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Abstract. We prove the nonlinear stability of the planar viscous shock up to a time-dependent shift
for the three-dimensional (3D) compressible Navier–Stokes equations under the generic perturba-
tions, in particular, without zero mass conditions. Moreover, the time-dependent shift function keeps
the shock profile shape time-asymptotically. Our stability result is unconditional for the weak pla-
nar Navier–Stokes shock. Our proof is motivated by the a-contraction method (a kind of weighted
L2-relative entropy method) with time-dependent shift for the stability of viscous shock in the
one-dimensional (1D) case. Instead of the classical anti-derivative techniques, we perform the sta-
bility analysis of the planar Navier–Stokes shock in the original H2-perturbation framework and
therefore zero mass conditions are not necessarily needed, which, in turn, brings out the essen-
tial difficulties due to the compressibility of viscous shock. Furthermore, compared with 1D case,
there are additional difficulties coming from the wave propagations along the multi-dimensional
transverse directions and their interactions with the viscous shock. To overcome these difficulties,
a multi-dimensional version of the sharp weighted Poincaré inequality, a-contraction techniques
with time-dependent shift, and some essential physical structures of the multi-dimensional Navier–
Stokes system are fully used.

Keywords: compressible Navier–Stokes equations, planar viscous shock wave, time-asymptotic
stability.
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1. Introduction

We are concerned with the time-asymptotic stability of planar viscous shock wave for the
3D compressible Navier–Stokes equations´

@t�C divx.�u/ D 0; .t; x/ 2 RC ��;

@t .�u/C divx.�u˝ u/Crxp.�/ D ��xuC .�C �/rxdivxu:
(1.1)

Here � D �.t; x/WRC � � ! RC, u D u.t; x/ D .u1; u2; u3/
t .t; x/WRC � � ! R3

represent the mass density and the velocity of a fluid in��R3, respectively, and p.�/D
b�
 (b > 0, 
 > 1) stands for the classical 
 -law pressure, and both constants � and � are
viscosity coefficients satisfying the physical constraints

� > 0; 2�C 3� � 0:

Without loss of generality, we normalize b D 1 from now. We are concerned with the
Cauchy problem of the 3D Navier–Stokes system (1.1) in x D .x1; x2; x3/

t 2 � WD

R � T2 with T2 WD .R=Z/2. The initial data

.�; u/jtD0 D .�0; u0/! .�˙; u˙/ as x1 !˙1 (1.2)

is prescribed with the far-fields conditions �˙ > 0 and u˙ D .u1˙; 0; 0/t as x1 ! ˙1,
and the periodic boundary conditions are imposed on .x2; x3/ 2T2 for the solution .�;u/.

The large-time asymptotic behavior of the solutions to the 3D compressible Navier–
Stokes system (1.1)–(1.2) with different end states .�˙; u˙/ without shear is conjectured
to be determined by the planar Riemann problem of the corresponding 3D Euler system8̂̂̂̂

<̂
ˆ̂̂:

@t�C divx.�u/ D 0;

@t .�u/C divx.�u˝ u/Crxp.�/ D 0;

.�; u/.0; x/ D

´
.��; u�/; x1 < 0;

.�C; uC/; x1 > 0:

(1.3)

The solution to the Riemann problem (1.3) in general contains two nonlinear waves, i.e.,
shock and rarefaction waves and the above conjecture towards the time-asymptotic stabil-
ity of the Riemann solutions is well established in the 1D case. In 1960, Il’in–Oleı̆nik [7]
first proved the stability of shock and rarefaction wave for the 1D scalar Burgers equa-
tion. Then Matsumura–Nishihara [22] proved the stability of viscous shock wave for the
1D compressible Navier–Stokes system with physical viscosity under the zero mass con-
dition. Independently, Goodman [1] proved the same result for a general system with
“artificial” diffusions. Then Liu [18], Szepessy–Xin [26] and Liu–Zeng [19] removed
the crucial zero mass condition in [1, 22] by introducing the constant shift on the viscous
shock, the diffusion waves and the coupled diffusion waves in the transverse characteristic
fields. Masica–Zumbrun [20,21] proved the spectral stability of viscous shock for the 1D
compressible Navier–Stokes system under a spectral condition, which is slightly weaker
than the zero mass condition. Huang–Matsumura [5] proved the stability of a composite
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wave consisting of two viscous shocks for the 1D full compressible Navier–Stokes equa-
tions with non-zero initial mass and the condition that the strengths of two viscous shocks
are suitably small with same order. Note that all the above results for the stability of
shocks are based on the classical anti-derivative techniques, which are essentially suitable
to the 1D case and seems not applicable to the multi-dimensional system (1.1) directly.

On the other hand, the time-asymptotic stability of rarefaction wave for the 1D com-
pressible Navier–Stokes system was proved by Matsumura–Nishihara [23, 24] by using
the direct L2-energy methods due to the expanding property of rarefaction wave. Very re-
cently, Kang–Vasseur–Wang [11,12] proved the stability of the combination wave of vis-
cous shock and rarefaction (even with viscous contact) for the 1D compressible Navier–
Stokes system by using a-contraction methods with the time-dependent shifts to overcome
the difficulties caused by the incompatibility of viscous shock and rarefaction.

In multi-dimensions, Goodman [2] first proved the time-asymptotic stability of weak
planar viscous shock for the scalar viscous equation by the anti-derivative techniques
with the shift function depending on both time and spatially transverse directions, and
then Hoff–Zumbrun [3, 4] extended Goodman’s result to the large amplitude shock case.
Recently, Kang–Vasseur–Wang [10] provedL2-contraction of large planar viscous shocks
up to a shift function depending on both time and spatial variables.

Comparatively speaking, there are very few results on the nonlinearly time-asymptotic
stability of planar viscous shocks for the multi-dimensional Navier–Stokes system (1.1)
due to the substantial difficulties in the high-dimensional propagation of shocks and the
nonlinearities of the system. In 2017, Humpherys–Lyng–Zumbrun [6] proved the spectral
stability of the planar viscous Navier–Stokes shocks under the spectral assumptions by
the numerical Evans-function methods, and one can refer to the survey paper by Zum-
brun [28] for the related results and the references therein.

The aim of this paper is to prove the nonlinearly time-asymptotic stability of planar
viscous shock wave up to a time-dependent shift for the 3D compressible Navier–Stokes
system (1.1) by using the weighted energy method under the generic H 2-perturbations
without the zero mass conditions.

The compressibility of viscous shock, which substantially causes the “bad” sign terms
in L2 elementary entropy estimates, is the main difficulty in proving its time-asymptotic
stability by energy methods. In the 1D case, the classical anti-derivative technique was de-
veloped to make full use of the compressibility of viscous shock, and then the zero mass
conditions, or generic perturbations with non-zero mass distribution but with the constant
shift on the viscous shock and the diffusion waves on transverse characteristic fields,
are necessarily needed to clearly define the anti-derivative variables for the perturbation
around the viscous shock [1,18,19,22,26]. However, the above anti-derivative techniques
cannot be applied directly to prove the stability of planar viscous shocks for the multi-
dimensional Navier–Stokes system (1.1). Alternatively, Kang–Vasseur [8, 9] developed
the a-contraction method (a kind of weighted L2-relative entropy method) with time-
dependent shift to obtain L2-contraction of shock wave to the viscous conservation laws.
One of the advantages of a-contraction method is that it is not necessary to introduce the
anti-derivative variables for the perturbation and fully use the time-dependent shift in the
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original perturbation to control the compressibility of shock. The idea can also be applied
to prove the stability of planar viscous shock to the multi-dimensional scalar conservation
laws [10] and the stability of the combination wave of viscous shock and rarefaction for
the 1D compressible Navier–Stokes system [11].

Our proof of the time-asymptotic stability for the multi-dimensional Navier–Stokes
shock is motivated by the a-contraction method. However, compared with 1D stability,
there are several new difficulties:

(i) We need to establish a 3D version of the sharp weighted Poincaré inequality (see
Lemma 3.1) together with the time-dependent shift X.t/ defined in (3.9) to control
the compressibility of planar shock.

(ii) For the stability analysis of the 1D Navier–Stokes system in [8, 9], Lagrangian
structure of the system is fully utilized. However, this structure cannot be kept
in Eulerian coordinates, especially in the multi-dimensional case. Therefore, we
need to find a new effective velocity h WD u � .2�C �/r�v (see also (4.1)) in 3D
Eulerian coordinates and the rewritten system (see (4.2)) has the similar stability
structure as one in Lagrangian coordinates.

(iii) Some physical underlying structures of the multi-dimensional Navier–Stokes sys-
tem (1.1) are used. We use the Hodge decomposition to decompose the diffusive
term��u into the irrotational part r�div�u and the rotational part r� �r� � u and
borrow some ideas from the stability of planar rarefaction wave in [14–17] to over-
come the wave propagations along the transverse directions and their interactions
with the planar viscous shock.

The rest part of the paper is organized as follows. In Section 2, we first list the prop-
erties of the planar viscous shock and then state our main result. In Section 3, we first
present some useful functional inequalities, and then construct the shift function and give
the proof of our main theorem based on the local existence in Proposition 3.5 and uniform
in time a priori estimates in Proposition 3.6. In Section 4, we reformulate the problem in
new variable function .v; h/ first, and then prove the uniform in time H 2-estimates in
Proposition 3.6.

2. Planar viscous shock and main result

In this section, we first describe the planar viscous shock and then state our main result
on the time-asymptotic stability of planar viscous shock for the 3D compressible Navier–
Stokes equations (1.1) under generic H 2-perturbations without zero mass conditions.

2.1. Viscous shock wave

First we depict planar viscous shock. For definiteness, we consider 2-shock and 1-shock
case that can be treated similarly.
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It is well known that the Riemann problem of 1D compressible Euler system´
@t�C @x1.�u1/ D 0;

@t .�u1/C @x1.�u
2
1 C p.�// D 0;

(2.1)

with Riemann initial data

.�; u1/.0; x1/ D .�0; u10/.x1/ D

´
.��; u1�/; x1 < 0;

.�C; u1C/; x1 > 0;

determined by the far-field states (1.2), admits a 2-shock wave solution with the speed �

.�; u1/.t; x1/ D

´
.��; u1�/; x1 < �t;

.�C; u1C/; x1 > �t:

This provided that the following Rankine–Hugoniot condition:´
��.�C � ��/C .�Cu1C � ��u1�/ D 0;

��.�Cu1C � ��u1�/C .�Cu
2
1C � ��u

2
1�/C .p.�C/ � p.��// D 0;

(2.2)

and the Lax entropy condition

ƒ2.�C; u1C/ < � < ƒ2.��; u1�/

with ƒ2.�; u1/ D u1 C
p
p0.�/ being the second eigenvalue of the Jacobi matrix of the

Euler system (2.1), hold true. Denote by ı the 2-shock wave strength ı WD jp.v�/ �
p.vC/j � jvC � v�j � ju1� � u1Cj and set

� D .�1; �2; �3/ with �1 D x1 � �t and �i D xi ; i D 2; 3:

Correspondingly, planar 2-viscous shock wave .�s;us/.�1/with us.�1/ WD .us1.�1/; 0; 0/
t ,

connecting .��; u�/ and .�C; uC/, for the 3D compressible Navier–Stokes equations sat-
isfies the ODE system8̂<̂

: ��.�s/0 C .�sus1/
0
D 0; .�/0 WD

d.�/

d�1
;

��.�sus1/
0
C .�s.us1/

2/0 C p.�s/0 D .2�C �/.us1/
00;

(2.3)

for the far-field conditions

.�s; us1/.�1/ D .��; u1�/; .�s; us1/.C1/ D .�C; u1C/: (2.4)

Using new variables .t; �/, we can rewrite system (1.1) as´
@t� � �@�1�C div�.�u/ D 0;

@t .�u/ � �@�1.�u/C div�.�u˝ u/Cr�p.�/ D ���uC .�C �/r�div�u:
(2.5)
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If we introduce the volume function v D 1
�

, then we can further rewrite system (2.5) as´
�.@tv � �@�1v C u � r�v/ D div�u;

�.@tu � �@�1uC u � r�u/Cr�p.v/ D .2�C �/r�div�u � �r� � r� � u;
(2.6)

where the pressure is defined by p.v/ D bv�
 and we have used the identity

��u D r�div�u � r� � r� � u

for the viscosity term.
Similarly, by using the volume function

vs WD
1

�s
;

the ODE system (2.3) is transformed into´
�s.��.vs/0 C us1.v

s/0/ D .us1/
0;

�s.��.us1/
0
C us1.u

s
1/
0/C p.vs/0 D .2�C �/.us1/

00;
(2.7)

where p.vs/ D .vs/�
 . Integrating (2.3)1 on .�1; �1/, we get

���s C �sus1 D ���� C ��u1� DW ���: (2.8)

Therefore, system (2.7) and far-field conditions (2.4) can be rewritten as´
���.v

s/0 D .us1/
0;

���.u
s
1/
0
C p.vs/0 D .2�C �/.us1/

00;
(2.9)

and

.vs; us1/.�1/ D .v�; u1�/; .vs; us1/.C1/ D .vC; u1C/; v˙ D
1

�˙
: (2.10)

By (2.9) (or (2.2)) and (2.8), it holds that´
���.vC � v�/ D u1C � u1�;

���.u1C � u1�/C p.vC/ � p.v�/ D 0:

Therefore, we have

�� D

s
�
p.vC/ � p.v�/

vC � v�
> 0

for 2-shock.
The existence and properties of the 2-viscous shock wave .vs; us1/.�1/ can be summa-

rized in the following lemma, while its proof can be found in [22].
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Lemma 2.1. Fix the right end state .vC; u1C/ and for any left end state .v�; u1�/ 2
S2.vC; u1C/, there exists a unique (up to a constant shift) solution .vs; us1/.�1/ to sys-
tem (2.9), (2.10), and moreover the following hold:

vs�1 > 0; us
1�1
D ���v

s
�1
< 0;

and

jvs.�1/ � v�j � Cıe
�Cıj�1j 8�1< 0;

jvs.�1/ � vCj � Cıe
�Cıj�1j 8�1> 0;

j.vs�1 ; u
s
1�1
/j � Cı2e�Cıj�1j 8�12 R;

j.vs�1�1 ; u
s
1�1�1

/j � Cıj.vs�1 ; u
s
1�1
/j 8�12 R;

j.vs�1�1�1 ; u
s
1�1�1�1

/j � Cı2j.vs�1 ; u
s
1�1
/j 8�12 R:

Remark 2.2. In fact, Lemma 2.1 can be proved by using ODE (2.3)–(2.4) for .�s;us1/.�1/,
and then to .vs; us1/.�1/, not directly from system (2.9)–(2.10).

