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1 A characterization using maltitudes

In summer 2024, we read the interesting article [4] by Josefsson about orthodiagonal
quadrilaterals and learned the term maltitude of a quadrilateral (the term is older; see
e.g. Wells [11, p. 146]). There are several well-known theorems about maltitudes, for
instance that the maltitudes of a cyclic quadrilateral are concurrent; see e.g. Wells [11]
or De Villiers [9]. Maltitude is an abbreviation for midpoint altitude and denotes the line
emanating from a midpoint of a side perpendicular to the opposite side. A quadrilateral
ABCD with side midpoints E, F, G, H and corresponding maltitudes (dotted) is shown
in Figure 1. Intersecting maltitudes of adjacent quadrilateral sides yields four points, in
Figure 1 labeled by 7, J, K, L.

The arising quadrilateral /JKL (we call it maltitudes quadrilateral) reminded us
immediately of constructing a quadrilateral using the perpendicular bisectors of an ini-
tial quadrilateral, a famous and well-known process with many interesting features (see

Es gibt zahlreiche verschiedene Charakterisierungen fiir Vierecke mit orthogonalen
Diagonalen. Im Englischen ist dafiir der Fachbegriff orthodiagonal quadrilateral wei-
ter verbreitet als im Deutschen orthodiagonales Viereck. Die Liste solcher Charakteri-
sierungen wird im folgenden Beitrag um zwei erweitert, die offenbar so noch nicht in
der Literatur vorkommen. Die erste der beiden behandelten Charakterisierungen hat zu
tun mit im Englischen sogenannten maltitudes quadrilaterals, wofiir im Deutschen lei-
der ein entsprechender Begriff fehlt. So viel sei aber schon hier verraten: Der englische
Begriff maltitude ist ein Kofferwort aus midpoint (Mittelpunkt) und altitude (Hohe).
Die zweite Charakterisierung bezieht sich auf Gelenksvierecke.
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Figure 1. Maltitudes of a quadrilateral

e.g. Radko & Tsukerman [8]). And indeed, using maltitudes, or perpendicular bisectors
respectively, for constructing a quadrilateral from a given one are two closely related
processes: the maltitudes quadrilateral and the perpendicular bisectors quadrilateral are
congruent; even more specific, they are symmetric with respect to the centroid Z of the
initial quadrilateral (Figure 2). This is clear because a perpendicular bisector (e.g. EL’) is
sent to a maltitude (e.g. GL) by a half turn about the centroid Z, and vice versa; see Mam-
mana [5] and Mammana & Micale [6]. So all the theorems about perpendicular bisector
quadrilaterals (e.g. concerning their similarity when iterating the process of constructing
them: all the quadrilaterals with even index are similar to each other, and all the quadri-
laterals with odd index are similar to each other — dividing all the iterated perpendicular
bisector quadrilaterals into two classes) also hold for maltitudes quadrilaterals.

Now let us come to a new (at least for us; if a reader happens to know this phenomenon
somewhere described in the literature or in the WWW, with or without proof, please
inform us and send us the corresponding references; this applies also for the phenomenon
described in Section 2) connection between maltitudes quadrilaterals and orthodiagonal
quadrilaterals. In [4], ten characterizations (i.e. necessary and sufficient conditions) of
orthodiagonal quadrilaterals are described and proved, and here we present another one.
The idea for it was triggered by looking at [4, Figure 2].



H. Humenberger 10

Figure 2. Maltitudes quadrilateral /JK L and perpendicular bisector quadrilateral I’J' K’ L’

Theorem 1. The vertices of the maltitudes quadrilateral lie on the diagonals of a quadri-
lateral ABCD if and only if ABCD is orthodiagonal (in case that the quadrilateral
ABCD is cyclic, the maltitudes quadrilateral degenerates to a single point, the so-called
anticenter; for an orthodiagonal cyclic quadrilateral, its anticenter coincides with the
intersection point of the diagonals).

Proof. Let ABCD be an orthodiagonal quadrilateral and E, F, G, H the midpoints of the
sides (Figure 3), and 7 the diagonals’ point of intersection. The two maltitudes emanating
from G and H intersect at L. We must show that L lies on diagonal BD (analogous with
the other vertices of the maltitudes quadrilateral).

We draw the parallels to the maltitudes emanating from G and H through the points
C and A, intersecting at Q. Then Q must be the orthocenter of AABC and thus lie on
its third altitude BT and hence on BD (note that BT 1 AC). Since Q must also lie on
straight line DL (homothety centered at D, factor 2), we can conclude that L lies on the
diagonal BD.

