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1 Bernstein approximation

For n 2 N (the set of positive integers) and k 2 ¹0; 1; : : : ; nº, the k-th Bernstein basis
polynomial of degree n is defined as

ˇn.k; x/ WD

�
n

k

�
xk.1 � x/n�k for x 2 Œ0; 1�:

Bernstein-Polynome liefern einen konstruktiven Beweis für den aus der Analysis
bekannten Approximationssatz von Karl Weierstraß. Dieser besagt, dass jede ste-
tige Funktion auf einem beschränkten, abgeschlossenen Intervall beliebig genau und
gleichmäßig durch Polynome angenähert werden kann. Interessanterweise kann der
Beweis dieses Resultats auch mit Hilfe elementarer Wahrscheinlichkeitstheorie durch-
geführt werden. Auf diese Weise erhält man darüber hinaus sogar Abschätzungen
des Approximationsfehlers für Lipschitz-Funktionen. In diesem Beitrag wird diese
Beweismethode vorgestellt und aufgezeigt, wie sie auf natürliche Weise auf andere
interessante Situationen übertragen werden kann, bei denen der Fokus mehr auf Funk-
tionen mit unbeschränktem Definitionsbereich liegt. Damit kann man auf elementarem
Weg interessante Ergebnisse für den Szász-Mirakjan-Operator und den Baskakov-
Operator erzielen.
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For a continuous function f W Œ0; 1�! R and n 2 N, Bernstein [2] constructed an approx-
imation scheme of the form

Bn.f I x/ WD

nX
kD0

f

�
k

n

�
ˇn.k; x/

to prove the Weierstrass approximation theorem. His proof is based on methods from ele-
mentary probability theory (see also [4, Proposition 5.2]). Kac [3] gave a formula for the
approximation error for Lipschitz continuous functions. These results are also discussed by
Mathé in [5], which is worth reading also because of the interesting historical comments.

Theorem 1. Assume a function f W Œ0;1�!R is ˛-Hölder continuous, i.e., f 2C 0;˛.Œ0;1�/
with ˛ 2 .0; 1�, such that

jf .x/ � f .y/j � Ljx � yj˛ for all x; y 2 Œ0; 1�;

for some real constant L > 0. Then, for all n 2 N and all x 2 Œ0; 1�, we have

jf .x/ � Bn.f I x/j � L

�
x.1 � x/

n

�˛=2
:

We briefly revisit the proof of this result according to Mathé [5] which uses elementary
arguments from probability theory. Thereby, we make some minor reformulations that
allow us to get a clearer picture of the overall situation, which in turn makes it clear how
the method can be expanded.

Proof of Theorem 1. Let x 2 Œ0; 1� be the success probability of a Bernoulli experiment
and let n 2 N be the total number of experiments. The number of successful Bernoulli
experiments, which is a discrete random variable denoted by Kn;x , follows the binomial
distribution with the probability mass function

ˇn.k; x/ D

�
n

k

�
xk.1 � x/n�k for k 2 ¹0; 1; : : : ; nº:

The probability of Kn;x D k is given by the k-th Bernstein basis polynomial. We have the
expectation EŒKn;x � D nx and the variance VarŒKn;x � D nx.1 � x/.

For a function f W Œ0; 1�! R, we have the identity

E

�
f

�
Kn;x

n

��
D

nX
kD0

f

�
k

n

��
n

k

�
xk.1 � x/n�k D Bn.f I x/:

Therefore, by treating f .x/ as a deterministic term in the expectation, in particular,

EŒf .x/� D f .x/ for all x 2 Œ0; 1�;

we obtain

jf .x/ � Bn.f I x/j D

ˇ̌̌̌
E

�
f .x/ � f

�
Kn;x

n

��ˇ̌̌̌
� E

�ˇ̌̌̌
f .x/ � f

�
Kn;x

n

�ˇ̌̌̌�
:
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Assuming that f 2 C 0;˛.Œ0; 1�/ and using the above inequality, we then have

jf .x/ � Bn.f I x/j � LE

�ˇ̌̌̌
x �

Kn;x

n

ˇ̌̌̌˛�
D

L

n˛
EŒjnx �Kn;xj

˛�: (1)

Applying Jensen’s inequality, we obtain

EŒjnx �Kn;xj
˛� � .EŒjnx �Kn;xj

2�/˛=2 D VarŒKn;x �˛=2 D
�
nx.1 � x/

�˛=2
: (2)

Substituting (2) into (1), the result follows.

The key insight we gain here is that one can exploit the equivalence between discrete
probability distributions and certain basis functions to construct approximation schemes.
This note aims to demonstrate how this method can be easily adapted to other discrete
probability distributions and thereby to other approximation schemes rather than that based
on Bernstein basis polynomials. This very elementary approach leads in an easy way to
results for the Szász–Mirakjan operator and the Baskakov operator, which are usually
obtained by analytic methods (suitable references will be given below).