2.2. Main result

Now we can state the main result as follows.

Theorem 2.3. Let .�s; us/.x1 � �t/ be the planar 2-viscous shock wave defined in (2.3)–
(2.4) with us WD .us1; 0; 0/

t . Then there exist positive constants ı0, "0 such that if the shock
wave strength ı � ı0, and the initial data .�0; u0/ satisfies

k.�0.x/ � �
s.x1/; u0.x/ � u

s.x1//kH2.R�T2/ � "0;

then the 3D compressible Navier–Stokes equations (1.1) admit a unique global in time
solution .�; u/.t; x/, and there exists an absolutely continuous shift X.t/ such that

�.t; x/ � �s.x1 � �t � X.t// 2 C.Œ0;C1/IH 2.R � T2//;

u.t; x/ � us.x1 � �t � X.t// 2 C.Œ0;C1/IH 2.R � T2//;

rx.�.t; x/ � �
s.x1 � �t � X.t/// 2 L2.0;C1IH 1.R � T2//;

rx.u.t; x/ � u
s.x1 � �t � X.t/// 2 L2.0;C1IH 2.R � T2//:

(2.11)

Furthermore, the planar 2-viscous shock wave .�s; us/.x1 � �t/ is time-asymptotically
stable with the time-dependent shift X.t/,

lim
t!1

sup
x2R�T2

j.�; u/.t; x/ � .�s; us/.x1 � �t � X.t//j D 0; (2.12)

and the shift function X.t/ satisfies the time-asymptotic behavior

lim
t!1
j PX.t/j D 0: (2.13)
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Remark 2.4. Theorem 2.3 states that if the two far-fields states .�˙; u˙/ in (1.2) are
connected by the shock wave, then the solution to the 3D compressible Navier–Stokes
equations (1.1), or equivalently (2.6), tends to the corresponding planar viscous shock
with the time-dependent shift X.t/ under the generic H 2-perturbations, in particular,
without zero mass conditions.

Remark 2.5. The shift function X.t/ is proved to satisfy the time-asymptotic behav-
ior (2.13), which implies that

lim
t!C1

X.t/
t
D 0;

that is, the shift function X.t/ grows at most sub-linearly with respect to the time t , and
therefore, the shifted planar viscous shock wave .�s; us/.x1 � �t �X.t// keeps the orig-
inal traveling wave profile time-asymptotically.

Remark 2.6. Theorem 2.3 is the first analytical result on the time-asymptotic stability of
planar viscous shock wave to the multi-dimensional system (1.1) with physical viscosities
as far as we know. Moreover, our stability result is unconditional for the weak planar
Navier–Stokes shock in the 3D case.

Notation. Throughout this paper, several positive generic constants are denoted by C
without confusion. We define

x0 WD .x2; x3/; dx0 WD dx2dx3; and � 0 WD .�2; �3/; d� WD d�2d�3:

For 1 � r � 1, we denote Lr WD Lr .�/ D Lr .R � T2/ and use the notation k � k WD
k � kL2 . For a non-negative integer m, the space Hm.�/ denotes the m-th order Sobolev
space over � in the L2-sense with the norm

kf kHm WD

� mX
lD0

kr
lf k2

� 1
2

;

kf k WD
� Z

�

jf j2d�
� 1
2

D

� Z
T2

Z
R
jf j2d�1d�

0
� 1
2

:

Also, we denote

k.f; g/kHm D kf kHm C kgkHm :

3. Proof of main result

3.1. Some functional inequalities and local existence of solution

We first present a 3D weighted sharp Poincaré type inequality, which is a 3D version of
the 1D weighted Poincaré inequality in [9] and plays a very important role in our stability
analysis.
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Lemma 3.1. For any f W Œ0; 1� � T2 ! R satisfyingZ
T2

Z 1

0

h
y1.1 � y1/j@y1f j

2
C
jry0f j

2

y1.1 � y1/

i
dy1dy

0 <1;

the following inequality holds:Z
T2

Z 1

0

jf � xf j2dy1dy
0
�
1

2

Z
T2

Z 1

0

y1.1 � y1/j@y1f j
2dy1dy

0

C
1

16�2

Z
T2

Z 1

0

jry0f j
2

y1.1 � y1/
dy1dy

0; (3.1)

where xf D
R

T2
R 1
0
fdy1dy

0 and dy0 D dy2dy3.

Proof. The proof is motivated by that of the 1D weighted Poincaré inequality in [9],
and here we need to concern the transverse directions .y2; y3/ 2 T2 additionally. Let
¹PnW Œ�1; 1�! Rºn2Z;n�0 be an orthogonal basis of the Legendre polynomials, that are
the solutions to the Legendre differential equations

d

dx1

�
.1 � x21/

d

dx1
Pn.x1/

�
D �n.nC 1/Pn.x1/; (3.2)

and satisfy the orthogonality in L2Œ�1; 1�, i.e.,
R 1
�1
PiPjdx1 D ıij . Then for fixed x0 D

.x2; x3/ 2 T2 and any w.�; x0/ 2 L2Œ�1; 1�, we have

w.x1; x
0/ D

1X
iD0

ci .x
0/Pi .x1/; ci .x

0/ D

Z 1

�1

w.x1; x
0/Pi .x1/dx1:

In particular, we see that P0.x1/ D 1p
2
DW P0, thusZ

T2
c0.x

0/P0.x1/dx
0
D P0

Z
T2
c0.x

0/dx0 D
1

2

Z
T2

Z 1

�1

w.x1; x
0/dx1dx

0
DW xw:

If we set xc0 WD
R

T2 c0.x
0/dx0, then

w.x1; x
0/ � xw D

1X
iD0

ci .x
0/Pi .x1/ �

Z
T2
c0.x

0/P0dx
0

D

1X
iD1

ci .x
0/Pi .x1/C .c0.x

0/ � xc0/P0:

Then we haveZ
T2

Z 1

�1

jw � xwj2dx1dx
0
D

1X
iD1

Z
T2

Z 1

�1

c2i .x
0/P 2i .x1/dx1dx

0
C

Z
T2
jc0 � xc0j

2dx0

DW A1 C A2:
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By the Legendre differential equations (3.2), we obtainZ
T2

Z 1

�1

.1 � x21/j@x1wj
2dx1dx

0

D �

Z
T2

Z 1

�1

@x1..1 � x
2
1/@x1w/wdx1dx

0

D �

Z
T2

Z 1

�1

@x1..1 � x
2
1/@x1w/.w � xw/dx1dx

0

D �

Z
T2

Z 1

�1

@x1

� 1X
iD1

ci .x
0/.1 � x21/

d

dx1
Pi .x1/

� 1X
jD1

cj .x
0/Pj .x1/dx1dx

0

�

Z
T2

Z 1

�1

@x1

� 1X
iD1

ci .x
0/.1 � x21/

d

dx1
Pi .x1/

�
.c0.x

0/ � xc0/P0dx1dx
0

D

1X
iD1

Z
T2

Z 1

�1

i.i C 1/c2i .x
0/P 2i .x1/dx1dx

0

� 2

1X
iD1

Z
T2

Z 1

�1

c2i .x
0/P 2i .x1/dx1dx

0
D 2A1;

which implies that

A1 �
1

2

Z
T2

Z 1

�1

.1 � x21/j@x1wj
2dx1dx

0:

For A2, by using the Poincaré inequality, we get

A2 �
1

.2�/2

Z
T2
jrx0c0j

2dx0

D
1

4�2

Z
T2

��Z 1

�1

@x2wP0dx1

�2
C

�Z 1

�1

@x3wP0dx1

�2�
dx0

D
1

8�2

Z
T2

��Z 1

�1

@x2wdx1

�2
C

�Z 1

�1

@x3wdx1

�2�
dx0

�
1

4�2

Z
T2

Z 1

�1

.j@x2wj
2
C j@x3wj

2/dx1dx
0

D
1

4�2

Z
T2

Z 1

�1

jrx0wj
2dx1dx

0:

Combining the above two estimates on A1 and A2, we haveZ
T2

Z 1

�1

jw � xwj2dx1dx
0
�
1

2

Z
T2

Z 1

�1

.1 � x21/j@x1wj
2dx1dx

0

C
1

4�2

Z
T2

Z 1

�1

jrx0wj
2dx1dx

0:
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By a change of variables y1 WD x1C1
2

, y0 WD x0,W.y1; y0/ WDw.2y1 � 1;y0/Dw.x1; x0/,
we get Z

T2

Z 1

0

jW � xW j2dy1dy
0
�
1

2

Z
T2

Z 1

0

y1.1 � y1/j@y1W j
2dy1dy

0

C
1

4�2

Z
T2

Z 1

0

jry0W j
2dy1dy

0;

where xW WD
R

T2
R 1
0
Wdy1dy

0. Notice that 0 � y1.1 � y1/ � 1
4

for y1 2 Œ0; 1�, and so

1

y1.1 � y1/
� 4:

Then we can prove (3.1).

Now we present a 3D Gagliardo–Nirenberg inequality in the domain � D R � T2,
whose proof can be found in [13, 27].

Lemma 3.2. It holds for g.x/ 2 H 2.�/ with x D .x1; x2; x3/ 2 � WD R � T2 that

kgkL1.�/ �
p
2kgk

1
2

L2.�/
k@x1gk

1
2

L2.�/
C Ckrxgk

1
2

L2.�/
kr

2
xgk

1
2

L2.�/
; (3.3)

where C > 0 is a positive constant.

Then we list several estimates of the relative quantities. For any function F defined
on RC, we define the associated relative quantity for v, w 2 RC as

F.vjw/ D F.v/ � F.w/ � F 0.w/.v � w/:

We gather, in the following lemma, some useful inequalities on the relative quantities
associated with the pressure p.v/ D v�
 and the internal energy Q.v/ D v�
C1


�1
. The

proofs are based on the Taylor expansions and can be found in [9].

Lemma 3.3. For given constants 
 > 1 and v� > 0, there exist constants C , ı� > 0 such
that the following hold true:

(1) For any v, w such that 0 < w < 2v�, 0 < v � 3v�,

jv � wj2 � CQ.vjw/; jv � wj2 � Cp.vjw/: (3.4)

(2) For any v;w > v�
2

,
jp.v/ � p.w/j � C jv � wj: (3.5)

(3) For any 0 < ı < ı�, and for any .v; w/ 2 R2C satisfying jp.v/ � p.w/j < ı, and
jp.w/ � p.v�/j < ı,

p.vjw/ �
�
 C 1
2


1

p.w/
C Cı

�
jp.v/ � p.w/j2; (3.6)

Q.vjw/ �
jp.v/ � p.w/j2

2
p1C
1

 .w/

�
1C 


3
2
.p.v/ � p.w//3

p2C
1

 .w/

; (3.7)

Q.vjw/ �
� 1

2
p1C
1

 .w/

C Cı
�
jp.v/ � p.w/j2: (3.8)
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Finally, we give an estimate involving the inverse of the pressure function p.v/D v�
 ,
while its proof can be found in [9], and the local existence of classical solution to the 3D
compressible Navier–Stokes equations (1.1).

Lemma 3.4. Fix v� > 0. Then there exist ı0 > 0 and C > 0 such that for any vC > 0,
such that 0 < ı WD p.v�/ � p.vC/ � ı0, v� � v � vC, we haveˇ̌̌ v � v�

p.v/ � p.v�/
C

v � vC

p.vC/ � p.v/
C
1

2

p00.v�/

p0.v�/2
.v� � vC/

ˇ̌̌
� Cı2:

For the classical solution, system (1.1) for .�;u/.t; x/ is equivalent to system (2.6) for
.v; u/.t; �/. We then work with system (2.6) for .v; u/.t; �/.

Proposition 3.5 (Local existence). Let .vs; us/.�1/ be the planar 2-viscous shock wave
with us.�1/ WD .us1.�1/; 0;0/

t . For any„> 0, suppose the initial data .v0;u0/.x/ satisfies

k.v0.x/ � v
s.x1/; u0.x/ � u

s.x1//kH2.R�T2/ � „:

Then there exists a positive constant T0 depending on „ such that the 3D compressible
Navier–Stokes system (2.6) has a unique solution .v; u/.t; �/ on .0; T0/ satisfying

v � vs2 C.Œ0; T0�IH
2.R � T2//; r�.v � v

s/ 2 L2.0; T0IH
1.R � T2//;

u � us2 C.Œ0; T0�IH
2.R � T2//; r�.u � u

s/ 2 L2.0; T0IH
2.R � T2//;

and for t 2 Œ0; T0�, it holds that

sup
�2Œ0;t�

k.v � vs; u � us/.�/k2
H2
C

Z t

0

.kr�.v � v
s/k2

H1
C kr�.u � u

s/k2
H2
/d�

� 4k.v0 � v
s; u0 � u

s/k2
H2
:

Proposition 3.5 can be proved by a standard way, see [25].