For the converse, let L lie on diagonal BD. We must show that AC 1 BD. Again, we
draw the parallels to the maltitudes through 4 and C, intersecting at Q. This point Q must
lie on the straight line DL (homothety centered at D, factor 2), and like above, Q must be
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Figure 3. Orthodiagonal quadrilateral ABCD with I, J, K, L on its diagonals

the orthocenter of AABC. This means that Q must also lie on its third altitude through B,
and finally that AC L BD, as claimed. [

A very well-known and famous characterization of orthodiagonal quadrilaterals with
sides a, b, c,d is

a?+c2=b>2+d? or equivalently b2 +d*—a*>—-c?=0;

this we will need also for the next section. The proof is, in one direction, straightforward
with Pythagoras” Theorem, since both a? + ¢? and b? + d? equal the sum of the four
squared distances from the orthodiagonal quadrilateral’s vertices to the diagonals’ point of
intersection. Nevertheless, it also holds in the other direction

A+l =b+d*> = orthodiagonal;

see e.g. [4].
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Figure 4. Two possible shapes of an orthodiagonal four-bar linkage A BC D, the coordinate axes are fixed “tracks”
on which the points can move

2 A characterization using four-bar linkages

In this section, we consider quadrilaterals ABC D with sides a, b, ¢, d (fixed) as four-bar
linkages. Then the following is easy to see: if ABCD is orthodiagonal, then all other pos-
sible shapes of this quadrilateral, thought of as four-bar linkage, are orthodiagonal, so to
speak: orthodiagonality in one moment guarantees orthodiagonality “forever” in four-bar
linkages! This is because a, b, ¢, d do not change, and the above-mentioned characteriza-
tion for orthogonality a? + ¢? = b? + d? is fulfilled “forever” (meaning, in all possible
positions). One can imagine that A and C are fixed to the x axis, and B and D to the y
axis, and ABCD is a four-bar linkage. Then the points can move somehow on the axes
(Figure 4); the four-bar linkage is not rigid although the points are fixed to the axes!

A dynamic and kinematic version of it can be seen at https://walser-h-m.ch/hans/
Miniaturen/O/Orthodiagonales_Gelenkviereck/Orthodiagonales_Gelenkviereck.html (lat-
est access Nov. 11, 2024, text in German). The orthodiagonal quadrilaterals will prove to
be the only type of non-crossed quadrilaterals with the above property: thinking of the
quadrilateral as four-bar linkage, the angle between the diagonals does not change when
deforming it. In other words, when the vertices of the four-bar linkage are thought to
be attached to two fixed “tracks” (diagonals, like in Figure 4 the coordinate axes), the
vertices can move somehow on these “tracks”. Having shown that this is impossible for
non-orthodiagonal quadrilaterals, we will have the next characterization for orthodiagonal
quadrilaterals, formulated in Theorem 2.


https://walser-h-m.ch/hans/Miniaturen/O/Orthodiagonales_Gelenkviereck/Orthodiagonales_Gelenkviereck.html
https://walser-h-m.ch/hans/Miniaturen/O/Orthodiagonales_Gelenkviereck/Orthodiagonales_Gelenkviereck.html
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Theorem 2. Let ABCD be a non-crossed four-bar linkage (with fixed sides a,b,c,d;
for crossed four-bar linkages, in case of an antiparallelogram, the angle between the two
diagonals stays constant, 0° or 180°, during deformation). Then the angle between the
diagonals does not change when deforming the four-bar linkage if and only if ABCD is
orthodiagonal.

Remark. The formulation the angle between the diagonals does not change when deform-
ing the four-bar linkage is equivalent to when the vertices are thought to be attached to
fixed “tracks” (along the diagonals, making an angle of 0° < ¢ := ZATB < 180°; note
that ¢ is not defined as any of the two angles formed by the diagonals but as the specific
angle ZATB; for orthodiagonal quadrilaterals, ¢ would be 90°); then the vertices of the
four-bar linkage can move somehow on these “tracks”; the quadrilateral is not rigid.

For the proof, we need, as preparation, some other well-known results. The first ones
are two versions of Bretschneider’s formula for the area of a general quadrilateral (convex
or concave, not crossed): the area K of a quadrilateral with sides a, b, ¢, d and diagonals
e, f is given by

1
K = Z\/482]& — (b2 4+ d? —a? —c2)?, (1)

K = \/(s —a)(s—=b)(s—c)s—d)— %abcd[l + cos(a + y)], )

where s is the semi-perimeter and «, y are any two opposite angles (Figure 5; note that
cos(a + y) = cos(B + §) because of  + B + y + § = 360°).

Next, an old and short formula for b2 + d? — a? — ¢? in quadrilaterals can be derived;
see e.g. Dostor [1] or Walser [10]. Let ABCD be an arbitrary quadrilateral; in Figure 6,
we show a convex case.

A a B

Figure 5. General quadrilateral, here convex
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A a B

Figure 6. Convex quadrilateral, e; + e, =e, fi + fo = f

Then, according to the law of cosines, we have
I: a’> = e% + f12 —2e; f1cos @,
I b*=e3+ f2+2erficosp,
I % =e2+ f7 —2erfrco80,
IvV: d% = ef + f22 + 2e; f> cos @.
This gives, by adding lines IT and IV and subtracting lines I and III,
b? +d?* —a® —c? = 2ef cos g, 3)
since
b*> +d*—a® —c* =2cosp(er f1 + exf1 + e1fo + exf2)
=2cosg (e1 +e2) (f1 + f2) =2ef cosg.
e e
€ f

Remarks. (i) Formula (3) also follows from (1) using the well-known formula for the area

of a quadrilateral K = % sin ¢ (whose structure is remarkably similar to the trigonometric
area formula of a triangle K = % sin y, where y is the angle between the sides a and b).

