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1 Bernstein approximation

For n € N (the set of positive integers) and k € {0, 1, ..., n}, the k-th Bernstein basis
polynomial of degree n is defined as

Bulk,x) := (Z)xk(l —x)" % forx e[o0,1].

Bernstein-Polynome liefern einen konstruktiven Beweis fiir den aus der Analysis
bekannten Approximationssatz von Karl Weierstral. Dieser besagt, dass jede ste-
tige Funktion auf einem beschriankten, abgeschlossenen Intervall beliebig genau und
gleichmiBig durch Polynome angenihert werden kann. Interessanterweise kann der
Beweis dieses Resultats auch mit Hilfe elementarer Wahrscheinlichkeitstheorie durch-
gefiihrt werden. Auf diese Weise erhdlt man dariiber hinaus sogar Abschitzungen
des Approximationsfehlers fiir Lipschitz-Funktionen. In diesem Beitrag wird diese
Beweismethode vorgestellt und aufgezeigt, wie sie auf natiirliche Weise auf andere
interessante Situationen tibertragen werden kann, bei denen der Fokus mehr auf Funk-
tionen mit unbeschrinktem Definitionsbereich liegt. Damit kann man auf elementarem
Weg interessante Ergebnisse fiir den Szdsz-Mirakjan-Operator und den Baskakov-
Operator erzielen.
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For a continuous function f:[0, 1] — R and n € N, Bernstein [2] constructed an approx-
imation scheme of the form

Bafi0 = Y f (4 )t
k=0

to prove the Weierstrass approximation theorem. His proof is based on methods from ele-
mentary probability theory (see also [4, Proposition 5.2]). Kac [3] gave a formula for the
approximation error for Lipschitz continuous functions. These results are also discussed by
Mathé in [5], which is worth reading also because of the interesting historical comments.

Theorem 1. Assume a function f:[0,1] — R is a-Holder continuous, i.e., f € C%%([0,1])
with a € (0, 1], such that

[ f(x)— f()| < Llx=y|* forallx,y €l0,1],

for some real constant L > 0. Then, for alln € N and all x € [0, 1], we have

/2
() = Ba(f: )] < L(@) |

We briefly revisit the proof of this result according to Mathé [5] which uses elementary
arguments from probability theory. Thereby, we make some minor reformulations that
allow us to get a clearer picture of the overall situation, which in turn makes it clear how
the method can be expanded.

Proof of Theorem 1. Let x € [0, 1] be the success probability of a Bernoulli experiment
and let n € N be the total number of experiments. The number of successful Bernoulli
experiments, which is a discrete random variable denoted by K, x, follows the binomial
distribution with the probability mass function

Bulk,x) = (Z)xk(l —x)" % fork €{0,1,...,n}.
The probability of K, » = k is given by the k-th Bernstein basis polynomial. We have the

expectation E[K}, x] = nx and the variance Var[K, x] = nx(l — x).
For a function f:[0, 1] — R, we have the identity

E[f(KT)} - éf(%)(,’ﬁ)xk(l 2 = By(fi).

Therefore, by treating f(x) as a deterministic term in the expectation, in particular,

E[f(x)] = f(x) forall x €]0,1],

celo-s(5)}

we obtain

R )
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Assuming that f € C%%(][0, 1]) and using the above inequality, we then have

X

()= Ba(f: ) suE[x—L ]= L Bl — Ky, (1)

Applying Jensen’s inequality, we obtain
E[nx = Knox|*] = (E[lnx = Knox D2 = Var[Kp /2 = (1x(1 = 2)"%. @)
Substituting (2) into (1), the result follows. ]

The key insight we gain here is that one can exploit the equivalence between discrete
probability distributions and certain basis functions to construct approximation schemes.
This note aims to demonstrate how this method can be easily adapted to other discrete
probability distributions and thereby to other approximation schemes rather than that based
on Bernstein basis polynomials. This very elementary approach leads in an easy way to
results for the Szdsz—Mirakjan operator and the Baskakov operator, which are usually
obtained by analytic methods (suitable references will be given below).

