (uz,uz), Vg = (0g,0;) and Vg -u' = 0g,us + g, us.
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Notice that the first component of Veu - Vev — divgu Vv is
35114 . ng - dnguagl vV = 8511/ . ngv - Vég-/ . u/agl v

= g’ - M — Ve Ly da () — Pl((vs)_x))
—J/p1+7(v) —)/p1+7(v)
I )
—yp'* ()

By assumption (3.11) and the Sobolev inequality, we have
lhy = ()™M zs < Cllh = () [l g
< C(llu = @) Xz + llv = @)X g2) < Cr. (4.44)
Thus, using (4.44), the first part of the integrand in B ; () can be controlled as
-X
a
Qu+21) / , / T(hl — (h{)*X)(agl u - Vv — diveudg, v)d&1d '
T2 JR
< Clh = B3 Ve — @) ™) 16 vD(2)
8 _
+ cs(\/; VG50 + VG 0) I Vet — () ™)
< C(x + 8)(G3(1) + C1G* (1) + D(1) + || Ve(u — ') )1 31)
1
= 5 (GsO + C1G* (1) + D)) + C(x + )| Ve — @) )13
Similarly, the second and third parts of integrand in B ; () can be treated as
X
QQu + /\)/ / a—h’ - (Vgu - Vev —divgu Ve v)d§1d €'
T2JR U
< ClII' |31 Ve — @*)™)ls vD()
8 _
+ CS\/;\/Gz(t)(IIVs/(u — @)™ + VD))
< C(x+8)(G2(1) + D) + [ Ve — ') )131)
1 _
= 50620 +D@) + C(x + 8[| Vel — @)™z
Thus, we have
1
Bo1() = 15(G2() + G3(1) + GG’ (1) + D(1))
+CO+ O Ve — )™ (4.45)

Using (4.41) and direct calculations yield

Boa) ==t [ [ a ™M= @) ™) Ve x e xudgag

+u@u+ ) /TZ /RCI_XVE(U — (v)®) Ve x Ve x uddg’

= Bé,z(t) + Bg,z(l)o
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By integration by parts over R x T2, we obtain
B0 = - [ | [ a™Ve x - ) NRdsiag
T2 JR
_M/;rz Aagx(uz(agluz —Bgzul) —U3(853M1 —851u3))d§1d§"
3
S [ Tex - aNPaads
4 Jr2 Jr
w0 [ [ lag¥pa3+ iasiag + c [ [ lapXPveoPasag
T2 JR T2 JR

= _3_M/ / a X|Ve x (u — () ¥)|2dE1dE + CkdGa(t) + C(k8)*D(1)
4 Jr2 Jr

IA

3 1
SB[ x - ) NP6 + (6o + D).
T2 JR 80
By integration by parts over R x T2, we have
Bg’z(t) =—uu + )L)/ / (v — () )V x Ve xu-Vea Xd&dE
==+ 2) [ | [ 0= 07 06052 = i)
— 0g, (0gu1 — 851u3))aglx]d§1d$’
=1+ [ [ 106 - @) )@z = d50)
— g, (v — (V) N) (Bgyur — O u3))ag X |dEdE
<cusp [ [ a Ve x - ey MPdsiag
T2 JR
+ CKS/ / |Ver(v — (v°) ™) |2dEdE
T2 JR
W -X $y—Xy 2 ’ 1
— V. - —D().
<8 [ [ a¥Tex - ) OPRdgdg + g5
Combining the above two estimates, we get
Boa) == 4 [ [ a9 x - )M Pagiag
2 Jr2 Jr
1 1
— —D(2). 4.4
+ 8OGz(l)-i- 0 (t) (4.46)
Combination (4.45) and (4.46) yields

Bo(1) = o (Ga(1) + Gs(1) + C1G*(1) + 3:D()
O+ O — () ).
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e Conclusion. Combining the above estimates, we have

<[ [ ao(eoiwn + By agae

5 - 1 1 1 1
< ——|X(1)]* = 2G2(t) — =G3(t) — —D(t) — =C;G* (¢
< 37 XOP = 56200 = 3630 = D) — 3C16* (1)
+CO+ Ve — @)™ )7
Integrating the above inequality over [0, ¢] for any ¢ € [0, T'], using (4.43) and noting that
l<a®<1+k, po=C,

we can obtain the desired inequality (4.38) with the new notations (4.39).
This completes the proof of Lemma 4.4. ]