3.2. Construction of shift function X.t/

For notational simplification for any function f .�1/, denote

f �X.�1/ WD f .�1 � X.t//;

where the shift function X.t/ is defined in (3.9).
The definition of the shift function X.t/ depends on the weight function aWR! R

defined in (4.8). For now, we will only assume that kakC1.R/ � 2. Then we can define the
shift X.t/ as a solution to the ODE8̂̂̂̂

<̂̂
ˆ̂̂̂:
PX.t/ D �

M

ı

h Z
T2

Z
R

a�X.�1/

��
�.hs1/

�X
�1
.p.v/ � p..vs/�X//d�1d�

0

�

Z
T2

Z
R
a�X.�1/�p

0..vs/�X/.v � .vs/�X/.vs/�X
�1
d�1d�

0
i
;

X.0/ D 0;

(3.9)
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where the function hs1 WD us1 � .2� C �/@�1v
s defined in (4.4) and the constant M WD

5
4

C1
2


�3�v
2
�

p.v�/
with �� D

p
�p0.v�/.

Let Z.t;X.t// be the right-hand side of equation (3.9)1. Thanking to the facts that
kakC1.R/ � 2, kvskC2.R/ � vC, and kvs

�1
kL1.R/ � Cı, we can find some constant C > 0,

such that

sup
X2R
jZ.t;X/j �

C

ı
kakC1.kvkL1 Ck.v

s/�X
kL1/

Z
T2

Z
R
j.vs/�X

�1
jd�1d�

0
� C; (3.10)

and

sup
X2R
j@XZ.t;X/j �

C

ı
kakC1.kvkL1 C k.v

s/�X
kL1/

Z
T2

Z
R
j.vs/�X

�1
jd�1d�

0
� C:

Then ODE (3.9) has a unique absolutely continuous solution X.t/ defined on any inter-
val in time Œ0; T � by the well-known Cauchy–Lipschitz theorem. In particular, since
j PX.t/j � C by (3.10), we can obtain jX.t/j � Ct 8t 2 Œ0; T �.

3.3. Proof of Theorem 2.3

In order to prove Theorem 2.3, we shall combine a local existence result from Proposi-
tion 3.5 together with a priori estimates from Proposition 3.6 by continuity arguments.

Proposition 3.6 (A priori estimates). Suppose that .v; u/.t; �/ is the solution to (2.6) on
Œ0; T � for some T > 0, and ..vs/�X; .us/�X/.�1/ is the solution to (2.7) with the shift
function X D X.t/, which is an absolutely continuous solution to (3.9). Then there exist
positive constants ı0 � 1, �0 � 1 and C0 independent of T , such that if the shock wave
strength ı < ı0 and

v � .vs/�X
2 C.Œ0; T �IH 2.R � T2//; r�.v � .v

s/�X/ 2 L2.0; T IH 1.R � T2//;

u � .us/�X
2 C.Œ0; T �IH 2.R � T2//; r�.u � .u

s/�X/ 2 L2.0; T IH 2.R � T2//

with
� WD sup

0�t�T

k.v � .vs/�X; u � .us/�X/.t; �/kH2 � �0; (3.11)

then the following estimate holds:

sup
0�t�T

k.v � .vs/�X; u � .us/�X/.t; �/k2
H2
C ı

Z T

0

j PX.t/j2dt

C

Z T

0

.k
q
j.vs/�X

�1
j.v � .vs/�X/k2Ckr�.v � .v

s/�X/k2
H1
Ckr�.u � .u

s/�X/k2
H2
/dt

� C0k.v0 � v
s; u0 � u

s/k2
H2
: (3.12)

In addition, by (3.9), we have

j PX.t/j � C0kv � .vs/�X.t; �/kL1 8t � T: (3.13)

Proposition 3.6 will be proved in Section 4.
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Based on Propositions 3.5 and 3.6, we can prove the global existence part of Theo-
rem 2.3 by the continuity arguments, while the time-asymptotic behavior part will be left
at the end of the paper.

Proof of Theorem 2.3. We first prove (2.11) in Theorem 2.3 by the continuation method
based on Propositions 3.5 and 3.6. Consider the maximal existence time of the solution

Tmax WD sup¹t > 0 j sup
�2Œ0;t�

k.v � .vs/�X; u � .us/�X/.�/kH2 � �0º: (3.14)

We shall show the maximal existence time Tmax DC1 by the following steps. We define

"0 D min
°�0
4
;
�0

8
p
C0

±
; „ D

�0

4
;

where �0 and C0 are given in Proposition 3.6.

Step 1: Suppose that k.v0 � vs;u0 �us/kH2 � "0�
�0
4
.D„/, by local existence result in

Proposition 3.5, there is a positive constant T0 D T0.„/ such that a unique solution exists
on Œ0;T0� and satisfies k.v� vs;u�us/.t/kH2 � 2k.v0 � vs;u0 �us/kH2 � 2„D

�0
2

for
t 2 Œ0;T0�. Without loss of generality, we can assume T0 � 1. Then the Sobolev inequality
implies k.v� vs/.t/kL1 �C�0 for t 2 Œ0;T0�. Using v�<vs.�1/ < vC and the smallness
of �0 in Proposition 3.6, we get v�

2
< v.t; �/ < 2vC for .t; �/ 2 Œ0; T0� ��. Therefore,

we can see that (3.10) holds for t 2 Œ0;T0�, and we can deduce from (3.9) that jX.t/j � Ct
for t 2 Œ0; T0�. Then by the mean value theorem, we obtain

k.vs � .vs/�X; us � .us/�X/.t/kH2 D jX.t/jk.v
s
�1
; us�1/kH2 � Cı

3
2 t � Cı0 �

�0

8

for suitably small ı0. Therefore, it holds for t 2 Œ0; T0� that

k.v � .vs/�X; u � .us/�X/.t/kH2

� k.v � vs; u � us/.t/kH2 C k.v
s
� .vs/�X; us � .us/�X/.t/kH2

�
�0

2
C
�0

8
< �0:

Hence, we can apply the a priori estimates from Proposition 3.6 with T D T0 and get the
estimate

k.v � .vs/�X; u � .us/�X/.t/kH2 �
p
C0k.v0 � v

s; u0 � u
s/kH2 �

p
C0"0 �

�0

8

for t 2 Œ0; T0�.

Step 2: If the maximal existence time Tmax <C1, then there is a positive integerN � 1,
which may depend on �0, such that Tmax 2 ..N � 1/T0; NT0�. We can choose the small
constant ı0 satisfying

p
ı0 �

1
NC1

. We know from step 1 that

k.v � vs; u � us/.T0/kH2

� k.v � .vs/�X; u � .us/�X/.T0/kH2 C k.v
s
� .vs/�X; us � .us/�X/.T0/kH2

�
�0

8
C
�0

8
D
�0

4
.D „/:
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Hence, we can apply local existence result in Proposition 3.5 by taking t D T0 as the new
initial time. Then we have a unique solution on ŒT0; 2T0� with the estimate

k.v � vs; u � us/.t/kH2 � 2k.v � v
s; u � us/.T0/kH2 � 2„ D

�0

2

for t 2 ŒT0; 2T0�. This together with step 1 implies that k.v � vs; u � us/.t/kH2 �
�0
2

holds for t 2 Œ0; 2T0�. Similarly to step 1, we can show that jX.t/j � Ct holds for t 2
Œ0; 2T0�. Using the smallness of ı0, we have

k.vs � .vs/�X; us � .us/�X/.t/kH2 D jX.t/jk.v
s
�1
; us�1/kH2

� Cı
3
2 t � 2Cı0

p
ı0 � Cı0 �

�0

8
:

Therefore, it holds for t 2 Œ0; 2T0� that

k.v � .vs/�X; u � .us/�X/.t/kH2

� k.v � vs; u � us/.t/kH2 C k.v
s
� .vs/�X; us � .us/�X/.t/kH2

�
�0

2
C
�0

8
< �0:

Hence, we can apply the a priori estimates from Proposition 3.6 again with T D 2T0 and
get the estimate

k.v � .vs/�X; u � .us/�X/.t/kH2 �
p
C0k.v0 � v

s; u0 � u
s/kH2 �

p
C0"0 �

�0

8

for t 2 Œ0; 2T0�.

Step 3: Thus, repeating this continuation process, we can extend the solution to the inter-
val Œ0; NT0� successively. At the time t D NT0, it holds

k.v � vs; u � us/.NT0/kH2

� k.v � .vs/�X; u � .us/�X/.NT0/kH2C k.v
s
� .vs/�X; us� .us/�X/.NT0/kH2

�
�0

8
C
�0

8
D
�0

4
.D „/:

Hence, we can apply Proposition 3.5 by taking t D NT0 as the new initial time. Then we
have a unique solution on ŒNT0; .N C 1/T0� with the estimate

k.v � vs; u � us/.t/kH2 � 2k.v � v
s; u � us/.NT0/kH2 � 2„ D

�0

2

for t 2 ŒNT0; .N C 1/T0�, which implies that k.v � vs; u� us/.t/kH2 �
�0
2

holds for t 2
Œ0; .NC1/T0�. Meanwhile, we can also show that jX.t/j �Ct holds for t 2 Œ0; .NC1/T0�.
Using the smallness of ı0, we have

k.vs � .vs/�X; us � .us/�X/.t/kH2 D jX.t/jk.v
s
�1
; us�1/kH2

� Cı
3
2 t � Cı0

p
ı0.N C 1/ � Cı0 �

�0

8
:
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Therefore, it holds for t 2 Œ0; .N C 1/T0� that

k.v � .vs/�X; u � .us/�X/.t/kH2

� k.v � vs; u � us/.t/kH2 C k.v
s
� .vs/�X; us � .us/�X/.t/kH2

�
�0

2
C
�0

8
< �0:

Hence, we can apply Proposition 3.6 again with T D .N C 1/T0 and get the estimate

k.v � .vs/�X; u � .us/�X/.t/kH2 �
p
C0k.v0 � v

s; u0 � u
s/kH2 �

p
C0"0 �

�0

8

for t 2 Œ0; .N C 1/T0�. This indicates that the solution has been extended to the interval
Œ0; .N C 1/T0�, which contradicts that Tmax.� NT0/ is the maximum existence time.
Therefore, the maximum existence time defined in formula (3.14) is infinity, that is,
Tmax D C1.

4. Uniform-in-time H 2-estimates

Throughout this section, C denotes a positive constant which may change from line to
line, but which stays independent on ı (the shock strength) and � (the total variation of
the function a.�1/). We will consider two smallness conditions, one on ı, and the other
on ı

�
. In the argument, ı will be far smaller than ı

�
.

4.1. Reformulation of the problem

We introduce a new multi-dimensional effective velocity

h WD u � .2�C �/r�v: (4.1)

Then the system (2.6) is transformed into´
�.@tv � �@�1v C u � r�v/ � div�h D .2�C �/��v;

�.@th � �@�1hC u � r�h/Cr�p.v/ D R;
(4.2)

where

R D
2�C �

v
.r�u � r�v � div�ur�v/ � �r� � r� � u: (4.3)

We also set
hs1 WD u

s
1 � .2�C �/@�1v

s; hs WD .hs1; 0; 0/
t : (4.4)

We use here a change of variable �1 ! �1 � X.t/, then system (2.7) can be rewritten as8̂<̂
:
.�s/�X.��@�1.v

s/�X
C .us1/

�X@�1.v
s/�X/ � @�1.h

s
1/
�X

D .2�C �/@2�1.v
s/�X;

.�s/�X.��@�1.h
s
1/
�X
C .us1/

�X@�1.h
s
1/
�X/C @�1p..v

s/�X/ D 0:

(4.5)
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It follows from (4.2) and (4.5) that8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�@t .v � .v
s/�X/ � ��@�1.v � .v

s/�X/C �u � r�.v � .v
s/�X/

� div�.h � .hs/�X/ � PX.t/�@�1.v
s/�X

C F@�1.v
s/�X

D .2�C �/��.v � .v
s/�X/;

�@t .h � .h
s/�X/ � ��@�1.h � .h

s/�X/C �u � r�.h � .h
s/�X/

Cr�.p.v/ � p..v
s/�X// � PX.t/�@�1.h

s/�X
C F@�1.h

s/�X
D R;

(4.6)

where

F D ��.� � .�s/�X/C �u1 � .�
sus1/

�X

D �
��

.�s/�X .� � .�
s/�X/C �.u1 � .u

s
1/
�X/

D ��
v � .vs/�X

v
C
h1 � .h

s
1/
�X

v
C .2�C �/

@�1.v � .v
s/�X/

v
: (4.7)

We define the weight function a.�1/ by

a.�1/ D 1C
�

ı
.p.v�/ � p.v

s.�1///; (4.8)

where the constant � is chosen to be small but far bigger than ı such that

ı � � � C
p
ı: (4.9)

For definiteness and simplicity, we can choose � D
p
ı.