2 Other approximation schemes

We aim to approximate a continuous and bounded function f W Œ0;1/ ! R over the
unbounded domain Œ0;1/ using a family of discrete random variables Kn;x with para-
meters n 2 N and x 2 Œ0;1/ taking values k in N0 (the set of non-negative integers).
Let the probability mass function of Kn;x be pn.k; x/. Assuming EŒKn;x � D nx and
VarŒKn;x � <1, we define the approximation scheme

Sn.f I x/ WD

1X
kD0

f

�
k

n

�
pn.k; x/: (3)

Note that Sn.f; x/ is well-defined for bounded functions f because pn. � ; x/ is a probab-
ility mass function.

The following theorem estimates the approximation error of Sn.f I x/.

Theorem 2. LetKn;x with parameters n 2 N and x 2 Œ0;1/ be N0-valued random vari-
ables with probability mass function pn.k; x/ for k 2 N0 and with EŒKn;x � D nx and
VarŒKn;x � <1. Let Sn. � ;x/ be the associated approximation scheme given in (3). Assume
that a bounded function f W Œ0;1/! R satisfies a general Hölder-type condition,

jf .x/ � f .y/j � L
jx � yj˛

.
 C x C y/ˇ
for all x; y 2 Œ0;1/ with x ¤ y; (4)

for real constantsL>0, ˛ 2 .0;1� and ˇ;
 2 Œ0;1/; then, for all n2N and all x 2 .0;1/,
we have

jf .x/ � Sn.f I x/j �
L

n˛
VarŒKn;x �˛=2

.
 C x/ˇ
:
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For a function f satisfying the general Hölder-type condition (4), we denote it by
f 2 C 0;˛;ˇ;
 .Œ0;1//. The constant 
 is used to avoid singularities at the origin in error
estimates. With increasing ˇ, we impose a stronger decaying rate on f toward its tail.
With ˇ D 0, the general Hölder-type condition reduces to the plain Hölder condition

jf .x/ � f .y/j � Ljx � yj˛ for all x; y 2 Œ0;1/;

for L > 0 and ˛ 2 .0; 1�. In this case, the error estimate in Theorem 2 becomes

jf .x/ � Sn.f I x/j �
L

n˛
VarŒKn;x �˛=2:

Proof of Theorem 2. Let f W Œ0;1/ ! R be a continuous and bounded function and let
Kn;x 2 N0 be a discrete random variable with probability mass function pn.k; x/, where
n 2 N and x 2 .0;1/. We have

E

�
f

�
Kn;x

n

��
D

1X
kD0

f

�
k

n

�
pn.k; x/ D Sn.f I x/;

and thus

jf .x/ � Sn.f I x/j D

ˇ̌̌̌
E

�
f .x/ � f

�
Kn;x

n

��ˇ̌̌̌
� E

�ˇ̌̌̌
f .x/ � f

�
Kn;x

n

�ˇ̌̌̌�
:

Assuming f 2 C 0;˛;ˇ;
 .Œ0;1// and using the above inequality, we have

jf .x/ � Sn.f I x/j � LE

" ˇ̌
x �

Kn;x
n

ˇ̌˛�

 C x C

Kn;x
n

�ˇ
#
�
L

n˛
EŒjnx �Kn;xj˛�

.
 C x/ˇ
:

Following the argument in (2), we have EŒjnx � Kn;xj˛� � VarŒKn;x �˛=2, and therefore
the result follows.

As an application, we obtain results for the Szász–Mirakjan operator and the Baskakov
operator.

Szász–Mirakjan operator

The Szász–Mirakjan operator [6] is based on the Poisson distribution P� with parameter
� > 0, which has the probability mass function

p.k/ D e��
�k

kŠ
for k 2 N0:

If K� is distributed according to P�, which is written as K� � P�, then it is well known
that EŒK�� D VarŒK�� D �. Now, for n 2 N and x 2 Œ0;1/, we define the parameter
� D nx and let Kn;x � Pnx . This defines the basis functions

pn.k; x/ D e�nx
.nx/k

kŠ
for k 2 N0:
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Then, for f 2 C 0;˛;ˇ;
 .Œ0;1// and n 2 N, we have the approximation scheme

Sn.f I x/ WD

1X
kD0

f

�
k

n

�
e�nx

.nx/k

kŠ
;

which is known as Szász–Mirakjan operator; see, e.g., [6, 7] for a detailed study using
analytic methods. From Theorem 2, we obtain its error estimate

jf .x/ � Sn.f I x/j �
L

n˛=2
x˛=2

.
 C x/ˇ
�

L

n˛=2
.
 C x/˛=2�ˇ :

If ˇ D ˛=2, then the bound is uniform in x, and if ˇ > ˛=2, the bound even decays
toward the tail as x increases. The convergence rate n�˛=2 is also obtained in the above
mentioned papers [6, 7]. Furthermore, the convergence rate is best possible for ˛ D 1 as
shown in [6, p. 241].