4.2. Estimates for |u — (u®)™X| and ||[v — (v*) X g1
In this subsection, we shall obtain the zero-th order energy estimates for function (v, u).
Lemma 4.5. Under the hypotheses of Proposition 3.6, there exists a constant C > 0
independent of , 8, y and T, such that for all t € [0, T, it holds
t
1w = @) )Ol: + 1 = @O + 5/0 IX(0)]?dt
t
+ [ @@+ D) + 1V - ) M) Py
0

t
= Clluo = + o =1 12) + €6 + 0 [ 1VE 0= ) M), @an
where G° and D are as in (4.39).

Proof. From systems (2.6) and (2.7), we can get the perturbed system for (v — (v%)7X,
u— u)X) as
pde (v — (V*) %) = 0pde, (v — (V) 7X) + pu - Ve(v — (v°) %)
— X(1)pdg, (V)X + Fg, (v*) ™ = dive(u — u*)™¥),
pde (u — (u*) ™) — 0, (1 — (*) ) + pu - Ve(u — @) ¥) (4.48)
+ Ve(p(v) — p((v°) %) = X(1)pdg, (u*) ™ + Fog, (u®) >
= g — @) 7F) + (1 + 1) Vedive (u — (u*) ™),
where F is defined in (4.7). Multiplying (4.48); by —(p(v) — p((v*)™X)), using (4.14),
we obtain
3 (pQ|(v*) ™)) = 0, (PO (V| (v*) ™)) + dive (puQ (v|(v*) ™))
= —(p(v) — p((*) Ndive (u — @) ) = X(@)pp' (V) ) — °) ) *)
+ 0 p| (V) T))EE + Fp () )0 = 0°) )Y (4.49)
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Multiplying (4.48), by u — (u®)™X, using (4.14), we get

_ s\—X |2 _ s\—X 1|2 _ s\—X |2
Ll A e P L B

+ dive ((p(v) — p((°) N — @) ™¥) = dive (u — *) ) (p(v) — p((V*)™Y))
= XO)p) Xy — @) ™) = F@) r — @) ™) — | Ve — @) ™)
— (1 + M (dive (u — @))% + pdive (Ve (u — @*) %) - (u — @) ™))
+ (u + A)dive (dive (u — @) ) — @*)™)). (4.50)

d:(p

Adding (4.49) and (4.50) together, and integrating the resultant equation over R x T2, we
have

// (@l + = E (us) X|2)d$1dé’

+ / / (Ve — @) )P+ (4 A (dive (e — () X)?)dErdE
T2 JR

Dy (?)
=X0Y() + i I (1), (4.51)
o
where
Y = — /T 2 /R op () ) — () ) (0*); Xd 1 dE
+ [ [ ptg¥on -ty dgdg =30+ 920
and

L) = o / / POl )W) dE dE
() = / [ Fp'((0°) )0 — (0*) ) (0" Xd &, dE .
B0 == [ [ Fabg¥on - whdadg,
From (3.4) and (3.6), it follows that
wol= ([, [eogaaag) ([ [ et- Xedgag)’
< CV8/G3(1).

Hence, we have

: §
XN 0] = gIX(I)I2 +CG°(0).
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By (4.41), it holds
— DT == )T+ QA D) (0 = (0°) 7). (4.52)

To control Y, (t), we use (2.9); and (4.43) and get

_ 5\y—X
a0l =€ [ [ 10931 = X = POZLED D) - piaty )
+ 10g, (p(v) - p((vfr"m + 1Ol = @) dérag
< c(%\/cm) +V5/G5 (1) + 83 \/D(t)).

Thus, it holds

. 5 . 8
XOI[%:0] = 5 XOP +C=63(0) + CC* (1) + C82D(0).
For I;(t), using (3.6), we obtain
[I1(1)| < CG*(2).