2 Other approximation schemes

We aim to approximate a continuous and bounded function f: [0, co) — R over the
unbounded domain [0, co) using a family of discrete random variables K, x with para-
meters n € N and x € [0, oo) taking values k in Ny (the set of non-negative integers).
Let the probability mass function of K, x be p,(k, x). Assuming E[K, x] = nx and
Var[K, x] < oo, we define the approximation scheme

Su(f3x) = Zf( )pn(k x). 3)

Note that S, ( f, x) is well-defined for bounded functions f because p,( -, x) is a probab-
ility mass function.
The following theorem estimates the approximation error of S, ( f’; x).

Theorem 2. Let K, x with parameters n € N and x € [0, 00) be Ng-valued random vari-
ables with probability mass function py(k, x) for k € Ng and with E[K,, x] = nx and
Var[K, x] < co. Let S, (-, x) be the associated approximation scheme given in (3). Assume
that a bounded function f:]0, 00) — R satisfies a general Holder-type condition,

|x —yI* ,
|f(x) - f(y>| = Lm forall x,y € [0, OO) with x 75 v, @)

forreal constants L >0, o« € (0,1] and B,y € [0,00), then, for alln € N and all x € (0, 00),
we have
L Var[K, (]*/?

) = 8alF5] = o=
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For a function f satisfying the general Holder-type condition (4), we denote it by
f e C%%B-7 ([0, 00)). The constant y is used to avoid singularities at the origin in error
estimates. With increasing 8, we impose a stronger decaying rate on f toward its tail.
With 8 = 0, the general Holder-type condition reduces to the plain Holder condition

|f(x) = f()] =< Llx—y|* forallx,y € [0,00),
for L > 0 and @ € (0, 1]. In this case, the error estimate in Theorem 2 becomes
L a2
[ f(x)=Su(fix)] < n_a Var[Kn,x] .

Proof of Theorem 2. Let f:[0,00) — R be a continuous and bounded function and let
Ky x € Ny be a discrete random variable with probability mass function p, (k, x), where
n € N and x € (0, 00). We have

el r(%22)] - éf('g)pn(k,m = Su(f1),

< |rn - (%)

Assuming f € C%%#7 ([0, 00)) and using the above inequality, we have

"] L Elnx - Kuxl¥]
Ky | 7ne (r+x)f

n

and thus

7= 5u(f:01 = [E| fo - £ (52

|

|_@
n

| f(x) = Su(f3X)] < LIE|:
(v +x+

Following the argument in (2), we have E[|nx — K, x|*] < Var[K, »]*/?, and therefore
the result follows. ]

As an application, we obtain results for the Szdsz—Mirakjan operator and the Baskakov
operator.

Szasz-Mirakjan operator

The Szdsz—Mirakjan operator [6] is based on the Poisson distribution P, with parameter
A > 0, which has the probability mass function

/\k
pk) = e_ly for k € Ny.

If K} is distributed according to P,, which is written as K, ~ P, then it is well known
that E[K,] = Var[K;] = A. Now, for n € N and x € [0, c0), we define the parameter
A = nx and let K, x ~ Ppy. This defines the basis functions

o (nx)k

pnlk,x)=¢e for k € Ny.
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Then, for f € C%*8-7 ([0, 00)) and n € N, we have the approximation scheme

I ()
k=0 '

which is known as Szdsz—Mirakjan operator; see, e.g., [0, 7] for a detailed study using
analytic methods. From Theorem 2, we obtain its error estimate

a2

d a0

) =Su(fi0)l = o g = o

If B = «/2, then the bound is uniform in x, and if 8 > «/2, the bound even decays
toward the tail as x increases. The convergence rate n~%/2 is also obtained in the above
mentioned papers [6, 7]. Furthermore, the convergence rate is best possible for ¢ = 1 as

shown in [6, p.241].

