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Short note A remark on the number of automorphisms
of finite abelian groups

Marius Tărnăuceanu

Abstract. Let Ab0 be the class of finite abelian groups and consider the function
f WAb0! .0;1/ given by f .G/D jAut.G/j=jGj, where Aut.G/ is the automorphism
group of a finite abelian group G. In this short note, we prove that the image of f is
a dense set in Œ0;1/.

1 Introduction

A well-known question in group theory (see e.g. [5, Problem 12.77]) asks whether it is
true that jGj divides jAut.G/j for every nonabelian finite p-group G. This was answered
in negative in [3], where for each prime p, there was constructed a family .Gn/n2N of finite
p-groups such that jAut.Gn/j=jGnj tends to zero as n tends to infinity. By considering the
function

f .G/ D
jAut.G/j

jGj

for all finite groups G, the above result means that zero is an accumulation point of the
image of f . Note that a similar result holds for the function

f 0.G/ D
jAut.G/j

'.jGj/
;

where ' denotes the Euler totient function (see e.g. [1, 2]). These constitute the starting
point for our work.

Our main result shows that all nonnegative real numbers are accumulation points of
the image of f , even if we restrict this function only to abelian groups.

Theorem 1.1. The set
Im.f / D ¹f .G/ j G 2 Ab0º

is dense in Œ0;1/.

The proof of Theorem 1.1 follows the same steps as the proofs of [4, Theorem 1.1]. It is
based on the next lemma which is a consequence of the proposition outlined on [6, p. 863].

Lemma 1.2. Let .xn/n�1 be a sequence of positive real numbers such that limn!1 xnD 0

and
P1

nD1 xn is divergent. Then the set containing the sums of all finite subsequences of
.xn/n�1 is dense in Œ0;1/.
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It also uses the fact that the function f is multiplicative, that is,

f .G1 �G2/ D f .G1/f .G2/

for any finite groups G1, G2 of coprime orders.
Finally, we formulate a natural open problem related to the above theorem.

Open problem. Is it true that, for every a 2 Œ0;1/ \Q, there is a finite (abelian) group
G such that f .G/ D a?

2 Proofs of the main results

First of all, we prove an auxiliary result.

Lemma 2.1. The set Im.f / \ Œ0; 1� is dense in Œ0; 1�.

Proof. Let I be a finite subset of N and let pi be the i th prime number. Since f is multi-
plicative, we have

f
�Y

i2I

Cpi

�
D

Y
i2I

f .Cpi
/ D

Y
i2I

pi � 1

pi

and so

A D
°Y

i2I

pi � 1

pi

ˇ̌̌
I � N; jI j <1; pi D i th prime number

±
� Im.f / \ Œ0; 1�:

Thus it suffices to prove that A is dense in Œ0; 1�.
Consider the sequence .xi /i�1 � .0;1/, where xi D ln. pi

pi�1
/ for all i � 1. Clearly,

limi!1 xi D 0. We have
lim

i!1

xi

1
pi

D 1:

Therefore, since the series
P

i�1
1
pi

is divergent, we deduce that the series
P

i�1 xi is also
divergent. So all hypotheses of Lemma 1.2 are satisfied, implying that°X

i2I

xi

ˇ̌̌
I � N�; jI j <1

±
D Œ0;1/:

This means°
ln
�Y

i2I

pi

pi � 1

� ˇ̌̌
I � N�; jI j <1; pi D i th prime number

±
D Œ0;1/

or equivalently

°Y
i2I

pi

pi � 1

ˇ̌̌
I � N�; jI j <1; pi D i th prime number

±
D Œ1;1/:
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Then °Y
i2I

pi � 1

pi

ˇ̌̌
I � N�; jI j <1; pi D i th prime number

±
D Œ0; 1�

and consequently
A D Œ0; 1�;

as desired.

Note that the conclusion of Lemma 2.1 remains valid if we restrict f to the class Ab00
of finite abelian groups of odd order, that is, Im.f jAb00

/ \ Œ0; 1� is also dense in Œ0; 1�.
We are now able to prove our main result.

Proof of Theorem 1.1. We have to prove that, for every a 2 Œ0;1/ and every " > 0, there
is G 2 Ab0 such that f .G/ 2 .a � "; a C "/. If a 2 Œ0; 1�, this follows from Lemma 2.1.
Assume now that a 2 .1;1/. Since Aut.C n

2 / Š GLn.2/ has order
Qn�1

kD0.2n � 2k/, we
have

lim
n!1

f .C n
2 / D lim

n!1

1

2n

n�1Y
kD0

.2n
� 2k/ D1

and so we can choose a finite elementary abelian 2-group G1 such that f .G1/ D b > a.
Then a

b
2 .0; 1/. Let "1 D

"
b

. By the above remark, there is a finite abelian group of odd
order G2 with f .G2/ 2 . a

b
� "1; a

b
C "1/. It follows that G D G1 �G2 2 Ab0 and

f .G/ D f .G1/f .G2/ D bf .G2/ 2 .a � "; aC "/:

This completes the proof.
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