Notice that
1 < a.�1/ < 1C �; (4.10)

and
a0.�1/ D �

�

ı
p0.vs/vs�1 > 0; ja

0
j �

�

ı
jvs�1 j: (4.11)

Lemma 4.1. Let a.�1/ be the weighted function defined by (4.8), then

d

dt

Z
T2

Z
R
a�X�

�
Q.vj.vs/�X/C

1

2
jh � .hs/�X

j
2
�
d�1d�

0

D PX.t/Y.t/C B.t/ �G.t/ � D.t/; (4.12)

where

Y.t/ WD �
Z

T2

Z
R
a�X
�1
�
�
Q.vj.vs/�X/C

1

2
jh � .hs/�X

j
2
�
d�1d�

0

�

Z
T2

Z
R
a�X�p0..vs/�X/.v � .vs/�X/.vs/�X

�1
d�1d�

0

C

Z
T2

Z
R
a�X�.hs1/

�X
�1
.h1 � .h

s
1/
�X/d�1d�

0;

B.t/ WD
9X
iD1

Bi .t/
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with

B1.t/ WD
1

2��

Z
T2

Z
R
a�X
�1
jp.v/ � p..vs/�X/j2d�1d�

0;

B2.t/ WD ��
Z

T2

Z
R
a�Xp.vj.vs/�X/.vs/�X

�1
d�1d�

0;

B3.t/ WD
ı

�

Z
T2

Z
R

a�X

��v
a�X
�1
.h1 � .h

s
1/
�X/2d�1d�

0;

B4.t/ WD
Z

T2

Z
R
Fa�X

�1

�
Q.vj.vs/�X/C

jh � .hs/�Xj2

2

�
d�1d�

0;

B5.t/ WD
Z

T2

Z
R
a�X 2�C �

v
p0..vs/�X/.vs/�X

�1

� @�1.v � .v
s/�X/

�
v � .vs/�X

�
h1 � .h

s
1/
�X

��

�
d�1d�

0;

B6.t/ WD �.2�C �/
Z

T2

Z
R
a�X@�1.p.v/ � p..v

s/�X//

� @�1p..v
s/�X/
�1.p�1�

1

 .v/ � p�1�

1

 ..vs/�X//d�1d�

0;

B7.t/ WD �.2�C �/
Z

T2

Z
R
a�X
�1

�1p�1�

1

 .v/

� .p.v/ � p..vs/�X//@�1.p.v/ � p..v
s/�X//d�1d�

0;

B8.t/ WD �.2�C �/
Z

T2

Z
R
a�X
�1
.p.v/ � p..vs/�X//@�1p..v

s/�X/

� 
�1.p�1�
1

 .v/ � p�1�

1

 ..vs/�X//d�1d�

0;

B9.t/ WD
Z

T2

Z
R
a�X.h � .hs/�X/ �Rd�1d�

0;

and

G.t/ D ��
Z

T2

Z
R
a�X
�1
Q.vj.vs/�X/d�1d�

0
C ��

Z
T2

Z
R
a�X
�1

h32 C h
2
3

2
d�1d�

0

C
��

2

Z
T2

Z
R
a�X
�1

ˇ̌̌
h1 � .h

s
1/
�X
�
p.v/ � p..vs/�X/

��

ˇ̌̌2
d�1d�

0

C

Z
T2

Z
R
a�X ��

v
jp0..vs/�X/j.vs/�X

�1
.v � .vs/�X/2d�1d�

0

WD

4X
iD1

Gi .t/;

D.t/ D .2�C �/
Z

T2

Z
R
a�X
�1p�1�

1

 .v/jr�.p.v/ � p..v

s/�X//j2d�1d�
0:

Remark 4.2. Since ��a�X
�1
> 0 and a�X > 1, G.t/ consists of four terms with good sign,

while B.t/ consists of bad terms.
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Proof of Lemma 4.1. We set a�X WD a.�1 � X.t//. Multiplying (4.6)1 by �a�X.p.v/ �

p..vs/�X//, we obtain

@t .a
�X�Q.vj.vs/�X// � �@�1.a

�X�Q.vj.vs/�X//

C div�.a�X�uQ.vj.vs/�X//C a�X.p.v/ � p..vs/�X//div�.h � .hs/�X/

D � PX.t/a�X
�1
�Q.vj.vs/�X/ � PX.t/a�X�p0..vs/�X/.v � .vs/�X/.vs/�X

�1

C .���C �u1/a
�X
�1
Q.vj.vs/�X/ � .���C �u1/a

�Xp.vj.vs/�X/.vs/�X
�1

C a�XF.p.v/ � p..vs/�X//.vs/�X
�1

� .2�C �/div�.a�X.p.v/ � p..vs/�X//r�.v � .v
s/�X//

C .2�C �/r�.a
�X.p.v/ � p..vs/�X/// � r�.v � .v

s/�X/: (4.13)

Using (4.7) the definition of F , and (2.8) the definition of ��, we get

���C �u1 D ��.�
s/�X

C .�sus1/
�X
� �.� � .�s/�X/C .�u1 � .�

sus1/
�X/

D ��� C F: (4.14)

Thus, we have

.���C �u1/a
�X
�1
Q.vj.vs/�X/ D .��� C F /a

�X
�1
Q.vj.vs/�X/;

� .���C �u1/a
�Xp.vj.vs/�X/.vs/�X

�1
C a�XF.p.v/ � p..vs/�X//.vs/�X

�1

D ��a
�Xp.vj.vs/�X/.vs/�X

�1
C Fa�Xp0..vs/�X/.v � .vs/�X/.vs/�X

�1
:

Notice that

r�v D
r�p.v/

p0.v/
D

r�p.v/

�
p1C
1

 .v/

:

Hence, the last term on the right-hand side of (4.13) can be rewritten as

.2�C �/r�.a
�X.p.v/ � p..vs/�X/// � r�.v � .v

s/�X/

D .2�C �/a�X
r�.p.v/ � p..v

s/�X// �
�
r�p.v/

�
p1C
1

 .v/

�
r�p..v

s/�X/

�
p1C
1

 ..vs/�X/

�
C .2�C �/a�X

�1
.p.v/ � p..vs/�X//

� @�1p.v/

�
p1C
1

 .v/

�
@�1p..v

s/�X/

�
p1C
1

 ..vs/�X/

�
D �.2�C �/a�X jr�.p.v/�p..v

s/�X//j2


p1C
1

 .v/

� .2�C�/a�X@�1.p.v/�p..v
s/�X//

� @�1p..v
s/�X/

� 1


p1C
1

 .v/

�
1


p1C
1

 ..vs/�X/

�
� .2�C �/a�X

�1
.p.v/ � p..vs/�X//

@�1.p.v/ � p..v
s/�X//


p1C
1

 .v/

� .2�C �/a�X
�1
.p.v/ � p..vs/�X//@�1p..v

s/�X/

�

� 1


p1C
1

 .v/

�
1


p1C
1

 ..vs/�X/

�
: (4.15)
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Multiplying (4.6)2 by a�X.h � .hs/�X/, we have

@t

�
a�X�

jh � .hs/�Xj2

2

�
� �@�1

�
a�X�

jh � .hs/�Xj2

2

�
C div�

�
a�X�u

jh � .hs/�Xj2

2

�
C div�.a�X.p.v/ � p..vs/�X//.h � .hs/�X//

� a�X.p.v/ � p..vs/�X//div�.h � .hs/�X/

D � PX.t/a�X
�1
�
jh � .hs/�Xj2

2
C PX.t/a�X�.hs1/

�X
�1
.h1 � .h

s
1/
�X/

C a�X
�1
.p.v/ � p..vs/�X//.h1 � .h

s
1/
�X/C .���C �u1/a

�X
�1

jh � .hs/�Xj2

2

� Fa�X.hs1/
�X
�1
.h1 � .h

s
1/
�X/C a�X.h � .hs/�X/ �R: (4.16)

Before we add (4.13) and (4.16) together, direct calculations yield

� ��a
�X
�1

jh � .hs/�Xj2

2
C a�X

�1
.p.v/ � p..vs/�X//.h1 � .h

s
1/
�X/

D �
��

2
a�X
�1

ˇ̌̌
h1 � .h

s
1/
�X
�
p.v/ � p..vs/�X/

��

ˇ̌̌2
C a�X

�1

jp.v/ � p..vs/�X/j2

2��
� ��a

�X
�1

h22 C h
2
3

2
: (4.17)

We treat the perturbed flux term in the Eulerian coordinates along the shock wave
propagation direction, which is different from that in the Lagrangian coordinates. It fol-
lows from (4.5)2 that ��@�1.h

s
1/
�X D @�1p..v

s/�X/. Hence, using (4.7), we have

Fa�Xp0..vs/�X/.v � .vs/�X/.vs/�X
�1
� Fa�X.hs1/

�X
�1
.h1 � .h

s
1/
�X/

D a�X ��

v
p0..vs/�X/.vs/�X

�1
.v � .vs/�X/2 C

ı

�

a�X

��v
a�X
�1
.h1 � .h

s
1/
�X/2

C a�X 2�C �

v
p0..vs/�X/.vs/�X

�1
@�1.v � .v

s/�X/

�

�
v � .vs/�X

�
h1 � .h

s
1/
�X

��

�
: (4.18)

Adding (4.13) and (4.16) together, integrating the resultant equation by parts over � WD
R�T2, and using (4.15), (4.17) and (4.18), we can obtain (4.12). The proof of Lemma 4.1
is completed.

In order to derive the a-contraction property of the viscous shock wave, we decompose
the function Y.t/ in Lemma 4.1 as

Y.t/ WD
5X
iD1

Yi .t/;



Nonlinear stability of planar viscous shock wave 525

where

Y1.t/ WD
Z

T2

Z
R

a�X

��
�.hs1/

�X
�1
.p.v/ � p..vs/�X//d�1d�

0;

Y2.t/ WD �
Z

T2

Z
R
a�X�p0..vs/�X/.v � .vs/�X/.vs/�X

�1
d�1d�

0;

Y3.t/ WD
Z

T2

Z
R
a�X�.hs1/

�X
�1

�
h1 � .h

s
1/
�X
�
p.v/ � p..vs/�X/

��

�
d�1d�

0;

Y4.t/ WD �
1

2

Z
T2

Z
R
a�X
�1
�
�
h1 � .h

s
1/
�X
�
p.v/ � p..vs/�X/

��

�
�

�
h1 � .h

s
1/
�X
C
p.v/ � p..vs/�X/

��

�
d�1d�

0;

Y5.t/ WD �
Z

T2

Z
R
a�X
�1
�
�
Q.vj.vs/�X/C

h22 C h
2
3

2

�
d�1d�

0

�

Z
T2

Z
R
a�X
�1
�
jp.v/ � p..vs/�X/j2

2�2�
d�1d�

0:

Notice that
PX.t/ D �

M

ı
.Y1.t/C Y2.t//; (4.19)

and so

PX.t/Y.t/ D �
ı

M
j PX.t/j2 C PX.t/

5X
iD3

Yi .t/:

Then we have the following lemma.

Lemma 4.3. There exists uniform in time C > 0 such that for 8t 2 Œ0; T �,

�
ı

2M
j PX.t/j2 C B1.t/C B2.t/C B3.t/ �G1.t/ �G4.t/ �

3

4
D.t/

� �C

Z
T2

Z
R
j.vs/�X

�1
jjp.v/ � p..vs/�X/j2d�1d�

0

C C

Z
T2

Z
R
a�X
�1
jp.v/ � p..vs/�X/j3d�1d�

0
C

1

40
G3.t/: (4.20)

Proof. We now rewrite the above functions with respect to the following variables:

w WD p.v/ � p..vs/�X/;

y1 WD
p.v�/ � p..v

s.�1//
�X/

ı
;

y0 WD .y2; y3/ D .�2; �3/ DW �
0:

(4.21)

We use a change of variable �12R 7!y12 Œ0;1�. Then it follows from (4.8) that a�X.�1/D

1C �y1 and

dy1

d�1
D �

1

ı
p..vs/�X/�1 ; a�X

�1
D �

dy1

d�1
; ja�X

� 1j � � D
p
ı: (4.22)
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To perform the sharp estimates, we will consider the O.1/-constants

�� WD
p
�p0.v�/; ˛� WD


 C 1

2
��p.v�/
;

which are indeed independent of the small constant ı, since vC
2
� v� � vC. Note that

j�� � ��j � Cı; (4.23)

which together with �2� D �p
0.v�/ D 
p

1C 1
 .v�/ implies

j�2� C p
0..vs/�X/j � Cı;

ˇ̌̌ 1
�2�
�

1


p1C
1

 ..vs/�X/

ˇ̌̌
� Cı: (4.24)

� Estimate on � ı
2M
j PX.t/j2. To do this, we will control Y1.t/ and Y2.t/ due to (4.19).

Using (2.8), system (4.5) is transformed into´
���.v

s/�X
�1
� .hs1/

�X
�1
D .2�C �/.vs/�X

�1�1
;

���.h
s
1/
�X
�1
C p..vs/�X/�1 D 0:

(4.25)

Using (4.25)2 and the new variable (4.22), we obtain

Y1.t/ D
Z

T2

Z
R

a�X

�2�v
p..vs/�X/�1.p.v/ � p..v

s/�X//d�1d�
0

D �
ı

�2�

Z
T2

Z 1

0

a�Xw

v
dy1dy

0:

Using (4.23) and ja�X � 1j � �, we haveˇ̌̌̌
Y1.t/C

ı

�2�v�

Z
T2

Z 1

0

wdy1dy
0

ˇ̌̌̌
� Cı.� C ı C �/

Z
T2

Z 1

0

jwjdy1dy
0: (4.26)

For

Y2.t/ D �
Z

T2

Z
R
a�X�p..vs/�X/�1.v � .v

s/�X/d�1d�
0

D ı

Z
T2

Z 1

0

a�X v � .v
s/�X

v
dy1dy

0;

we observe that since (by considering v D p.v/�
1

 )ˇ̌̌

v � .vs/�X
C
p.v/ � p..vs/�X/


p1C
1

 ..vs/�X/

ˇ̌̌
� C jp.v/ � p..vs/�X/j2;

then it holds thatˇ̌̌
v � .vs/�X

C
1

�2�
.p.v/ � p..vs/�X//

ˇ̌̌
� C.ı C �/jp.v/ � p..vs/�X/j:
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This impliesˇ̌̌̌
Y2.t/C

ı

�2�v�

Z
T2

Z 1

0

wdy1dy
0

ˇ̌̌̌
� Cı.� C ı C �/

Z
T2

Z 1

0

jwjdy1dy
0: (4.27)