For I5(t), using Lemma 2.1, and the definition of F (4.7), it holds

_ s\—X
no = [ egX(fn - - 222D ) - peny )

+ 10, (p(v) — p((v*)~ X))IJr(vs)gXIv (vs)_xl)
X |p() = p(W))|dEdE’

< c(\/g@/cs—a)+ G* (1) + 5\/%\/0—(:))
< C%G3(t) + CG*(t) + C8*D(1).
Using (4.52) and (2.9),, similarly to I5(t), we get
I3(t) < C§G3(t) + CG*(t) + C§%D(1).

Integrating (4.51) over [0, ¢] for any ¢+ < T and combining the above estimates, we can
find that for some constant C, > 0,

f / O(w|(v*)~ X)+| — s) Xlz)dgldgur/otnl(f)df

<c [ [ ro(ou)+ "5 i a

+/ ( IX(0)]? + 0803(1) + GG () + C82D(t))
0
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which together with (4.38) yields
I = @)@ + 10— BN + 1 = @)@
+4 /Ot IX(0)|?dt + /Ot(Gz(r) + G3(7) + G*(v) + D(v) + Dy (1))dt
< C(llvo = v°|I> + o — B*|1> + uo — u'||?)
+C@E+y) /Ot IVE (@ — @) ™)|Pdx, (4.53)
where by Lemma 3.3, we have used the fact that
C7Ho— @) = QI()™) = Clo— ().
Finally, from (4.41), it holds
Ve — @)™ < Cllh = B)7F + llu = @) 7¥) (4.54)

and
ho — h*|| < C(|luo — u*|| + || Ve(vo — v)|). (4.55)

Thus, combining (4.53), (4.54) and (4.55), and using the fact that
IVe(u — u*)™)||> ~ Dy,

we can obtain the desired inequality (4.47). The proof of Lemma 4.5 is completed. ]

4.3. Estimates for || Ve(u — (u*)™%)|

Lemma 4.6. Under the hypotheses of Proposition 3.6, there exists a constant C > 0
independent of , 8, y and T, such that for all t € [0, T, it holds

t
Vet — (Y X) @) + [0 V2 — @) )|2d e
< C(llvo —v* 2 + o — w* [20). (4.56)

Proof. Multiplying (4.48), by —vAg(u — (*)~X) and integrating the resultant equations
over R x T2, we obtain

d Ve — @) OR
5. /T 2 /R : dEdE

(15X 2 / . _osv=Xy |2 ’
+M/T2/RUIA5(M W*)" )" dé1dE +(M+A)/T2/Rv|vgdw§(u W) ) 2dE dE
D> (1)

— —[Ez/R(Vgu -Vg(u—(us)—X) 'VE(M_(MS)_X)—diVEM

| Ve (u— () )?

T )did¥’
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_X(f)/T2 /R(ui)gXAg(ul — W) X)dEdE’
+/Tz/RUF(ui)g_leg(u1 — W) X)dEdE

F ) [ [ Bet= 00y = Vedive - @)™
T2 JR
x Vevdive(u — (u*)X)dE1dE’
5
[ [ vaete= @) Vo) = p(@ Mdsiag = >
Using assumption (3.11) and the Sobolev inequality, we have ||Ve(u — (u®)™%)||3 <
C|Ve(u — (u®) )|l z1 < Cx. Thus, it holds
Ji(t) = ClI Vg — @) )31 Ve — @) ) Lol Ve (u — *) )|
+ C8||Ve(u — ) ™0)|?
< CxllVeu = @) ™) g Ve — @) )| + C8||Ve(u — @) ™0)|?
< C@+ M2(t) + [ Ve — ) ™))

We notice —0x (vs)glX = (u{)glx from (2.9); and use Lemma 2.1, then we have

L(1) < IXO)e X 2@ vD2(0) < X(1)182 VD2 (1) < C82[X(1)[? + CD(1).

