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Short note A Picard little theorem for entire functions
of matrices

Oleg Mushkarov and Nikolai Nikolov

Abstract. An analog of Picard’s little theorem for entire functions of matrices is
proved.

1 Introduction

The Picard little theorem says that any non-constant entire function omits at most one
complex value, i.e. its range is either the whole complex plane or the complex plane minus
a single point. This theorem together with Picard’s great theorem have a long history and
many important generalizations that have been the impetus for powerful developments in
complex analysis such as the Nevanlinna theory for value distribution of meromorphic
functions (see e.g. [1]).

The purpose of this note is to prove an analog of Picard’s little theorem for entire
functions of complex matrices. More precisely, let M, (C) be the ring of all n x n matrices
with complex entries. Then any entire function f : C — C with power series

o0
f@) =) az*
k=0
defines a map f: M, (C) — M,,(C) by setting
o0
() =) apA*
k=0

for any A € M,(C). By analogy with Picard’s little theorem, one may ask what can be
said about the range of the map f: M, (C) — M,(C). This question has been already
considered in [4, Problem 210*], and in [3], a criterion for surjectivity of f has been
proved for matrices with entries in an arbitrary algebraically closed field.

The main purpose of this note is to show that the range of f can be described almost
completely by means of the totally ramified values of f, i.e. the complex numbers a such
that all roots of the equation f(z) = a have multiplicity at least 2.

For a € C, let E, be the set of all matrices A € M, (C) which have an eigenvalue a,
and let S, C E, be the set of matrices whose Jordan forms have at least one non-trivial
Jordan block corresponding to a (i.e. the eigenspace of A corresponding to @ has non-zero
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codimension). Our analog of Picard’s little theorem for entire functions of matrices is the
following.
Theorem 1. Let f : C — C be a non-constant entire function.

(1) If f omits a complex value a, then
f(Mn(C)) = Mp(C) \ E,.
(ii) If f takes on all complex values and has no totally ramified values, then
J(My(C)) = My (C).
(iii) If f has one totally ramified value a, then
J(My(C)) = My(C)\ S]
where & # Saf C Sq. Moreover, S‘{ = S, if and only if each root of the equation

f(z) = a has a multiplicity at least n. In particular, S,{ =S, forn =2.
(iv) If f has two totally ramified values a and b, then

f(My(C)) = Mu(C)\ (S U S/).

Moreover, S({ and Sl{ are non-empty proper subsets of S, and Sp for n > 3,
while S = S, and S| = Sy forn = 2.

To prove Theorem 1, we use some well-known algebraic facts about square complex
matrices, Picard’s little and great theorems as well as the well-known fact that any non-
constant entire function has at most two totally ramified values.

The needed auxiliary facts for square complex matrices and totally ramified values of
entire functions are given in Section 2, and then, in Section 3, we prove Theorem 1. Finally,
in Section 4, we discuss some examples of entire functions satisfying the conditions of the
four options listed in Theorem 1.

2 Auxiliary facts

We first recall some well-known algebraic facts about square complex matrices.
A Jordan block of size k is a k x k matrix of the form

Al

A
Je() = .t
A

where the missing entries are all zero. Every square complex matrix A is similar to a block
diagonal matrix
Aq
As
J4 . ;
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where each block A; is a Jordan block. The matrix J4 is unique up to the order of the
Jordan blocks and is called the Jordan form of A. The entries on its main diagonal are
equal to the eigenvalues of A.

Let f:C — C be an entire function.

Fact 1. For any X € M, (C) and any non-singular P € M, (C), we have
f(PTIXP) =Pl f(X)P.

Fact 2. For any Jordan block Ji(a), the following identity holds true:

f@ f@ ... ... e

f@ fl@ .. L@

fUr@) = S 2
f@ ')

/(@)

where the missing entries are all zero.

Fact3. Let A be a block diagonal matrix with diagonal blocks A1, Az, . .., Am. Then f(A)
is a block diagonal matrix with diagonal blocks f(A1), f(A2),..., f(An).

Proof of Facts 1, 2, and 3. Ttis enough to prove each of these facts for the function f(z) =
z™, where m is a positive integer. This can be done easily by induction on m.

Given an upper triangular matrix A € M, (C), denote by dy(A) its main diagonal and
by di(A), 1 <k <n — 1, the k-th diagonal of A above dy(A). [

Fact 4. Let A € M, (C) be an upper diagonal matrix such that all entries on dy(A)
are 0 and all entries on dy(A) are equal to a. Then, for any 1 < k <n — 1, all entries
on dy(A%), ..., dir_1(A¥) are 0 and all entries on di (A*) are equal to a*.

Proof. Induction on k. [

Fact 5. Let A € M,,(C) be an upper triangular matrix whose entries on dy(A) are all
equal to a. Then the Jordan form of A has a single Jordan block J, (L) if and only if a # 0
and all entries on dy(A) are equal to A.