By (4.19), (4.26) and (4.27), we haveˇ̌̌̌
PX.t/ �

2M

�2�v�

Z
T2

Z 1

0

wdy1dy
0

ˇ̌̌̌
D

ˇ̌̌̌ 2X
iD1

M

ı

�
Yi .t/C

ı

�2�v�

Z
T2

Z 1

0

wdy1dy
0

�ˇ̌̌̌
� C.� C ı C �/

Z
T2

Z 1

0

jwjdy1dy
0;

which yields�ˇ̌̌̌
2M

�2�v�

Z
T2

Z 1

0

wdy1dy
0

ˇ̌̌̌
� j PX.t/j

�2
� C.� C ı C �/2

�Z
T2

Z 1

0

jwjdy1dy
0

�2
� C.� C ı C �/2

Z
T2

Z 1

0

jwj2dy1dy
0;

which together with the algebraic inequality

p2

2
� q2 � .p � q/2

for all p; q � 0 indicate

2M 2

�4�v
2
�

�Z
T2

Z 1

0

wdy1dy
0

�2
� j PX.t/j2 � C.� C ı C �/2

Z
T2

Z 1

0

jwj2dy1dy
0:

Thus, we can get

�
ı

2M
j PX.t/j2 � �

Mı

�4�v
2
�

�Z
T2

Z 1

0

wdy1dy
0

�2
C Cı.� C ı C �/2

Z
T2

Z 1

0

jwj2dy1dy
0: (4.28)

� Change of variables for Bi .t/ .i D 1; 2; 3/. By the change of variables, using (4.23),
we have

B1.t/ D
�

2��

Z
T2

Z 1

0

w2dy1dy
0

D
�

2��

Z
T2

Z 1

0

w2dy1dy
0
C
�

2

� 1
��
�
1

��

� Z
T2

Z 1

0

w2dy1dy
0

�
�

2��

Z
T2

Z 1

0

w2dy1dy
0
C C�ı

Z
T2

Z 1

0

w2dy1dy
0: (4.29)
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For B2.t/, by the change of variables and using (3.6), we obtain

B2.t/ D ��ı
Z

T2

Z 1

0

.1C �y1/p.vj.v
s/�X/

1

jp0..vs/�X/j
dy1dy

0

� ��ı.1C �/

Z
T2

Z 1

0

�
 C 1
2


1

p..vs/�X/
C C�

�
jp.v/ � p..vs/�X/j2

jp0..vs/�X/j
dy1dy

0

D ��ı.1C �/

Z
T2

Z 1

0

�
˛�

��p.v�/

p..vs/�X/
C C�

� w2

jp0..vs/�X/j
dy1dy

0

� ı˛�.1C C.� C ı C �//

Z
T2

Z 1

0

w2dy1dy
0; (4.30)

where in the last inequality we have used (4.23) and (4.24).
For B3.t/, using the algebraic inequality p2D .qCp� q/2 � .1C#/q2C .1C 1

#
/�

.p � q/2 for # > 0, it holds that

B3.t/ � .1C #/
ı

�

Z
T2

Z
R

a�X

�3�v
a�X
�1
jp.v/ � p..vs/�X/j2d�1d�

0
C C

�
1C

1

#

� ı
�

G3.t/:

Since
1

�3�v�˛�
D

1

�3�v�

2
��p.v�/


 C 1
D

2


 C 1
;

by the change of variables and using (4.23), we have

ı

�
.1C #/

Z
T2

Z
R

a�X

�3�v
a�X
�1
jp.v/ � p..vs/�X/j2d�1d�

0

D ı.1C #/

Z
T2

Z 1

0

.1C �y1/

�3�v�

�3�v�

�3�v
w2dy1dy

0

� ı.1C #/.1C C.� C ı C �//

Z
T2

Z 1

0

1

�3�v�
w2dy1dy

0

D
2


 C 1
.1C #/ı˛�.1C C.� C ı C �//

Z
T2

Z 1

0

w2dy1dy
0:

Thus, the following estimate holds:

B3.t/ �
2


 C 1
.1C #/ı˛�.1C C.� C ı C �//

Z
T2

Z 1

0

w2dy1dy
0

C C.1C
1

#
/
ı

�
G3.t/: (4.31)

� Change of variables for G1.t/, G4.t/. For G1.t/, we first use (3.7) to split it into two
parts,

G1.t/ � ��

Z
T2

Z
R
a�X
�1

jp.v/ � p..vs/�X/j2

2
p1C
1

 ..vs/�X/

d�1d�
0

„ ƒ‚ …
G1;1.t/

� ��

Z
T2

Z
R
a�X
�1

1C 


3
2
.p.v/ � p..vs/�X//3

p2C
1

 ..vs/�X/

d�1d�
0: (4.32)
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We only need to do the change of variables for the good term G1;1.t/ as follows. By
(4.23), (4.24) and the change of variables,

G1;1.t/ �
��

2�2�
.1 � Cı/

Z
T2

Z
R
a�X
�1
jp.v/ � p..vs/�X/j2d�1d�

0

�
�

2��
.1 � Cı/

Z
T2

Z 1

0

w2dy1dy
0;

which together with (4.29) yields

B1.t/ �G1;1.t/ � C�ı

Z
T2

Z 1

0

w2dy1dy
0: (4.33)

For G4.t/, using the mean value theorem,

v � .vs/�X
D
p.v/ � p..vs/�X/

p0.�/
for � between v and .vs/�X:

Using (4.22) and the change of variables, we get

G4.t/ D
ı

�

Z
T2

Z
R
a�Xa�X

�1

��

v
jv � .vs/�X

j
2d�1d�

0

� ı

Z
T2

Z 1

0

��

v

w2

jp0.v�/j2

ˇ̌̌p0.v�/
p0.�/

ˇ̌̌2
dy1dy

0

� ı.1 � C.ı C �//
1

�3�v�

Z
T2

Z 1

0

w2dy1dy
0

D
2


 C 1
ı˛�.1 � C.ı C �//

Z
T2

Z 1

0

w2dy1dy
0: (4.34)

� Change of variables for D.t/. First, by (4.10) a�X > 1, and then using the change of
variables, we obtain

D.t/ � .2�C �/
Z

T2

Z
R

j@�1.p.v/ � p..v
s/�X//j2


p1C
1

 .v/

d�1d�
0

C .2�C �/

Z
T2

Z
R

jr�0.p.v/ � p..v
s/�X//j2


p1C
1

 .v/

d�1d�
0

D .2�C �/

Z
T2

Z 1

0

j@y1wj
2


p1C
1

 .v/

�dy1
d�1

�
dy1dy

0

„ ƒ‚ …
DI.t/

C .2�C �/

Z
T2

Z 1

0

jry0wj
2


p1C
1

 .v/

�d�1
dy1

�
dy1dy

0

„ ƒ‚ …
DII.t/

:

On the one hand, integrating (4.25) over .�1; �� yields

.2�C �/.vs/�X
�1
D ���..v

s/�X
� v�/ �

1

��
.p..vs/�X/ � p.v�//:
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On the other hand,

.vs/�X
�1
D
p..vs/�X/�1
p0..vs/�X/

D
ı


p1C
1

 ..vs/�X/

dy1

d�1
:

Hence, we have

.2�C �/
ı


p1C
1

 ..vs/�X/

dy1

d�1
D ���..v

s/�X
� v�/ �

1

��
.p..vs/�X/ � p.v�//

D
�1

��
.�2� ..v

s/�X
� v�/C .p..v

s/�X/ � p.v�///;

which together with �2� D �
p.v�/�p.vC/

v��vC
leads to
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� vC/.p..v
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�
:

Recall that

y1 D
p.v�/ � p..v

s/�X/

ı
and 1 � y1 D

p..vs/�X/ � p.vC/

ı
;

and it follows that

1
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D
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:
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Using Lemma 3.4, we have
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Since it follows from (4.23) that I2 � Cı2, we getˇ̌̌ 1
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2�C �
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 ..vs/�X/

dy1
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� Cı2: (4.35)

In addition, ˇ̌̌�p..vs/�X/

p.v/

�1C 1

� 1

ˇ̌̌
� C jv � .vs/�X

j � C�:

Thus, it holds
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Z
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D


 C 1

2
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we have
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Z
T2

Z 1

0

y1.1 � y1/j@y1wj
2dy1dy

0:

We can deduce from (4.35) that

y1.1 � y1/
d�1

dy1
�

2�C �
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Hence, we obtain
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Combining the estimates on DI.t/ and DII.t/, we have
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0: (4.36)
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� Proof of Lemma 4.3. First, by (4.30), (4.31), (4.33), (4.34) and (4.36), we obtain
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Choosing �, ı, � and # suitably small, we have
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Using (3.1) and the fact that
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wdy1dy
0;
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By (3.1), we have
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Choosing M D 5
4
˛��

4
�v

2
�, and combining (4.28), (4.32) and (4.37), we obtain

�
ı

2M
j PX.t/j2 C B1.t/C B2.t/C B3.t/ �G1.t/ �G4.t/ �

3

4
D.t/

�

�
�
ı˛�

20
C Cı.� C ı C �/2

� Z
T2

Z 1

0

w2dy1dy
0

�
5

8

���
ı

.2�C �/2

p00.v�/
�
ı˛�

8�2

� Z
T2

Z 1

0

jry0wj
2

y1.1 � y1/
dy1dy

0

C ��

Z
T2

Z
R
a�X
�1

1C 


3
2
jp.v/ � p..vs/�X/j3

p2C
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d�1d�
0
C C

ı

�
G3.t/;

which indicates the desired inequality (4.20) by using (4.9). The proof of Lemma 4.3 is
completed.

Lemma 4.4. Under the hypotheses of Proposition 3.6, there exists a constant C > 0

independent of �, ı, � and T , such that for all t 2 Œ0; T �, it holdsZ
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where
h0.�/ D u0.�/ � .2�C �/r�v0.�/

and
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0;

D.t/ WD

Z
T2

Z
R
jr�.p.v/ � p..v

s/�X//j2d�1d�
0:

(4.39)

Note that by (4.10), (4.11) and the uniform lower and upper boundedness of the vol-
ume function v, we have

G2.t/ � G2.t/; G3.t/ � G3.t/; D.t/ � D.t/;

uniform in time t 2 Œ0; T �.
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Proof of Lemma 4.4. First of all, we use (4.12) to have

d
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4
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Using Lemma 4.3 and the Cauchy inequality, we find that there exist positive constants C1
and C such that
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4
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1
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G3.t/:

In what follows, to control the above bad terms, we will use the above good terms Gi .t/

(i D 2; 3), D.t/ and Gs.t/. In the following, we control the terms on the right-hand side
of the above inequality one by one. First, for simplicity, we use the notation w D p.v/ �
p..vs/�X/ as in (4.21). Using (4.22), the 3D Gagliardo–Nirenberg inequality (3.3) in strip
domain and assumption (3.11), we get
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Here and further in the paper, the norm k � k always denotes k � kL2.R�T2/.

� Estimates on the terms Yi .t/ .i D 3; 4; 5/. Since
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then
C
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1
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For Y4.t/, we first use the definition of h and hs D .hs1; 0; 0/
t to estimate h � .hs/�X in

terms of u � .us/�X and v � .vs/�X as follows:

h � .hs/�X
D u � .us/�X

� .2�C �/r�.v � .v
s/�X/; (4.41)
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Using (3.8) and assumption (3.11), we have
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� Estimates on the terms Bi .t/ .i D 4; : : : ; 9/. Recalling the definition of F in (4.7) and
assumption (3.11), we get
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For B4.t/, using (3.8) and (4.42), we have
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By the definition of F (4.7), we obtain
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The same as in (4.40), it holds
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Using the fact that
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Combining the above estimates, we get
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Similarly, we have
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Finally, we control the last term B9.t/. Using the definition of R in (4.3), we obtain

B9.t/ D .2�C �/
Z

T2

Z
R
a�X.h � .hs/�X/ �

r�u � r�v � div�ur�v
v

d�1d�
0

� �

Z
T2

Z
R
a�X.h � .hs/�X/ � r� � r� � ud�1d�

0

DW B9;1.t/C B9;2.t/:

To control B9;1.t/, we set

u0 D .u2; u3/; r�0 D .@�2 ; @�3/ and r�0 � u
0
D @�2u2 C @�3u3:



T. Wang, Y. Wang 538

Notice that the first component of r�u � r�v � div�ur�v is

@�1u � r�v � div�u@�1v D @�1u
0
� r�0v � r�0 � u

0@�1v

D @�1u
0
�
r�0p.v/

�
p1C
1

 .v/

� r�0 � u
0
@�1.p.v/ � p..v

s/�X//

�
p1C
1

 .v/

� r�0 � u
0
@�1p..v

s/�X/

�
p1C
1

 .v/

:

By assumption (3.11) and the Sobolev inequality, we have

kh1 � .h
s
1/
�X
kL3 � Ckh1 � .h

s
1/
�X
kH1

� C.ku � .us/�X
kH1 C kv � .v

s/�X
kH2/ � C�: (4.44)

Thus, using (4.44), the first part of the integrand in B9;1.t/ can be controlled as

.2�C �/

Z
T2

Z
R

a�X

v
.h1 � .h

s
1/
�X/.@�1u � r�v � div�u@�1v/d�1d�

0

� Ckh1 � .h
s
1/
�X
kL3kr�.u � .u

s/�X/kL6
p

D.t/

C Cı
�r ı

�

p
G3.t/C

p
Gs.t/

�
kr�0.u � .u

s/�X/k

� C.�C ı/.G3.t/C C1Gs.t/C D.t/C kr�.u � .us/�X/k2
H1
/

�
1

80
.G3.t/C C1Gs.t/C D.t//C C.�C ı/kr�.u � .us/�X/k2

H1
:

Similarly, the second and third parts of integrand in B9;1.t/ can be treated as

.2�C �/

Z
T2

Z
R

a�X

v
h0 � .r�0u � r�v � div�ur�0v/d�1d� 0

� Ckh0kL3kr�.u � .u
s/�X/kL6

p
D.t/

C Cı

r
ı

�

p
G2.t/.kr�0.u � .u

s/�X/k C
p

D.t//

� C.�C ı/.G2.t/C D.t/C kr�.u � .us/�X/k2
H1
/

�
1

80
.G2.t/C D.t//C C.�C ı/kr�.u � .us/�X/k2

H1
:

Thus, we have

B9;1.t/ �
1

40
.G2.t/CG3.t/C C1Gs.t/C D.t//

C C.�C ı/kr�.u � .u
s/�X/k2

H1
: (4.45)

Using (4.41) and direct calculations yield

B9;2.t/ D ��
Z

T2

Z
R
a�X.u � .us/�X/ � r� � r� � ud�1d�

0

C �.2�C �/

Z
T2

Z
R
a�X
r�.v � .v

s/�X/ � r� � r� � ud�1d�
0

DW B19;2.t/C B29;2.t/:
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By integration by parts over R � T2, we obtain

B19;2.t/ D ��
Z

T2

Z
R
a�X
jr� � .u � .u

s/�X/j2d�1d�
0

� �

Z
T2

Z
R
a�X
�1
.u2.@�1u2 � @�2u1/ � u3.@�3u1 � @�1u3//d�1d�

0

� �
3�

4

Z
T2

Z
R
a�X
jr� � .u � .u

s/�X/j2d�1d�
0

C C

Z
T2

Z
R
ja�X
�1
j
2.h22 C h

2
3/d�1d�

0
C C

Z
T2

Z
R
ja�X
�1
j
2
jr�0vj

2d�1d�
0

� �
3�

4

Z
T2

Z
R
a�X
jr� � .u � .u

s/�X/j2d�1d�
0
C C�ıG2.t/C C.�ı/

2D.t/

� �
3�

4

Z
T2

Z
R
a�X
jr� � .u � .u

s/�X/j2d�1d�
0
C

1

80
.G2.t/C D.t//:

By integration by parts over R � T2, we have

B29;2.t/ D ��.2�C �/
Z

T2

Z
R
.v � .vs/�X/r� � r� � u � r�a

�Xd�1d�
0

D ��.2�C �/

Z
T2

Z
R

�
.v � .vs/�X/

�
@�2.@�1u2 � @�2u1/

� @�3.@�3u1 � @�1u3/
�
a�X
�1

�
d�1d�

0

D �.2�C �/

Z
T2

Z
R

��
@�2.v � .v

s/�X/.@�1u2 � @�2u1/

� @�3.v � .v
s/�X/.@�3u1 � @�1u3/

�
a�X
�1

�
d�1d�

0

� C�ı�

Z
T2

Z
R
a�X
jr� � .u � .u

s/�X/j2d�1d�
0

C C�ı

Z
T2

Z
R
jr�0.v � .v

s/�X/j2d�1d�
0

�
�

4

Z
T2

Z
R
a�X
jr� � .u � .u

s/�X/j2d�1d�
0
C

1

80
D.t/:

Combining the above two estimates, we get

B9;2.t/ � �
�

2

Z
T2

Z
R
a�X
jr� � .u � .u

s/�X/j2d�1d�
0

C
1

80
G2.t/C

1

40
D.t/: (4.46)

Combination (4.45) and (4.46) yields

B9.t/ �
3

80
.G2.t/CG3.t/C C1Gs.t//C

1

20
D.t/

C C.�C ı/kr�.u � .u
s/�X/k2

H1
:
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� Conclusion. Combining the above estimates, we have

d

dt

Z
T2

Z
R
a�X�

�
Q.vj.vs/�X/C

jh � .hs/�Xj2

2

�
d�1d�

0

� �
ı

4M
j PX.t/j2 �

1

2
G2.t/ �

1

2
G3.t/ �

1

16
D.t/ �

1

2
C1Gs.t/

C C.�C ı/kr�.u � .u
s/�X/k2

H1
:

Integrating the above inequality over Œ0; t � for any t 2 Œ0; T �, using (4.43) and noting that

1 < a�X < 1C �; �0 � C;

we can obtain the desired inequality (4.38) with the new notations (4.39).
This completes the proof of Lemma 4.4.

4.2. Estimates for ku � .us/�Xk and kv � .vs/�XkH1

In this subsection, we shall obtain the zero-th order energy estimates for function .v; u/.

Lemma 4.5. Under the hypotheses of Proposition 3.6, there exists a constant C > 0

independent of �, ı, � and T , such that for all t 2 Œ0; T �, it holds

k.v � .vs/�X/.t/k2
H1
C k.u � .us/�X/.t/k2 C ı

Z t

0

j PX.�/j2d�

C

Z t

0

.Gs.�/CD.�/C kr�.u � .u
s/�X/k2/d�

� C.kv0 � v
s
k
2
H1
C ku0 � u

s
k
2/C C.ı C �/

Z t

0

kr
2
� .u � .u

s/�X/k2d�; (4.47)

where Gs and D are as in (4.39).

Proof. From systems (2.6) and (2.7), we can get the perturbed system for .v � .vs/�X;

u � .us/�X/ as8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�@t .v � .v
s/�X/ � ��@�1.v � .v

s/�X/C �u � r�.v � .v
s/�X/

� PX.t/�@�1.v
s/�X

C F@�1.v
s/�X

D div�.u � .us/�X/;

�@t .u � .u
s/�X/ � ��@�1.u � .u

s/�X/C �u � r�.u � .u
s/�X/

Cr�.p.v/ � p..v
s/�X// � PX.t/�@�1.u

s/�X
C F@�1.u

s/�X

D ���.u � .u
s/�X/C .�C �/r�div�.u � .us/�X/;

(4.48)

where F is defined in (4.7). Multiplying (4.48)1 by �.p.v/ � p..vs/�X//, using (4.14),
we obtain

@t .�Q.vj.v
s/�X// � �@�1.�Q.vj.v

s/�X//C div�.�uQ.vj.vs/�X//

D �.p.v/ � p..vs/�X//div�.u � .us/�X/ � PX.t/�p0..vs/�X/.v � .vs/�X/.vs/�X
�1

C ��p.vj.v
s/�X/.vs/�X

�1
C Fp0..vs/�X/.v � .vs/�X/.vs/�X

�1
: (4.49)
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Multiplying (4.48)2 by u � .us/�X, using (4.14), we get

@t .�
ju � .us/�Xj2

2
/ � �@�1.�

ju � .us/�Xj2

2
/C div�.�u

ju � .us/�Xj2

2
/

C div�..p.v/ � p..vs/�X//.u � .us/�X// � div�.u � .us/�X/.p.v/ � p..vs/�X//

D PX.t/�.us1/
�X
�1
.u1 � .u

s
1/
�X/ � F.us1/

�X
�1
.u1 � .u

s
1/
�X/ � �jr�.u � .u

s/�X/j2

� .�C �/.div�.u � .us/�X//2 C �div�.r�.u � .us/�X/ � .u � .us/�X//

C .�C �/div�.div�.u � .us/�X/.u � .us/�X//: (4.50)

Adding (4.49) and (4.50) together, and integrating the resultant equation over R�T2, we
have

d

dt

Z
T2

Z
R
�
�
Q.vj.vs/�X/C

ju � .us/�Xj2

2

�
d�1d�

0

C

Z
T2

Z
R
.�jr�.u � .u

s/�X/j2 C .�C �/.div�.u � .us/�X//2/d�1d�
0„ ƒ‚ …

D1.t/

D PX.t/Y.t/C
3X
iD1

Ii .t/; (4.51)

where

Y.t/ D �

Z
T2

Z
R
�p0..vs/�X/.v � .vs/�X/.vs/�X

�1
d�1d�

0

C

Z
T2

Z
R
�.us1/

�X
�1
.u1 � .u

s
1/
�X/d�1d�

0
DW Y1.t/C Y2.t/;

and

I1.t/ D ��

Z
T2

Z
R
p.vj.vs/�X/.vs/�X

�1
d�1d�

0;

I2.t/ D

Z
T2

Z
R
Fp0..vs/�X/.v � .vs/�X/.vs/�X

�1
d�1d�

0;

I3.t/ D �

Z
T2

Z
R
F.us1/

�X
�1
.u1 � .u

s
1/
�X/d�1d�

0:

From (3.4) and (3.6), it follows that

jY1.t/j �
� Z

T2

Z
R
.vs/�X

�1
d�1d�

0
� 1
2
� Z

T2

Z
R
.vs/�X

�1
jv � .vs/�X

j
2d�1d�

0
� 1
2

� C
p
ı
p
Gs.t/:

Hence, we have

j PX.t/jjY1.t/j �
ı

8
j PX.t/j2 C CGs.t/:
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By (4.41), it holds

u1 � .u
s
1/
�X
D h1 � .h

s
1/
�X
C .2�C �/@�1.v � .v

s/�X/: (4.52)

To control Y2.t/, we use (2.9)1 and (4.43) and get

jY2.t/j � C

Z
T2

Z
R
j.vs/�X

�1
j

�ˇ̌̌
h1 � .h

s
1/
�X
�
p.v/ � p..vs/�X/

��

ˇ̌̌
C jp.v/ � p..vs/�X/j

C j@�1.p.v/ � p..v
s/�X//j C j.vs/�X

�1
jjv � .vs/�X

j

�
d�1d�

0

� C
� ı
p
�

p
G3.t/C

p
ı
p
Gs.t/C ı

3
2

p
D.t/

�
:

Thus, it holds

j PX.t/jjY2.t/j �
ı

8
j PX.t/j2 C C

ı

�
G3.t/C CG

s.t/C Cı2D.t/:

For I1.t/, using (3.6), we obtain

jI1.t/j � CG
s.t/:

For I2.t/, using Lemma 2.1, and the definition of F (4.7), it holds

I2.t/ � C

Z
T2

Z
R
.vs/�X

�1

�ˇ̌̌
h1 � .h

s
1/
�X
�
p.v/ � p..vs/�X/

��

ˇ̌̌
C jp.v/ � p..vs/�X/j

C j@�1.p.v/ � p..v
s/�X//j C .vs/�X

�1
jv � .vs/�X

j

�
� jp.v/ � p..vs/�X/jd�1d�

0

� C
�r ı

�

p
G3.t/

p
Gs.t/CGs.t/C ı

p
D.t/

p
Gs.t/

�
� C

ı

�
G3.t/C CG

s.t/C Cı2D.t/:

Using (4.52) and (2.9)1, similarly to I2.t/, we get

I3.t/ � C
ı

�
G3.t/C CG

s.t/C Cı2D.t/:

Integrating (4.51) over Œ0; t � for any t � T and combining the above estimates, we can
find that for some constant C2 > 0,Z

T2

Z
R
�
�
Q.vj.vs/�X/C

ju � .us/�Xj2

2

�
d�1d�

0
C

Z t

0

D1.�/d�

� C

Z
T2

Z
R
�0

�
Q.v0jv

s/C
ju0 � u

sj2

2

�
d�1d�

0

C

Z t

0

� ı
4
j PX.�/j2 C C

ı

�
G3.�/C C2G

s.�/C Cı2D.�/
�
d�;
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which together with (4.38) yields

k.v � .vs/�X/.�/k2 C k.h � .hs/�X/.�/k2 C k.u � .us/�X/.�/k2

C ı

Z t

0

j PX.�/j2d� C
Z t

0

.G2.�/CG3.�/CG
s.�/CD.�/C D1.�//d�

� C.kv0 � v
s
k
2
C kh0 � h

s
k
2
C ku0 � u

s
k
2/

C C.ı C �/

Z t

0

kr
2
� .u � .u

s/�X/k2d�; (4.53)

where by Lemma 3.3, we have used the fact that

C�1jv � .vs/�X
j
2
� Q.vj.vs/�X/ � C jv � .vs/�X

j
2:

Finally, from (4.41), it holds

kr�.v � .v
s/�X/k � C.kh � .hs/�X

k C ku � .us/�X
k/ (4.54)

and
kh0 � h

s
k � C.ku0 � u

s
k C kr�.v0 � v

s/k/: (4.55)

Thus, combining (4.53), (4.54) and (4.55), and using the fact that

kr�.u � .u
s/�X/k2 � D1;

we can obtain the desired inequality (4.47). The proof of Lemma 4.5 is completed.