Baskakov operator

The Baskakov operator [1] is based on the Pascal distribution PC,, x (also known as negat-
ive binomial distribution) with parameters n € N and x € [0, 00), which has the probability
mass function

k—1 k
n ) s for k € Np.

e = ("

If K, x ~ PC, x, then we have E[K}, ] = nx and Var[K, x] = nx(1 + x). Then, for
bounded f € C%*A-¥ ([0, 00)) and n € N, we have the approximation scheme

> kN(n+k—1 xk
kg% n k (14 x)ntk

This operator is known as Baskakov operator in literature; see, e.g., [1,7]. From Theorem 2,
we obtain its error estimate

. L (x(x+ 1)*/?
|f(x) —Sn(f,X)| S n“/z (y +X)ﬂ

With a decay rate B > o, we can also extend the convergence rate of the Baskakov operator
uniformly for all x € [0, co). For example, with y = 1 and 8 = «, for all n € N and
uniformly for all x € (0, c0), we have

L
£ = Sal /1] = —.

—a/2

The convergence rate n can be also deduced from [7, Theorem 3.2].
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Final remark and examples

For both Szdsz—Mirakjan and Baskakov operators, it is possible to bound the error | f(x) —
S, (f; x)| uniformly for all x € [0, co) for bounded functions with a sufficiently large decay
rate 8. However, their convergence still follows a rate of 7~%/2, and thus we can recover
a convergence rate of n~'/2 with & = 1 as the best-case scenario.

To numerically implement these operators, we also require a truncation in k in the
approximation. For m € N, we have the truncated approximation scheme

~ " k
Sn,m(f;x) = Z f(;)pn(kJC) )
k=0

The error of the approximation (5) has an apparent upper bound

|f() = Sum (3201 < 1F) = Sa(f 50|+ 1Sa (%) = Sum(f3 2],

in which the first term of the bound is given by Theorem 2 and the second term of the
bound (the truncation error) satisfies

1Sn (%) = Snm (f:X)]

> (%) omtk

k>m

sup ()] Y pulk.x)

xe€(m/n,o00) k>m

sup | f(0)|P[Kp x> m]. (6)

xe(m/n,00)

IA

We first consider a function f € C %2 (|0, 00)) with a sufficiently large B that leads
to a uniform error bound | £ (x) — S, (f;x)| < Ln~*/2 in the untruncated approximation.
For x € (m/n, c0), we further assume that f satisfies a tail condition | f(x)| = O(g(x))
for x — oo for some strictly decreasing function g: (0, c0) — R™. Applying the bound
in (6) and P[K,, x > m] < 1, the truncation error satisfies

1Sn(f1X) = Snm(f: )] = O(g(m/n)).

Then, using m = [n g~ (n™*/?)], the error of the truncated approximation scheme satisfies
| f(x) = Sum(fix)| = O(n=%/?). The following are some examples.

(1) The function f(x) = (1 4+ x2)~! satisfies the general Holder condition (4) with
o = 1and B = 1. We also have f(x) = O(x~2) for x — oco. Thus, we can choose
m = [n5/4] so that the truncated approximation satisfies | f(x) — Sn,m (f:x) =
O(n~1?).

(2) The function f(x) = exp(—x) satisfies the general Holder condition (4) witho = 1
and B = 1. Thus, we can choose m = [nlog(n)/2] so that the truncated approx-
imation satisfies | f(x) — Sy (f:x)| = O(n~1/2).

If the function f:[0, c0) — R does not necessarily satisfy a tail condition to guide

the truncation in k, but is at least bounded, then we can use an alternative argument from
elementary probability theory. Assuming || f'[[co 1= SUpye[o,00)| ./ (*)| < 00, the bound of
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the truncation error in (6) also leads to
1Sn(fix) — Sn,m(f;x)l < flloo IP)[I<n,x > m],

in which P[K,, x > m] can be estimated using Chebyshev’s inequality. Choosing m >
2E[Kp x], we have

Var[K
P[Knx > m] < P[|Knx — E[Knx]| > E[Kpx]] < [—’“2]
E[Ky,x]

In the case of the Szdsz—Mirakjan operator, we have E[K,, x] = Var[K, x] = nx, and thus,
choosing m = 2[nx], we obtain

- 1
10 (f:2) = Spm (f 1201 = [ f lloo -

In the case of the Baskakov operator, we have E[K, ] = nx and Var[K, x| = nx (1 + x).
Hence, choosing again m = 2[nx], we obtain

127+ = Snn (201 < 11 oo,

14+ x
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