Proof. Note first that all entries on dy(A) are equal to A since the similar matrices have
equal eigenvalues. Hence the Jordan form of A consists only of Jordan blocks of the
form Js(A). Denote by k the largest size of such a Jordan block. Then k = n if and
only if (A — AI)"~! # 0. On the other hand, we know from Fact 4 that the entry on
dp_1((A = AI1)""1) is equal to a" !, which proves Fact 5. n

We will need also the following analytic facts.

Fact 6 ([1, p.45]). Any entire function f has at most two totally ramified values. If there
are two, say a and b, then each of the equations f(z) = a and f(z) = b has a root of
multiplicity 2.
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Fact 7. If a non-constant entire function omits a value, then it has no totally ramified
values.

Proof. See Example 3 for a more general result. ]

3 Proof of Theorem 1

Given a matrix A € M, (C), denote by J4 its Jordan form. Then it follows from Fact 1 that
the equation f(X) = A has a solution if and only if there is a matrix X € M,(C) such
that the matrices f(Jx) and J4 are similar. This together with Facts 3, 2, 5, and 7 implies
that the equation f(X) = A has a solution if and only if, for any eigenvalue a of A, there
exists z, such that f(z,) = a and f'(z,) # 0. This proves statements (i) and (ii).

Suppose now that f has one totally ramified value a. If a is not an eigenvalue of A,
then the equation f(X) = A has a solution since otherwise we will obtain another totally
ramified value of f(z), a contradiction. The reasoning above shows also that if a is an
eigenvalue of A and J, (a) € S, then the equatlon f(X) = J,(a) has no solutions, i.e.
f(M,(C)) = M,(C) \ Sa , where @ # S C S,. Moreover, if the equation f(z) = a
has a root z, with multiplicity less than n, then S; is a proper subset of S,. Indeed, it
follows from Fact 2 that the Jordan form of f(J,(z,)) has at least one non-trivial Jordan
block which shows that f(J,(z,) € S;. To prove (iii), it remams to show that if each
root of the equation f(z) = a has a multiplicity at least n, then Sa = S,. Suppose that
f(X) = A, where A € S,. Then the Jordan form of A has at least one non-trivial Jordan
block Ji(a). On the other hand, Fact 2 shows that each of these Jordan blocks is trivial,
which is a contradiction.

Finally, suppose that f has two totally ramified values a and b. Then, by Fact 6, any
of the equations f(z) = a and f(z) = b has a root of multiplicity 2 and (iv) follows by
using the same reasoning as in the proof of (iii). ]

Remark. Denote by GL,(C) the group of non-singular n x n matrices with complex
entries. Then any holomorphic function f: C \ {0} — C with Laurent series

f@ =Y @

k=—00
defines a map f:GL,(C) - M,(C) by setting

[e.0]

fA) = > apak.

k=—00

Since g(z) = f(e?) is an entire function, it follows that f omits at most one value as
well as that f has at most two ramified values. Note also that f has no ramified values
if it omits a value. Hence one can repeat the proof of Theorem 1 line by line and see that
its statement is true for holomorphic functions on C \ {0} as well. This follows also as
a corollary of Theorem 1 since f(GL,(C)) = g(M,(C)).



O. Mushkarov and N. Nikolov 38

4 Examples

In this section, we discuss some examples of entire functions satisfying the conditions of
the four options listed in Theorem 1.

Example 1. (1) Any quadratic polynomial has one totally ramified value.
(ii) The polynomial P(z) = z¥(z — 1) (k > 2) has no totally ramified values.
(iii)) The general fact for polynomials is that they have at most one totally ramified
value. This follows by the simple observation that if a is such a value for a poly-

nomial P, then the zeros of P — a contribute at least @ to the zeros of P’
counted with multiplicity.

Example 2. Consider the function

—-b b
a2 sin(cz—i—d)—}—a;_ ,

where a # b, ¢ #0,d € C. Then f'(z) = %cos(cz +d)=0<%sin(cz +d) = +1
and we conclude that f has two totally ramified values a and b. Moreover, by [2, The-
orem 2.1], these are all entire functions of order at most 1 (i.e. f(z) = O(e/?") for any
y > 1) with this property.

fl) =

Example 3. As we know by Picard’s great theorem, for any transcendental entire function
f (i.e. not a polynomial), there is at most one @ € C such that the equation f(z) = a has
finitely many roots. In this case, f = a + Pe#, where P is a monic polynomial and g
is a non-constant entire function. Then it follows by Nevanlinna’s theorem on deficient
values [1, Theorem 2.4] that a is the only possible totally ramified value of f and this
is so if and only if all zeros of P have multiplicity greater than 1. In particular, if a non-
constant entire function f omits a value a, then P = 1 and f has no totally ramified
values (Fact 7).
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