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Short note Construction of a quadrilateral
from its sides and the diagonal angle

Lorenz Halbeisen, Norbert Hungerbühler and Juan Läuchli

1 Introduction

In [1], the authors challenged the readers by posing the task of constructing a convex quad-
rilateral from its four vertex angles and the angle between its diagonals. This problem was
solved in [4]. A similar open problem was recently posed in [2]: construct a quadrilateral
from its sides and the angle between its diagonals. Allowed are the classical tools compass
and ruler. In the present short note, we show such a construction. As explained in [2], if
the diagonals are orthogonal, then there is a continuum of solutions for given side lengths
and the construction is elementary. We will therefore assume that the diagonals are not
orthogonal.

2 The setup

We choose a Cartesian coordinate system with origin in a vertex such that one diagonal
lies on the x-axis. The quadrilateral may be non-convex or self-intersecting (see Figure 1).
The sides and their lengths are denoted by c1; c2; c3; c4, the diagonals and their lengths by
d and e. The coordinates of the vertices of the quadrangle are P1 D .0; 0/, P2 D .x2; y2/,
P3 D .d; 0/ and P4 D .x4; y4/. The angle between the diagonals is ". By considering
a mirror image of the quadrilateral if necessary, we may assume that " < �=2.

We consider first the case of a convex quadrilateral. Then we have y2 < 0 < y4. The
aim is to find an algebraic expression for d which involves only square roots and arithmetic
operations on the side lengths ci and tan ". Then d and subsequently the quadrilateral can
be constructed by ruler and compass. We start with the equations

c2
4 D x

2
4 C y

2
4 ; (1)

c2
3 D .d � x4/

2
C y2

4 : (2)

We can solve the difference of (1) and (2) for x4 and obtain

x4 D
1

2d
.c2

4 � c
2
3 C d

2/: (3)
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Figure 1. A coordinate system adapted to the quadrilateral.

If we plug in this expression for x4 in equation (1) and solve for y4, we get

y4 D

r
c2

4 �
1

4d2
.c2

4 � c
2
3 C d

2/2: (4)

Similarly, we find

x2 D
1

2d
.c2

1 � c
2
2 C d

2/ (5)

and

y2 D �

r
c2

1 �
1

4d2
.c2

1 � c
2
2 C d

2/2: (6)

Using the expressions in (3)–(6), we can compute

tan " D
y4 � y2

x4 � x2

D

q
4c2

1d
2 � .c2

1 � c
2
2 C d

2/2 C

q
4c2

4d
2 � .c2

4 � c
2
3 C d

2/2

c2
2 � c

2
1 C c

2
4 � c

2
3

: (7)

Solving (7) directly for d by hand or a computer algebra system leads to an extremely
unpleasant expression. We are therefore taking a different approach.

Equation (7) is an equation for x WD d2 of the form

a D
p
bx � .c C x/2 C

p
f x � .g C x/2

with

aD .c2
2 � c

2
1 C c

2
4 � c

2
3/ tan"; bD 4c2

1 ; cD c2
1 � c

2
2 ; f D 4c2

4 ; gD c2
4 � c

2
3 : (8)
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Lemma. A solution x > 0 of aD
p
bx � .c C x/2˙

p
f x � .g C x/2 is also a solution

of the quadratic equation AC Bx C Cx2 D 0 with

A D 2g2.a2
� c2/C .a2

C c2/2 C g4;

B D 2
�
a2.2c � b � f C 2g/C .c2

� g2/.2c � b C f � 2g/
�
;

C D 4a2
C .b � 2c � f C 2g/2:

Proof. Set uC v D bx � .c C x/2, u � v D f x � .g C x/2, i.e.,

u D
1

2

�
x.b � 2c C f � 2g/ � 2x2

� c2
� g2

�
; (9)

v D
1

2

�
x.b � 2c � f C 2g/ � c2

C g2
�
: (10)

Observe that if a D
p
uC v ˙

p
u � v, then a is a solution of

a4
� 4a2uC 4v2

D 0 (11)

(plug in, or see [3]). Using the expressions (9) and (10) for u and v in (11) and expanding,
we get a quadratic equation ACBx CCx2 D 0 with the desired coefficients A;B;C .

Suppose that the given side lengths and the diagonal angle come from a convex quad-
rilateral. Then we can now formulate the construction.

Construction 1. Choose a unit length l . Then proceed as follows.
(1) Construct with the intercept theorems line segments of lengths a;b; c;f;g as given

in (8).
(2) Construct with the intercept theorems line segments of lengths A

C
; B

C
for the values

A;B;C as given in the lemma.
(3) Construct the solutions of A

C
C

B
C
x C x2 D 0 using the intersecting chords the-

orem or the intersecting secants theorem (see [3]). Obtain one or two solutions in
form of a line segment of length x.

(4) Transform the rectangle with sides x and l into a square of equal area with side
length d , using the right triangle altitude theorem.

(5) Construct the quadrilateral with diagonal d and sides c1; c2; c3; c4.

Note that there is only one solution if and only if the quadrilateral is cyclic [2, Corol-
lary 1].

For the non-convex or the self-intersecting case, the sign in the numerator on the right
of equation (7) changes to a minus:

tan " D
y4 � y2

x4 � x2

D

q
4c2

1d
2 � .c2

1 � c
2
2 C d

2/2 �

q
4c2

4d
2 � .c2

4 � c
2
3 C d

2/2

c2
2 � c

2
1 C c

2
4 � c

2
3

:

As the lemma also covers this case, the formulas and the construction remain unchanged.
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