For J3(t), using —o (vs)glX = (u{)g_lX and Lemma 2.1, and the definition of F (4.7), it
holds

_ s\y—X
sy = [ [ k(- o= PO pa) - piety )
1, () = (@) D]+ MM — 07 [ Aees — () ) d6rdE’
< c(s\/g\/@(z) 18G5 (1) + 5%/0(;)) VDo (1)

§
< C—=Gs3(t) + CG*(t) + C8>D(t) + C8*Dy(1).
K

For J4(t), using assumption we have ||Ve(v — (v*)X)|[z3 < C[|[Ve(v — @) ) ||lz1 <
C x. Then we get
Ja(0) = CIAc e — @) )| + | Vedive (e — 06y ) D)5 X 0w
x |dive (u — (u*) )|
+ C([ A — ) )| + [ Vedive (u — @*) ™))
X Ve — (")) L3 lldive (e — @) ™) | s
< C8 VD) |dive(u — (*) ™) + Cxy/Da(0) dive (u — ") ™) |1
< C@+ NM2(t) + Ve — @) ))?).



Nonlinear stability of planar viscous shock wave 545

By the Cauchy inequality, we have

J5(t) = 702(0) + CIVe(p@) = (@ NI = {D2(0) + D).

Therefore, the combination of the above estimates yields

CNVe — @y MO+ Date) = CRIXOP + C 630+ CG ) + CDW)
+CE 4 DI Ve — @)

Integrating the above inequality over [0, ] for any ¢t < T', and using Lemmas 4.4 and 4.5
and the fact that

IVE (@ — @*) ) OI” ~ D2 (o),

we can obtain the desired inequality (4.56). The proof of Lemma 4.6 is completed. ]

4.4. Estimates for ||V§2(v — @)™

Lemma 4.7. Under the hypotheses of Proposition 3.6, there exists a constant C > 0
independent of k, 8, y and T, such that for all t € [0, T, it holds

t
IVE (@ = @)™ O + /0 IVE (@ — @) ™)Pde
t
< C(llvo = v* 3> + lluo — u’|31) + C(8 + X)/O IVE (u — @)™ 2z, 4.57)

Proof. We set ¢ := v — (v° )X, Yvi=u— W' )~X for notational simplicity, and rewrite
(4.48) as
0r¢ —00g, ¢ +u-Vep — )‘((t)(vs)glX + UF(US)S_IX = vdive ¥,
B — 00, Y +u- Ve + vp'(0) Vg +v(p () = () NV (0) X (4.58)
—XO) )X+ vF) X = poAey + (i + Ao Vedivey.
Applying Vedg, (i = 1,2,3) to (4.58)1,and d¢; (i = 1,2, 3) to (4.58),, we have
0; Vg, — 00g, Vedg, @ + u - Ve(Vidg 0) — X(1) Vedg, (v°) X
+ VF Ve, (v°)g X 4 Vedgu - Veg + Veu - Vedg, ¢ + g, u - Ve(Veg)
+ Vede, WF) (0°)g X + Ve(F)dg, (v°) X + 8, (0F) Ve (0°) X
= vV 0g, dive + Vedg, vdivey + 0, vVedivey + Vevdg divey,
0,0g, ¥ — 00,0, ¥ + u - Vedg, v + vp'(v)Vedg, ¢ + 0, u - Ve (4.59)
+ 0, (vp' (1)) Ve + 3, (0(p'(v) — P'((V*) 7)) Ve ()™
+0(p' (V) = p'(V) ) Vede, (0)) X = X(0)dg, (u*) ¥
+UF g (') + 0 (VF) ()
= VAgdg; W+ (4 A)vVe0g, diveyr + 0g, v(uAgy + (u+ A) Vediveyr).
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Multiplying (4.59)1 by p(214 4+ A) Vg0, @, and summating by i from 1 to 3, then integrat-
ing the resultant equations over R x T2, we get

@ +x)d// Wg(p'zdgdg' @ +x)§3:/ /va Vede diveyd dE
JE— f— . . . 1V
H dt Jp2 Rp 2 l : = /r2JR £06: 9" Ve0s e !