Baskakov operator

The Baskakov operator [1] is based on the Pascal distribution PCn;x (also known as negat-
ive binomial distribution) with parameters n 2N and x 2 Œ0;1/, which has the probability
mass function

pn.k; x/ D

�
nC k � 1

k

�
xk

.1C x/nCk
for k 2 N0:

If Kn;x � PCn;x , then we have EŒKn;x � D nx and VarŒKn;x � D nx.1 C x/. Then, for
bounded f 2 C 0;˛;ˇ;
 .Œ0;1// and n 2 N, we have the approximation scheme

Sn.f I x/ D

1X
kD0

f

�
k

n

��
nC k � 1

k

�
xk

.1C x/nCk
:

This operator is known as Baskakov operator in literature; see, e.g., [1,7]. From Theorem 2,
we obtain its error estimate

jf .x/ � Sn.f I x/j �
L

n˛=2
.x.x C 1//˛=2

.
 C x/ˇ
:

With a decay rate ˇ � ˛, we can also extend the convergence rate of the Baskakov operator
uniformly for all x 2 Œ0;1/. For example, with 
 D 1 and ˇ D ˛, for all n 2 N and
uniformly for all x 2 .0;1/, we have

jf .x/ � Sn.f I x/j �
L

n˛=2
:

The convergence rate n�˛=2 can be also deduced from [7, Theorem 3.2].
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Final remark and examples

For both Szász–Mirakjan and Baskakov operators, it is possible to bound the error jf .x/�
Sn.f Ix/j uniformly for all x 2 Œ0;1/ for bounded functions with a sufficiently large decay
rate ˇ. However, their convergence still follows a rate of n�˛=2, and thus we can recover
a convergence rate of n�1=2 with ˛ D 1 as the best-case scenario.

To numerically implement these operators, we also require a truncation in k in the
approximation. For m 2 N, we have the truncated approximation scheme

QSn;m.f I x/ WD

mX
kD0

f

�
k

n

�
pn.k; x/: (5)

The error of the approximation (5) has an apparent upper bound

jf .x/ � QSn;m.f I x/j � jf .x/ � Sn.f I x/j C jSn.f I x/ � QSn;m.f I x/j;

in which the first term of the bound is given by Theorem 2 and the second term of the
bound (the truncation error) satisfies

jSn.f I x/ � QSn;m.f I x/j D

ˇ̌̌̌X
k>m

f

�
k

n

�
pn.k; x/

ˇ̌̌̌
� sup
x2.m=n;1/

jf .x/j
X
k>m

pn.k; x/

D sup
x2.m=n;1/

jf .x/jP ŒKn;x > m�: (6)

We first consider a function f 2 C 0;˛;ˇ;
 .Œ0;1// with a sufficiently large ˇ that leads
to a uniform error bound jf .x/ � Sn.f I x/j � Ln�˛=2 in the untruncated approximation.
For x 2 .m=n;1/, we further assume that f satisfies a tail condition jf .x/j D O.g.x//
for x !1 for some strictly decreasing function gW .0;1/! RC. Applying the bound
in (6) and P ŒKn;x > m� � 1, the truncation error satisfies

jSn.f I x/ � QSn;m.f I x/j D O.g.m=n//:

Then, usingmDdng�1.n�˛=2/e, the error of the truncated approximation scheme satisfies
jf .x/ � QSn;m.f I x/j D O.n

�˛=2/. The following are some examples.
(1) The function f .x/ D .1C x2/�1 satisfies the general Hölder condition (4) with

˛ D 1 and ˇ D 1. We also have f .x/DO.x�2/ for x!1. Thus, we can choose
m D dn5=4e so that the truncated approximation satisfies jf .x/ � QSn;m.f I x/j D
O.n�1=2/.

(2) The function f .x/D exp.�x/ satisfies the general Hölder condition (4) with ˛D 1
and ˇ D 1. Thus, we can choose m D dn log.n/=2e so that the truncated approx-
imation satisfies jf .x/ � QSn;m.f I x/j D O.n�1=2/.

If the function f W Œ0;1/! R does not necessarily satisfy a tail condition to guide
the truncation in k, but is at least bounded, then we can use an alternative argument from
elementary probability theory. Assuming kf k1 WD supx2Œ0;1/jf .x/j <1, the bound of
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the truncation error in (6) also leads to

jSn.f I x/ � QSn;m.f I x/j � kf k1 P ŒKn;x > m�;

in which P ŒKn;x > m� can be estimated using Chebyshev’s inequality. Choosing m �
2EŒKn;x �, we have

P ŒKn;x > m� � P
�
jKn;x � EŒKn;x �j � EŒKn;x �

�
�

VarŒKn;x �
EŒKn;x �2

:

In the case of the Szász–Mirakjan operator, we have EŒKn;x �D VarŒKn;x �D nx, and thus,
choosing m D 2dnxe, we obtain

jSn.f I x/ � QSn;m.f I x/j � kf k1
1

nx
:

In the case of the Baskakov operator, we have EŒKn;x �D nx and VarŒKn;x �D nx.1C x/.
Hence, choosing again m D 2dnxe, we obtain

jSn.f I x/ � QSn;m.f I x/j � kf k1
1

n

1C x

x
:
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