(ii) Defining the angle ¢ and e, e,, f1, f> appropriately, one can see that (3) also holds
for concave and even for crossed quadrilaterals.

(iii) For ¢ # 90°, we can divide by 2 cos ¢, yielding a formula for the product of the
diagonals of a not orthodiagonal quadrilateral: e f = %.

(iv) Using formula (3), the above-mentioned characterization of quadrilaterals

a’? + ¢* = b* + d* <= orthodiagonal

is an immediate consequence in both directions.
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Now we are prepared for proof of Theorem 2.

Proof. The if part is easy; see above. Now for the only if direction, let ABCD be a non-
crossed four-bar linkage with fixed sides @, b, ¢, d and ¢ # 90° (not orthodiagonal). Then,
according to (3), we see (note that the left side of (3) is a constant) that, when deforming
a four-bar linkage, ¢ is constant if and only if ef is constant. This, in turn, is — due
to (1) — equivalent to area K being constant, and according to (2), this is equivalent to
o + y being constant. But this is impossible since, when deforming a four-bar linkage,
either both angles «, y increase (in case that diagonal f increases) or decrease (in case
that f decreases; f cannot stay constant when changing the shape of the four-bar linkage
because, with given values of a, b, ¢, d, and f, the quadrilateral is uniquely determined).
Thus, a non-orthodiagonal four-bar linkage cannot have constant angle ¢ between the
diagonals, which proves the missing direction of Theorem 2. ]

Corollary 1. Given the values of a, b, c,d, and ¢ # 90° (angle between the diagonals),
how many (non-congruent, non-crossed) quadrilaterals are there with these values? The
number of solutions is, depending on the given values, either 0, or 1, or 2. The case of one
solution occurs if and only if the values come from a cyclic quadrilateral (maximum area,
maximum product e f of the diagonals, « + y = 180°).

Proof. According to (3), the value of ¢ uniquely determines the product e f of the diago-
nals; in turn, due to (1), this uniquely determines the area K, and via (2), we can see that
there are at most two corresponding values of 0° < o + y < 360°. The value of @ + y
uniquely defines the shape of the quadrilateral, and the case o + y = 180° yields unique-
ness of the quadrilateral. ]

Corollary 2. If there are two different (non-crossed) quadrilaterals with the same values
of a,b,c,d, and ¢ # 90°, then they have the same product of their diagonals, the same
area, and the values of o 4+ y are symmetric about 180° (same cosine).

Open Problem. How can these quadrilaterals, if they exist, be constructed?

Corollary 3. Given a convex four-bar linkage with fixed values of a,b,c,d, and ¢ # 90°
(this angle changes when deforming the four-bar linkage!), the angle ¢ # 90° takes its
maximum/minimum if and only if the quadrilateral is cyclic. The case of maximum occurs
for ¢ < 90°; the case of minimum occurs for ¢ > 90° (this can be best seen experimentally
by using dynamic geometry software).

Proof. From (3), we can conclude that the angle ¢ cannot change from acute to 90° or to
obtuse or vice versa, since the sign of cos ¢ cannot change for fixed a, b, ¢, d. (Above, we
formulated for four-bar linkages that orthodiagonality in one moment guarantees orthodi-
agonality “forever”. Now we can also say for convex four-bar linkages that ¢ < 90° in one
moment guarantees ¢ < 90° forever; ¢ > 90° in one moment guarantees ¢ > 90° “for-
ever”). First, we deal with the case of an acute angle ¢ < 90°. Then we have cos ¢ > 0,
according to (3), b2 + d? — a? — ¢? > 0, and the following equivalences:

quadrilateral is cyclic <= quadrilateral has maximum area
< ef — max
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b? +d? —a?—c?
2ef

>0

— min

3) .
<= CcOs@ — min,

and for acute angles ¢, this is equivalent to ¢ — max. Now, analogously, for the case of

an obtuse angle ¢ > 90°, we have cos ¢ < 0, according to (3), b2 +d?*—a?—-c2 <0,
and the following equivalences:
quadrilateral is cyclic <= quadrilateral has maximum area
< ef — max
b? +d? —a?—c?
— max
2ef
<0
3
<— COS@ — max,
and for obtuse angles ¢, this is equivalent to ¢ — min. ]

After having finished this paper, more specifically, during the time the paper was
reviewed, we came across two related references. Firstly, Mitchell [7], where it is shown
that the area of a quadrilateral is uniquely defined by a, b, ¢, d, and ¢ if and only if
¢ # 90°. Secondly, Johnson [3], where also crossed four-bar linkages are dealt with, espe-
cially antiparallelograms (contra-parallelograms, crossed parallelograms); they have the
surprising property that the product of the diagonals is constant.

Note added in proof. The open construction problem mentioned on p. 8 could be solved
recently by Halbeisen/Hungerbiihler/Liuchli. The solution will be published in this jour-
nal; see [2].
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