= e X0 [ [ 0000058 g dsae

—eush [ [ P pen g dads

3
—(2u+MZ/TZ/RPV53W'[Vsas[U'sz + Veu - Vedg
i=1
+ dg,u - Ve(Vep)|dé1dE’

3
—Qu +A)Z/TZ/RP(V53W'V53&< (F)(v")g*
i=1
+ 8¢, 0,095, WF) (0*)g X, )dE1d €

~euth) [ [ pVedne VP00 dsrdg

3
+ 2u+A) Z[Ez /I; PVedg, ¢ - [Vgagivdivgl// + 0, vVediveyr
i=1
+ Vevdg, divey |d€1d§' (4.60)

Multiplying (4.59); by —pVdg, ¢, and summating by i from 1 to 3, then integrating the
resultant equations over R x T2, we obtain

3
/ / _p/(v)lvfz‘p|2dsld§/+(2’“”‘)2/ /Vsasfw-vsasfdiwdéldé'
T2 JR — Jr> Jr
d < 3
dt;/TzApaslw s, pd1d +;/TAp D¢ Ogyu - Vewrdtydg
3
> /T /Rpaff‘” - [Vidg, 919 — 0g, Vede ¢ +u - Ve (Vedg )l dE1dE
i=1
3
t2 /m /R pdg; (vp' (V) Vg, ¢ - Vepd§1dE'
i=1
—X(Z)/TzAﬂaélw(ui);’;d&dg/
3
+> /T ) /R pde, ((p' (V) — p'(V°) 7)), 0, p(v°) X E1dE
i=1

+ []I‘Z/]R(p/(v) —p/((vs)—x))aéz_lgD(US)E—l)gld%-ldé./



Nonlinear stability of planar viscous shock wave 547

3
2 sy—X I S1—X ,
—i_/11,2/11{Faélgo(ul)é]éldéldE +;/Tz/Rpa%’i(UF)aS1aEi§0(u1)gl d&d§

3
- Z /Tz /R POz, v(Agy + (4 A)Vedive ) - Vedg, pd £1d €' 4.61)
i=1

Adding (4.60) and (4.61) together, and integrating the resultant equations over [0, ¢] for
any ¢ € [0, T], we have

[VZgl? o=t [t )
eu+n [ [ o anag| v [ [ [ 1roinviepasdsac
T2 JR =0 0o JT2JR
8
— Z K; (1), (4.62)
j=1

where

3 =t
K =3 L. [ oty -vitsgasiag|

t .
ko) = [ X [ [ gk plCn+ D00, - G Mg a
Ka) == [ [ [ Pt gl + W00 g, — D Jagrag

3 t
Ku(t) = —(2p +A);/O sz /R [p(Vede, @ - Vede, 0F)(v*)
+ g, 0,00, WF) () X ) |dE1dE d e

t
—euth [ [ [ Ve iR adg s
3 t
+Z// /pagl8&.@8&.(vF)(ui)E_leéldS'dt,
= Jo Jr2 Jr

3 t
Ks(t) = _Z/(; [Ez/Rpa&w ) [V§35i8t¢—0351V53gig0
i=1
+ u - Ve(Vedg, (p)]dfldé'/dr,

3 t
Ke(t) = —(ZM+A)Z/O fTZ/RPVsas,-w'[Vsaau'szJer"'Vsaaw
i=1
+0gu - Ve(Vep)|d§1dE'dr

3 t
+ Z/O /1r2/];§pV58gi(p-[agiu-ng + 3, (vp' (V) Vegld £ dE d,
i=1



T. Wang, Y. Wang 548

3 t
K7(t) = e, (v(p' (V) — P (v°) X)) g, 0, (v°); Xd E1d E'd
2(0) ;/0 L. [ ot/ = 5 (@) e 05000 Kagrd
t
+ /0 /T 2 fR (') — P ()N, p(0*)5X, dErde .
3 ot
Ks(t) = (Z/L—i—/\)Z/O /Tz/RpVgagigo{Vgagivdngw + 0g; vVe(diveyr)
= + Vevdy, (divey)]dEdE'dr
3 t
- D vVede, @ - [UA M)Vedivey]dé dE'de.
;/0 /Tszpg,v £0g;0 - [LAgY + (1 + M) Vedivey]drdE d

Using the Cauchy inequality, it holds

2+ A
3 IVeVEeI? + ClIVey I + C(IVEwol* + Ve vol®).-

Using Lemma 2.1, we have

K@) <

t
Ka(t) < €8 /0 X182 ol 10X L2y d T

<Cs? /0 (IX@) + V1P )93, ¢lP)d.
Using (4.7), we get
' sx P = p(()™) o
K=o [ [ [ (== ZOELED D ) - ()™