4.3. Estimates for kr�.u � .us/�X/k

Lemma 4.6. Under the hypotheses of Proposition 3.6, there exists a constant C > 0

independent of �, ı, � and T , such that for all t 2 Œ0; T �, it holds

kr�.u � .u
s/�X/.t/k2 C

Z t

0

kr
2
� .u � .u

s/�X/k2d�

� C.kv0 � v
s
k
2
H1
C ku0 � u

s
k
2
H1
/: (4.56)

Proof. Multiplying (4.48)2 by �v��.u� .us/�X/ and integrating the resultant equations
over R � T2, we obtain

d

dt

Z
T2

Z
R

jr�.u � .u
s/�X/j2

2
d�1d�

0

C �

Z
T2

Z
R
vj��.u�.u

s/�X/j2d�1d�
0
C.�C�/

Z
T2

Z
R
vjr�div�.u�.us/�X/j2d�1d�

0„ ƒ‚ …
D2.t/

D �

Z
T2

Z
R

�
r�u �r�.u�.u

s/�X/ �r�.u�.u
s/�X/�div�u

jr�.u�.u
s/�X/j2

2

�
d�1d�

0



T. Wang, Y. Wang 544

� PX.t/
Z

T2

Z
R
.us1/

�X
�1
��.u1 � .u

s
1/
�X/d�1d�

0

C

Z
T2

Z
R
vF.us1/

�X
�1
��.u1 � .u

s
1/
�X/d�1d�

0

C .�C �/

Z
T2

Z
R
.��.u � .u

s/�X/ � r�div�.u � .us/�X//

� r�vdiv�.u � .us/�X/d�1d�
0

C

Z
T2

Z
R
v��.u � .u

s/�X/ � r�.p.v/ � p..v
s/�X//d�1d�

0
DW

5X
iD1

Ji .t/:

Using assumption (3.11) and the Sobolev inequality, we have kr�.u � .us/�X/kL3 �

Ckr�.u � .u
s/�X/kH1 � C�. Thus, it holds

J1.t/ � Ckr�.u � .u
s/�X/kL3kr�.u � .u

s/�X/kL6kr�.u � .u
s/�X/k

C Cı2kr�.u � .u
s/�X/k2

� C�kr�.u � .u
s/�X/kH1kr�.u � .u

s/�X/k C Cı2kr�.u � .u
s/�X/k2

� C.ı C �/.D2.t/C kr�.u � .us/�X/k2/:

We notice ���.vs/�X
�1
D .us1/

�X
�1

from (2.9)1 and use Lemma 2.1, then we have

J2.t/ � j PX.t/jk.us1/
�X
�1
kL2.R/

p
D2.t/ � j PX.t/jı

3
2

p
D2.t/ � Cı2j PX.t/j2 C CıD2.t/:

For J3.t/, using ���.vs/�X
�1
D .us1/

�X
�1

and Lemma 2.1, and the definition of F (4.7), it
holds

J3.t/ � C

Z
T2

Z
R
.vs/�X

�1

�ˇ̌̌
h1 � .h

s
1/
�X
�
p.v/ � p..vs/�X/

��

ˇ̌̌
C jp.v/ � p..vs/�X/j

C j@�1.p.v/ � p..v
s/�X//j C .vs/�X

�1
jv � .vs/�X

j

�
j��.u1 � .u

s
1/
�X/jd�1d�

0

� C
�
ı

r
ı

�

p
G3.t/C ı

p
Gs.t/C ı2

p
D.t/

�p
D2.t/

� C
ı

�
G3.t/C CG

s.t/C Cı2D.t/C Cı2D2.t/:

For J4.t/, using assumption we have kr�.v � .vs/�X/kL3 � Ckr�.v � .v
s/�X/kH1 �

C�. Then we get

J4.t/ � C.k��.u � .u
s/�X/k C kr�div�.u � .us/�X/k/k.vs/�X

�1
kL1

� kdiv�.u � .us/�X/k

C C.k��.u � .u
s/�X/k C kr�div�.u � .us/�X/k/

� kr�.v � .v
s/�X/kL3kdiv�.u � .us/�X/kL6

� Cı2
p

D2.t/kdiv�.u � .us/�X/k C C�
p

D2.t/kdiv�.u � .us/�X/kH1

� C.ı C �/.D2.t/C kr�.u � .us/�X/k2/:
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By the Cauchy inequality, we have

J5.t/ �
1

4
D2.t/C Ckr�.p.v/ � p..vs/�X//k2 D

1

4
D2.t/C CD.t/:

Therefore, the combination of the above estimates yields

d

dt
kr�.u � .u

s/�X/.t/k2 C D2.t/ � Cı2j PX.t/j2 C C
ı

�
G3.t/C CG

s.t/C CD.t/

C C.ı C �/kr�.u � .u
s/�X/k2:

Integrating the above inequality over Œ0; t � for any t � T , and using Lemmas 4.4 and 4.5
and the fact that

kr
2
� .u � .u

s/�X/.t/k2 � D2.t/;

we can obtain the desired inequality (4.56). The proof of Lemma 4.6 is completed.

4.4. Estimates for kr2
�
.v � .vs/�X/k

Lemma 4.7. Under the hypotheses of Proposition 3.6, there exists a constant C > 0

independent of �, ı, � and T , such that for all t 2 Œ0; T �, it holds

kr
2
� .v � .v

s/�X/.t/k2 C

Z t

0

kr
2
� .v � .v

s/�X/k2d�

� C.kv0 � v
s
k
2
H2
C ku0 � u

s
k
2
H1
/C C.ı C �/

Z t

0

kr
3
� .u � .u

s/�X/k2d�: (4.57)

Proof. We set ' WD v � .vs/�X,  WD u � .us/�X for notational simplicity, and rewrite
(4.48) as8̂̂<̂
:̂
@t' � �@�1' C u � r�' �

PX.t/.vs/�X
�1
C vF.vs/�X

�1
D vdiv� ;

@t � �@�1 C u � r� C vp
0.v/r�' C v.p

0.v/ � p0..vs/�X//r�.v
s/�X

� PX.t/.us/�X
�1
C vF.us/�X

�1
D �v�� C .�C �/vr�div� :

(4.58)

Applying r�@�i (i D 1; 2; 3) to (4.58)1, and @�i (i D 1; 2; 3) to (4.58)2, we have8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

@tr�@�i' � �@�1r�@�i' C u � r�.r�@�i'/ �
PX.t/r�@�i .v

s/�X
�1

C vFr�@�i .v
s/�X
�1
Cr�@�iu � r�' Cr�u � r�@�i' C @�iu � r�.r�'/

Cr�@�i .vF /.v
s/�X
�1
Cr�.vF /@�i .v

s/�X
�1
C @�i .vF /r�.v

s/�X
�1

D vr�@�i div� Cr�@�i vdiv� C @�i vr�div� Cr�v@�i div� ;

@t@�i � �@�1@�i C u � r�@�i C vp
0.v/r�@�i' C @�iu � r� 

C @�i .vp
0.v//r�' C @�i .v.p

0.v/ � p0..vs/�X///r�.v
s/�X

C v.p0.v/ � p0..vs/�X//r�@�i .v
s/�X

� PX.t/@�i .u
s/�X
�1

C vF @�i .u
s/�X
�1
C @�i .vF /.u

s/�X
�1

D �v��@�i C .�C �/vr�@�i div� C @�i v.��� C .�C �/r�div� /:

(4.59)



T. Wang, Y. Wang 546

Multiplying (4.59)1 by �.2�C �/r�@�i', and summating by i from 1 to 3, then integrat-
ing the resultant equations over R � T2, we get

.2�C �/
d

dt

Z
T2

Z
R
�
jr2
�
'j2

2
d�1d�

0
� .2�C �/

3X
iD1

Z
T2

Z
R
r�@�i' � r�@�i div� d�1d� 0

D .2�C �/ PX.t/
Z

T2

Z
R
�@2�1'.v

s/�X
�1�1�1

d�1d�
0

� .2�C �/

Z
T2

Z
R
F@2�1'.v

s/�X
�1�1�1

d�1d�
0

� .2�C �/

3X
iD1

Z
T2

Z
R
�r�@�i' �

�
r�@�iu � r�' Cr�u � r�@�i'

C @�iu � r�.r�'/
�
d�1d�

0

� .2�C �/

3X
iD1

Z
T2

Z
R
�
�
r�@�i' � r�@�i .vF /.v

s/�X
�1

C @�1@�i'@�i .vF /.v
s/�X
�1�1

�
d�1d�

0

� .2�C �/

Z
T2

Z
R
�r�@�1' � r�.vF /.v

s/�X
�1�1

d�1d�
0

C .2�C �/

3X
iD1

Z
T2

Z
R
�r�@�i' �

�
r�@�i vdiv� C @�i vr�div� 

Cr�v@�i div� 
�
d�1d�

0: (4.60)

Multiplying (4.59)2 by ��r�@�i', and summating by i from 1 to 3, then integrating the
resultant equations over R � T2, we obtainZ

T2

Z
R
�p0.v/jr2� 'j

2d�1d�
0
C .2�C �/

3X
iD1

Z
T2

Z
R
r�@�i' � r�@�i div� d�1d� 0

D
d

dt

3X
iD1

Z
T2

Z
R
�@�i � r�@�i'd�1d�

0
C

3X
iD1

Z
T2

Z
R
�r�@�i' � @�iu � r� d�1d�

0

�

3X
iD1

Z
T2

Z
R
�@�i � Œr�@�i @t' � �@�1r�@�i' C u � r�.r�@�i'/�d�1d�

0

C

3X
iD1

Z
T2

Z
R
�@�i .vp

0.v//r�@�i' � r�'d�1d�
0

� PX.t/
Z

T2

Z
R
�@2�1'.u

s
1/
�X
�1�1

d�1d�
0

C

3X
iD1

Z
T2

Z
R
�@�i .v.p

0.v/ � p0..vs/�X///@�1@�i'.v
s/�X
�1
d�1d�

0

C

Z
T2

Z
R
.p0.v/ � p0..vs/�X//@2�1'.v

s/�X
�1�1

d�1d�
0
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C

Z
T2

Z
R
F@2�1'.u

s
1/
�X
�1�1

d�1d�
0
C

3X
iD1

Z
T2

Z
R
�@�i .vF /@�1@�i'.u

s
1/
�X
�1
d�1d�

0

�

3X
iD1

Z
T2

Z
R
�@�i v.��� C .�C �/r�div� / � r�@�i'd�1d�

0: (4.61)

Adding (4.60) and (4.61) together, and integrating the resultant equations over Œ0; t � for
any t 2 Œ0; T �, we have

.2�C �/

Z
T2

Z
R
�
jr2
�
'j2

2
d�1d�

0

ˇ̌̌�Dt
�D0
C

Z t

0

Z
T2

Z
R
jp0.v/jjr2� 'j

2d�1d�
0d�

D

8X
jD1

Kj .t/; (4.62)

where

K1.t/ D

3X
iD1

Z
T2

Z
R
�@�i � r�@�i'd�1d�

0

ˇ̌̌�Dt
�D0

;

K2.t/ D

Z t

0

PX.�/
Z

T2

Z
R
�@2�1'Œ.2�C �/.v

s/�X
�1�1�1

� .us1/
�X
�1�1

�d�1d�
0d�;

K3.t/ D �

Z t

0

Z
T2

Z
R
F@2�1'Œ.2�C �/.v

s/�X
�1�1�1

� .us1/
�X
�1�1

�d�1d�
0d�;

K4.t/ D �.2�C �/

3X
iD1

Z t

0

Z
T2

Z
R

�
�.r�@�i' � r�@�i .vF /.v

s/�X
�1

C @�1@�i'@�i .vF /.v
s/�X
�1�1

/
�
d�1d�

0d�

� .2�C �/

Z t

0

Z
T2

Z
R
�r�@�1' � r�.vF /.v

s/�X
�1�1

d�1d�
0d�

C

3X
iD1

Z t

0

Z
T2

Z
R
�@�1@�i'@�i .vF /.u

s
1/
�X
�1
d�1d�

0d�;

K5.t/ D �

3X
iD1

Z t

0

Z
T2

Z
R
�@�i �

�
r�@�i @t' � �@�1r�@�i'

C u � r�.r�@�i'/
�
d�1d�

0d�;

K6.t/ D �.2�C �/

3X
iD1

Z t

0

Z
T2

Z
R
�r�@�i' �

�
r�@�iu � r�' Cr�u � r�@�i'

C @�iu � r�.r�'/
�
d�1d�

0d�

C

3X
iD1

Z t

0

Z
T2

Z
R
�r�@�i' � Œ@�iu � r� C @�i .vp

0.v//r�'�d�1d�
0d�;
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K7.t/ D

3X
iD1

Z t

0

Z
T2

Z
R
�@�i .v.p

0.v/ � p0..vs/�X///@�1@�i'.v
s/�X
�1
d�1d�

0d�

C

Z t

0

Z
T2

Z
R
.p0.v/ � p0..vs/�X//@2�1'.v

s/�X
�1�1

d�1d�
0d�;

K8.t/ D .2�C �/

3X
iD1

Z t

0

Z
T2

Z
R
�r�@�i' �

�
r�@�i vdiv� C @�i vr�.div� /

Cr�v@�i .div� /
�
d�1d�

0d�

�

3X
iD1

Z t

0

Z
T2

Z
R
�@�i vr�@�i' � Œ��� C .�C �/r�div� �d�1d� 0d�:

Using the Cauchy inequality, it holds

K1.t/ �
2�C �

8
k
p
�r2� '.t/k

2
C Ckr� .t/k

2
C C.kr2� '0k

2
C kr� 0k

2/:

Using Lemma 2.1, we have

K2.t/ � Cı

Z t

0

j PX.�/jk@2�1'k k.v
s/�X
�1
kL2.R/d�

� Cı2
Z t

0

.j PX.�/j2 C k
p
jp0.v/j@2�1'k

2/d�:

Using (4.7), we get

K3.t/ � Cı

Z t

0

Z
T2

Z
R

�ˇ̌̌
h1 � .h

s
1/
�X
�
p.v/ � p..vs/�X/

��

ˇ̌̌
C jp.v/ � p..vs/�X/j

C j@�1.p.v/ � p..v
s/�X//j C j.vs/�X

�1
jjp.v/ � p..vs/�X/j

�
� j@2�1'jj.v

s/�X
� jd�1d�

0d�

� Cı2
Z t

0

.
p
G3.�/C

p
Gs.�/C

p
D.�//k@2�1'kd�

� Cı2
Z t

0

.G3.�/CG
s.�/CD.�/C k

p
jp0.v/j@2�1'k

2/d�:

By using (4.7) again, it holds

vF D ��.v � .v
s/�X/C u1 � .u

s
1/
�X
D ��' C  1: (4.63)

Thus, we can get

K4.t/ � C

Z t

0

Z
T2

Z
R
jr
2
� 'j.jr

2
� 'j C jr

2
� j/j.v

s/�X
�1
jd�1d�

0d�

C C

Z t

0

Z
T2

Z
R
jr
2
� 'j.jr�'j C jr� j/j.v

s/�X
�1�1
jd�1d�

0d�

� Cı2
Z t

0

kr
2
� 'k.kr�'kH1 C kr� kH1/d�

� Cı2
Z t

0

.k
p
jp0.v/jr2� 'k

2
CD.�/CGs.�/C kr� k

2
H1
/d�:
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By using equation (4.59)1, we can compute the term K5.t/ as

K5.t/ D �

Z t

0

PX.�/
Z

T2

Z
R
�@�1 1.v

s/�X
�1�1�1

d�1d�
0d�

C

Z t

0

Z
T2

Z
R
F@�1 1.v

s/�X
�1�1�1

d�1d�
0d�

C

3X
iD1

Z t

0

Z
T2

Z
R
�@�i �

�
r�@�iu � r�' Cr�u � r�@�i'

