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Short note Interplay between the Chinese Remainder
Theorem and the Lagrange Interpolation
Formula

Paul Jolissaint

1 Introduction

Let R denote a commutative, unital ring. Then RŒt� denotes the ring of polynomials with
coefficients in R, and for A;B � R, we set

AC B WD ¹aC b W a 2 A; b 2 Bº;

AB WD ¹a1b1 C � � � C anbn W n � 1; aj 2 A; bj 2 Bº:

We recall that AC B and AB are ideals of R if A and B are. The above sum and product
generalize to finitely many ideals A1; : : : ; An. Given an ideal A and elements x; y 2 R,
we denote by x � y .mod A/ the property that x � y 2 A. Finally, we denote by R� the
(multiplicative) group of invertible elements (also called units) of R, and for a 2 R�, by
a�1 its inverse.

The purpose of the present note, which is partly inspired by [2], is to discuss a some-
what surprising interplay between the following statements of the Chinese Remainder
Theorem (CRT) and of the Lagrange Interpolation Formula (LIF). Note that the relation-
ship between these results have already been observed, for instance, in [1, 5]. Let us state
the versions that will be discussed here. The first one is [4, Proposition 12.3.1] whose proof
is reproduced in the next section.

Theorem 1 (CRT). Let R be a commutative, unital ring. Suppose that A1; : : : ; An are
pairwise coprime ideals in R: for all i ¤ j , one has Ai C Aj D R. Set A WD A1 � � �An.
Then the natural map  WR ! R=A1 ˚ � � � ˚ R=An induces an isomorphism from R=A

ontoR=A1˚ � � � ˚R=An. In particular, for all y1; : : : ; yn 2R, the system of congruences8̂<̂
:
x � y1 .mod A1/
:::

x � yn .mod An/

admits a solution x, and if x0 is another solution, then x � x0 .mod A/.
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Let us state now the following version of LIF.

Theorem 2 (LIF). LetR be a commutative, unital ring and .x1; y1/; : : : ; .xn; yn/ 2R�R

pairs such that, for all i ¤ j , xi � xj 2 R
�. Then there is a polynomial p.t/ 2 RŒt� such

that p.xk/ D yk for every k D 1; : : : ; n.

Of course, Theorem 2 admits the following explicit, classical proof (see, e.g., [3]). Set

p.t/ WD

nX
iD1

yi

Y
j¤i

.xi � xj /
�1.t � xj /: (1)

Then it is straightforward to check that p.xk/ D yk for every k. Furthermore, when R is
a field, the latter polynomial is the unique one such that deg.p.t// � n � 1.

In the rest of the note, we repeat the proof of [4, Proposition 12.3.1] in the next section
for the reader’s convenience, we provide a proof of Theorem 2 based on Theorem 1 and
finally we prove the classical version of CRT using a suitable version of LIF.

2 Proof of Theorem 1

Denote by  i WR! R=Ai the natural quotient map  i .x/ D x .mod Ai /, and define

 WR! R=A1 ˚R=A2 ˚ � � � ˚R=An

by  .x/ D . 1.x/;  2.x/; : : : ;  n.x// for x 2 R. We have to prove that  is onto, and
that ker. / D A.

Both statements rest on the following crucial observation: for each fixed i , expanding
the product Y

j¤i

.Ai C Aj / D R;

we see that all summands are contained in Ai except
Q

j¤i Aj , which shows that

Ai C

Y
j¤i

Aj D R: (2)

Now, to show that is onto, let y1; : : : ; yn 2R. By equation (2), for every i D 1; : : : ; n, we
find vi 2 Ai and ui 2

Q
j¤i Aj such that 1 D vi C ui . This means that vi � 0 .mod Ai /

and that ui � 1 .mod Ai /. Hence, setting x WD y1u1 C � � � C ynun, we get an element of
R such that  .x/ D .y1 .mod A1/; : : : ; yn .mod An//.

In order to prove that ker. / D A, we observe first that ker. / D A1 \ � � � \ An, and
that triviallyA�A1 \ � � � \An. Thus we just need to prove thatA1 \ � � � \An �A, which
is done by induction on n� 2. For nD 2, sinceA1CA2 DR, there exist ai 2Ai such that
a1C a2D 1. Hence, for any a 2A1 \A2, we have aD aa1C aa2 2A1A2. Assuming that
the assumption is true for n� 1 � 2, we have A1 \A2 \ � � � \An D A1 \ .A2A3 � � �An/,
and by equation (2), A1 C .A2 � � �An/ D R yields elements x1 2 A1 and x2 2 A2 � � �An

such that x1 C x2 D 1, and we end the proof as in the case n D 2 above.
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3 Theorem 1 implies Theorem 2

We apply Theorem 1 to the ring RŒt�. Let .x1; y1/; : : : ; .xn; yn/ be as in Theorem 2. For
every i , let Ai D .t � xi /RŒt � be the principal ideal in RŒt� generated by t � xi . One has

1 D .xj � xi /
�1.t � xi /C .xi � xj /

�1.t � xj / 2 Ai C Aj

for all i ¤ j , which means that the ideals Ai satisfy the hypotheses of Theorem 1. Hence
there exists an element p.t/ 2 RŒt� which satisfies the system of congruences8̂<̂

:
p.t/ � y1 .mod A1/

:::

p.t/ � yn .mod An/:

This means in particular that, for every kD 1; : : : ;n, there exists a polynomial qk.t/ 2RŒt�

such that p.t/ � yk D .t � xk/qk.t/. Setting t D xk yields p.xk/ � yk D 0.

Remark. Uniqueness is hopeless in the degree of generality of Theorem 2: for instance,
take R D Z=91Z and consider p.t/ WD t2 C t C 1 2 .Z=91Z/Œt �; it admits the four roots
9; 16; 74 and 81 which are the same as those of the polynomial

q.t/ WD .t � 9/.t � 16/.t � 74/.t � 81/ � t4 C 2t3 C 3t2 C 2t C 1 2 .Z=91/ZŒt �:

4 A proof of the classical CRT inspired by LIF

This section is strongly influenced by [2].
The classical CRT states that if m D m1 � � �mn is a positive integer such that

.mi ; mj / D 1 for all i ¤ j

and if b1; : : : ; bn are arbitrary integers, then the system of congruences8̂<̂
:
x � b1 .mod m1/
:::

x � bn .mod mn/

admits a solution x, and any two solutions differ by a multiple of m. We focus on the
existence of x here, that will follow from two observations.

(1) If p.t/ 2 ZŒt � is such that p.mi /� bi .modmi / for every i , then p.0/ is a solution
of the above system of congruences (see also [2, Lemma 2]). Indeed, writing

p.t/ D p.0/C a1t C � � � C akt
k
D p.0/C t .a1 C � � � C akt

k�1/„ ƒ‚ …
DWq.t/

with p.0/; a1; : : : ; ak 2 Z, we have, for every fixed i ,

p.mi / D p.0/Cmiq.mi / � p.0/ .mod mi /I

hence p.0/ � bi .mod mi /, as claimed.
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(2) Inspired by formula (1), we observe that, for 1 � i � n,

nY
jD1; j¤i

.mi �mj / �

nY
j¤i

.�mj / .mod mi /;

and as the class of �mj belongs to .Z=mi Z/�, one can find ri 2 Z such that

ri

nY
jD1; j¤i

.mi �mj / � 1 .mod mi /:

It suffices to set

p.t/ D

nX
iD1

biri

nY
jD1; j¤i

.t �mj /

to get that p.mk/ � bk .mod mk/ for every k.
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