+ [0, (p() = p(@*) D]+ 1)K P ) = p(@))])
x 32, ol () N|dErdE d e

<cs? /0 (VG3() + VG (@) + VD) I|2, ¢lld

t
<cs / (G3(1) + G*(v) + D() + |V [P I3, plP)d.
0
By using (4.7) again, it holds
VF = 0x(v — (05) ™) +up — )™ = 0w + Y. (4.63)

Thus, we can get
Ka(t) < c/ot /T /R V20l V20| + [V2y )| (v)F ¥ |dE1dE d T
e [ [ [ 9201Vl + 196 DI0N5 lasiag d
<cs /0 IV20ll(IVe@ i + Vel o)d T

t
<cs /0 (VTP @IV + D(x) + G*() + [IVew I )d .
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By using equation (4.59);, we can compute the term K5(¢) as
t
_ Y —X /
Ks(t) = — /0 ) [ [ 0600058, ddg an

t
" /0 /Tz /]R Fg Y1 () g, d1dE dT

3t
+Z/0 /WAPE’SJ/”[Vsasf“'szﬂLVs“'Vsasﬂﬂ
i=1
+ dg,u - Ve(Vep)|dErdE'de

3 t
" gf [, ][ ot [¥ee 0FIG0E + VetwP e (05
+ Og; (UF)VE(US);?IX]d%’ldS'dt

3.t
- Z/ / / pOg, Y - [VgagivdiV§1/f + 0g; vVediveyr
= Jo Jr2 Jr
+ ngagidngl//]déldf/dT

3 6
—Z/ / [ Og, - Vg, divegydEdE'dr =1y Ks (1)
i=170 JT2J/R i=1
Using Lemma 2.1, we obtain
t t
Ks1(t) < c52/ |X(t)|2dr+C52/ [Vey||*dt.
0 0
Using (4.7) and (4.43), we have

Ksa)=C [ [ [ 19eliongs |
_ s\—X
i =y = OO pw) - ey

+1p) = p(@ )]+ 1p) — p(*) NN dkde dr
<8 /0 (IVey | + G3(r) + G*(v) + D(v))d.

By assumption (3.11), the Cauchy inequality, and the Sobolev inequality, we obtain the
following estimations:

1 1 1 1
lells + 1¥les < Clellzliell;s + Cly Iz 1V s

= Clellgr +Cllylar = Cx,
. (4.64)

1 1 1 1
IVeplis + Ve lis = ClIVepll 2 IVeellfs + ClIVEV 2 VeV Il 6
= ClVepllgr + ClIVey g < Cx.
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Then we have
Kss(t) < c[ot /Tz/RIVsWI(IVgWIVWI + Vvl ViphdidEdT
+c/0t/TZ/R|w|<|<ui>g’§l||aw| )X Vede, oD ErdE d
c| 1V IV (o )l 2 19200 9l T
ver | IV 1196, 1l + 19506, o ld
< C)(/Ot(||V§<P||2 T IVeV I3 )d

t
e /0 (V261 + IVew |2 + D() + G*(0))d .

We use (4.63) again and Lemma 2.1, then we get

t
Ksa(t) < €82 /0 V2@, DI + Ve (0, ¥)IP)d T

t
<cs /0 (IV20l? + V6w 13,1 + D(x) + G* (D))dr.

Similarly to K5 3(¢), we have
Kss(t) < cfot Aszwswuvgmwgsm + Vegl V2 ddEd T
e [ [ 1008, 19wt + 10 IVEy Dagrag
=c| IVeW el Ve ) s 19200, 9l
ver | IV IV | 4+ V20
<y /0’(”V§¢”2 + Vv 2 )d T + C8 [0 Vw2, d.