C @�iu � r�.r�'/
�
d�1d�

0d�

C

3X
iD1

Z t

0

Z
T2

Z
R
�@�i �

�
r�@�i .vF /.v

s/�X
�1
Cr�.vF /@�i .v

s/�X
�1

C @�i .vF /r�.v
s/�X
�1

�
d�1d�

0d�

�

3X
iD1

Z t

0

Z
T2

Z
R
�@�i �

�
r�@�i vdiv� C @�i vr�div� 

Cr�v@�i div� 
�
d�1d�

0d�

�

3X
iD1

Z t

0

Z
T2

Z
R
@�i � r�@�i div� d�1d� 0d� DW

6X
iD1

K5;i .t/:

Using Lemma 2.1, we obtain

K5;1.t/ � Cı
2

Z t

0

j PX.�/j2d� C Cı2
Z t

0

kr� k
2d�:

Using (4.7) and (4.43), we have

K5;2.t/ � C

Z t

0

Z
T2

Z
R
jr� jj.v

s/�X
�1�1�1

j

�

hˇ̌̌
h1 � .h

s
1/
�X
�
p.v/ � p..vs/�X/

��

ˇ̌̌
C j@�1.p.v/ � p..v

s/�X//j

C jp.v/ � p..vs/�X/j C jp.v/ � p..vs/�X/j.vs/�X
�1

i
d�1d�

0d�

� Cı2
Z t

0

.kr� k
2
CG3.�/CG

s.�/CD.�//d�:

By assumption (3.11), the Cauchy inequality, and the Sobolev inequality, we obtain the
following estimations:

k'kL3 C k kL3 � Ck'k
1
2 k'k

1
2

L6
C Ck k

1
2 k k

1
2

L6

� Ck'kH1 C Ck kH1 � C�;

kr�'kL3 C kr� kL3 � Ckr�'k
1
2 kr�'k

1
2

L6
C Ckr� k

1
2 kr� k

1
2

L6

� Ckr�'kH1 C Ckr� kH1 � C�:

(4.64)
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Then we have

K5;3.t/ � C

Z t

0

Z
T2

Z
R
jr� j.jr

2
� jjr�'j C jr� jjr

2
� 'j/d�1d�

0d�

C C

Z t

0

Z
T2

Z
R
jr� j.j.u

s
1/
�X
�1�1
jj@�1'j C j.u

s
1/
�X
�1
jjr�@�1'j/d�1d�

0d�

� C

Z t

0

kr� kL6kr�.';  /kL3kr
2
� .';  /kd�

C Cı2
Z t

0

kr� k.k@�1'k C kr�@�1'k/d�

� C�

Z t

0

.kr2� 'k
2
C kr� k

2
H1
/d�

C Cı2
Z t

0

.kr2� 'k
2
C kr� k

2
CD.�/CGs.�//d�:

We use (4.63) again and Lemma 2.1, then we get

K5;4.t/ � Cı
2

Z t

0

.kr2� .';  /k
2
C kr�.';  /k

2/d�

� Cı2
Z t

0

.kr2� 'k
2
C kr� k

2
H1
CD.�/CGs.�//d�:

Similarly to K5;3.t/, we have

K5;5.t/ � C

Z t

0

Z
T2

Z
R
jr� j.jr� jjr

2
� 'j C jr�'jjr

2
� j/d�1d�

0d�

C C

Z t

0

Z
T2

Z
R
jr� j.j.v

s/�X
�1�1
jjr� j C j.v

s/�X
�1
jjr

2
� j/d�1d�

0d�

� C

Z t

0

kr� kL6kr�.';  /kL3kr
2
� .';  /kd�

C Cı2
Z t

0

kr� k.kr� k C kr
2
� k/d�

� C�

Z t

0

.kr2� 'k
2
C kr� k

2
H1
/d� C Cı2

Z t

0

kr� k
2
H1
d�:

Integration by parts over R � T2 yields

K5;6.t/ D

3X
iD1

Z t

0

Z
T2

Z
R
.@�i div� /2d�1d� 0d� D

Z t

0

kr�div� k2d�:

Thus, the combination of the above estimates implies

K5.t/ �
1

8

Z t

0

k
p
jp0.v/jr2� 'k

2d� C C

Z t

0

kr
2
� k

2d� C Cı2
Z t

0

j PX.�/j2d�

C Cı2
Z t

0

.G3.�/CG
s.�/CD.�//d� C C.ı C �/

Z t

0

kr� k
2d�:
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Using the Cauchy inequality and (4.64), we get

K6.t/ � C

Z t

0

Z
T2

Z
R
jr
2
� 'jŒjr

2
� jjr�'j C jr� j

2
C jr

2
� 'jjr� j C jr�'j

2�d�1d�
0d�

C C

Z t

0

Z
T2

Z
R
jr
2
� 'j

�
j@�1'jj.u

s
1/
�X
�1�1
j C j@�1 jj.u

s
1/
�X
�1
j

C jr
2
� 'jj.u

s
1/
�X
�1
j C jr�'jj.v

s/�X
�1
j
�
d�1d�

0d�

� C

Z t

0

kr
2
� 'k

�
kr

2
� kL6kr�'kL3 C kr� kL6kr� kL3

C kr
2
� 'kkr� kL1

�
d�

C C

Z t

0

kr
2
� 'kkr�'kL3kr�'kL6d�

C Cı2
Z t

0

kr
2
� 'k.kr�.';  /k C kr

2
� 'k/d�

� C.ı C �/

Z t

0

.k
p
jp0.v/jr2� 'k

2
CD.�/CGs.�/C kr� k

2
H2
/d�;

where we used the fact that

kr
2
� 'k

2
kr� kL1 � Ckr

2
� 'k

2
kr� kH2 � C�kr

2
� 'kkr� kH2

� C�.k
p
jp0.v/jr2� 'k

2
C kr� k

2
H2
/:

Similarly, we have

K7.t/ � C

Z t

0

Z
T2

Z
R
.jr�'jj'j C j'jj.v

s/�X
�1
j C jr�'j/jr

2
� 'jj.v

s/�X
�1
jd�1d�

0d�

C Cı

Z t

0

Z
T2

Z
R
j'jj@2�1'jj.v

s/�X
�1
jd�1d�

0d�

� Cı

Z t

0

.k
p
jp0.v/jr2� 'k

2
CD.�/CGs.�//d�:

Using the Cauchy inequality and (4.64) again, we get

K8.t/ � C

Z t

0

Z
T2

Z
R
jr
2
� jjr

2
� 'j.jr�'j C j.v

s/�X
�1
j/d�1d�

0d�

C C

Z t

0

Z
T2

Z
R
jr
2
� 'j.jr� jjr

2
� 'j C jr� jj.v

s/�X
�1�1
j/d�1d�

0d�

� C

Z t

0

Œkr�'kL3kr
2
� kL6kr

2
� 'k C kr� kL1kr

2
� 'k

2�d�

C Cı2
Z t

0

kr
2
� 'kŒkr

2
� k C kr� k�d�

� C.ı C �/

Z t

0

Œk
p
jp0.v/jr2� 'k

2
C kr� k

2
H2
�d�:

Substituting the above estimates into (4.62) and using Lemmas 4.4, 4.5 and 4.6, we can
obtain the desired inequality (4.57). The proof of Lemma 4.7 is completed.



T. Wang, Y. Wang 552

4.5. Estimates for kr2
�
.u � .us/�X/k

Lemma 4.8. Under the hypotheses of Proposition 3.6, there exists a constant C > 0

independent of �, ı, � and T , such that for all t 2 Œ0; T �, it holds

kr
2
� .u � .u

s/�X/.t/k2 C

Z t

0

kr
3
� .u � .u

s/�X/k2d�

� C.kv0 � v
s
k
2
H2
C ku0 � u

s
k
2
H2
/: (4.65)

Proof. Multiplying (4.59)2 by ���@�i , and summating by i from 1 to 3, then integrat-
ing the resultant equations over R � T2, we obtain

d

dt

Z
T2

Z
R

jr2
�
 j2

2
d�1d�

0

C �

Z
T2

Z
R
vjr��� j

2d�1d�
0
C .�C �/

Z
T2

Z
R
vjr2� div� j2d�1d� 0„ ƒ‚ …

D3.t/

DW

3X
iD1

Li .t/; (4.66)

where

L1.t/ D �

3X
i;jD1

Z
T2

Z
R
@�j u � r�@�i � @�j @�i d�1d�

0
C

Z
T2

Z
R

div�u
jr2
�
 j2

2
d�1d�

0;

L2.t/ D

3X
iD1

Z
T2

Z
R
vp0.v/��@�i � r�@�i'd�1d�

0;

L3.t/ D

3X
iD1

Z
T2

Z
R
@�iu � r� ��@�i d�1d�

0

C

3X
iD1

Z
T2

Z
R
@�i .vp

0.v//��@�i � r�'d�1d�
0;

L4.t/ D
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iD1

Z
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Z
R
@�i .v.p
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�1
��@�i 1d�1d�

0

C

Z
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Z
R
v.p0.v/ � p0..vs/�X//.vs/�X

�1�1
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0;

L5.t/ D � PX.t/
Z

T2

Z
R
��@�1 1.u

s
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�X
�1�1

d�1d�
0;

L6.t/ D

Z
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Z
R
vF.us1/

�X
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��@�1 1d�1d�
0;

L7.t/ D
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iD1

Z
T2

Z
R
@�i .vF /.u

s
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�X
�1
��@�i 1d�1d�
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L8.t/ D .�C �/

3X
iD1

Z
T2

Z
R
.��@�i � r�@�i div� / � r�v @�i div� d�1d� 0

�

3X
iD1

Z
T2

Z
R
@�i v.��� C .�C �/r�div� / ��@�i d�1d�

0:

Using the Cauchy inequality and (4.64), we get

L1.t/ � Ckr� kL3kr
2
� kL6kr

2
� k C Cı

2
kr

2
� k

2
� C.ı C �/kr2� k

2
H1

� C.ı C �/.D3.t/C kr2� k
2/:

Using the Cauchy inequality, we have

L2.t/ �
1

8
D3.t/C Ckr2� 'k

2:

It follows from the Cauchy inequality and (4.64) that

L3.t/ � C Œkr� kL3kr� kL6 C kr�'kL3kr�'kL6 C ı
2
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p
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2
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/
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2
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Using Lemma 2.1, we obtain
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and
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p

D3.t/k.vs/�X
�1
kL2.R/

� Cı
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Using the definition of F (4.7), we have
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Using (4.63) and the Cauchy inequality, we get

L7.t/ � Cı
2
kr�.';  1/kk��@�1 1k � Cı

2.D3.t/CGs.t/CD.t/C kr� 1k2/:

Using the Cauchy inequality and (4.64), we have

L8.t/ � C
p

D3.t/kr�'kL3.k�� kL6 C kr�div� kL6/

C Cı2
p

D3.t/.k�� k C kr�div� k/

� C.ı C �/
p

D3.t/.k�� kH1 C kr�div� kH1/

� C.ı C �/.D3.t/C k�� k2H1 C kr�div� k2H1/:

Substituting the above estimates into (4.66), and integrating the resultant equations over
Œ0; t � for any t � T , using Lemmas 4.5, 4.6 and 4.7, we can get the desired inequal-
ity (4.65). The proof of Lemma 4.8 is completed.

4.6. Proofs of Proposition 3.6 and Theorem 2.3

We use (4.43) to have

kr�.v � .v
s/�X/k2 � C.D.t/CGs.t//;

which together with Lemmas 4.4–4.8 yields (3.12). In addition, using (3.9) and (4.25)2
together with Lemma 2.1 and assumption (3.11), we have

j PX.t/j �
C

ı
.k.p.v/ � p..vs/�X//kL1 C kv � .v

s/�X
kL1/

Z
T2

Z
R
.vs/�X

�1
d�1d�

0

� Ckv � .vs/�X
kL1 ;

which implies (3.13). The proof of Proposition 3.6 is completed.
To finish the proof of Theorem 2.3, we remain to justify the time-asymptotic behaviors

(2.12) and (2.13). Set
g.t/ WD kr�'.t/k

2
C kr� .t/k

2;

where ',  are defined in Lemma 4.7. The aim is to show thatZ C1
0

.jg.t/j C jg0.t/j/dt <1;

which implies

lim
t!C1

g.t/ D lim
t!C1

.kr�'.t/k
2
C kr� .t/k

2/ D 0: (4.67)

First, we can deduce from (3.12) that
R C1
0
jg.t/jdt < 1. Then we apply r� to equa-

tion (4.58)1 to getZ t
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C Cı2
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Meanwhile, it follows from (4.59)2 thatZ t

0

kr�@t k
2d� � C

Z t

0

.kr2� .';  /k
2
C kr

3
� k
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C Cı2
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j PX.�/j2 CG3.�/CGs.�/CD.�/

�
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Using the above two facts and the Cauchy inequality, we haveZ C1
0

jg0.t/jdt D

Z C1
0

Z
T2

Z
R
.2jr�'jjr�@t'j C 2jr� jjr�@t j/d�1d�

0dt

� 2

Z C1
0

.kr�'kkr�@t'k C kr� kkr�@t k/dt <1:

By the Gagliardo–Nirenberg inequality in Lemma 3.2 and (4.67), we obtain

lim
t!C1

k.';  /kL1 � lim
t!C1

.
p
2k.';  /k

1
2 k@�1.';  /k

1
2

C Ckr�.';  /k
1
2 kr

2
� .';  /k

1
2 / D 0;

which proves (2.12). In addition, by (3.13) and the above large-time behavior, it holds

j PX.t/j � Ckv � .vs/�X.t; �/kL1 ! 0 as t !C1;

which proves (2.13). Thus, the proof of Theorem 2.3 is completed.
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