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Short note  Interplay between the Chinese Remainder
Theorem and the Lagrange Interpolation
Formula

Paul Jolissaint

1 Introduction

Let R denote a commutative, unital ring. Then R[t] denotes the ring of polynomials with
coefficients in R, and for A, B C R, we set

A+B:={a+b:ac A beB)
AB = {arby +---+anby :n > 1,a; € A, b; € B},

We recall that A + B and A B are ideals of R if A and B are. The above sum and product
generalize to finitely many ideals Ay, ..., A,. Given an ideal A and elements x, y € R,
we denote by x = y (mod A) the property that x — y € A. Finally, we denote by R* the
(multiplicative) group of invertible elements (also called units) of R, and for a € R*, by
a~ ! its inverse.

The purpose of the present note, which is partly inspired by [2], is to discuss a some-
what surprising interplay between the following statements of the Chinese Remainder
Theorem (CRT) and of the Lagrange Interpolation Formula (LIF). Note that the relation-
ship between these results have already been observed, for instance, in [1,5]. Let us state
the versions that will be discussed here. The first one is [4, Proposition 12.3.1] whose proof
is reproduced in the next section.

Theorem 1 (CRT). Let R be a commutative, unital ring. Suppose that Ay, ..., A, are
pairwise coprime ideals in R: for all i # j, one has A; + A; = R. Set A .= Ay --- Ap.
Then the natural map ¥: R — R/A; & --- ® R/ Ay, induces an isomorphism from R /A
onto R/A1 ®---® R/ Ay,. Inparticular, for all yq,...,y, € R, the system of congruences

x = y; (mod A4;)

X = yn (mod Ay)

admits a solution x, and if x" is another solution, then x = x' (mod A).
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Let us state now the following version of LIF.

Theorem 2 (LIF). Let R be a commutative, unital ring and (x1, y1),...,(Xn,¥n) € RX R
pairs such that, for alli # j, x; — x; € R*. Then there is a polynomial p(t) € R[t] such
that p(xx) = yg foreveryk =1,...,n.

Of course, Theorem 2 admits the following explicit, classical proof (see, e.g., [3]). Set

n
p(t) = Zy,- H(xi —x;) 7Nt - x)). (1)
i=1  j#i
Then it is straightforward to check that p(xi) = yx for every k. Furthermore, when R is
a field, the latter polynomial is the unique one such that deg(p(¢)) <n — 1.
In the rest of the note, we repeat the proof of [4, Proposition 12.3.1] in the next section
for the reader’s convenience, we provide a proof of Theorem 2 based on Theorem 1 and
finally we prove the classical version of CRT using a suitable version of LIF.

2 Proof of Theorem 1

Denote by ¥;: R — R/A; the natural quotient map v; (x) = x (mod A;), and define
Y:R—> R/A1®R/Ay ®---® R/ A,

by ¥ (x) = (Y¥1(x), ¥2(x), ..., ¥n(x)) for x € R. We have to prove that i is onto, and
that ker(y) = A.

Both statements rest on the following crucial observation: for each fixed 7, expanding
the product

H(Ai + A4;) = R,
J#i

we see that all summands are contained in A4; except [ [;; 4;, which shows that

A; + l_[Aj = R. ()

J#i
Now, to show that ¥ is onto, let y1,..., y, € R. By equation (2), foreveryi = 1,...,n, we
find v; € A; and u; € ]_[j# Aj such that 1 = v; 4 u;. This means that v; = 0 (mod 4;)
and that u; = 1 (mod A4;). Hence, setting x := y uq + --- + y,uy, we get an element of

R such that ¥ (x) = (y1 (mod Ay),...,y, (mod 4,)).

In order to prove that ker(y) = A, we observe first that ker(y) = Ay N--- N A, and
that trivially A C A N --- N A,. Thus we just need to prove that A; N--- N A, C A, which
is done by induction on n > 2. For n = 2, since A; + A, = R, there exista; € A; such that
ay +a, = 1. Hence, foranya € Ay N A,, wehave a =aa; + aa, € A; A>. Assuming that
the assumption is true forn — 1 > 2, we have Ay N A, N--- N A, = A; N (AxA3--- Ayp),
and by equation (2), A1 + (A2 --- A,) = R yields elements x; € Ay and x; € Ay --- Ay
such that x; + x, = 1, and we end the proof as in the case n = 2 above. [
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3 Theorem 1 implies Theorem 2

We apply Theorem 1 to the ring R[¢]. Let (x1, y1), ..., (Xn, y») be as in Theorem 2. For
every i, let A; = (t — x;) R[t] be the principal ideal in R[f] generated by ¢ — x;. One has

1= (x;—x) "t —x;) + (xi —x;) 7' (1 —x)) € A; + A

for all i # j, which means that the ideals A; satisfy the hypotheses of Theorem 1. Hence
there exists an element p(t) € R[t] which satisfies the system of congruences

p(t) = y1 (mod Ay)

p(t) = yn (mod Ay).

This means in particular that, for every k = 1,.. ., n, there exists a polynomial g (¢) € R][¢]
such that p(t) — yx = (t — xx)qx(¢). Setting t = xj yields p(xx) — yx = 0. ]

Remark. Uniqueness is hopeless in the degree of generality of Theorem 2: for instance,
take R = Z /917 and consider p(¢) := 1> + 1 + 1 € (Z/91Z)[t]; it admits the four roots
9,16, 74 and 81 which are the same as those of the polynomial

g(t) =t =9t — 16)(r — 74)(t —81) = 1* + 213 + 312 + 21 + 1 € (Z/9)Z]1).

4 A proof of the classical CRT inspired by LIF

This section is strongly influenced by [2].
The classical CRT states that if m = m; ---m, is a positive integer such that

(mj,m;) =1 foralli # j
and if by, ..., b, are arbitrary integers, then the system of congruences

x = by (mod my)

x = b, (mod my)

admits a solution x, and any two solutions differ by a multiple of m. We focus on the
existence of x here, that will follow from two observations.
(1) If p(¢) € Z[t] is such that p(m;) = b; (mod m;) for every i, then p(0) is a solution
of the above system of congruences (see also [2, Lemma 2]). Indeed, writing
p(t) = p(0) + art + -+ apt* = p(0) + 1 (ay + - + apt*™1)

=q(t)

with p(0),ay,...,ax € Z, we have, for every fixed i,

p(m;) = p(0) +m;q(m;) = p(0) (mod m;);

hence p(0) = b; (mod m;), as claimed.
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(2) Inspired by formula (1), we observe that, for 1 <i < n,

[T mi—mp)=]]m)) (modm),

J=1,j#i J#
and as the class of —m; belongs to (Z/m;Z)*, one can find r; € Z such that

n
r l_[ (m; —m;) =1 (mod m;).
J=1,j#i

It suffices to set

p@)=> biri [] @t—my)

=1 =1,

to get that p(my) = by (mod my) for every k. ]
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