Integration by parts over R x T2 yields

3 t t
Ks6(t) = Z/ / /(agidiVSw)zdéldé’dt =/ | Vedivey || *d.
=170 JT2JR 0

Thus, the combination of the above estimates implies

1 t t o
Ks() = ¢ [IVIPOIVEelPar+ ¢ [ 1V3pPdr + 8 [ K@par

+C0 [ (630 + 65+ DT +C6 + ) [ Vvl
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Using the Cauchy inequality and (4.64), we get

t
K6<r)sc[0 /Tz[RIVSZM[IV?l/fIIVWI+|Vs1/f|2+|V§¢||Vs1/f|+IszlzldéldS’dT

t
+ [[ [, J B0l oDE, 1+ e vl
+ |V§2§0||(M31)$—1X| + |V§(p”(vs)s_1x|]d51d€/dt

t
<C /0 IVZol[IVEY el VepllLs + I Vel I VeIl Lo
+ V201 Vev e ]d T

t
+C/0 IVl Vel L3I VepllLod T
t
+C52/0 IVE@ IV (. vl + IVEelDd T

=C@¢+x /Ot(llv 1P')IVE@l? + D(0) + G*(2) + || Vey [I7)d .
where we used the fact that
IVEeI*IVew Lo < CIVE@IPIIVeY Il < CxIVEQIIVEW 2
< Cx(IVIp )IVEell? + Ve v II32)-

Similarly, we have

t
K= [ [ [ (Vellol + 10105 + 1VegDI Vel Nl g d e

t
ves [ [ el eliesXidaag
o JT2JR

= ¢ [ VIOVl + D(o) + G (o).

Using the Cauchy inequality and (4.64) again, we get
Ks(t) < C [0 t /T 2 /R IV2Y (V20 l(Veol + 15X dérdE d e
e [1 [ [ 19el0veniivEel + VeV, bagidg an
<c /0 Vel IV2 619201 + IVew e V201 ld T
+C8 /Ot IVERIIVEYII+ IVew llde

=C@+ )()/0 VP’ @IVEQI? + IVey lI721d T

Substituting the above estimates into (4.62) and using Lemmas 4.4, 4.5 and 4.6, we can
obtain the desired inequality (4.57). The proof of Lemma 4.7 is completed. ]
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4.5. Estimates for ||V§(u — @)

Lemma 4.8. Under the hypotheses of Proposition 3.6, there exists a constant C > 0
independent of k, 8, y and T, such that for all t € [0, T, it holds

t
192 — () )02 + fo IV3 — () ) Pd ¢
< C(llvo = v* |12 + lluo — u'[|7;2). (4.65)

Proof. Multiplying (4.59); by —Agd; ¥, and summating by i from 1 to 3, then integrat-
ing the resultant equations over R x T2, we obtain

u /T2/ VZ wzdg]dé’

+u/ /U|V5A§1/f|2d§1d§/+(ﬂ+/\)/ /v|V§div§1/f|2d§1d§/
T2 JR T2 JR

D3 ()
3
=) Li(0), (4.66)
i=1
where
La(t) == Z/ /3su Vg, ¥ - g, 0g, yd €1dE’ +/ /legu dgldg

i,j=1

La(r) = ;/Tvap (v) Mgy, ¥ - Vedg pdErdE.
3
Li(t) = ;Az/n;{agiu-vgwﬁawdgldg/
3
3 L. [ s wronaces v Vipdsiag

u(r)—Z / / 9, (0(p' (v) — /() X)) (0°) X Agde, n d1 dE

+ /T L 0= P @0, s s
Ls) ==X [ | [ scoq @ik, asids’
Lg(2) :/TZAvF(ui)a§1A§BEIWIdSId§/»

3
L =3 L. [ s 0r)adztac, masas.
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3
Lg(t) = (u+ A)Z/;rz /R(Agagil// — VgagidngW) . ng agidiVSI//d%'ldE/
i=1

3
- de. V(A ) Vedi A YdEdE .
;/T/n; V(ALY + (1 + D) Vedivey) - Ad; ydé1d§

Using the Cauchy inequality and (4.64), we get

Li(1) = CIVeV sV Lol VEW I + C82|VEw > < C6 + DIVEV I
< CE+ M3 + [IVEy ).

Using the Cauchy inequality, we have
1
La(t) = 3Ds() + C|VEg|%
It follows from the Cauchy inequality and (4.64) that

L3(t) < CUIVeV I3 IVe¥llze + IVe@llLsll VeellLe + 82 Ve(p, ¥)I1vDa(t)
< CE+ pM30) + IVev 71 + IVeell70)
<CE+ pM3(1) + G*(t) + D) + | Vev |7 + IIV§¢IIZ).

Using Lemma 2.1, we obtain
Lo =€ [ [ (%0l + 165N I0DI)EXIIEvaldrdg
v s [ [ 1olle)gXIvinldaag
T2 JR
< C8Da(1) + G* (1) + [VeplP) < C8Ds(1) + G°(1) + D)),
and

Ls(1) < C8IX)| VD310 ¥ 2@y
< C83X(1)|v/D3(1) < C83D5(t) + C83 [X(1)[%.

Using the definition of F (4.7), we have

Le(1) < C8 /0 [T /R (| = > = 2= if(vs)_x) +1p() = p(@)7)

+ 19, (p(v) = p(() NI + () N p () = P((vs)_x)l)
X |(0°)g X1 Agdg, Y1 |dE1dE d T

< C8*(VG3(1) + VG5 (1) + D (1)) | Adg, ¥ |
< C8%(G5(t) + G*(t) + D(1) + D3(1)).
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Using (4.63) and the Cauchy inequality, we get
Lo(1) < C8|[Ve(p, vl Agde, ¥l < CE(D3(1) + G*(1) + D(1) + || Vey [1?).
Using the Cauchy inequality and (4.64), we have
Ls(®) = CYD3(0)| Ve 318V Il + [ Vedivey || o)
+ CE VD3O (1A¢v|| + [ Vedivey )

< CE+0vDsO[Ae¥ [l + [ Vediveyr [ 1)
< CE+ 0M3() + Mg 171 + [ Vedivey 7).

Substituting the above estimates into (4.66), and integrating the resultant equations over
[0,¢] for any ¢ < T, using Lemmas 4.5, 4.6 and 4.7, we can get the desired inequal-
ity (4.65). The proof of Lemma 4.8 is completed. ]

4.6. Proofs of Proposition 3.6 and Theorem 2.3
We use (4.43) to have
IVe(w — (*)™)|? < C(D() + G*(1)),

which together with Lemmas 4.4—4.8 yields (3.12). In addition, using (3.9) and (4.25),
together with Lemma 2.1 and assumption (3.11), we have

. C
K01 = S0 — o) Dl + o= @ Ne) [ [ @)5dsag

< Cllv = @) ¥z,

which implies (3.13). The proof of Proposition 3.6 is completed.
To finish the proof of Theorem 2.3, we remain to justify the time-asymptotic behaviors
(2.12) and (2.13). Set

(1) = [Vep)I” + IVey (0)]1%,
where @, ¥ are defined in Lemma 4.7. The aim is to show that

+o0
| el + @ <.
which implies

Jim g(r) = t_l)igloo(llvsw(t)ll2 +IVew 1*) = 0. (4.67)

First, we can deduce from (3.12) that f0+°° |g(t)|dt < oo. Then we apply V¢ to equa-
tion (4.58); to get

t t t
[Onvga,wnzdrscfo ||v§<¢,w>||2dr+C(8+x)/o IVe(o. ) |Pd

L cs / (K@ + G3(1) + G*(v) + D(x)d < C.
0
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Meanwhile, it follows from (4.59), that
t t t
/0 IVedoy|2dr < C /0 (V2. 9)IP + V39 12)d T + C6 + ) /0 IVe(o. v)|Pde

+ c52/ (|5<(f)|2 +Gs(1)+G*(0) + D(t))dt <cC.
0

Using the above two facts and the Cauchy inequality, we have
+o00 +o00
[ igolar= [ [ [ @Vl Vaone + 209y Ve vhagdg

+oo
< 2/0 (IVepllIVedroll + [ Vey [l Ved: v [Ddr < oo.

By the Gagliardo—Nirenberg inequality in Lemma 3.2 and (4.67), we obtain
. . 1 1
lim [[(g.¥)[ze < lim (v2][(¢.¥)] % [10g, (0. ¥)]2

t—>—+o00 t—>+o00
1 1
+ CVelp, I IVE(@, ¥)12) =0,
which proves (2.12). In addition, by (3.13) and the above large-time behavior, it holds

X(0)] < Cllv = (@)X, )|l > 0 ast — +oo,

which proves (2.13). Thus, the proof of Theorem 2.3 is completed.
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